1
|
Coleman JR, Deguchi H, Deguchi TK, Cohen MJ, Moore EE, Griffin JH. Full-length plasma skeletal muscle myosin isoform deficiency is associated with coagulopathy in acutely injured patients. J Thromb Haemost 2022; 20:1385-1389. [PMID: 35253989 PMCID: PMC9310574 DOI: 10.1111/jth.15695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Skeletal muscle myosin (SkM) molecules are procoagulant both in vitro and in vivo. The association of plasma SkM isoforms with blood coagulability and hemostatic capacity has not been defined. OBJECTIVES We hypothesized that coagulopathy in acutely injured patients is associated with procoagulant plasma SkM heavy chain levels. METHODS To test this hypothesis, citrated whole blood and plasma from 104 trauma patients were collected and studied to obtain data for rapid thrombelastography, international normalized ratios, and plasma SkM levels. Coagulability parameters were dichotomized by the threshold for the hypercoagulable trauma-induced coagulopathy. RESULTS Lower plasma full-length SkM heavy chain (full-SkM) levels were associated with higher international normalized ratio values (>1.3) (p = .03). The full-SkM levels were also associated with a lower rate of clot propagation (thrombelastography angle <65°) (p = .004), and plasma full-SkM levels were positively correlated with the thrombelastography angle (r2 = .32, p = .0007). The trauma patient group with the lower plasma full-SkM levels showed an association with lower clot strength (maximum amplitude <55 mm) (p = .002), and plasma full-SkM levels positively correlated with maximum amplitude (r2 = .27, p = .005). Hyperfibrinolysis was associated with significantly decreased full-SkM levels (p = .03). Trauma patients who required red blood cells and fresh frozen plasma transfusions had lower plasma full-SkM levels compared with those without transfusions (p = .04 and .02, respectively). CONCLUSIONS In acutely injured trauma patients, lower levels of plasma full-SkM levels are linked to hypocoagulability in trauma-induced coagulopathy, implying that SkM plays a role in the hemostatic capacity in trauma patients and may contribute to trauma-induced coagulopathy.
Collapse
Affiliation(s)
| | - Hiroshi Deguchi
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Taichi K. Deguchi
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Mitchel J. Cohen
- Department of SurgeryUniversity of ColoradoAuroraColoradoUSA
- Ernest E Moore Shock Trauma Center at Denver HealthDenverColoradoUSA
| | - Ernest E. Moore
- Department of SurgeryUniversity of ColoradoAuroraColoradoUSA
- Ernest E Moore Shock Trauma Center at Denver HealthDenverColoradoUSA
| | - John H. Griffin
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
- Department of MedicineUniversity of CaliforniaSan DiegoCaliforniaUSA
| |
Collapse
|
2
|
Wiśniowski P, Cieśliński M, Jarocka M, Kasiak PS, Makaruk B, Pawliczek W, Wiecha S. The Effect of Pressotherapy on Performance and Recovery in the Management of Delayed Onset Muscle Soreness: A Systematic Review and Meta-Analysis. J Clin Med 2022; 11:jcm11082077. [PMID: 35456170 PMCID: PMC9028309 DOI: 10.3390/jcm11082077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background: It has been demonstrated that pressotherapy used post-exercise (Po-E) can influence training performance, recovery, and physiological properties. This study examined the effectiveness of pressotherapy on the following parameters. Methods: The systematic review and meta-analysis were performed according to PRISMA guidelines. A literature search of MEDLINE, PubMed, EBSCO, Web of Science, SPORTDiscus, and ClinicalTrials has been completed up to March 2021. Inclusion criteria were: randomized control trials (RCTs) or cross-over studies, mean participant age between 18 and 65 years, ≥1 exercise mechanical pressotherapy intervention. The risk of bias was assessed by the Cochrane risk-of-bias tool for RCT (RoB 2.0). Results: 12 studies comprised of 322 participants were selected. The mean sample size was n = 25. Pressotherapy significantly reduced muscle soreness (Standard Mean Difference; SMD = −0.33; CI = −0.49, −0.18; p < 0.0001; I2 = 7%). Pressotherapy did not significantly affect jump height (SMD = −0.04; CI = −0.36, −0.29; p = 0.82). Pressotherapy did not significantly affect creatine kinase level 24−96 h after DOMS induction (SMD = 0.41; CI = −0.07, 0.89; p = 0.09; I2 = 63%). Conclusions: Only moderate benefits of using pressotherapy as a recovery intervention were observed (mostly for reduced muscle soreness), although, pressotherapy did not significantly influence exercise performance. Results differed between the type of exercise, study population, and applied treatment protocol. Pressotherapy should only be incorporated as an additional component of a more comprehensive recovery strategy. Study PROSPERO registration number—CRD42020189382.
Collapse
Affiliation(s)
- Paweł Wiśniowski
- Department of Physical Education and Health in Biala Podlaska, Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Biala Podlaska, Poland; (P.W.); (M.C.); (M.J.); (B.M.); (W.P.)
| | - Maciej Cieśliński
- Department of Physical Education and Health in Biala Podlaska, Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Biala Podlaska, Poland; (P.W.); (M.C.); (M.J.); (B.M.); (W.P.)
| | - Martyna Jarocka
- Department of Physical Education and Health in Biala Podlaska, Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Biala Podlaska, Poland; (P.W.); (M.C.); (M.J.); (B.M.); (W.P.)
| | - Przemysław Seweryn Kasiak
- Students’ Scientific Group of Lifestyle Medicine, 3rd Department of Internal Medicine Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Bartłomiej Makaruk
- Department of Physical Education and Health in Biala Podlaska, Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Biala Podlaska, Poland; (P.W.); (M.C.); (M.J.); (B.M.); (W.P.)
| | - Wojciech Pawliczek
- Department of Physical Education and Health in Biala Podlaska, Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Biala Podlaska, Poland; (P.W.); (M.C.); (M.J.); (B.M.); (W.P.)
| | - Szczepan Wiecha
- Department of Physical Education and Health in Biala Podlaska, Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Biala Podlaska, Poland; (P.W.); (M.C.); (M.J.); (B.M.); (W.P.)
- Correspondence: ; Tel.: +48-833-428-823
| |
Collapse
|
3
|
Morla S, Deguchi H, Zilberman-Rudenko J, Gruber A, McCarty OJT, Srivastava P, Gailani D, Griffin JH. Skeletal muscle myosin promotes coagulation by binding factor XI via its A3 domain and enhancing thrombin-induced factor XI activation. J Biol Chem 2022; 298:101567. [PMID: 35007530 PMCID: PMC8856988 DOI: 10.1016/j.jbc.2022.101567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/01/2022] Open
Abstract
Skeletal muscle myosin (SkM) has been shown to possess procoagulant activity; however, the mechanisms of this coagulation-enhancing activity involving plasma coagulation pathways and factors are incompletely understood. Here, we discovered direct interactions between immobilized SkM and coagulation factor XI (FXI) using biolayer interferometry (Kd = 0.2 nM). In contrast, we show that prekallikrein, a FXI homolog, did not bind to SkM, reflecting the specificity of SkM for FXI binding. We also found that the anti-FXI monoclonal antibody, mAb 1A6, which recognizes the Apple (A) 3 domain of FXI, potently inhibited binding of FXI to immobilized SkM, implying that SkM binds FXI A3 domain. In addition, we show that SkM enhanced FXI activation by thrombin in a concentration-dependent manner. We further used recombinant FXI chimeric proteins in which each of the four A domains of the heavy chain (designated A1 through A4) was individually replaced with the corresponding A domain from prekallikrein to investigate SkM-mediated enhancement of thrombin-induced FXI activation. These results indicated that activation of two FXI chimeras with substitutions of either the A3 domains or A4 domains was not enhanced by SkM, whereas substitution of the A2 domain did not reduce the thrombin-induced activation compared with wildtype FXI. These data strongly suggest that functional interaction sites on FXI for SkM involve the A3 and A4 domains. Thus, this study is the first to reveal and support the novel intrinsic blood coagulation pathway concept that the procoagulant mechanisms of SkM include FXI binding and enhancement of FXI activation by thrombin.
Collapse
Affiliation(s)
- Shravan Morla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Hiroshi Deguchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jevgenia Zilberman-Rudenko
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA; Departments of Biomedical Engineering and Medicine, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - András Gruber
- Departments of Biomedical Engineering and Medicine, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Owen J T McCarty
- Departments of Biomedical Engineering and Medicine, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Priyanka Srivastava
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David Gailani
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA; Department of Medicine, University of California, San Diego, California, USA.
| |
Collapse
|
4
|
Ochi E, Ueda H, Tsuchiya Y, Nakazato K. Eccentric exercise causes delayed sensory nerve conduction velocity but no repeated bout effect in the flexor pollicis brevis muscles. Eur J Appl Physiol 2021; 121:3069-3081. [PMID: 34312697 DOI: 10.1007/s00421-021-04773-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/19/2021] [Indexed: 01/17/2023]
Abstract
PURPOSE This study was aimed at investigating the effect of eccentric contractions (ECCs) of flexor pollicis brevis muscles (FPBMs) on motor and sensory nerve functions as well as the ipsilateral repeated bout effect (IL-RBE) and contralateral (CL)-RBE of motor and sensory nerve conduction velocities following ECCs. METHODS Thirty-two young healthy men (age: 19.6 ± 0.2 years, height: 173.2 ± 1.2 cm, body mass: 69.7 ± 1.9 kg) performed two bouts of ECCs. During the first ECCs bout (ECCs-1), all participants performed 100 ECCs with 1 hand; for the second bout, 3 groups (2 weeks [W]: n = 11, 4W: n = 10, 8W: n = 11) performed ECCs with both hands 2, 4, or 8 weeks after ECCs-1. The maximal voluntary isometric contraction (MVC), range of motion (ROM), visual analog scale for pain (VAS), motor and sensory nerve conduction velocities were measured before, immediately after, and 1, 2, 3, and 5 days after ECCs. RESULTS ECCs-1 decreased the MVC, limited the ROM, developed VAS, and decreased the motor and sensory nerve conduction velocities compared to non-exercise hand (p < 0.05). The repeated bout effect was observed in the ROM for IL-RBE in 2W and 4W, VAS for IL-RBE in 2 W, and ROM and VAS for CL-RBE in 2W (p < 0.05). However, RBEs of MVC and motor and sensory nerve conduction velocities were not observed, and no differences were confirmed depending on the interval. CONCLUSION In the present study, ECCs of the FPBM caused a sensory nerve dysfunction, while IL- or CL-RBE was not observed.
Collapse
Affiliation(s)
- Eisuke Ochi
- Faculty of Bioscience and Applied Chemistry, Hosei University, 3-7-2, Kajino, Koganei, Tokyo, 184-8584, Japan.
- Graduate School of Sports and Health Studies, Hosei University, Tokyo, Japan.
| | - Hisashi Ueda
- Faculty of Health and Medical Science, Teikyo Heisei University, Chiba, Japan
| | - Yosuke Tsuchiya
- Center for Liberal Arts, Laboratory of Health and Sports Sciences, Meiji Gakuin University, Kanagawa, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sports Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
5
|
Monitoring exercise-induced muscle damage indicators and myoelectric activity during two weeks of knee extensor exercise training in young and old men. PLoS One 2019; 14:e0224866. [PMID: 31697769 PMCID: PMC6837446 DOI: 10.1371/journal.pone.0224866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/23/2019] [Indexed: 12/04/2022] Open
Abstract
This study considered the effects of repeated bouts of short-term resistive exercise in old (age: 64.5±5.5 years; n = 10) and young men (age: 25.1±4.9 years; n = 10) who performed six knee extension exercise bouts over two weeks using various markers of exercise-induced muscle damage and electromyographic activity. We found that time-course changes in quadriceps isometric torque, creatine kinase activity, and muscle soreness in the two groups were similar. However, recovery in the acute torque deficit was mediated by more favourable electromyographic activity changes in the young group than in the older adults group. Muscle elastic energy storage and re-use assessed with dynamometry was selectively improved in the young group by the end of the protocol. Serum myoglobin concentration increased selectively in old group, and remained elevated with further bouts, suggesting higher sarcolemma vulnerability and less effective metabolic adaptation in the older adults, which, however, did not affect muscle contractility.
Collapse
|
6
|
MS SAB, Waldman, PhD HS, Krings, PhD BM, Lamberth, PhD J, Smith, PhD JW, McAllister, PhD MJ. Effect of Curcumin Supplementation on Exercise-Induced Oxidative Stress, Inflammation, Muscle Damage, and Muscle Soreness. J Diet Suppl 2019; 17:401-414. [DOI: 10.1080/19390211.2019.1604604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Steven A. Basham, MS
- Applied Physiology Lab, Department of Kinesiology, Mississippi State University, Starkville, MS, USA
| | - Hunter S. Waldman, PhD
- Applied Physiology Lab, Department of Kinesiology, Mississippi State University, Starkville, MS, USA
| | - Ben M. Krings, PhD
- Department of Health and Human Performance, University of Wisconsin-Platteville, Platteville, WI, USA
| | - John Lamberth, PhD
- Applied Physiology Lab, Department of Kinesiology, Mississippi State University, Starkville, MS, USA
| | - JohnEric W. Smith, PhD
- Applied Physiology Lab, Department of Kinesiology, Mississippi State University, Starkville, MS, USA
| | | |
Collapse
|
7
|
McHugh MP, Tyler TF. Muscle strain injury vs muscle damage: Two mutually exclusive clinical entities. TRANSLATIONAL SPORTS MEDICINE 2019. [DOI: 10.1002/tsm2.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Malachy P. McHugh
- Nicholas Institute of Sports Medicine and Athletic Trauma Lenox Hill Hospital New York City New York
| | - Timothy F. Tyler
- Nicholas Institute of Sports Medicine and Athletic Trauma Lenox Hill Hospital New York City New York
- PRO Sports Physical Therapy of Westchester Scarsdale New York
| |
Collapse
|
8
|
Latella C, Goodwill AM, Muthalib M, Hendy AM, Major B, Nosaka K, Teo WP. Effects of eccentric versus concentric contractions of the biceps brachii on intracortical inhibition and facilitation. Scand J Med Sci Sports 2018; 29:369-379. [DOI: 10.1111/sms.13334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 10/28/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Christopher Latella
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences; Edith Cowan University; Joondalup Western Australia Australia
| | - Alicia M. Goodwill
- Centre for Research and Development in Learning (CRADLE); Nanyang Technological University; Singapore
| | - Makii Muthalib
- Silverline Research; Brisbane Queensland Australia
- Cognitive Neuroscience Unit (CNU), School of Psychology; Deakin University, Deakin University; Geelong Victoria Australia
| | - Ashlee M. Hendy
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences; Deakin University; Geelong Victoria Australia
| | - Brendan Major
- Cognitive Neuroscience Unit (CNU), School of Psychology; Deakin University, Deakin University; Geelong Victoria Australia
| | - Kazunori Nosaka
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences; Edith Cowan University; Joondalup Western Australia Australia
| | - Wei-Peng Teo
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences; Deakin University; Geelong Victoria Australia
| |
Collapse
|
9
|
Effects of Traumeel (Tr14) on Exercise-Induced Muscle Damage Response in Healthy Subjects: A Double-Blind RCT. Mediators Inflamm 2016; 2016:1693918. [PMID: 27478305 PMCID: PMC4949332 DOI: 10.1155/2016/1693918] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/02/2016] [Accepted: 06/05/2016] [Indexed: 12/20/2022] Open
Abstract
The present double-blind, randomized, placebo-controlled clinical trial intended to test whether ingestion of a natural combination medicine (Tr14 tablets) affects serum muscle damage and inflammatory immune response after downhill running. 96 male subjects received Tr14 tablets, which consist of 14 diluted biological and mineral components, or a placebo for 72 h after the exercise test, respectively. Changes in postexercise levels of various serum muscle damage and immunological markers were investigated. The area under the curve with respect to the increase (AUCi) of perceived pain score and creatine kinase (CK) were defined as primary outcome measures. While for CK the p value of the difference between the two groups is borderline, the pain score and muscle strength were not statistically significant. However, a trend towards lower levels of muscle damage (CK, p = 0.05; LDH, p = 0.06) in the Tr14 group was shown. Less pronounced lymphopenia (p = 0.02), a trend towards a lower expression of CD69 count (p = 0.07), and antigen-stimulated ICAM-1 (p = 0.01) were found in the verum group. The Tr14 group showed a tendentially lower increase of neutrophils (p = 0.10), BDNF (p = 0.03), stem cell factor (p = 0.09), and GM-CSF (p = 0.09) to higher levels. The results of the current study indicate that Tr14 seems to limit exercise-induced muscle damage most likely via attenuation of both innate and adaptive immune responses. This study was registered with ClinicalTrials.gov (NCT01912469).
Collapse
|
10
|
Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96:253-305. [PMID: 26676145 DOI: 10.1152/physrev.00007.2015] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease.
Collapse
Affiliation(s)
- David G Allen
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Nicholas P Whitehead
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Stanley C Froehner
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Marqués-Jiménez D, Calleja-González J, Arratibel I, Delextrat A, Terrados N. Are compression garments effective for the recovery of exercise-induced muscle damage? A systematic review with meta-analysis. Physiol Behav 2016; 153:133-48. [DOI: 10.1016/j.physbeh.2015.10.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
|
12
|
Akagi R, Tanaka J, Shikiba T, Takahashi H. Muscle hardness of the triceps brachii before and after a resistance exercise session: a shear wave ultrasound elastography study. Acta Radiol 2015; 56:1487-93. [PMID: 25422513 DOI: 10.1177/0284185114559765] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/23/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Muscle hardness indicates muscle condition, and its measurement before and after resistance exercise is essential for preventing resistance training-induced muscle injury. PURPOSE To investigate muscle hardness of the triceps brachii (TB) before and immediately after a resistance exercise session involving the elbow extensors. MATERIAL AND METHODS In 18 young men, muscle hardness of the long head of TB was measured at 50%, 60%, and 70% point along the length of the upper arm from the acromial process of the scapula to the lateral epicondyle of the humerus by using shear wave ultrasound elastography. At the same sites, muscle thickness of the long head of TB was also measured by ultrasonography. Resistance exercise was performed using a dumbbell with a mass adjusted to 80% of the one-repetition maximum. RESULTS Although the exercise-induced increase in muscle hardness was significant at all the regions, muscle hardness was significantly higher at 70% of the upper arm length than at the other regions before and after resistance exercise. The exercise-induced increase in muscle thickness was also significant, but the relative changes in muscle hardness before and after resistance exercise were not correlated with the corresponding relative changes in muscle thickness at each region. These results indicate the small effect of exercise-induced muscle swelling on exercise-induced changes in muscle hardness. CONCLUSION We suggest that muscle damage and/or injury, particularly at the distal region of TB, should be carefully considered to safely perform resistance exercise.
Collapse
Affiliation(s)
- Ryota Akagi
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan Department of Sports Science, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Jun Tanaka
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Tomofumi Shikiba
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Hideyuki Takahashi
- Department of Sports Science, Japan Institute of Sports Sciences, Tokyo, Japan
| |
Collapse
|
13
|
Curcumin supplementation likely attenuates delayed onset muscle soreness (DOMS). Eur J Appl Physiol 2015; 115:1769-77. [PMID: 25795285 DOI: 10.1007/s00421-015-3152-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/11/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Oral curcumin decreases inflammatory cytokines and increases muscle regeneration in mice. PURPOSE To determine effects of curcumin on muscle damage, inflammation and delayed onset muscle soreness (DOMS) in humans. METHOD Seventeen men completed a double-blind randomized-controlled crossover trial to estimate the effects of oral curcumin supplementation (2.5 g twice daily) versus placebo on single-leg jump performance and DOMS following unaccustomed heavy eccentric exercise. Curcumin or placebo was taken 2 d before to 3 d after eccentric single-leg press exercise, separated by 14-d washout. Measurements were made at baseline, and 0, 24 and 48-h post-exercise comprising: (a) limb pain (1-10 cm visual analogue scale; VAS), (b) muscle swelling, (c) single-leg jump height, and (d) serum markers of muscle damage and inflammation. Standardized magnitude-based inference was used to define outcomes. RESULTS At 24 and 48-h post-exercise, curcumin caused moderate-large reductions in pain during single-leg squat (VAS scale -1.4 to -1.7; 90 %CL: ±1.0), gluteal stretch (-1.0 to -1.9; ±0.9), squat jump (-1.5 to -1.1; ± 1.2) and small reductions in creatine kinase activity (-22-29 %; ±21-22 %). Associated with the pain reduction was a small increase in single-leg jump performance (15 %; 90 %CL ± 12 %). Curcumin increased interleukin-6 concentrations at 0-h (31 %; ±29 %) and 48-h (32 %; ±29 %) relative to baseline, but decreased IL-6 at 24-h relative to post-exercise (-20 %; ±18 %). CONCLUSIONS Oral curcumin likely reduces pain associated with DOMS with some evidence for enhanced recovery of muscle performance. Further study is required on mechanisms and translational effects on sport or vocational performance.
Collapse
|
14
|
Ureczky D, Vácz G, Costa A, Kopper B, Lacza Z, Hortobágyi T, Tihanyi J. The Effects of Short-term Exercise Training on Peak-Torque Are Time- and Fiber-Type Dependent. J Strength Cond Res 2014; 28:2204-13. [DOI: 10.1519/jsc.0000000000000414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Pain sensitivity is normalized after a repeated bout of eccentric exercise. Eur J Appl Physiol 2013; 113:2595-602. [DOI: 10.1007/s00421-013-2701-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/24/2013] [Indexed: 01/21/2023]
|
16
|
|
17
|
Abstract
One of the key components in sports injury prevention is the identification of imbalances in leg muscle strength. However, different leg muscle characteristics may occur in large playing area (field) sports and small playing area (court) sports, which should be considered in regular injury prevention assessment. This study examined the isokinetic hamstrings-to-quadriceps (H:Q) ratio and bilateral leg strength balance in 40 male college (age: 23.4 ± 2.5 yrs) team sport players (field sport = 23, soccer players; court sport = 17, volleyball and basketball players). Five repetitions of maximal knee concentric flexion and concentric extension were performed on an isokinetic dynamometer at two speeds (slow: 60°·s(-1) and fast: 300°·s(-1)) with 3 minutes rest between tests. Both legs were measured in counterbalanced order with the dominant leg being determined as the leg used to kick a ball. The highest concentric peak torque values (Nm) of the hamstrings and quadriceps of each leg were analyzed after body mass normalization (Nm·kg(-1)). Court sport players showed significantly weaker dominant leg hamstrings muscles at both contraction speeds (P < 0.05). The H:Q ratio was significantly larger in field players in their dominant leg at 60°·s(-1) (P < 0.001), and their non-dominant leg at 300°·s(-1) (P < 0.001) respectively. Sport-specific leg muscle strength was evident in college players from field and court sports. These results suggest the need for different muscle strength training and rehabilitation protocols for college players according to the musculature requirements in their respective sports.
Collapse
|
18
|
Abstract
OBJECTIVE Stresses to skeletal muscle often result in injury. A subsequent bout of the same activity performed days or even weeks after an initial bout results in significantly less damage. The underlying causes of this phenomenon, termed the "repeated-bout effect" (RBE), are unclear. This study compared the protective effect of two different injury protocols on the ankle dorsiflexors in the rat. We hypothesized that the RBE would occur soon after the initial injury and persist for several weeks and that the RBE would occur even if the second injury was performed under different biomechanical conditions than the first. DESIGN In this controlled laboratory study, the dorsiflexor muscles in the left hind limbs of adult male Sprague-Dawley rats (N = 75) were subjected to ten repetitions of large-strain lengthening contractions or 150 repetitions of small-strain lengthening contractions. RESULTS Both protocols induced a significant (P < 0.001) and similar loss of isometric torque (approximately 50%) after the first bout of contractions. The RBE occurred as early as 2 days after the injury and remained high for 14 days (P < 0.001) but diminished by 28 days and was lost by 42 days. The small-strain contractions offered a protective effect against a subsequent large-strain contraction, but not vice versa. Although the RBE did not occur sooner than day 2, the early recovery after a second large-strain injury performed 8 hrs after the first was 2-fold greater than after a single injury. CONCLUSIONS The RBE is both rapid in onset and prolonged, and some, but not all, injuries can protect against different types of subsequent injury.
Collapse
|
19
|
Meador BM, Huey KA. Statin-associated changes in skeletal muscle function and stress response after novel or accustomed exercise. Muscle Nerve 2011; 44:882-9. [DOI: 10.1002/mus.22236] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Delgado-Diaz DC, Gordon BS, Dompier T, Burgess S, Dumke C, Mazoué C, Caldwell T, Kostek MC. Therapeutic ultrasound affects IGF-1 splice variant expression in human skeletal muscle. Am J Sports Med 2011; 39:2233-41. [PMID: 21785002 DOI: 10.1177/0363546511414857] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Animal models of skeletal muscle damage and repair demonstrate that therapeutic ultrasound (TUS) enhances muscle force recovery after damage, increases satellite cell proliferation, and decreases insulin-like growth factor (IGF)-1 splice variant (mechano growth factor) gene expression. However, these effects have not been verified in humans. PURPOSE This study was undertaken to examine the 3 known splice variants of the IGF-1 gene in human skeletal muscle after damage and TUS treatment. STUDY DESIGN Controlled laboratory study. METHODS Sixteen healthy men (18-29 years of age), physically active, were randomized to either a control (CON) or experimental group (EXP). The EXP group underwent 200 lengthening contractions (muscle damage) of the quadriceps of both legs, 48 hours before TUS. Both groups received TUS, delivered for 10 minutes on a standardized area of the vastus lateralis of only 1 leg (1.0 MHz, 1.5 W/cm(2)). Bilateral muscle biopsy samples were taken from all participants, 6 hours after TUS. Total RNA was extracted, and quantitative real-time polymerase chain reaction conducted for each IGF-1 splice variant. RESULTS Muscle damage was confirmed by a decrease in the isometric peak torque and increase in creatine kinase activity levels 48 hours after damage (P < .01). After muscle damage, gene expression of total IGF-1 and 2 IGF-1 splice variants increased. Therapeutic ultrasound induced significant increase in IGF-1Eb gene expression in undamaged muscle (1.4 ± 0.2-fold, P < 0.01). In damaged skeletal muscle, no significant change in gene expression attributable to TUS was determined. CONCLUSION Insulin-like growth factor-1 splice variants are differentially regulated in human skeletal muscle in response to exercise-induced muscle damage and TUS treatment. A single treatment of TUS in damaged muscle induces no change in the gene expression of the 3 IGF-1 splice variants in humans. In contrast, in undamaged skeletal muscle, TUS significantly increased IGF-1Eb splice variant gene expression. CLINICAL RELEVANCE These findings suggest that TUS may have additional therapeutic uses beyond its current common practice but may not be effective for muscle injury treatment in a young, healthy population.
Collapse
Affiliation(s)
- Diana C Delgado-Diaz
- Laboratory of Muscle & Translational Therapeutics, Department of Exercise Science, Division of Applied Physiology, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Plattner K, Baumeister J, Lamberts RP, Lambert MI. Dissociation in changes in EMG activation during maximal isometric and submaximal low force dynamic contractions after exercise-induced muscle damage. J Electromyogr Kinesiol 2011; 21:542-50. [DOI: 10.1016/j.jelekin.2011.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/17/2010] [Accepted: 01/27/2011] [Indexed: 11/25/2022] Open
|
22
|
Dartnall TJ, Nordstrom MA, Semmler JG. Adaptations in biceps brachii motor unit activity after repeated bouts of eccentric exercise in elbow flexor muscles. J Neurophysiol 2011; 105:1225-35. [PMID: 21248060 DOI: 10.1152/jn.00854.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to examine changes in motor unit activity in the biceps brachii muscle after an initial ( Bout 1) and repeated ( Bout 2) session of eccentric exercise separated by 1 wk. Eight subjects (aged 22 ± 2 yr) participated in experimental assessments of neuromuscular function obtained before, immediately after, 24 h after, and 7 days after each exercise bout. Each experimental session involved assessments of elbow-flexor force and biceps and triceps brachii electromyography during maximum voluntary isometric contractions (MVCs) and constant-force isometric contractions at five contraction intensities (5–50% MVC), along with indicators of muscle damage (muscle pain and passive tension). In addition, motor unit recordings were obtained before exercise, 7 days after Bout 1, and 24 h after Bout 2 to assess motor unit synchronization and recruitment thresholds. Following a single eccentric exercise session that elicited significant indicators of muscle damage, we found a 57% increase in motor unit synchronization 7 days later compared with before exercise, despite the recovery of maximal strength, soreness, and relaxed elbow-joint angle at this time. Furthermore, a second bout of the same eccentric exercise resulted in reduced indicators of muscle damage and a decline in the strength of motor unit synchronization (24 h after Bout 2) toward levels observed before both exercise sessions. In contrast, no changes in motor unit recruitment thresholds were observed 7 days after Bout 1 or 24 h after Bout 2 compared with before exercise. The increased motor unit synchronization 7 days after a single eccentric exercise session provides new evidence of changes in motor unit activity during the putative repair and regeneration phase following eccentric muscle damage.
Collapse
Affiliation(s)
- Tamara J. Dartnall
- Discipline of Physiology, School of Medical Sciences and
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia
| | | | | |
Collapse
|
23
|
Meador BM, Huey KA. Statin-associated myopathy and its exacerbation with exercise. Muscle Nerve 2010; 42:469-79. [DOI: 10.1002/mus.21817] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Váczi M, Costa A, Rácz L, Tihanyi J. Effects of consecutive eccentric training at different range of motion on muscle damage and recovery. ACTA ACUST UNITED AC 2009; 96:459-68. [DOI: 10.1556/aphysiol.96.2009.4.6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Less indication of muscle damage in the second than initial electrical muscle stimulation bout consisting of isometric contractions of the knee extensors. Eur J Appl Physiol 2009; 108:709-17. [DOI: 10.1007/s00421-009-1278-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
|
26
|
Effets des activités physiques intenses et soutenues sur les cellules immunitaires circulantes et la production des cytokines pro-inflammatoires chez des sujets entraînés et non entraînés. Sci Sports 2009. [DOI: 10.1016/j.scispo.2008.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
KRAEMER WILLIAMJ, HATFIELD DISAL, VOLEK JEFFS, FRAGALA MARENS, VINGREN JAKOBL, ANDERSON JEFFREYM, SPIERING BARRYA, THOMAS GWENDOLYNA, HO JENY, QUANN ERINE, IZQUIERDO MIKEL, HÄKKINEN KEIJO, MARESH CARLM. Effects of Amino Acids Supplement on Physiological Adaptations to Resistance Training. Med Sci Sports Exerc 2009; 41:1111-21. [DOI: 10.1249/mss.0b013e318194cc75] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Murton A, Constantin D, Greenhaff P. The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim Biophys Acta Mol Basis Dis 2008; 1782:730-43. [DOI: 10.1016/j.bbadis.2008.10.011] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 10/23/2008] [Accepted: 10/24/2008] [Indexed: 12/14/2022]
|
29
|
Abstract
Exercise-induced muscle damage (EIMD) can be caused by novel or unaccustomed exercise and results in a temporary decrease in muscle force production, a rise in passive tension, increased muscle soreness and swelling, and an increase in intramuscular proteins in blood. Consequently, EIMD can have a profound effect on the ability to perform subsequent bouts of exercise and therefore adhere to an exercise training programme. A variety of interventions have been used prophylactically and/or therapeutically in an attempt to reduce the negative effects associated with EIMD. This article focuses on some of the most commonly used strategies, including nutritional and pharmacological strategies, electrical and manual therapies and exercise. Long-term supplementation with antioxidants or beta-hydroxy-beta-methylbutyrate appears to provide a prophylactic effect in reducing EIMD, as does the ingestion of protein before and following exercise. Although the administration of high-dose NSAIDs may reduce EIMD and muscle soreness, it also attenuates the adaptive processes and should therefore not be prescribed for long-term treatment of EIMD. Whilst there is some evidence that stretching and massage may reduce muscle soreness, there is little evidence indicating any performance benefits. Electrical therapies and cryotherapy offer limited effect in the treatment of EIMD; however, inconsistencies in the dose and frequency of these and other interventions may account for the lack of consensus regarding their efficacy. Both as a cause and a consequence of this, there are very few evidence-based guidelines for the application of many of these interventions. Conversely, there is unequivocal evidence that prior bouts of eccentric exercise provide a protective effect against subsequent bouts of potentially damaging exercise. Further research is warranted to elucidate the most appropriate dose and frequency of interventions to attenuate EIMD and if these interventions attenuate the adaptation process. This will both clarify the efficacy of such strategies and provide guidelines for evidence-based practice.
Collapse
Affiliation(s)
- Glyn Howatson
- School of Human Sciences, St Mary's University College, Twickenham, UK.
| | | |
Collapse
|
30
|
Montgomery PG, Pyne DB, Cox AJ, Hopkins WG, Minahan CL, Hunt PH. Muscle damage, inflammation, and recovery interventions during a 3-day basketball tournament. Eur J Sport Sci 2008. [DOI: 10.1080/17461390802251844] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
FRENCH DUNCANN, THOMPSON KEVING, GARLAND STEPHENW, BARNES CHRISTOPHERA, PORTAS MATTHEWD, HOOD PETERE, WILKES GRAEME. The Effects of Contrast Bathing and Compression Therapy on Muscular Performance. Med Sci Sports Exerc 2008; 40:1297-306. [DOI: 10.1249/mss.0b013e31816b10d5] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Marqueste T, Giannesini B, Fur YL, Cozzone PJ, Bendahan D. Comparative MRI analysis of T2 changes associated with single and repeated bouts of downhill running leading to eccentric-induced muscle damage. J Appl Physiol (1985) 2008; 105:299-307. [PMID: 18450983 DOI: 10.1152/japplphysiol.00738.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the exact mechanisms are still unclear, it is commonly acknowledged that acute eccentric exercise alters muscle performance, whereas the repetition of successive bouts leads to the disappearance of the deleterious signs. To clarify this issue, we measured blood creatine kinase and lactate dehydrogenase activities and proton transverse relaxation time (T2) in various leg muscles 72 h after single and repeated bouts of exhausting downhill running sessions (-15 degrees , 1.5 km/h) with either 4 or 7 days elapsed between bouts. After a single exercise bout, T2 and enzyme activities initially increased and recovered rapidly. When exercise bouts were repeated over a short time period (4 days), initial changes did not recover and endurance time throughout additional exercise sessions was significantly reduced. On the contrary, with a longer resting time between exercises (7 days), the endurance time of additional running sessions was significantly longer and muscle changes (T2 increase, muscle edema, and enzyme activity changes) slowly and completely reversed. Significant correlations were found between T2 changes and enzyme activities. T2 changes in the soleus and gastrocnemius muscle heads were differently affected by lengthening contractions, suggesting a muscle specificity and indicating that muscle alterations might be linked to different anatomical properties, such as fiber pennation angles, typology, and/or the exhausting nature of the downhill running sessions. We documented a "less muscle injury" effect due to the repetition of exercise bouts at a low frequency (i.e., 1 session per week) in accordance with the delayed muscle inflammation. This effect was not observed when the between-exercise resting time was shorter.
Collapse
Affiliation(s)
- Tanguy Marqueste
- Centre de Résonance Magnétique Biologique et Médicale, Unite Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 6612, Faculté de Médecine de Marseille, Marseille, France.
| | | | | | | | | |
Collapse
|
33
|
Drexel H, Saely CH, Langer P, Loruenser G, Marte T, Risch L, Hoefle G, Aczel S. Metabolic and anti-inflammatory benefits of eccentric endurance exercise - a pilot study. Eur J Clin Invest 2008; 38:218-26. [PMID: 18339002 DOI: 10.1111/j.1365-2362.2008.01937.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Eccentric endurance exercise (e.g. hiking downwards) is less strenuous than concentric exercise (e.g. hiking upwards) but its potential to reduce cardiovascular risk is unknown. MATERIALS AND METHODS We randomly allocated 45 healthy sedentary individuals (16 men and 29 women, mean age 48 years) to one of two groups, one beginning with two months of hiking upwards, the other with two months of hiking downwards the same route, with a crossover for a further two months. For the opposite way, a cable car was used where compliance was recorded electronically. The difference in altitude was 540 metres; the distance was covered three to five times a week. Fasting and postprandial metabolic profiles were obtained at baseline and after the two month periods of eccentric and concentric exercise, respectively. RESULTS Forty-two of the 45 participants completed the study; the compliance rate was therefore 93%. Compared with baseline, eccentric exercise lowered total cholesterol (by 4.1%; P = 0.026), low-density lipoprotein (LDL) cholesterol (by 8.4%, P = 0.001), Apolipoprotein B/Apolipoprotein A1 ratio (by 10.9%, P < 0.001), homeostasis model assessment of insulin resistance scores (by 26.2%, P = 0.017) and C-reactive protein (by 30.0%; P = 0.007); the magnitude of these changes was comparable to that of concentric exercise. Eccentric exercise improved glucose tolerance (by 6.2%, P = 0.023), whereas concentric exercise improved triglyceride tolerance (by 14.9%, P = 0.022). CONCLUSIONS Eccentric endurance exercise is a promising new exercise modality with favourable metabolic and anti-inflammatory effects and is well applicable to sedentary individuals.
Collapse
Affiliation(s)
- H Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment, Feldkirch, Austria
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Vaile J, Halson S, Gill N, Dawson B. Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. Eur J Appl Physiol 2007; 102:447-55. [DOI: 10.1007/s00421-007-0605-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2007] [Indexed: 10/22/2022]
|
35
|
Lehti TM, Kalliokoski R, Komulainen J. Repeated bout effect on the cytoskeletal proteins titin, desmin, and dystrophin in rat skeletal muscle. J Muscle Res Cell Motil 2007; 28:39-47. [PMID: 17436058 DOI: 10.1007/s10974-007-9102-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 02/19/2007] [Indexed: 11/30/2022]
Abstract
The aim of this study was to evaluate the effect of repeated bouts of exercise on the cytoskeletal proteins titin, desmin, and dystrophin. Rats were made to run downhill for 90 min 1 or 5 times separated by 14 days. Samples were taken from quadriceps femoris muscle 3, 48, 96 h and 50 days after the last exercise session and detected by quantitative PCR, histochemical stainings, and western blot analyses. Histopathological changes in titin, desmin, and dystophin stainings, an increase in beta-glucuronidase activity (a quantitative indicator of muscle damage), a significant decrease in the relative content of dystrophin, and intramyocellular Evans blue staining (signs of changes in sarcolemmal permeability) observed after one exercise session were attenuated after 5 exercise sessions. Titin mRNA level was not increased after the initial exercise session but was increased after the fifth session. Desmin and dystrophin mRNA levels were increased after the first and fifth sessions with desmin showing a smaller increase after the fifth session compared to the first session. Prior exercise induces adaptation that protects the sarcolemma as well as subsarcolemmal, intermediate filament, and sarcomeric proteins against disruption. Changes in mRNA levels of titin, desmin, and dystophin after an acute exercise session obviously reflect the need of these proteins in the repair process following damage. After five sessions increase in mRNA of studied proteins suggest a strong involvement in continuing adaptation to the increased exercise.
Collapse
Affiliation(s)
- T Maarit Lehti
- LIKES Research Center for Sport and Health Sciences, Rautpohjankatu 8, Viveca, Jyvaskyla 40700, Finland.
| | | | | |
Collapse
|
36
|
Falvo MJ, Bloomer RJ. Review of exercise-induced muscle injury: relevance for athletic populations. Res Sports Med 2006; 14:65-82. [PMID: 16700405 DOI: 10.1080/15438620500528380] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Exercise-induced skeletal muscle injury is well understood as the product of unfamiliar or strenuous physical activity. Eccentric or lengthening actions are primarily responsible for inducing injury, which subsequently leads to a variety of signs and symptoms. Although significant research supports this finding, most observations are specific to untrained individuals. In addition, many protocols designed both to induce muscle injury and assess performance following the injury are dissimilar from those utilized by physically trained individuals or are impractical in relation to athletic performance or both. Therefore, difficulty may arise when extrapolating information, from the available literature and applying the findings to athletic populations. This review addresses the efficacy of applying our current understanding of exercise-induced skeletal muscle injury to a physically trained population as well as highlights concerns that require future investigation.
Collapse
Affiliation(s)
- Michael J Falvo
- Department of Health and Sport Sciences, The University of Memphis, Memphis, Tennessee 38152, USA
| | | |
Collapse
|
37
|
Kraemer WJ, Ratamess NA, Volek JS, Häkkinen K, Rubin MR, French DN, Gómez AL, McGuigan MR, Scheett TP, Newton RU, Spiering BA, Izquierdo M, Dioguardi FS. The effects of amino acid supplementation on hormonal responses to resistance training overreaching. Metabolism 2006; 55:282-91. [PMID: 16483870 DOI: 10.1016/j.metabol.2005.08.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 08/14/2005] [Indexed: 11/21/2022]
Abstract
The purpose of this investigation was to examine the effects of amino acid supplementation on muscular performance and resting hormone concentrations during resistance training overreaching. Seventeen resistance-trained men were randomly assigned to either an amino acid (AA) or a placebo (P) group and underwent 4 weeks of total-body resistance training designed to induce a state of overreaching. The protocol consisted of two 2-week phases (phase 1, 3 sets of 8 exercises performed for 8-12 repetitions; phase 2, 5 sets of 5 exercises performed for 3-5 repetitions). Muscle strength and resting blood samples were determined before (T1) and at the end of each training week (T2-T5). One-repetition maximum squat and bench press decreased at T2 in the P group but not in the AA group; both groups showed similar increases in strength at T3 to T5. Significant elevations in serum creatine kinase and uric acid were observed at T2 in the P group; the elevation in creatine kinase correlated highly to reductions in 1-repetition maximum squat (r = -0.67, r(2) = 0.45). Significant elevations in serum sex hormone-binding globulin were observed during overreaching in the P group from T2 to T5; this response was abolished in the AA group. Significant reductions in total testosterone were observed in the P group at T4 compared with T1, and total testosterone values were higher for the AA group than for the P group from T2 to T4. Serum 22-kd growth hormone concentrations were elevated at T2 to T5 in P group only. No differences were observed in resting cortisol and insulinlike growth factor 1. Hemoglobin concentrations were significantly reduced at T2 to T5 in the P group. These results indicate that the initial impact of high-volume resistance training is muscle strength reduction and hormonal/biochemical alterations. It appears that amino acid supplementation is effective for attenuating muscle strength loss during initial high-volume stress, possibly by reducing muscle damage by maintaining an anabolic environment.
Collapse
Affiliation(s)
- William J Kraemer
- Department of Kinesiology, Human Performance Laboratory, University of Connecticut, Storrs, CT 06269-1110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hsu CC, Ho MC, Lin LC, Su B, Hsu MC. American ginseng supplementation attenuates creatine kinase level induced by submaximal exercise in human beings. World J Gastroenterol 2005; 11:5327-31. [PMID: 16149140 PMCID: PMC4622803 DOI: 10.3748/wjg.v11.i34.5327] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether American ginseng (AG, Panax quinquefolium) supplementation was able to improve endurance exercise performance.
METHODS: Thirteen physically active male college students were divided into two groups (AG or placebo) and received supplementation for 4 wk, before the exhaustive running exercise. Treadmill speed was increased to a pace equivalent to 80% VO2max of the subject. A 4-wk washout period followed before the subjects crossed over and received the alternate supplement for the next 4 wk. They then completed a second exhaustive running exercise. The physiological variables that were examined included time to exhaustion and oxygen pulse. Moreover, the plasma creatine kinase (CK) and lactate were measured prior to the exercise, at 15 and 30 min during exercise, immediately after exercise, and 20, 40, 60, and 120 min after exercise.
RESULTS: The major finding of this investigation was that the production plasma CK during the exercise significantly decreased for group AG than for group P. Secondary physiological finding was that 80% VO2max running was not improved over a 4-wk AG supplementation regimen.
CONCLUSION: Supplementation with AG for 4 wk prior to an exhaustive aerobic treadmill running reduced the leakage of CK during exercise, but did not enhance aerobic work capacity. The reduction of plasma CK may be due to the fact that AG is effective for the decrease of skeletal muscle cell membrane damage, induced by exercise during the high-intensity treadmill run.
Collapse
Affiliation(s)
- Cheng-Chen Hsu
- Graduate Institute of Sports Science, National College of Physical Education and Sports, Taoyuan County, Taiwan, China
| | | | | | | | | |
Collapse
|
39
|
Abstract
Myosin II is an intracellular force-generating enzyme with no known extracellular action. In the course of experiments involving trituration loading of skeletal myosin II into embryonic sensory neurons we observed that extracellular application of myosin II to neurons resulted in a robust increase in the number of axons initiated by each neuron, but did not alter the rate of axon extension. Substratum bound myosin II in the presence of laminin was sufficient to elicit increases in axon formation. However, in the absence of laminin, extracellular myosin II alone was not sufficient to promote axon formation, although it allowed neuron survival in the presence of neurotrophin. Myosin II promoted the attachment of neurons to the substratum in the absence or presence of laminin. In addition to promoting the initiation of axons, extracellular myosin II also increased the frequency of axon collateral branching. Finally, extracellular myosin II did not affect growth cone collapse in response to semaphorin-IIIA, but attenuated the inhibitory action of chondroitin sulfate proteoglycans on axon extension. Surprisingly, these results demonstrate that extracellular myosin II promotes attachment of neurons and increases axon formation and branching. The potential significance of these observations is discussed in the context of myosin II release from injured muscle and a previous demonstration of extracellular myosin II association with the extracellular matrix.
Collapse
Affiliation(s)
- Lee Silver
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | |
Collapse
|
40
|
Byrne C, Twist C, Eston R. Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sports Med 2004; 34:49-69. [PMID: 14715039 DOI: 10.2165/00007256-200434010-00005] [Citation(s) in RCA: 335] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exercise-induced muscle damage is a well documented phenomenon particularly resulting from eccentric exercise. When eccentric exercise is unaccustomed or is performed with an increased intensity or duration, the symptoms associated with muscle damage are a common outcome and are particularly associated with participation in athletic activity. Muscle damage results in an immediate and prolonged reduction in muscle function, most notably a reduction in force-generating capacity, which has been quantified in human studies through isometric and dynamic isokinetic testing modalities. Investigations of the torque-angular velocity relationship have failed to reveal a consistent pattern of change, with inconsistent reports of functional change being dependent on the muscle action and/or angular velocity of movement. The consequences of damage on dynamic, multi-joint, sport-specific movements would appear more pertinent with regard to athletic performance, but this aspect of muscle function has been studied less often. Reductions in the ability to generate power output during single-joint movements as well as during cycling and vertical jump movements have been documented. In addition, muscle damage has been observed to increase the physiological demand of endurance exercise and to increase thermal strain during exercise in the heat. The aims of this review are to summarise the functional decrements associated with exercise-induced muscle damage, relate these decrements to theoretical views regarding underlying mechanisms (i.e. sarcomere disruption, impaired excitation-contraction coupling, preferential fibre type damage, and impaired muscle metabolism), and finally to discuss the potential impact of muscle damage on athletic performance.
Collapse
Affiliation(s)
- Christopher Byrne
- Centre for Human Performance, Defence Medical and Environmental Research Institute, DSO National Laboratories, Republic of Singapore
| | | | | |
Collapse
|
41
|
Nosaka K, Newton M. Is recovery from muscle damage retarded by a subsequent bout of eccentric exercise inducing larger decreases in force? J Sci Med Sport 2002; 5:204-18. [PMID: 12413037 DOI: 10.1016/s1440-2440(02)80005-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate whether a subsequent bout of eccentric exercise inducing larger decreases in force than the initial bout would exacerbate muscle damage and retard recovery. Changes in indirect markers of muscle damage were measured over 14 days when 24 maximal eccentric actions of the elbow flexors were performed on days 1 (ECC1) and 7 (ECC2], with electrical stimulation superimposed percutaneously to the elbow flexors during maximal eccentric actions in ECC2. Maximal isometric force (MIF), range of motion (ROM), upper arm circumference, muscle soreness, B-mode ultrasound, and several muscle proteins in the blood were assessed before, immediately after and for 5 days after both bouts. Magnetic resonance Imaging (MRI) was assessed 4 days after both bouts. MIF decreased to 45% of the pre-exercise value immediately after ECC 1 and recovered to 59% by day 7 post-exercise. MIF decreased to 22% of pre-ECC1 value immediately after ECC2, but recovered to 105% of pre-ECC2 value 5 days following ECC2. Recovery of MIF and ROM was slightly retarded for 1-2 days after ECC2. However circumference, muscle soreness, and biochemical parameters did not increase following ECC2. There were no signs of additional damage in ultrasound and MRI after ECC2. It was concluded that a second bout of maximal eccentric exercise with electrical stimulation slightly retarded recovery of muscle function with minimal muscle damage.
Collapse
Affiliation(s)
- K Nosaka
- Exercise and Sports Science, Graduate School of Integrated Science, Yokohama City University
| | | |
Collapse
|
42
|
Féasson L, Stockholm D, Freyssenet D, Richard I, Duguez S, Beckmann JS, Denis C. Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle. J Physiol 2002; 543:297-306. [PMID: 12181300 PMCID: PMC2290467 DOI: 10.1113/jphysiol.2002.018689] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The molecular events by which eccentric muscle contractions induce muscle damage and remodelling remain largely unknown. We assessed whether eccentric exercise modulates the expression of proteinases (calpains 1, 2 and 3, proteasome, cathepsin B+L), muscle structural proteins (alpha-sarcoglycan and desmin), and the expression of the heat shock proteins Hsp27 and alphaB-crystallin. Vastus lateralis muscle biopsies from twelve healthy male volunteers were obtained before, immediately after, and 1 and 14 days after a 30 min downhill treadmill running exercise. Eccentric exercise induced muscle damage as evidenced by the analysis of muscle pain and weakness, creatine kinase serum activity, myoglobinaemia and ultrastructural analysis of muscle biopsies. The calpain 3 mRNA level was decreased immediately after exercise whereas calpain 2 mRNA level was increased at day 1. Both mRNA levels returned to control values by day 14. By contrast, cathepsin B+L and proteasome enzyme activities were increased at day 14. The alpha-sarcoglycan protein level was decreased immediately after exercise and at day 1, whereas the desmin level peaked at day 14. alphaB-crystallin and Hsp27 protein levels were increased at days 1 and 14. Our results suggest that the differential expression of calpain 2 and 3 mRNA levels may be important in the process of exercise-induced muscle damage, whereas expression of alpha-sarcoglycan, desmin, alphaB-crystallin and Hsp27 may be essentially involved in the subsequent remodelling of myofibrillar structure. This remodelling response may limit the extent of muscle damage upon a subsequent mechanical stress.
Collapse
Affiliation(s)
- L Féasson
- Laboratoire de Physiologie et Physiopathologie de l' Exercice et du Handicap, Faculté de Médecine, Saint Etienne, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Webster AL, Syrotuik DG, Bell GJ, Jones RL, Hanstock CC. Effects of hyperbaric oxygen on recovery from exercise-induced muscle damage in humans. Clin J Sport Med 2002; 12:139-50. [PMID: 12011721 DOI: 10.1097/00042752-200205000-00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine whether hyperbaric oxygen (HBO) therapy could accelerate recovery from exercise-induced muscle damage in humans. DESIGN Pretest-posttest design with random assignment to either a treatment (HBO) or placebo control (sham) group. SETTING University of Alberta and Misericordia Hospital, Edmonton. PARTICIPANTS 12 healthy male students (24.2 +/- 3.2 years) who were unaccustomed to strenuous eccentric exercise of the calf muscles. INTERVENTIONS All subjects performed a strenuous eccentric exercise protocol designed to elicit muscle damage within the right gastrocnemius muscle. Subjects subsequently received either HBO (100% oxygen at 253 kPa [2.5 ATA] for 60 min; n = 6) or sham (atmospheric air at 132 kPa [1.3 ATA] for 60 min; n = 6) treatment conditions. The first treatment was administered 3-4 hours after damage, with a second and third at 24 and 48 hours after the first, respectively. MAIN OUTCOME MEASURES Dependent variables included peak torque at 0.52 radians/s, peak isometric torque, and muscular endurance using isokinetic dynamometry; muscle cross-sectional area using magnetic resonance imaging; inorganic phosphate levels and T2 relaxation time using 31P and 1H magnetic resonance spectroscopy; pain sensation and unpleasantness using the Descriptor Differential Scale. These variables were assessed at baseline and until day 5 postdamage. RESULTS There was little evidence of a difference in recovery rate between the HBO and sham groups. Faster recovery was observed in the HBO group only for isometric peak torque and pain sensation and unpleasantness. CONCLUSIONS HBO cannot be recommended as an effective method of treatment of this form of muscle injury.
Collapse
Affiliation(s)
- Anthony L Webster
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada T6G 2H9
| | | | | | | | | |
Collapse
|
44
|
Croisier JL, Forthomme B, Namurois MH, Vanderthommen M, Crielaard JM. Hamstring muscle strain recurrence and strength performance disorders. Am J Sports Med 2002; 30:199-203. [PMID: 11912088 DOI: 10.1177/03635465020300020901] [Citation(s) in RCA: 285] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We determined the frequency of strength disorders in 26 athletes with a history of hamstring muscle injury and recurrent strains and discomfort. We also assessed the effectiveness of rehabilitation to correct muscle performance. After concentric and eccentric isokinetic assessment, 18 athletes were found to have strength deficits, as determined by statistically selected cutoffs of peak torque, bilateral differences, and the flexors/quadriceps ratio. The discriminating character of the eccentric trial was demonstrated, combining a preferential eccentric peak torque deficit and a significant reduction of the mixed eccentric flexors/concentric quadriceps ratio. The athletes with muscle imbalances followed a rehabilitation program individually adapted from their strength profile. Treatment length was from 10 to 30 sessions and resulted in isokinetic parameter normalization in 17 of 18 subjects. Isokinetically corrected subjects were observed for 12 months after return to athletics. None sustained a clinically diagnosed hamstring muscle reinjury. Subjective intensity of pain and discomfort were significantly reduced, and they all returned to their prior level of competition. These results demonstrate that persistent muscle strength abnormalities may give rise to recurrent hamstring injuries and discomfort. An individualized rehabilitation program emphasizing eccentric training based on specific deficits contributes to a decrease in symptoms on return to sports.
Collapse
Affiliation(s)
- Jean-Louis Croisier
- Department of Physical Medicine and Rehabilitation, University Hospital Center, Liège, Belgium
| | | | | | | | | |
Collapse
|
45
|
Nosaka K, Sakamoto K, Newton M, Sacco P. How long does the protective effect on eccentric exercise-induced muscle damage last? Med Sci Sports Exerc 2001; 33:1490-5. [PMID: 11528337 DOI: 10.1097/00005768-200109000-00011] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE One bout of eccentric exercise produces an adaptation that reduces muscle damage in subsequent bouts. Because it is not known how long this adaptation lasts, the present study investigated the maximal length of the attenuated changes in muscle damage indicators after high-force eccentric exercise. METHODS Male students (N = 35) were placed into three groups and performed two bouts of eccentric exercise of the nondominant elbow flexors separated by either 6 (N = 14), 9 (N = 11), or 12 (N = 10) months. Maximal isometric force (MIF), range of motion (ROM), upper arm circumference (CIR), muscle soreness (SOR), and plasma creatine kinase activity (CK) were measured before and for 5 d after exercise. Magnetic resonance (MR) images of the transverse and longitudinal scans of the upper arm were taken 4 d after exercise. Changes in the criterion measures were compared between the first and second bouts and between groups by a two-way repeated measures ANOVA. RESULTS A faster recovery in MIF was evident after a second bout performed at 6 or 9 months, and reduced SOR as well as smaller increases in CIR, CK, and T2 relaxation time of MR images also occurred after the second exercise bout at 6 months compared with initial responses. No significant differences between the bouts were found for ROM, and the 12-month group did not show any repeated bout effect. CONCLUSION These results show that the repeated bout effect for most of the criterion measures lasts at least 6 months but is lost between 9 and 12 months.
Collapse
Affiliation(s)
- K Nosaka
- Exercise and Sports Science, Graduate School of Integrated Science, Yokohama City University, Yokohama, Japan.
| | | | | | | |
Collapse
|
46
|
Onuoha GN, Alpar EK, Dean B, Tidman J, Rama D, Laprade M, Pau B. Skeletal troponin-I release in orthopedic and soft tissue injuries. J Orthop Sci 2001; 6:11-5. [PMID: 11289579 DOI: 10.1007/s007760170018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The skeletal isoform of troponin-I (sTnI) is a myofibrillar protein highly specific for myoskeletal injury. We used an indirect immunoenzymometric assay method with high analytical sensitivity to measure sTnI in patients with soft-tissue injury and in orthopedic patients. We assessed 20 soft-tissue injury patients and 16 orthopedic patients for sTnI, cardiac troponin-I (cTnI), creatine kinase (CK), myoglobin, and elastase within 24h of injury, in comparison with 17 control subjects. The mean (SD) ng/ml value for sTnI was higher in orthopedic patients (15.25 +/- 2.4) and in soft-tissue injury patients (10.41 +/- 1.8) than that in controls (2.5 +/- 0.9) P < 0.001, P < 0.05 respectively. Cardiac TnI was not detectable in any subjects (below the assay detectable limit of 0.3ng/ml). CK was significantly higher in orthopedic patients than in controls (P < 0.005) and myoglobin and elastase were not significantly changed in patients samples. The assay appeared to be suitable as a supplementary tool of reliability and relevance, for the study, identification, and diagnosis of skeletal muscle specific injuries in humans.
Collapse
Affiliation(s)
- G N Onuoha
- Department of Surgery, University of Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Hickner RC, Mehta PM, Dyck D, Devita P, Houmard JA, Koves T, Byrd P. Relationship between fat-to-fat-free mass ratio and decrements in leg strength after downhill running. J Appl Physiol (1985) 2001; 90:1334-41. [PMID: 11247932 DOI: 10.1152/jappl.2001.90.4.1334] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine whether greater body fat mass (FM) relative to lean mass would result in more severe muscle damage and greater decrements in leg strength after downhill running. The relationship between the FM-to-fat-free mass ratio (FM/FFM) and the strength decline resulting from downhill running (-11% grade) was investigated in 24 male runners [age 23.4 +/- 0.7 (SE) yr]. The runners were divided into two groups on the basis of FM/FFM: low fat (FM/FFM = 0.100 +/- 0.008, body mass = 68.4 +/- 1.3 kg) and normal fat (FM/FFM = 0.233 +/- 0.020, body mass = 76.5 +/- 3.3 kg, P < 0.05). Leg strength was reduced less in the low-fat (-0.7 +/- 1.3%) than in the normal-fat individuals (-10.3 +/- 1.5%) 48 h after, compared with before, downhill running (P < 0.01). Multiple linear regression analysis revealed that the decline in strength could be predicted best by FM/FFM (r2 = 0.44, P < 0.05) and FM-to-thigh lean tissue cross-sectional area ratio (r2 = 0.53, P < 0.05), with no additional variables enhancing the prediction equation. There were no differences in muscle glycogen, creatine phosphate, ATP, or total creatine 48 h after, compared with before, downhill running; however, the change in muscle glycogen after downhill running was associated with a higher FM/FFM (r = -0.56, P < 0.05). These data suggest that FM/FFM is a major determinant of losses in muscle strength after downhill running.
Collapse
Affiliation(s)
- R C Hickner
- Human Performance Laboratory, Department of Exercise and Sports Science, East Carolina University, Greenville, North Carolina 27858, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Brooks SV, Opiteck JA, Faulkner JA. Conditioning of skeletal muscles in adult and old mice for protection from contraction-induced injury. J Gerontol A Biol Sci Med Sci 2001; 56:B163-71. [PMID: 11283187 DOI: 10.1093/gerona/56.4.b163] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to design a conditioning program that protected muscles in both adult and old mice from a protocol of contractions that previously caused a significant number of damaged fibers and a deficit in force. Hind-limb dorsiflexor muscles of adult (7 months) and old (22 months) female B6D2F1 mice were exposed once a week to a protocol of repeated forced stretches while maximally activated in vivo. By week 4, muscles of adult, but not old, mice showed no force deficit. Conditioning was continued for 6 weeks, when both age groups showed no force deficit for two consecutive weeks. Three days after the sixth contraction protocol, when morphological damage and force deficits are most severe, the numbers of damaged fibers in muscles of adult and old mice were not different from those in uninjured control muscles and the force deficits were reduced dramatically compared with unconditioned muscles. We conclude that muscles of both adult and old mice conditioned successfully, but muscles of old mice conditioned more slowly than those of adult mice.
Collapse
Affiliation(s)
- S V Brooks
- Institute of Gerontology and Department of Physiology, University of Michigan, Ann Arbor 48109-2007, USA.
| | | | | |
Collapse
|
49
|
McHugh MP, Connolly DA, Eston RG, Gartman EJ, Gleim GW. Electromyographic analysis of repeated bouts of eccentric exercise. J Sports Sci 2001; 19:163-70. [PMID: 11256821 DOI: 10.1080/026404101750095295] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The repeated bout effect refers to the protective effect provided by a single bout of eccentric exercise against muscle damage from a similar subsequent bout. The aim of this study was to determine if the repeated bout was associated with an increase in motor unit activation relative to force production, an increased recruitment of slow-twitch motor units or increased motor unit synchronization. Surface electromyographic (EMG) signals were recorded from the hamstring muscles during two bouts of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions separated by 2 weeks. The EMG per unit torque and median frequency were analysed. The initial bout of eccentric exercise resulted in strength loss, pain and muscle tenderness, while the repeated eccentric bout resulted in a slight increase in strength, no pain and no muscle tenderness (bout x time effects, P < 0.05). Strength, pain and tenderness were unaffected by either bout of concentric exercise. The EMG per unit torque and median frequency were not different between the initial and repeated bouts of eccentric exercise. The EMG per unit torque and median frequency increased during both bouts of eccentric exercise (P < 0.01) but did not change during either concentric bout. In conclusion, there was no evidence that the repeated bout effect was due to a neural adaptation.
Collapse
Affiliation(s)
- M P McHugh
- School of Sport, Health and Exercise Sciences, University of Wales, Gwynedd, UK.
| | | | | | | | | |
Collapse
|
50
|
Continuous Compression as an Effective Therapeutic Intervention in Treating Eccentric-Exercise-Induced Muscle Soreness. J Sport Rehabil 2001. [DOI: 10.1123/jsr.10.1.11] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Context:Prior investigations using ice, massage, or exercise have not shown efficacy in relieving delayed-onset muscle soreness.Objectives:To determine whether a compression sleeve worn immediately after maximal eccentric exercise enhances recovery.Design:Randomized, controlled clinical study.Setting:University sports medicine laboratory.Participants:Fifteen healthy, non-strength-trained men, matched for physical criteria, randomly placed in a control group or a continuous compression-sleeve group (CS).Methods and Measures:Subjects performed 2 sets of 50 arm curls. 1RM elbow flexion at 60°/s, upper-arm circumference, resting-elbow angle, serum creatine kinase (CK), and perception-of-soreness data were collected before exercise and for 3 days.Results:CK was significantly (P< .05) elevated from the baseline value in both groups, although the elevation in the CS group was less. CS prevented loss of elbow extension, decreased subjects’ perception of soreness, reduced swelling, and promoted recovery of force production.Conclusions:Compression is important in soft-tissue-injury management.
Collapse
|