1
|
Tong X, Zhao X, Ma Y, Li H, Zhang J, Zhang Z, Hua S, Li B, Zhang W, Zhang Y, Bai S. Caspase-8-and Gasdermin D (GSDMD)-Dependent PANoptosis Participate in the Seasonal Atrophy of Scented Glands in Male Muskrats. Animals (Basel) 2024; 14:3194. [PMID: 39595247 PMCID: PMC11591373 DOI: 10.3390/ani14223194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
The muskrat (Ondatra zibethicus) is an animal with special economic significance whose scented glands rapidly atrophy during the non-breeding season, but the mechanism of atrophy is not clear, with significant differences in apoptotic and pyroptotic signaling pathway expression according to transcriptome sequencing. During the non-breeding season, key apoptosis-related genes such as Tnfr1 (TNF Receptor Superfamily Member 1A), TRADD (TNFRSF1A Associated via Death Domain), FADD (Fas Associated via Death Domain), Casp-8 (Cysteine-aspartic proteases-8), and Bax (Bcl-associated X protein) were upregulated in the scented glands, while Bcl2 (B-cell lymphoma-2) expression was downregulated. In the classical pyroptosis pathway, the mRNA expression levels of key genes including Nlrp3 (the Nod-like receptor family pyrin domain-containing 3), ASC (the apoptosis-associated speck-like protein), Casp-1 (Cysteine-aspartic proteases-1), Gsdmd (Gasdermin D), and IL-1β (Interleukin 1 Beta) were higher during the non-breeding season, similar to the transcription level of Ripk1 (Receptor Interacting Serine/Threonine Kinase 1) in the non-canonical pyroptosis pathway, while TAK1 (transforming growth factor kinase) expression was downregulated in this latter pathway. TUNEL assays and immunofluorescence analysis indicated increased apoptosis and GSDMD and Caspase-8 protein levels during the non-breeding season. Indeed, the protein levels of GSDMD-N, Caspase-8 p43, and Caspase-8 p18 were significantly higher during the non-breeding season, while the GSDMD levels were significantly lower compared to the secretion season. These results suggest that apoptosis and pyroptosis play regulatory roles in scented gland atrophy and that there is an interplay between them during this process.
Collapse
Affiliation(s)
- Xiaofeng Tong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (X.T.); (Y.M.); (J.Z.); (Z.Z.)
- Detecting Center of Wildlife, State Forestry and Grassland Administration, Harbin 150040, China
| | - Xuefei Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (X.T.); (Y.M.); (J.Z.); (Z.Z.)
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Yue Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (X.T.); (Y.M.); (J.Z.); (Z.Z.)
- Detecting Center of Wildlife, State Forestry and Grassland Administration, Harbin 150040, China
| | - Haimeng Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (X.T.); (Y.M.); (J.Z.); (Z.Z.)
| | - Jinpeng Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (X.T.); (Y.M.); (J.Z.); (Z.Z.)
| | - Zuoyang Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (X.T.); (Y.M.); (J.Z.); (Z.Z.)
| | - Sirui Hua
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (X.T.); (Y.M.); (J.Z.); (Z.Z.)
| | - Bo Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (X.T.); (Y.M.); (J.Z.); (Z.Z.)
- Detecting Center of Wildlife, State Forestry and Grassland Administration, Harbin 150040, China
| | - Wei Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (X.T.); (Y.M.); (J.Z.); (Z.Z.)
- Detecting Center of Wildlife, State Forestry and Grassland Administration, Harbin 150040, China
| | - Yu Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (X.T.); (Y.M.); (J.Z.); (Z.Z.)
| | - Suying Bai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (X.T.); (Y.M.); (J.Z.); (Z.Z.)
- Detecting Center of Wildlife, State Forestry and Grassland Administration, Harbin 150040, China
| |
Collapse
|
2
|
Wagay NA, Rafiq S, Rather MA, Tantray YR, Lin F, Wani SH, El-Sabrout AM, Elansary HO, Mahmoud EA. Secondary Metabolite Profiling, Anti-Inflammatory and Hepatoprotective Activity of Neptunia triquetra (Vahl) Benth. Molecules 2021; 26:molecules26237353. [PMID: 34885934 PMCID: PMC8659018 DOI: 10.3390/molecules26237353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023] Open
Abstract
The present study aimed to analyze the phytoconstituents of Neptunia triquetra (Vahl) Benth. Anti-inflammatory and hepatoprotective activities of ethanol (EE), chloroform (CE) and dichloromethane (DCME) of stem extracts were evaluated using in vivo experimental models. The extracts were analyzed for phytoconstituents using GC-HRMS. Anti-inflammatory activity of CE, EE and DCME was accessed using carrageenan-induced paw oedema, cotton pellet-induced granuloma and the carrageenan-induced air-pouch model in Wistar albino rats. The hepatotoxicity-induced animal models were investigated for the biochemical markers in serum (AST, ALT, ALP, GGT, total lipids and total protein) and liver (total protein, total lipids, GSH and wet liver weight). In the in vivo study, animals were divided into different groups (six in each group) for accessing the anti-inflammatory and hepatoprotective activity, respectively. GC-HRMS analysis revealed the presence of 102 compounds, among which 24 were active secondary metabolites. In vivo anti-inflammatory activity of stem extracts was found in the order: indomethacin > chloroform extract (CE) > dichloromethane extract (DCME) > ethanolic extract (EE), and hepatoprotective activity of stem extracts in the order: CE > silymarin > EE > DCME. The results indicate that N. triquetra stem has a higher hepatoprotective effect than silymarin, however the anti-inflammatory response was in accordance with or lower than indomethacin.
Collapse
Affiliation(s)
- Nasir Aziz Wagay
- Botany Research Laboratory, Vidya Bharati Mahavidyalya College, Amravati 444602, Maharashtra, India;
- Department of Botany, Government Degree College, Baramulla 193101, Jammu and Kashmir, India
| | - Shah Rafiq
- Plant Tissue Culture Laboratory, Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India;
| | - Mohammad Aslam Rather
- Department of Chemistry, Government Degree College, Doda 182202, Jammu and Kashmir, India;
| | - Younas Rasheed Tantray
- Plant Biotechnology Division, Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, Jammu and Kashmir, India;
| | - Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Anantnag 192101, Jammu and Kashmir, India;
| | - Ahmed M. El-Sabrout
- Department of Applied Entomology and Zoology, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Hosam O. Elansary
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: ; Tel.: +966-581216322
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta 34511, Egypt;
| |
Collapse
|
3
|
Sayed AM, Hassanein EH, Salem SH, Hussein OE, Mahmoud AM. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life Sci 2020; 259:118173. [DOI: 10.1016/j.lfs.2020.118173] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
|
4
|
Jo YH, Lee H, Oh MH, Lee GH, Lee YJ, Lee JS, Kim MJ, Kim WY, Kim JS, Yoo DS, Cho SW, Cha SW, Pyo MK. Antioxidant and hepatoprotective effects of Korean ginseng extract GS-KG9 in a D-galactosamine-induced liver damage animal model. Nutr Res Pract 2020; 14:334-351. [PMID: 32765814 PMCID: PMC7390743 DOI: 10.4162/nrp.2020.14.4.334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/04/2020] [Accepted: 03/24/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND/OBJECTIVES This study was designed to investigate the improvement effect of white ginseng extract (GS-KG9) on D-galactosamine (Ga1N)-induced oxidative stress and liver injury. SUBJECTS/METHODS Sixty Sprague-Dawley rats were divided into 6 groups. Rats were orally administrated with GS-KG9 (300, 500, or 700 mg/kg) or silymarin (25 mg/kg) for 2 weeks. The rats of the GS-KG9- and silymarin-treated groups and a control group were then intraperitoneally injected Ga1N at a concentration of 650 mg/kg for 4 days. To investigate the protective effect of GS-KG9 against GalN-induced liver injury, blood liver function indicators, anti-oxidative stress indicators, and histopathological features were analyzed. RESULTS Serum biochemical analysis indicated that GS-KG9 ameliorated the elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) in GalN-treated rats. The hepatoprotective effects of GS-KG9 involved enhancing components of the hepatic antioxidant defense system, including glutathione, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). In addition, GS-KG9 treatment inhibited reactive oxygen species (ROS) production induced by GalN treatment in hepatocytes and significantly increased the expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins, which are antioxidant proteins. In particular, by histological analyses bases on hematoxylin and eosin, Masson's trichrome, α-smooth muscle actin, and transforming growth factor-β1 staining, we determined that the administration of 500 mg/kg GS-KG9 inhibited hepatic inflammation and fibrosis due to the excessive accumulation of collagen. CONCLUSIONS These findings demonstrate that GS-KG9 improves GalN-induced liver inflammation, necrosis, and fibrosis by attenuating oxidative stress. Therefore, GS-KG9 may be considered a useful candidate in the development of a natural preventive agent against liver injury.
Collapse
Affiliation(s)
- Yun Ho Jo
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Hwan Lee
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Myeong Hwan Oh
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Gyeong Hee Lee
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - You Jin Lee
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Ji Sun Lee
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Min Jung Kim
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Won Yong Kim
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Jin Seong Kim
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Dae Seok Yoo
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Sang Won Cho
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Seon Woo Cha
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| | - Mi Kyung Pyo
- International Ginseng & Herb Research Institute, Geumsan 32724, Korea
| |
Collapse
|
5
|
SIRT1 Modulators in Experimentally Induced Liver Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8765954. [PMID: 31281594 PMCID: PMC6589266 DOI: 10.1155/2019/8765954] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/21/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
Abstract
This article is directed at highlighting the involvement of the endogenous stress sensor SIRT1 (silent information regulator T1) as a possible factor involved in hepatoprotection. The selective SIRT1 modulators whether activators (STACs) or inhibitors are being tried experimentally and clinically. We discuss the modulation of SIRT1 on cytoprotection or even cytotoxicity in the liver chemically injured by hepatotoxic agents in rats, to shed light on the crosstalk between SIRT1 and its modulators. A combination of D-galactosamine and lipopolysaccharide (D-GalN/LPS) downregulated SIRT1 expression, while SIRT1 activators, SRT1720, resveratrol, and quercetin, upregulated SIRT1 and alleviated D-GalN/LPS-induced acute hepatotoxicity. Liver injury markers exhibited an inverse relationship with SIRT1 expression. However, under subchronic hepatotoxicity, quercetin decreased the significant increase in SIRT1 expression to lower levels which are still higher than normal ones and mitigated the liver-damaging effects of carbon tetrachloride. Each of these STACs was hepatoprotective and returned the conventional antioxidant enzymes to the baseline. Polyphenols tend to fine-tune SIRT1 expression towards normal in the liver of intoxicated rats in both acute and subchronic studies. Together, all these events give an impression that the cytoprotective effects of SIRT1 are exhibited within a definite range of expression. The catalytic activity of SIRT1 is important in the hepatoprotective effects of polyphenols where SIRT1 inhibitors block and the allosteric SIRT1 activators mimic the hepatoprotective effects of polyphenols. Our findings indicate that the pharmacologic modulation of SIRT1 could represent both an important move in alleviating hepatic insults and a future major step in the treatment of xenobiotic-induced hepatotoxicity.
Collapse
|
6
|
Elufioye TO, Habtemariam S. Hepatoprotective effects of rosmarinic acid: Insight into its mechanisms of action. Biomed Pharmacother 2019; 112:108600. [PMID: 30780110 DOI: 10.1016/j.biopha.2019.108600] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
Liver diseases such as hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma are one of the major health challenges in the world and many conditions such as inadequate nutrition, viral infection, ethanol and drug abuse, xenobiotic exposure, and metabolic diseases have been implicated in the development and progression of liver diseases. Several factors including lipid peroxidation, production of reactive oxygen species (ROS), peroxynitrite formation, complement factors and proinflammatory mediators, such as cytokines and chemokines, are involved in hepatic diseases. Rosmarinic acid (RA) is a natural phenolic compound found mainly in the family Lamiaceae consisting of several medicinal plants, herbs and spices. Several biological activities have been reported for RA and these include antioxidant properties as a ROS scavenger and lipid peroxidation inhibitor, anti-inflammatory, neuroprotective and antiangiogenic among others. This review is aimed at discussing the effects of RA on the liver, highlighting its hepatoprotective potential and the underlying mechanisms.
Collapse
Affiliation(s)
- Taiwo O Elufioye
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Nigeria.
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Chatham, Maritime Kent, ME4 4TB, UK
| |
Collapse
|
7
|
Lucić Vrdoljak A, Fuchs N, Mikolić A, Žunec S, Brčić Karačonji I, Jurič A, Prester L, Micek V, Neuberg M, Čanović S, Mršić G, Kopjar N. Irinotecan and Δ⁸-Tetrahydrocannabinol Interactions in Rat Liver: A Preliminary Evaluation Using Biochemical and Genotoxicity Markers. Molecules 2018; 23:E1332. [PMID: 29865166 PMCID: PMC6100385 DOI: 10.3390/molecules23061332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 01/27/2023] Open
Abstract
There is growing interest regarding the use of herbal preparations based on Cannabis sativa for medicinal purposes, despite the poorly understood interactions of their main constituent Δ⁸-tetrahydrocannabinol (THC) with conventional drugs, especially cytostatics. The objective of this pilot study was to prove whether the concomitant intake of THC impaired liver function in male Wistar rats treated with the anticancer drug irinotecan (IRI), and evaluate the toxic effects associated with this exposure. IRI was administered once intraperitoneally (at 100 mg/kg of the body weight (b.w.)), while THC was administered per os repeatedly for 1, 3, and 7 days (at 7 mg/kg b.w.). Functional liver impairments were studied using biochemical markers of liver function (aspartate aminotransferase-AST, alanine aminotransferase-ALP, alkaline phosphatase-AP, and bilirubin) in rats given a combined treatment, single IRI, single THC, and control groups. Using common oxidative stress biomarkers, along with measurement of primary DNA damage in hepatocytes, the degree of impairments caused at the cellular level was also evaluated. THC caused a time-dependent enhancement of acute toxicity in IRI-treated rats, which was confirmed by body and liver weight reduction. Although single THC affected ALP and AP levels more than single IRI, the levels of liver function markers measured after the administration of a combined treatment mostly did not significantly differ from control. Combined exposure led to increased oxidative stress responses in 3- and 7-day treatments, compared to single IRI. Single IRI caused the highest DNA damage at all timepoints. Continuous 7-day oral exposure to single THC caused an increased mean value of comet tail length compared to its shorter treatments. Concomitant intake of THC slightly affected the levels of IRI genotoxicity at all timepoints, but not in a consistent manner. Further studies are needed to prove our preliminary observations, clarify the underlying mechanisms behind IRI and THC interactions, and unambiguously confirm or reject the assumptions made herein.
Collapse
Affiliation(s)
- Ana Lucić Vrdoljak
- Institute for Medical Research and Occupational Health, HR-10001 Zagreb, Croatia.
| | - Nino Fuchs
- University Hospital Centre Zagreb, HR-10000 Zagreb, Croatia.
| | - Anja Mikolić
- Institute for Medical Research and Occupational Health, HR-10001 Zagreb, Croatia.
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, HR-10001 Zagreb, Croatia.
| | | | - Andreja Jurič
- Institute for Medical Research and Occupational Health, HR-10001 Zagreb, Croatia.
| | - Ljerka Prester
- Institute for Medical Research and Occupational Health, HR-10001 Zagreb, Croatia.
| | - Vedran Micek
- Institute for Medical Research and Occupational Health, HR-10001 Zagreb, Croatia.
| | - Marijana Neuberg
- University Centre Varaždin, University North, HR-42000 Varaždin, Croatia.
| | | | - Gordan Mršić
- Forensic Science Centre "Ivan Vučetić", HR-10000 Zagreb, Croatia.
| | - Nevenka Kopjar
- Institute for Medical Research and Occupational Health, HR-10001 Zagreb, Croatia.
| |
Collapse
|
8
|
Cano A, Mariño Z, Millet O, Martínez-Arranz I, Navasa M, Falcón-Pérez JM, Pérez-Cormenzana M, Caballería J, Embade N, Forns X, Bosch J, Castro A, Mato JM. A Metabolomics Signature Linked To Liver Fibrosis In The Serum Of Transplanted Hepatitis C Patients. Sci Rep 2017; 7:10497. [PMID: 28874799 PMCID: PMC5585246 DOI: 10.1038/s41598-017-10807-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis must be evaluated in patients with hepatitis C virus (HCV) after liver transplantation because its severity affects their prognosis and the recurrence of HCV. Since invasive biopsy is still the gold standard to identify patients at risk of graft loss from rapid fibrosis progression, it becomes crucial the development of new accurate, non-invasive methods that allow repetitive examination of the patients. Therefore, we have developed a non-invasive, accurate model to distinguish those patients with different liver fibrosis stages. Two hundred and three patients with HCV were histologically classified (METAVIR) into five categories of fibrosis one year after liver transplantation. In this cross-sectional study, patients at fibrosis stages F0-F1 (n = 134) were categorised as “slow fibrosers” and F2-F4 (n = 69) as “rapid fibrosers”. Chloroform/methanol serum extracts were analysed by reverse ultra-high performance liquid chromatography coupled to mass spectrometry. A diagnostic model was built through linear discriminant analyses. An algorithm consisting of two sphingomyelins and two phosphatidylcholines accurately classifies rapid and slow fibrosers after transplantation. The proposed model yielded an AUROC of 0.92, 71% sensitivity, 85% specificity, and 84% accuracy. Moreover, specific bile acids and sphingomyelins increased notably along with liver fibrosis severity, differentiating between rapid and slow fibrosers.
Collapse
Affiliation(s)
- Ainara Cano
- OWL, Parque Tecnológico de Bizkaia, Derio, 48160, Bizkaia, Spain.
| | - Zoe Mariño
- Liver Unit, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd); Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Oscar Millet
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, 48160, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | | | - Miquel Navasa
- Liver Unit, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd); Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Manuel Falcón-Pérez
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, 48160, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | | | - Joan Caballería
- Liver Unit, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd); Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Nieves Embade
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, 48160, Spain
| | - Xavier Forns
- Liver Unit, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd); Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Jaume Bosch
- Liver Unit, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd); Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Azucena Castro
- OWL, Parque Tecnológico de Bizkaia, Derio, 48160, Bizkaia, Spain
| | - José María Mato
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, 48160, Spain
| |
Collapse
|
9
|
Yan J, Xie G, Liang C, Hu Y, Zhao A, Huang F, Hu P, Liu P, Jia W, Wang X. Herbal medicine Yinchenhaotang protects against α-naphthylisothiocyanate-induced cholestasis in rats. Sci Rep 2017; 7:4211. [PMID: 28646179 PMCID: PMC5482856 DOI: 10.1038/s41598-017-04536-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023] Open
Abstract
Cholestasis is a clinical disorder defined as an impairment of bile flow, and that leads to toxic bile acid (BA) accumulation in hepatocytes. Here, we investigated the hepatoprotective effect of Yinchenhaotang (YCHT), a well-known formulae for the treatment of jaundice and liver disorders, against the cholestasis using the α-naphthylisothiocyanate (ANIT)-induced cholestasis in male Wistar rats. ANIT feeding induced significant cholestasis with substantially increased intrahepatic retention of hydrophobic BAs. The dynamic changes of serum and liver BAs indicated that YCHT was able to attenuate ANIT-induced BA perturbation, which is consistent with the histopathological findings that YCHT significantly decreased the liver damage. YCHT treatment substantially reduced serum alanine aminotransferase (ALT), alkaline phosphatase (AST), total bilirubin (TBIL) and direct bilirubin (DBIL) with minimal bile duct damage in the ANIT treated rats. Elevated mRNA expression of liver IL-6, IL-17A, IL-17F, TGF-β1, α-SMA, TGR5, NTCP, OATP1a1, and ileum ASBT and decreased liver IL-10, FXR, CAR, VDR, BSEP, MRP2, MRP3, MRP4 was also observed in ANIT-induced cholestasis but were attenuated or normalized by YCHT. Our results demonstrated that the BA profiles were significantly altered with ANIT intervention and YCHT possesses the hepatoprotective potential against cholestatic liver injury induced by hepatotoxin such as ANIT.
Collapse
Affiliation(s)
- Jingyu Yan
- E-institute of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guoxiang Xie
- University of Hawaii Cancer Center, Honolulu, Hawaii, 96813, USA
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chungeng Liang
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiyang Hu
- E-institute of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Aihua Zhao
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Fengjie Huang
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ping Hu
- Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ping Liu
- E-institute of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, Hawaii, 96813, USA.
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Xiaoning Wang
- E-institute of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
10
|
Kakegawa T, Ise H, Sugihara N, Nikaido T, Negishi N, Akaike T, Tanaka E. Soluble Asialoglycoprotein Receptors Reflect the Apoptosis of Hepatocytes. Cell Transplant 2017. [DOI: 10.3727/000000002783985756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cell death is thought to take place through at least two distinct processes: apoptosis and necrosis. There is increasing evidence that dysregulation of the apoptotic program is involved in liver diseases. However, there is no method to simply evaluate apoptosis in the liver tissue at present. It has been reported that the expression of asialoglycoprotein receptors (AGPRs) increases with apoptosis, but there is no report until now that investigates the influence of soluble AGPRs on apoptosis of hepatocytes. Soluble AGPRs have been reported to be present in human serum under physiological conditions. In the present study, in order to investigate the correlation between apoptosis of hepatocytes and soluble AGPR, mouse soluble AGPRs were detected using SDS-PAGE and Western blot analysis was conducted using anti-extracellular mouse hepatic lectin-1 (Ex-MHL-1) antiserum (polyclonal rabbit serum). The mouse soluble AGPRs were present in culture medium and mouse serum when hepatocytes were damaged. The soluble AGPRs increased proportionately, as the number of dead hepatocytes increased. In addition, soluble AGPRs existed more when apoptotic cell death was observed in in vitro and in vivo than when necrotic cell death was observed. The extracellular moiety of MHL-1 exists in the culture medium and mouse serum as a soluble AGPR, but the detailed mechanism of releasing soluble AGPR from hepatocytes has not been revealed yet. We described the first evidence for the relation between quantity of soluble AGPRs with two kinds of cell death: necrosis and apoptosis. Based on the results of our study, soluble AGPRs might become a new marker of apoptosis in the liver tissue and be useful for clinical diagnosis and treatment for liver diseases.
Collapse
Affiliation(s)
- Tetsuji Kakegawa
- Department of Organ Regeneration, Institute of Organ Transplants, Reconstructive Medicine and Tissue Engineering, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Hirohiko Ise
- Department of Organ Regeneration, Institute of Organ Transplants, Reconstructive Medicine and Tissue Engineering, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Nobuhiro Sugihara
- Department of Organ Regeneration, Institute of Organ Transplants, Reconstructive Medicine and Tissue Engineering, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Toshio Nikaido
- Department of Organ Regeneration, Institute of Organ Transplants, Reconstructive Medicine and Tissue Engineering, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Naoki Negishi
- Department of Organ Regeneration, Institute of Organ Transplants, Reconstructive Medicine and Tissue Engineering, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Toshihiro Akaike
- Department of Organ Regeneration, Institute of Organ Transplants, Reconstructive Medicine and Tissue Engineering, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
- Department of Biomolecular Engineering, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Eiji Tanaka
- Second Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| |
Collapse
|
11
|
Abstract
Primary hepatocytes form spheroids under some culture conditions. These spheroids exhibit many tissuelike ultrastructures and retain many liver-specific functions over a long period of time. They are attractive for many applications employing liver cells. The ability to maintain their viability and functions at a reduced temperature to allow for transportation to the site of their application will facilitate their use. Furthermore, with their structural and functional similarity, they could possibly be used as a model system for studying various liver ischemias. The effect of hypothermic treatment was assessed by oxygen consumption rate, ATP, H2O2, and caspase 8 content, as well as albumin and urea synthesis, during and posttreatment. No single outcome variable gives a superlative quantification of hypothermic damage. Taken together, the hypothermic treatment can be seen as increasingly damaging as the temperature decreases from 21°C to 15°C and 4°C. The addition of the chemical protectants glutathione, N-acetyl-L-cystein (NAC), and tauroursodeoxycholic acid (TUDCA) decreased the damaging effect of hypothermic treatment. This protection effect was even more profound when spheroids were preincubated with the protectant for 24 h, and was most prominent at 4°C. The viability of the hypothermically treated hepatocyte spheroids was confirmed by laser scanning confocal microscopy. The method reported provides a means of maintaining spheroids' viability and may allow for their distribution to application sites at a distance.
Collapse
Affiliation(s)
- Pamela H Lai
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132, USA
| | | | | | | |
Collapse
|
12
|
Montasser AOS, Saleh H, Ahmed-Farid OA, Saad A, Marie MAS. Protective effects of Balanites aegyptiaca extract, Melatonin and Ursodeoxycholic acid against hepatotoxicity induced by Methotrexate in male rats. ASIAN PAC J TROP MED 2017; 10:557-565. [PMID: 28756919 DOI: 10.1016/j.apjtm.2017.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/21/2017] [Accepted: 05/15/2017] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To compare the degree of ameliorative effects of Melatonin (MEL), Ursodeoxycholic acid (UDCA) and Balanites aegyptiaca (BA) against hepatotoxicity induced by MTX for one month. METHODS Eighty adult male rats (Sprague Dawely) weighing (190 ± 10 g), were randomly divided into eight equal groups: Control, MTX, MEL, BA, UDCA, MTX + MEL, MTX + BA, MTX + UDCA. Liver function biomarker enzymes, liver tissue oxidative stress parameters, together with total antioxidant capacity and tumor necrosis factor (TNF-α) were determined. Histopathological and immunohistochemistry examinations for TNF-α were also done. RESULTS MTX showed significant increase in alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), total and direct bilirubin, as well as TNF-α levels, oxidized glutathione (GSSG), malodialdehyde (MDA) and nitric oxide (NO). Whereas total protein, albumin, total antioxidant capacity, reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT) levels were significantly decreased in MTX treated group. These alterations were improved by MEL and BA treatment, whereas no improvement was noticed in UDCA treatment. CONCLUSIONS BA may be as promising as MEL in the hepatoprotection against MTX toxicity through their antioxidant and radical scavenging activities. In addition, it is not recommended to co-administer UDCA with MTX as it enhanced inflammation and damage to the liver.
Collapse
Affiliation(s)
| | - Hanan Saleh
- Faculty of Science, Department of Zoology, Cairo University, Giza 12631, Egypt
| | | | - Aida Saad
- National Organization for Drug Control and Research, Giza 12553, Egypt
| | | |
Collapse
|
13
|
Kemelo MK, Pierzynová A, Kutinová Canová N, Kučera T, Farghali H. The involvement of sirtuin 1 and heme oxygenase 1 in the hepatoprotective effects of quercetin against carbon tetrachloride-induced sub-chronic liver toxicity in rats. Chem Biol Interact 2017; 269:1-8. [DOI: 10.1016/j.cbi.2017.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/09/2017] [Accepted: 03/23/2017] [Indexed: 12/27/2022]
|
14
|
Li L, Jiang X, Huang S, Ying Z, Zhang Z, Pan C, Li S, Wang X, Zhang Z. Discovery of Highly Potent 2-Sulfonyl-Pyrimidinyl Derivatives for Apoptosis Inhibition and Ischemia Treatment. ACS Med Chem Lett 2017; 8:407-412. [PMID: 28435527 DOI: 10.1021/acsmedchemlett.6b00489] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/01/2017] [Indexed: 11/29/2022] Open
Abstract
A series of 2-sulfonyl-pyrimidinyl derivatives was developed as apoptosis inhibitors. These represent the first class of apoptosis inhibitors that function through stabilizing mitochondrial respiratory complex II. Starting from a phenotypic screen hit with micromolar activity, we optimized the cellular apoptosis inhibition activity of 2-sulfonyl-pyrimidinyl derivatives to picomolar level (compound 42, also named as TC9-305). The therapeutic potential of these new apoptosis inhibitors was further demonstrated by their neuroprotective effect on an ischemic animal model.
Collapse
Affiliation(s)
- Li Li
- School
of Life Sciences, Peking University, Beijing 100871, China
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Xian Jiang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Shaoqiang Huang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Zhengxin Ying
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Zhaolan Zhang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Chenjie Pan
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Sisi Li
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Xiaodong Wang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Zhiyuan Zhang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
- Collaborative Innovation Center for Cancer Medicine, Beijing 102206, China
| |
Collapse
|
15
|
Hohenester S, Vennegeerts T, Wagner M, Wimmer R, Drolle H, Rieger C, Denk GU, Rust C, Fiegl M. Physiological hypoxia prevents bile salt-induced apoptosis in human and rat hepatocytes. Liver Int 2014; 34:1224-31. [PMID: 24164780 DOI: 10.1111/liv.12368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/20/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Hydrophobic bile salts such as glycochenodeoxycholate (GCDC) accumulate in cholestatic liver disease and induce hepatocellular apoptosis, promoting profibrotic signalling. The tissue microenvironment is an integral player in cellular pathophysiology, but it is not routinely incorporated into laboratory studies. Tissue oxygen partial pressure (pO₂) may be an underestimated component of the microenvironment: in the liver, a pO₂ of 30-45 mmHg (approximately 6% O₂) is physiological, because of predominant portal blood supply. It was the aim of this project to investigate the impact of physiological hypoxia (i.e. 6% O₂) on hepatocellular function, namely, bile salt-induced apoptosis. METHODS Human hepatoma cells (HepG2-Ntcp) and primary rat hepatocytes were cultured at standard laboratory (hyperoxic) conditions (21% O₂) and at physiological hypoxia (6% O₂) in parallel for 1-8 days to study hepatocellular apoptosis and activation of signalling pathways. Standard laboratory analyses were applied for bile salt uptake, caspase-3/-7 activity, western blotting and gene-array analysis. RESULTS Culturing at physiological hypoxia protected both human and rat hepatocytes against GCDC-induced apoptosis: caspase-3/-7 activation was diminished by 3.1 ± 0.5-fold in human HepG2-Ntcp and completely abolished in primary rat hepatocytes. Bile salt uptake was unaffected. Induction of hypoxia-inducible factor-1α indicated adaption to physiological hypoxia. The MEK/ERK cascade was activated and anti-apoptotic mediators were induced: N-Myc down-regulated gene, gelsolin and carbonic anhydrase IX were upregulated 12.4-, 6.5- and 5.2-fold respectively. CONCLUSIONS We conclude from these data that (i) physiological hypoxia protects hepatocytes from bile salt-induced apoptosis, (ii) tissue pO₂ is a crucial, underestimated component of the microenvironment and should (iii) be considered when studying hepatocellular physiology in vitro.
Collapse
Affiliation(s)
- Simon Hohenester
- Department of Medicine II, University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rohilla R, Garg T, Goyal AK, Rath G. Herbal and polymeric approaches for liver-targeting drug delivery: novel strategies and their significance. Drug Deliv 2014; 23:1645-61. [DOI: 10.3109/10717544.2014.945018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
17
|
Liu Z, Gan L, Yang X, Zhang Z, Sun C. Hydrodynamic tail vein injection of SOCS3 eukaryotic expression vector in vivo promoted liver lipid metabolism and hepatocyte apoptosis in mouse. Biochem Cell Biol 2014; 92:119-25. [DOI: 10.1139/bcb-2013-0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3), a signal transduction cytokine, is involved in lipid metabolism as well as in cell proliferation, differentiation, apoptosis, and so on. To explore the effects of SOCS3 on apoptosis and lipid metabolism in liver, we used a simple effective method named hydrodynamic tail vein injection to overexpress SOCS3. Then orbital blood was obtained for the assessment of blood lipid after injection. Lipid metabolism related genes were detected by Western blot after the determination of serum lipids. Meanwhile, liver cell apoptosis was observed by Hoechst and TUNEL staining and the expression of apoptosis related proteins Bax, Bcl-2, and Caspase3 were detected as well as the JAK2/STAT3 signaling pathway. In addition, we also demonstrated the effect of SOCS3 in prime hepatocyte by overexpression or interference of SOCS3 along with SD1008, which is a specific inhibitor of the JAK2/STAT3 signaling pathway. Taken together, all the results indicated that SOCS3 promoted lipid synthesis in mice liver and promoted hepatocyte apoptosis by inhibiting the activation of the JAK2/STAT3 signaling pathway, however the detailed regulation mechanism had not yet been fully understood and needs further study.
Collapse
Affiliation(s)
- Zhenjiang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100. China
| | - Lu Gan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100. China
| | - Xiaobo Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100. China
| | - Zhenzhen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100. China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100. China
| |
Collapse
|
18
|
Dirlik M, Karahan A, Canbaz H, Caglikulekci M, Polat A, Tamer L, Aydin S. Effects of sulfasalazine on lipid peroxidation and histologic liver damage in a rat model of obstructive jaundice and obstructive jaundice with lipopolysaccharide-induced sepsis. Curr Ther Res Clin Exp 2014; 70:299-315. [PMID: 24683239 DOI: 10.1016/j.curtheres.2009.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2009] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Sulfasalazine, an inhibitor of cyclooxygenase, 5-lipoxygenase, and nuclear factor κB (NF-κB), has been found to alleviate oxidative damage, proinflammatory cytokine production, bile-duct proliferation, neutrophil infiltration, and fibrosis. Therefore, it may have a potential effect in attenuating lipid peroxidation and histologic liver damage in patients with biliary obstruction and biliary obstruction with sepsis. OBJECTIVE The aim of this study was to investigate the effect of sulfasalazine on lipid peroxidation and histologic liver damage due to obstructive jaundice (OJ) and to OJ with lipopolysaccharide (LPS)-induced sepsis in an experimental model. METHODS Male Wistar rats, weighing 150 to 220 g, were randomized into 6 groups: OJ; OJ + LPS; OJ + sulfasalazine; OJ + sulfasalazine + LPS (sulfasalazine administered before sepsis); OJ + LPS + sulfasalazine (sulfasalazine administered after sepsis); and sham. Liver malondialdehyde (MDA) and myeloperoxidase (MPO) activities were assessed to monitor lipid peroxidation and neutrophil infiltration in liver tissue. Histologic liver damage was evaluated with hematoxylin-eosin stained slides. Liver tissue NF-κB and caspase-3 expression were studied immunohistopathologically to evaluate lipid peroxidation, liver damage, and hepatocyte apoptosis. RESULTS Forty-eight rats were evenly randomized into 6 groups of 8. MDA (P = 0.001), MPO (P = 0.001), NF-κB (P = 0.003), caspase-3 expression (P = 0.002), and liver injury scores (P = 0.002) increased significantly in the OJ group compared with the sham group. Compared with the OJ group, MDA (P = 0.030) and MPO levels (P = 0.001), and liver injury scores (P = 0.033) were decreased significantly in the OJ + sulfasalazine group. In the OJ + sulfasalazine + LPS and OJ + LPS + sulfasalazine groups, MDA (P = 0.008 and P = 0.023, respectively) and MPO (both, P = 0.001) were significantly decreased; however, liver NF-κB, caspase-3 expression, and liver injury scores were not significantly different compared with the OJ + LPS group. There was no significant difference between the OJ + LPS + sulfasalazine and OJ + sulfasalazine + LPS groups in regard to all end points when comparing the effects of sulfasalazine administered before or after sepsis. CONCLUSIONS Sulfasalazine was associated with decreased neutrophil accumulation and lipid peroxidation in these rats with OJ. Administration of sulfasalazine before or after LPS-induced sepsis was associated with a reduction in lipid peroxidation and neutrophil accumulation; however, it did not attenuate histologic liver damage. There was no difference between the findings when sulfasalazine was administered before or after sepsis in OJ.
Collapse
Affiliation(s)
- Musa Dirlik
- Department of General Surgery, Mersin University Medical School, Mersin, Turkey
| | - Aydin Karahan
- Department of General Surgery, Mersin University Medical School, Mersin, Turkey
| | - Hakan Canbaz
- Department of General Surgery, Mersin University Medical School, Mersin, Turkey
| | - Mehmet Caglikulekci
- Department of General Surgery, Mersin University Medical School, Mersin, Turkey
| | - Ayşe Polat
- Department of Pathology, Mersin University Medical School, Mersin, Turkey
| | - Lulufer Tamer
- Department of Biochemistry, Mersin University Medical School, Mersin, Turkey
| | - Suha Aydin
- Department of General Surgery, Mersin University Medical School, Mersin, Turkey
| |
Collapse
|
19
|
Allam RM, Selim DA, Ghoneim AI, Radwan MM, Nofal SM, Khalifa AE, Sharaf OA, Toaima SM, Asaad AM, El-Sebakhy NA. Hepatoprotective effects of Astragalus kahiricus root extract against ethanol-induced liver apoptosis in rats. Chin J Nat Med 2014; 11:354-61. [PMID: 23845543 DOI: 10.1016/s1875-5364(13)60052-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Indexed: 01/20/2023]
Abstract
The hepatoprotective activity of the ethanol extract of Astragalus kahiricus (Fabaceae) roots against ethanol-induced liver apoptosis was evaluated and it showed very promising hepatoprotective actions through different mechanisms. The extract counteracted the ethanol-induced liver enzymes leakage and glutathione depletion. In addition, it demonstrated anti-apoptotic effects against caspase-3 activation and DNA fragmentation that were confirmed by liver histopathological examination. Moreover, the phytochemical study of this extract led to the isolation of four cycloartane-type triterpenes identified as astrasieversianin II (1), astramembrannin II (2), astrasieversianin XIV (3), and cycloastragenol (4). The structures of these isolates were established by HRESI-MS and 1D and 2D NMR experiments. The antimicrobial, antimalarial, and cytotoxic activities of the isolates were further evaluated, but none of them showed any activity.
Collapse
Affiliation(s)
- Rasha M Allam
- Pharmacology Department, Medical Division, National Research Center, Giza, Egypt
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang K, Lin B. Pathophysiological Significance of Hepatic Apoptosis. ISRN HEPATOLOGY 2012; 2013:740149. [PMID: 27335822 PMCID: PMC4890876 DOI: 10.1155/2013/740149] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 12/13/2012] [Indexed: 12/19/2022]
Abstract
Apoptosis is a classical pathological feature in liver diseases caused by various etiological factors such as drugs, viruses, alcohol, and cholestasis. Hepatic apoptosis and its deleterious effects exacerbate liver function as well as involvement in fibrosis/cirrhosis and carcinogenesis. An imbalance between apoptotic and antiapoptotic capabilities is a prominent characteristic of liver injury. The regulation of apoptosis and antiapoptosis can be a pivotal step in the treatment of liver diseases.
Collapse
Affiliation(s)
- Kewei Wang
- Departments of Surgery and Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Bingliang Lin
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
21
|
Baptissart M, Vega A, Maqdasy S, Caira F, Baron S, Lobaccaro JMA, Volle DH. Bile acids: from digestion to cancers. Biochimie 2012; 95:504-17. [PMID: 22766017 DOI: 10.1016/j.biochi.2012.06.022] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/21/2012] [Indexed: 02/07/2023]
Abstract
Bile acids (BAs) are cholesterol metabolites that have been extensively studied these last decades. BAs have been classified in two groups. Primary BAs are synthesized in liver, when secondary BAs are produced by intestinal bacteria. Recently, next to their ancestral roles in digestion and fat solubilization, BAs have been described as signaling molecules involved in many physiological functions, such as glucose and energy metabolisms. These signaling pathways involve the activation of the nuclear receptor FXRα or of the G-protein-coupled receptor TGR5. These two receptors have selective affinity to different types of BAs and show different expression patterns, leading to different described roles of BAs. It has been suggested for long that BAs could be molecules linked to tumor processes. Indeed, as many other molecules, regarding analyzed tissues, BAs could have either protective or pro-carcinogen activities. However, the molecular mechanisms responsible for these effects have not been characterized yet. It involves either chemical properties or their capacities to activate their specific receptors FXRα or TGR5. This review highlights and discusses the potential links between BAs and cancer diseases and the perspectives of using BAs as potential therapeutic targets in several pathologies.
Collapse
Affiliation(s)
- Marine Baptissart
- INSERM U 1103, Génétique Reproduction et Développement, Aubiere, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Roy DN, Sen G, Chowdhury KD, Biswas T. Combination therapy with andrographolide and d-penicillamine enhanced therapeutic advantage over monotherapy with d-penicillamine in attenuating fibrogenic response and cell death in the periportal zone of liver in rats during copper toxicosis. Toxicol Appl Pharmacol 2010; 250:54-68. [PMID: 20946909 DOI: 10.1016/j.taap.2010.09.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/21/2010] [Accepted: 09/30/2010] [Indexed: 01/19/2023]
Abstract
Long treatment regime with d-penicillamine is needed before it can exert clinically meaningful benefits in the treatment of copper toxicosis. The consequence of long-term d-penicillamine treatment is associated with numerous side effects. The limitations of d-penicillamine monotherapy prompted us to search for more effective treatment strategies that could decrease the duration of d-penicillamine therapy. The present study was designed to evaluate the therapeutic potential of d-penicillamine in combination with another hepatoprotective drug, andrographolide in treatment of copper toxicosis in rats. d-penicillamine treatment led to the excretion of copper through urine. Addition of andrographolide to d-penicillamine regime appeared to increase protection of liver by increasing the biliary excretion of copper and reduction in cholestatic injury. The early removal of the causative agent copper during combination treatment was the most effective therapeutic intervention that contributed to the early rectification of fibrosis in liver. Combination treatment reduced Kupffer cells accumulation and TNFα production in liver of copper exposed rats. In particular, andrographolide mediated the anti-inflammatory effect by inhibiting the cytokine production. However, another possible mechanism of cytoprotection of andrographolide was decreasing mitochondrial production of superoxide anions that resulted in better restoration of mitochondrial dysfunction during combination therapy than monotherapy. Furthermore, ROS inhibition by combination regimen resulted in significant decline in activation of caspase cascade. Inhibition of caspases attenuated apoptosis of hepatocytes, induced by chronic copper exposure. In summary, this study suggested that added benefit of combination treatment over use of either agent alone in alleviating the hepatotoxicity and fibrosis associated with copper toxicosis.
Collapse
Affiliation(s)
- Dijendra Nath Roy
- Cell Biology and Physiology Division, Indian Institute of Chemical Biology, A Unit of Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | | | |
Collapse
|
23
|
Abstract
Bile duct damage is present in virtually all cholangiopathies, which share the biliary epithelial cells (i.e. cholangiocytes) as a common pathogenic target. Cholangiocyte cell death largely occurs through the process of apoptosis. In this review, we will summarize the mechanisms through which biliary damage occurs in a variety of animal and in vitro models, such as extrahepatic cholestasis induced by bile duct ligation (BDL), cytotoxin- and hepatotoxin-induced liver injury, and biliary atresia. Although we have increased our knowledge of the factors that regulate cholangiocyte cell death mechanisms during cholangiopathies, especially in experimental models, there is still a lack of effective treatment modalities for these biliary disorders. However, future studies will hopefully provide for new therapeutic modalities for the prevention or restoration of biliary mass and function lost during the progression of cholangiopathies.
Collapse
Affiliation(s)
- Fuquan Yang
- Department of Medicine, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | | | | | | | | | | |
Collapse
|
24
|
Zucchini-Pascal N, de Sousa G, Pizzol J, Rahmani R. Pregnane X receptor activation protects rat hepatocytes against deoxycholic acid-induced apoptosis. Liver Int 2010; 30:284-97. [PMID: 19737350 DOI: 10.1111/j.1478-3231.2009.02108.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Bile acids damage the liver, essentially by inducing hepatocyte apoptosis. Clinical studies have shown that several activators of the pregnane X receptor (PXR) may induce the remission of cholestasis. However, the molecular mechanisms involved in this beneficial effect remain unclear. We analysed the effect of an activator of PXR, clotrimazole (CLO), on the apoptosis induced by bile acids in primary cultures of rat hepatocytes. METHODS Rat hepatocytes were isolated by collagenase perfusion of the liver. Then, cells were pretreated with CLO for 24 h, after which they were exposed to deoxycholic and glycochenodeoxycholic acids (DCA, GCDCA). Apoptosis and necrosis were monitored morphologically and biochemically using cytotoxicity assays, phase-contrast microscopy, Annexin V/propidium iodide staining and evaluations of lactate dehydrogenase release. The activation of caspases and the proteolysis of their substrates were analysed by enzyme assays and Western blot. The signal transductions involved in the protective effect of the PXR activation were analysed by assessing the phosphorylation status of kinases belonging to the ERK, Akt and p38 pathways and by analysing pro- and anti-apoptotic proteins. RESULTS CLO protected rat hepatocytes against DCA- and GCDCA-induced apoptosis, preventing morphological aspects of this process (membrane blebbing, nuclear and chromatin condensation and DNA breakdown). This effect was attributable, at least partly, to caspases inhibition, Bcl-xL induction, the activation of ERK and Akt signalling and p38 inhibition. CONCLUSION This study provides the description of the cytoprotective effect of PXR activation against bile acid-induced apoptosis and highlights molecular pathways that could be targeted in the treatment of cholestasis.
Collapse
Affiliation(s)
- Nathalie Zucchini-Pascal
- Laboratoire de Toxicologie Cellulaire, Moléculaire et Génomique, INRA, Sophia Antipolis, France.
| | | | | | | |
Collapse
|
25
|
Dong J, Mury SP, Drahos KE, Moscovitch M, Zia RKP, Finkielstein CV. Shorter exposures to harder X-rays trigger early apoptotic events in Xenopus laevis embryos. PLoS One 2010; 5:e8970. [PMID: 20126466 PMCID: PMC2813296 DOI: 10.1371/journal.pone.0008970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 01/11/2010] [Indexed: 11/21/2022] Open
Abstract
Background A long-standing conventional view of radiation-induced apoptosis is that increased exposure results in augmented apoptosis in a biological system, with a threshold below which radiation doses do not cause any significant increase in cell death. The consequences of this belief impact the extent to which malignant diseases and non-malignant conditions are therapeutically treated and how radiation is used in combination with other therapies. Our research challenges the current dogma of dose-dependent induction of apoptosis and establishes a new parallel paradigm to the photoelectric effect in biological systems. Methodology/Principal Findings We explored how the energy of individual X-ray photons and exposure time, both factors that determine the total dose, influence the occurrence of cell death in early Xenopus embryo. Three different experimental scenarios were analyzed and morphological and biochemical hallmarks of apoptosis were evaluated. Initially, we examined cell death events in embryos exposed to increasing incident energies when the exposure time was preset. Then, we evaluated the embryo's response when the exposure time was augmented while the energy value remained constant. Lastly, we studied the incidence of apoptosis in embryos exposed to an equal total dose of radiation that resulted from increasing the incoming energy while lowering the exposure time. Conclusions/Significance Overall, our data establish that the energy of the incident photon is a major contributor to the outcome of the biological system. In particular, for embryos exposed under identical conditions and delivered the same absorbed dose of radiation, the response is significantly increased when shorter bursts of more energetic photons are used. These results suggest that biological organisms display properties similar to the photoelectric effect in physical systems and provide new insights into how radiation-mediated apoptosis should be understood and utilized for therapeutic purposes.
Collapse
Affiliation(s)
- JiaJia Dong
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Sean P. Mury
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Karen E. Drahos
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Marko Moscovitch
- Department of Radiation Medicine, Georgetown University Medical Center, Washington D. C., United States of America
| | - Royce K. P. Zia
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Carla V. Finkielstein
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Acute kidney injury (AKI) continues to contribute significantly to morbidity and mortality in the ICU setting, especially when associated with distant organ dysfunction. There is increasing evidence that AKI directly contributes to organ dysfunction in lung, brain, liver, heart and other organs. This review will examine our current understanding of the deleterious organ crosstalk in the critically ill, which can provide a framework for developing novel therapeutics. RECENT FINDINGS The majority of studies correlating AKI with distant organ dysfunction have demonstrated the pathophysiological importance of proinflammatory and proapoptotic pathways as well as oxidative stress and reactive oxygen species (ROS) production. Leukocyte activation and infiltration, changes in levels of soluble factors such as cytokines and chemokines, and regulation of cell death in extra-renal organs are potentially important mechanisms by which AKI modulates multiorgan dysfunction. SUMMARY There is increasing knowledge of AKI and deleterious interorgan crosstalk that arises, at least in part, due to the imbalance of immune, inflammatory, and soluble mediator metabolism that attends severe insults to the kidney. Further studies can build on these new mechanistic observations to develop strategies to improve outcomes in the critically ill patient.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
27
|
|
28
|
Abstract
Apoptosis is associated with virus-induced human diseases of the central nervous system, heart and liver, and causes substantial morbidity and mortality. Although virus-induced apoptosis is well characterized in individual cells in cell culture, virus-induced apoptosis in vivo and the role of apoptosis in virus-induced disease is not well established. This review focuses on animal models of virus-induced diseases of the central nervous system, heart and liver that provide insights into the role of apoptosis in pathogenesis, the pathways involved and the potential therapeutic implications.
Collapse
Affiliation(s)
- Penny Clarke
- Department of Neurology, University of Colorado, Denver Health Sciences Programs, Anschutz Medical Campus, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
29
|
Stahl S, Davies MR, Cook DI, Graham MJ. Nuclear hormone receptor-dependent regulation of hepatic transporters and their role in the adaptive response in cholestasis. Xenobiotica 2008; 38:725-77. [DOI: 10.1080/00498250802105593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Bjelakovic G, Nikolova D, Simonetti RG, Gluud C. Antioxidant supplements for preventing gastrointestinal cancers. Cochrane Database Syst Rev 2008:CD004183. [PMID: 18677777 DOI: 10.1002/14651858.cd004183.pub3] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oxidative stress may cause gastrointestinal cancers. The evidence on whether antioxidant supplements are effective in preventing gastrointestinal cancers is contradictory. OBJECTIVES To assess the beneficial and harmful effects of antioxidant supplements in preventing gastrointestinal cancers. SEARCH STRATEGY We identified trials through the trials registers of the four Cochrane Review Groups on gastrointestinal diseases, The Cochrane Central Register of Controlled Trials in The Cochrane Library (Issue 2, 2007), MEDLINE, EMBASE, LILACS, SCI-EXPANDED, and The Chinese Biomedical Database from inception to October 2007. We scanned reference lists and contacted pharmaceutical companies. SELECTION CRITERIA Randomised trials comparing antioxidant supplements to placebo/no intervention examining occurrence of gastrointestinal cancers. DATA COLLECTION AND ANALYSIS Two authors (GB and DN) independently selected trials for inclusion and extracted data. Outcome measures were gastrointestinal cancers, overall mortality, and adverse effects. Outcomes were reported as relative risks (RR) with 95% confidence interval (CI) based on random-effects and fixed-effect model meta-analysis. Meta-regression assessed the effect of covariates across the trials. MAIN RESULTS We identified 20 randomised trials (211,818 participants), assessing beta-carotene (12 trials), vitamin A (4 trials), vitamin C (8 trials), vitamin E (10 trials), and selenium (9 trials). Trials quality was generally high. Heterogeneity was low to moderate. Antioxidant supplements were without significant effects on gastrointestinal cancers (RR 0.94, 95% CI 0.83 to 1.06). However, there was significant heterogeneity (I(2) = 54.0%, P = 0.003). The heterogeneity may have been explained by bias risk (low-bias risk trials RR 1.04, 95% CI 0.96 to 1.13 compared to high-bias risk trials RR 0.59, 95% CI 0.43 to 0.80; test of interaction P < 0.0005), and type of antioxidant supplement (beta-carotene potentially increasing and selenium potentially decreasing cancer risk). The antioxidant supplements had no significant effects on mortality in a random-effects model meta-analysis (RR 1.02, 95% CI 0.97 to 1.07, I(2) = 53.5%), but significantly increased mortality in a fixed-effect model meta-analysis (RR 1.04, 95% CI 1.02 to 1.07). Beta-carotene in combination with vitamin A (RR 1.16, 95% CI 1.09 to 1.23) and vitamin E (RR 1.06, 95% CI 1.02 to 1.11) significantly increased mortality. Increased yellowing of the skin and belching were non-serious adverse effects of beta-carotene. In five trials (four with high risk of bias), selenium seemed to show significant beneficial effect on gastrointestinal cancer occurrence (RR 0.59, 95% CI 0.46 to 0.75, I(2) = 0%). AUTHORS' CONCLUSIONS We could not find convincing evidence that antioxidant supplements prevent gastrointestinal cancers. On the contrary, antioxidant supplements seem to increase overall mortality. The potential cancer preventive effect of selenium should be tested in adequately conducted randomised trials.
Collapse
Affiliation(s)
- Goran Bjelakovic
- Copenhagen Trial Unit, Centre for Clinical Intervention Research,, Department 3344, Rigshospitalet, Copenhagen University Hospital,, Blegdamsvej 9, Copenhagen, Denmark, DK-2100.
| | | | | | | |
Collapse
|
31
|
Jang JH, Kang KJ, Kang Y, Lee IS, Graf R, Clavien PA. Ischemic preconditioning and intermittent clamping confer protection against ischemic injury in the cirrhotic mouse liver. Liver Transpl 2008; 14:980-8. [PMID: 18581460 DOI: 10.1002/lt.21467] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Surgery on cirrhotic livers is fraught with complications, and many surgeons refrain from operating on patients with cirrhosis. Surgical procedures include temporal occlusion of blood flow resulting in ischemia. The mechanisms of protective strategies to prevent ischemic injury in patients with cirrhosis are not fully understood. The aim of this study was to evaluate how the cirrhotic liver tolerates an ischemic insult, whether mechanisms other than those observed in the normal liver are active, and whether intermittent clamping and preconditioning, which are known as safe surgical strategies in normal and steatotic livers, confer protection to the cirrhotic liver. We applied partial hepatic inflow occlusion to cirrhotic mice fed carbon tetrachloride according to different vascular occlusion protocols: intermittent clamping with 15 or 30 minute cycles of ischemia or ischemic preconditioning prior to 60 or 75 minutes of ischemia. Continuous ischemia (60 or 75 minutes) served as controls. The results showed that the cirrhotic liver was significantly more susceptible to 60 minutes of ischemia than the normal liver. Apoptosis was higher in the normal liver, whereas necrosis was a predominant feature in the cirrhotic liver. Both protocols of intermittent vascular occlusion and ischemic preconditioning dramatically prevented injury compared to continuous occlusion for 60 minutes. This protection was associated with reduced necrosis and apoptosis, and particularly reduced activation of the apoptotic pathway through mitochondria. In conclusion, this study extends the protective effects of ischemic preconditioning and intermittent clamping to the cirrhotic liver, highlighting a diminished apoptotic pathway with dramatic improvement in the development of necrosis.
Collapse
Affiliation(s)
- Jae Hwi Jang
- Department of Surgery, School of Medicine, Institute for Medical Genetics, Keimyung University, Daegu, Korea
| | | | | | | | | | | |
Collapse
|
32
|
Park SE, Lee SW, Hossain MA, Kim MY, Kim MN, Ahn EY, Park YC, Suh H, Kim GY, Choi YH, Kim ND. A chenodeoxycholic derivative, HS-1200, induces apoptosis and cell cycle modulation via Egr-1 gene expression control on human hepatoma cells. Cancer Lett 2008; 270:77-86. [PMID: 18554781 DOI: 10.1016/j.canlet.2008.04.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 01/31/2008] [Accepted: 04/28/2008] [Indexed: 12/17/2022]
Abstract
We previously reported that HS-1200, a synthetic chenodeoxycholic acid derivative, has apoptosis-inducing activity in various human cancer cells. The present study was undertaken to examine whether HS-1200 had an anticancer effect on HepG2 (wild-type p53) and Hep3B (p53 deleted) human hepatoma cells. Treatment of both cells with HS-1200 resulted in growth inhibition and induction of apoptosis as measured by MTT assay, nuclear staining, DNA fragmentation and flow cytometry analysis. The increase in apoptosis was associated with the alteration in the ratio of Bcl-2/Bax protein expression. In addition, flow cytometry analysis indicated that HS-1200 induced G1 phase arrest in both cells. When analyzing the expression of cell cycle-related proteins, we found that HS-1200 reduced the expression levels of cyclin D1, cyclin A, and Cdk2. HS-1200 treatment also caused an increase in the expression levels of p21 WAF1/CIP1 in HepG2 cells in a p53-dependent manner and in Hep3B cells in a p53-independent manner. Moreover, the expression level of p27 KIP1 was increased in both cell lines. We also observed that HS-1200 decreased the levels of cyclooxygenase (COX)-2 mRNA and protein expression. Furthermore, HS-1200 treatment markedly induced the Egr-1 expression at an early time point, and the increased expression levels of p53, p21 WAF1/CIP1, p27 KIP1, and COX-2 after treatment with HS-1200 were completely inhibited in HepG2 cells and partially inhibited in Hep3B cells by silencing of Egr-1, respectively. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anticancer activity of the synthetic bile acid derivative, HS-1200, through Egr-1 regulation.
Collapse
Affiliation(s)
- Sang Eun Park
- Department of Pharmacy BK21 Program, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rosseland CM, Wierød L, Flinder LI, Oksvold MP, Skarpen E, Huitfeldt HS. Distinct functions of H-Ras and K-Ras in proliferation and survival of primary hepatocytes due to selective activation of ERK and PI3K. J Cell Physiol 2008; 215:818-26. [PMID: 18163378 DOI: 10.1002/jcp.21367] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ras proteins mediate signals both via extracellular signal-regulated kinase 1 and 2 (ERK), and phosphoinositide 3-kinase (PI3K). These signals are key events in cell protection and compensatory cell growth after exposure to cell damaging and pro-apoptotic stimuli, thus maintaining homeostasis. By transfection techniques, we found that both H-Ras and K-Ras were expressed and appeared functionally active in primary hepatocytes. We compared the ability of H-Ras and K-Ras homologues to preferentially activate one of the two pathways, thereby differentially controlling cell survival and growth. We found that ectopic expression of dominant negative (DN) H-RasN17, but not DN K-RasN17, efficiently inhibited both phosphorylation and translocation of ERK to the nuclear compartment, which are prerequisites for cell cycle progression. Furthermore, ectopic expression of constitutive active (CA) H-RasV12, but not CA K-RasV12, potentiated EGF-induced proliferation. We also found that expression of CA mutants of either H-Ras or K-Ras protected hepatocytes from transforming growth factor-beta1 (TGF-beta1)-induced apoptosis. However, H-Ras-induced survival was mediated by ERK/RSK as well as by PI3K, whereas K-Ras-induced survival was mediated by PI3K only. In conclusion, H-Ras and K-Ras had differential functions in proliferation and survival of primary hepatocytes. H-Ras was the major mediator of ERK-induced proliferation and survival, whereas H-Ras and K-Ras both mediated PI3K-induced survival.
Collapse
Affiliation(s)
- Carola M Rosseland
- Laboratory for Toxicopathology, Institute of Pathology, Rikshospitalet-Radiumhospitalet Medical Centre, University of Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
34
|
Nevado C, Benito M, Valverde AM. Role of insulin receptor and balance in insulin receptor isoforms A and B in regulation of apoptosis in simian virus 40-immortalized neonatal hepatocytes. Mol Biol Cell 2008; 19:1185-98. [PMID: 18172021 DOI: 10.1091/mbc.e07-05-0473] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have investigated the unique role of the insulin receptor (IR) and the balance of its isoforms A and B in the regulation of apoptosis in simian virus 40 (SV40)-immortalized neonatal hepatocytes. Immortalized hepatocytes lacking (HIR KO) or expressing the entire IR (HIR LoxP), and cells expressing either IRA (HIR RecA) or IRB (HIR RecB) have been generated. IR deficiency in hepatocytes increases sensitivity to the withdrawal of growth factors, because these cells display an increase in reactive oxygen species, a decrease in Bcl-x(L), a rapid accumulation of nuclear Foxo1, and up-regulation of Bim. These events resulted in acceleration of caspase-3 activation, DNA laddering, and cell death. The single expression of either IRA or IRB produced a stronger apoptotic phenotype. In these cells, protein complexes containing IRA or IRB and Fas/Fas-associating protein with death domain activated caspase-8, and, ultimately, caspase-3. In hepatocytes expressing IRA, Bid cleavage and cytochrome C release were increased whereas direct activation of caspase-3 by caspase-8 and a more rapid apoptotic process occurred in hepatocytes expressing IRB. Conversely, coexpression of IRA and IRB in IR-deficient hepatocytes rescued from apoptosis. Our results suggest that balance alteration of IRA and IRB may serve as a ligand-independent apoptotic trigger in hepatocytes, which may regulate liver development.
Collapse
Affiliation(s)
- Carmen Nevado
- Departamento de Bioquimica y Biologia Molecular II, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | | | | |
Collapse
|
35
|
Tumurbaatar B, Sun Y, Chan T, Sun J. Cre-estrogen receptor-mediated hepatitis C virus structural protein expression in mice. J Virol Methods 2007; 146:5-13. [PMID: 17628708 PMCID: PMC2104783 DOI: 10.1016/j.jviromet.2007.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 05/18/2007] [Accepted: 05/22/2007] [Indexed: 12/28/2022]
Abstract
Hepatocyte apoptosis is an important feature of liver injury in hepatitis C virus (HCV) infection. However, the mechanism of apoptosis and consequences on disease progression in vivo have not been investigated fully in part due to the lack of adequate small animal models. In this study, transgenic (tg) mice were produced that express conditionally HCV structural proteins (core, E1, E2 and p7) in the liver following Cre-mediated DNA recombination. Using a novel Cre-estrogen receptor fusion protein (Cre-ER) induction strategy, tamoxifen was injected intraperitoneally (i.p.), which induced Cre nuclear translocation, transgene recombination and HCV protein expression in the liver. Hepatic expression of HCV core and envelope proteins resulted in increased hepatocyte apoptosis, detected by the TUNEL assay, between 7 and 33 days after induction. These results were confirmed by the presence of increased levels of apoptosis-associated cytokeratin 18 (CK-18) in the sera of the same animals. The presence of cleaved caspase-3 and elevated levels of CHOP/GADD153 in the liver suggests an endoplasmic reticulum (ER) stress-associated apoptosis mechanism. This study suggests an in vivo correlation between HCV structural protein expression, ER stress and hepatocyte apoptosis, implicating a potentially important mechanism of HCV pathogenesis.
Collapse
Affiliation(s)
- Batbayar Tumurbaatar
- Department of Microbiology and Immunology and Center for Hepatitis Research Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1019, USA
| | | | | | | |
Collapse
|
36
|
Volkmann X, Fischer U, Bahr MJ, Ott M, Lehner F, Macfarlane M, Cohen GM, Manns MP, Schulze-Osthoff K, Bantel H. Increased hepatotoxicity of tumor necrosis factor-related apoptosis-inducing ligand in diseased human liver. Hepatology 2007; 46:1498-508. [PMID: 17705261 DOI: 10.1002/hep.21846] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in tumor cells but not in most normal cells and has therefore been proposed as a promising antitumor agent. Recent experiments suggested that isolated primary human hepatocytes but not monkey liver cells are susceptible to certain TRAIL agonists, raising concerns about the use of TRAIL in cancer treatment. Whether TRAIL indeed exerts hepatotoxicity in vivo and how this is influenced by chemotherapeutic drugs or liver disease are completely unknown. Employing different forms of recombinant TRAIL, we found that the cytokine can induce proapoptotic caspase activity in isolated human hepatocytes. However in marked contrast, these different TRAIL preparations induced little or no cytotoxicity when incubated with tissue explants of fresh healthy liver, an experimental model that may more faithfully mimic the in vivo situation. In healthy liver, TRAIL induced apoptosis only when combined with histone deacetylase inhibitors. Strikingly, however, TRAIL alone triggered massive apoptosis accompanied by caspase activation in tissue explants from patients with liver steatosis or hepatitis C viral infection. This enhanced sensitivity of diseased liver was associated with an increased expression of TRAIL receptors and up-regulation of proapoptotic Bcl-2 proteins. CONCLUSION These results suggest that clinical trials should be performed with great caution when TRAIL is combined with chemotherapy or administered to patients with inflammatory liver diseases.
Collapse
Affiliation(s)
- Xandra Volkmann
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fava G, Marzioni M, Francis H, Glaser S, Demorrrow S, Ueno Y, Benedetti A, Alpini G. Novel interaction of bile acid and neural signaling in the regulation of cholangiocyte function. Hepatol Res 2007; 37 Suppl 3:S420-S429. [PMID: 17931197 DOI: 10.1111/j.1872-034x.2007.00228.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cholangiocytes, the epithelial cells that line the intrahepatic biliary tree, are the target of cholangiopathies, a wide array of chronic disorders that are characterized by the progressive vanishing of bile ducts, leading to ductopenia and liver failure. The loss of bile ducts is a consequence of cholangiocyte death by apoptosis and impaired proliferative response of these cells to injury. The factors that regulate cholangiocyte proliferation and survival are poorly understood. In this regard, a major role is played by the interaction between bile acids and the autonomic nervous system. It has been shown that adrenergic and cholinergic denervation of the liver results in the induction of cell death and impaired proliferative responses of the biliary epithelium to cholestasis. In addition,bile acids have been shown to enter cholangiocytes through the apical, Na(+)-dependent bile acid transporter, ASBT, which has a marked impact on cholangiocyte pathobiology. Recent evidence shows that bile acids and autonomic innervation interact in modulating cholangiocyte response to liver injury. In this review, we describe the recent advances in understanding the molecular mechanisms by which such events occur.
Collapse
Affiliation(s)
- Giammarco Fava
- Department of Gastroenterology, Polytechnic University of Marche, Ancona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Siebler J, Schuchmann M, Strand S, Lehr HA, Neurath MF, Galle PR. Enhanced sensitivity to CD95-induced apoptosis in ob/ob mice. Dig Dis Sci 2007; 52:2396-402. [PMID: 17415659 DOI: 10.1007/s10620-006-9148-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 11/10/2005] [Indexed: 01/30/2023]
Abstract
Hepatocyte apoptosis was recently described for NASH patients. The pathomechanisms are incompletely understood, but upregulation of the death receptor Fas was detectable on hepatocytes of NASH patients. We analyzed the sensitivity of fatty liver against CD95/Fas-mediated apoptotic cell death by injection of agonistic anti-Fas antibody (Jo2) in obese ob/ob mice and lean control animals. Ob/ob mice died within 12 hrs, whereas control animals survived. Liver enzymes were significantly increased compared to those in control mice (P < 0.001). Histological analysis and also TUNEL assay of liver sections from ob/ob mice exhibited massive liver injury. Activity of caspase 3 was significantly more enhanced in livers of ob/ob mice after Jo2 challenge. The increased sensitivity was confirmed in vitro by using ob/ob-derived primary hepatocytes. CD95 expression was similar in ob/ob and control mice. However, hepatocytes from ob/ob mice revealed a decreased mitochondrial membrane potential, suggesting that mitochondria play a potential role in this increased susceptibility.
Collapse
Affiliation(s)
- Juergen Siebler
- Department of Medicine, University of Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Reidy MR, Ellis J, Schmitz EA, Kraus DM, Bulla GA. Apoptosis of dedifferentiated hepatoma cells is independent of NF-kappaB activation in response to LPS. Biosci Rep 2007; 27:235-46. [PMID: 17659437 DOI: 10.1007/s10540-007-9049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Dedifferentiated hepatoma cells, in contrast to most other cell types including hepatoma cells, undergo apoptosis when treated with lipopolysaccharide (LPS) plus the protein synthesis inhibitor cycloheximide (CHx). We recently reported that the dedifferentiated hepatoma cells also exhibit a strong and prolonged NF-kappaB induction phenotype upon exposure to LPS, suggesting that NF-kappaB signaling may play a pro-survival role, as reported in several other cell systems. To test the role of NF-kappaB in preventing LPS-mediated apoptosis, we examined the dedifferentiated cell line M38. Results show that antioxidants strongly inhibited LPS + CHx-mediated cell death in the M38 cells, yet only modestly inhibited NF-kappaB induction. In addition, inhibition of NF-kappaB translocation by infection of the M38 cells with an adenoviral vector expressing an IkappaBalpha super-repressor did not result in LPS-mediated cell death. These results suggest that unlike TNFalpha induction, the cell survival pathway activated in response to LPS is independent of NF-kappaB translocation in the dedifferentiated cells. Addition of inhibitors of JNK, p38 and ERK pathways also failed to elicit LPS-mediated apoptosis similar to that observed when protein synthesis is prevented. Thus, cell survival pathways other than those involving NF-kappaB inducible gene expression or other well-known pathways appear to be involved in protecting the dedifferentiated hepatoma variant cells from LPS-mediated apoptosis. Importantly, this pro-apoptotic function of LPS appears to be a function of loss of hepatic gene expression, as the parental hepatoma cells resist LPS-mediated apoptosis in the presence of protein synthesis inhibitors.
Collapse
Affiliation(s)
- M Ryan Reidy
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL 61920, USA
| | | | | | | | | |
Collapse
|
40
|
Marzioni M, Ueno Y, Glaser S, Francis H, Benedetti A, Alvaro D, Venter J, Fava G, Alpini G. Cytoprotective effects of taurocholic acid feeding on the biliary tree after adrenergic denervation of the liver. Liver Int 2007; 27:558-568. [PMID: 17403196 DOI: 10.1111/j.1478-3231.2007.01443.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cholangiopathies impair the balance between proliferation and apoptosis of cholangiocytes leading to the disappearance of bile ducts and liver failure. Taurocholic acid (TC) is essential for cholangiocyte proliferative and functional response to cholestasis. Bile acids and neurotransmitters co-operatively regulate the biological response of the biliary epithelium to cholestasis. Adrenergic denervation of the liver during cholestasis results in the damage of bile ducts. AIM To verify whether TC feeding prevents the damage of the biliary tree induced by adrenergic denervation in the course of cholestasis. METHODS Rats subjected to bile duct ligation (BDL) and to adrenergic denervation were fed a TC-enriched diet, in the absence or presence of daily administration of the phosphatidyl-inositol-3-kinase (PI3K) inhibitor wortmannin for 1 week. RESULTS TC prevented the induction of cholangiocyte apoptosis induced by adrenergic denervation. TC also restored cholangiocyte proliferation and functional activity, reduced after adrenergic denervation. TC prevented AKT dephosphorylation induced by adrenergic denervation. The cytoprotective effects of TC were abolished by the simultaneous administration of wortmannin. SUMMARY/CONCLUSIONS TC administration prevents the damage of the biliary tree induced by the adrenergic denervation of the liver. These novel findings open novel perspectives in the understanding of the potential of bile acids especially in post-transplant liver disease.
Collapse
Affiliation(s)
- Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Han F, Cheng M, Xia Q, Chen Y. Gene expression profile in immunologically injured liver cell of mice. ACTA ACUST UNITED AC 2007; 49:454-9. [PMID: 17172052 DOI: 10.1007/s11427-006-2011-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To study the gene expression profiles between immunologically injured liver cell and normal liver cell of mice and to screen on a large scale the differentially expressed genes associated with the formation of liver injury, the experimental mice were randomly divided into the normal group for controlling and the immunologically liver-injured group induced by BCG and LPS. The liver mRNA of the two groups were extracted respectively and reversely-transcribed to cDNA with the incorporation of different fluorescence (Cy3, Cy5) labeled dUTP as the hybridization probes. The mixed probes were hybridized to the cDNA microarray chips. The fluorescent signal results were acquired by scanner ScanArray 4000 and analyzed with software GenePix Pro 3.0. Among the 14112 target genes, 293 genes were found to be significantly differentially expressed, in which 188 genes were up-regulated and 105 genes were down-regulated. Based on the analysis of biological functions of those differentially expressed genes, it was indicated that the occurrence and development of mouse liver damage induced by BCG and LPS were highly correlated with the processes of immune reactions, cell synthesis, metabolism, apoptosis and transportation in liver cell, which might be quite important for elucidating the regulatory network of gene expression associated with the liver damage, also important for finally discovering the pathogenic mechanisms of immunological liver damage.
Collapse
Affiliation(s)
- Fengmei Han
- Hubei Provincial Key Laboratory of Traditional Chinese Medicine & Biotechnology, Faculty of Life Science, Hubei University, Wuhan 430062, China
| | | | | | | |
Collapse
|
42
|
Abstract
Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is urgently needed to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remain the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of alpha1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in-depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Houssam S. Hajj Houssein
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Ram I. Mahato
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
43
|
Abstract
The systemic pathophysiologic changes following thermal injuries affect multiple organs and body systems leading to clinical manifestations including shock, intestinal alterations, respiratory and renal failure, immunosuppression and others. Recent advances in the comprehension of mechanisms underlying systemic complications of thermal injuries have contributed to uncover part of the cellular and molecular basis that underlie such changes. Recently, programmed cell death (apoptosis) has been considered playing an important role in the development of such pathological events. Therefore, investigators utilizing animal models and clinical studies involving human primates have produced a large body of information suggesting that apoptosis is associated with most of the tissue damages triggered by severe thermal injuries. In order to draw the attention on the important role of apoptosis on systemic complications of thermal injuries, in this review we describe most of these studies, discuss possible cellular and molecular mechanisms and indicate ways to utilize them for the development of therapeutic strategies by which apoptosis may be prevented or counteracted.
Collapse
Affiliation(s)
- G Gravante
- Department of Surgery, University of Rome Tor Vergata, Via U Maddalena 40/a 00043, Ciampino, Rome, Italy.
| | | | | |
Collapse
|
44
|
Volkmann X, Cornberg M, Wedemeyer H, Lehner F, Manns MP, Schulze-Osthoff K, Bantel H. Caspase activation is required for antiviral treatment response in chronic hepatitis C virus infection. Hepatology 2006; 43:1311-6. [PMID: 16729308 DOI: 10.1002/hep.21186] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Only half of patients with chronic hepatitis C virus (HCV) infection and genotype-1 show a sustained antiviral response to the current antiviral therapy. The reason this treatment fails is unclear, and no reliable marker exists that predicts the treatment outcome. In the present study, we investigated the apoptotic activation of caspases in HCV patients undergoing antiviral therapy with regard to the treatment outcome. We determined caspase activation in sera from patients who were either responding or nonresponding to antiviral therapy by using two novel caspase assays, an immunological and a luminometric enzyme test. We found that compared with nonresponding individuals, responding patients showed significantly (P < .05) increased caspase activity, which was closely correlated with virus elimination (r = 0.81). The cutoff value of serum caspase activity was determined, which correctly predicted the treatment outcome with a sensitivity of 70% and a specificity of 82% (area under the curve 0.845; 95% CI). In conclusion, hepatic caspase activity might play a role in HCV clearance and could also predict the efficacy of antiviral therapy.
Collapse
Affiliation(s)
- Xandra Volkmann
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Schulze-Bergkamen H, Schuchmann M, Fleischer B, Galle PR. The role of apoptosis versus oncotic necrosis in liver injury: facts or faith? J Hepatol 2006; 44:984-93. [PMID: 16554101 DOI: 10.1016/j.jhep.2006.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Vekemans K, Braet F. Structural and functional aspects of the liver and liver sinusoidal cells in relation to colon carcinoma metastasis. World J Gastroenterol 2005; 11:5095-102. [PMID: 16127736 PMCID: PMC4320379 DOI: 10.3748/wjg.v11.i33.5095] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nowadays, liver metastasis remains difficult to cure. When tumor cells escape and arrive in the liver sinusoids, they encounter the local defense mechanism specific to the liver. The sinusoidal cells have been widely described in physiologic conditions and in relation to metastasis during the past 30 years. This paper provides an “overview” of how these cells function in health and in diseases such as liver metastasis.
Collapse
Affiliation(s)
- Katrien Vekemans
- Centre of Experimental Surgery and Anaesthesia, Abdominal Transplant Surgery Department, Catholic University of Leuven, Herestraat 49, Leuven 3000, Belgium.
| | | |
Collapse
|
47
|
Seidel N, Volkmann X, Länger F, Flemming P, Manns MP, Schulze-Osthoff K, Bantel H. The extent of liver steatosis in chronic hepatitis C virus infection is mirrored by caspase activity in serum. Hepatology 2005; 42:113-20. [PMID: 15920717 DOI: 10.1002/hep.20747] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatic steatosis is a frequent histological alteration in chronic hepatitis C virus (HCV) infection that sensitizes the liver to cell injury, inflammation, and fibrosis via unclear mechanisms. Although apoptosis has been implicated in various liver diseases, its importance in HCV-associated steatosis is largely unknown. In this study, we investigated the role of caspases, the key regulators of apoptosis, and employed two novel caspase assays, an immunological and a luminometric enzyme test, to detect hepatic caspase activation in sera from HCV patients with different grades of steatosis. Our data show that increased caspase activation can be found not only in liver biopsies, but also in sera from HCV patients with liver steatosis. Patients with steatosis exhibited significantly higher serum levels of caspase activity compared with normal healthy individuals. Moreover, the extent of steatosis closely correlated with serum caspase activity, whereas in particular in cases of low or moderate steatosis, no correlation was found with aminotransferase levels. In conclusion, apoptotic caspase activation is considerably elevated in HCV-associated steatosis. More importantly, our data imply that measurement of caspase activation might be a sensitive serum biomarker to detect liver steatosis in patients with chronic HCV infection and other liver diseases.
Collapse
Affiliation(s)
- Nicole Seidel
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Valverde AM, Fabregat I, Burks DJ, White MF, Benito M. IRS-2 mediates the antiapoptotic effect of insulin in neonatal hepatocytes. Hepatology 2004; 40:1285-94. [PMID: 15565601 DOI: 10.1002/hep.20485] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To assess the role of insulin action and inaction in the liver, immortalized hepatocyte cell lines have been generated from insulin receptor substrate (IRS)-2(-/-) and wild-type mice. Using this model, we have recently demonstrated that the lack of IRS-2 in neonatal hepatocytes resulted in insulin resistance. In the current study, we show that immortalized neonatal hepatocytes undergo apoptosis on serum withdrawal, with caspase-3 activation and DNA laddering occurring earlier in the absence of IRS-2. Insulin rescued wild-type hepatocytes from serum withdrawal-induced caspase-3 activation and DNA fragmentation in a dose-dependent manner, but it failed to rescue hepatocytes lacking IRS-2. In IRS-2(-/-) cells, insulin failed to phosphorylate Bad. Furthermore, in these cells, insulin was unable to translocate Foxo1 from the nucleus to the cytosol. Adenoviral infection of wild-type cells with constitutively active Foxo1 (ADA) induced caspase-8 and caspase-3 activities, proapoptotic gene expression, DNA laddering and apoptosis. Dominant negative Foxo1 regulated the whole pathway in an opposite manner. Prolonged insulin treatment (24 hours) increased expression of antiapoptotic genes (Bcl-xL), downregulated proapoptotic genes (Bim and nuclear Foxo1), and decreased caspase-3 activity in wild-type hepatocytes but not in IRS-2(-/-) cells. Infection of IRS-2(-/-) hepatocytes with adenovirus encoding IRS-2 reconstituted phosphatidylinositol 3-kinase (PI 3-kinase)/Akt/Foxo1 signaling, restored pro- and antiapoptotic gene expression, and decreased caspase-3 activity in response to insulin, thereby blocking apoptosis. In conclusion, IRS-2 signaling is specifically required through PIP3 generation to mediate the survival effects of insulin. Epidermal growth factor, via PIP3/Akt/Foxo1 phosphorylation, was able to rescue IRS-2(-/-) hepatocytes from serum withdrawal-induced apoptosis, modulating pro- and anti-apoptotic gene expression and downregulating caspase-3 activity.
Collapse
Affiliation(s)
- Angela M Valverde
- Instituto de Bioquímica/Departamento de Bioquímica y Biología Molecular II, Centro Mixto CSIC/UCM, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| | | | | | | | | |
Collapse
|
49
|
Bantel H, Lügering A, Heidemann J, Volkmann X, Poremba C, Strassburg CP, Manns MP, Schulze-Osthoff K. Detection of apoptotic caspase activation in sera from patients with chronic HCV infection is associated with fibrotic liver injury. Hepatology 2004; 40:1078-87. [PMID: 15486927 DOI: 10.1002/hep.20411] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic hepatitis C virus (HCV) infection is characterized by inflammatory liver damage and is associated with a high risk of development of cirrhosis and hepatocellular carcinoma. Although histological examination of liver biopsies is currently the gold standard for the detection of early liver damage, there is a strong need for better noninvasive methods. We recently demonstrated that the proapoptotic activation of caspases is considerably enhanced in histological sections from HCV-infected liver tissue, suggesting an important role of apoptosis in liver damage. Here, we investigated whether caspase activation is detectable also in sera from patients with chronic HCV infection. Using a novel enzyme-linked immunosorbent assay that selectively recognizes a proteolytic neoepitope of the caspase substrate cytokeratin-18, we demonstrate that caspase activity is markedly increased in the sera of HCV patients. Interestingly, while 27% of patients with chronic HCV infection showed normal aminotransferase levels despite inflammatory and fibrotic liver damage, more than 50% of those patients exhibited already elevated serum caspase activity. Moreover, 30% of patients with normal aminotransferase but elevated caspase activity revealed higher stages of fibrosis. In conclusion, compared with conventional surrogate markers such as aminotransferases, detection of caspase activity in serum might be a more sensitive method of detecting early liver injury. Thus, measurement of caspase activity might provide a novel diagnostic tool, especially for patients with normal aminotransferases but otherwise undiagnosed histologically active hepatitis and progressive fibrosis.
Collapse
Affiliation(s)
- Heike Bantel
- Institute of Molecular Medicine, University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Caronia S, McGarvey MJ, Goldin RD, Foster GR. Negative correlation between intrahepatic expression of hepatitis C antigens and apoptosis despite high-level expression of Fas and HLA antigens. J Viral Hepat 2004; 11:511-8. [PMID: 15500551 DOI: 10.1111/j.1365-2893.2004.00537.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The role of virus-related apoptosis in hepatic injury in chronic HCV is unclear. It is unknown whether HCV induces apoptosis directly or whether cellular injury is immunologically mediated. We studied the relationship between infected hepatocytes, apoptosis and necroinflammation. We established a Fluorescence Activated Cell Sorter (FACS) based intracellular staining technique for the HCV NS3 protein and examined intrahepatic viraemia, disease activity and apoptosis. We also stained infected cells for expression of human leucocyte antigen (HLA) class I and Fas antigens. We examined 34 liver biopsies (24 from patients with HCV) and found marked variation in the proportion of infected cells (2.5-42%). The number of infected cells correlated with serum viraemia but not histology. The number of infected cells was inversely related to the number of apoptotic cells (P < 0.001); infected cells expressed both HLA class I (14 cases) and Fas antigens (12 cases). The number of hepatocytes infected with hepatitis C is variable and does not influence histological activity. In infected patients, the majority of HCV-positive hepatocytes express target molecules for activated lymphocytes (Fas and HLA class I antigens) but they do not undergo apoptosis, suggesting that hepatitis C may inhibit apoptosis by modulating intracellular pro-apoptotic signals.
Collapse
Affiliation(s)
- S Caronia
- Department of Medicine, Imperial College School of Medicine at St Mary's Hospital, London, UK
| | | | | | | |
Collapse
|