1
|
Jiang J, Liu Y, Yang H, Ma Z, Liu W, Zhao M, Peng X, Qin X, Xia Y. Dietary fiber intake, genetic predisposition of gut microbiota, and the risk of metabolic dysfunction-associated steatotic liver disease. Food Res Int 2025; 211:116497. [PMID: 40356189 DOI: 10.1016/j.foodres.2025.116497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025]
Abstract
This study aimed to explore the association between dietary fiber intake and the risk of metabolic dysfunction-associated steatotic liver disease (MASLD), as well as liver fat content, while considering genetic predispositions of MASLD, gut microbial abundance, and butyrate levels. This study analyzed data from 190,276 participants in the UK Biobank. Dietary fiber intake was assessed using 24-h dietary recall. MASLD cases were diagnosed through hospital admission records and death registries, and liver fat content was measured via magnetic resonance imaging. The genetic predispositions of MASLD, gut microbial abundance, and butyrate levels were evaluated using single nucleotide polymorphisms. Cox proportional hazards models were used to calculate hazard ratios (HRs) and 95 % confidence intervals (CIs). Over a median follow-up of 10.49 years, 1423 MASLD cases were recorded. Elevated dietary fiber intake was associated with a reduced risk of MASLD (HR: 0.72; 95 % CI: 0.58, 0.90) and a lower level of liver fat content (β: -0.97; 95 % CI: -1.21, -0.73) (all P for trend <0.05). Restricted cubic spline analyses further confirmed the linear inverse associations between fiber intake and the risk of MASLD. Notably, the negative associations between dietary fiber intake and both MASLD and liver fat content were consistent across different genetic predispositions of gut microbial abundance and butyrate levels. Moreover, the inverse association between dietary fiber intake and liver fat was strengthened by high genetic susceptibility of MASLD and elevated body mass index (both P for interaction <0.05). Overall, increased dietary fiber consumption was associated with a lower MASLD risk and decreased liver fat content regardless of genetic predispositions of gut microbial abundance and butyrate levels.
Collapse
Affiliation(s)
- Jinguo Jiang
- School of Public Health, Shenyang Medical College, Shenyang, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China.
| | - Yang Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38# Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Honghao Yang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Liaoning Province, Shenyang, China.
| | - Zheng Ma
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Liaoning Province, Shenyang, China.
| | - Wenqi Liu
- School of Public Health, Shenyang Medical College, Shenyang, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China.
| | - Maoxiang Zhao
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100011, China.
| | - Xinyi Peng
- Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| | - Xueying Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38# Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, China.
| | - Yang Xia
- School of Public Health, Shenyang Medical College, Shenyang, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Ramírez-Mejía MM, Martínez-Sánchez FD, Córdova-Gallardo J, Méndez-Sánchez N. Evaluating the RESET care program: Advancing towards scalable and effective healthcare solutions for metabolic dysfunction-associated liver disease. World J Hepatol 2025; 17:105254. [PMID: 40308819 PMCID: PMC12038424 DOI: 10.4254/wjh.v17.i4.105254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/26/2025] [Accepted: 03/08/2025] [Indexed: 04/25/2025] Open
Abstract
In this article, we discuss the recently published article by Soni et al. This study explores the effectiveness of a comprehensive digital health program, RESET care, which integrates personalized dietary plans, structured exercise, and cognitive behavioral therapy delivered through a mobile app equipped with Internet of Things devices such as body composition analyzers and smartwatches. Metabolic dysfunction-associated liver disease (MASLD), a global health burden affecting approximately 25% of the population, demands sustainable lifestyle modifications as its primary management strategy. The study reports that 100% of participants in the comprehensive intervention group (diet + exercise + cognitive behavioral therapy) achieved a weight reduction ≥ 7% (6.99 ± 2.98 kg, 7.00% ± 3.39%; P = 0.002), a clinically significant threshold for MASLD improvement. In addition, participants showed a mean weight reduction of 6.99 kg (101.10 ± 17.85 vs 94.11 ± 17.38, P < 0.001) and a body mass index reduction of 2.18 kg/m² (32.90 ± 3.02 vs 30.72 ± 3.41, P < 0.001). These results underscore the potential of digital health platforms to provide scalable, evidence-based solutions for the treatment of MASLD. While these results highlight the potential of digital platforms in the scalable and personalized management of MASLD, the small study sample size and short duration of follow-up limit the generalizability of the results. Future large-scale, long-term trials are needed to confirm sustained benefits, cost-effectiveness, and broader applicability. This letter contextualizes the study within the evolving landscape of MASLD management and emphasizes the clinical implications of integrating digital technologies into standard care.
Collapse
Affiliation(s)
- Mariana M Ramírez-Mejía
- Plan of Combined Studies in Medicine, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico
- Liver Research Unit, Medica Sur Clinic and Foundation, Mexico City 14050, Mexico
| | | | | | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic and Foundation, Mexico City 14050, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico.
| |
Collapse
|
3
|
Baumann A, Freutsmiedl V, Jelleschitz J, Staltner R, Brandt A, Schachner D, Dirsch VM, Bergheim I. Honokiol, a Neolignan from Magnolia officinalis, Attenuated Fructose-Induced Hepatic Fat Accumulation by Improving Intestinal Barrier Function in Mice. J Nutr 2025; 155:1173-1182. [PMID: 39987978 PMCID: PMC12107254 DOI: 10.1016/j.tjnut.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Fructose (Fru) consumption has been suggested to contribute to metabolic diseases including metabolic dysfunction-associated steatotic liver disease (MASLD), at least in part, by disturbing intestinal barrier function and intestinal nitric oxide (NO) homeostasis. Honokiol (Hon), a neolignan found in Magnolia officinalis, has been suggested to affect intestinal integrity and barrier function. OBJECTIVES We assessed whether Hon affects Fru-induced small intestinal permeability in settings of early MASLD. METHODS Female 8-10-wk-old C57BL/6J mice (n = 7/group) received either a 30% Fru solution + vehicle or plain drinking water + vehicle ± Hon (10 mg/kg bw/d) for 4 wk. Liver damage [e.g. nonalcoholic fatty liver disease activity score (NAS), number of neutrophils, interleukin-6 (IL-6) protein concentration], markers of intestinal permeability (bacterial endotoxin, tight junction proteins), and NO homeostasis in the small intestine were determined in vivo as well as ex vivo in an everted sac model and in Caco-2 cells. One-way and 2-way analysis of variance were performed, respectively. RESULTS Hon diminished the development of MASLD, which was associated with a significant lower NAS (-38%), number of neutrophils (-48%), and IL-6 protein concentrations (-38%) in livers of Fru-fed mice. Hon also attenuated Fru-induced alterations of markers of intestinal barrier function with Fru+Hon-fed mice showing lower bacterial toxin levels in portal plasma (-29%, P = 0.075), higher tight junction protein concentrations (+2.4-fold, P < 0.05), and lower NOx concentration (-44%, P < 0.05) as well as NO synthase activity (-35%) in the small intestine compared with Fru+vehicle-fed mice. Moreover, the decrease in AMP-activated protein kinase phosphorylation found in the small intestine of Fru-fed mice was significantly attenuated (+5.3-fold) by the concomitant treatment with Hon in Fru-fed mice. In support of the in vivo findings, Hon significantly attenuated Fru-induced intestinal permeability ex vivo and in Caco-2 cells. CONCLUSIONS Our data suggest that Hon diminished the development of Fru-induced early MASLD by alleviating impairments in intestinal barrier function.
Collapse
Affiliation(s)
- Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Verena Freutsmiedl
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Julia Jelleschitz
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Daniel Schachner
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Perumal SK, Arumugam MK, Osna NA, Rasineni K, Kharbanda KK. Betaine regulates the gut-liver axis: a therapeutic approach for chronic liver diseases. Front Nutr 2025; 12:1478542. [PMID: 40196019 PMCID: PMC11973089 DOI: 10.3389/fnut.2025.1478542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Chronic liver disease is defined by persistent harm to the liver that might result in decreased liver function. The two prevalent chronic liver diseases are alcohol-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD). There is ample evidence that the pathogenesis of these two chronic liver diseases is closely linked to gastrointestinal dysfunctions that alters the gut-liver crosstalk. These alterations are mediated through the imbalances in the gut microbiota composition/function that combined with disruption in the gut barrier integrity allows for harmful gut microbes and their toxins to enter the portal circulation and reach the liver to elicit an inflammatory response. This leads to further recruitment of systemic inflammatory cells, such as neutrophils, T-cells, and monocytes into the liver, which perpetuate additional inflammation and the development of progressive liver damage. Many therapeutic modalities, currently used to prevent, attenuate, or treat chronic liver diseases are aimed at modulating gut dysbiosis and improving intestinal barrier function. Betaine is a choline-derived metabolite and a methyl group donor with antioxidant, anti-inflammatory and osmoprotectant properties. Studies have shown that low betaine levels are associated with higher levels of organ damage. There have been several publications demonstrating the role of betaine supplementation in preventing the development of ALD and MASLD. This review explores the protective effects of betaine through its role as a methyl donor and its capacity to regulate the protective gut microbiota and maintain intestinal barrier integrity to prevent the development of these chronic liver diseases. Further studies are needed to enhance our understanding of its therapeutic potential that could pave the way for targeted interventions in the management of not only chronic liver diseases, but other inflammatory bowel diseases or systemic inflammatory conditions.
Collapse
Affiliation(s)
- Sathish Kumar Perumal
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Madan Kumar Arumugam
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Natalia A. Osna
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Karuna Rasineni
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kusum K. Kharbanda
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
5
|
Jamil F, Mir U, Niazi AG, Kifayat S, Kifayat S, Shafiq S, Wali Z, Khan MAJ, Wali B, Kobra KT, Khan MS. A multi-level approach to reduce exploding type 2 diabetes in Pakistan. Front Public Health 2025; 13:1514090. [PMID: 40190761 PMCID: PMC11968735 DOI: 10.3389/fpubh.2025.1514090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Pakistan has the third-highest rate of type 2 diabetes globally, following China and India, making this a significant public health crisis. Despite the severity of the issue, efforts from health and policy practitioners to address it remain limited. With millions already diagnosed as pre-diabetic, the rising incidence of diabetes is rapidly becoming a public health emergency that demands immediate attention. This policy brief provides an accessible overview of diabetes, focusing on its types, mechanisms, and preventive measures. It also identifies key contributing factors, such as dietary habits, obesity, physical inactivity, and the influence of modern dietary trends, while proposing strategies for individuals, communities, and policymakers to combat this growing epidemic in Pakistan. The brief emphasizes the need for a multi-level approach that includes public awareness, education, behavioral and dietary changes, and policy interventions to reverse the trend. Strategies discussed include promoting healthy eating, increasing physical activity, managing obesity, and enhancing access to affordable, healthy food. Additionally, the brief highlights the importance of community and government support, such as public health campaigns, infrastructure improvements, and legislative efforts. By adopting this comprehensive approach, Pakistan can take meaningful steps to address the diabetes epidemic and improve public health outcomes.
Collapse
Affiliation(s)
- Fazal Jamil
- St. Elizabeth Youngstown Hospital, Youngstown, OH, United States
| | - Umaima Mir
- Lady Reading Hospital, Peshawar, Pakistan
| | - Anum G. Niazi
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Shandana Kifayat
- Khyber Teaching Hospital, Khyber Medical University, Peshawar, Pakistan
| | | | | | | | - Muhammad Ali Jan Khan
- College of Physical Medicine and Rehabilitation Paraplegic Center, Khyber Medical University, Peshawar, Pakistan
| | | | | | | |
Collapse
|
6
|
Cai C, Zhang Z, Alberti G, Pereira A, De Barbieri F, García C, Wine E, Gana JC. Early childhood adiposity, lifestyle and gut microbiome are linked to steatotic liver disease development in adolescents. Int J Obes (Lond) 2025:10.1038/s41366-025-01737-1. [PMID: 40075127 DOI: 10.1038/s41366-025-01737-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 01/14/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND/OBJECTIVES To examine the relationship between early childhood adiposity, adolescent lifestyles, gut microbiota and steatotic liver disease (SLD) development in adolescents using data from a prospective, longitudinal cohort study. METHODS We included 69 adolescents (14-17 years old) with SLD and 69 adolescents without SLD, matched for BMI-z scores, sex, and age, from the 13-year longitudinal cohort the "Growth and Obesity Cohort Study". Anthropometric data between the ages of 4 and 17 and lifestyle parameters (including diet and physical activity) at 14-17 years old were evaluated. Fecal samples were collected and microbiome composition and function were assessed using 16S ribosomal RNA amplicon sequencing. RESULTS Principal component analysis demonstrated dietary intake factors and childhood adiposity factors expanding the distribution variation between case and control groups, respectively. Lower odds of developing SLD during adolescence was associated with higher levels of daily fiber intake during adolescence (adjusted odds ratio = 0.91) and lower childhood adiposity (triceps skinfold at 5 years of age, suprailiac skinfold at 8 and 11 years of age, and waist-to-hip ratio at age 5-9 years). SLD was associated with a lower abundance of specific microbial species, such as Bacteroides vulgatus, which was higher in the control group compared to the case group (control/case abundance ratio = 18.71). B. vulgatus abundance also positively correlated with dietary fiber intake and inversely correlated with childhood adiposity. CONCLUSIONS Adiposity in early childhood and a low dietary fiber intake may contribute to the pathogenesis of SLD during adolescence, possibly through alterations to the intestinal microbiome; these findings could inform early disease markers and targets for intervention.
Collapse
Affiliation(s)
- Chenxi Cai
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Zhengxiao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Gigliola Alberti
- Department of Pediatric Gastroenterology and Nutrition, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana Pereira
- Instituto de Nutrición y Tecnología de los Alimentos, INTA, Universidad de Chile, Santiago, Chile
| | - Florencia De Barbieri
- Radiology Department. School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristián García
- Radiology Department. School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eytan Wine
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.
| | - Juan Cristóbal Gana
- Department of Pediatric Gastroenterology and Nutrition, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
7
|
Huang X, Zhang X, Hao X, Wang T, Wu P, Shen L, Yang Y, Wan W, Zhang K. Association of dietary quality and mortality in the non-alcoholic fatty liver disease and advanced fibrosis populations: NHANES 2005-2018. Front Nutr 2025; 12:1507342. [PMID: 39917744 PMCID: PMC11798782 DOI: 10.3389/fnut.2025.1507342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) has emerged as a significant global health concern, with advanced fibrosis increasing mortality risks. Despite the abundance of dietary guidelines for managing NAFLD, the precise impact of diet quality on mortality among individuals with advanced fibrosis remains elusive. This study aims to explore the influence of five dietary quality indexes on mortality among NAFLD patients and advanced fibrosis patients. Methods This study utilized data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2005 to 2018 to assess dietary quality based on the Alternate Mediterranean Diet (aMED), Healthy Eating Index-2020 (HEI-2020), Dietary Approach to Stop Hypertension (DASH), Alternate Healthy Eating Index (AHEI), and Dietary Inflammatory Index (DII). Weighted Cox proportional hazard regression models along with restricted cubic splines and subgroup analyses were employed in this study. Results The analysis encompassed 3,634 NAFLD patients. After a median follow-up of 89 months, it was found that higher scores on the aMED (HR 0.814, 95% CI 0.681-0.972), HEI-2020 (HR 0.984, 95% CI 0.972-0.997), DASH (HR 0.930, 95% CI 0.883-0.979), and AHEI (HR 0.980, 95% CI 0.966-0.995) were associated with lower mortality risks, while DII scores (HR 1.280, 95% CI 1.098-1.493) indicated an increased risk of mortality. Additionally, a nonlinear relationship was identified solely between AHEI scores and all-cause mortality in NAFLD patients. Notably, among patients with advanced fibrosis, HEI-2020 as a categorical variable (T3: HR 0.519, 95% CI 0.280-0.964), DASH as a continuous variable (continuous: HR 0.921, 95% CI 0.849-0.999), AHEI (continuous: HR 0.971, 95% CI 0.945-0.997; T2: HR 0.545, 95% CI 0.310-0.960; T3: HR 0.444, 95% CI 0.245-0.804), and DII (continuous: HR 1.311, 95% CI 1.121-1.534; T3: HR 2.772, 95% CI 1.477-5.202) exhibited significant associations with all-cause mortality. Subgroup analyses revealed an interaction between AHEI scores and sex among NAFLD patients, where higher AHEI scores correlated with lower all-cause mortality in females, but no such association was observed in males. For other dietary quality, subgroup analyses indicated that their relationships with mortality were robust. Conclusion Our study suggests that a high-quality diet could potentially mitigate mortality risk in both NAFLD and advanced fibrosis patients.
Collapse
Affiliation(s)
- Xingyong Huang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoyue Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuanyu Hao
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wenyu Wan
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, National Health Commission of the People's Republic of China, The First Hospital of China Medical University, Shenyang, China
- National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, Shenyang, China
| | - Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Rajewski P, Cieściński J, Rajewski P, Suwała S, Rajewska A, Potasz M. Dietary Interventions and Physical Activity as Crucial Factors in the Prevention and Treatment of Metabolic Dysfunction-Associated Steatotic Liver Disease. Biomedicines 2025; 13:217. [PMID: 39857800 PMCID: PMC11760440 DOI: 10.3390/biomedicines13010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide and affects nearly 30% of the adult population and 10% of the pediatric population. It is estimated that this number will double by 2030. MASLD is one of the leading causes of hepatocellular carcinoma, cirrhosis, and liver transplantation, as well as a significant risk factor for cardiovascular disease and mortality. Due to the ever-increasing number of patients, the long-term asymptomatic course of the disease, serious complications, and lack of preventive programs, as well as insufficient awareness of the disease among patients and doctors themselves, MASLD is a growing interdisciplinary problem and a real challenge for modern medicine. The main cause of MASLD is an inappropriate lifestyle-inadequate nutrition and insufficient physical activity, which lead to various components of metabolic syndrome. Lifestyle changes-appropriate diet, weight reduction, and systematic physical activity-are also the basis for the prevention and treatment of MASLD. Hence, in recent years, so much importance has been attached to lifestyle medicine, to non-pharmacological treatment as prevention of lifestyle diseases. The narrative review presents possible therapeutic options for non-pharmacological management in the prevention and treatment of MASLD. The best documented and available diets used in MASLD were discussed, focusing on the benefits and drawbacks of the Mediterranean, high-protein, ketogenic, and intermittent fasting diets. In addition, the most recent recommendations regarding physical activity are summarized.
Collapse
Affiliation(s)
- Paweł Rajewski
- Department of Internal and Infectious Diseases, Provincial Infectious Disease Hospital, 85-030 Bydgoszcz, Poland
- Faculty of Health Sciences, University of Health Sciences in Bydgoszcz, 85-067 Bydgoszcz, Poland
| | - Jakub Cieściński
- Department of Radiology, Provincial Infectious Disease Hospital, 85-030 Bydgoszcz, Poland;
| | - Piotr Rajewski
- Department of Neurology, Collegium Medicum—Faculty of Medicine, Nicolaus Copernicus University in Toruń, 85-094 Bygoszcz, Poland;
| | - Szymon Suwała
- Department of Endocrinology and Diabetology, Collegium Medicum—Faculty of Medicine, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland;
| | - Alicja Rajewska
- University Clinical Hospital, 60-355 Poznań, Poland; (A.R.); (M.P.)
| | - Maciej Potasz
- University Clinical Hospital, 60-355 Poznań, Poland; (A.R.); (M.P.)
| |
Collapse
|
9
|
Srnic N, Westcott F, Caney E, Hodson L. Dietary fat quantity and composition influence hepatic lipid metabolism and metabolic disease risk in humans. Dis Model Mech 2025; 18:dmm050878. [PMID: 39878508 PMCID: PMC11810042 DOI: 10.1242/dmm.050878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The excessive accumulation of intrahepatic triglyceride (IHTG) in the liver is a risk factor for metabolic diseases, including type 2 diabetes and cardiovascular disease. IHTG can excessively accumulate owing to imbalances in the delivery, synthesis, storage and disposal of fat to, in and from the liver. Although obesity is strongly associated with IHTG accumulation, emerging evidence suggests that the composition of dietary fat, in addition to its quantity, plays a role in mediating IHTG accumulation. Evidence from human cross-sectional and interventional studies indicates that diets enriched with saturated fat compared to other fat types and carbohydrates produce divergent effects on IHTG content. However, the mechanistic reasons for these observations remain unknown. Given the challenges of investigating such mechanisms in humans, cellular models are needed that can recapitulate human hepatocyte fatty acid metabolism. Here, we review what is known from human studies about how dietary fat, its quantity and composition contribute to IHTG accumulation. We also explore the effects of fatty acid composition on hepatocellular fat metabolism from data generated in cellular models to help explain the divergences observed in in vivo studies.
Collapse
Affiliation(s)
- Nikola Srnic
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Felix Westcott
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Eleanor Caney
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK
| |
Collapse
|
10
|
Hamamah S, Iatcu OC, Covasa M. Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients 2024; 17:143. [PMID: 39796579 PMCID: PMC11722922 DOI: 10.3390/nu17010143] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition. The development and progression of MASLD are closely associated with taxonomic shifts in gut microbial communities, a relationship well-documented in the literature. Given the importance of diet as a primary treatment for MASLD, it is important to understand how gut microbiota and their metabolic byproducts mediate favorable outcomes induced by healthy dietary patterns. Conversely, microbiota changes conferred by unhealthy dietary patterns such as the Western diet may induce dysbiosis and influence steatotic liver disease through promoting hepatic inflammation, up-regulating lipogenesis, dysregulating bile acid metabolism, increasing insulin resistance, and causing oxidative damage in hepatocytes. Although emerging evidence has identified links between diet, microbiota, and development of MASLD, significant gaps remain in understanding specific microbial roles, metabolite pathways, host interactions, and causal relationships. Therefore, this review aims to provide mechanistic insights into the role of microbiota-mediated processes through the analysis of both healthy and unhealthy dietary patterns and their contribution to MASLD pathophysiology. By better elucidating the interplay between dietary nutrients, microbiota-mediated processes, and the onset and progression of steatotic liver disease, this work aims to identify new opportunities for targeted dietary interventions to treat MASLD efficiently.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| |
Collapse
|
11
|
Urushima H, Matsubara T, Qiongya G, Daikoku A, Takayama M, Kadono C, Nakai H, Ikeya Y, Yuasa H, Ikeda K. AHCC inhibited hepatic stellate cells activation by regulation of cytoglobin induction via TLR2-SAPK/JNK pathway and collagen production via TLR4-NF-κβ pathway. Am J Physiol Gastrointest Liver Physiol 2024; 327:G741-G753. [PMID: 39316687 PMCID: PMC11684891 DOI: 10.1152/ajpgi.00134.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Cirrhosis, which represents the end stage of liver fibrosis, remains a life-threatening condition without effective treatment. Therefore, prevention of the progression of liver fibrosis through lifestyle habits such as diet and exercise is crucial. The functional food AHCC, a standardized extract of cultured Lentinula edodes mycelia produced by Amino Up Co., Ltd. (Sapporo, Japan)] has been reported to be effective in improving the pathophysiology of various liver diseases. In this study, the aim was to analyze the influence of AHCC on hepatic stellate cells, which are responsible for liver fibrosis. Eight-week-old male C57BL6/j mice were induced with liver fibrosis by intraperitoneal injection of carbon tetrachloride. Simultaneously, they were orally administered 3% AHCC to investigate its impact on the progression of liver fibrosis. Using the human hepatic stellate cell (HHSteC) line, we analyzed the influence of AHCC on the expression of molecules related to hepatic stellate cell activation. The administration of AHCC resulted in reduced expression of collagen1a, α smooth muscle actin (αSMA), and heat shock protein 47 in the liver. Furthermore, the expression of cytoglobin, a marker for quiescent hepatic stellate cells, was enhanced. In vitro study, it was confirmed that AHCC inhibited αSMA by inducing cytoglobin via upregulating the stress-activated protein kinase/Jun NH2-terminal kinase (SAPK/JNK) pathway through Toll-like receptor (TLR) 2. In addition, AHCC suppressed collagen1a production by hepatic stellate cells through TLR4-NF-κβ pathway. AHCC was suggested to suppress hepatic fibrosis by inhibition of hepatic stellate cells activation. Daily intake of AHCC from mild fibrotic stages may have the potential to prevent the progression of liver fibrosis.NEW & NOTEWORTHY AHCC, a standardized extract of cultured Lentinula edodes mycelia, suppresses liver fibrosis progression by induction of cytoglobin via the Toll-like receptor 2 (TLR2)-stress-activated protein kinase/Jun NH2-terminal kinase (SAPK/JNK) pathway and the inhibition of collagen production via the TLR4-NFκβ pathway in hepatic stellate cells. Daily oral administration of AHCC from the stage of MASLD may have the potential to prevent disease progression to MASH with fibrosis.
Collapse
Affiliation(s)
- Hayato Urushima
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Laboratory Animal Facility, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Gu Qiongya
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Atsuko Daikoku
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Misako Takayama
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Chiho Kadono
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hikaru Nakai
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yukinobu Ikeya
- Faculty of Pharmacy, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Hideto Yuasa
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kazuo Ikeda
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
12
|
Hermanson JB, Tolba SA, Chrisler EA, Leone VA. Gut microbes, diet, and genetics as drivers of metabolic liver disease: a narrative review outlining implications for precision medicine. J Nutr Biochem 2024; 133:109704. [PMID: 39029595 PMCID: PMC11480923 DOI: 10.1016/j.jnutbio.2024.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing in prevalence, impacting over a third of the global population. The advanced form of MASLD, Metabolic dysfunction-associated steatohepatitis (MASH), is on track to become the number one indication for liver transplant. FDA-approved pharmacological agents are limited for MASH, despite over 400 ongoing clinical trials, with only a single drug (resmetirom) currently on the market. This is likely due to the heterogeneous nature of disease pathophysiology, which involves interactions between highly individualized genetic and environmental factors. To apply precision medicine approaches that overcome interpersonal variability, in-depth insights into interactions between genetics, nutrition, and the gut microbiome are needed, given that each have emerged as dynamic contributors to MASLD and MASH pathogenesis. Here, we discuss the associations and molecular underpinnings of several of these factors individually and outline their interactions in the context of both patient-based studies and preclinical animal model systems. Finally, we highlight gaps in knowledge that will require further investigation to aid in successfully implementing precision medicine to prevent and alleviate MASLD and MASH.
Collapse
Affiliation(s)
- Jake B Hermanson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Samar A Tolba
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Evan A Chrisler
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vanessa A Leone
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
13
|
Tillander V, Holmer M, Hagström H, Petersson S, Brismar TB, Stål P, Lindqvist C. Associations between dietary fatty acid and plasma fatty acid composition in non-alcoholic fatty liver disease: secondary analysis from a randomised trial with a hypoenergetic low-carbohydrate high-fat and intermittent fasting diet. Br J Nutr 2024; 132:1-13. [PMID: 39290088 PMCID: PMC11499086 DOI: 10.1017/s0007114524001673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 09/19/2024]
Abstract
Dietary fatty acids (FA) affect metabolic risk factors. The aim of this study was to explore if changes in dietary fat intake during energy restriction were associated with plasma FA composition. The study also investigated if these changes were associated with changes in liver fat, liver stiffness and plasma lipids among persons with non-alcoholic fatty liver disease. Dietary and plasma FA were investigated in patients with non-alcoholic fatty liver disease (n 48) previously enrolled in a 12-week-long open-label randomised controlled trial comparing two energy-restricted diets: a low-carbohydrate high-fat diet and intermittent fasting diet (5:2), to a control group. Self-reported 3 d food diaries were used for FA intake, and plasma FA composition was analysed using GC. Liver fat content and stiffness were measured by MRI and transient elastography. Changes in intake of total FA (r 0·41; P = 0·005), SFA (r 0·38; P = 0·011) and MUFA (r 0·42; P = 0·004) were associated with changes in liver stiffness. Changes in plasma SFA (r 0·32; P = 0·032) and C16 : 1n-7 (r 0·33; P = 0·028) were positively associated with changes in liver fat, while total n-6 PUFA (r -0·33; P = 0·028) and C20 : 4n-6 (r -0·42; P = 0·005) were inversely associated. Changes in dietary SFA, MUFA, cholesterol and C20:4 were positively associated with plasma total cholesterol and LDL-cholesterol. Modifying the composition of dietary fats during dietary interventions causes changes in the plasma FA profile in patients with non-alcoholic fatty liver disease. These changes are associated with changes in liver fat, stiffness, plasma cholesterol and TAG. Replacing SFA with PUFA may improve metabolic parameters in non-alcoholic fatty liver disease patients during weight loss treatment.
Collapse
Affiliation(s)
- Veronika Tillander
- Division of Clinical Chemistry, Cardio Metabolic Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Holmer
- Unit of Gastroenterology and Hepatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
| | - Hannes Hagström
- Unit of Gastroenterology and Hepatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
| | - Sven Petersson
- Department of Clinical Science, Intervention and Technology, Division of Medical Imaging and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Torkel B. Brismar
- Department of Clinical Science, Intervention and Technology, Division of Medical Imaging and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Karolinska University Hospital in Huddinge, Stockholm sE-14186, Sweden
| | - Per Stål
- Unit of Gastroenterology and Hepatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
| | - Catarina Lindqvist
- Unit of Gastroenterology and Hepatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Clinical Nutrition, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Ruiz-Tovar J, Llavero C, Rodriguez-Ortega M, De Castro NM, Martín-Crespo MC, Escobar-Aguilar G, Martin-Nieto A, Gonzalez G. Improvement of Metabolic-Associated Fatty Liver Disease by Magnetic Resonance Spectroscopy in Morbidly Obese Women Undergoing Roux-en-Y Gastric Bypass, following a Postoperative Mediterranean-like Diet. Nutrients 2024; 16:2280. [PMID: 39064723 PMCID: PMC11279620 DOI: 10.3390/nu16142280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Bariatric surgery has demonstrated the capacity to improve metabolic-associated fatty liver disease (MAFLD) in patients with morbid obesity. In addition, the Mediterranean diet contains anti-inflammatory, anti-oxidative, and anti-fibrotic components, promoting a beneficial effect on MAFLD. This study aimed to assess the improvement of MAFLD, specifically liver steatosis, in morbidly obese patients undergoing Roux-en-Y gastric bypass (RYGB) and following a hypocaloric Mediterranean-like diet. (2) Methods: A prospective observational pilot study of 20 patients undergoing RYGB was conducted. The participants underwent a magnetic resonance spectroscopy study 2 weeks before the surgical act and one year postoperatively to assess the percentage of lipid content (PLC). The adherence to the Mediterranean diet was determined by the KIDMED test 1 year after surgery. (3) Results: Mean baseline PLC was 14.2 ± 9.4%, and one year after surgery, it decreased to 4.0 ± 1.8% (p < 0.001). A total of 12 patients (60%) were within the range of moderate adherence to the Mediterranean diet, whereas 8 patients (40%) showed a high adherence. The patients with high adherence to the Mediterranean diet presented significantly lower values of postoperative PLC. (4) Conclusions: Liver steatosis significantly reduces after RYGB. This reduction is further improved when associated with a high adherence to a Mediterranean diet.
Collapse
Affiliation(s)
- Jaime Ruiz-Tovar
- San Juan de Dios Foundation, 28036 Madrid, Spain; (M.R.-O.); (N.M.D.C.); (M.C.M.-C.); (G.E.-A.); (A.M.-N.)
- Health Sciences Department, San Juan de Dios School of Nursing and Physical Therapy, Comillas Pontifical University, 28036 Madrid, Spain
| | | | - Maria Rodriguez-Ortega
- San Juan de Dios Foundation, 28036 Madrid, Spain; (M.R.-O.); (N.M.D.C.); (M.C.M.-C.); (G.E.-A.); (A.M.-N.)
- Health Sciences Department, San Juan de Dios School of Nursing and Physical Therapy, Comillas Pontifical University, 28036 Madrid, Spain
| | - Nuria M. De Castro
- San Juan de Dios Foundation, 28036 Madrid, Spain; (M.R.-O.); (N.M.D.C.); (M.C.M.-C.); (G.E.-A.); (A.M.-N.)
- Health Sciences Department, San Juan de Dios School of Nursing and Physical Therapy, Comillas Pontifical University, 28036 Madrid, Spain
| | - Maria Cristina Martín-Crespo
- San Juan de Dios Foundation, 28036 Madrid, Spain; (M.R.-O.); (N.M.D.C.); (M.C.M.-C.); (G.E.-A.); (A.M.-N.)
- Health Sciences Department, San Juan de Dios School of Nursing and Physical Therapy, Comillas Pontifical University, 28036 Madrid, Spain
| | - Gema Escobar-Aguilar
- San Juan de Dios Foundation, 28036 Madrid, Spain; (M.R.-O.); (N.M.D.C.); (M.C.M.-C.); (G.E.-A.); (A.M.-N.)
- Health Sciences Department, San Juan de Dios School of Nursing and Physical Therapy, Comillas Pontifical University, 28036 Madrid, Spain
| | - Ana Martin-Nieto
- San Juan de Dios Foundation, 28036 Madrid, Spain; (M.R.-O.); (N.M.D.C.); (M.C.M.-C.); (G.E.-A.); (A.M.-N.)
- Health Sciences Department, San Juan de Dios School of Nursing and Physical Therapy, Comillas Pontifical University, 28036 Madrid, Spain
| | | |
Collapse
|
15
|
Shakhshir M, Zyoud SH. Mapping global research trends: Nutrition associations with nonalcoholic fatty liver disease - a Scopus bibliometric analysis. World J Gastroenterol 2024; 30:3106-3119. [PMID: 38983957 PMCID: PMC11230064 DOI: 10.3748/wjg.v30.i24.3106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Several bibliometric analyses have been carried out to identify research hotspots and trends in nonalcoholic fatty liver disease (NAFLD) research. Nonetheless, there are still significant knowledge gaps that must be filled to advance our understanding of and ability to treat NAFLD. AIM To evaluate, through bibliometric and visual analysis, the current status of related research, related research frontiers, and the developmental trends in the field of diet and NAFLD. METHODS We retrieved publications about diet and NAFLD published between 1987 and 2022 from Scopus. Next, we used VOSviewer 1.6.20 to perform bibliometric analysis and visualization. RESULTS We found a total of 1905 studies, including 1637 (85.93%) original articles and 195 (10.24%) reviews, focused on the examination of NAFLD and its correlation with diet that were published between 1987 and 2022. Among the remaining five types of documents, 38 were letters, notes, editorials, meeting minutes, or brief surveys, representing 1.99% of the total documents. The countries with the most publications on this topic were China (n = 539; 28.29%), followed by the United States (n = 379; 19.90%), Japan (n = 133; 6.98%), and South Korea (n = 127; 6.6%). According to the citation analysis, the retrieved papers were cited an average of 32.3 times and had an h-index of 106, with 61014 total citations. The two main clusters on the map included those related to: (1) Inflammation and oxidative stress; and (2) Dietary interventions for NAFLD. CONCLUSION This was the first study to use data taken from Scopus to visualize network mapping in a novel bibliometric analysis of studies focused on diet and NAFLD. After 2017, the two domains that received the most attention were "dietary interventions for NAFL"' and "'inflammation and oxidative stress implicated in NAFLD and its correlation with diet." We believe that this study provides important information for academics, dietitians, and doctors, and that additional research on dietary interventions and NAFLD is warranted.
Collapse
Affiliation(s)
- Muna Shakhshir
- Department of Nutrition, An-Najah National University Hospital, Nablus 44839, Palestine
- Department of Public Health, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
| | - Sa'ed H Zyoud
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
- Poison Control and Drug Information Center, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
- Clinical Research Center, An-Najah National University Hospital, Nablus 44839, Palestine
| |
Collapse
|
16
|
Zyoud SH, Hegazi OE, Alalalmeh SO, Shakhshir M, Abushamma F, Khilfeh S, Al-Jabi SW. Mapping the global research landscape on nonalcoholic fatty liver disease and insulin resistance: A visualization and bibliometric study. World J Hepatol 2024; 16:951-965. [PMID: 38948442 PMCID: PMC11212647 DOI: 10.4254/wjh.v16.i6.951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a liver condition that is prevalent worldwide and associated with significant health risks and economic burdens. As it has been linked to insulin resistance (IR), this study aimed to perform a bibliometric analysis and visually represent the scientific literature on IR and NAFLD. AIM To map the research landscape to underscore critical areas of focus, influential studies, and future directions of NAFLD and IR. METHODS This study conducted a bibliometric analysis of the literature on IR and NAFLD indexed in the SciVerse Scopus database from 1999 to 2022. The search strategy used terms from the literature and medical subject headings, focusing on terms related to IR and NAFLD. VOSviewer software was used to visualize research trends, collaborations, and key thematic areas. The analysis examined publication type, annual research output, contributing countries and institutions, funding agencies, journal impact factors, citation patterns, and highly cited references. RESULTS This analysis identified 23124 documents on NAFLD, revealing a significant increase in the number of publications between 1999 and 2022. The search retrieved 715 papers on IR and NAFLD, including 573 (80.14%) articles and 88 (12.31%) reviews. The most productive countries were China (n = 134; 18.74%), the United States (n = 122; 17.06%), Italy (n = 97; 13.57%), and Japan (n = 41; 5.73%). The leading institutions included the Università degli Studi di Torino, Italy (n = 29; 4.06%), and the Consiglio Nazionale delle Ricerche, Italy (n = 19; 2.66%). The top funding agencies were the National Institute of Diabetes and Digestive and Kidney Diseases in the United States (n = 48; 6.71%), and the National Natural Science Foundation of China (n = 37; 5.17%). The most active journals in this field were Hepatology (27 publications), the Journal of Hepatology (17 publications), and the Journal of Clinical Endocrinology and Metabolism (13 publications). The main research hotspots were "therapeutic approaches for IR and NAFLD" and "inflammatory and high-fat diet impacts on NAFLD". CONCLUSION This is the first bibliometric analysis to examine the relationship between IR and NAFLD. In response to the escalating global health challenge of NAFLD, this research highlights an urgent need for a better understanding of this condition and for the development of intervention strategies. Policymakers need to prioritize and address the increasing prevalence of NAFLD.
Collapse
Affiliation(s)
- Sa'ed H Zyoud
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
- Clinical Research Center, An-Najah National University Hospital, Nablus 44839, Palestine.
| | - Omar E Hegazi
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Samer O Alalalmeh
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Muna Shakhshir
- Department of Nutrition, An-Najah National University Hospital, Nablus 44839, Palestine
| | - Faris Abushamma
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
- Department of Urology, An-Najah National University Hospital, Nablus 44839, Palestine
| | - Shadi Khilfeh
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
- Department of Gastroenterology, Hepatology and Endoscopy, An-Najah National University Hospital, Nablus 44839, Palestine
| | - Samah W Al-Jabi
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
| |
Collapse
|
17
|
Hussein AL, Nema DT, Nasir GA. Evaluation of the role of some non-enzymatic antioxidants among Iraqi patients with non-alcoholic fatty liver disease. Open Life Sci 2024; 19:20220881. [PMID: 38947767 PMCID: PMC11211876 DOI: 10.1515/biol-2022-0881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/06/2024] [Accepted: 05/06/2024] [Indexed: 07/02/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic fat accumulation in individuals consuming little or no alcohol, has become highly prevalent globally. Oxidative stress plays a central role in instigating inflammation and cell death pathways driving NAFLD progression. This case-control study aimed to elucidate the association between circulating levels of the pivotal non-enzymatic antioxidants - coenzyme Q10 and vitamins E and C - and liver injury parameters among 60 Iraqi NAFLD patients versus 30 healthy controls. NAFLD diagnosis entailed over 5% hepatic steatosis on ultrasound excluding other etiologies. Patients spanned three age groups: 20-29, 30-39, and 40-49. Substantially diminished antioxidant levels concurrent with elevated alkaline phosphatase enzyme were unveiled in NAFLD patients relative to controls (all p < 0.001). Age-based analysis reinforced widespread antioxidant depletion and liver enzyme augmentation across NAFLD patients. Significant correlations also emerged between antioxidants and liver parameters. Our novel observations confirm an antioxidant inadequacy likely perpetuating pathogenic oxidative reactions in NAFLD. Restoring such deficits through lifestyle or therapeutic interventions may confer preventative and disease-modifying value.
Collapse
Affiliation(s)
- Ammar L. Hussein
- Department of Biochemistry, College of Medicine, Tikrit University, Tikrit, Iraq
| | - Dunia T. Nema
- Department of Biomedical Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Gulboy A. Nasir
- College of Agricultural Engineering Sciences, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
18
|
Li X, Morel JD, Sulc J, De Masi A, Lalou A, Benegiamo G, Poisson J, Liu Y, Von Alvensleben GVG, Gao AW, Bou Sleiman M, Auwerx J. Systems genetics of metabolic health in the BXD mouse genetic reference population. Cell Syst 2024; 15:497-509.e3. [PMID: 38866010 DOI: 10.1016/j.cels.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/29/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024]
Abstract
Susceptibility to metabolic syndrome (MetS) is dependent on genetics, environment, and gene-by-environment interactions, rendering the study of underlying mechanisms challenging. The majority of experiments in model organisms do not incorporate genetic variation and lack specific evaluation criteria for MetS. Here, we derived a continuous metric, the metabolic health score (MHS), based on standard clinical parameters and defined its molecular signatures in the liver and circulation. In human UK Biobank, the MHS associated with MetS status and was predictive of future disease incidence, even in individuals without MetS. Using quantitative trait locus analyses in mice, we found two MHS-associated genetic loci and replicated them in unrelated mouse populations. Through a prioritization scheme in mice and human genetic data, we identified TNKS and MCPH1 as candidates mediating differences in the MHS. Our findings provide insights into the molecular mechanisms sustaining metabolic health across species and uncover likely regulators. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jean-David Morel
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jonathan Sulc
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alessia De Masi
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Amélia Lalou
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Giorgia Benegiamo
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Johanne Poisson
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Yasmine Liu
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Giacomo V G Von Alvensleben
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Arwen W Gao
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
19
|
Pan Z, Khatry MA, Yu ML, Choudhury A, Sebastiani G, Alqahtani SA, Eslam M. MAFLD: an ideal framework for understanding disease phenotype in individuals of normal weight. Ther Adv Endocrinol Metab 2024; 15:20420188241252543. [PMID: 38808010 PMCID: PMC11131400 DOI: 10.1177/20420188241252543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/10/2024] [Indexed: 05/30/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD) is significant, impacting almost one-third of the global population. MAFLD constitutes a primary cause of end-stage liver disease, liver cancer and the need for liver transplantation. Moreover, it has a strong association with increased mortality rates due to various extrahepatic complications, notably cardiometabolic diseases. While MAFLD is typically correlated with obesity, not all individuals with obesity develop the disease and a significant percentage of MAFLD occurs in patients without obesity, termed lean MAFLD. The clinical features, progression and underlying physiological mechanisms of patients with lean MAFLD remain inadequately characterized. The present review aims to provide a comprehensive summary of current knowledge on lean MAFLD and offer a perspective on defining MAFLD in individuals with normal weight. Key to this process is the concept of metabolic health and flexibility, which links states of dysmetabolism to the development of lean MAFLD. This perspective offers a more nuanced understanding of MAFLD and its underlying mechanisms and highlights the importance of considering the broader metabolic context in which the disease occurs. It also bridges the knowledge gap and offers insights that can inform clinical practice.
Collapse
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Maryam Al Khatry
- Department of Gastroenterology, Obaidullah Hospital, Emirates Health Services, Ministry of Health, Ras Al Khaimah, United Arab Emirates
| | - Ming-Lung Yu
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ashok Choudhury
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC, Canada
| | - Saleh A. Alqahtani
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, 176 Hawkesbury Road, Westmead 2145, NSW, Australia
| |
Collapse
|
20
|
Nemer M, Osman F, Said A. Dietary macro and micronutrients associated with MASLD: Analysis of a national US cohort database. Ann Hepatol 2024; 29:101491. [PMID: 38412922 DOI: 10.1016/j.aohep.2024.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION AND OBJECTIVES Our objective was to measure and compare the intake of macro and micronutrients in a cohort of individuals with Metabolic Syndrome Associated Steatotic Liver Disease (MASLD) compared with matched controls to identify areas of further research in this area; we identified nutrition-associated associations with MASLD in the United States general population. MATERIALS AND METHODS We used the 2017 - 2018 NHANES dataset. Elastography Controlled Attenuation Parameter (CAP score>280) in the absence of other liver disease was defined as MASLD in adults (>18). Advanced fibrosis was defined by transient elastography >10 kPa. Controls were adults without liver disease. RESULTS 1648 MASLD cases (11.4 % advanced fibrosis) and 2527 controls were identified. MASLD cases were older (P<0.001), more likely males (P = 0.01), less likely to have a college education (P = 0.04) and more likely married (P = 0.002). MASLD cases were more likely to be of Mexican American or Hispanic ethnicity (P = 0.002), have higher BMI, and have higher prevalence of diabetes, hyperlipidemia and hypertension (P<0.001 for all). MASLD cases had higher hs-CRP (P = 0.02) and ferritin (P = 0.02). MASLD cases had lower total (P = 0.004) and added vitamin E in their diet (P = 0.002), lower vitamin K intake (P = 0.005), and higher selenium intake (P = 0.03). Caloric intake (P = 0.04), carbohydrate intake (P = 0.02), cholesterol intake (P = 0.03) and saturated fatty acid intake (P = 0.05) were higher in MASLD. Individuals with MASLD were more likely to be on a diet (P<0.001), sedentary (P = 0.008) and less likely to participate in moderate or vigorous recreational activities (P<0.001). CONCLUSIONS The deficiencies of micronutrients and excess of macronutrients point to oxidative stress, pro-inflammatory state, and lipotoxicity as pathways linking the US diet to MASLD. MASLD patients are more often on special diets, which may reflect prior provider counseling on diet changes to improve health.
Collapse
Affiliation(s)
- Mary Nemer
- Department of Medicine, Gastroenterology and Hepatology. Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fauzia Osman
- Department of Medicine, Biostatistics. University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Adnan Said
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Wm. S Middleton VA Medical Center, Madison, WI, United States.
| |
Collapse
|
21
|
Zhang L, Shi Y, Liang B, Li X. An overview of the cholesterol metabolism and its proinflammatory role in the development of MASLD. Hepatol Commun 2024; 8:e0434. [PMID: 38696365 PMCID: PMC11068152 DOI: 10.1097/hc9.0000000000000434] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 05/04/2024] Open
Abstract
Cholesterol is an essential lipid molecule in mammalian cells. It is not only involved in the formation of cell membranes but also serves as a raw material for the synthesis of bile acids, vitamin D, and steroid hormones. Additionally, it acts as a covalent modifier of proteins and plays a crucial role in numerous life processes. Generally, the metabolic processes of cholesterol absorption, synthesis, conversion, and efflux are strictly regulated. Excessive accumulation of cholesterol in the body is a risk factor for metabolic diseases such as cardiovascular disease, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD). In this review, we first provide an overview of the discovery of cholesterol and the fundamental process of cholesterol metabolism. We then summarize the relationship between dietary cholesterol intake and the risk of developing MASLD, and also the animal models of MASLD specifically established with a cholesterol-containing diet. In the end, the role of cholesterol-induced inflammation in the initiation and development of MASLD is discussed.
Collapse
Affiliation(s)
- Linqiang Zhang
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yongqiong Shi
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Bin Liang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Donghia R, Tatoli R, Campanella A, Cuccaro F, Bonfiglio C, Giannelli G. Adding a Leafy Vegetable Fraction to Diets Decreases the Risk of Red Meat Mortality in MASLD Subjects: Results from the MICOL Cohort. Nutrients 2024; 16:1207. [PMID: 38674896 PMCID: PMC11053907 DOI: 10.3390/nu16081207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Dietary guidelines recommend limiting red meat intake because it has been amply associated with increased cancer mortality, particularly in patients with liver conditions, such as metabolic dysfunction-associated fatty liver disease (MASLD). MASLD is the leading cause of liver dysfunction in the world today, and no specific treatment other than lifestyle correction has yet been established. The aim of this study was to explore the protective role of leafy vegetables when associated with high red meat consumption. METHODS The study cohort included 1646 participants assessed during the fourth recall of the MICOL study, subdivided into two groups based on red meat intake (≤50 g/die vs. >50 g/die), in order to conduct a cancer mortality analysis. The prevalence of subjects that consumed >50 g/die was only 15.73%. Leafy vegetable intake was categorized based on median g/die consumption, and it was combined with red meat intake. CONCLUSIONS This is the first study to demonstrate that the consumption of about 30 g/die of leafy vegetables reduces the risk of mortality. A strong association with mortality was observed in subjects with MASLD, and the protective role of vegetables was demonstrated.
Collapse
Affiliation(s)
- Rossella Donghia
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.T.); (A.C.); (C.B.); (G.G.)
| | - Rossella Tatoli
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.T.); (A.C.); (C.B.); (G.G.)
| | - Angelo Campanella
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.T.); (A.C.); (C.B.); (G.G.)
| | | | - Caterina Bonfiglio
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.T.); (A.C.); (C.B.); (G.G.)
| | - Gianluigi Giannelli
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.T.); (A.C.); (C.B.); (G.G.)
| |
Collapse
|
23
|
Korhan P, Bağırsakçı E, Islakoğlu YÖ, Solmaz G, Sarıkaya B, Nart D, Yılmaz F, Atabey N. MASLD-mimicking microenvironment drives an aggressive phenotype and represses IDH2 expression in hepatocellular carcinoma. HEPATOMA RESEARCH 2024. [DOI: 10.20517/2394-5079.2023.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Aim: Hepatocellular carcinoma (HCC) in patients with Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD) is expected to be a significant public health issue in the near future. Therefore, understanding the tumor microenvironment interactions in MASLD-induced HCC is crucial, and the development of relevant preclinical models is needed. Hence, we aimed to determine the effects of a MASLD-mimicking microenvironment (ME) on the aggressiveness of HCC cells and identify target genes that drive HCC by developing a 3D-in vitro co-culture system.
Methods: A 3D co-culture system mimicking the MASLD-ME was created with LX-2 liver stellate cells embedded in 3D collagen gel in the lower and SNU-449 HCC cells on the upper parts of Boyden chambers, and cells were grown in an optimized metabolic medium (MM). The effects of NAFLD-ME on motility, sphere formation, proliferation, and cell cycle of SNU-449 cells were tested by Boyden chamber, 3D sphere formation, XTT, and Flow cytometry, respectively. The protein expression/activation profiles of motile SNU-449 cells that passed the membrane toward NAFLD-ME or control condition were investigated using a multiplex protein profiling system DigiWest and confirmed with RT-PCR, WB, and Flow cytometry. IDH2 levels were examined in primary human HCC and adjacent liver tissues by IHC and in TCGA and CPTAC cohorts by bioinformatics tools.
Results: MM treatment increased fat accumulation, motility, and spheroid formation of both SNU-449 and LX-2 cells. MASLD-ME induced activation of LX2 cells, leading to the formation of bigger colonies with many intrusions compared to related controls. DigiWest analysis showed that metabolism-related proteins such as IDH2 were the most affected molecules in SNU-449 cells that migrated toward the MASLD-ME compared to those that migrated toward the control condition. Downregulation of IDH2 expression was confirmed in SNU-449 cells grown in MASLD-ME, in primary HCC tumor samples by IHC, and in HCC patient cohorts by bioinformatics analysis.
Conclusion: This study reports the potential involvement of MASLD-ME in the downregulation of IDH2 expression and promoted motility and colonization capacity of HCC cells. The 3D MASLD model presented in this study may be useful in investigating the mechanistic roles of MASLD-ME in HCC.
Collapse
|
24
|
Tatoli R, Bonfiglio C, Cuccaro F, Campanella A, Coletta S, Pesole PL, Giannelli G, Donghia R. Effects of Egg Consumption on Subjects with SLD or Hypertension: A MICOL Study. Nutrients 2024; 16:430. [PMID: 38337714 PMCID: PMC10856908 DOI: 10.3390/nu16030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Steatotic liver disease (SLD) is defined as a fat accumulation in more than 5% of hepatocytes; it can progress to non-alcoholic steatohepatitis (NASH), associated with an increased state of inflammation. The aim of this study was to explore the protective effects of eating eggs and any association with SLD and hypertension (HTN). METHODS The study cohort included 908 participants assessed in the fourth recall of the MICOL study, grouped into four groups, based on NALFD and/or HTN. RESULTS The prevalence of HTN and SLD among participants was 31.61%. Overall, the results indicated a statistical significance of egg consumption, showing a protective role against the two disease conditions, in both the raw and adjusted models (RRR = 0.34, p = 0.009, 0.15 to 0.76 95% C.I.). CONCLUSIONS Many differences were found among the groups, and the protective role of eating eggs was amply demonstrated. We can conclude that it is unwise to demonize the intake of this food and its nutritional properties, in contrast with previous reports in the literature.
Collapse
Affiliation(s)
- Rossella Tatoli
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.T.); (C.B.); (A.C.); (S.C.); (P.L.P.); (G.G.)
| | - Caterina Bonfiglio
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.T.); (C.B.); (A.C.); (S.C.); (P.L.P.); (G.G.)
| | | | - Angelo Campanella
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.T.); (C.B.); (A.C.); (S.C.); (P.L.P.); (G.G.)
| | - Sergio Coletta
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.T.); (C.B.); (A.C.); (S.C.); (P.L.P.); (G.G.)
| | - Pasqua Letizia Pesole
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.T.); (C.B.); (A.C.); (S.C.); (P.L.P.); (G.G.)
| | - Gianluigi Giannelli
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.T.); (C.B.); (A.C.); (S.C.); (P.L.P.); (G.G.)
| | - Rossella Donghia
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (R.T.); (C.B.); (A.C.); (S.C.); (P.L.P.); (G.G.)
| |
Collapse
|
25
|
Tauriainen MM, Csader S, Lankinen M, Lo KK, Chen C, Lahtinen O, El-Nezamy H, Laakso M, Schwab U. PNPLA3 Genotype and Dietary Fat Modify Concentrations of Plasma and Fecal Short Chain Fatty Acids and Plasma Branched-Chain Amino Acids. Nutrients 2024; 16:261. [PMID: 38257154 PMCID: PMC10819939 DOI: 10.3390/nu16020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The GG genotype of the Patatin-like phosphatase domain-containing 3 (PNPLA3), dietary fat, short-chain fatty acids (SCFA) and branched-chain amino acids (BCAA) are linked with non-alcoholic fatty liver disease. We studied the impact of the quality of dietary fat on plasma (p) and fecal (f) SCFA and p-BCAA in men homozygous for the PNPLA3 rs738409 variant (I148M). Eighty-eight randomly assigned men (age 67.8 ± 4.3 years, body mass index 27.1 ± 2.5 kg/m2) participated in a 12-week diet intervention. The recommended diet (RD) group followed the National and Nordic nutrition recommendations for fat intake. The average diet (AD) group followed the average fat intake in Finland. The intervention resulted in a decrease in total p-SCFAs and iso-butyric acid in the RD group (p = 0.041 and p = 0.002). Valeric acid (p-VA) increased in participants with the GG genotype regardless of the diet (RD, 3.6 ± 0.6 to 7.0 ± 0.6 µmol/g, p = 0.005 and AD, 3.8 ± 0.3 to 9.7 ± 8.5 µmol/g, p = 0.015). Also, genotype relation to p-VA was seen statistically significantly in the RD group (CC: 3.7 ± 0.4 to 4.2 ± 1.7 µmol/g and GG: 3.6 ± 0.6 to 7.0 ± 0.6 µmol/g, p = 0.0026 for time and p = 0.004 for time and genotype). P-VA, unlike any other SCFA, correlated positively with plasma gamma-glutamyl transferase (r = 0.240, p = 0.025). Total p-BCAAs concentration changed in the AD group comparing PNPLA3 CC and GG genotypes (CC: 612 ± 184 to 532 ± 149 µmol/g and GG: 587 ± 182 to 590 ± 130 µmol/g, p = 0.015 for time). Valine decreased in the RD group (p = 0.009), and leucine decreased in the AD group (p = 0.043). RD decreased total fecal SCFA, acetic acid (f-AA), and butyric acid (f-BA) in those with CC genotype (p = 0.006, 0.013 and 0.005, respectively). Our results suggest that the PNPLA3 genotype modifies the effect of dietary fat modification for p-VA, total f-SCFA, f-AA and f-BA, and total p-BCAA.
Collapse
Affiliation(s)
- Milla-Maria Tauriainen
- Department of Medicine, Endoscopy Unit, Kuopio University Hospital, 70029 Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
| | - Susanne Csader
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
| | - Maria Lankinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
| | - Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (K.K.L.); (C.C.)
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (K.K.L.); (C.C.)
| | - Olli Lahtinen
- Diagnostic Imaging Centre, Department of Clinical Radiology, Kuopio University Hospital, 70029 Kuopio, Finland;
| | - Hani El-Nezamy
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (K.K.L.); (C.C.)
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland;
- Department of Medicine, Kuopio University Hospital, 70029 Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70029 Kuopio, Finland
| |
Collapse
|
26
|
Butcko AJ, Putman AK, Mottillo EP. The Intersection of Genetic Factors, Aberrant Nutrient Metabolism and Oxidative Stress in the Progression of Cardiometabolic Disease. Antioxidants (Basel) 2024; 13:87. [PMID: 38247511 PMCID: PMC10812494 DOI: 10.3390/antiox13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Cardiometabolic disease (CMD), which encompasses metabolic-associated fatty liver disease (MAFLD), chronic kidney disease (CKD) and cardiovascular disease (CVD), has been increasing considerably in the past 50 years. CMD is a complex disease that can be influenced by genetics and environmental factors such as diet. With the increased reliance on processed foods containing saturated fats, fructose and cholesterol, a mechanistic understanding of how these molecules cause metabolic disease is required. A major pathway by which excessive nutrients contribute to CMD is through oxidative stress. In this review, we discuss how oxidative stress can drive CMD and the role of aberrant nutrient metabolism and genetic risk factors and how they potentially interact to promote progression of MAFLD, CVD and CKD. This review will focus on genetic mutations that are known to alter nutrient metabolism. We discuss the major genetic risk factors for MAFLD, which include Patatin-like phospholipase domain-containing protein 3 (PNPLA3), Membrane Bound O-Acyltransferase Domain Containing 7 (MBOAT7) and Transmembrane 6 Superfamily Member 2 (TM6SF2). In addition, mutations that prevent nutrient uptake cause hypercholesterolemia that contributes to CVD. We also discuss the mechanisms by which MAFLD, CKD and CVD are mutually associated with one another. In addition, some of the genetic risk factors which are associated with MAFLD and CVD are also associated with CKD, while some genetic risk factors seem to dissociate one disease from the other. Through a better understanding of the causative effect of genetic mutations in CMD and how aberrant nutrient metabolism intersects with our genetics, novel therapies and precision approaches can be developed for treating CMD.
Collapse
Affiliation(s)
- Andrew J. Butcko
- Hypertension and Vascular Research Division, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA; (A.J.B.); (A.K.P.)
- Department of Physiology, Wayne State University, 540 E. Canfield Street, Detroit, MI 48202, USA
| | - Ashley K. Putman
- Hypertension and Vascular Research Division, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA; (A.J.B.); (A.K.P.)
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, MI 48823, USA
| | - Emilio P. Mottillo
- Hypertension and Vascular Research Division, Henry Ford Hospital, 6135 Woodward Avenue, Detroit, MI 48202, USA; (A.J.B.); (A.K.P.)
- Department of Physiology, Wayne State University, 540 E. Canfield Street, Detroit, MI 48202, USA
| |
Collapse
|
27
|
Ramaiah P, Jamel Baljon K, Alsulami SA, Lindsay GM, Chinnasamy L. Diet quality indices and odds of metabolic dysfunction-associated fatty liver disease: a case-control study. Front Nutr 2024; 10:1251861. [PMID: 38260062 PMCID: PMC10800572 DOI: 10.3389/fnut.2023.1251861] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/02/2023] [Indexed: 01/24/2024] Open
Abstract
Objectives There are only limited studies investigating the impact of dietary quality indicators, such as dietary quality index (DQI), dietary diversity score (DDS), and alternative healthy eating index (AHEI), on metabolic dysfunction-associated fatty liver disease (MASLD). Furthermore, these indicators may have different components that could lead to varying results. Therefore, this study aims to assess the nutritional quality indicators and their potential association with MASLD. Methods The study included 128 recently diagnosed MASLD patients and 256 controls aged between 20 and 60 years. The dietary intake of participants was evaluated using a validated semi-quantitative food frequency questionnaire that consisted of 168 items. In this study, the method used to evaluate dietary diversity was based on five main food groups, specifically bread and grains, vegetables, fruits, meat, and dairy. The AHEI-2010 was computed using data collected from the FFQ. Results After adjusting for confounders in the fully adjusted model, a significant negative correlation was observed between DDS and the risk of MASLD (OR 0.41, 95% CI 0.20, 0.97). Participants in the top quartile of AHEI had a 76% lower risk of MASLD compared with those in the bottom quartile after controlling for all potential confounders in the fully adjusted model (OR 0.24, 95% CI 0.12, 0.56). Conclusion The results of our study suggest that there is a significant association between adherence to a high-diversity diet and a reduced likelihood of developing MASLD. Similarly, we observed a similar association between adherence to the AHEI diet and a lower risk of MASLD.
Collapse
Affiliation(s)
| | | | - Sana A. Alsulami
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Grace M. Lindsay
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | | |
Collapse
|
28
|
Yang JW, Zou Y, Chen J, Cui C, Song J, Yang MM, Gao J, Hu HQ, Xia LQ, Wang LM, Lv XY, Chen L, Hou XG. Didymin alleviates metabolic dysfunction-associated fatty liver disease (MAFLD) via the stimulation of Sirt1-mediated lipophagy and mitochondrial biogenesis. J Transl Med 2023; 21:921. [PMID: 38115075 PMCID: PMC10731721 DOI: 10.1186/s12967-023-04790-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is one of the most prevalent metabolic syndromes worldwide. However, no approved pharmacological treatments are available for MAFLD. Chenpi, one kind of dried peel of citrus fruits, has traditionally been utilized as a medicinal herb for liver diseases. Didymin is a newly identified oral bioactive dietary flavonoid glycoside derived from Chenpi. In this study, we investigated the therapeutic potential of Didymin as an anti-MAFLD drug and elucidated its underlying mechanisms. METHODS High-fat diet (HFD)-induced MAFLD mice and alpha mouse liver 12 (AML12) cells were utilized to evaluate the effects and mechanisms of Didymin in the treatment of MAFLD. Liver weight, serum biochemical parameters, and liver morphology were examined to demonstrate the therapeutic efficacy of Didymin in MAFLD treatment. RNA-seq analysis was performed to identify potential pathways that could be affected by Didymin. The impact of Didymin on Sirt1 was corroborated through western blot, molecular docking analysis, microscale thermophoresis (MST), and deacetylase activity assay. Then, a Sirt1 inhibitor (EX-527) was utilized to confirm that Didymin alleviates MAFLD via Sirt1. Western blot and additional assays were used to investigate the underlying mechanisms. RESULTS Our results suggested that Didymin may possess therapeutic potential against MAFLD in vitro and in vivo. By promoting Sirt1 expression as well as directly binding to and activating Sirt1, Didymin triggers downstream pathways that enhance mitochondrial biogenesis and function while reducing apoptosis and enhancing lipophagy. CONCLUSIONS These suggest that Didymin could be a promising medication for MAFLD treatment. Furthermore, its therapeutic effects are mediated by Sirt1.
Collapse
Affiliation(s)
- Jing-Wen Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ying Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chen Cui
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Meng-Meng Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Gao
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hui-Qing Hu
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Long-Qing Xia
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li-Ming Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiao-Yu Lv
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
| | - Xin-Guo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, China.
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
29
|
Šmíd V, Dvořák K, Stehnová K, Strnad H, Rubert J, Stříteský J, Staňková B, Stránská M, Hajšlová J, Brůha R, Vítek L. The Ameliorating Effects of n-3 Polyunsaturated Fatty Acids on Liver Steatosis Induced by a High-Fat Methionine Choline-Deficient Diet in Mice. Int J Mol Sci 2023; 24:17226. [PMID: 38139055 PMCID: PMC10743075 DOI: 10.3390/ijms242417226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is associated with abnormalities of liver lipid metabolism. On the contrary, a diet enriched with n-3 polyunsaturated fatty acids (n-3-PUFAs) has been reported to ameliorate the progression of NAFLD. The aim of our study was to investigate the impact of dietary n-3-PUFA enrichment on the development of NAFLD and liver lipidome. Mice were fed for 6 weeks either a high-fat methionine choline-deficient diet (MCD) or standard chow with or without n-3-PUFAs. Liver histology, serum biochemistry, detailed plasma and liver lipidomic analyses, and genome-wide transcriptome analysis were performed. Mice fed an MCD developed histopathological changes characteristic of NAFLD, and these changes were ameliorated with n-3-PUFAs. Simultaneously, n-3-PUFAs decreased serum triacylglycerol and cholesterol concentrations as well as ALT and AST activities. N-3-PUFAs decreased serum concentrations of saturated and monounsaturated free fatty acids (FAs), while increasing serum concentrations of long-chain PUFAs. Furthermore, in the liver, the MCD significantly increased the hepatic triacylglycerol content, while the administration of n-3-PUFAs eliminated this effect. Administration of n-3-PUFAs led to significant beneficial differences in gene expression within biosynthetic pathways of cholesterol, FAs, and pro-inflammatory cytokines (IL-1 and TNF-α). To conclude, n-3-PUFA supplementation appears to represent a promising nutraceutical approach for the restoration of abnormalities in liver lipid metabolism and the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Václav Šmíd
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
| | - Karel Dvořák
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
| | - Kamila Stehnová
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.S.); (J.R.); (J.H.)
| | - Hynek Strnad
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Josep Rubert
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.S.); (J.R.); (J.H.)
| | - Jan Stříteský
- Institute of Pathology, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 00 Prague, Czech Republic;
| | - Barbora Staňková
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic
| | - Milena Stránská
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.S.); (J.R.); (J.H.)
| | - Jana Hajšlová
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.S.); (J.R.); (J.H.)
| | - Radan Brůha
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
| | - Libor Vítek
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic
| |
Collapse
|
30
|
Itoh M, Tamura A, Kanai S, Tanaka M, Kanamori Y, Shirakawa I, Ito A, Oka Y, Hidaka I, Takami T, Honda Y, Maeda M, Saito Y, Murata Y, Matozaki T, Nakajima A, Kataoka Y, Ogi T, Ogawa Y, Suganami T. Lysosomal cholesterol overload in macrophages promotes liver fibrosis in a mouse model of NASH. J Exp Med 2023; 220:e20220681. [PMID: 37725372 PMCID: PMC10506914 DOI: 10.1084/jem.20220681] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/27/2023] [Accepted: 07/20/2023] [Indexed: 09/21/2023] Open
Abstract
Accumulation of lipotoxic lipids, such as free cholesterol, induces hepatocyte death and subsequent inflammation and fibrosis in the pathogenesis of nonalcoholic steatohepatitis (NASH). However, the underlying mechanisms remain unclear. We have previously reported that hepatocyte death locally induces phenotypic changes in the macrophages surrounding the corpse and remnant lipids, thereby promoting liver fibrosis in a murine model of NASH. Here, we demonstrated that lysosomal cholesterol overload triggers lysosomal dysfunction and profibrotic activation of macrophages during the development of NASH. β-cyclodextrin polyrotaxane (βCD-PRX), a unique supramolecule, is designed to elicit free cholesterol from lysosomes. Treatment with βCD-PRX ameliorated cholesterol accumulation and profibrotic activation of macrophages surrounding dead hepatocytes with cholesterol crystals, thereby suppressing liver fibrosis in a NASH model, without affecting the hepatic cholesterol levels. In vitro experiments revealed that cholesterol-induced lysosomal stress triggered profibrotic activation in macrophages predisposed to the steatotic microenvironment. This study provides evidence that dysregulated cholesterol metabolism in macrophages would be a novel mechanism of NASH.
Collapse
Affiliation(s)
- Michiko Itoh
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Bioelectronics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Department of Metabolic Syndrome and Nutritional Science, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Kanai
- Department of Bioelectronics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Yohei Kanamori
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Ibuki Shirakawa
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Ayaka Ito
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuyoshi Oka
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Isao Hidaka
- Department of Gastroenterology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Taro Takami
- Department of Gastroenterology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuyo Maeda
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe, Japan
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Matozaki
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yosky Kataoka
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe, Japan
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
| |
Collapse
|
31
|
Jee Y, Ryu M, Ryou IS, Back JH, Cho SI, Hwang SS. Mediators of the Effect of Obesity on Stroke and Heart Disease Risk: Decomposing Direct and Indirect Effects. J Epidemiol 2023; 33:514-520. [PMID: 35781427 PMCID: PMC10483103 DOI: 10.2188/jea.je20210476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The prevalence of overweight and obesity are well known risk factors of atherosclerotic cardiovascular disease (ASCVD). We aimed to examine the association between body mass index (BMI) and ASCVD over a 23-year follow-up in young adults. We also qualified how much of the effects of obesity on ASCVD were mediated through blood pressure, cholesterol, and glucose. METHODS Data are from the Korean Life Course Health Study, a cohort study of 226,955 Korean young adults aged 20-39. At baseline, the participants undertook routine health assessments where their BMI was measured in 1992-1994; and the metabolic mediators including systolic blood pressure (SBP), fasting serum glucose (FSG), and total cholesterol (TC) were re-measured in 2002-2004. The main outcomes of the study include incident events of ischemic heart disease (IHD), stroke, and ASCVD between 2005 and 2015. Cox proportional model was used to calculate adjusted hazard ratios (HRs) for ASCVD. RESULTS In both men and women, the direct effect of BMI on ASCVD was greater than the indirect effect. The percentage of excess HR of BMI mediated by all of the metabolic mediators, including SBP, FSG, and TC, was 45.7% for stroke and 18.7% for IHD in men and 27.5% for stroke and 17.6% for IHD in women. CONCLUSION High BMI in young adults increases the risk of metabolic mediators in their middle age, and metabolic mediators explain the adverse effects of high BMI on stroke risk than IHD risk.
Collapse
Affiliation(s)
- Yongho Jee
- Advanced Biomedical Research Institute Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Mikyung Ryu
- Department of Sports and Health Science, College of Human-Centered Convergence, Kyonggi University, Suwon, Republic of Korea
| | - In Sun Ryou
- Department of Family Medicine, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Joung Hwan Back
- Health Insurance Policy Research Institute, Wonju, Republic of Korea
| | - Sung-il Cho
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Seung Sik Hwang
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
32
|
A Chagas L, Torloni MR, Sanchez VHS, Pititto BA, Dualib PM, Mattar R. Dietary intake of pregnant women with non-alcoholic fatty liver disease: A case-control study. Clin Nutr ESPEN 2023; 57:630-636. [PMID: 37739716 DOI: 10.1016/j.clnesp.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND AIMS Findings on the role of diet in non-alcoholic fatty liver disease (NAFLD) pathogenesis are inconsistent. There are few studies on the dietary habits of pregnant women with NAFLD. Our primary aim was to compare the dietary intakes of pregnant women with and without NAFLD. METHODS This case-control study recruited 60 women (26-34 weeks' gestation) with recently diagnosed gestational diabetes (GDM) before any treatment was implemented. At recruitment, all participants underwent B-mode hepatic ultrasound. We included 30 women with sonographic NAFLD (cases) and 30 women without NAFLD (controls) matched for age, skin color, and pre-pregnancy body mass index. We assessed participants' dietary intakes in the last six months using a validated food frequency questionnaire. Mann-Whitney´s test was used to compare differences in median macro and micronutrient intakes between cases and controls. RESULTS Total median daily energy (1965.1 × 1949.2 calories) and lipid (25.1% × 28.3%) intakes were similar in women with and without NAFLD and fell within recommended ranges. Participants with NAFLD reported significantly higher median daily intakes of carbohydrates (59.4% × 53.1% p = 0.003), and significantly lower protein (15.6% × 17.0% p = 0.005), fiber (10.7 × 13.3 g/day p = 0.010), and vitamin C (151.8 × 192.6 mg/day p = 0.008) intakes than those without NAFLD. CONCLUSIONS Pregnant women with NAFLD ingest more carbohydrates and less protein, fiber, and vitamin C than those without NAFLD. Our findings contribute to understanding the role of diet in the development of NAFLD in pregnant women.
Collapse
Affiliation(s)
- Lucas A Chagas
- Department of Obstetrics, São Paulo Federal University, Rua Napoleão de Barros, 875, São Paulo - SP, 04024-002, Brazil
| | - Maria R Torloni
- Department of Obstetrics, São Paulo Federal University, Rua Napoleão de Barros, 875, São Paulo - SP, 04024-002, Brazil; Evidence Based Health Care Post-Graduate Program, Department of Medicine, São Paulo Federal University, Rua Botucatu 740, 3º andar, São Paulo - SP, 04023-900, Brazil.
| | - Victor H S Sanchez
- Department of Obstetrics, São Paulo Federal University, Rua Napoleão de Barros, 875, São Paulo - SP, 04024-002, Brazil
| | - Bianca A Pititto
- Department of Endocrinology, São Paulo Federal University, Rua Borges de Lagoa, 800, São Paulo - SP, 04038-001, São Paulo, Brazil
| | - Patrícia M Dualib
- Department of Endocrinology, São Paulo Federal University, Rua Borges de Lagoa, 800, São Paulo - SP, 04038-001, São Paulo, Brazil
| | - Rosiane Mattar
- Department of Obstetrics, São Paulo Federal University, Rua Napoleão de Barros, 875, São Paulo - SP, 04024-002, Brazil
| |
Collapse
|
33
|
Shannon CE, Ní Chathail MB, Mullin SM, Meehan A, McGillicuddy FC, Roche HM. Precision nutrition for targeting pathophysiology of cardiometabolic phenotypes. Rev Endocr Metab Disord 2023; 24:921-936. [PMID: 37402955 PMCID: PMC10492734 DOI: 10.1007/s11154-023-09821-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Obesity is a heterogenous disease accompanied by a broad spectrum of cardiometabolic risk profiles. Traditional paradigms for dietary weight management do not address biological heterogeneity between individuals and have catastrophically failed to combat the global pandemic of obesity-related diseases. Nutritional strategies that extend beyond basic weight management to instead target patient-specific pathophysiology are warranted. In this narrative review, we provide an overview of the tissue-level pathophysiological processes that drive patient heterogeneity to shape distinct cardiometabolic phenotypes in obesity. Specifically, we discuss how divergent physiology and postprandial phenotypes can reveal key metabolic defects within adipose, liver, or skeletal muscle, as well as the integrative involvement of the gut microbiome and the innate immune system. Finally, we highlight potential precision nutritional approaches to target these pathways and discuss recent translational evidence concerning the efficacy of such tailored dietary interventions for different obesity phenotypes, to optimise cardiometabolic benefits.
Collapse
Affiliation(s)
- Christopher E Shannon
- Nutrigenomics Research Group, UCD Conway Institute, and Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Republic of Ireland
- School of Medicine, University College Dublin, Dublin, Republic of Ireland
- Division of Diabetes, Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Méabh B Ní Chathail
- Nutrigenomics Research Group, UCD Conway Institute, and Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Republic of Ireland
| | - Sinéad M Mullin
- Nutrigenomics Research Group, UCD Conway Institute, and Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Republic of Ireland
| | - Andrew Meehan
- School of Medicine, University College Dublin, Dublin, Republic of Ireland
| | | | - Helen M Roche
- Nutrigenomics Research Group, UCD Conway Institute, and Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Republic of Ireland.
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
34
|
Schwenger KJP, Ghorbani Y, Rezaei K, Fischer SE, Jackson TD, Okrainec A, Allard JP. Relationship between dietary intake components and hepatic fibrosis in those with obesity before and 1 year after bariatric surgery. Nutrition 2023; 114:112095. [PMID: 37437418 DOI: 10.1016/j.nut.2023.112095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVES Non-alcoholic fatty liver disease is highly prevalent in the bariatric population but not all patients develop liver fibrosis. Considering that fibrosis may affect clinical outcomes, it is important to assess and treat contributing factors. In this population, it is not clear whether dietary intake is a contributor. The objective was to determine the relationship between dietary intake components and liver fibrosis before and 1 y after Roux-en-Y gastric bypass (RYGB). METHODS This was a prospective cross-sectional (n = 133) study conducted between 2013 and 2022. In addition, a subgroup of 44 patients were followed for 1 y post-RYGB. Anthropometrics, biochemical measurements, and 3-d food records and liver biopsies were obtained presurgery and, in a subgroup of patients, as for the cohort, 1 y post-RYGB. RESULTS In the cross-sectional study, 78.2% were female, with a median age of 48 y and body mass index of 46.8 kg/m2; 33.8% had type 2 diabetes mellitus and 57.1% had metabolic syndrome. In a multivariate analysis, age (odds ratio; 95% CI) (1.076; 1.014-1.141), alanine transaminase (1.068; 1.025-1.112), calorie intake (1.001; 1.000-1.002), and dietary copper (0.127; 0.022-0.752) were independently associated with fibrosis (<0.05). At 1 y post-RYGB, no independent risk factors were associated with persistent fibrosis. CONCLUSIONS In bariatric patients before surgery, higher age, alanine transaminase, and total calorie and lower copper intakes were independent risk factors associated with liver fibrosis. These relationships were no longer observed after RYGB, likely due to the effect of surgery on weight and similar postsurgery diet among patients.
Collapse
Affiliation(s)
| | - Yasaman Ghorbani
- Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Kuorosh Rezaei
- Toronto General Hospital, University Health Network, Toronto, Canada
| | - Sandra E Fischer
- Toronto General Hospital, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Timothy D Jackson
- Division of Surgery, University of Toronto, Toronto, Ontario, Canada; Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Allan Okrainec
- Division of Surgery, University of Toronto, Toronto, Ontario, Canada; Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Johane P Allard
- Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
35
|
Jung DJ. Association between fatty liver disease and hearing impairment in Korean adults: a retrospective cross-sectional study. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2023; 40:402-411. [PMID: 37376734 PMCID: PMC10626306 DOI: 10.12701/jyms.2023.00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND We hypothesized that fatty liver disease (FLD) is associated with a high prevalence of hearing loss (HL) owing to metabolic disturbances. This study aimed to evaluate the association between FLD and HL in a large sample of the Korean population. METHODS We used a dataset of adults who underwent routine voluntary health checkups (n=21,316). Fatty liver index (FLI) was calculated using Bedogni's equation. The patients were divided into two groups: the non-FLD (NFLD) group (n=18,518, FLI <60) and the FLD group (n=2,798, FLI ≥60). Hearing thresholds were measured using an automatic audiometer. The average hearing threshold (AHT) was calculated as the pure-tone average at four frequencies (0.5, 1, 2, and 3 kHz). HL was defined as an AHT of >40 dB. RESULTS HL was observed in 1,370 (7.4%) and 238 patients (8.5%) in the NFLD and FLD groups, respectively (p=0.041). Compared with the NFLD group, the odds ratio for HL in the FLD group was 1.16 (p=0.040) and 1.46 (p<0.001) in univariate and multivariate logistic regression analyses, respectively. Linear regression analyses revealed that FLI was positively associated with AHT in both univariate and multivariate analyses. Analyses using a propensity score-matched cohort showed trends similar to those using the total cohort. CONCLUSION FLD and FLI were associated with poor hearing thresholds and HL. Therefore, active monitoring of hearing impairment in patients with FLD may be helpful for early diagnosis and treatment of HL in the general population.
Collapse
Affiliation(s)
- Da Jung Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
36
|
Montemayor S, García S, Monserrat-Mesquida M, Tur JA, Bouzas C. Dietary Patterns, Foods, and Nutrients to Ameliorate Non-Alcoholic Fatty Liver Disease: A Scoping Review. Nutrients 2023; 15:3987. [PMID: 37764771 PMCID: PMC10534915 DOI: 10.3390/nu15183987] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease without pharmacological treatment yet. There is also a lack of specific dietary recommendations and strategies to treat the negative health impacts derived from NAFLD. OBJECTIVE This scoping review aimed to compile dietary patterns, foods, and nutrients to ameliorate NAFLD. METHODS A literature search was performed through MEDLINE, Scopus, Web of Science, and Google Scholar. RESULTS Several guidelines are available through the literature. Hypocaloric Mediterranean diet is the most accepted dietary pattern to tackle NAFLD. Coffee consumption (sugar free) may have a protective effect for NAFLD. Microbiota also plays a role in NAFLD; hence, fibre intake should be guaranteed. CONCLUSIONS A high-quality diet could improve liver steatosis. Weight loss through hypocaloric diet together with physical activity and limited sugar intake are good strategies for managing NAFLD. Specific dietary recommendations and a Mediterranean plate have been proposed to ameliorate NAFLD.
Collapse
Affiliation(s)
- Sofía Montemayor
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain (C.B.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Silvia García
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain (C.B.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Margalida Monserrat-Mesquida
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain (C.B.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Josep A. Tur
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain (C.B.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Bouzas
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain (C.B.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
37
|
Aljahdali BA, Bajaber AS, Al-Nouri DM, Al-Khalifah AS, Arzoo S, Alasmari AA. The Development of Nonalcoholic Fatty Liver Disease and Metabolic Syndromes in Diet-Induced Rodent Models. Life (Basel) 2023; 13:1336. [PMID: 37374119 DOI: 10.3390/life13061336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Dietary macronutrients are essential for metabolic regulation and insulin function. The present study examined the effects of different high-fat diets (HFDs) and high-carbohydrate diets (HCDs) on the development of non-alcoholic fatty liver disease and metabolic syndrome indices in healthy adult male Wistar albino rats. Forty-two rats were distributed into six groups (n = 7), which were fed the following for 22 weeks: (1) a control diet; (2) a high-carbohydrate, low-fat diet (HCD-LFD); (3) high-saturated-fat, low-carbohydrate diet (HSF-LCD); (4) a high-monounsaturated-fat diet (HMUSF); (5) a high medium-chain fat diet (HMCF); and a (6) a high-carbohydrate, high-fiber diet (HCHF). In comparison to the control, the body weight increased in all the groups. The HSF-LCD group showed the highest levels of cholesterol, triglyceride, low-density lipoprotein, hepatic enzyme, insulin resistance, and Homeostatic Model Assessment for Insulin Resistance. A liver histology analysis of the HSF-LCD group showed macrovesicular hepatic steatosis associated with large hepatic vacuolation. Additionally, it showed marked periportal fibrosis, especially around the blood vessels and blood capillaries. The lowest levels of fasting glycemia, insulin, and HOMA-IR were observed in the HCHF group. In conclusion, these findings show that dietary saturated fat and cholesterol are principal components in the development and progression of non-alcoholic fatty liver disease in rats, while fiber showed the greatest improvement in glycemic control.
Collapse
Affiliation(s)
- Bayan Abdulhafid Aljahdali
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh 1495, Saudi Arabia
| | - Adnan Salem Bajaber
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh 1495, Saudi Arabia
| | - Doha M Al-Nouri
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh 1495, Saudi Arabia
| | - Abdulrahman Saleh Al-Khalifah
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh 1495, Saudi Arabia
| | - Shaista Arzoo
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh 1495, Saudi Arabia
| | - Abeer Abdullah Alasmari
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh 1495, Saudi Arabia
| |
Collapse
|
38
|
Yamamoto S, Honma K, Fujii M, Kakimoto M, Kirihara S, Nakayama H, Kitamori K, Sato I, Hirohata S, Watanabe S. SHRSP5/Dmcr rats fed a high-fat and high-cholesterol diet develop disease-induced sarcopenia as nonalcoholic steatohepatitis progresses. Ann Anat 2023; 249:152104. [PMID: 37209870 DOI: 10.1016/j.aanat.2023.152104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Secondary sarcopenia develops as a result of a bedridden state and illnesses, such as cachexia, liver disease, and diabetes. However, there is a lack of animal models to investigate the underlying mechanisms and potential treatments for secondary sarcopenia. Recently, secondary sarcopenia has been associated with the prognosis of nonalcoholic steatohepatitis. This study aimed to investigate whether stroke-prone spontaneously hypertensive rat 5 (SHRSP5/Dmcr) which developed severe nonalcoholic steatohepatitis by a high-fat and high-cholesterol (HFC; containing 2% cholic acid) diet is a useful model of secondary sarcopenia. METHODS SHRSP5/Dmcr rats were divided into 6 groups fed with a Stroke-Prone (SP: normal chow) or HFC diets for different periods (4, 12, and 20 weeks), and WKY/Izm rats were divided into 2 groups fed an SP or HFC diet. Body weight, food intake, and muscle force were measured weekly for all rats. After the end of the diet period, skeletal muscle strength evoked by electrical stimulation was recorded, blood was collected, and organ weight was measured. The sera were used for biochemical analysis and the organs were used for histopathological analysis. RESULTS SHRSP5/Dmcr rats fed an HFC diet developed nonalcoholic steatohepatitis, and their skeletal muscles, especially fast muscles, showed atrophy, indicating that muscle atrophy is aggravated by the progression of nonalcoholic steatohepatitis. In contrast, WKY/Izm rats fed an HFC diet did not exhibit sarcopenia. CONCLUSIONS This study suggests that SHRSP5/Dmcr rats could be a useful novel model for investigate the mechanism of secondary sarcopenia disorder associated with nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Shusei Yamamoto
- Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan; Department of Medical Laboratory Science, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Koki Honma
- Department of Medical Laboratory Science, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Moe Fujii
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, 543, Takoda, Tobe-cho, Iyo-gun, Ehime 791-2101, Japan.
| | - Mai Kakimoto
- Department of Medical Laboratory Science, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Sora Kirihara
- Department of Medical Laboratory Science, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Hinako Nakayama
- Department of Medical Laboratory Science, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Kazuya Kitamori
- College of Human Life and Environment, Kinjo Gakuin University, 2-1723, Omori, Moriyama-ku, Nagoya-shi, Aichi 463-8521, Japan.
| | - Ikumi Sato
- Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan; Department of Medical Laboratory Science, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Satoshi Hirohata
- Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Shogo Watanabe
- Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| |
Collapse
|
39
|
Patel AH, Peddu D, Amin S, Elsaid MI, Minacapelli CD, Chandler TM, Catalano C, Rustgi VK. Nonalcoholic Fatty Liver Disease in Lean/Nonobese and Obese Individuals: A Comprehensive Review on Prevalence, Pathogenesis, Clinical Outcomes, and Treatment. J Clin Transl Hepatol 2023; 11:502-515. [PMID: 36643037 PMCID: PMC9817050 DOI: 10.14218/jcth.2022.00204] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, with an estimated prevalence of 25% globally. NAFLD is closely associated with metabolic syndrome, which are both becoming increasingly more common with increasing rates of insulin resistance, dyslipidemia, and hypertension. Although NAFLD is strongly associated with obesity, lean or nonobese NAFLD is a relatively new phenotype and occurs in patients without increased waist circumference and with or without visceral fat. Currently, there is limited literature comparing and illustrating the differences between lean/nonobese and obese NAFLD patients with regard to risk factors, pathophysiology, and clinical outcomes. In this review, we aim to define and further delineate different phenotypes of NAFLD and present a comprehensive review on the prevalence, incidence, risk factors, genetic predisposition, and pathophysiology. Furthermore, we discuss and compare the clinical outcomes, such as insulin resistance, dyslipidemia, hypertension, coronary artery disease, mortality, and progression to nonalcoholic steatohepatitis, among lean/nonobese and obese NAFLD patients. Finally, we summarize the most up to date current management of NAFLD, including lifestyle interventions, pharmacologic therapies, and surgical options.
Collapse
Affiliation(s)
- Ankoor H. Patel
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Dhiraj Peddu
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Sahil Amin
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Mohamed I. Elsaid
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
- Secondary Data Core, Center for Biostatistics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Carlos D. Minacapelli
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Toni-Marie Chandler
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Carolyn Catalano
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Vinod K. Rustgi
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
40
|
Gao X, Lin X, Xin Y, Zhu X, Li X, Chen M, Huang Z, Guo H. Dietary cholesterol drives the development of non-alcoholic steatohepatitis by altering gut microbiota mediated bile acid metabolism in high-fat diet fed mice. J Nutr Biochem 2023; 117:109347. [PMID: 37031879 DOI: 10.1016/j.jnutbio.2023.109347] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most widespread chronic liver disorder globally. Unraveling the pathogenesis of simple fatty liver to non-alcoholic steatohepatitis (NASH) has important clinical significance for improving the prognosis of NAFLD. Here, we explored the role of a high-fat diet alone or combined with high cholesterol in causing NASH progression. Our results demonstrated that high dietary cholesterol intakes accelerate the progression of spontaneous NAFLD and induces liver inflammation in mice. An elevation of hydrophobic unconjugated bile acids cholic acid (CA), deoxycholic acid (DCA), muricholic acid and chenodeoxycholic acid, was observed in high-fat and high-cholesterol diet fed mice. Full-length sequencing of the 16S rRNA gene of gut microbiota revealed a significant increase in the abundance of Bacteroides, Clostridium and Lactobacillus that possess bile salt hydrolase activity. Furthermore, the relative abundance of these bacterial species was positively correlated with content of unconjugated bile acids in liver. Moreover, the expression of genes related to bile acid reabsorption (organic anion-transporting polypeptides, Na+-taurocholic acid cotransporting polypeptide, apical sodium dependent bile acid transporter and organic solute transporter β) was found to be increased in mice with a high-cholesterol diet. Lastly, we observed that hydrophobic bile acids CA and DCA induce an inflammatory response in free fatty acids-induced steatotic HepG2 cells. In conclusion, high dietary cholesterol promotes the development of NASH by altering gut microbiota composition and abundance and thereby influencing with bile acid metabolism.
Collapse
Affiliation(s)
- Xuebin Gao
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Department of Science and Education, Yuebei People's Hospital, Shaoguan 512026, China
| | - Xiaozhuan Lin
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yan Xin
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xuan Zhu
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiang Li
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Ming Chen
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Zhigang Huang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
41
|
Tsamos G, Vasdeki D, Koufakis T, Michou V, Makedou K, Tzimagiorgis G. Therapeutic Potentials of Reducing Liver Fat in Non-Alcoholic Fatty Liver Disease: Close Association with Type 2 Diabetes. Metabolites 2023; 13:metabo13040517. [PMID: 37110175 PMCID: PMC10141666 DOI: 10.3390/metabo13040517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most widespread chronic liver disease worldwide, confers a significant burden on health systems and leads to increased mortality and morbidity through several extrahepatic complications. NAFLD comprises a broad spectrum of liver-related disorders, including steatosis, cirrhosis, and hepatocellular carcinoma. It affects almost 30% of adults in the general population and up to 70% of people with type 2 diabetes (T2DM), sharing common pathogenetic pathways with the latter. In addition, NAFLD is closely related to obesity, which acts in synergy with other predisposing conditions, including alcohol consumption, provoking progressive and insidious liver damage. Among the most potent risk factors for accelerating the progression of NAFLD to fibrosis or cirrhosis, diabetes stands out. Despite the rapid rise in NAFLD rates, identifying the optimal treatment remains a challenge. Interestingly, NAFLD amelioration or remission appears to be associated with a lower risk of T2DM, indicating that liver-centric therapies could reduce the risk of developing T2DM and vice versa. Consequently, assessing NAFLD requires a multidisciplinary approach to identify and manage this multisystemic clinical entity early. With the continuously emerging new evidence, innovative therapeutic strategies are being developed for the treatment of NAFLD, prioritizing a combination of lifestyle changes and glucose-lowering medications. Based on recent evidence, this review scrutinizes all practical and sustainable interventions to achieve a resolution of NAFLD through a multimodal approach.
Collapse
Affiliation(s)
- Georgios Tsamos
- Division of Gastroenterology, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - Dimitra Vasdeki
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Vassiliki Michou
- Sports Medicine Laboratory, School of Physical Education & Sport Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Kali Makedou
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Georgios Tzimagiorgis
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| |
Collapse
|
42
|
Stefano JT, Duarte SMB, Ribeiro Leite Altikes RG, Oliveira CP. Non-pharmacological management options for MAFLD: a practical guide. Ther Adv Endocrinol Metab 2023; 14:20420188231160394. [PMID: 36968655 PMCID: PMC10031614 DOI: 10.1177/20420188231160394] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/11/2023] [Indexed: 03/24/2023] Open
Abstract
Lifestyle changes should be the main basis for any treatment for metabolic dysfunction-associated fatty liver disease (MAFLD), aiming to increase energy expenditure, reduce energy intake and improve the quality of nutrients consumed. As it is a multifactorial disease, approaches such as physical exercise, a better dietary pattern, and possible pharmacological intervention are shown to be more efficient when used simultaneously to the detriment of their applications. The main treatment for MAFLD is a lifestyle change consisting of diet, activity, exercise, and weight loss. The variables for training prescription such as type of physical exercise (aerobic or strength training), the weekly frequency, and the intensity most indicated for the treatment of MAFLD remain uncertain, that is, the recommendations must be adapted to the clinical conditions comorbidities, and preferences of each subject in a way individual. This review addresses recent management options for MAFLD including diet, nutrients, gut microbiota, and physical exercise.
Collapse
Affiliation(s)
- José Tadeu Stefano
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sebastião Mauro Bezerra Duarte
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Claudia P. Oliveira
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Av. Dr. Enéas de Carvalho Aguiar no
255, Instituto Central, # 9159, Sao Paulo 05403-000, Brazil
- Departament of Gastroenterology, Faculdade de
Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
43
|
Huang YW, Wang LT, Zhang M, Nie Y, Yang JB, Meng WL, Wang XJ, Sheng J. Caffeine can alleviate non-alcoholic fatty liver disease by augmenting LDLR expression via targeting EGFR. Food Funct 2023; 14:3269-3278. [PMID: 36916513 DOI: 10.1039/d2fo02701a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Increasing low-density lipoprotein receptor (LDLR) protein levels represents a key strategy for the prevention and treatment. Berberine can reportedly alleviate non-alcoholic fatty liver disease (NAFLD) by increasing the LDLR expression in an ERK1/2 signaling-dependent manner of NAFLD. Studies have shown that caffeine can inhibit fat deposition in the livers of mice; however, caffeine has not been reported to alleviate NAFLD by augmenting the LDLR expression via targeting EGFR. Here, an MTT assay, western blotting, RT-qPCR, immunohistochemistry, and surface plasmon resonance (SPR) analysis were used to investigate the role of caffeine in low-density lipoprotein cholesterol (LDL-C) clearance both in vitro and in vivo. In vitro, we found that caffeine could activate the EGFR-ERK1/2 signaling pathway in HepG2 cells, leading to increased LDLR mRNA and protein expression, and this effect could be inhibited by cetuximab. The SPR assay results have indicated that caffeine may increase the LDLR expression by directly binding to the EGFR extracellular domain and activating the EGFR-ERK1/2 signaling pathway. In vivo, caffeine markedly improved fatty liver and related blood indices in ApoE KO mice with high-fat-diet-induced NAFLD. Consistent with our in vitro results, we found that caffeine could also activate EGFR-ERK1/2 signaling and promote the LDLR expression in ApoE KO mice. In summary, caffeine can enhance the LDLR expression by directly binding to EGFR and activating the EGFR-ERK1/2 signaling pathway. EGFR signaling may represent a novel target for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Ye-Wei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Li-Tian Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Meng Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yan Nie
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jin-Bo Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Wen-Luer Meng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuan-Jun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China. .,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650201, China
| |
Collapse
|
44
|
Öngel ME, Yildiz C, Başer Ö, Yilmaz B, Özilgen M. Thermodynamic Assessment of the Effects of Intermittent Fasting and Fatty Liver Disease Diets on Longevity. ENTROPY (BASEL, SWITZERLAND) 2023; 25:227. [PMID: 36832594 PMCID: PMC9955784 DOI: 10.3390/e25020227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Organisms uptake energy from their diet and maintain a highly organized structure by importing energy and exporting entropy. A fraction of the generated entropy is accumulated in their bodies, thus causing ageing. Hayflick's entropic age concept suggests that the lifespan of organisms is determined by the amount of entropy they generate. Organisms die after reaching their lifespan entropy generation limit. On the basis of the lifespan entropy generation concept, this study suggests that an intermittent fasting diet, which means skipping some meals without increasing the calories uptake in the other courses, may increase longevity. More than 1.32 million people died in 2017 because of chronic liver diseases, and a quarter of the world's population has non-alcoholic fatty liver disease. There are no specific dietary guidelines available for the treatment of non-alcoholic fatty liver diseases but shifting to a healthier diet is recommended as the primary treatment. A healthy obese person may generate 119.9 kJ/kg K per year of entropy and generate a total of 4796 kJ/kg K entropy in the first 40 years of life. If obese persons continue to consume the same diet, they may have 94 years of life expectancy. After age 40, Child-Pugh Score A, B, and C NAFLD patients may generate 126.2, 149.9, and 272.5 kJ/kg K year of entropy and have 92, 84, and 64 years of life expectancy, respectively. If they were to make a major recommended shift in their diet, the life expectancy of Child-Pugh Score A, B, and C patients may increase by 29, 32, and 43 years, respectively.
Collapse
Affiliation(s)
- Melek Ece Öngel
- Department of Physiology, Faculty of Medicine, Yeditepe University, Kayısdagi, Atasehir, Istanbul 34755, Turkey
| | - Cennet Yildiz
- Department of Food Engineering, Yeditepe University, Kayısdagi, Atasehir, Istanbul 34755, Turkey
| | - Özge Başer
- Department of Physiology, Faculty of Medicine, Yeditepe University, Kayısdagi, Atasehir, Istanbul 34755, Turkey
| | - Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Kayısdagi, Atasehir, Istanbul 34755, Turkey
| | - Mustafa Özilgen
- Department of Food Engineering, Yeditepe University, Kayısdagi, Atasehir, Istanbul 34755, Turkey
| |
Collapse
|
45
|
Cernea S, Onișor D. Screening and interventions to prevent nonalcoholic fatty liver disease/nonalcoholic steatohepatitis-associated hepatocellular carcinoma. World J Gastroenterol 2023; 29:286-309. [PMID: 36687124 PMCID: PMC9846941 DOI: 10.3748/wjg.v29.i2.286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/06/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Liver cancer is the sixth most commonly diagnosed cancer worldwide, with hepatocellular carcinoma (HCC) comprising most cases. Besides hepatitis B and C viral infections, heavy alcohol use, and nonalcoholic steatohepatitis (NASH)-associated advanced fibrosis/cirrhosis, several other risk factors for HCC have been identified (i.e. old age, obesity, insulin resistance, type 2 diabetes). These might in fact partially explain the occurrence of HCC in non-cirrhotic patients without viral infection. HCC surveillance through effective screening programs is still an unmet need for many nonalcoholic fatty liver disease (NAFLD) patients, and identification of pre-cirrhotic individuals who progress to HCC represents a substantial challenge in clinical practice at the moment. Patients with NASH-cirrhosis should undergo systematic HCC surveillance, while this might be considered in patients with advanced fibrosis based on individual risk assessment. In this context, interventions that potentially prevent NAFLD/ NASH-associated HCC are needed. This paper provided an overview of evidence related to lifestyle changes (i.e. weight loss, physical exercise, adherence to healthy dietary patterns, intake of certain dietary components, etc.) and pharmacological interventions that might play a protective role by targeting the underlying causative factors and pathogenetic mechanisms. However, well-designed prospective studies specifically dedicated to NAFLD/NASH patients are still needed to clarify the relationship with HCC risk.
Collapse
Affiliation(s)
- Simona Cernea
- Department M3/Internal Medicine I, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureş 540139, Romania
- Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, Târgu Mureş 540136, Romania
| | - Danusia Onișor
- Department ME2/Internal Medicine VII, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş 540139, Romania
- Gastroenterology Department, Mureș County Clinical Hospital, Târgu Mureș 540072, Romania
| |
Collapse
|
46
|
Yang Z, Tian R, Zhang XJ, Cai J, She ZG, Li H. Effects of treatment of non-alcoholic fatty liver disease on heart failure with preserved ejection fraction. Front Cardiovasc Med 2023; 9:1120085. [PMID: 36712249 PMCID: PMC9877359 DOI: 10.3389/fcvm.2022.1120085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023] Open
Abstract
In the past few decades, non-alcoholic fatty liver disease (NAFLD) and heart failure with preserved ejection fraction (HFpEF) have become the most common chronic liver disease and the main form of heart failure (HF), respectively. NAFLD is closely associated with HFpEF by sharing common risk factors and/or by boosting systemic inflammation, releasing other secretory factors, and having an expansion of epicardial adipose tissue (EAT). Therefore, the treatments of NAFLD may also affect the development and prognosis of HFpEF. However, no specific drugs for NAFLD have been approved by the Food and Drug Administration (FDA) and some non-specific treatments for NAFLD are applied in the clinic. Currently, the treatments of NAFLD can be divided into non-pharmacological and pharmacological treatments. Non-pharmacological treatments mainly include dietary intervention, weight loss by exercise, caloric restriction, and bariatric surgery. Pharmacological treatments mainly include administering statins, thiazolidinediones, glucagon-like peptide-1 receptor agonists, sodium-glucose cotransporter 2 inhibitors, and metformin. This review will mainly focus on analyzing how these treatments may affect the development and prognosis of HFpEF.
Collapse
Affiliation(s)
- Zifeng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ruifeng Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| |
Collapse
|
47
|
Zheng M, Yang X, Wu Q, Gong Y, Pang N, Ge X, Nagaratnam N, Jiang P, Zhou M, Hu T, Hua H, Zheng K, Huang X, Yu Y. Butyrate Attenuates Hepatic Steatosis Induced by a High-Fat and Fiber-Deficient Diet via the Hepatic GPR41/43-CaMKII/HDAC1-CREB Pathway. Mol Nutr Food Res 2023; 67:e2200597. [PMID: 36382553 PMCID: PMC10078002 DOI: 10.1002/mnfr.202200597] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 11/17/2022]
Abstract
SCOPE Hepatic steatosis is a major health issue that can be attenuated by a healthy diet. This study investigates the effects and molecular mechanisms of butyrate, a dietary fiber metabolite of gut microbiota, on lipid metabolism in hepatocytes. METHODS AND RESULTS This study examines the effects of butyrate (0-8 mM) on lipid metabolism in primary hepatocytes. The results show that butyrate (2 mM) consistently inhibits lipogenic genes and activates lipid oxidation-related gene expression in hepatocytes. Furthermore, butyrate modulates lipid metabolism genes, reduces fat droplet accumulation, and activates the calcium/calmodulin-dependent protein kinase II (CaMKII)/histone deacetylase 1 (HDAC1)-cyclic adenosine monophosphate response element binding protein (CREB) signaling pathway in the primary hepatocytes and liver of wild-type (WT) mice, but not in G-protein-coupled receptor 41 (GPR41) knockout and 43 (GPR43) knockout mice. This suggests that butyrate regulated hepatic lipid metabolism requires GPR41 and GPR43. Finally, the study finds that dietary butyrate supplementation (5%) ameliorates hepatic steatosis and abnormal lipid metabolism in the liver of mice fed a high-fat and fiber-deficient diet for 15 weeks. CONCLUSION This work reveals that butyrate improves hepatic lipid metabolism through the GPR41/43-CaMKII/HDAC1-CREB pathway, providing support for consideration of butyrate as a dietary supplement to prevent the progression of NAFLD induced by the Western-style diet.
Collapse
Affiliation(s)
- Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Qingyuan Wu
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Yuying Gong
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Ning Pang
- Tianjin Third Central HospitalTianjin300170P. R. China
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Nathan Nagaratnam
- Illawarra Health and Medical Research Institute(IHMRI) and School of MedicineUniversity of WollongongWollongongNSW2522Australia
| | - Pengfei Jiang
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Menglu Zhou
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Tao Hu
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Hui Hua
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
- National Experimental Demonstration Center for Basic Medicine EducationXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Xu‐Feng Huang
- Illawarra Health and Medical Research Institute(IHMRI) and School of MedicineUniversity of WollongongWollongongNSW2522Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
- Illawarra Health and Medical Research Institute(IHMRI) and School of MedicineUniversity of WollongongWollongongNSW2522Australia
| |
Collapse
|
48
|
Ozlu T, Yilmaz Y, Gunes FE. The effects of dietary intervention on fibrosis and biochemical parameters in metabolic-associated fatty liver disease. Minerva Gastroenterol (Torino) 2022; 68:426-433. [PMID: 33829726 DOI: 10.23736/s2724-5985.21.02809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Metabolic-associated fatty liver disease (MAFLD) affects nearly one quarter of the world's adult population creating large health loads and economic loads in society with no approved pharmacotherapy found yet. The number of studies showing the effect of nutrition on fibrosis accompanying MAFLD are insufficient. This study was planned with the aim of investigating the effect of nutritional treatment on liver injury. METHODS This research is a prospective, non-medication interventional study completed with 39 participants chosen from MAFLD patients with fibrosis. Post-treatment lasted three months, patients had liver stiffness measurements (LSM), anthropometric measurements and biochemical tests repeated. RESULTS In pre- and post-treatment, there were statistically significant correlations found between LSM with serum gamma glutamyl transferase (GGT) values, and between controlled attenuation parameter (CAP) with Body Mass Index (BMI) and fat mass (P<0.05). Post-treatment, statistically significant improvements were determined in the anthropometric measurements and biochemical findings. Moreover, post-treatment LSM and CAP values showed significant positive correlation compared to pretreatment (P<0.05). CONCLUSIONS This study found dietary interventions have an important place within the scope of fibrosis treatment. Preparation and application of medical nutrition treatment suitable for the clinical features of patients and completing correct lifestyle changes has an ameliorating effect on disease prognosis. There is a need for advanced studies with larger sample groups to further enlighten this topic.
Collapse
Affiliation(s)
- Tugce Ozlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bahcesehir University, Istanbul, Turkey -
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Turkey.,Liver Research Unit, Institute of Gastroenterology, Marmara University, Istanbul, Turkey
| | - Fatma E Gunes
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
49
|
Eslam M, El-Serag HB, Francque S, Sarin SK, Wei L, Bugianesi E, George J. Metabolic (dysfunction)-associated fatty liver disease in individuals of normal weight. Nat Rev Gastroenterol Hepatol 2022; 19:638-651. [PMID: 35710982 DOI: 10.1038/s41575-022-00635-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) affects up to a third of the global population; its burden has grown in parallel with rising rates of type 2 diabetes mellitus and obesity. MAFLD increases the risk of end-stage liver disease, hepatocellular carcinoma, death and liver transplantation and has extrahepatic consequences, including cardiometabolic disease and cancers. Although typically associated with obesity, there is accumulating evidence that not all people with overweight or obesity develop fatty liver disease. On the other hand, a considerable proportion of patients with MAFLD are of normal weight, indicating the importance of metabolic health in the pathogenesis of the disease regardless of body mass index. The clinical profile, natural history and pathophysiology of patients with so-called lean MAFLD are not well characterized. In this Review, we provide epidemiological data on this group of patients and consider overall metabolic health and metabolic adaptation as a framework to best explain the pathogenesis of MAFLD and its heterogeneity in individuals of normal weight and in those who are above normal weight. This framework provides a conceptual schema for interrogating the MAFLD phenotype in individuals of normal weight that can translate to novel approaches for diagnosis and patient care.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| | - Hashem B El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
50
|
Manjarín R, Dillard K, Coffin M, Hernandez GV, Smith VA, Noland-Lidell T, Gehani TR, Smart HJ, Wheeler K, Sprayberry KA, Edwards MS, Fanter RK, Glanz H, Immoos C, Santiago-Rodriguez TM, Blank JM, Burrin DG, Piccolo BD, Abo-Ismail M, La Frano MR, Maj M. Dietary fat composition shapes bile acid metabolism and severity of liver injury in a pig model of pediatric NAFLD. Am J Physiol Endocrinol Metab 2022; 323:E187-E206. [PMID: 35858244 PMCID: PMC9423774 DOI: 10.1152/ajpendo.00052.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/09/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate the effect of dietary fatty acid (FA) composition on bile acid (BA) metabolism in a pig model of NAFLD, by using a multiomics approach combined with histology and serum biochemistry. Thirty 20-day-old Iberian pigs pair-housed in pens were randomly assigned to receive 1 of 3 hypercaloric diets for 10 wk: 1) lard-enriched (LAR; n = 5 pens), 2) olive oil-enriched (OLI; n = 5), and 3) coconut oil-enriched (COC; n = 5). Animals were euthanized on week 10 after blood sampling, and liver, colon, and distal ileum (DI) were collected for histology, metabolomics, and transcriptomics. Data were analyzed by multivariate and univariate statistics. Compared with OLI and LAR, COC increased primary and secondary BAs in liver, plasma, and colon. In addition, both COC and OLI reduced circulating fibroblast growth factor 19, increased hepatic necrosis, composite lesion score, and liver enzymes in serum, and upregulated genes involved in hepatocyte proliferation and DNA repair. The severity of liver disease in COC and OLI pigs was associated with increased levels of phosphatidylcholines, medium-chain triacylglycerides, trimethylamine-N-oxide, and long-chain acylcarnitines in the liver, and the expression of profibrotic markers in DI, but not with changes in the composition or size of BA pool. In conclusion, our results indicate a role of dietary FAs in the regulation of BA metabolism and progression of NAFLD. Interventions that aim to modify the composition of dietary FAs, rather than to regulate BA metabolism or signaling, may be more effective in the treatment of NAFLD.NEW & NOTEWORTHY Bile acid homeostasis and signaling is disrupted in NAFLD and may play a central role in the development of the disease. However, there are no studies addressing the impact of diet on bile acid metabolism in patients with NAFLD. In juvenile Iberian pigs, we show that fatty acid composition in high-fat high-fructose diets affects BA levels in liver, plasma, and colon but these changes were not associated with the severity of the disease.
Collapse
Affiliation(s)
- Rodrigo Manjarín
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Kayla Dillard
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Morgan Coffin
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Gabriella V Hernandez
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Victoria A Smith
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Trista Noland-Lidell
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Tanvi R Gehani
- Department of Biomedical Engineering, California Polytechnic State University, San Luis Obispo, California
| | - Hayden J Smart
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Kevin Wheeler
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California
| | - Kimberly A Sprayberry
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Mark S Edwards
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Rob K Fanter
- College of Agriculture, Food and Environmental Sciences, California Polytechnic State University, San Luis Obispo, California
- Center for Health Research, California Polytechnic State University, San Luis Obispo, California
| | - Hunter Glanz
- Department of Statistics, California Polytechnic State University, San Luis Obispo, California
| | - Chad Immoos
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California
| | | | - Jason M Blank
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California
| | - Douglas G Burrin
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Brian D Piccolo
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mohammed Abo-Ismail
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
- Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, California
| | - Magdalena Maj
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, California
| |
Collapse
|