1
|
Du K, Chen H, Pan Z, Zhao M, Cheng S, Luo Y, Zhang W, Li D. Small-molecule activation of TFEB alleviates Niemann-Pick disease type C via promoting lysosomal exocytosis and biogenesis. eLife 2025; 13:RP103137. [PMID: 40184172 PMCID: PMC11970905 DOI: 10.7554/elife.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Niemann-Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.
Collapse
Affiliation(s)
- Kaili Du
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of TechnologyHangzhouChina
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Hongyu Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of TechnologyHangzhouChina
| | - Zhaonan Pan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of TechnologyHangzhouChina
| | - Mengli Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of TechnologyHangzhouChina
| | - Shixue Cheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of TechnologyHangzhouChina
| | - Yu Luo
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of TechnologyHangzhouChina
| | - Wenhe Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of TechnologyHangzhouChina
| | - Dan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of TechnologyHangzhouChina
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| |
Collapse
|
2
|
Sachdev V, Duta-Mare M, Korbelius M, Vujić N, Leopold C, Freark de Boer J, Rainer S, Fickert P, Kolb D, Kuipers F, Radovic B, Gorkiewicz G, Kratky D. Impaired Bile Acid Metabolism and Gut Dysbiosis in Mice Lacking Lysosomal Acid Lipase. Cells 2021; 10:2619. [PMID: 34685599 PMCID: PMC8533808 DOI: 10.3390/cells10102619] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Lysosomal acid lipase (LAL) is the sole enzyme known to be responsible for the hydrolysis of cholesteryl esters and triglycerides at an acidic pH in lysosomes, resulting in the release of unesterified cholesterol and free fatty acids. However, the role of LAL in diet-induced adaptations is largely unexplored. In this study, we demonstrate that feeding a Western-type diet to Lal-deficient (LAL-KO) mice triggers metabolic reprogramming that modulates gut-liver cholesterol homeostasis. Induction of ileal fibroblast growth factor 15 (three-fold), absence of hepatic cholesterol 7α-hydroxylase expression, and activation of the ERK phosphorylation cascade results in altered bile acid composition, substantial changes in the gut microbiome, reduced nutrient absorption by 40%, and two-fold increased fecal lipid excretion in LAL-KO mice. These metabolic adaptations lead to impaired bile acid synthesis, lipoprotein uptake, and cholesterol absorption and ultimately to the resistance of LAL-KO mice to diet-induced obesity. Our results indicate that LAL-derived lipolytic products might be important metabolic effectors in the maintenance of whole-body lipid homeostasis.
Collapse
Affiliation(s)
- Vinay Sachdev
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (V.S.); (M.D.-M.); (M.K.); (N.V.); (C.L.); (S.R.); (B.R.)
| | - Madalina Duta-Mare
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (V.S.); (M.D.-M.); (M.K.); (N.V.); (C.L.); (S.R.); (B.R.)
| | - Melanie Korbelius
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (V.S.); (M.D.-M.); (M.K.); (N.V.); (C.L.); (S.R.); (B.R.)
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (V.S.); (M.D.-M.); (M.K.); (N.V.); (C.L.); (S.R.); (B.R.)
| | - Christina Leopold
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (V.S.); (M.D.-M.); (M.K.); (N.V.); (C.L.); (S.R.); (B.R.)
| | - Jan Freark de Boer
- Department of Pediatrics, University Medical Center Groningen, 9713 Groningen, The Netherlands; (J.F.d.B.); (F.K.)
- Department of Laboratory Medicine, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Silvia Rainer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (V.S.); (M.D.-M.); (M.K.); (N.V.); (C.L.); (S.R.); (B.R.)
| | - Peter Fickert
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Dagmar Kolb
- Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, 8010 Graz, Austria;
- Center for Medical Research Medical University of Graz, 8010 Graz, Austria
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen, 9713 Groningen, The Netherlands; (J.F.d.B.); (F.K.)
- Department of Laboratory Medicine, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Branislav Radovic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (V.S.); (M.D.-M.); (M.K.); (N.V.); (C.L.); (S.R.); (B.R.)
| | - Gregor Gorkiewicz
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (V.S.); (M.D.-M.); (M.K.); (N.V.); (C.L.); (S.R.); (B.R.)
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
3
|
Ramirez CM, Taylor AM, Lopez AM, Repa JJ, Turley SD. Delineation of metabolic responses of Npc1 -/-nih mice lacking the cholesterol-esterifying enzyme SOAT2 to acute treatment with 2-hydroxypropyl-β-cyclodextrin. Steroids 2020; 164:108725. [PMID: 32890578 PMCID: PMC7680374 DOI: 10.1016/j.steroids.2020.108725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022]
Abstract
Lipids present in lipoproteins cleared from the circulation are processed sequentially by three major proteins within the late endosomal/lysosomal (E/L) compartment of all cells: lysosomal acid lipase (LAL), Niemann-Pick (NPC) C2 and NPC1. When all three of these proteins are functioning normally, unesterified cholesterol (UC) exits the E/L compartment and is used in plasma membrane maintenance and various pathways in the endoplasmic reticulum including esterification by sterol O-acyltransferase 2 (SOAT2) or SOAT1 depending partly on cell type. Mutations in either NPC2 or NPC1 result in continual entrapment of UC and glycosphingolipids leading to neurodegeneration, pulmonary dysfunction, splenomegaly and liver damage. To date, the most effective agent for promoting release of entrapped UC in nearly all organs of NPC1-deficient mice and cats is 2-hydroxypropyl-β-cyclodextrin (2HPβCD). The cytotoxic nature of the liberated UC triggers various defenses including suppression of sterol synthesis and increased esterification. The present studies, using the Npc1-/-nih mouse model, measured the comparative quantitative importance of these two responses in the liver versus the spleen of Npc1-/-: Soat2+/+ and Npc1-/-: Soat2-/- mice in the 24 h following a single acute treatment with 2HPβCD. In the liver but not the spleen of both types of mice suppression of synthesis alone or in combination with increased esterification provided the major defense against the rise in unsequestered cellular UC content. These findings have implications for systemic 2HPβCD treatment in NPC1 patients in view of the purportedly low levels of SOAT2 activity in human liver.
Collapse
Affiliation(s)
- Charina M Ramirez
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anna M Taylor
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joyce J Repa
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Regan JA, Shah SH. Obesity Genomics and Metabolomics: a Nexus of Cardiometabolic Risk. Curr Cardiol Rep 2020; 22:174. [PMID: 33040225 DOI: 10.1007/s11886-020-01422-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Obesity is a significant international public health epidemic with major downstream consequences on morbidity and mortality. While lifestyle factors contribute, there is an evolving understanding of genomic and metabolomic pathways involved with obesity and its relationship with cardiometabolic risk. This review will provide an overview of some of these important findings from both a biologic and clinical perspective. RECENT FINDINGS Recent studies have identified polygenic risk scores and metabolomic biomarkers of obesity and related outcomes, which have also highlighted biological pathways, such as the branched-chain amino acid (BCAA) pathway that is dysregulated in this disease. These biomarkers may help in personalizing obesity interventions and for mitigation of future cardiometabolic risk. A multifaceted approach is necessary to impact the growing epidemic of obesity and related diseases. This will likely include incorporating precision medicine approaches with genomic and metabolomic biomarkers to personalize interventions and improve risk prediction.
Collapse
Affiliation(s)
- Jessica A Regan
- Department of Medicine, Duke University, Durham, NC, USA.,Duke Molecular Physiology Institute, Duke University, 300 N. Duke Street, DUMC, Box 104775, Durham, NC, 27701, USA
| | - Svati H Shah
- Department of Medicine, Duke University, Durham, NC, USA. .,Duke Molecular Physiology Institute, Duke University, 300 N. Duke Street, DUMC, Box 104775, Durham, NC, 27701, USA.
| |
Collapse
|
5
|
Eskes ECB, Sjouke B, Vaz FM, Goorden SMI, van Kuilenburg ABP, Aerts JMFG, Hollak CEM. Biochemical and imaging parameters in acid sphingomyelinase deficiency: Potential utility as biomarkers. Mol Genet Metab 2020; 130:16-26. [PMID: 32088119 DOI: 10.1016/j.ymgme.2020.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Acid Sphingomyelinase Deficiency (ASMD), or Niemann-Pick type A/B disease, is a rare lipid storage disorder leading to accumulation of sphingomyelin and its precursors primarily in macrophages. The disease has a broad phenotypic spectrum ranging from a fatal infantile form with severe neurological involvement (the infantile neurovisceral type) to a primarily visceral form with different degrees of pulmonary, liver, spleen and skeletal involvement (the chronic visceral type). With the upcoming possibility of treatment with enzyme replacement therapy, the need for biomarkers that predict or reflect disease progression has increased. Biomarkers should be validated for their use as surrogate markers of clinically relevant endpoints. In this review, clinically important endpoints as well as biochemical and imaging markers of ASMD are discussed and potential new biomarkers are identified. We suggest as the most promising biomarkers that may function as surrogate endpoints in the future: diffusion capacity measured by spirometry, spleen volume, platelet count, low-density lipoprotein cholesterol, liver fibrosis measured with a fibroscan, lysosphingomyelin and walked distance in six minutes. Currently, no biomarkers have been validated. Several plasma markers of lipid-laden cells, fibrosis or inflammation are of high potential as biomarkers and deserve further study. Based upon current guidelines for biomarkers, recommendations for the validation process are provided.
Collapse
Affiliation(s)
- Eline C B Eskes
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Barbara Sjouke
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Susan M I Goorden
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, University of Leiden, Department of Medical Biochemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Carla E M Hollak
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Lopez AM, Ramirez CM, Taylor AM, Jones RD, Repa JJ, Turley SD. Ontogenesis and Modulation of Intestinal Unesterified Cholesterol Sequestration in a Mouse Model of Niemann-Pick C1 Disease. Dig Dis Sci 2020; 65:158-167. [PMID: 31312996 DOI: 10.1007/s10620-019-05736-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/11/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Mutations in the NPC1 gene result in sequestration of unesterified cholesterol (UC) and glycosphingolipids in most tissues leading to multi-organ disease, especially in the brain, liver, lungs, and spleen. Various data from NPC1-deficient mice suggest the small intestine (SI) is comparatively less affected, even in late stage disease. METHODS Using the Npc1nih mouse model, we measured SI weights and total cholesterol (TC) levels in Npc1-/- versus Npc1+/+ mice as a function of age, and then after prolonged ezetimibe-induced inhibition of cholesterol absorption. Next, we determined intestinal levels of UC and esterified cholesterol (EC), and cholesterol synthesis rates in Npc1-/- and Npc1+/+ mice, with and without the cholesterol-esterifying enzyme SOAT2, following a once-only subcutaneous injection with 2-hydroxypropyl-β-cyclodextrin (2HPβCD). RESULTS By ~ 42 days of age, intestinal TC levels averaged ~ 2.1-fold more (mostly UC) in the Npc1-/- versus Npc1+/+ mice with no further increase thereafter. Chronic ezetimibe treatment lowered intestinal TC levels in the Npc1-/- mice by only ~ 16%. In Npc1-/- mice given 2HPβCD 24 h earlier, UC levels fell, EC levels increased (although less so in mice lacking SOAT2), and cholesterol synthesis was suppressed equally in the Npc1-/-:Soat2+/+ and Npc1-/-:Soat2-/- mice. CONCLUSIONS The low and static levels of intestinal UC sequestration in Npc1-/- mice likely reflect the continual sloughing of cells from the mucosa. This sequestration is blunted by about the same extent following a single acute treatment with 2HPβCD as it is by a prolonged ezetimibe-induced block of cholesterol absorption.
Collapse
MESH Headings
- 2-Hydroxypropyl-beta-cyclodextrin/pharmacology
- Animals
- Cholesterol/metabolism
- Disease Models, Animal
- Ezetimibe/pharmacology
- Female
- Intestinal Absorption/drug effects
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Intracellular Signaling Peptides and Proteins/deficiency
- Intracellular Signaling Peptides and Proteins/genetics
- Male
- Mice, 129 Strain
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Niemann-Pick C1 Protein
- Niemann-Pick Disease, Type C/drug therapy
- Niemann-Pick Disease, Type C/genetics
- Niemann-Pick Disease, Type C/metabolism
- Sterol O-Acyltransferase/genetics
- Sterol O-Acyltransferase/metabolism
- Sterol O-Acyltransferase 2
Collapse
Affiliation(s)
- Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Charina M Ramirez
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Anna M Taylor
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Ryan D Jones
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Department of Pathology, Northwestern University, Chicago, IL, 60611, USA
| | - Joyce J Repa
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
| |
Collapse
|
7
|
Santiago-Mujica E, Flunkert S, Rabl R, Neddens J, Loeffler T, Hutter-Paier B. Hepatic and neuronal phenotype of NPC1 -/- mice. Heliyon 2019; 5:e01293. [PMID: 30923761 PMCID: PMC6423819 DOI: 10.1016/j.heliyon.2019.e01293] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/15/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Niemann-Pick type C disease (NPC) is a fatal autosomal recessive disorder characterized by a defect in the intracellular transport of lipoproteins leading to the accumulation of lipids in diverse tissues. A visceral and neuronal phenotype mimicking human NPC1 disease has been described in NPC1 mutant mice. These mice are by now the most widely used NPC1 rodent model to study NPC and developmental compounds against this devastating disease. Here we characterized NPC1-/- mice for their hepatic and neuronal phenotype to confirm the stability of the phenotype, provide a characterization of disease progression and pinpoint the age of robust phenotype onset. Animals of 4-10 weeks of age were analyzed for general health, motor deficits as well as hepatic and neuronal alterations with a special focus on cerebellar pathology. Our results show that NPC1-/- mice have a reduced general health at the age of 9-10 weeks. Robust motor deficits can be observed even earlier at 8 weeks of age. Hepatic changes included increased organ weight and cholesterol levels at 6 weeks of age accompanied by severely increased liver enzyme levels. Analysis of NPC1-/- brain pathology showed decreased cholesterol and increased Aβ levels in the hippocampus at the age of 6 weeks. Further analysis revealed a decrease of the cytokine IL-12p70 in the cerebellum along with a very early increase of astrocytosis. Hippocampal IL-12p70 levels were increased at the age of 6 weeks followed by increased activated microglia levels. By the age of 10 weeks, also cerebellar Aβ levels were increased along with strongly reduced Calbindin D-28k levels. Our results validate and summarize the progressive development of the hepatic and neuronal phenotype of NPC1-/- mice that starts with cerebellar astrocytosis, making this mouse model a valuable tool for the development of new compounds against NPC.
Collapse
Key Words
- AAALAC, Association for Assessment and Accreditation of Laboratory Animal Care
- ALT, alanine aminotransferase
- ANOVA, Analysis of variance
- AOI, Area of interest
- AP, alkaline phosphatase
- APP, Amyloid Precursor Protein
- AST, aspartate aminotransferase
- CD45, cluster of differentiation 45
- CNS, central nervous system
- Cell biology
- DAPI, 4′,6-Diamidin-2-phenylindol
- GFAP, Glial fibrillary acidic protein
- IFN-γ, Interferon-gamma
- IL-10/12, Interleukin-10/12
- KC, keratinocyte chemoattractant
- MAP2, microtubuli-associated protein 2
- Molecular biology
- NPC, Niemann-Pick type C
- Neuroscience
- Physiology
- TNF-α, tumor necrosis factor-alpha
- WT, wildtype
Collapse
|
8
|
Gadolinium Chloride Rescues Niemann⁻Pick Type C Liver Damage. Int J Mol Sci 2018; 19:ijms19113599. [PMID: 30441844 PMCID: PMC6274821 DOI: 10.3390/ijms19113599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023] Open
Abstract
Niemann–Pick type C (NPC) disease is a rare neurovisceral cholesterol storage disorder that arises from loss of function mutations in the NPC1 or NPC2 genes. Soon after birth, some patients present with an aggressive hepatosplenomegaly and cholestatic signs. Histopathologically, the liver presents with large numbers of foam cells; however, their role in disease pathogenesis has not been explored in depth. Here, we studied the consequences of gadolinium chloride (GdCl3) treatment, a well-known Kupffer/foam cell inhibitor, at late stages of NPC liver disease and compared it with NPC1 genetic rescue in hepatocytes in vivo. GdCl3 treatment successfully blocked the endocytic capacity of hepatic Kupffer/foam measured by India ink endocytosis, decreased the levels CD68—A marker of Kupffer cells in the liver—and normalized the transaminase levels in serum of NPC mice to a similar extent to those obtained by genetic Npc1 rescue of liver cells. Gadolinium salts are widely used as magnetic resonance imaging (MRI) contrasts. This study opens the possibility of targeting foam cells with gadolinium or by other means for improving NPC liver disease. Synopsis: Gadolinium chloride can effectively rescue some parameters of liver dysfunction in NPC mice and its potential use in patients should be carefully evaluated.
Collapse
|
9
|
Lopez AM, Jones RD, Repa JJ, Turley SD. Niemann-Pick C1-deficient mice lacking sterol O-acyltransferase 2 have less hepatic cholesterol entrapment and improved liver function. Am J Physiol Gastrointest Liver Physiol 2018; 315:G454-G463. [PMID: 29878847 PMCID: PMC6230690 DOI: 10.1152/ajpgi.00124.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/31/2023]
Abstract
Cholesteryl esters are generated at multiple sites in the body by sterol O-acyltransferase (SOAT) 1 or SOAT2 in various cell types and lecithin cholesterol acyltransferase in plasma. Esterified cholesterol and triacylglycerol contained in lipoproteins cleared from the circulation via receptor-mediated or bulk-phase endocytosis are hydrolyzed by lysosomal acid lipase within the late endosomal/lysosomal (E/L) compartment. Then, through the successive actions of Niemann-Pick C (NPC) 2 and NPC 1, unesterified cholesterol (UC) is exported from the E/L compartment to the cytosol. Mutations in either NPC1 or NPC2 lead to continuing entrapment of UC in all organs, resulting in multisystem disease, which includes hepatic dysfunction and in some cases liver failure. These studies investigated primarily whether elimination of SOAT2 in NPC1-deficient mice impacted hepatic UC sequestration, inflammation, and transaminase activities. Measurements were made in 7-wk-old mice fed a low-cholesterol chow diet or one enriched with cholesterol starting 2 wk before study. In the chow-fed mice, NPC1:SOAT2 double knockouts, compared with their littermates lacking only NPC1, had 20% less liver mass, 28% lower hepatic UC concentrations, and plasma alanine aminotransferase and aspartate aminotransferase activities that were decreased by 48% and 36%, respectively. mRNA expression levels for several markers of inflammation were all significantly lower in the NPC1 mutants lacking SOAT2. The existence of a new class of potent and selective SOAT2 inhibitors provides an opportunity for exploring if suppression of this enzyme could potentially become an adjunctive therapy for liver disease in NPC1 deficiency. NEW & NOTEWORTHY In Niemann-Pick type C1 (NPC1) disease, the entrapment of unesterified cholesterol (UC) in the endosomal/lysosomal compartment of all cells causes multiorgan disease, including neurodegeneration, pulmonary dysfunction, and liver failure. Some of this sequestered UC entered cells initially in the esterified form. When sterol O-acyltransferase 2, a cholesterol esterifying enzyme present in enterocytes and hepatocytes, is eliminated in NPC1-deficient mice, there is a reduction in their hepatomegaly, hepatic UC content, and cellular injury.
Collapse
Affiliation(s)
- Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Ryan D Jones
- Department of Physiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Joyce J Repa
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
- Department of Physiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
10
|
Lamri A, Pigeyre M, Garver WS, Meyre D. The Extending Spectrum of NPC1-Related Human Disorders: From Niemann-Pick C1 Disease to Obesity. Endocr Rev 2018; 39:192-220. [PMID: 29325023 PMCID: PMC5888214 DOI: 10.1210/er.2017-00176] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/02/2018] [Indexed: 12/22/2022]
Abstract
The Niemann-Pick type C1 (NPC1) protein regulates the transport of cholesterol and fatty acids from late endosomes/lysosomes and has a central role in maintaining lipid homeostasis. NPC1 loss-of-function mutations in humans cause NPC1 disease, a rare autosomal-recessive lipid-storage disorder characterized by progressive and lethal neurodegeneration, as well as liver and lung failure, due to cholesterol infiltration. In humans, genome-wide association studies and post-genome-wide association studies highlight the implication of common variants in NPC1 in adult-onset obesity, body fat mass, and type 2 diabetes. Heterozygous human carriers of rare loss-of-function coding variants in NPC1 display an increased risk of morbid adult obesity. These associations have been confirmed in mice models, showing an important interaction with high-fat diet. In this review, we describe the current state of knowledge for NPC1 variants in relationship to pleiotropic effects on metabolism. We provide evidence that NPC1 gene variations may predispose to common metabolic diseases by modulating steroid hormone synthesis and/or lipid homeostasis. We also propose several important directions of research to further define the complex roles of NPC1 in metabolism. This review emphasizes the contribution of NPC1 to obesity and its metabolic complications.
Collapse
Affiliation(s)
- Amel Lamri
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Marie Pigeyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,INSERM 1190, European Genomics Institute for Diabetes, University of Lille, CHRU Lille, Lille, France
| | - William S Garver
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Jiang X, Sidhu R, Mydock-McGrane L, Hsu FF, Covey DF, Scherrer DE, Earley B, Gale SE, Farhat NY, Porter FD, Dietzen DJ, Orsini JJ, Berry-Kravis E, Zhang X, Reunert J, Marquardt T, Runz H, Giugliani R, Schaffer JE, Ory DS. Development of a bile acid-based newborn screen for Niemann-Pick disease type C. Sci Transl Med 2017; 8:337ra63. [PMID: 27147587 DOI: 10.1126/scitranslmed.aaf2326] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/11/2016] [Indexed: 11/02/2022]
Abstract
Niemann-Pick disease type C (NPC) is a fatal, neurodegenerative, cholesterol storage disorder. With new therapeutics in clinical trials, it is imperative to improve diagnostics and facilitate early intervention. We used metabolomic profiling to identify potential markers and discovered three unknown bile acids that were increased in plasma from NPC but not control subjects. The bile acids most elevated in the NPC subjects were identified as 3β,5α,6β-trihydroxycholanic acid and its glycine conjugate, which were shown to be metabolites of cholestane-3β,5α,6β-triol, an oxysterol elevated in NPC. A high-throughput mass spectrometry-based method was developed and validated to measure the glycine-conjugated bile acid in dried blood spots. Analysis of dried blood spots from 4992 controls, 134 NPC carriers, and 44 NPC subjects provided 100% sensitivity and specificity in the study samples. Quantification of the bile acid in dried blood spots, therefore, provides the basis for a newborn screen for NPC that is ready for piloting in newborn screening programs.
Collapse
Affiliation(s)
- Xuntian Jiang
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rohini Sidhu
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laurel Mydock-McGrane
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fong-Fu Hsu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David E Scherrer
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Earley
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sarah E Gale
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole Y Farhat
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Dennis J Dietzen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph J Orsini
- New York State Department of Health, Wadsworth Center, Albany, NY 12201, USA
| | | | - Xiaokui Zhang
- Genzyme, 500 Kendall Street, Cambridge, MA 02142, USA
| | - Janice Reunert
- Klinik und Poliklinik für Kinder- und Jugendmedizin-Allgemeine Pädiatrie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Thorsten Marquardt
- Klinik und Poliklinik für Kinder- und Jugendmedizin-Allgemeine Pädiatrie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Heiko Runz
- Institute of Human Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany. Department of Genetics and Pharmacogenomics, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Roberto Giugliani
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Jean E Schaffer
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
12
|
Yáñez M, Belbin O, Estrada L, Leal N, Contreras P, Lleó A, Burgos P, Zanlungo S, Alvarez A. c-Abl links APP-BACE1 interaction promoting APP amyloidogenic processing in Niemann-Pick type C disease. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2158-2167. [DOI: 10.1016/j.bbadis.2016.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 07/31/2016] [Accepted: 08/19/2016] [Indexed: 11/17/2022]
|
13
|
Defective Cytochrome P450-Catalysed Drug Metabolism in Niemann-Pick Type C Disease. PLoS One 2016; 11:e0152007. [PMID: 27019000 PMCID: PMC4809520 DOI: 10.1371/journal.pone.0152007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/08/2016] [Indexed: 11/19/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a neurodegenerative lysosomal storage disease caused by mutations in either the NPC1 or NPC2 gene. NPC is characterised by storage of multiple lipids in the late endosomal/lysosomal compartment, resulting in cellular and organ system dysfunction. The underlying molecular mechanisms that lead to the range of clinical presentations in NPC are not fully understood. While evaluating potential small molecule therapies in Npc1-/- mice, we observed a consistent pattern of toxicity associated with drugs metabolised by the cytochrome P450 system, suggesting a potential drug metabolism defect in NPC1 disease. Investigation of the P450 system in the context of NPC1 dysfunction revealed significant changes in the gene expression of many P450 associated genes across the full lifespan of Npc1-/- mice, decreased activity of cytochrome P450 reductase, and a global decrease of multiple cytochrome P450 catalysed dealkylation reactions. In vivo drug metabolism studies using a prototypic P450 metabolised drug, midazolam, confirmed dysfunction in drug clearance in the Npc1-/- mouse. Expression of the Phase II enzyme uridinediphosphate-glucuronosyltransferase (UGT) was also significantly reduced in Npc1-/- mice. Interestingly, reduced activity within the P450 system was also observed in heterozygous Npc1+/- mice. The reduced activity of P450 enzymes may be the result of bile acid deficiency/imbalance in Npc1-/- mice, as bile acid treatment significantly rescued P450 enzyme activity in Npc1-/- mice and has the potential to be an adjunctive therapy for NPC disease patients. The dysfunction in the cytochrome P450 system were recapitulated in the NPC1 feline model. Additionally, we present the first evidence that there are alterations in the P450 system in NPC1 patients.
Collapse
|
14
|
Acuña M, González-Hódar L, Amigo L, Castro J, Morales MG, Cancino GI, Groen AK, Young J, Miquel JF, Zanlungo S. Transgenic overexpression of Niemann-Pick C2 protein promotes cholesterol gallstone formation in mice. J Hepatol 2016; 64:361-369. [PMID: 26453970 DOI: 10.1016/j.jhep.2015.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Niemann-Pick C2 (NPC2) is a lysosomal protein involved in the egress of low-density lipoprotein-derived cholesterol from lysosomes to other intracellular compartments. NPC2 has been detected in several tissues and is also secreted from the liver into bile. We have previously shown that NPC2-deficient mice fed a lithogenic diet showed reduced biliary cholesterol secretion as well as cholesterol crystal and gallstone formation. This study aimed to investigate the consequences of NPC2 hepatic overexpression on liver cholesterol metabolism, biliary lipid secretion, gallstone formation and the effect of NPC2 on cholesterol crystallization in model bile. METHODS We generated NPC2 transgenic mice (Npc2.Tg) and fed them either chow or lithogenic diets. We studied liver cholesterol metabolism, biliary lipid secretion, bile acid composition and gallstone formation. We performed cholesterol crystallization studies in model bile using a recombinant NPC2 protein. RESULTS No differences were observed in biliary cholesterol content or secretion between wild-type and Npc2.Tg mice fed the chow or lithogenic diets. Interestingly, Npc2.Tg mice showed an increased susceptibility to the lithogenic diet, developing more cholesterol gallstones at early times, but did not show differences in the bile acid hydrophobicity and gallbladder cholesterol saturation indices compared to wild-type mice. Finally, recombinant NPC2 decreased nucleation time in model bile. CONCLUSIONS These results suggest that NPC2 promotes cholesterol gallstone formation by decreasing the cholesterol nucleation time, indicating a pro-nucleating function of NPC2 in bile.
Collapse
Affiliation(s)
- Mariana Acuña
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; FONDAP "Center for Genome Regulation" (CGR), Santiago, Chile
| | - Lila González-Hódar
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ludwig Amigo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Castro
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M Gabriela Morales
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo I Cancino
- Neuroscience and Mental Health Program, The Hospital for Sick Children, Toronto, Canada
| | - Albert K Groen
- Departments of Pediatrics/Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Juan Young
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Juan Francisco Miquel
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; FONDAP "Center for Genome Regulation" (CGR), Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; FONDAP "Center for Genome Regulation" (CGR), Santiago, Chile.
| |
Collapse
|
15
|
Vitamin E dietary supplementation improves neurological symptoms and decreases c-Abl/p73 activation in Niemann-Pick C mice. Nutrients 2014; 6:3000-17. [PMID: 25079853 PMCID: PMC4145291 DOI: 10.3390/nu6083000] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 01/04/2023] Open
Abstract
Niemann-Pick C (NPC) disease is a fatal neurodegenerative disorder characterized by the accumulation of free cholesterol in lysosomes. We have previously reported that oxidative stress is the main upstream stimulus activating the proapoptotic c-Abl/p73 pathway in NPC neurons. We have also observed accumulation of vitamin E in NPC lysosomes, which could lead to a potential decrease of its bioavailability. Our aim was to determine if dietary vitamin E supplementation could improve NPC disease in mice. NPC mice received an alpha-tocopherol (α-TOH) supplemented diet and neurological symptoms, survival, Purkinje cell loss, α-TOH and nitrotyrosine levels, astrogliosis, and the c-Abl/p73 pathway functions were evaluated. In addition, the effect of α-TOH on the c-Abl/p73 pathway was evaluated in an in vitro NPC neuron model. The α-TOH rich diet delayed loss of weight, improved coordination and locomotor function and increased the survival of NPC mice. We found increased Purkinje neurons and α-TOH levels and reduced astrogliosis, nitrotyrosine and phosphorylated p73 in cerebellum. A decrease of c-Abl/p73 activation was also observed in the in vitro NPC neurons treated with α-TOH. In conclusion, our results show that vitamin E can delay neurodegeneration in NPC mice and suggest that its supplementation in the diet could be useful for the treatment of NPC patients.
Collapse
|
16
|
Tortelli B, Fujiwara H, Bagel JH, Zhang J, Sidhu R, Jiang X, Yanjanin NM, Shankar RK, Carillo-Carasco N, Heiss J, Ottinger E, Porter FD, Schaffer JE, Vite CH, Ory DS. Cholesterol homeostatic responses provide biomarkers for monitoring treatment for the neurodegenerative disease Niemann-Pick C1 (NPC1). Hum Mol Genet 2014; 23:6022-33. [PMID: 24964810 DOI: 10.1093/hmg/ddu331] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Niemann-Pick C1 (NPC1) disease is a rare, neurodegenerative lysosomal cholesterol storage disorder, typified by progressive cognitive and motor function impairment. Affected individuals usually succumb to the disease in adolescence. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD) has emerged as a promising intervention that reduces lipid storage and prolongs survival in NPC1 disease animal models. A barrier to the development of HP-β-CD and other treatments for NPC disease has been the lack of validated biochemical measures to evaluate efficacy. Here we explored whether cholesterol homeostatic responses resulting from HP-β-CD-mediated redistribution of sequestered lysosomal cholesterol could provide biomarkers to monitor treatment. Upon direct CNS delivery of HP-β-CD, we found increases in plasma 24(S)-HC in two independent NPC1 disease animal models, findings that were confirmed in human NPC1 subjects receiving HP-β-CD. Since circulating 24(S)-HC is almost exclusively CNS-derived, the increase in plasma 24(S)-HC provides a peripheral, non-invasive measure of the CNS effect of HP-β-CD. Our findings suggest that plasma 24(S)-HC, along with the other cholesterol-derived markers examined in this study, can serve as biomarkers that will accelerate development of therapeutics for NPC1 disease.
Collapse
Affiliation(s)
- Brett Tortelli
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Hideji Fujiwara
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Jessica H Bagel
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessie Zhang
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Rohini Sidhu
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Xuntian Jiang
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Nicole M Yanjanin
- Department of Health and Human Services, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Roopa Kanakatti Shankar
- Department of Health and Human Services, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Nuria Carillo-Carasco
- Department of Health and Human Services, Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA and
| | - John Heiss
- Department of Health and Human Services, Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA and
| | - Elizabeth Ottinger
- Therapeutics for Rare and Neglected Diseases (TRND) Program, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Forbes D Porter
- Department of Health and Human Services, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Jean E Schaffer
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Charles H Vite
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA,
| |
Collapse
|
17
|
Argüello G, Martinez P, Peña J, Chen O, Platt F, Zanlungo S, González M. Hepatic metabolic response to restricted copper intake in a Niemann–Pick C murine model. Metallomics 2014; 6:1527-39. [DOI: 10.1039/c4mt00056k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Niemann–Pick C disease (NPC) is a vesicular trafficking disorder primarily caused by mutations in theNpc1gene and characterized by liver dysfunction and neuropathology.
Collapse
Affiliation(s)
- Graciela Argüello
- INTA
- Laboratorio de Bioinformática y Expresión Génica
- Universidad de Chile
- Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR)
| | - Pablo Martinez
- Departamento de Gastroenterología
- Facultad de Medicina
- Pontificia Universidad Católica de Chile
- Santiago, Chile
| | - Juan Peña
- INTA
- Laboratorio de Bioinformática y Expresión Génica
- Universidad de Chile
- Santiago, Chile
| | - Oscar Chen
- Department of Pharmacology
- University of Oxford
- Oxford OX1 3QT, UK
| | - Frances Platt
- Department of Pharmacology
- University of Oxford
- Oxford OX1 3QT, UK
| | - Silvana Zanlungo
- FONDAP-Center of Genome Regulation (CGR)
- Santiago, Chile
- Departamento de Gastroenterología
- Facultad de Medicina
- Pontificia Universidad Católica de Chile
| | - Mauricio González
- INTA
- Laboratorio de Bioinformática y Expresión Génica
- Universidad de Chile
- Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR)
| |
Collapse
|
18
|
Disruption in connexin-based communication is associated with intracellular Ca²⁺ signal alterations in astrocytes from Niemann-Pick type C mice. PLoS One 2013; 8:e71361. [PMID: 23977027 PMCID: PMC3744576 DOI: 10.1371/journal.pone.0071361] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/27/2013] [Indexed: 01/12/2023] Open
Abstract
Reduced astrocytic gap junctional communication and enhanced hemichannel activity were recently shown to increase astroglial and neuronal vulnerability to neuroinflammation. Moreover, increasing evidence suggests that neuroinflammation plays a pivotal role in the development of Niemann-Pick type C (NPC) disease, an autosomal lethal neurodegenerative disorder that is mainly caused by mutations in the NPC1 gene. Therefore, we investigated whether the lack of NPC1 expression in murine astrocytes affects the functional state of gap junction channels and hemichannels. Cultured cortical astrocytes of NPC1 knock-out mice (Npc1−/−) showed reduced intercellular communication via gap junctions and increased hemichannel activity. Similarly, astrocytes of newborn Npc1−/− hippocampal slices presented high hemichannel activity, which was completely abrogated by connexin 43 hemichannel blockers and was resistant to inhibitors of pannexin 1 hemichannels. Npc1−/− astrocytes also showed more intracellular Ca2+ signal oscillations mediated by functional connexin 43 hemichannels and P2Y1 receptors. Therefore, Npc1−/− astrocytes present features of connexin based channels compatible with those of reactive astrocytes and hemichannels might be a novel therapeutic target to reduce neuroinflammation in NPC disease.
Collapse
|
19
|
Vázquez MC, Martínez P, Alvarez AR, González M, Zanlungo S. Increased copper levels in in vitro and in vivo models of Niemann-Pick C disease. Biometals 2012; 25:777-86. [DOI: 10.1007/s10534-012-9546-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 03/30/2012] [Indexed: 11/29/2022]
|
20
|
Lysosomal vitamin E accumulation in Niemann–Pick type C disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:150-60. [DOI: 10.1016/j.bbadis.2011.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 11/04/2011] [Accepted: 11/09/2011] [Indexed: 11/22/2022]
|
21
|
Vázquez MC, del Pozo T, Robledo FA, Carrasco G, Pavez L, Olivares F, González M, Zanlungo S. Alteration of gene expression profile in Niemann-Pick type C mice correlates with tissue damage and oxidative stress. PLoS One 2011; 6:e28777. [PMID: 22216111 PMCID: PMC3245218 DOI: 10.1371/journal.pone.0028777] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/15/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Niemann-Pick type C disease (NPC) is a neurovisceral lipid storage disorder mainly characterized by unesterified cholesterol accumulation in lysosomal/late endosomal compartments, although there is also an important storage for several other kind of lipids. The main tissues affected by the disease are the liver and the cerebellum. Oxidative stress has been described in various NPC cells and tissues, such as liver and cerebellum. Although considerable alterations occur in the liver, the pathological mechanisms involved in hepatocyte damage and death have not been clearly defined. Here, we assessed hepatic tissue integrity, biochemical and oxidative stress parameters of wild-type control (Npc1(+/+); WT) and homozygous-mutant (Npc1(-/-); NPC) mice. In addition, the mRNA abundance of genes encoding proteins associated with oxidative stress, copper metabolism, fibrosis, inflammation and cholesterol metabolism were analyzed in livers and cerebella of WT and NPC mice. METHODOLOGY/PRINCIPAL FINDINGS We analyzed various oxidative stress parameters in the liver and hepatic and cerebellum gene expression in 7-week-old NPC1-deficient mice compared with control animals. We found signs of inflammation and fibrosis in NPC livers upon histological examination. These signs were correlated with increased levels of carbonylated proteins, diminished total glutathione content and significantly increased total copper levels in liver tissue. Finally, we analyzed liver and cerebellum gene expression patterns by qPCR and microarray assays. We found a correlation between fibrotic tissue and differential expression of hepatic as well as cerebellar genes associated with oxidative stress, fibrosis and inflammation in NPC mice. CONCLUSIONS/SIGNIFICANCE In NPC mice, liver disease is characterized by an increase in fibrosis and in markers associated with oxidative stress. NPC is also correlated with altered gene expression, mainly of genes involved in oxidative stress and fibrosis. These findings correlate with similar parameters in cerebellum, as has been previously reported in the NPC mice model.
Collapse
Affiliation(s)
- Mary C. Vázquez
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Talía del Pozo
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR), Santiago, Chile
| | - Fermín A. Robledo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Leonardo Pavez
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Felipe Olivares
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
- Laboratorio de Bioinformática y Matemáticas del Genoma, Centro de Modelamiento Matemático (CMM), Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR), Santiago, Chile
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR), Santiago, Chile
- * E-mail:
| |
Collapse
|
22
|
Balboa E, Morales G, Aylwin P, Carrasco G, Amigo L, Castro J, Rigotti A, Zanlungo S. Niemann-Pick C2 protein expression regulates lithogenic diet-induced gallstone formation and dietary cholesterol metabolism in mice. Lipids 2011; 47:13-25. [PMID: 22038687 DOI: 10.1007/s11745-011-3625-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 10/11/2011] [Indexed: 12/21/2022]
Abstract
Niemann-Pick C2 protein (NPC2) is a lysosomal soluble protein that is highly expressed in the liver; it binds to cholesterol and is involved in intracellular cholesterol trafficking, allowing the exit of lysosomal cholesterol obtained via the lipoprotein endocytic pathway. Thus, this protein may play an important role in controlling hepatic cholesterol transport and metabolism. The aim of this work was to study the relevance of NPC2 protein expression in hepatic cholesterol metabolism, biliary lipid secretion and gallstone formation by comparing NPC2 hypomorph [NPC2 (h/h)] and wild-type mice fed control, 2% cholesterol, and lithogenic diets. NPC2 (h/h) mice exhibited resistance to a diet-induced increase in plasma cholesterol levels. When consuming the chow diet, we observed increased biliary cholesterol and phospholipid secretions in NPC2 (h/h) mice. When fed the 2% cholesterol diet, NPC2 (h/h) mice exhibited low and high gallbladder bile cholesterol and phospholipid concentrations, respectively. NPC2 (h/h) mice fed with the lithogenic diet showed reduced biliary cholesterol secretion, gallbladder bile cholesterol saturation, and cholesterol crystal and gallstone formation. This work indicates that hepatic NPC2 expression is an important factor in the regulation of diet-derived cholesterol metabolism and disposal as well as in diet-induced cholesterol gallstone formation in mice.
Collapse
Affiliation(s)
- Elisa Balboa
- Departmento de Gastroenterología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Casilla 114-D, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Parra J, Klein AD, Castro J, Morales MG, Mosqueira M, Valencia I, Cortés V, Rigotti A, Zanlungo S. Npc1 deficiency in the C57BL/6J genetic background enhances Niemann-Pick disease type C spleen pathology. Biochem Biophys Res Commun 2011; 413:400-6. [PMID: 21910975 DOI: 10.1016/j.bbrc.2011.08.096] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 08/19/2011] [Indexed: 11/28/2022]
Abstract
Niemann-Pick type C (NPC) disease is an autosomal recessive neurovisceral lipid storage disorder. The affected genes are NPC1 and NPC2. Mutations in either gene lead to intracellular cholesterol accumulation. There are three forms of the disease, which are categorized based on the onset and severity of the disease: the infantile form, in which the liver and spleen are severely affected, the juvenile form, in which the liver and brain are affected, and the adult form, which affects the brain. In mice, a spontaneous mutation in the Npc1 gene originated in the BALB/c inbred strain mimics the juvenile form of the disease. To study the influence of genetic background on the expression of NPC disease in mice, we transferred the Npc1 mutation from the BALB/c to C57BL/6J inbred background. We found that C57BL/6J-Npc1(-/-) mice present with a much more aggressive form of the disease, including a shorter lifespan than BALB/c-Npc1(-/-) mice. Surprisingly, there was no difference in the amount of cholesterol in the brains of Npc1(-/-) mice of either mouse strain. However, Npc1(-/-) mice with the C57BL/6J genetic background showed striking spleen damage with a marked buildup of cholesterol and phospholipids at an early age, which correlated with large foamy cell clusters. In addition, C57BL/6J Npc1(-/-) mice presented red cell abnormalities and abundant ghost erythrocytes that correlated with a lower hemoglobin concentration. We also found abnormalities in white cells, such as cytoplasmic granulation and neutrophil hypersegmentation that included lymphopenia and atypias. In conclusion, Npc1 deficiency in the C57BL6/J background is associated with spleen, erythrocyte, and immune system abnormalities that lead to a reduced lifespan.
Collapse
Affiliation(s)
- Julio Parra
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Amigo L, Quiñones V, Leiva A, Busso D, Zanlungo S, Nervi F, Rigotti A. Apolipoprotein A-I deficiency does not affect biliary lipid secretion and gallstone formation in mice. Liver Int 2011; 31:263-71. [PMID: 21134113 DOI: 10.1111/j.1478-3231.2010.02421.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIMS Apolipoprotein A-I (apo A-I) is the main protein component of plasma high-density lipoproteins (HDL) and a key determinant of HDL cholesterol levels and metabolism. The relevance of HDL in controlling the traffic of cholesterol from plasma into bile has been partially addressed. The aim of this study was to evaluate the role of apo A-I expression in controlling the secretion of biliary lipids as well as the risk of gallstone disease in vivo. METHODS We evaluated biliary lipid secretion and bile acid homeostasis in mice deficient for apo A-I compared with wild-type animals when fed with low- or high-cholesterol diets. In addition, we assessed the importance of murine apoA-I expression for gallstone formation after feeding a lithogenic diet. RESULTS Bile acid pool size and faecal excretion were within the normal range in chow- and cholesterol-fed apo A-I knockout (KO) mice. Basal biliary cholesterol secretion was comparable and increased similarly in both murine strains after cholesterol feeding. Lithogenic diet-fed apo A-I KO mice exhibited an impaired hypercholesterolaemic response owing to a lower increase in cholesterol levels transported in large lipoproteins. However, the lack of apo A-I expression did not affect biliary cholesterol precipitation or gallstone formation in lithogenic diet-fed mice. CONCLUSIONS These findings indicate that biliary lipid secretion, bile acid metabolism and gallstone formation are independent of apo A-I expression and plasma HDL cholesterol levels in mice.
Collapse
Affiliation(s)
- Ludwig Amigo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
25
|
Klein A, Maldonado C, Vargas LM, Gonzalez M, Robledo F, Perez de Arce K, Muñoz FJ, Hetz C, Alvarez AR, Zanlungo S. Oxidative stress activates the c-Abl/p73 proapoptotic pathway in Niemann-Pick type C neurons. Neurobiol Dis 2011; 41:209-18. [PMID: 20883783 DOI: 10.1016/j.nbd.2010.09.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 09/11/2010] [Accepted: 09/19/2010] [Indexed: 11/30/2022] Open
Abstract
Niemann-Pick type C (NPC) is a neurodegenerative disease characterized by the intralysosomal accumulation of cholesterol leading to neuronal apoptosis. We have previously reported the activation of the c-Abl/p73 proapoptotic pathway in the cerebellum of NPC mice; however, upstream signals underlying the engagement of this pathway remain unknown. Here, we investigate the possible role of oxidative stress in the activation of c-Abl/p73 using different in vitro and in vivo NPC models. Our results indicate a close temporal correlation between the appearance of nitrotyrosine (N-Tyr; a post-translational tyrosine modification caused by oxidative stress) and the activation of c-Abl/p73 in NPC models. To test the functional role of oxidative stress in NPC, we have treated NPC neurons with the antioxidant NAC and observed a dramatic decrease of c-Abl/p73 activation and a reduction in the levels of apoptosis in NPC models. In conclusion, our data suggest that oxidative stress is the main upstream stimulus activating the c-Abl/p73 pathway and neuronal apoptosis in NPC neurons.
Collapse
Affiliation(s)
- Andres Klein
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Biliary cholesterol secretion is a process important for 2 major disease complexes, atherosclerotic cardiovascular disease and cholesterol gallstone disease. With respect to cardiovascular disease, biliary cholesterol secretion is regarded as the final step for the elimination of cholesterol originating from cholesterol-laden macrophage foam cells in the vessel wall in a pathway named reverse cholesterol transport. On the other hand, cholesterol hypersecretion into the bile is considered the main pathophysiological determinant of cholesterol gallstone formation. This review summarizes current knowledge on the origins of cholesterol secreted into the bile as well as the relevant processes and transporters involved. Next to the established ATP-binding cassette (ABC) transporters mediating the biliary secretion of bile acids (ABCB11), phospholipids (ABCB4) and cholesterol (ABCG5/G8), special attention is given to emerging proteins that modulate or mediate biliary cholesterol secretion. In this regard, the potential impact of the phosphatidylserine flippase ATPase class I type 8B member 1, the Niemann Pick C1-like protein 1 that mediates cholesterol absorption and the high density lipoprotein cholesterol uptake receptor, scavenger receptor class B type I, is discussed.
Collapse
|
27
|
Morales MG, Amigo L, Balboa E, Acuña M, Castro J, Molina H, Miquel JF, Nervi F, Rigotti A, Zanlungo S. Deficiency of Niemann-Pick C1 protein protects against diet-induced gallstone formation in mice. Liver Int 2010; 30:887-97. [PMID: 20408952 DOI: 10.1111/j.1478-3231.2010.02230.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND/AIMS Receptor-mediated endocytosis is a critical cellular mechanism for the uptake of lipoprotein cholesterol in the liver. Because Niemann-Pick C1 (NPC1) protein is a key component for the intracellular distribution of cholesterol originating from lipoprotein endocytosis, it may play an important role in controlling biliary cholesterol secretion and gallstone formation induced by a lithogenic diet. METHODS We studied biliary cholesterol secretion, gallbladder lipid composition and gallstone formation in NPC1-deficient mice fed a low-fat lithogenic diet (1.5% cholesterol and 0.5% cholic acid) compared with control animals under the same diet. RESULTS The lipid secretion response to the lithogenic diet was impaired in NPC1 (-/-) mice, leading to a decreased cholesterol output and an increased hepatic cholesterol concentration compared with the lithogenic diet-fed wild-type mice. A decreased cholesterol saturation index was found in the gallbladder bile of NPC1 (+/-) and (-/-) mice after lithogenic diet feeding. Consequently, mice with a partial or a total deficiency of NPC1 had a drastically lower frequency of gallbladder cholesterol crystals and a reduced prevalence of gallstones. CONCLUSION Hepatic NPC1 expression is an important factor for regulating the biliary secretion of diet-derived cholesterol as well as for diet-induced cholesterol gallstone formation in mice.
Collapse
Affiliation(s)
- María Gabriela Morales
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ishibashi M, Masson D, Westerterp M, Wang N, Sayers S, Li R, Welch CL, Tall AR. Reduced VLDL clearance in Apoe(-/-)Npc1(-/-) mice is associated with increased Pcsk9 and Idol expression and decreased hepatic LDL-receptor levels. J Lipid Res 2010; 51:2655-63. [PMID: 20562239 DOI: 10.1194/jlr.m006163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) promotes the transport of LDL receptor (LDL-R)-derived cholesterol from late endosomes/lysosomes to other cellular compartments. NPC1-deficient cells showed impaired regulation of liver_X receptor (LXR) and sterol regulatory element-binding protein (SREBP) target genes. We observed that Apoe(-/-)Npc1(-/-) mice displayed a marked increase in total plasma cholesterol mainly due to increased VLDL, reflecting decreased clearance. Although nuclear SREBP-2 and Ldlr mRNA levels were increased in Apoe(-/-)Npc1(-/-) liver, LDL-R protein levels were decreased in association with marked induction of proprotein convertase subtilisin/kexin type 9 (Pcsk9) and inducible degrader of the LDL-R (Idol), both known to promote proteolytic degradation of LDL-R. While Pcsk9 is known to be an SREBP-2 target, marked upregulation of IDOL in Apoe(-/-)Npc1(-/-) liver was unexpected. However, several other LXR target genes also increased in Apoe(-/-)Npc1(-/-) liver, suggesting increased synthesis of endogenous LXR ligands secondary to activation of sterol biosynthesis. In conclusion, we demonstrate that NPC1 deficiency has a major impact on VLDL metabolism in Apoe(-/-) mice through modulation of hepatic LDL-R protein levels. In contrast to modest induction of hepatic IDOL with synthetic LXR ligands, a striking upregulation of IDOL in Apoe(-/-)Npc1(-/-) mice could indicate a role of endogenous LXR ligands in regulation of hepatic IDOL.
Collapse
Affiliation(s)
- Minako Ishibashi
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Uronen RL, Lundmark P, Orho-Melander M, Jauhiainen M, Larsson K, Siegbahn A, Wallentin L, Zethelius B, Melander O, Syvänen AC, Ikonen E. Niemann-Pick C1 modulates hepatic triglyceride metabolism and its genetic variation contributes to serum triglyceride levels. Arterioscler Thromb Vasc Biol 2010; 30:1614-20. [PMID: 20489167 DOI: 10.1161/atvbaha.110.207191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To study how Niemann-Pick disease type C1 (NPC1) influences hepatic triacylglycerol (TG) metabolism and to determine whether this is reflected in circulating lipid levels. METHODS AND RESULTS In Npc1(-/-) mice, the hepatic cholesterol content is increased but the TG content is decreased. We investigated lipid metabolism in Npc1(-/-) mouse hepatocytes and the association of NPC1 single-nucleotide polymorphisms with circulating TGs in humans. TGs were reduced in Npc1(-/-) mouse serum and hepatocytes. In Npc1(-/-) hepatocytes, the incorporation of [3H]oleic acid and [3H]acetate into TG was decreased, but shunting of oleic acid- or acetate-derived [3H]carbons into cholesterol was increased. Inhibition of cholesterol synthesis normalized TG synthesis, content, and secretion in Npc1(-/-) hepatocytes, suggesting increased hepatic cholesterol neogenesis as a cause for the reduced TG content and secretion. We found a significant association between serum TG levels and 5 common NPC1 single-nucleotide polymorphisms in a cohort of 1053 men, with the lowest P=8.7 x 10(-4) for the single-nucleotide polymorphism rs1429934. The association between the rs1429934 A allele and higher TG levels was replicated in 2 additional cohorts, which included 8041 individuals. CONCLUSIONS This study provides evidence of the following: (1) in mice, loss of NPC1 function reduces hepatocyte TG content and secretion by increasing the metabolic flux of carbons into cholesterol synthesis; and (2) common variation in NPC1 contributes to serum TG levels in humans.
Collapse
|
30
|
Abstract
The last few years have seen major advances in common non-syndromic obesity research, much of it the result of genetic studies. This Review outlines the competing hypotheses about the mechanisms underlying the genetic and physiological basis of obesity, and then examines the recent explosion of genetic association studies that have yielded insights into obesity, both at the candidate gene level and the genome-wide level. With obesity genetics now entering the post-genome-wide association scan era, the obvious question is how to improve the results obtained so far using single nucleotide polymorphism markers and how to move successfully into the other areas of genomic variation that may be associated with common obesity.
Collapse
Affiliation(s)
- Andrew J Walley
- Section of Genomic Medicine, Imperial College London, Burlington-Danes Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| | | | | |
Collapse
|
31
|
Abstract
Cholesterol available for bile secretion is controlled by a wide variety of proteins that mediate lipoprotein cholesterol uptake and cholesterol transport and metabolism in the liver. From a disease perspective, abnormalities in the transhepatic traffic of cholesterol from plasma into the bile may influence the risk of cholesterol gallstone formation. This review summarizes some recent progress in understanding the hepatic determinants of biliary cholesterol secretion and its potential pathogenic implications in cholesterol gallstone disease. This information together with new discoveries in this field may lead to improved risk evaluation, novel surrogate markers and earlier diagnosis, better preventive approaches and more effective pharmacological therapies for this prevalent human disease.
Collapse
Affiliation(s)
- Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | | |
Collapse
|
32
|
Meyre D, Delplanque J, Chèvre JC, Lecoeur C, Lobbens S, Gallina S, Durand E, Vatin V, Degraeve F, Proença C, Gaget S, Körner A, Kovacs P, Kiess W, Tichet J, Marre M, Hartikainen AL, Horber F, Potoczna N, Hercberg S, Levy-Marchal C, Pattou F, Heude B, Tauber M, McCarthy MI, Blakemore AIF, Montpetit A, Polychronakos C, Weill J, Coin LJM, Asher J, Elliott P, Järvelin MR, Visvikis-Siest S, Balkau B, Sladek R, Balding D, Walley A, Dina C, Froguel P. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet 2009; 41:157-9. [PMID: 19151714 DOI: 10.1038/ng.301] [Citation(s) in RCA: 493] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 11/20/2008] [Indexed: 11/09/2022]
Abstract
We analyzed genome-wide association data from 1,380 Europeans with early-onset and morbid adult obesity and 1,416 age-matched normal-weight controls. Thirty-eight markers showing strong association were further evaluated in 14,186 European subjects. In addition to FTO and MC4R, we detected significant association of obesity with three new risk loci in NPC1 (endosomal/lysosomal Niemann-Pick C1 gene, P = 2.9 x 10(-7)), near MAF (encoding the transcription factor c-MAF, P = 3.8 x 10(-13)) and near PTER (phosphotriesterase-related gene, P = 2.1 x 10(-7)).
Collapse
Affiliation(s)
- David Meyre
- CNRS 8090-Institute of Biology, Pasteur Institute, 59000 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Alvarez AR, Klein A, Castro J, Cancino GI, Amigo J, Mosqueira M, Vargas LM, Yévenes LF, Bronfman FC, Zanlungo S. Imatinib therapy blocks cerebellar apoptosis and improves neurological symptoms in a mouse model of Niemann-Pick type C disease. FASEB J 2008; 22:3617-27. [PMID: 18591368 DOI: 10.1096/fj.07-102715] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Niemann-Pick type C (NPC) disease is a fatal autosomal recessive disorder characterized by the accumulation of free cholesterol and glycosphingolipids in the endosomal-lysosomal system. Patients with NPC disease have markedly progressive neuronal loss, mainly of cerebellar Purkinje neurons. There is strong evidence indicating that cholesterol accumulation and trafficking defects activate apoptosis in NPC brains. The purpose of this study was to analyze the relevance of apoptosis and particularly the proapoptotic c-Abl/p73 system in cerebellar neuron degeneration in NPC disease. We used the NPC1 mouse model to evaluate c-Abl/p73 expression and activation in the cerebellum and the effect of therapy with the c-Abl-specific inhibitor imatinib. The proapoptotic c-Abl/p73 system and the p73 target genes are expressed in the cerebellums of NPC mice. Furthermore, inhibition of c-Abl with imatinib preserved Purkinje neurons and reduced general cell apoptosis in the cerebellum, improved neurological symptoms, and increased the survival of NPC mice. Moreover, this prosurvival effect correlated with reduced mRNA levels of p73 proapoptotic target genes. Our results suggest that the c-Abl/p73 pathway is involved in NPC neurodegeneration and show that treatment with c-Abl inhibitors is useful in delaying progressive neurodegeneration, supporting the use of imatinib for clinical treatment of patients with NPC disease.
Collapse
Affiliation(s)
- Alejandra R Alvarez
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, casilla 114-D, Santiago, Chile.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rimkunas VM, Graham MJ, Crooke RM, Liscum L. In vivo antisense oligonucleotide reduction of NPC1 expression as a novel mouse model for Niemann Pick type C- associated liver disease. Hepatology 2008; 47:1504-12. [PMID: 18438776 PMCID: PMC2440313 DOI: 10.1002/hep.22327] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Niemann-Pick type C (NPC) is a fatal autosomal recessive lipidosis that is characterized by lysosomal storage of cholesterol and glycosphingolipids. Patients exhibit prolonged neonatal jaundice, hepatosplenomegaly, and progressive neurodegeneration that generally result in death by the teen years. Most clinical cases are caused by mutations in the NPC1 gene. Current mouse models of NPC are not well suited for studying the liver disease due to the rapidly progressing neurological disease. To facilitate study of NPC-associated liver dysfunction, we have developed a novel mouse model using antisense oligonucleotides to ablate NPC1 expression primarily in the liver. Here, we show that the NPC1 knockdown leads to a liver disease phenotype similar to that of patients with NPC and the NPC(nih) mouse model. Key features include hepatomegaly, lipid storage, elevated serum liver enzymes, and increased apoptosis. CONCLUSION This novel NPC1 antisense mouse model will allow delineation of the mechanism by which NPC1 dysfunction leads to liver cell death.
Collapse
Affiliation(s)
- Victoria M Rimkunas
- Department of Physiology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | | | |
Collapse
|
35
|
Dixit S, Sleat D, Stock A, Lobel P. Do mammalian NPC1 and NPC2 play a role in intestinal cholesterol absorption? Biochem J 2007; 408:1-5. [PMID: 17880278 PMCID: PMC2049080 DOI: 10.1042/bj20071167] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 09/17/2007] [Accepted: 09/19/2007] [Indexed: 11/17/2022]
Abstract
NPC1L1 (Niemann-Pick C1-like 1), the pharmacological target of the cholesterol-uptake inhibitor ezetimibe, is a transporter localized on the brush border of enterocytes. Although this protein plays a key role in intestinal uptake of sterols, multiple molecular events that underlie intestinal cholesterol absorption have not been fully characterized. Two proteins that might be involved in this process are NPC1 and NPC2 (Niemann-Pick disease type C proteins 1 and 2), which function in the endosomal/lysosomal cholesterol egress pathway and whose deficiency results in NPC (Niemann-Pick type C) disease. The involvement of these proteins in intestinal cholesterol absorption was examined in mutant mice lacking either NPC1 or NPC2. Our data indicate that deficiencies in either protein do not have an effect on cholesterol uptake or absorption. This contrasts with recent results obtained for the fruitfly Drosophila melanogaster, which indicate that a deficiency of NPC1 (dNPC1a being its Drosophila homologue) leads to activation of an NPC1L1 (Drosophila homologue dNPC1b)-independent cholesterol uptake pathway, underscoring fundamental differences in mammalian and non-mammalian cholesterol metabolism.
Collapse
Affiliation(s)
- Sayali S. Dixit
- *Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, U.S.A
- †675 Hoes Lane, Piscataway, NJ 08854, U.S.A
- ‡Department of Biochemistry, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School (UMDNJ–RWJMS), Piscataway, NJ 08854, U.S.A
| | - David E. Sleat
- *Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, U.S.A
- §Department of Pharmacology, UMDNJ–RWJMS, Piscataway, NJ 08854, U.S.A
| | - Ann M. Stock
- *Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, U.S.A
- ‡Department of Biochemistry, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School (UMDNJ–RWJMS), Piscataway, NJ 08854, U.S.A
- ¶Howard Hughes Medical Institute, Piscataway, NJ 08854, U.S.A
| | - Peter Lobel
- *Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, U.S.A
- §Department of Pharmacology, UMDNJ–RWJMS, Piscataway, NJ 08854, U.S.A
| |
Collapse
|
36
|
Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieux V, Bruley C, Garin J, Bourguignon J. A Proteomics Approach Highlights a Myriad of Transporters in the Arabidopsis thaliana Vacuolar Membrane. PLANT SIGNALING & BEHAVIOR 2007; 2:413-5. [PMID: 19704618 PMCID: PMC2634231 DOI: 10.4161/psb.2.5.4415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 05/10/2007] [Indexed: 05/09/2023]
Abstract
To better understand plant vacuolar functions and identify new transporters present on the tonoplast, a proteomic work was initiated on Arabidopsis thaliana. A procedure was developed to prepare highly purified vacuoles from protoplasts isolated from Arabidopsis cell cultures, and a proteomics approach was designed to identify the protein components present in both the membrane and soluble fractions of the vacuoles. This procedure allowed the identification of 650 proteins, 2/3 of which copurify with the hydrophobic membrane fraction and 1/3 with the soluble fraction. With regard to function, only 20% of the proteins identified were previously known to be associated with vacuolar activities.
Collapse
Affiliation(s)
- Michel Jaquinod
- Laboratoire d'Etude de la Dynamique des Protéomes Institut de Recherches en Technologies et Sciences pour le Vivant; Commissariat à l'Energie Atomique; Université Joseph Fourier, Grenoble France
| | - Florent Villiers
- Laboratoire de Physiologie Cellulaire Végétale; Institut de Recherches en Technologies et Sciences pour le Vivant; Commissariat à l'Energie Atomique; Université Joseph Fourier, Grenoble France
| | - Sylvie Kieffer-Jaquinod
- Laboratoire d'Etude de la Dynamique des Protéomes Institut de Recherches en Technologies et Sciences pour le Vivant; Commissariat à l'Energie Atomique; Université Joseph Fourier, Grenoble France
| | - Véronique Hugouvieux
- Laboratoire de Physiologie Cellulaire Végétale; Institut de Recherches en Technologies et Sciences pour le Vivant; Commissariat à l'Energie Atomique; Université Joseph Fourier, Grenoble France
| | - Christophe Bruley
- Laboratoire d'Etude de la Dynamique des Protéomes Institut de Recherches en Technologies et Sciences pour le Vivant; Commissariat à l'Energie Atomique; Université Joseph Fourier, Grenoble France
| | - Jérôme Garin
- Laboratoire d'Etude de la Dynamique des Protéomes Institut de Recherches en Technologies et Sciences pour le Vivant; Commissariat à l'Energie Atomique; Université Joseph Fourier, Grenoble France
| | - Jacques Bourguignon
- Laboratoire de Physiologie Cellulaire Végétale; Institut de Recherches en Technologies et Sciences pour le Vivant; Commissariat à l'Energie Atomique; Université Joseph Fourier, Grenoble France
| |
Collapse
|
37
|
Garver WS, Jelinek D, Oyarzo JN, Flynn J, Zuckerman M, Krishnan K, Chung BH, Heidenreich RA. Characterization of liver disease and lipid metabolism in the Niemann-Pick C1 mouse. J Cell Biochem 2007; 101:498-516. [PMID: 17216601 DOI: 10.1002/jcb.21200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Niemann-Pick type C1 (NPC1) disease is an autosomal-recessive cholesterol-storage disorder characterized by liver dysfunction, hepatosplenomegaly, and progressive neurodegeneration. The NPC1 gene is expressed in every tissue of the body, with liver expressing the highest amounts of NPC1 mRNA and protein. A number of studies have now indicated that the NPC1 protein regulates the transport of cholesterol from late endosomes/lysosomes to other cellular compartments involved in maintaining intracellular cholesterol homeostasis. The present study characterizes liver disease and lipid metabolism in NPC1 mice at 35 days of age before the development of weight loss and neurological symptoms. At this age, homozygous affected (NPC1(-/-)) mice were characterized with mild hepatomegaly, an elevation of liver enzymes, and an accumulation of liver cholesterol approximately four times that measured in normal (NPC1(+/+)) mice. In contrast, heterozygous (NPC1(+/-)) mice were without hepatomegaly and an elevation of liver enzymes, but the livers had a significant accumulation of triacylglycerol. With respect to apolipoprotein and lipoprotein metabolism, the results indicated only minor alterations in NPC1(-/-) mouse serum. Finally, compared to NPC1(+/+) mouse livers, the amount and processing of SREBP-1 and -2 proteins were significantly increased in NPC1(-/-) mouse livers, suggesting a relative deficiency of cholesterol at the metabolically active pool of cholesterol located at the endoplasmic reticulum. The results from this study further support the hypothesis that an accumulation of lipoprotein-derived cholesterol within late endosomes/lysosomes, in addition to altered intracellular cholesterol homeostasis, has a key role in the biochemical and cellular pathophysiology associated with NPC1 liver disease.
Collapse
Affiliation(s)
- William S Garver
- Department of Pediatrics, The University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Tichauer JE, Morales MG, Amigo L, Galdames L, Klein A, Quinones V, Ferrada C, Alvarez AR, Rio MC, Miquel JF, Rigotti A, Zanlungo S. Overexpression of the cholesterol-binding protein MLN64 induces liver damage in the mouse. World J Gastroenterol 2007; 13:3071-9. [PMID: 17589922 PMCID: PMC4172613 DOI: 10.3748/wjg.v13.i22.3071] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the in vivo phenotype associated with hepatic metastatic lymph node 64 (MLN64) over-expression.
METHODS: Recombinant-adenovirus-mediated MLN64 gene transfer was used to overexpress MLN64 in the livers of C57BL/6 mice. We measured the effects of MLN64 overexpression on hepatic cholesterol content, bile flow, biliary lipid secretion and apoptosis markers. For in vitro studies cultured CHO cells with transient MLN64 overexpression were utilized and apoptosis by TUNEL assay was measured.
RESULTS: Livers from Ad.MLN64-infected mice exhibited early onset of liver damage and apoptosis. This response correlated with increases in liver cholesterol content and biliary bile acid concentration, and impaired bile flow. We investigated whether liver MLN64 expression could be modulated in a murine model of hepatic injury. We found increased hepatic MLN64 mRNA and protein levels in mice with chenodeoxycholic acid-induced liver damage. In addition, cultured CHO cells with transient MLN64 overexpression showed increased apoptosis.
CONCLUSION: In summary, hepatic MLN64 over-expression induced damage and apoptosis in murine livers and altered cholesterol metabolism. Further studies are required to elucidate the relevance of these findings under physiologic and disease conditions.
Collapse
Affiliation(s)
- Juan-Enrique Tichauer
- Departamento de Gastroenterologia, Pontificia Universidad Catolica de Chile, Marcoleta 367, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieux V, Bruley C, Garin J, Bourguignon J. A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol Cell Proteomics 2006; 6:394-412. [PMID: 17151019 PMCID: PMC2391258 DOI: 10.1074/mcp.m600250-mcp200] [Citation(s) in RCA: 253] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
To better understand the mechanisms governing cellular traffic, storage of various metabolites, and their ultimate degradation, Arabidopsis thaliana vacuole proteomes were established. To this aim, a procedure was developed to prepare highly purified vacuoles from protoplasts isolated from Arabidopsis cell cultures using Ficoll density gradients. Based on the specific activity of the vacuolar marker alpha-mannosidase, the enrichment factor of the vacuoles was estimated at approximately 42-fold with an average yield of 2.1%. Absence of significant contamination by other cellular compartments was validated by Western blot using antibodies raised against specific markers of chloroplasts, mitochondria, plasma membrane, and endoplasmic reticulum. Based on these results, vacuole preparations showed the necessary degree of purity for proteomics study. Therefore, a proteomics approach was developed to identify the protein components present in both the membrane and soluble fractions of the Arabidopsis cell vacuoles. This approach includes the following: (i) a mild oxidation step leading to the transformation of cysteine residues into cysteic acid and methionine to methionine sulfoxide, (ii) an in-solution proteolytic digestion of very hydrophobic proteins, and (iii) a prefractionation of proteins by short migration by SDS-PAGE followed by analysis by liquid chromatography coupled to tandem mass spectrometry. This procedure allowed the identification of more than 650 proteins, two-thirds of which copurify with the membrane hydrophobic fraction and one-third of which copurifies with the soluble fraction. Among the 416 proteins identified from the membrane fraction, 195 were considered integral membrane proteins based on the presence of one or more predicted transmembrane domains, and 110 transporters and related proteins were identified (91 putative transporters and 19 proteins related to the V-ATPase pump). With regard to function, about 20% of the proteins identified were known previously to be associated with vacuolar activities. The proteins identified are involved in ion and metabolite transport (26%), stress response (9%), signal transduction (7%), and metabolism (6%) or have been described to be involved in typical vacuolar activities, such as protein and sugar hydrolysis. The subcellular localization of several putative vacuolar proteins was confirmed by transient expression of green fluorescent protein fusion constructs.
Collapse
Affiliation(s)
- Michel Jaquinod
- Développement de la protéomique comme outil d'investigation fonctionelle et d'annotation des génomes
INSERM : ERM0201CEA17, rue des Martyrs 38054 Grenoble Cedex,FR
- * Correspondence should be adressed to: Michel Jaquinod
| | - Florent Villiers
- LPCV, Laboratoire de physiologie cellulaire végétale
CNRS : UMR5168INRA : UR1200CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble Ibat. C2
17 Rue des martyrs
38054 GRENOBLE CEDEX 9,FR
| | - Sylvie Kieffer-Jaquinod
- Développement de la protéomique comme outil d'investigation fonctionelle et d'annotation des génomes
INSERM : ERM0201CEA17, rue des Martyrs 38054 Grenoble Cedex,FR
| | - Véronique Hugouvieux
- LPCV, Laboratoire de physiologie cellulaire végétale
CNRS : UMR5168INRA : UR1200CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble Ibat. C2
17 Rue des martyrs
38054 GRENOBLE CEDEX 9,FR
| | - Christophe Bruley
- Développement de la protéomique comme outil d'investigation fonctionelle et d'annotation des génomes
INSERM : ERM0201CEA17, rue des Martyrs 38054 Grenoble Cedex,FR
| | - Jérôme Garin
- Développement de la protéomique comme outil d'investigation fonctionelle et d'annotation des génomes
INSERM : ERM0201CEA17, rue des Martyrs 38054 Grenoble Cedex,FR
| | - Jacques Bourguignon
- LPCV, Laboratoire de physiologie cellulaire végétale
CNRS : UMR5168INRA : UR1200CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble Ibat. C2
17 Rue des martyrs
38054 GRENOBLE CEDEX 9,FR
- * Correspondence should be adressed to: Jacques Bourguignon
| |
Collapse
|
40
|
Hernández-Nazará A, Curiel-López F, Martínez-López E, Hernández-Nazará Z, Panduro A. Genetic predisposition of cholesterol gallstone disease. Ann Hepatol 2006; 5:140-149. [PMID: 17060869 DOI: 10.1016/s1665-2681(19)31997-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
Gallstone disease (GSD) is the result of the interaction between genetic and environmental factors and it is a major disease cause of surgery with high costs to health systems. Worldwide prevalence varies according to the ethnic population suggesting that high prevalence of GSD in certain ethnic groups is due to the presence of genetic factors implicated in different metabolic pathways. However, environmental factors play a determinant role in gene expression. This review summarizes the genes involved in biliary salt and cholesterol synthesis, lipids transport and the Lith genes. Future studies should be focused on the study of interactions between genetic and environmental factors which could be specific for each population.
Collapse
Affiliation(s)
- Alejandro Hernández-Nazará
- Department of Molecular Biology in Medicine, Old Civil Hospital of Guadalajara Fray Antonio Alcalde University Center of Health Sciences CUCS, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | | | | | | | | |
Collapse
|
41
|
Klein A, Amigo L, Retamal MJ, Morales MG, Miquel JF, Rigotti A, Zanlungo S. NPC2 is expressed in human and murine liver and secreted into bile: potential implications for body cholesterol homeostasis. Hepatology 2006; 43:126-33. [PMID: 16374838 DOI: 10.1002/hep.20985] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The liver plays a critical role in the metabolism of lipoprotein cholesterol and in controlling its elimination through the bile. Niemann-Pick type C 2 (NPC2), a cholesterol-binding protein, is key for normal intracellular trafficking of lipoprotein cholesterol, allowing its exit from the endolysosomal pathway into the metabolically active pool of the cell. In addition, NPC2 is a secretory protein from astrocytes and epididymal cells. Although NPC2 mRNA is detected in the liver, plasma and biliary NPC2 protein levels and function have not been reported. This study demonstrates that NPC2 is present in murine and human plasma and bile. In addition, hepatic NPC2 protein expression was dramatically increased in NPC1-deficient mice but not regulated by cholesterol feeding or pharmacological modulation of various nuclear receptors involved in cholesterol and bile acid metabolism. Interestingly, biliary NPC2 levels were 3-fold increased in gallstone-susceptible C57BL6/J versus gallstone-resistant BALB/c mice. Furthermore, NPC2 was exclusively found in the cholesterol pro-nucleating ConA-binding fraction of human bile. In conclusion, NPC2 is secreted from the liver into bile and plasma, where it may have a functional role in cholesterol transport in normal and disease conditions.
Collapse
Affiliation(s)
- Andrés Klein
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
42
|
Boadu E, Francis GA. The role of vesicular transport in ABCA1-dependent lipid efflux and its connection with NPC pathways. J Mol Med (Berl) 2005; 84:266-75. [PMID: 16328207 DOI: 10.1007/s00109-005-0001-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Accepted: 08/24/2005] [Indexed: 10/25/2022]
Abstract
The membrane transporter ATP-binding cassette transporter A1 (ABCA1) has been shown to be the rate-limiting step in the initial formation of plasma high-density lipoprotein (HDL) particles. The mechanisms of action of ABCA1, including its role in the vesicular transport of lipids to the cell surface for the lipidation of HDL apolipoproteins, are not fully understood. Niemann-Pick type C (NPC) disease is most often caused by mutations in the NPC1 gene, whose protein product is believed to facilitate the egress of cholesterol and other lipids from late endosomes and lysosomes to other cellular compartments. This report reviews current knowledge regarding the role of ABCA1 in vesicular lipid transport mechanisms required for HDL particle formation, and the relationship between ABCA1 and NPC1 in this process.
Collapse
Affiliation(s)
- Emmanuel Boadu
- CIHR Group in Molecular and Cell Biology of Lipids, Department of Medicine, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
43
|
Erickson RP, Bhattacharyya A, Hunter RJ, Heidenreich RA, Cherrington NJ. Liver disease with altered bile acid transport in Niemann-Pick C mice on a high-fat, 1% cholesterol diet. Am J Physiol Gastrointest Liver Physiol 2005; 289:G300-7. [PMID: 15790756 DOI: 10.1152/ajpgi.00568.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cholestatic hepatitis is frequently found in Niemann-Pick C (NPC) disease. We studied the influence of diet and the low density lipoprotein receptor (LDLR, Ldlr in mice, known to be the source of most of the stored cholesterol) on liver disease in the mouse model of NPC. Npc1-/- mice of both sexes, with or without the Ldlr knockout, were fed a 18% fat, 1% cholesterol ("high-fat") diet and were evaluated by chemical and histological methods. Bile acid transporters [multidrug resistance protein (Mrps) 1-5; Ntcp, Bsep, and OatP1, 2, and 4] were quantitated by real-time RT-PCR. Many mice died prematurely (within 6 wk) with hepatomegaly. Histopathology showed an increase in macrophage and hepatocyte lipids independent of Ldlr genotype. Non-zone-dependent diffuse fibrosis was found in the surviving mice. Serum alanine aminotransferase was elevated in Npc1-/- mice on the regular diet and frequently became markedly elevated with the high-fat diet. Serum cholesterol was increased in the controls but not the Npc1-/- mice on the high-fat diet; it was massively increased in the Ldlr-/- mice. Esterified cholesterol was greatly increased by the high-fat diet, independent of Ldlr genotype. gamma-Glutamyltransferase was also elevated in Npc1-/- mice, more so on the high-fat diet. Mrps 1-5 were elevated in Npc1-/- liver and became more elevated with the high-fat diet; Ntcp, Bsep, and OatP2 were elevated in Npc1-/- liver and were suppressed by the high-fat diet. In conclusion, Npc1-/- mice on a high-fat diet provide an animal model of NPC cholestatic hepatitis and indicate a role for altered bile acid transport in its pathogenesis.
Collapse
Affiliation(s)
- Robert P Erickson
- Department of Pediatrics, School of Health Sciences, University of Arizona, 1501 N. Campbell Avenue, P. O. Box 245073, Tucson, AZ 85724-5073.
| | | | | | | | | |
Collapse
|
44
|
Paul CA, Reid PC, Boegle AK, Karten B, Zhang M, Jiang ZG, Franz D, Lin L, Chang TY, Vance JE, Blanchette-Mackie J, Maue RA. Adenovirus expressing an NPC1-GFP fusion gene corrects neuronal and nonneuronal defects associated with Niemann pick type C disease. J Neurosci Res 2005; 81:706-19. [PMID: 16015597 DOI: 10.1002/jnr.20592] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Niemann Pick type C (NPC) disease is an autosomal recessive disorder characterized by abnormal cholesterol metabolism and accumulation in lysosomal and endosomal compartments. Although peripheral organs are affected, the progressive neurodegeneration in the brain is typically most deleterious, leading to dystonia, ataxia, seizures, and premature death. Although the two genes underlying this disorder in humans and mouse models of the disease have been identified (NPC1 in 95% and NPC2/HE1 in 5% of human cases), their cellular roles have not Been fully defined, and there is currently no effective treatment for this disorder. To help address these issues, we constructed a recombinant adenovirus, Ad(NPC1-GFP), which contains a cDNA encoding a mouse NPC1 protein with a green fluorescent protein (GFP) fused to its C-terminus. Fluorescence microscopy and cholesterol trafficking assays demonstrate that the GFP-tagged NPC1 protein is functional and detectable in cells from different species (hamster, mouse, human) and of different types (ovary-derived cells, fibroblasts, astrocytes, neurons from peripheral and central nervous systems) in vitro. Combined with results from time-lapse microscopy and in vivo brain injections, our findings suggest that this adenovirus offers advantages for expressing NPC1 and analyzing its cellular localization, movement, functional properties, and beneficial effects in vitro and in vivo.
Collapse
Affiliation(s)
- C A Paul
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zanlungo S, Rigotti A, Nervi F. Hepatic cholesterol transport from plasma into bile: implications for gallstone disease. Curr Opin Lipidol 2004; 15:279-86. [PMID: 15166783 DOI: 10.1097/00041433-200406000-00007] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The transhepatic traffic of cholesterol from plasma lipoproteins into the bile is critical for overall cholesterol homeostasis and its alterations may lead to cholesterol gallstone formation. This review summarizes recent progress in understanding the key hepatic cholesterol metabolism-related proteins and pathways that influence biliary secretion of cholesterol. RECENT FINDINGS In cholesterol-fed apolipoprotein E knockout mice, the availability of dietary cholesterol for biliary disposal is decreased and diet-induced gallstone formation is impaired. Scavenger receptor class B type I is relevant for cholesterol transport from plasma HDL into the bile in chow-fed mice, however its expression is not critical for biliary cholesterol secretion and gallstone formation in lithogenic diet-fed mice. Intrahepatic cholesterol transport proteins (e.g. sterol carrier protein-2, Niemann Pick type C-1 protein) also determine liver cholesterol available for biliary secretion in mice. Genetic manipulation of canalicular ATP-binding cassette transporter G5 and G8 expression in mice has established their essential role for biliary cholesterol secretion. SUMMARY Recent studies have underscored that different proteins involved in hepatic cholesterol transport regulate the availability of cholesterol for biliary secretion. These advances may provide new avenues for prevention and treatment of various disease conditions linked to abnormal cholesterol metabolism.
Collapse
Affiliation(s)
- Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontifical Catholic University of Chile, Marcoleta 367, Santiago, Chile
| | | | | |
Collapse
|
46
|
Abstract
It is generally assumed that HDL is the obligate transport vehicle for 'reverse cholesterol transport', the pathway for removal of excess cholesterol from peripheral tissues via the liver into bile and subsequent excretion via the feces. During the last few years, intensive research has generated exciting new data on the separate processes involved in reverse cholesterol transport. Many 'new' proteins, particularly members of the ABC transporter and nuclear receptor subfamilies, that mediate or influence cholesterol fluxes have been identified and characterized. An important role of the intestine in regulation of cholesterol homeostasis is emerging. In this paper, new insights into mechanisms of reverse cholesterol are reviewed.
Collapse
Affiliation(s)
- Albert K Groen
- AMC Liver Center, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Moreno M, Molina H, Amigo L, Zanlungo S, Arrese M, Rigotti A, Miquel JF. Hepatic overexpression of caveolins increases bile salt secretion in mice. Hepatology 2003; 38:1477-88. [PMID: 14647059 DOI: 10.1016/j.hep.2003.09.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Caveolins are cholesterol-binding proteins involved in the regulation of several intracellular processes, including cholesterol transport. Because hepatocytes express caveolin-1 and caveolin-2, these proteins might modulate hepatic lipid metabolism and biliary lipid secretion. Our aim was to investigate the potential physiologic role of caveolins in hepatic cholesterol and bile salt (BS) metabolism and transport using adenoviral gene transfer. C57BL/6 mice were infected with recombinant human caveolin-1 and caveolin-2 adenoviruses. Mice infected with adenovirus lacking the transgene were used as controls. Hepatic caveolin expression was evaluated by immunochemical methods. Reverse-transcription polymerase chain reaction (RT-PCR) and immunoblotting were used to assess messenger RNA (mRNA) levels and protein mass of BS transporters (sodium taurocholate cotransporting polypeptide [Ntcp] and bile salt export pump [Bsep]). Serum, liver, biliary, and fecal biochemical determinations and BS maximal secretory rate (SRm) were performed by standard methods. Ad.Cav-1- and Ad.Cav-2-infected mice exhibited a 10- and 7-fold increase in hepatic caveolin-1 and caveolin-2 protein expression, respectively. Caveolin-1-overexpressing mice had a significant increase in plasma high-density lipoprotein (HDL) cholesterol and hepatic free cholesterol content, whereas total plasma cholesterol and triglyceride levels remained unchanged. Hepatic caveolin-1 and/or caveolin-2 overexpression significantly increased bile flow and secretion of all biliary lipids. Caveolin-1-overexpressing mice showed a 2.5-fold increase in taurocholate (TC) SRm, indicating increased canalicular BS transport capacity. BS pool size and fecal BS excretion remained within the normal range in mice with Cav-1 overexpression. No changes were seen in the protein mass of BS transporters Ntcp and Bsep. In conclusion, our findings indicate that caveolins may play an important role in regulating hepatic BS and cholesterol metabolism.
Collapse
Affiliation(s)
- Mauricio Moreno
- Departamento de Gastroenterología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
48
|
Zanlungo S, Miquel JF, Rigotti A, Nervi F. The ABCs of biliary cholesterol secretion and their implication for gallstone disease. Hepatology 2003; 37:940-2. [PMID: 12688279 DOI: 10.1002/hep.510370431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
49
|
|
50
|
Kosters A, Jirsa M, Groen AK. Genetic background of cholesterol gallstone disease. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1637:1-19. [PMID: 12527402 DOI: 10.1016/s0925-4439(02)00173-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cholesterol gallstone formation is a multifactorial process involving a multitude of metabolic pathways. The primary pathogenic factor is hypersecretion of free cholesterol into bile. For people living in the Western Hemisphere, this is almost a normal condition, certainly in the elderly, which explains the very high incidence of gallstone disease. It is probably because the multifactorial background genes responsible for the high incidence have not yet been identified, despite the fact that genetic factors clearly play a role. Analysis of the many pathways involved in biliary cholesterol secretion reveals many potential candidates and considering the progress in unraveling the regulatory mechanisms of the responsible genes, identification of the primary gallstone genes will be successful in the near future.
Collapse
Affiliation(s)
- Astrid Kosters
- Department of Experimental Hepatology, AMC Liver Center S1-172, Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands.
| | | | | |
Collapse
|