1
|
Elucidating the Role of Innate and Adaptive Immune Responses in the Pathogenesis of Canine Chronic Inflammatory Enteropathy-A Search for Potential Biomarkers. Animals (Basel) 2022; 12:ani12131645. [PMID: 35804545 PMCID: PMC9264988 DOI: 10.3390/ani12131645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Canine chronic inflammatory enteropathy (CIE) is a chronic disease affecting the small or large intestine and, in some cases, the stomach of dogs. This gastrointestinal disorder is common and is characterized by recurrent vomiting, diarrhea, and weight loss in affected dogs. The pathogenesis of IBD is not completely understood. Similar to human IBD, potential disease factors include genetics, environmental exposures, and dysregulation of the microbiota and the immune response. Some important components of the innate and adaptive immune response involved in CIE pathogenesis have been described. However, the immunopathogenesis of the disease has not been fully elucidated. In this review, we summarized the literature associated with the different cell types and molecules involved in the immunopathogenesis of CIE, with the aim of advancing the search for biomarkers with possible diagnostic, prognostic, or therapeutic utility. Abstract Canine chronic inflammatory enteropathy (CIE) is one of the most common chronic gastrointestinal diseases affecting dogs worldwide. Genetic and environmental factors, as well as intestinal microbiota and dysregulated host immune responses, participate in this multifactorial disease. Despite advances explaining the immunological and molecular mechanisms involved in CIE development, the exact pathogenesis is still unknown. This review compiles the latest reports and advances that describe the main molecular and cellular mechanisms of both the innate and adaptive immune responses involved in canine CIE pathogenesis. Future studies should focus research on the characterization of the immunopathogenesis of canine CIE in order to advance the establishment of biomarkers and molecular targets of diagnostic, prognostic, or therapeutic utility.
Collapse
|
2
|
Allenspach K, Mochel JP. Current diagnostics for chronic enteropathies in dogs. Vet Clin Pathol 2021; 50 Suppl 1:18-28. [PMID: 34699081 DOI: 10.1111/vcp.13068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022]
Abstract
Chronic enteropathies (CEs) in dogs describe a group of idiopathic disorders characterized by chronic persistent or recurrent gastrointestinal (GI) signs. Three major subgroups of CE can be identified by their response to treatment: Food-responsive disease (FRD), antibiotic-responsive disease (ARD), and steroid-responsive disease (SRD). The clinical diagnosis of CE is made by exclusion of all other possible causes of chronic diarrhea and includes histologic assessment of intestinal biopsies. The process of diagnosing canine CE can therefore be very time-consuming and expensive, and in most cases, does not help to identify dogs that will respond to a specific treatment. The development of novel diagnostic tests for canine CE has therefore focused on the accuracy of such tests to predict treatment responses. In this article, several novel assays that have the potential to become commercially available will be discussed, such as genetic tests, perinuclear anti-neutrophil cytoplasmic antibodies (pANCA), antibodies against transglutaminase/gliadin, antibodies against E coli OmpC/flagellin, and micro RNAs.
Collapse
Affiliation(s)
- Karin Allenspach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.,SMART Translational Medicine, Iowa State University, Ames, IA, USA
| | - Jonathan P Mochel
- SMART Translational Medicine, Iowa State University, Ames, IA, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
3
|
Niklinska-Schirtz BJ, Venkateswaran S, Anbazhagan M, Kolachala VL, Prince J, Dodd A, Chinnadurai R, Gibson G, Denson LA, Cutler DJ, Jegga AG, Matthews JD, Kugathasan S. Ileal Derived Organoids From Crohn's Disease Patients Show Unique Transcriptomic and Secretomic Signatures. Cell Mol Gastroenterol Hepatol 2021; 12:1267-1280. [PMID: 34271224 PMCID: PMC8455365 DOI: 10.1016/j.jcmgh.2021.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS We used patient-derived organoids (PDOs) to study the epithelial-specific transcriptional and secretome signatures of the ileum during Crohn's disease (CD) with varying phenotypes to screen for disease profiles and potential druggable targets. METHODS RNA sequencing was performed on isolated intestinal crypts and 3-week-old PDOs derived from ileal biopsies of CD patients (n = 8 B1, inflammatory; n = 8 B2, stricturing disease) and non-inflammatory bowel disease (IBD) controls (n = 13). Differentially expressed (DE) genes were identified by comparing CD vs control, B1 vs B2, and inflamed vs non-inflamed. DE genes were used for computational screening to find candidate small molecules that could potentially reverse B1and B2 gene signatures. The secretome of a second cohort (n = 6 non-IBD controls, n = 7 CD, 5 non-inflamed, 2 inflamed) was tested by Luminex using cultured organoid conditioned medium. RESULTS We found 90% similarity in both the identity and abundance of protein coding genes between PDOs and intestinal crypts (15,554 transcripts of 19,900 genes). DE analysis identified 814 genes among disease group (CD vs non-IBD control), 470 genes different between the CD phenotypes, and 5 false discovery rate correction significant genes between inflamed and non-inflamed CD. The PDOs showed both similarity and diversity in the levels and types of soluble cytokines and growth factors they released. Perturbagen analysis revealed potential candidate compounds to reverse B2 disease phenotype to B1 in PDOs. CONCLUSIONS PDOs are similar at the transcriptome level with the in vivo epithelium and retain disease-specific gene expression for which we have identified secretome products, druggable targets, and corresponding pharmacologic agents. Targeting the epithelium could reverse a stricturing phenotype and improve outcomes.
Collapse
Affiliation(s)
- Barbara Joanna Niklinska-Schirtz
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, Georgia
| | - Suresh Venkateswaran
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, Georgia
| | - Murugadas Anbazhagan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, Georgia
| | - Vasantha L. Kolachala
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, Georgia
| | - Jarod Prince
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, Georgia
| | - Anne Dodd
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, Georgia
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia
| | - Gregory Gibson
- Department of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - Lee A. Denson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David J. Cutler
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jason D. Matthews
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, Georgia
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, Georgia,Correspondence Address correspondence to: Subra Kugathasan, MD, Division of Pediatric Gastroenterology, Emory University School of Medicine & Children’s Healthcare of Atlanta, 1760 Haygood Drive, W-427, Atlanta, Georgia 30322. fax: (404) 727-4069.
| |
Collapse
|
4
|
Thoo L, Noti M, Krebs P. Keep calm: the intestinal barrier at the interface of peace and war. Cell Death Dis 2019; 10:849. [PMID: 31699962 PMCID: PMC6838056 DOI: 10.1038/s41419-019-2086-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
Epithelial barriers have to constantly cope with both harmless and harmful stimuli. The epithelial barrier therefore serves as a dynamic and not static wall to safeguard its proper physiological function while ensuring protection. This is achieved through multiple defence mechanisms involving various cell types - epithelial and non-epithelial - that work in an integrated manner to build protective barriers at mucosal sites. Damage may nevertheless occur, due to pathogens, physical insults or dysregulated immune responses, which trigger a physiologic acute or a pathologic chronic inflammatory cascade. Inflammation is often viewed as a pathological condition, particularly due to the increasing prevalence of chronic inflammatory (intestinal) diseases. However, inflammation is also necessary for wound healing. The aetiology of chronic inflammatory diseases is incompletely understood and identification of the underlying mechanisms would reveal additional therapeutic approaches. Resolution is an active host response to end ongoing inflammation but its relevance is under-appreciated. Currently, most therapies aim at dampening inflammation at damaged mucosal sites, yet these approaches do not efficiently shut down the inflammation process nor repair the epithelial barrier. Therefore, future treatment strategies should also promote the resolution phase. Yet, the task of repairing the barrier can be an arduous endeavour considering its multiple integrated layers of defence - which is advantageous for damage prevention but becomes challenging to repair at multiple levels. In this review, using the intestines as a model epithelial organ and barrier paradigm, we describe the consequences of chronic inflammation and highlight the importance of the mucosae to engage resolving processes to restore epithelial barrier integrity and function. We further discuss the contribution of pre-mRNA alternative splicing to barrier integrity and intestinal homeostasis. Following discussions on current open questions and challenges, we propose a model in which resolution of inflammation represents a key mechanism for the restoration of epithelial integrity and function.
Collapse
Affiliation(s)
- Lester Thoo
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mario Noti
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland.,Department of Gastro-Intestinal Health, Immunology, Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Philippe Krebs
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Howell KJ, Kraiczy J, Nayak KM, Gasparetto M, Ross A, Lee C, Mak TN, Koo BK, Kumar N, Lawley T, Sinha A, Rosenstiel P, Heuschkel R, Stegle O, Zilbauer M. DNA Methylation and Transcription Patterns in Intestinal Epithelial Cells From Pediatric Patients With Inflammatory Bowel Diseases Differentiate Disease Subtypes and Associate With Outcome. Gastroenterology 2018; 154:585-598. [PMID: 29031501 PMCID: PMC6381389 DOI: 10.1053/j.gastro.2017.10.007] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 09/12/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS We analyzed DNA methylation patterns and transcriptomes of primary intestinal epithelial cells (IEC) of children newly diagnosed with inflammatory bowel diseases (IBD) to learn more about pathogenesis. METHODS We obtained mucosal biopsies (N = 236) collected from terminal ileum and ascending and sigmoid colons of children (median age 13 years) newly diagnosed with IBD (43 with Crohn's disease [CD], 23 with ulcerative colitis [UC]), and 30 children without IBD (controls). Patients were recruited and managed at a hospital in the United Kingdom from 2013 through 2016. We also obtained biopsies collected at later stages from a subset of patients. IECs were purified and analyzed for genome-wide DNA methylation patterns and gene expression profiles. Adjacent microbiota were isolated from biopsies and analyzed by 16S gene sequencing. We generated intestinal organoid cultures from a subset of samples and genome-wide DNA methylation analysis was performed. RESULTS We found gut segment-specific differences in DNA methylation and transcription profiles of IECs from children with IBD vs controls; some were independent of mucosal inflammation. Changes in gut microbiota between IBD and control groups were not as large and were difficult to assess because of large amounts of intra-individual variation. Only IECs from patients with CD had changes in DNA methylation and transcription patterns in terminal ileum epithelium, compared with controls. Colon epithelium from patients with CD and from patients with ulcerative colitis had distinct changes in DNA methylation and transcription patterns, compared with controls. In IECs from patients with IBD, changes in DNA methylation, compared with controls, were stable over time and were partially retained in ex-vivo organoid cultures. Statistical analyses of epithelial cell profiles allowed us to distinguish children with CD or UC from controls; profiles correlated with disease outcome parameters, such as the requirement for treatment with biologic agents. CONCLUSIONS We identified specific changes in DNA methylation and transcriptome patterns in IECs from pediatric patients with IBD compared with controls. These data indicate that IECs undergo changes during IBD development and could be involved in pathogenesis. Further analyses of primary IECs from patients with IBD could improve our understanding of the large variations in disease progression and outcomes.
Collapse
Affiliation(s)
- Kate Joanne Howell
- University Department of Paediatrics, University of Cambridge, UK,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Judith Kraiczy
- University Department of Paediatrics, University of Cambridge, UK
| | - Komal M. Nayak
- University Department of Paediatrics, University of Cambridge, UK
| | - Marco Gasparetto
- University Department of Paediatrics, University of Cambridge, UK,Department of Paediatric Gastroenterology, University of Cambridge and Addenbrooke’s Hospital, Cambridge, UK
| | - Alexander Ross
- University Department of Paediatrics, University of Cambridge, UK,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Claire Lee
- University Department of Paediatrics, University of Cambridge, UK,Department of Paediatric Gastroenterology, University of Cambridge and Addenbrooke’s Hospital, Cambridge, UK
| | - Tim N. Mak
- University Department of Paediatrics, University of Cambridge, UK
| | - Bon-Kyoung Koo
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Nitin Kumar
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Trevor Lawley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Anupam Sinha
- Institute of Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany
| | - Robert Heuschkel
- Department of Paediatric Gastroenterology, University of Cambridge and Addenbrooke’s Hospital, Cambridge, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Matthias Zilbauer
- University Department of Paediatrics, University of Cambridge, UK; Department of Paediatric Gastroenterology, University of Cambridge and Addenbrooke's Hospital, Cambridge, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Crohn's disease and ulcerative colitis, the two major forms of inflammatory bowel disease (IBD), represent chronic diseases of unknown cause, and they are regarded as prototypical complex diseases. Despite all the recent advances, a complete appreciation of the pathogenesis of IBD is still limited. In this review, we present recent information contributing to a better understanding of mechanisms underlying IBD. RECENT FINDINGS Here, we attempt to highlight novel environmental triggers, data on the gut microbiota, its interaction with the host, and the potential influence of diet and food components. We discuss recent findings on defective signaling pathways and the potential effects on the immune response, and we present new data on epigenetic changes, inflammasome, and damage-associated molecular patterns associated with IBD. SUMMARY The continuing identification of several epigenetic, transcriptomic, proteomic, and metabolomic alterations in patients with IBD reflects the complex nature of the disease and suggests the need for innovative approaches such as systems biology for identifying novel relevant targets in IBD.
Collapse
|
7
|
Tontini GE, Vecchi M, Pastorelli L, Neurath MF, Neumann H. Differential diagnosis in inflammatory bowel disease colitis: State of the art and future perspectives. World J Gastroenterol 2015; 21:21-46. [PMID: 25574078 PMCID: PMC4284336 DOI: 10.3748/wjg.v21.i1.21] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/31/2014] [Accepted: 09/16/2014] [Indexed: 02/06/2023] Open
Abstract
Distinction between Crohn’s disease of the colon-rectum and ulcerative colitis or inflammatory bowel disease (IBD) type unclassified can be of pivotal importance for a tailored clinical management, as each entity often involves specific therapeutic strategies and prognosis. Nonetheless, no gold standard is available and the uncertainty of diagnosis may frequently lead to misclassification or repeated examinations. Hence, we have performed a literature search to address the problem of differential diagnosis in IBD colitis, revised current and emerging diagnostic tools and refined disease classification strategies. Nowadays, the differential diagnosis is an untangled issue, and the proper diagnosis cannot be reached in up to 10% of patients presenting with IBD colitis. This topic is receiving emerging attention, as medical therapies, surgical approaches and leading prognostic outcomes require more and more disease-specific strategies in IBD patients. The optimization of standard diagnostic approaches based on clinical features, biomarkers, radiology, endoscopy and histopathology appears to provide only marginal benefits. Conversely, emerging diagnostic techniques in the field of gastrointestinal endoscopy, molecular pathology, genetics, epigenetics, metabolomics and proteomics have already shown promising results. Novel advanced endoscopic imaging techniques and biomarkers can shed new light for the differential diagnosis of IBD, better reflecting diverse disease behaviors based on specific pathogenic pathways.
Collapse
|