1
|
Li K, Mathew B, Saldanha E, Ghosh P, Krainer AR, Dasarathy S, Huang H, Xiang X, Mishra L. New insights into biomarkers and risk stratification to predict hepatocellular cancer. Mol Med 2025; 31:152. [PMID: 40269686 PMCID: PMC12020275 DOI: 10.1186/s10020-025-01194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the third major cause of cancer death worldwide, with more than a doubling of incidence over the past two decades in the United States. Yet, the survival rate remains less than 20%, often due to late diagnosis at advanced stages. Current HCC screening approaches are serum alpha-fetoprotein (AFP) testing and ultrasound (US) of cirrhotic patients. However, these remain suboptimal, particularly in the setting of underlying obesity and metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH), which are also rising in incidence. Therefore, there is an urgent need for novel biomarkers that can stratify risk and predict early diagnosis of HCC, which is curable. Advances in liver cancer biology, multi-omics technologies, artificial intelligence, and precision algorithms have facilitated the development of promising candidates, with several emerging from completed phase 2 and 3 clinical trials. This review highlights the performance of these novel biomarkers and algorithms from a mechanistic perspective and provides new insight into how pathological processes can be detected through blood-based biomarkers. Through human studies compiled with animal models and mechanistic insight in pathways such as the TGF-β pathway, the biological progression from chronic liver disease to cirrhosis and HCC can be delineated. This integrated approach with new biomarkers merit further validation to refine HCC screening and improve early detection and risk stratification.
Collapse
Affiliation(s)
- Katrina Li
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Brandon Mathew
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Ethan Saldanha
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Puja Ghosh
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Srinivasan Dasarathy
- Division of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Hai Huang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell Health, Manhasset, NY, 11030, USA
| | - Xiyan Xiang
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA.
| | - Lopa Mishra
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA.
- Department of Surgery, George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
2
|
Szeto W, Mannan R. Other Primary Epithelial Neoplasms of the Liver. Adv Anat Pathol 2025:00125480-990000000-00146. [PMID: 40202295 DOI: 10.1097/pap.0000000000000494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Primary liver carcinoma (PLC) is the sixth most common malignancy worldwide and the third leading cause of cancer-related mortalities. Hepatocellular carcinoma (HCC) is the most prevalent form of PLC, followed by intrahepatic cholangiocarcinoma (iCCA). In addition, there is a group of rarer PLCs that do not fit neatly into the HCC or iCCA categories. This review explores this heterogeneous group, including combined hepatocellular-cholangiocarcinoma (cHCC-CCA), intermediate cell carcinoma (ICC), mixed hepatocellular-neuroendocrine carcinoma, and undifferentiated primary liver carcinoma. cHCC-CCA is a rare subtype of PLC, characterized by both hepatocytic and cholangiocytic differentiation within the same tumor. The latest WHO classification (2019, fifth edition) redefined cHCC-CCA by eliminating the "stem cell subtypes" and emphasized that diagnosis should primarily rely on morphologic features, supported by immunohistochemical staining to better define subtypes. Intermediate cell carcinoma is a subtype of cHCC-CCA and is comprised of monomorphic tumor cells that exhibit characteristics intermediate between hepatocytes and cholangiocytes, with immunohistochemical expression of hepatocytic and cholangiocytic markers within the same cell. Another rare entity, combined HCC and neuroendocrine carcinoma (NEC), contains an admixture of HCC and NEC components within the same tumor. Undifferentiated primary liver carcinoma, on the other hand, lacks definitive lineage differentiation beyond an epithelial phenotype. These heterogeneous PLCs pose diagnostic challenges owing to their mixed/unusual histologic features and overlapping immunohistochemical markers. They tend to have poor prognoses, highlighting the critical importance of accurate and timely diagnosis.
Collapse
Affiliation(s)
- Wai Szeto
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | | |
Collapse
|
3
|
Yilmaz D, Tharehalli U, Paganoni R, Knoop P, Gruber A, Chen Y, Dong R, Leithäuser F, Seufferlein T, Leopold K, Lechel A, Vujić Spasić M. Iron metabolism in a mouse model of hepatocellular carcinoma. Sci Rep 2025; 15:2180. [PMID: 39820815 PMCID: PMC11739418 DOI: 10.1038/s41598-025-86486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains the most prevalent type of primary liver cancer worldwide. p53 is one of the most frequently mutated tumor-suppressor genes in HCC and its deficiency in hepatocytes triggers tumor formation in mice. To investigate iron metabolism during liver carcinogenesis, we employed a model of chronic carbon tetrachloride injections in liver-specific p53-deficient mice to induce liver fibrosis, cirrhosis and subsequent carcinogenesis. A transcriptome analysis of liver carcinoma was employed to identify p53-dependent gene expression signatures with subsequent in-depth analysis of iron metabolic parameters being conducted locally within liver cancers and at systemic levels. We show that all mutant mice developed liver cancer by 36-weeks of age in contrast to 3.4% tumors identified in control mice. All liver cancers with a p53-deficient background exhibited a local iron-poor phenotype with a "high transferrin receptor 1 (Tfr1) and low hepcidin (Hamp)" signature. At systemic levels, iron deficiency was restricted to female mice. Additionally, liver tumorigenesis correlated with selective deficits of selenium, zinc and manganese. Our data show that iron deficiency is a prevalent phenomenon in p53-deficient liver cancers, which is associated with alterations in Hamp and Tfr1 and a poor prognosis in mice and patients.
Collapse
Affiliation(s)
- Dilay Yilmaz
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081, Ulm, Germany
| | - Umesh Tharehalli
- Department of Internal Medicine I, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Rossana Paganoni
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081, Ulm, Germany
| | - Paul Knoop
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081, Ulm, Germany
| | - Andreas Gruber
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Yuexin Chen
- Department of Internal Medicine I, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Rui Dong
- Department of Internal Medicine I, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | | | - Thomas Seufferlein
- Department of Internal Medicine I, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Kerstin Leopold
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| | - Maja Vujić Spasić
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
4
|
Cigliano A, Liao W, Deiana GA, Rizzo D, Chen X, Calvisi DF. Preclinical Models of Hepatocellular Carcinoma: Current Utility, Limitations, and Challenges. Biomedicines 2024; 12:1624. [PMID: 39062197 PMCID: PMC11274649 DOI: 10.3390/biomedicines12071624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant primary liver tumor, remains one of the most lethal cancers worldwide, despite the advances in therapy in recent years. In addition to the traditional chemically and dietary-induced HCC models, a broad spectrum of novel preclinical tools have been generated following the advent of transgenic, transposon, organoid, and in silico technologies to overcome this gloomy scenario. These models have become rapidly robust preclinical instruments to unravel the molecular pathogenesis of liver cancer and establish new therapeutic approaches against this deadly disease. The present review article aims to summarize and discuss the commonly used preclinical models for HCC, evaluating their strengths and weaknesses.
Collapse
Affiliation(s)
- Antonio Cigliano
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Weiting Liao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Giovanni A. Deiana
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Davide Rizzo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Diego F. Calvisi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| |
Collapse
|
5
|
Nishikawa Y. Aberrant differentiation and proliferation of hepatocytes in chronic liver injury and liver tumors. Pathol Int 2024; 74:361-378. [PMID: 38837539 PMCID: PMC11551836 DOI: 10.1111/pin.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Chronic liver injury induces liver cirrhosis and facilitates hepatocarcinogenesis. However, the effects of this condition on hepatocyte proliferation and differentiation are unclear. We showed that rodent hepatocytes display a ductular phenotype when they are cultured within a collagenous matrix. This process involves transdifferentiation without the emergence of hepatoblastic features and is at least partially reversible. During the ductular reaction in chronic liver diseases with progressive fibrosis, some hepatocytes, especially those adjacent to ectopic ductules, demonstrate ductular transdifferentiation, but the majority of increased ductules originate from the existing bile ductular system that undergoes extensive remodeling. In chronic injury, hepatocyte proliferation is weak but sustained, and most regenerative nodules in liver cirrhosis are composed of clonally proliferating hepatocytes, suggesting that a small fraction of hepatocytes maintain their proliferative capacity in chronic injury. In mouse hepatocarcinogenesis models, hepatocytes activate the expression of various fetal/neonatal genes, indicating that these cells undergo dedifferentiation. Hepatocyte-specific somatic integration of various oncogenes in mice demonstrated that hepatocytes may be the cells of origin for a broad spectrum of liver tumors through transdifferentiation and dedifferentiation. In conclusion, the phenotypic plasticity and heterogeneity of mature hepatocytes are important for understanding the pathogenesis of chronic liver diseases and liver tumors.
Collapse
Affiliation(s)
- Yuji Nishikawa
- President's OfficeAsahikawa Medical UniversityAsahikawaHokkaidoJapan
| |
Collapse
|
6
|
Feng Y, Zhao M, Wang L, Li L, Lei JH, Zhou J, Chen J, Wu Y, Miao K, Deng CX. The heterogeneity of signaling pathways and drug responses in intrahepatic cholangiocarcinoma with distinct genetic mutations. Cell Death Dis 2024; 15:34. [PMID: 38212325 PMCID: PMC10784283 DOI: 10.1038/s41419-023-06406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common malignancy among primary liver cancers, with an increasing overall incidence and poor prognosis. The intertumoral and intratumoral heterogeneity of ICC makes it difficult to find efficient drug therapies. Therefore, it is essential to identify tumor suppressor genes and oncogenes that induce ICC formation and progression. Here, we performed CRISPR/Cas9-mediated genome-wide screening in a liver-specific Smad4/Pten knockout mouse model (Smad4co/co;Ptenco/co;Alb-Cre, abbreviated as SPC), which normally generates ICC after 6 months, and detected that mutations in Trp53, Fbxw7, Inppl1, Tgfbr2, or Cul3 markedly accelerated ICC formation. To illustrate the potential mechanisms, we conducted transcriptome sequencing and found that multiple receptor tyrosine kinases were activated, which mainly upregulated the PI3K pathway to induce cell proliferation. Remarkably, the Cul3 mutation stimulated cancer progression mainly by altering the immune microenvironment, whereas other mutations promoted the cell cycle. Moreover, Fbxw7, Inppl1, Tgfbr2, and Trp53 also affect inflammatory responses, apelin signaling, mitotic spindles, ribosome biogenesis, and nucleocytoplasmic transport pathways, respectively. We further examined FDA-approved drugs for the treatment of liver cancer and performed high-throughput drug screening of the gene-mutant organoids. Different drug responses and promising drug therapies, including chemotherapy and targeted drugs, have been discovered for ICC.
Collapse
Affiliation(s)
- Yangyang Feng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, Guangdong, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ming Zhao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Lijian Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ling Li
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Josh Haipeng Lei
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jingbo Zhou
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jinghong Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yumeng Wu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Kai Miao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- Zhuhai UM Science & Technology Research Institute, Zhuhai, Guangdong, China.
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
7
|
Song F, Chen Z. Preclinical liver cancer models in the context of immunoprecision therapy: Application and perspectives. Shijie Huaren Xiaohua Zazhi 2023; 31:989-1000. [DOI: 10.11569/wcjd.v31.i24.989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC), ranking as the third leading cause of cancer-related mortality globally, continues to pose challenges in achieving optimal treatment outcomes. The complex nature of HCC, characterized by high spatiotemporal heterogeneity, invasive potential, and drug resistance, presents difficulties in its research. Consequently, an in-depth understanding and accurate simulation of the immune microenvironment of HCC are of paramount importance. This article comprehensively explores the application of preclinical models in HCC research, encompassing cell line models, patient-derived xenograft mouse models, genetically engineered mouse models, chemically induced models, humanized mouse models, organoid models, and microfluidic chip-based patient derived organotypic spheroids models. Each model possesses its distinct advantages and limitations in replicating the biological behavior and immune microenvironment of HCC. By scrutinizing the limitations of existing models, this paper aims to propel the development of next-generation cancer models, enabling more precise emulation of HCC characteristics. This will, in turn, facilitate the optimization of treatment strategies, drug efficacy prediction, and safety assessments, ultimately contributing to the realization of personalized and precision therapies. Additionally, this article also provides insights into future trends and challenges in the fields of tumor biology and preclinical research.
Collapse
Affiliation(s)
- Fei Song
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
8
|
Zheng HC, Xue H, Yun WJ. An overview of mouse models of hepatocellular carcinoma. Infect Agent Cancer 2023; 18:49. [PMID: 37670307 PMCID: PMC10481604 DOI: 10.1186/s13027-023-00524-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has become a severe burden on global health due to its high morbidity and mortality rates. However, effective treatments for HCC are limited. The lack of suitable preclinical models may contribute to a major failure of drug development for HCC. Here, we overview several well-established mouse models of HCC, including genetically engineered mice, chemically-induced models, implantation models, and humanized mice. Immunotherapy studies of HCC have been a hot topic. Therefore, we will introduce the application of mouse models of HCC in immunotherapy. This is followed by a discussion of some other models of HCC-related liver diseases, including non-alcoholic fatty liver disease (NAFLD), hepatitis B and C virus infection, and liver fibrosis and cirrhosis. Together these provide researchers with a current overview of the mouse models of HCC and assist in the application of appropriate models for their research.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China.
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Wen-Jing Yun
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| |
Collapse
|
9
|
Sakata M, Kitada K, Omote R, Sonobe H, Utsumi M, Tokunaga N, Fushimi T, Nagao R, Sakata T, Kaneyoshi T, Toyokawa T, Inagaki M. Synchronous Double Primary Combined Hepatocellular-cholangiocarcinoma and Cholangiolocarcinoma in a Cirrhotic Liver. J Clin Transl Hepatol 2023; 11:991-997. [PMID: 37408806 PMCID: PMC10318272 DOI: 10.14218/jcth.2022.00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/09/2022] [Accepted: 01/04/2023] [Indexed: 07/07/2023] Open
Abstract
Both combined hepatocellular-cholangiocarcinoma (cHCC-CCA) and cholangiolocarcinoma are rare primary liver cancers. cHCC-CCA is believed to originate from transformed hepatocellular carcinoma or liver stem/progenitor cells. Cholangiolocarcinoma is characterized by ductular reaction-like anastomosing cords and glands resembling cholangioles or canals containing hepatocellular carcinoma components and adenocarcinoma cells. According to the 2019 revision of the World Health Organization criteria, a subtype with stem cell features as a subclassification of cHCC-CCA was abolished for lack of conclusive evidence of the stem cell origin theory. That led to the classification of cholangiolocarcinoma with hepatocytic differentiation as cHCC-CCA. Consequently, cholangiolocarcinoma without hepatocytic differentiation is classified as a subtype of small-duct cholangiocarcinoma and is assumed to originate from the bile duct. Herein, we report the first case of double primary cHCC-CCA and cholangiolocarcinoma without hepatocytic differentiation in different hepatic segments of a cirrhotic liver. We believe this case supports the validity of the new World Health Organization criteria because the pathological finding of cHCC-CCA in this case shows the transformation of hepatocellular carcinoma to cholangiocarcinoma. Furthermore, this case may demonstrate that immature ductular cell stemness and mature hepatocyte cell stemness in hepatocarcinogenesis can coexist in the same environment. The results provide valuable insights into the mechanisms of growth, differentiation, and regulation of liver cancers.
Collapse
Affiliation(s)
- Masahiro Sakata
- Department of Gastroenterology and Hepatology, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Koji Kitada
- Department of Surgery, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Rika Omote
- Department of Laboratory and Pathology, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Hiroshi Sonobe
- Department of Laboratory and Pathology, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Masashi Utsumi
- Department of Surgery, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Naoyuki Tokunaga
- Department of Surgery, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Takashi Fushimi
- Department of Gastroenterology and Hepatology, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Ryota Nagao
- Department of Radiology, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Tatsuro Sakata
- Department of Gastroenterology and Hepatology, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Toshihiko Kaneyoshi
- Department of Gastroenterology and Hepatology, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Tatsuya Toyokawa
- Department of Gastroenterology and Hepatology, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Masaru Inagaki
- Department of Surgery, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| |
Collapse
|
10
|
Li J, Wang X, Ren M, He S, Zhao Y. Advances in experimental animal models of hepatocellular carcinoma. Cancer Med 2023; 12:15261-15276. [PMID: 37248746 PMCID: PMC10417182 DOI: 10.1002/cam4.6163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with insidious early symptoms, easy metastasis, postoperative recurrence, poor drug efficacy, and a high drug resistance rate when surgery is missed, leading to a low 5-year survival rate. Research on the pathogenesis and drugs is particularly important for clinical treatment. Animal models are crucial for basic research, which is conducive to studying pathogenesis and drug screening more conveniently and effectively. An appropriate animal model can better reflect disease occurrence and development, and the process of anti-tumor immune response in the human body. This review summarizes the classification, characteristics, and advances in experimental animal models of HCC to provide a reference for researchers on model selection.
Collapse
Affiliation(s)
- Jing Li
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Xin Wang
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Mudan Ren
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Shuixiang He
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Yan Zhao
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| |
Collapse
|
11
|
Calvisi DF, Boulter L, Vaquero J, Saborowski A, Fabris L, Rodrigues PM, Coulouarn C, Castro RE, Segatto O, Raggi C, van der Laan LJW, Carpino G, Goeppert B, Roessler S, Kendall TJ, Evert M, Gonzalez-Sanchez E, Valle JW, Vogel A, Bridgewater J, Borad MJ, Gores GJ, Roberts LR, Marin JJG, Andersen JB, Alvaro D, Forner A, Banales JM, Cardinale V, Macias RIR, Vicent S, Chen X, Braconi C, Verstegen MMA, Fouassier L. Criteria for preclinical models of cholangiocarcinoma: scientific and medical relevance. Nat Rev Gastroenterol Hepatol 2023; 20:462-480. [PMID: 36755084 DOI: 10.1038/s41575-022-00739-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy that develops at any point along the biliary tree. CCA has a poor prognosis, its clinical management remains challenging, and effective treatments are lacking. Therefore, preclinical research is of pivotal importance and necessary to acquire a deeper understanding of CCA and improve therapeutic outcomes. Preclinical research involves developing and managing complementary experimental models, from in vitro assays using primary cells or cell lines cultured in 2D or 3D to in vivo models with engrafted material, chemically induced CCA or genetically engineered models. All are valuable tools with well-defined advantages and limitations. The choice of a preclinical model is guided by the question(s) to be addressed; ideally, results should be recapitulated in independent approaches. In this Consensus Statement, a task force of 45 experts in CCA molecular and cellular biology and clinicians, including pathologists, from ten countries provides recommendations on the minimal criteria for preclinical models to provide a uniform approach. These recommendations are based on two rounds of questionnaires completed by 35 (first round) and 45 (second round) experts to reach a consensus with 13 statements. An agreement was defined when at least 90% of the participants voting anonymously agreed with a statement. The ultimate goal was to transfer basic laboratory research to the clinics through increased disease understanding and to develop clinical biomarkers and innovative therapies for patients with CCA.
Collapse
Affiliation(s)
- Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scottish Centre, Institute of Genetics and Cancer, Edinburgh, UK
| | - Javier Vaquero
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Pedro M Rodrigues
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Cédric Coulouarn
- Inserm, Univ Rennes 1, OSS (Oncogenesis Stress Signalling), UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Oreste Segatto
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Benjamin Goeppert
- Institute of Pathology and Neuropathology, Ludwigsburg, Germany
- Institute of Pathology, Kantonsspital Baselland, Liestal, Switzerland
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Ester Gonzalez-Sanchez
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Mitesh J Borad
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jose J G Marin
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alejandro Forner
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Jesus M Banales
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rocio I R Macias
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Silve Vicent
- University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, Instituto de Salud Carlos III), Madrid, Spain
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
| |
Collapse
|
12
|
Qiu N, Srikanth A, Mulaw M, Tharehalli U, Selvachandran S, Wagner M, Seufferlein T, Stifter K, Lechel A, Schirmbeck R. CD8 T cell-mediated depletion of HBV surface-antigen-expressing, bilineal-differentiated liver carcinoma cells generates highly aggressive escape variants. Oncoimmunology 2023; 12:2215096. [PMID: 37261086 PMCID: PMC10228399 DOI: 10.1080/2162402x.2023.2215096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/12/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023] Open
Abstract
The expression of viral antigens in chronic hepatitis B virus (HBV) infection drives continuous liver inflammation, one of the main risk factors to develop liver cancer. HBV developed immune-suppressive functions to escape from the host immune system, but their link to liver tumor development is not well understood. Here, we analyzed if and how HBV surface antigen (HBs) expression in combined hepatocellular-cholangiocarcinoma (cHCC/iCCA) cells influences their antigenicity for CD8 T cells. We randomly isolated liver tumor tissues from AlfpCre+-Trp53fl/fl/Alb-HBs+ tg mice and established primary carcinoma cell lines (pCCL) that showed a bilineal (CK7+/HNF4α+) cHCC/iCCA phenotype. These pCCL uniformly expressed HBs (HBshi), and low levels of MHC-I (MHC-Ilo), and were transiently convertible to a high antigenicity (MHC-Ihi) phenotype by IFN-γ treatment. HBshi/pCCL induced HBs/(Kb/S190-197)-specific CD8 T cells and developed slow-growing tumors in subcutaneously transplanted C57Bl/6J (B6) mice. Interestingly, pCCL-ex cells, established from HBshi/pCCL-induced and re-explanted tumors in B6 but not those in immune-deficient Rag1-/- mice showed major alterations, like an MHC-Ihi phenotype, a prominent growth-biased gene expression signature, a significantly decreased HBs expression (HBslo) and a switch to fast-growing tumors in re-transplanted B6 or PD-1-/- hosts with an unlocked PD-1/PD-L1 control system. CD8 T cell-mediated elimination of HBshi/pCCL, together with the attenuation of the negative restraints of HBs in the tumor cells, like ER-stress, reveals a novel mechanism to unleash highly aggressive HBslo/pCCL-ex immune-escape variants. Under certain conditions, HBs-specific CD8 T-cell responses thus potentiate tumor growth, an aspect that should be considered for therapeutic vaccination strategies against chronic HBV infection and liver tumors.
Collapse
Affiliation(s)
- Na Qiu
- Department of Internal Medicine I, University Hospital of Ulm, Ulm, Germany
- Unit for single-cell Genomics, Medical Faculty, Ulm University, Ulm, Germany
| | - Akshaya Srikanth
- Department of Internal Medicine I, University Hospital of Ulm, Ulm, Germany
| | - Medhanie Mulaw
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Umesh Tharehalli
- Department of Internal Medicine I, University Hospital of Ulm, Ulm, Germany
- The first Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | - Martin Wagner
- Department of Internal Medicine I, University Hospital of Ulm, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, University Hospital of Ulm, Ulm, Germany
| | - Katja Stifter
- Department of Internal Medicine I, University Hospital of Ulm, Ulm, Germany
| | - André Lechel
- Department of Internal Medicine I, University Hospital of Ulm, Ulm, Germany
| | | |
Collapse
|
13
|
Liu F, Gai X, Wu Y, Zhang B, Wu X, Cheng R, Tang B, Shang K, Zhao N, Deng W, Chen J, Zhang Z, Gu S, Zheng L, Zhang H. Oncogenic β-catenin stimulation of AKT2-CAD-mediated pyrimidine synthesis is targetable vulnerability in liver cancer. Proc Natl Acad Sci U S A 2022; 119:e2202157119. [PMID: 36122209 PMCID: PMC9522414 DOI: 10.1073/pnas.2202157119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/20/2022] [Indexed: 12/01/2022] Open
Abstract
CTNNB1, encoding β-catenin protein, is the most frequently altered proto-oncogene in hepatic neoplasms. In this study, we studied the significance and pathological mechanism of CTNNB1 gain-of-function mutations in hepatocarcinogenesis. Activated β-catenin not only triggered hepatic tumorigenesis but also exacerbated Tp53 deletion or hepatitis B virus infection-mediated liver cancer development in mouse models. Using untargeted metabolomic profiling, we identified boosted de novo pyrimidine synthesis as the major metabolic aberration in β-catenin mutant cell lines and livers. Oncogenic β-catenin transcriptionally stimulated AKT2, which then phosphorylated the rate-limiting de novo pyrimidine synthesis enzyme CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, dihydroorotase) on S1406 and S1859 to potentiate nucleotide synthesis. Moreover, inhibition of β-catenin/AKT2-stimulated pyrimidine synthesis axis preferentially repressed β-catenin mutant cell proliferation and tumor formation. Therefore, β-catenin active mutations are oncogenic in various preclinical liver cancer models. Stimulation of β-catenin/AKT2/CAD signaling cascade on pyrimidine synthesis is an essential and druggable vulnerability for β-catenin mutant liver cancer.
Collapse
Affiliation(s)
- Fangming Liu
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xiaochen Gai
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yuting Wu
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Baohui Zhang
- Department of Physiology, School of Life Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoyu Wu
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, Shanghai Jiao Tong School of Medicine, Shanghai 200127, China
| | - Rongrong Cheng
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, Shanghai Jiao Tong School of Medicine, Shanghai 200127, China
| | - Bufu Tang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Kezhuo Shang
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Na Zhao
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Weiwei Deng
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhengyi Zhang
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Song Gu
- Department of General Surgery/Surgical Oncology Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Liang Zheng
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, Shanghai Jiao Tong School of Medicine, Shanghai 200127, China
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Fujian Branch of Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Fujian Children's Hospital, Fuzhou, Fujian 350014, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
14
|
Tu WL, Chih YC, Shih YT, Yu YR, You LR, Chen CM. Context-specific roles of diphthamide deficiency in hepatocellular carcinogenesis. J Pathol 2022; 258:149-163. [PMID: 35781884 DOI: 10.1002/path.5986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 11/07/2022]
Abstract
Diphthamide biosynthesis protein 1 (DPH1) is biochemically involved in the first step of diphthamide biosynthesis, a post-translational modification of eukaryotic elongation factor 2 (EEF2). Earlier studies showed that DPH1, also known as ovarian cancer-associated gene 1 (OVCA1), is involved in ovarian carcinogenesis. However, the role of DPH1 in hepatocellular carcinoma (HCC) remains unclear. To investigate the impact of DPH1 in hepatocellular carcinogenesis, we have performed data mining from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset. We found that reduced DPH1 levels were associated with advanced stages and poor survival of patients with HCC. Also, we generated hepatocyte-specific Dph1 deficient mice and showed that diphthamide deficient EEF2 resulted in a reduced translation elongation rate in the hepatocytes and let to mild liver damage with fatty accumulation. After N-diethylnitrosamine (DEN) -induced acute liver injury, p53-mediated pericentral hepatocyte death was increased, and compensatory proliferation was reduced in Dph1-deficient mice. Consistent with these effects, Dph1 deficiency decreased the incidence of DEN-induced pericentral-derived HCC and revealed a protective effect against p53 loss. In contrast, Dph1 deficiency combined with Trp53- or Trp53/Pten-deficient hepatocytes led to increased tumor loads associated with KRT19 (K19)-positive periportal-like cell expansion in mice. Further gene set enrichment analysis also revealed that HCC patients with lower levels of DPH1 and TP53 expression had enriched gene-sets related to the cell cycle and K19-upregulated HCC. Additionally, liver tumor organoids obtained from 6-month-old Pten/Trp53/Dph1-triple-mutant mice had a higher frequency of organoid re-initiation cells and higher proliferative index compared with those of the Pten/Trp53-double-mutant. Pten/Trp53/Dph1-triple-mutant liver tumor organoids showed expression of genes associated with stem/progenitor phenotypes, including Krt19 and Prominin-1 (Cd133) progenitor markers, combined with low hepatocyte-expressed fibrinogen genes. These findings indicate that diphthamide deficiency differentially regulates hepatocellular carcinogenesis, which inhibits pericentral hepatocytes-derived tumor and promotes periportal progenitors-associated liver tumors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wei-Ling Tu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming, Chiao Tung University, Taipei, Taiwan
| | - Yu-Chan Chih
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming, Chiao Tung University, Taipei, Taiwan
| | - Ya-Tung Shih
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming, Chiao Tung University, Taipei, Taiwan
| | - Yi-Ru Yu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming, Chiao Tung University, Taipei, Taiwan
| | - Li-Ru You
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Ming Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming, Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
15
|
Ceci L, Zhou T, Lenci I, Meadows V, Kennedy L, Li P, Ekser B, Milana M, Zhang W, Wu C, Sato K, Chakraborty S, Glaser SS, Francis H, Alpini G, Baiocchi L. Molecular Mechanisms Linking Risk Factors to Cholangiocarcinoma Development. Cancers (Basel) 2022; 14:1442. [PMID: 35326593 PMCID: PMC8945938 DOI: 10.3390/cancers14061442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
The poor prognosis of cholangiocarcinoma in humans is related to several factors, such as (i) the heterogeneity of the disease, (ii) the late onset of symptoms and (iii) the limited comprehension of the carcinogenic pathways determining neoplastic changes, which all limit the pursuit of appropriate treatment. Several risk factors have been recognized, including different infective, immune-mediated, and dysmorphogenic disorders of the biliary tree. In this review, we report the details of possible mechanisms that lead a specific premalignant pathological condition to become cholangiocarcinoma. For instance, during liver fluke infection, factors secreted from the worms may play a major role in pathogenesis. In primary sclerosing cholangitis, deregulation of histamine and bile-acid signaling may determine important changes in cellular pathways. The study of these molecular events may also shed some light on the pathogenesis of sporadic (unrelated to risk factors) forms of cholangiocarcinoma, which represent the majority (nearly 75%) of cases.
Collapse
Affiliation(s)
- Ludovica Ceci
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
| | - Tianhao Zhou
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
| | - Ilaria Lenci
- Unit of Hepatology, Tor Vergata University, 00133 Rome, Italy; (I.L.); (M.M.)
| | - Vik Meadows
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
| | - Lindsey Kennedy
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Ping Li
- Department of Surgery, Division of Transplant Surgery, Indiana University, Indianapolis, IN 46202, USA; (P.L.); (B.E.); (W.Z.)
| | - Burcin Ekser
- Department of Surgery, Division of Transplant Surgery, Indiana University, Indianapolis, IN 46202, USA; (P.L.); (B.E.); (W.Z.)
| | - Martina Milana
- Unit of Hepatology, Tor Vergata University, 00133 Rome, Italy; (I.L.); (M.M.)
| | - Wenjun Zhang
- Department of Surgery, Division of Transplant Surgery, Indiana University, Indianapolis, IN 46202, USA; (P.L.); (B.E.); (W.Z.)
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA;
| | - Keisaku Sato
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA; (S.C.); (S.S.G.)
| | - Shannon S. Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA; (S.C.); (S.S.G.)
| | - Heather Francis
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Gianfranco Alpini
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Leonardo Baiocchi
- Unit of Hepatology, Tor Vergata University, 00133 Rome, Italy; (I.L.); (M.M.)
| |
Collapse
|
16
|
Humpton TJ, Hall H, Kiourtis C, Nixon C, Clark W, Hedley A, Shaw R, Bird TG, Blyth K, Vousden KH. p53-mediated redox control promotes liver regeneration and maintains liver function in response to CCl 4. Cell Death Differ 2022; 29:514-526. [PMID: 34628485 PMCID: PMC8901761 DOI: 10.1038/s41418-021-00871-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022] Open
Abstract
The p53 transcription factor coordinates wide-ranging responses to stress that contribute to its function as a tumour suppressor. The responses to p53 induction are complex and range from mediating the elimination of stressed or damaged cells to promoting survival and repair. These activities of p53 can modulate tumour development but may also play a role in pathological responses to stress such as tissue damage and repair. Using a p53 reporter mouse, we have previously detected strong induction of p53 activity in the liver of mice treated with the hepatotoxin carbon tetrachloride (CCl4). Here, we show that p53 functions to support repair and recovery from CCl4-mediated liver damage, control reactive oxygen species (ROS) and limit the development of hepatocellular carcinoma (HCC), in part through the activation of a detoxification cytochrome P450, CYP2A5 (CYP2A6 in humans). Our work demonstrates an important role for p53-mediated redox control in facilitating the hepatic regenerative response after damage and identifies CYP2A5/CYP2A6 as a mediator of this pathway with potential prognostic utility in human HCC.
Collapse
Affiliation(s)
- Timothy J Humpton
- The Francis Crick Institute, London, NW1 1AT, UK.
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
| | - Holly Hall
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Christos Kiourtis
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - William Clark
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Robin Shaw
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Thomas G Bird
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | | |
Collapse
|
17
|
Zhao M, Quan Y, Zeng J, Lyu X, Wang H, Lei JH, Feng Y, Xu J, Chen Q, Sun H, Xu X, Lu L, Deng CX. Cullin3 deficiency shapes tumor microenvironment and promotes cholangiocarcinoma in liver-specific Smad4/Pten mutant mice. Int J Biol Sci 2021; 17:4176-4191. [PMID: 34803491 PMCID: PMC8579464 DOI: 10.7150/ijbs.67379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 11/24/2022] Open
Abstract
Cholangiocarcinoma (CC), the most lethal type of liver cancer, remains very difficult to treat due to an incomplete understanding of the cancer initiation and progression mechanisms and no effective therapeutic drugs. Thus, identification of genomic drivers and delineation of the underlying mechanisms are urgently needed. Here, we conducted a genome-wide CRISPR-Cas9 screening in liver-specific Smad4/Pten knockout mice (Smad4co/co;Ptenco/co;Alb-Cre, abbreviated as SPC), and identified 15 putative tumor suppressor genes, including Cullin3 (Cul3), whose deficiency increases protein levels of Nrf2 and Cyclin D1 that accelerate cholangiocytes expansion leading to the initiation of CC. Meanwhile, Cul3 deficiency also increases the secretion of Cxcl9 in stromal cells to attract T cells infiltration, and increases the production of Amphiregulin (Areg) mediated by Nrf2, which paracrinely induces inflammation in the liver, and promotes accumulation of exhausted PD1high CD8 T cells at the expenses of their cytotoxic activity, allowing CC progression. We demonstrate that the anti-PD1/PD-L1 blockade inhibits CC growth, and the effect is enhanced by combining with sorafenib selected from organoid mediated drug sensitive test. This model makes it possible to further identify more liver cancer suppressors, study molecular mechanisms, and develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Ming Zhao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yingyao Quan
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University
| | - Jianming Zeng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xueying Lyu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Haitao Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Josh Haipeng Lei
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yangyang Feng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jun Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Qiang Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontieers Science Center for Precision Oncogene, University of Macau, Macau SAR, China
| | - Heng Sun
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontieers Science Center for Precision Oncogene, University of Macau, Macau SAR, China
| | - Xiaoling Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontieers Science Center for Precision Oncogene, University of Macau, Macau SAR, China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontieers Science Center for Precision Oncogene, University of Macau, Macau SAR, China
| |
Collapse
|
18
|
Rothgangl T, Dennis MK, Lin PJC, Oka R, Witzigmann D, Villiger L, Qi W, Hruzova M, Kissling L, Lenggenhager D, Borrelli C, Egli S, Frey N, Bakker N, Walker JA, Kadina AP, Victorov DV, Pacesa M, Kreutzer S, Kontarakis Z, Moor A, Jinek M, Weissman D, Stoffel M, van Boxtel R, Holden K, Pardi N, Thöny B, Häberle J, Tam YK, Semple SC, Schwank G. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat Biotechnol 2021; 39:949-957. [PMID: 34012094 PMCID: PMC8352781 DOI: 10.1038/s41587-021-00933-4] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/23/2021] [Indexed: 02/02/2023]
Abstract
Most known pathogenic point mutations in humans are C•G to T•A substitutions, which can be directly repaired by adenine base editors (ABEs). In this study, we investigated the efficacy and safety of ABEs in the livers of mice and cynomolgus macaques for the reduction of blood low-density lipoprotein (LDL) levels. Lipid nanoparticle-based delivery of mRNA encoding an ABE and a single-guide RNA targeting PCSK9, a negative regulator of LDL, induced up to 67% editing (on average, 61%) in mice and up to 34% editing (on average, 26%) in macaques. Plasma PCSK9 and LDL levels were stably reduced by 95% and 58% in mice and by 32% and 14% in macaques, respectively. ABE mRNA was cleared rapidly, and no off-target mutations in genomic DNA were found. Re-dosing in macaques did not increase editing, possibly owing to the detected humoral immune response to ABE upon treatment. These findings support further investigation of ABEs to treat patients with monogenic liver diseases.
Collapse
Affiliation(s)
- Tanja Rothgangl
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | | | | | - Rurika Oka
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Dominik Witzigmann
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | - Lukas Villiger
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Martina Hruzova
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Lucas Kissling
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | - Daniela Lenggenhager
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Sabina Egli
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | - Nina Frey
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Noëlle Bakker
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland
| | | | | | | | - Martin Pacesa
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Susanne Kreutzer
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
- Genome Engineering and Measurement Laboratory, ETH Zurich, Zurich, Switzerland
| | - Zacharias Kontarakis
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
- Genome Engineering and Measurement Laboratory, ETH Zurich, Zurich, Switzerland
| | - Andreas Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Markus Stoffel
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Ruben van Boxtel
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beat Thöny
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, Zurich, Switzerland
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ying K Tam
- Acuitas Therapeutics Inc., Vancouver, BC, Canada
| | | | - Gerald Schwank
- University of Zurich, Institute for Pharmacology and Toxicology, Zurich, Switzerland.
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Liu M, Wu N, Xu K, Saaoud F, Vasilopoulos E, Shao Y, Zhang R, Wang J, Shen H, Yang WY, Lu Y, Sun Y, Drummer C, Liu L, Li L, Hu W, Yu J, Praticò D, Sun J, Jiang X, Wang H, Yang X. Organelle Crosstalk Regulators Are Regulated in Diseases, Tumors, and Regulatory T Cells: Novel Classification of Organelle Crosstalk Regulators. Front Cardiovasc Med 2021; 8:713170. [PMID: 34368262 PMCID: PMC8339352 DOI: 10.3389/fcvm.2021.713170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
To examine whether the expressions of 260 organelle crosstalk regulators (OCRGs) in 16 functional groups are modulated in 23 diseases and 28 tumors, we performed extensive -omics data mining analyses and made a set of significant findings: (1) the ratios of upregulated vs. downregulated OCRGs are 1:2.8 in acute inflammations, 1:1 in metabolic diseases, 1:1.2 in autoimmune diseases, and 1:3.8 in organ failures; (2) sepsis and trauma-upregulated OCRG groups such as vesicle, mitochondrial (MT) fission, and mitophagy but not others, are termed as the cell crisis-handling OCRGs. Similarly, sepsis and trauma plus organ failures upregulated seven OCRG groups including vesicle, MT fission, mitophagy, sarcoplasmic reticulum–MT, MT fusion, autophagosome–lysosome fusion, and autophagosome/endosome–lysosome fusion, classified as the cell failure-handling OCRGs; (3) suppression of autophagosome–lysosome fusion in endothelial and epithelial cells is required for viral replications, which classify this decreased group as the viral replication-suppressed OCRGs; (4) pro-atherogenic damage-associated molecular patterns (DAMPs) such as oxidized low-density lipoprotein (oxLDL), lipopolysaccharide (LPS), oxidized-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (oxPAPC), and interferons (IFNs) totally upregulated 33 OCRGs in endothelial cells (ECs) including vesicle, MT fission, mitophagy, MT fusion, endoplasmic reticulum (ER)–MT contact, ER– plasma membrane (PM) junction, autophagosome/endosome–lysosome fusion, sarcoplasmic reticulum–MT, autophagosome–endosome/lysosome fusion, and ER–Golgi complex (GC) interaction as the 10 EC-activation/inflammation-promoting OCRG groups; (5) the expression of OCRGs is upregulated more than downregulated in regulatory T cells (Tregs) from the lymph nodes, spleen, peripheral blood, intestine, and brown adipose tissue in comparison with that of CD4+CD25− T effector controls; (6) toll-like receptors (TLRs), reactive oxygen species (ROS) regulator nuclear factor erythroid 2-related factor 2 (Nrf2), and inflammasome-activated regulator caspase-1 regulated the expressions of OCRGs in diseases, virus-infected cells, and pro-atherogenic DAMP-treated ECs; (7) OCRG expressions are significantly modulated in all the 28 cancer datasets, and the upregulated OCRGs are correlated with tumor immune infiltrates in some tumors; (8) tumor promoter factor IKK2 and tumor suppressor Tp53 significantly modulate the expressions of OCRGs. Our findings provide novel insights on the roles of upregulated OCRGs in the pathogenesis of inflammatory diseases and cancers, and novel pathways for the future therapeutic interventions for inflammations, sepsis, trauma, organ failures, autoimmune diseases, metabolic cardiovascular diseases (CVDs), and cancers.
Collapse
Affiliation(s)
- Ming Liu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, China
| | - Na Wu
- Departments of Endocrinology and Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Keman Xu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Eleni Vasilopoulos
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ruijing Zhang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Jirong Wang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Cardiology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Haitao Shen
- Departments of Endocrinology and Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | | | - Yifan Lu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Lu Liu
- Metabolic Disease Research, Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Li Li
- Department of Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, China
| | - Wenhui Hu
- Metabolic Disease Research, Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jun Yu
- Metabolic Disease Research, Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Domenico Praticò
- Alzheimer's Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jianxin Sun
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Metabolic Disease Research, Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research, Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Metabolic Disease Research, Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
20
|
Liu Y, Xin B, Yamamoto M, Goto M, Ooshio T, Kamikokura Y, Tanaka H, Meng L, Okada Y, Mizukami Y, Nishikawa Y. Generation of combined hepatocellular-cholangiocarcinoma through transdifferentiation and dedifferentiation in p53-knockout mice. Cancer Sci 2021; 112:3111-3124. [PMID: 34051011 PMCID: PMC8353893 DOI: 10.1111/cas.14996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022] Open
Abstract
The two principal histological types of primary liver cancers, hepatocellular carcinoma (HCC) and cholangiocarcinoma, can coexist within a tumor, comprising combined hepatocellular‐cholangiocarcinoma (cHCC‐CCA). Although the possible involvement of liver stem/progenitor cells has been proposed for the pathogenesis of cHCC‐CCA, the cells might originate from transformed hepatocytes that undergo ductular transdifferentiation or dedifferentiation. We previously demonstrated that concomitant introduction of mutant HRASV12 (HRAS) and Myc into mouse hepatocytes induced dedifferentiated tumors that expressed fetal/neonatal liver genes and proteins. Here, we examine whether the phenotype of HRAS‐ or HRAS/Myc‐induced tumors might be affected by the disruption of the Trp53 gene, which has been shown to induce biliary differentiation in mouse liver tumors. Hepatocyte‐derived liver tumors were induced in heterozygous and homozygous p53‐knockout (KO) mice by hydrodynamic tail vein injection of HRAS‐ or Myc‐containing transposon cassette plasmids, which were modified by deleting loxP sites, with a transposase‐expressing plasmid. The HRAS‐induced and HRAS/Myc‐induced tumors in the wild‐type mice demonstrated histological features of HCC, whereas the phenotype of the tumors generated in the p53‐KO mice was consistent with cHCC‐CCA. The expression of fetal/neonatal liver proteins, including delta‐like 1, was detected in the HRAS/Myc‐induced but not in the HRAS‐induced cHCC‐CCA tissues. The dedifferentiation in the HRAS/Myc‐induced tumors was more marked in the homozygous p53‐KO mice than in the heterozygous p53‐KO mice and was associated with activation of Myc and YAP and suppression of ERK phosphorylation. Our results suggest that the loss of p53 promotes ductular differentiation of hepatocyte‐derived tumor cells through either transdifferentiation or Myc‐mediated dedifferentiation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Bing Xin
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Masahiro Yamamoto
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Masanori Goto
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takako Ooshio
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yuki Kamikokura
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroki Tanaka
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Lingtong Meng
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yoko Okada
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Mizukami
- Department of Medicine, Cancer Genomics and Precision Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yuji Nishikawa
- Department of Pathology, Division of Tumor Pathology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
21
|
Deng HX, Zhai H, Shi Y, Liu G, Lowry J, Liu B, Ryan ÉB, Yan J, Yang Y, Zhang N, Yang Z, Liu E, Ma YC, Siddique T. Efficacy and long-term safety of CRISPR/Cas9 genome editing in the SOD1-linked mouse models of ALS. Commun Biol 2021; 4:396. [PMID: 33767386 PMCID: PMC7994668 DOI: 10.1038/s42003-021-01942-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
CRISPR/Cas9-mediated genome editing provides potential for therapeutic development. Efficacy and long-term safety represent major concerns that remain to be adequately addressed in preclinical studies. Here we show that CRISPR/Cas9-mediated genome editing in two distinct SOD1-amyotrophic lateral sclerosis (ALS) transgenic mouse models prevented the development of ALS-like disease and pathology. The disease-linked transgene was effectively edited, with rare off-target editing events. We observed frequent large DNA deletions, ranging from a few hundred to several thousand base pairs. We determined that these large deletions were mediated by proximate identical sequences in Alu elements. No evidence of other diseases was observed beyond 2 years of age in these genome edited mice. Our data provide preclinical evidence of the efficacy and long-term safety of the CRISPR/Cas9 therapeutic approach. Moreover, the molecular mechanism of proximate identical sequences-mediated recombination provides mechanistic information to optimize therapeutic targeting design, and to avoid or minimize unintended and potentially deleterious recombination events.
Collapse
Affiliation(s)
- Han-Xiang Deng
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Hong Zhai
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yong Shi
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Guoxiang Liu
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jessica Lowry
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bin Liu
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Éanna B Ryan
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jianhua Yan
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yi Yang
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nigel Zhang
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zhihua Yang
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Erdong Liu
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yongchao C Ma
- Departments of Pediatrics, Neurology and Physiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Teepu Siddique
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
22
|
Gigante E, Paradis V, Ronot M, Cauchy F, Soubrane O, Ganne-Carrié N, Nault JC. New insights into the pathophysiology and clinical care of rare primary liver cancers. JHEP Rep 2021; 3:100174. [PMID: 33205035 PMCID: PMC7653076 DOI: 10.1016/j.jhepr.2020.100174] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocholangiocarcinoma, fibrolamellar carcinoma, hepatic haemangioendothelioma and hepatic angiosarcoma represent less than 5% of primary liver cancers. Fibrolamellar carcinoma and hepatic haemangioendothelioma are driven by unique somatic genetic alterations (DNAJB1-PRKCA and CAMTA1-WWTR1 fusions, respectively), while the pathogenesis of hepatocholangiocarcinoma remains more complex, as suggested by its histological diversity. Histology is the gold standard for diagnosis, which remains challenging even in an expert centre because of the low incidences of these liver cancers. Resection, when feasible, is the cornerstone of treatment, together with liver transplantation for hepatic haemangioendothelioma. The role of locoregional therapies and systemic treatments remains poorly studied. In this review, we aim to describe the recent advances in terms of diagnosis and clinical management of these rare primary liver cancers.
Collapse
Key Words
- 5-FU, 5-Fluorouracil
- AFP, alpha-fetoprotein
- APHE, arterial phase hyperenhancement
- CA19-9, carbohydrate antigen 19-9
- CCA, cholangiocarcinoma
- CEUS, contrast-enhanced ultrasound
- CK, cytokeratin
- CLC, cholangiolocellular carcinoma
- EpCAM, epithelial cell adhesion molecule
- FISH, fluorescence in situ hybridisation
- FLC, fibrolamellar carcinoma
- Fibrolamellar carcinoma
- HAS, hepatic angiosarcoma
- HCC, hepatocellular carcinoma
- HEH, hepatic epithelioid haemangioendothelioma
- HepPar1, hepatocyte specific antigen antibody
- Hepatic angiosarcoma
- Hepatic hemangioendothelioma
- Hepatocellular carcinoma
- Hepatocholangiocarcinoma
- IHC, immunohistochemistry
- LI-RADS, liver imaging reporting and data system
- LT, liver transplantation
- Mixed tumor
- RT-PCR, reverse transcription PCR
- SIRT, selective internal radiation therapy
- TACE, transarterial chemoembolisation
- WHO, World Health Organization
- cHCC-CCA, combined hepatocholangiocarcinoma
- iCCA, intrahepatic cholangiocarcinoma
Collapse
Affiliation(s)
- Elia Gigante
- Service d’hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Paris, France
| | - Valérie Paradis
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service d'anatomie pathologique, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - Maxime Ronot
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service de radiologie, Hôpital Beaujon, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - François Cauchy
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service de chirurgie hépato-bilio-pancréatique et transplantation hépatique, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - Olivier Soubrane
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service de chirurgie hépato-bilio-pancréatique et transplantation hépatique, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - Nathalie Ganne-Carrié
- Service d’hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Paris, France
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris, INSERM UMR 1138, Functional Genomics of Solid Tumors, F-75006, Paris, France
| | - Jean-Charles Nault
- Service d’hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Paris, France
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris, INSERM UMR 1138, Functional Genomics of Solid Tumors, F-75006, Paris, France
| |
Collapse
|
23
|
Buitrago-Molina LE, Marhenke S, Becker D, Geffers R, Itzel T, Teufel A, Jaeschke H, Lechel A, Unger K, Markovic J, Sharma AD, Marquardt JU, Saborowski M, Saborowski A, Vogel A. p53-Independent Induction of p21 Fails to Control Regeneration and Hepatocarcinogenesis in a Murine Liver Injury Model. Cell Mol Gastroenterol Hepatol 2021; 11:1387-1404. [PMID: 33484913 PMCID: PMC8024980 DOI: 10.1016/j.jcmgh.2021.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS A coordinated stress and regenerative response is important after hepatocyte damage. Here, we investigate the phenotypes that result from genetic abrogation of individual components of the checkpoint kinase 2/transformation-related protein 53 (p53)/cyclin-dependent kinase inhibitor 1A (p21) pathway in a murine model of metabolic liver injury. METHODS Nitisinone was reduced or withdrawn in Fah-/- mice lacking Chk2, p53, or p21, and survival, tumor development, liver injury, and regeneration were analyzed. Partial hepatectomies were performed and mice were challenged with the Fas antibody Jo2. RESULTS In a model of metabolic liver injury, loss of p53, but not Chk2, impairs the oxidative stress response and aggravates liver damage, indicative of a direct p53-dependent protective effect on hepatocytes. Cell-cycle control during chronic liver injury critically depends on the presence of both p53 and its downstream effector p21. In p53-deficient hepatocytes, unchecked proliferation occurs despite a strong induction of p21, showing a complex interdependency between p21 and p53. The increased regenerative potential in the absence of p53 cannot fully compensate the surplus injury and is not sufficient to promote survival. Despite the distinct phenotypes associated with the loss of individual components of the DNA damage response, gene expression patterns are dominated by the severity of liver injury, but reflect distinct effects of p53 on proliferation and the anti-oxidative stress response. CONCLUSIONS Characteristic phenotypes result from the genetic abrogation of individual components of the DNA damage-response cascade in a liver injury model. The extent to which loss of gene function can be compensated, or affects injury and proliferation, is related to the level at which the cascade is interrupted. Accession numbers of repository for expression microarray data: GSE156983, GSE156263, GSE156852, and GSE156252.
Collapse
Affiliation(s)
| | - Silke Marhenke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Diana Becker
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Robert Geffers
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Timo Itzel
- Division of Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Teufel
- Division of Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Kristian Unger
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Jovana Markovic
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jens U. Marquardt
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Michael Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany,Correspondence Address correspondence to: Arndt Vogel, MD, Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany. fax: (49) 5115328392.
| |
Collapse
|
24
|
Nakayama J, Gong Z. Transgenic zebrafish for modeling hepatocellular carcinoma. MedComm (Beijing) 2020; 1:140-156. [PMID: 34766114 PMCID: PMC8491243 DOI: 10.1002/mco2.29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Liver cancer is the third leading cause of cancer‐related deaths throughout the world, and more than 0.6 million people die from liver cancer annually. Therefore, novel therapeutic strategies to eliminate malignant cells from liver cancer patients are urgently needed. Recent advances in high‐throughput genomic technologies have identified de novo candidates for oncogenes and pharmacological targets. However, testing and understanding the mechanism of oncogenic transformation as well as probing the kinetics and therapeutic responses of spontaneous tumors in an intact microenvironment require in vivo examination using genetically modified animal models. The zebrafish (Danio rerio) has attracted increasing attention as a new model for studying cancer biology since the organs in the model are strikingly similar to human organs and the model can be genetically modified in a short time and at a low cost. This review summarizes the current knowledge of epidemiological data and genetic alterations in hepatocellular carcinoma (HCC), zebrafish models of HCC, and potential therapeutic strategies for targeting HCC based on knowledge from the models.
Collapse
Affiliation(s)
- Joji Nakayama
- Department of Biological Sciences National University of Singapore Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences National University of Singapore Singapore
| |
Collapse
|
25
|
Abstract
Primary liver cancer (PLC) is a fatal disease that affects millions of lives worldwide. PLC is the leading cause of cancer-related deaths and the incidence rate is predicted to rise in the coming decades. PLC can be categorized into three major histological subtypes: hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and combined HCC-ICC. These subtypes are distinct with respect to epidemiology, clinicopathological features, genetic alterations, and clinical managements, which are thoroughly summarized in this review. The state of treatment strategies for each subtype, including the currently approved drugs and the potential novel therapies, are also discussed.
Collapse
Affiliation(s)
- Mei Feng
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Yisheng Pan
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Ruirui Kong
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Shaokun Shu
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
- Department of Biomedical Engineering, Peking University, Beijing 100871, China
- Peking University Cancer Hospital, Beijing 100142, China
| |
Collapse
|
26
|
Ochiai Y, Yamaguchi J, Kokuryo T, Yokoyama Y, Ebata T, Nagino M. Trefoil Factor Family 1 Inhibits the Development of Hepatocellular Carcinoma by Regulating β-Catenin Activation. Hepatology 2020; 72:503-517. [PMID: 31733149 DOI: 10.1002/hep.31039] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Recent studies have suggested that trefoil factor family 1 (TFF1) functions as a tumor suppressor in gastric and pancreatic carcinogenesis. APPROACH AND RESULTS To investigate the role of TFF1 in hepatocarcinogenesis, we performed immunohistochemical staining of surgically resected human liver samples, transfected a TFF1 expression vector into hepatocellular carcinoma (HCC) cell lines, and employed a mouse model of spontaneous HCC development (albumin-cyclization recombination/Lox-Stop-Lox sequence-Kirsten rat sarcoma viral oncogene homologG12D [KC]); the model mouse strain was bred with a TFF1-knockout mouse strain to generate a TFF1-deficient HCC mouse model (KC/TFF1-/- ). TFF1 expression was found in some human samples with HCC. Interestingly, TFF1-positive cancer cells showed a staining pattern contradictory to that of proliferating cell nuclear antigen, and aberrant DNA hypermethylation in TFF1 promoter lesions was detected in HCC samples, indicating the tumor-suppressive role of TFF1. In vitro, induction of TFF1 expression resulted in impaired proliferative activity and enhanced apoptosis in HCC cell lines (HuH7, HepG2, and HLE). These anticancer effects of TFF1 were accompanied by the loss of nuclear β-catenin expression, indicating inactivation of the β-catenin signaling pathway by TFF1. In vivo, TFF1 deficiency in KC mice accelerated the early development and growth of HCC, resulting in poor survival rates. In addition, immunohistochemistry revealed that the amount of nuclear-localized β-catenin was significantly higher in KC/TFF1-/- mice than in KC mice and that human HCC tissue showed contradictory expression patterns for β-catenin and TFF1, confirming the in vitro observations. CONCLUSIONS TFF1 might function as a tumor suppressor that inhibits the development of HCC by regulating β-catenin activity.
Collapse
Affiliation(s)
- Yosuke Ochiai
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junpei Yamaguchi
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshio Kokuryo
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
27
|
Zhu Y, Kwong LN. Insights Into the Origin of Intrahepatic Cholangiocarcinoma From Mouse Models. Hepatology 2020; 72:305-314. [PMID: 32096245 DOI: 10.1002/hep.31200] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/17/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Yan Zhu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
28
|
Li F, Huangyang P, Burrows M, Guo K, Riscal R, Godfrey J, Lee KE, Lin N, Lee P, Blair IA, Keith B, Li B, Simon MC. FBP1 loss disrupts liver metabolism and promotes tumorigenesis through a hepatic stellate cell senescence secretome. Nat Cell Biol 2020; 22:728-739. [PMID: 32367049 PMCID: PMC7286794 DOI: 10.1038/s41556-020-0511-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
Abstract
The crosstalk between deregulated hepatocyte metabolism and cells within the tumour microenvironment, as well as the consequent effects on liver tumorigenesis, are not completely understood. We show here that hepatocyte-specific loss of the gluconeogenic enzyme fructose 1,6-bisphosphatase 1 (FBP1) disrupts liver metabolic homeostasis and promotes tumour progression. FBP1 is universally silenced in both human and murine liver tumours. Hepatocyte-specific Fbp1 deletion results in steatosis, concomitant with activation and senescence of hepatic stellate cells (HSCs), exhibiting a senescence-associated secretory phenotype. Depleting senescent HSCs by 'senolytic' treatment with dasatinib/quercetin or ABT-263 inhibits tumour progression. We further demonstrate that FBP1-deficient hepatocytes promote HSC activation by releasing HMGB1; blocking its release with the small molecule inflachromene limits FBP1-dependent HSC activation, the subsequent development of the senescence-associated secretory phenotype and tumour progression. Collectively, these findings provide genetic evidence for FBP1 as a metabolic tumour suppressor in liver cancer and establish a critical crosstalk between hepatocyte metabolism and HSC senescence that promotes tumour growth.
Collapse
Affiliation(s)
- Fuming Li
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peiwei Huangyang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Helen Diller Cancer Center, UCSF, San Francisco, CA, USA
| | - Michelle Burrows
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathy Guo
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Romain Riscal
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason Godfrey
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyoung Eun Lee
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nan Lin
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Trinity Partners, LLC, Waltham, MA, USA
| | - Pearl Lee
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Blair
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Keith
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Wistar Institute, Philadelphia, PA, USA
| | - Bo Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Wang G, Wang Q, Liang N, Xue H, Yang T, Chen X, Qiu Z, Zeng C, Sun T, Yuan W, Liu C, Chen Z, He X. Oncogenic driver genes and tumor microenvironment determine the type of liver cancer. Cell Death Dis 2020; 11:313. [PMID: 32366840 PMCID: PMC7198508 DOI: 10.1038/s41419-020-2509-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Primary liver cancer (PLC) may be mainly classified as the following four types: hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), hepatoblastoma (HB), and combined hepatocellular carcinoma and intrahepatic cholangiocarcinoma (cHCC-ICC). The majority of PLC develops in the background of tumor microenvironment, such as inflammatory microenvironments caused by viral hepatitis, alcoholic or nonalcoholic steatohepatitis, carbon tetrachloride (CCl4), 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), and necroptosis-associated hepatic cytokine microenvironment caused by necroptosis of hepatocytes. However, the impact of different types of microenvironments on the phenotypes of PLC generated by distinct oncogenes is still unclear. In addition, the cell origin of different liver cancers have not been clarified, as far as we know. Recent researches show that mature hepatocytes retain phenotypic plasticity to differentiate into cholangiocytes. More importantly, our results initially demonstrated that HCC, ICC, and cHCC-ICC could originate from mature hepatocytes rather than liver progenitor cells (LPCs), hepatic stellate cells (HSCs) and cholangiocytes in AKT-driven, AKT/NICD-driven and AKT/CAT-driven mouse PLC models respectively by using hydrodynamic transfection methodology. Therefore, liver tumors originated from mature hepatocytes embody a wide spectrum of phenotypes from HCC to CC, possibly including cHCC-ICC and HB. However, the underlying mechanism determining the cancer phenotype of liver tumors has yet to be delineated. In this review, we will provide a summary of the possible mechanisms for directing the cancer phenotype of liver tumors (i.e., ICC, HCC, and cHCC-ICC) in terms of oncogenic driver genes and tumor microenvironment. Moreover, this study initially revealed the cell origin of different types of liver cancer.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, The 74th Group Army Hospital, Guangzhou, 510220, China.,Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Qian Wang
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.,Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Ning Liang
- Department of General Surgery, The 75th Group Army Hospital, Dali, 671000, China
| | - Hongyuan Xue
- Department of General Surgery, Huashan North Hospital, Fudan University, Shanghai, 201907, China
| | - Tao Yang
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, Shanxi, China
| | - Xuguang Chen
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, 510091, China
| | - Zhaoyan Qiu
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Chao Zeng
- Department of Cardiology, The 74th Group Army Hospital, Guangzhou, 510318, China
| | - Tao Sun
- Departmentof Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zheng zhou, 450052, China
| | - Weitang Yuan
- Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Chaoxu Liu
- Department of General Surgery, Huashan North Hospital, Fudan University, Shanghai, 201907, China. .,Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.
| | - Zhangqian Chen
- Department of Infectious Diseases, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China. .,State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Biliary tract cancers which include intrahepatic and extrahepatic cholangiocarcinomas and gallbladder cancer, are characterized by poor outcome. Therefore, identifying the molecular mechanisms of the disease has become a priority. However, such identification has to cope with extreme heterogeneity of the disease, which results from the variable anatomical location, the numerous cell types of origin and the high number of known genetic alterations. RECENT FINDINGS Animal models can develop invasive and metastatic tumours that recapitulate as faithfully as possible the molecular features of the human tumours. To generate animal models of cholangiocarcinoma, investigators resorted to the administration of carcinogens, induction of cholestasis, grafting of tumour cells and induction of genetic modifications. SUMMARY Here, we summarize the currently available genetically engineered animal models, and focus on mice and zebrafish. The experimental strategies that were selected to induce cholangiocarcinoma in a time-controlled and cell-type-specific manner are critically examined. We discuss their strengths and limitations while considering their relevance to human pathophysiology.
Collapse
|
31
|
Liao K, Deng S, Xu L, Pan W, Yang S, Zheng F, Wu X, Hu H, Liu Z, Luo J, Zhang R, Kuang DM, Dong J, Wu Y, Zhang H, Zhou P, Bei JX, Xu Y, Ji Y, Wang P, Ju HQ, Xu RH, Li B. A Feedback Circuitry between Polycomb Signaling and Fructose-1, 6-Bisphosphatase Enables Hepatic and Renal Tumorigenesis. Cancer Res 2020; 80:675-688. [PMID: 31948940 DOI: 10.1158/0008-5472.can-19-2060] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/20/2019] [Accepted: 11/27/2019] [Indexed: 11/16/2022]
Abstract
Suppression of gluconeogenesis elevates glycolysis and is commonly observed in tumors derived from gluconeogenic tissues including liver and kidney, yet the definitive regulatory mechanism remains elusive. Here, we screened an array of transcription regulators and identified the enhancer of zeste homolog 2 (EZH2) as a key factor that inhibits gluconeogenesis in cancer cells. Specifically, EZH2 repressed the expression of a rate-limiting gluconeogenic enzyme fructose-1, 6-bisphosphatase 1 (FBP1) and promoted tumor growth primarily through FBP1 suppression. Furthermore, EZH2 was upregulated by genotoxins that commonly induce hepatic and renal tumorigenesis. Genotoxin treatments augmented EZH2 acetylation, leading to reduced association between EZH2 and its E3 ubiquitin ligase SMURF2. Consequently, EZH2 became less ubiquitinated and more stabilized, promoting FBP1 attenuation and tumor formation. Intriguingly, FBP1 physically interacted with EZH2, competed for EZH2 binding, and dissembled the polycomb complex. Therefore, FBP1 suppresses polycomb-initiated transcriptional responses and constitutes a double-negative feedback loop indispensable for EZH2-promoted tumorigenesis. Finally, EZH2 and FBP1 levels were inversely correlated in tumor tissues and accurately predicted patient survival. This work reveals an unexpected cross-talk between epigenetic and metabolic events, and identifies a new feedback circuitry that highlights EZH2 inhibitors as liver and kidney cancer therapeutics. SIGNIFICANCE: A novel feedback loop involving EZH2 and suppression of the gluconeogenesis enzyme FBP1 promotes hepatocellular cancer growth.See related commentary by Leithner, p. 657.
Collapse
Affiliation(s)
- Kun Liao
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuye Deng
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liyan Xu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenfeng Pan
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shiyu Yang
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fufu Zheng
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingui Wu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongrong Hu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhijun Liu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junhang Luo
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dong-Ming Kuang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiajun Dong
- Department of Neurosurgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital, Sun Yat-sen University, Jiangmen, China
| | - Yi Wu
- Department of Neurosurgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital, Sun Yat-sen University, Jiangmen, China
| | - Hui Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yang Xu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yin Ji
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical, Co., Ltd., Nanjing, China
| | - Peng Wang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical, Co., Ltd., Nanjing, China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bo Li
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Erice O, Vallejo A, Ponz-Sarvise M, Saborowski M, Vogel A, Calvisi DF, Saborowski A, Vicent S. Genetic Mouse Models as In Vivo Tools for Cholangiocarcinoma Research. Cancers (Basel) 2019; 11:cancers11121868. [PMID: 31769429 PMCID: PMC6966555 DOI: 10.3390/cancers11121868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a genetically and histologically complex disease with a highly dismal prognosis. A deeper understanding of the underlying cellular and molecular mechanisms of human CCA will increase our current knowledge of the disease and expedite the eventual development of novel therapeutic strategies for this fatal cancer. This endeavor is effectively supported by genetic mouse models, which serve as sophisticated tools to systematically investigate CCA pathobiology and treatment response. These in vivo models feature many of the genetic alterations found in humans, recapitulate multiple hallmarks of cholangiocarcinogenesis (encompassing cell transformation, preneoplastic lesions, established tumors and metastatic disease) and provide an ideal experimental setting to study the interplay between tumor cells and the surrounding stroma. This review is intended to serve as a compendium of CCA mouse models, including traditional transgenic models but also genetically flexible approaches based on either the direct introduction of DNA into liver cells or transplantation of pre-malignant cells, and is meant as a resource for CCA researchers to aid in the selection of the most appropriate in vivo model system.
Collapse
Affiliation(s)
- Oihane Erice
- Center for Applied Medical Research, Program in Solid Tumors, University of Navarra, 31008 Pamplona, Spain; (O.E.); (A.V.)
| | - Adrian Vallejo
- Center for Applied Medical Research, Program in Solid Tumors, University of Navarra, 31008 Pamplona, Spain; (O.E.); (A.V.)
| | - Mariano Ponz-Sarvise
- Department of Medical Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Michael Saborowski
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.V.)
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.V.)
| | - Diego F. Calvisi
- Institute for Pathology, Regensburg University, 93053 Regensburg, Germany;
| | - Anna Saborowski
- Department of Medical Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain;
- Correspondence: (A.S.); (S.V.); Tel.: +49-511-532-9590 (A.S.); +34-948194700 (ext. 812029) (S.V.)
| | - Silvestre Vicent
- Center for Applied Medical Research, Program in Solid Tumors, University of Navarra, 31008 Pamplona, Spain; (O.E.); (A.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (A.S.); (S.V.); Tel.: +49-511-532-9590 (A.S.); +34-948194700 (ext. 812029) (S.V.)
| |
Collapse
|
33
|
An IKK/NF-κB Activation/p53 Deletion Sequence Drives Liver Carcinogenesis and Tumor Differentiation. Cancers (Basel) 2019; 11:cancers11101410. [PMID: 31546614 PMCID: PMC6827060 DOI: 10.3390/cancers11101410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Most liver tumors arise on the basis of chronic liver diseases that trigger inflammatory responses. Besides inflammation, subsequent defects in the p53-signaling pathway frequently occurs in liver cancer. In this study, we analyzed the consequences of inflammation and p53 loss in liver carcinogenesis. Methods: We used inducible liver-specific transgenic mouse strains to analyze the consequences of NF-κB/p65 activation mimicking chronic inflammation and subsequent p53 loss. Results: Ikk2ca driven NF-κB/p65 activation in mice results in liver fibrosis, the formation of ectopic lymphoid structures and carcinogenesis independent of p53 expression. Subsequent deletion of Trp53 led to an increased tumor formation, metastasis and a shift in tumor differentiation towards intrahepatic cholangiocarcinoma. In addition, loss of Trp53 in an inflammatory liver resulted in elevated chromosomal instability and indicated a distinct aberration pattern. Conclusions: In conclusion, activation of NF-κB/p65 mimicking chronic inflammation provokes the formation of liver carcinoma. Collateral disruption of Trp53 supports tumor progression and influences tumor differentiation and heterogeneity.
Collapse
|
34
|
Down-regulation of microRNA-138 improves immunologic function via negatively targeting p53 by regulating liver macrophage in mice with acute liver failure. Biosci Rep 2019; 39:BSR20190763. [PMID: 31152110 PMCID: PMC6639459 DOI: 10.1042/bsr20190763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/08/2019] [Accepted: 05/21/2019] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) have been frequently identified as key mediators in almost all developmental and pathological processes, including those in the liver. The present study was conducted with aims of investigating the role of microRNA-138 (miR-138) in acute liver failure (ALF) via a mechanism involving p53 and liver macrophage in a mouse model. The ALF mouse model was established using C57BL/6 male mice via tail vein injection of Concanamycin A (Con A) solution. The relationship between miR-138 and p53 was tested. The mononuclear macrophages were infected with mimic and inhibitor of miR-138 in order to identify roles of miR-138 in p53 and levels of inflammatory factors. Reverse transcription quantitative polymerase chain reaction (RT-qPCR), Western blot analysis and ELISA were conducted in order to determine the levels of miR-138, inflammatory factors, and p53 during ALF. The results showed an increase in the levels of miR-138 and inflammatory factors in ALF mice induced by the ConA as time progressed and reached the peak at 12 h following treatment with ConA, while it was on the contrary when it came to the level of p53. Dual-luciferase reporter gene assay revealed that p53 was a target gene of miR-138. Furthermore, the results from the in vitro transfection experiments in primary macrophages of ALF mouse showed that miR-138 down-regulated p53 and enhanced levels of inflammatory factors; thus, improving immune function in ALF mice. In conclusion, by negatively targeting p53, the decreased miR-138 improves immunologic function by regulating liver macrophage in mouse models of ALF.
Collapse
|
35
|
Neureiter D, Stintzing S, Kiesslich T, Ocker M. Hepatocellular carcinoma: Therapeutic advances in signaling, epigenetic and immune targets. World J Gastroenterol 2019; 25:3136-3150. [PMID: 31333307 PMCID: PMC6626722 DOI: 10.3748/wjg.v25.i25.3136] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/02/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global medical burden with rising incidence due to chronic viral hepatitis and non-alcoholic fatty liver diseases. Treatment of advanced disease stages is still unsatisfying. Besides first and second generation tyrosine kinase inhibitors, immune checkpoint inhibitors have become central for the treatment of HCC. New modalities like epigenetic therapy using histone deacetylase inhibitors (HDACi) and cell therapy approaches with chimeric antigen receptor T cells (CAR-T cells) are currently under investigation in clinical trials. Development of such novel drugs is closely linked to the availability and improvement of novel preclinical and animal models and the identification of predictive biomarkers. The current status of treatment options for advanced HCC, emerging novel therapeutic approaches and different preclinical models for HCC drug discovery and development are reviewed here.
Collapse
Affiliation(s)
- Daniel Neureiter
- Institute of Pathology, Cancer Cluster Salzburg, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg 5020, Austria
| | - Sebastian Stintzing
- Medical Department, Division of Oncology and Hematology, Campus Charité Mitte, Charité University Medicine Berlin, Berlin 10117, Germany
| | - Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK) and Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg 5020, Austria
| | - Matthias Ocker
- Translational Medicine Oncology, Bayer AG, Berlin 13353, Germany
- Charité University Medicine Berlin, Berlin 10117, Germany
| |
Collapse
|
36
|
Xue R, Chen L, Zhang C, Fujita M, Li R, Yan SM, Ong CK, Liao X, Gao Q, Sasagawa S, Li Y, Wang J, Guo H, Huang QT, Zhong Q, Tan J, Qi L, Gong W, Hong Z, Li M, Zhao J, Peng T, Lu Y, Lim KHT, Boot A, Ono A, Chayama K, Zhang Z, Rozen SG, Teh BT, Wang XW, Nakagawa H, Zeng MS, Bai F, Zhang N. Genomic and Transcriptomic Profiling of Combined Hepatocellular and Intrahepatic Cholangiocarcinoma Reveals Distinct Molecular Subtypes. Cancer Cell 2019; 35:932-947.e8. [PMID: 31130341 PMCID: PMC8317046 DOI: 10.1016/j.ccell.2019.04.007] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/22/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
We performed genomic and transcriptomic sequencing of 133 combined hepatocellular and intrahepatic cholangiocarcinoma (cHCC-ICC) cases, including separate, combined, and mixed subtypes. Integrative comparison of cHCC-ICC with hepatocellular carcinoma and intrahepatic cholangiocarcinoma revealed that combined and mixed type cHCC-ICCs are distinct subtypes with different clinical and molecular features. Integrating laser microdissection, cancer cell fraction analysis, and single nucleus sequencing, we revealed both mono- and multiclonal origins in the separate type cHCC-ICCs, whereas combined and mixed type cHCC-ICCs were all monoclonal origin. Notably, cHCC-ICCs showed significantly higher expression of Nestin, suggesting Nestin may serve as a biomarker for diagnosing cHCC-ICC. Our results provide important biological and clinical insights into cHCC-ICC.
Collapse
MESH Headings
- Asia
- Bile Duct Neoplasms/chemistry
- Bile Duct Neoplasms/classification
- Bile Duct Neoplasms/genetics
- Bile Duct Neoplasms/pathology
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Carcinoma, Hepatocellular/chemistry
- Carcinoma, Hepatocellular/classification
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cholangiocarcinoma/chemistry
- Cholangiocarcinoma/classification
- Cholangiocarcinoma/genetics
- Cholangiocarcinoma/pathology
- Databases, Genetic
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Humans
- Immunohistochemistry
- Liver Neoplasms/chemistry
- Liver Neoplasms/classification
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Neoplasms, Complex and Mixed/chemistry
- Neoplasms, Complex and Mixed/classification
- Neoplasms, Complex and Mixed/genetics
- Neoplasms, Complex and Mixed/pathology
- Nestin/analysis
- Nestin/genetics
- Predictive Value of Tests
- Prognosis
- Transcriptome
- Up-Regulation
Collapse
Affiliation(s)
- Ruidong Xue
- Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China
| | - Lu Chen
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Chong Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China
| | - Masashi Fujita
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Ruoyan Li
- Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China
| | - Shu-Mei Yan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, China
| | - Shota Sasagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yanmeng Li
- Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China
| | - Jincheng Wang
- Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China
| | - Hua Guo
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Qi-Tao Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wenchen Gong
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Zhixian Hong
- Department of Hepatobiliary Surgery, Beijing 302 Hospital, Beijing 100039, China
| | - Meng Li
- Department of Ultrasonography, Beijing 302 Hospital, Beijing 100039, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, Beijing 302 Hospital, Beijing 100039, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yinying Lu
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, China
| | - Kiat Hon Tony Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Arnoud Boot
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Atushi Ono
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China
| | - Steve George Rozen
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China.
| | - Ning Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China; Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| |
Collapse
|
37
|
Vicent S, Lieshout R, Saborowski A, Verstegen MMA, Raggi C, Recalcati S, Invernizzi P, van der Laan LJW, Alvaro D, Calvisi DF, Cardinale V. Experimental models to unravel the molecular pathogenesis, cell of origin and stem cell properties of cholangiocarcinoma. Liver Int 2019; 39 Suppl 1:79-97. [PMID: 30851232 DOI: 10.1111/liv.14094] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022]
Abstract
Human cholangiocarcinoma (CCA) is an aggressive tumour entity arising from the biliary tree, whose molecular pathogenesis remains largely undeciphered. Over the last decade, the advent of high-throughput and cell-based techniques has significantly increased our knowledge on the molecular mechanisms underlying this disease while, at the same time, unravelling CCA complexity. In particular, it becomes clear that CCA displays pronounced inter- and intratumoural heterogeneity, which is presumably the consequence of the interplay between distinct tissues and cells of origin, the underlying diseases, and the associated molecular alterations. To better characterize these events and to design novel and more effective therapeutic strategies, a number of CCA experimental and preclinical models have been developed and are currently generated. This review summarizes the current knowledge and understanding of these models, critically underlining their translational usefulness and limitations. Furthermore, this review aims to provide a comprehensive overview on cells of origin, cancers stem cells and their dynamic interplay within CCA tissue.
Collapse
Affiliation(s)
- Silvestre Vicent
- Program in Solid Tumors, Center for Applied Applied Medical Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ruby Lieshout
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Chiara Raggi
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospita, l, University of Milano, Bicocca, Italy
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
38
|
Mou H, Ozata DM, Smith JL, Sheel A, Kwan SY, Hough S, Kucukural A, Kennedy Z, Cao Y, Xue W. CRISPR-SONIC: targeted somatic oncogene knock-in enables rapid in vivo cancer modeling. Genome Med 2019; 11:21. [PMID: 30987660 PMCID: PMC6466773 DOI: 10.1186/s13073-019-0627-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/08/2019] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas9 has revolutionized cancer mouse models. Although loss-of-function genetics by CRISPR/Cas9 is well-established, generating gain-of-function alleles in somatic cancer models is still challenging because of the low efficiency of gene knock-in. Here we developed CRISPR-based Somatic Oncogene kNock-In for Cancer Modeling (CRISPR-SONIC), a method for rapid in vivo cancer modeling using homology-independent repair to integrate oncogenes at a targeted genomic locus. Using a dual guide RNA strategy, we integrated a plasmid donor in the 3'-UTR of mouse β-actin, allowing co-expression of reporter genes or oncogenes from the β-actin promoter. We showed that knock-in of oncogenic Ras and loss of p53 efficiently induced intrahepatic cholangiocarcinoma in mice. Further, our strategy can generate bioluminescent liver cancer to facilitate tumor imaging. This method simplifies in vivo gain-of-function genetics by facilitating targeted integration of oncogenes.
Collapse
Affiliation(s)
- Haiwei Mou
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Deniz M Ozata
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jordan L Smith
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Ankur Sheel
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Suet-Yan Kwan
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Soren Hough
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alper Kucukural
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Zachary Kennedy
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yueying Cao
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Program in Molecular Medicine, Department of Molecular, Cell and Cancer Biology, and Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
39
|
Brown ZJ, Heinrich B, Greten TF. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat Rev Gastroenterol Hepatol 2018; 15:536-554. [PMID: 29904153 DOI: 10.1038/s41575-018-0033-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mouse models are the basis of preclinical and translational research in hepatocellular carcinoma (HCC). Multiple methods exist to induce tumour formation in mice, including genetically engineered mouse models, chemotoxic agents, intrahepatic or intrasplenic injection of tumour cells and xenograft approaches. Additionally, as HCC generally develops in the context of diseased liver, methods exist to induce liver disease in mice to mimic viral hepatitis, fatty liver disease, fibrosis, alcohol-induced liver disease and cholestasis. Similar to HCC in humans, response to therapy in mouse models is monitored with imaging modalities such as CT or MRI, as well as additional techniques involving bioluminescence. As immunotherapy is increasingly applied to HCC, mouse models for these approaches are required for preclinical data. In studying cancer immunotherapy, it is important to consider aspects of antitumour immune responses and to produce a model that mimics the complexity of the immune system. This Review provides an overview of the different mouse models of HCC, presenting techniques to prepare an HCC mouse model and discussing different approaches to help researchers choose an appropriate model for a specific hypothesis. Specific aspects of immunotherapy research in HCC and the applied mouse models in this field are also highlighted.
Collapse
Affiliation(s)
- Zachary J Brown
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
40
|
Gong Z, Ma Q, Wang X, Cai Q, Gong X, Genchev GZ, Lu H, Zeng F. A Herpes Simplex Virus Thymidine Kinase-Induced Mouse Model of Hepatocellular Carcinoma Associated with Up-Regulated Immune-Inflammatory-Related Signals. Genes (Basel) 2018; 9:E380. [PMID: 30060537 PMCID: PMC6115908 DOI: 10.3390/genes9080380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammation and fibrosis in human liver are often precursors to hepatocellular carcinoma (HCC), yet none of them is easily modeled in animals. We previously generated transgenic mice with hepatocyte-specific expressed herpes simplex virus thymidine kinase (HSV-tk). These mice would develop hepatitis with the administration of ganciclovir (GCV)(Zhang, 2005 #1). However, our HSV-tk transgenic mice developed hepatitis and HCC tumor as early as six months of age even without GCV administration. We analyzed the transcriptome of the HSV-tk HCC tumor and hepatitis tissue using microarray analysis to investigate the possible causes of HCC. Gene Ontology (GO) enrichment analysis showed that the up-regulated genes in the HCC tissue mainly include the immune-inflammatory and cell cycle genes. The down-regulated genes in HCC tumors are mainly concentrated in the regions related to lipid metabolism. Gene set enrichment analysis (GSEA) showed that immune-inflammatory-related signals in the HSV-tk mice are up-regulated compared to those in Notch mice. Our study suggests that the immune system and inflammation play an important role in HCC development in HSV-tk mice. Specifically, increased expression of immune-inflammatory-related genes is characteristic of HSV-tk mice and that inflammation-induced cell cycle activation maybe a precursory step to cancer. The HSV-tk mouse provides a suitable model for the study of the relationship between immune-inflammation and HCC, and their underlying mechanism for the development of therapeutic application in the future.
Collapse
Affiliation(s)
- Zhijuan Gong
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China.
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
- Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China.
| | - Qingwen Ma
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China.
- Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China.
| | - Xujun Wang
- SJTU-Yale Joint Center for Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Qin Cai
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China.
- Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China.
| | - Xiuli Gong
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China.
- Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China.
| | - Georgi Z Genchev
- SJTU-Yale Joint Center for Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Hui Lu
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China.
- Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China.
- SJTU-Yale Joint Center for Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Fanyi Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China.
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
- Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China.
| |
Collapse
|
41
|
Chen J, Chen CY, Nguyen C, Chen L, Lee K, Stiles BL. Emerging signals regulating liver tumor initiating cells. LIVER RESEARCH 2018. [DOI: 10.1016/j.livres.2018.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Krstic J, Galhuber M, Schulz TJ, Schupp M, Prokesch A. p53 as a Dichotomous Regulator of Liver Disease: The Dose Makes the Medicine. Int J Mol Sci 2018; 19:E921. [PMID: 29558460 PMCID: PMC5877782 DOI: 10.3390/ijms19030921] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023] Open
Abstract
Lifestyle-related disorders, such as the metabolic syndrome, have become a primary risk factor for the development of liver pathologies that can progress from hepatic steatosis, hepatic insulin resistance, steatohepatitis, fibrosis and cirrhosis, to the most severe condition of hepatocellular carcinoma (HCC). While the prevalence of liver pathologies is steadily increasing in modern societies, there are currently no approved drugs other than chemotherapeutic intervention in late stage HCC. Hence, there is a pressing need to identify and investigate causative molecular pathways that can yield new therapeutic avenues. The transcription factor p53 is well established as a tumor suppressor and has recently been described as a central metabolic player both in physiological and pathological settings. Given that liver is a dynamic tissue with direct exposition to ingested nutrients, hepatic p53, by integrating cellular stress response, metabolism and cell cycle regulation, has emerged as an important regulator of liver homeostasis and dysfunction. The underlying evidence is reviewed herein, with a focus on clinical data and animal studies that highlight a direct influence of p53 activity on different stages of liver diseases. Based on current literature showing that activation of p53 signaling can either attenuate or fuel liver disease, we herein discuss the hypothesis that, while hyper-activation or loss of function can cause disease, moderate induction of hepatic p53 within physiological margins could be beneficial in the prevention and treatment of liver pathologies. Hence, stimuli that lead to a moderate and temporary p53 activation could present new therapeutic approaches through several entry points in the cascade from hepatic steatosis to HCC.
Collapse
Affiliation(s)
- Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehhbrücke, 14558 Nuthetal, Germany.
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany.
| | - Michael Schupp
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, 10117 Berlin, Germany.
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
- BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
43
|
Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Precis Oncol 2018; 2:6. [PMID: 29872724 PMCID: PMC5871907 DOI: 10.1038/s41698-018-0048-z] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/23/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has become a leading cause of cancer-related death, making the elucidation of its underlying mechanisms an urgent priority. Inflammation is an adaptive response to infection and tissue injury under strict regulations. When the host regulatory machine runs out of control, nonresolving inflammation occurs. Nonresolving inflammation is a recognized hallmark of cancer that substantially contributes to the development and progression of HCC. The HCC-associated inflammation can be initiated and propagated by extrinsic pathways through activation of pattern-recognition receptors (PRRs) by pathogen-associated molecule patterns (PAMPs) derived from gut microflora or damage-associated molecule patterns (DAMPs) released from dying liver cells. The inflammation can also be orchestrated by the tumor itself through secreting factors that recruit inflammatory cells to the tumor favoring the buildup of a microenvironment. Accumulating datas from human and mouse models showed that inflammation promotes HCC development by promoting proliferative and survival signaling, inducing angiogenesis, evading immune surveillance, supporting cancer stem cells, activating invasion and metastasis as well as inducing genomic instability. Targeting inflammation may represent a promising avenue for the HCC treatment. Some inhibitors targeting inflammatory pathways have been developed and under different stages of clinical trials, and one (sorafenib) have been approved by FDA. However, as most of the data were obtained from animal models, and there is a big difference between human HCC and mouse HCC models, it is challenging on successful translation from bench to bedside.
Collapse
|
44
|
Wang G, Chow RD, Ye L, Guzman CD, Dai X, Dong MB, Zhang F, Sharp PA, Platt RJ, Chen S. Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR-mediated direct in vivo screening. SCIENCE ADVANCES 2018; 4:eaao5508. [PMID: 29503867 PMCID: PMC5829971 DOI: 10.1126/sciadv.aao5508] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/23/2018] [Indexed: 05/22/2023]
Abstract
Cancer genomics consortia have charted the landscapes of numerous human cancers. Whereas some mutations were found in classical oncogenes and tumor suppressors, others have not yet been functionally studied in vivo. To date, a comprehensive assessment of how these genes influence oncogenesis is lacking. We performed direct high-throughput in vivo mapping of functional variants in an autochthonous mouse model of cancer. Using adeno-associated viruses (AAVs) carrying a single-guide RNA (sgRNA) library targeting putative tumor suppressor genes significantly mutated in human cancers, we directly pool-mutagenized the livers of Cre-inducible CRISPR (clustered regularly interspaced short palindromic repeats)-associated protein 9 (Cas9) mice. All mice that received the AAV-mTSG library developed liver cancer and died within 4 months. We used molecular inversion probe sequencing of the sgRNA target sites to chart the mutational landscape of these tumors, revealing the functional consequence of multiple variants in driving liver tumorigenesis in immunocompetent mice. AAV-mediated autochthonous CRISPR screens provide a powerful means for mapping a provisional functional cancer genome atlas of tumor suppressors in vivo.
Collapse
Affiliation(s)
- Guangchuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Systems Biology Institute, Yale University School of Medicine, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Ryan D. Chow
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Systems Biology Institute, Yale University School of Medicine, 850 West Campus Drive, West Haven, CT 06516, USA
- MD-PhD Program, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lupeng Ye
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Systems Biology Institute, Yale University School of Medicine, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Christopher D. Guzman
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Systems Biology Institute, Yale University School of Medicine, 850 West Campus Drive, West Haven, CT 06516, USA
- Immunobiology Program, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xiaoyun Dai
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Systems Biology Institute, Yale University School of Medicine, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Matthew B. Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Systems Biology Institute, Yale University School of Medicine, 850 West Campus Drive, West Haven, CT 06516, USA
- MD-PhD Program, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Feng Zhang
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, 75 Ames Street, Cambridge, MA 02142, USA
- Department of Biological Engineering, MIT, Cambridge, MA 02142, USA
| | - Phillip A. Sharp
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139–4307, USA
- Department of Biology, MIT, Cambridge, MA 02139–4307, USA
| | - Randall J. Platt
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
- Department of Chemistry, University of Basel, Petersplatz 1, 4003 Basel, Switzerland
- Corresponding author. (S.C.); (R.J.P.)
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Systems Biology Institute, Yale University School of Medicine, 850 West Campus Drive, West Haven, CT 06516, USA
- Immunobiology Program, Yale University School of Medicine, New Haven, CT 06510, USA
- Biological and Biomedical Sciences Program, Yale University School of Medicine, West Haven, CT 06516, USA
- Comprehensive Cancer Center, Yale University School of Medicine, West Haven, CT 06516, USA
- Stem Cell Center, Yale University School of Medicine, West Haven, CT 06516, USA
- Corresponding author. (S.C.); (R.J.P.)
| |
Collapse
|
45
|
Dang H, Takai A, Forgues M, Pomyen Y, Mou H, Xue W, Ray D, Ha KCH, Morris QD, Hughes TR, Wang XW. Oncogenic Activation of the RNA Binding Protein NELFE and MYC Signaling in Hepatocellular Carcinoma. Cancer Cell 2017; 32:101-114.e8. [PMID: 28697339 PMCID: PMC5539779 DOI: 10.1016/j.ccell.2017.06.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 04/18/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023]
Abstract
Global transcriptomic imbalance is a ubiquitous feature associated with cancer, including hepatocellular carcinoma (HCC). Analyses of 1,225 clinical HCC samples revealed that a large numbers of RNA binding proteins (RBPs) are dysregulated and that RBP dysregulation is associated with poor prognosis. We further identified that oncogenic activation of a top candidate RBP, negative elongation factor E (NELFE), via somatic copy-number alterations enhanced MYC signaling and promoted HCC progression. Interestingly, NELFE induces a unique tumor transcriptome by selectively regulating MYC-associated genes. Thus, our results revealed NELFE as an oncogenic protein that may contribute to transcriptome imbalance in HCC through the regulation of MYC signaling.
Collapse
Affiliation(s)
- Hien Dang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Atsushi Takai
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yotsowat Pomyen
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Haiwei Mou
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Kevin C H Ha
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Quaid D Morris
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Liu Y, Qi X, Zeng Z, Wang L, Wang J, Zhang T, Xu Q, Shen C, Zhou G, Yang S, Chen X, Lu F. CRISPR/Cas9-mediated p53 and Pten dual mutation accelerates hepatocarcinogenesis in adult hepatitis B virus transgenic mice. Sci Rep 2017; 7:2796. [PMID: 28584302 PMCID: PMC5459841 DOI: 10.1038/s41598-017-03070-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/21/2017] [Indexed: 12/24/2022] Open
Abstract
The p53 mutation and altered Pten expression are two most common genetic events in Hepatitis B virus (HBV) infection related hepatocellular carcinoma (HCC). To confirm the causative role of p53 and Pten somatic mutation in HCC development, we established CRISPR/Cas9-mediated somatic gene disruption via hydrodynamic tail vein injection, allowing for in vivo targeting p53 and Pten simultaneously in adult HBV transgenic mice. Here we demonstrated that the utility of this approach resulted in macroscopic liver tumors as early as 4 months' post injection and most tumors harbored both p53 and Pten loss-of-function alterations. Immunohistochemical (IHC) and histopathology analysis demonstrated that the tumors were positive for Glutamine synthetase (GS), a marker of HCC and accompanied with prominent lipid accumulation. The study here indicated that CRISPR/Cas9-mediated p53 and Pten somatic mutation accelerated hepatocarcinogenesis in adult HBV transgenic mice. This method also provides a fast and convenient system for generating mouse model of HCC with HBV infection characteristics.
Collapse
Affiliation(s)
- Yongzhen Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Xuewei Qi
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Zhenzhen Zeng
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Lu Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Jie Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Ting Zhang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Qiang Xu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Congle Shen
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Guangde Zhou
- Department of Pathology and Hepatology, Beijing 302 Hospital, Beijing, 100039, P.R. China
| | - Shaomin Yang
- Department of Pathology, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Xiangmei Chen
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China.
| | - Fengmin Lu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China
| |
Collapse
|
47
|
Song CQ, Li Y, Mou H, Moore J, Park A, Pomyen Y, Hough S, Kennedy Z, Fischer A, Yin H, Anderson DG, Conte D, Zender L, Wang XW, Thorgeirsson S, Weng Z, Xue W. Genome-Wide CRISPR Screen Identifies Regulators of Mitogen-Activated Protein Kinase as Suppressors of Liver Tumors in Mice. Gastroenterology 2017; 152:1161-1173.e1. [PMID: 27956228 PMCID: PMC6204228 DOI: 10.1053/j.gastro.2016.12.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/22/2016] [Accepted: 12/03/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS It has been a challenge to identify liver tumor suppressors or oncogenes due to the genetic heterogeneity of these tumors. We performed a genome-wide screen to identify suppressors of liver tumor formation in mice, using CRISPR-mediated genome editing. METHODS We performed a genome-wide CRISPR/Cas9-based knockout screen of P53-null mouse embryonic liver progenitor cells that overexpressed MYC. We infected p53-/-;Myc;Cas9 hepatocytes with the mGeCKOa lentiviral library of 67,000 single-guide RNAs (sgRNAs), targeting 20,611 mouse genes, and transplanted the transduced cells subcutaneously into nude mice. Within 1 month, all the mice that received the sgRNA library developed subcutaneous tumors. We performed high-throughput sequencing of tumor DNA and identified sgRNAs increased at least 8-fold compared to the initial cell pool. To validate the top 10 candidate tumor suppressors from this screen, we collected data from patients with hepatocellular carcinoma (HCC) using the Cancer Genome Atlas and COSMIC databases. We used CRISPR to inactivate candidate tumor suppressor genes in p53-/-;Myc;Cas9 cells and transplanted them subcutaneously into nude mice; tumor formation was monitored and tumors were analyzed by histology and immunohistochemistry. Mice with liver-specific disruption of p53 were given hydrodynamic tail-vein injections of plasmids encoding Myc and sgRNA/Cas9 designed to disrupt candidate tumor suppressors; growth of tumors and metastases was monitored. We compared gene expression profiles of liver cells with vs without tumor suppressor gene disrupted by sgRNA/Cas9. Genes found to be up-regulated after tumor suppressor loss were examined in liver cancer cell lines; their expression was knocked down using small hairpin RNAs, and tumor growth was examined in nude mice. Effects of the MEK inhibitors AZD6244, U0126, and trametinib, or the multi-kinase inhibitor sorafenib, were examined in human and mouse HCC cell lines. RESULTS We identified 4 candidate liver tumor suppressor genes not previously associated with liver cancer (Nf1, Plxnb1, Flrt2, and B9d1). CRISPR-mediated knockout of Nf1, a negative regulator of RAS, accelerated liver tumor formation in mice. Loss of Nf1 or activation of RAS up-regulated the liver progenitor cell markers HMGA2 and SOX9. RAS pathway inhibitors suppressed the activation of the Hmga2 and Sox9 genes that resulted from loss of Nf1 or oncogenic activation of RAS. Knockdown of HMGA2 delayed formation of xenograft tumors from cells that expressed oncogenic RAS. In human HCCs, low levels of NF1 messenger RNA or high levels of HMGA2 messenger RNA were associated with shorter patient survival time. Liver cancer cells with inactivation of Plxnb1, Flrt2, and B9d1 formed more tumors in mice and had increased levels of mitogen-activated protein kinase phosphorylation. CONCLUSIONS Using a CRISPR-based strategy, we identified Nf1, Plxnb1, Flrt2, and B9d1 as suppressors of liver tumor formation. We validated the observation that RAS signaling, via mitogen-activated protein kinase, contributes to formation of liver tumors in mice. We associated decreased levels of NF1 and increased levels of its downstream protein HMGA2 with survival times of patients with HCC. Strategies to inhibit or reduce HMGA2 might be developed to treat patients with liver cancer.
Collapse
MESH Headings
- Animals
- Benzimidazoles/pharmacology
- Blotting, Western
- Butadienes/pharmacology
- CRISPR-Cas Systems
- Carcinoma, Hepatocellular/genetics
- Cell Line, Tumor
- Cytoskeletal Proteins
- DNA, Neoplasm/genetics
- Enzyme Inhibitors
- Gene Expression Regulation, Neoplastic
- Genes, Neurofibromatosis 1
- Genome-Wide Association Study
- HMGA Proteins/genetics
- HMGA2 Protein/genetics
- Hepatocytes/metabolism
- High-Throughput Nucleotide Sequencing
- Humans
- Immunohistochemistry
- Liver Neoplasms/genetics
- Liver Neoplasms, Experimental/genetics
- Membrane Glycoproteins/genetics
- Mice
- Mice, Knockout
- Mice, Nude
- Mitogen-Activated Protein Kinases/genetics
- Nerve Tissue Proteins/genetics
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Nitriles/pharmacology
- Phenylurea Compounds/pharmacology
- Prognosis
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-myc/genetics
- Pyridones/pharmacology
- Pyrimidinones/pharmacology
- Real-Time Polymerase Chain Reaction
- Receptors, Cell Surface/genetics
- Sequence Analysis, DNA
- Sorafenib
- Survival Analysis
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Proteins/genetics
- ras Proteins/genetics
Collapse
Affiliation(s)
- Chun-Qing Song
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Yingxiang Li
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Haiwei Mou
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jill Moore
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Angela Park
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Yotsawat Pomyen
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Soren Hough
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Zachary Kennedy
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Andrew Fischer
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Hao Yin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts; Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Darryl Conte
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Lars Zender
- Department of Internal Medicine VIII, University Department of Medicine, University Hospital Tübingen, Tübingen, Germany; Department of Physiology I, Institute of Physiology, Eberhard Karls University, Tübingen, Germany
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Snorri Thorgeirsson
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, China.
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts; Program in Molecular Medicine and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
48
|
Prokesch A, Graef FA, Madl T, Kahlhofer J, Heidenreich S, Schumann A, Moyschewitz E, Pristoynik P, Blaschitz A, Knauer M, Muenzner M, Bogner-Strauss JG, Dohr G, Schulz TJ, Schupp M. Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis. FASEB J 2017; 31:732-742. [PMID: 27811061 PMCID: PMC5240663 DOI: 10.1096/fj.201600845r] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/24/2016] [Indexed: 12/17/2022]
Abstract
The ability to adapt cellular metabolism to nutrient availability is critical for survival. The liver plays a central role in the adaptation to starvation by switching from glucose-consuming processes and lipid synthesis to providing energy substrates like glucose to the organism. Here we report a previously unrecognized role of the tumor suppressor p53 in the physiologic adaptation to food withdrawal. We found that starvation robustly increases p53 protein in mouse liver. This induction was posttranscriptional and mediated by a hepatocyte-autonomous and AMP-activated protein kinase-dependent mechanism. p53 stabilization was required for the adaptive expression of genes involved in amino acid catabolism. Indeed, acute deletion of p53 in livers of adult mice impaired hepatic glycogen storage and induced steatosis. Upon food withdrawal, p53-deleted mice became hypoglycemic and showed defects in the starvation-associated utilization of hepatic amino acids. In summary, we provide novel evidence for a p53-dependent integration of acute changes of cellular energy status and the metabolic adaptation to starvation. Because of its tumor suppressor function, p53 stabilization by starvation could have implications for both metabolic and oncological diseases of the liver.-Prokesch, A., Graef, F. A., Madl, T., Kahlhofer, J., Heidenreich, S., Schumann, A., Moyschewitz, E., Pristoynik, P., Blaschitz, A., Knauer, M., Muenzner, M., Bogner-Strauss, J. G., Dohr, G., Schulz, T. J., Schupp, M. Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis.
Collapse
Affiliation(s)
- Andreas Prokesch
- Institute of Cell Biology, Histology, and Embryology, Medical University Graz, Graz, Austria;
| | - Franziska A Graef
- Institute of Pharmacology, Center for Cardiovascular Research, Charité University Medicine, Berlin, Germany
| | - Tobias Madl
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, Austria
| | - Jennifer Kahlhofer
- Institute of Cell Biology, Histology, and Embryology, Medical University Graz, Graz, Austria
| | - Steffi Heidenreich
- Institute of Pharmacology, Center for Cardiovascular Research, Charité University Medicine, Berlin, Germany
| | - Anne Schumann
- Institute of Pharmacology, Center for Cardiovascular Research, Charité University Medicine, Berlin, Germany
| | - Elisabeth Moyschewitz
- Institute of Cell Biology, Histology, and Embryology, Medical University Graz, Graz, Austria
| | - Petra Pristoynik
- Institute of Cell Biology, Histology, and Embryology, Medical University Graz, Graz, Austria
| | - Astrid Blaschitz
- Institute of Cell Biology, Histology, and Embryology, Medical University Graz, Graz, Austria
| | - Miriam Knauer
- Institute of Pharmacology, Center for Cardiovascular Research, Charité University Medicine, Berlin, Germany
| | - Matthias Muenzner
- Institute of Pharmacology, Center for Cardiovascular Research, Charité University Medicine, Berlin, Germany
| | | | - Gottfried Dohr
- Institute of Cell Biology, Histology, and Embryology, Medical University Graz, Graz, Austria
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; and
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Michael Schupp
- Institute of Pharmacology, Center for Cardiovascular Research, Charité University Medicine, Berlin, Germany;
| |
Collapse
|
49
|
Ota A, Nakao H, Sawada Y, Karnan S, Wahiduzzaman M, Inoue T, Kobayashi Y, Yamamoto T, Ishii N, Ohashi T, Nakade Y, Sato K, Itoh K, Konishi H, Hosokawa Y, Yoneda M. Δ40p53α suppresses tumor cell proliferation and induces cellular senescence in hepatocellular carcinoma cells. J Cell Sci 2016; 130:614-625. [PMID: 27980070 PMCID: PMC5312733 DOI: 10.1242/jcs.190736] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 11/29/2016] [Indexed: 12/15/2022] Open
Abstract
Splice variants of certain genes impact on genetic biodiversity in mammals. The tumor suppressor TP53 gene (encoding p53) plays an important role in the regulation of tumorigenesis in hepatocellular carcinoma (HCC). Δ40p53α is a naturally occurring p53 isoform that lacks the N-terminal transactivation domain, yet little is known about the role of Δ40p53α in the development of HCC. Here, we first report on the role of Δ40p53α in HCC cell lines. In the TP53+/Δ40 cell clones, clonogenic activity and cell survival dramatically decreased, whereas the percentage of senescence-associated β-galactosidase (SA-β-gal)-positive cells and p21 (also known as WAF1, CIP1 and CDKN1A) expression significantly increased. These observations were clearly attenuated in the TP53+/Δ40 cell clones after Δ40p53α knockdown. In addition, exogenous Δ40p53 expression significantly suppressed cell growth in HCC cells with wild-type TP53, and in those that were mutant or null for TP53. Notably, Δ40p53α-induced tumor suppressor activity was markedly attenuated in cells expressing the hot-spot mutant Δ40p53α-R175H, which lacks the transcription factor activity of p53. Moreover, Δ40p53α expression was associated with increased full-length p53 protein expression. These findings enhance the understanding of the molecular pathogenesis of HCC and show that Δ40p53α acts as an important tumor suppressor in HCC cells. Summary: Δ40p53 exerts tumor suppressor activity that is associated with upregulation of p53-target gene expression and induces senescence in hepatocellular carcinoma cell lines.
Collapse
Affiliation(s)
- Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Haruhisa Nakao
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yumi Sawada
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Md Wahiduzzaman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Tadahisa Inoue
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yuji Kobayashi
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Takaya Yamamoto
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Norimitsu Ishii
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Tomohiko Ohashi
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yukiomi Nakade
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Ken Sato
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Kiyoaki Itoh
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Masashi Yoneda
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| |
Collapse
|
50
|
Chen S, Sun H, Miao K, Deng CX. CRISPR-Cas9: from Genome Editing to Cancer Research. Int J Biol Sci 2016; 12:1427-1436. [PMID: 27994508 PMCID: PMC5166485 DOI: 10.7150/ijbs.17421] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer development is a multistep process triggered by innate and acquired mutations, which cause the functional abnormality and determine the initiation and progression of tumorigenesis. Gene editing is a widely used engineering tool for generating mutations that enhance tumorigenesis. The recent developed clustered regularly interspaced short palindromic repeats-CRISPR-associated 9 (CRISPR-Cas9) system renews the genome editing approach into a more convenient and efficient way. By rapidly introducing genetic modifications in cell lines, organs and animals, CRISPR-Cas9 system extends the gene editing into whole genome screening, both in loss-of-function and gain-of-function manners. Meanwhile, the system accelerates the establishment of animal cancer models, promoting in vivo studies for cancer research. Furthermore, CRISPR-Cas9 system is modified into diverse innovative tools for observing the dynamic bioprocesses in cancer studies, such as image tracing for targeted DNA, regulation of transcription activation or repression. Here, we view recent technical advances in the application of CRISPR-Cas9 system in cancer genetics, large-scale cancer driver gene hunting, animal cancer modeling and functional studies.
Collapse
Affiliation(s)
- Si Chen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Heng Sun
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Kai Miao
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|