1
|
Leiting JL, Alva-Ruiz R, Yonkus JA, Abdelrahman AM, Lynch IT, Carlson DM, Carr RM, Salomao DR, McWilliams RR, Starlinger PP, Thiels CA, Grotz TE, Warner SG, Cleary SP, Kendrick ML, Smoot RL, Kipp BR, Truty MJ. Molecular KRAS ctDNA Predicts Metastases and Survival in Pancreatic Cancer: A Prospective Cohort Study. Ann Surg Oncol 2025; 32:4453-4463. [PMID: 40067610 PMCID: PMC12049301 DOI: 10.1245/s10434-025-17036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 02/04/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Patients with pancreatic ductal adenocarcinoma (PDAC) commonly have occult metastatic dissemination and current standard staging methods have significant limitations in identifying these patients. A clinically available assay allows for the identification of mutant KRAS (mKRAS) circulating tumor DNA (ctDNA) from patient plasma and peritoneal fluid that may identify these patients and impact treatment decision making. We investigated the patterns of diagnostic and prognostic capabilities of mKRAS ctDNA in patients with localized PDAC. METHODS Patients with non-metastatic PDAC were identified and underwent a full staging work-up during their first visit at our institution. Development of metastatic disease and long-term survival outcomes were assessed to compare between the mKRAS testing groups. RESULTS Between 2018 and 2022, 785 patients were evaluated. Among the 785 patients who underwent plasma mKRAS testing, 104 were mKRAS positive. Plasma mKRAS-positive patients were more likely to develop metastatic disease and had worse overall survival. In the 419 patients who underwent peritoneal mKRAS, 123 were mKRAS-positive and were more likely to harbor occult metastases or develop peritoneal rather than hematogenous metastases. For patients who underwent both baseline plasma and peritoneal mKRAS testing, any positive mKRAS test regardless of compartment was associated with worse outcomes. CONCLUSIONS Detection of mKRAS ctDNA in plasma and peritoneal fluid of patients with localized PDAC is not only feasible but also identifies those at high risk of metastatic progression and worse survival outcomes. It allows for better prognostication and can significantly impact subsequent treatment decisions, particularly in patients where an aggressive surgical approach is being considered.
Collapse
Affiliation(s)
- Jennifer L Leiting
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Roberto Alva-Ruiz
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jennifer A Yonkus
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Amro M Abdelrahman
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Isaac T Lynch
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Danielle M Carlson
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Ryan M Carr
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Diva R Salomao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Patrick P Starlinger
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Cornelius A Thiels
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Travis E Grotz
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Susanne G Warner
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Sean P Cleary
- Division of General Surgery, University of Toronto, Toronto, ON, Canada
| | - Michael L Kendrick
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Rory L Smoot
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Mark J Truty
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Blümke J, Schameitat M, Verma A, Limbecker C, Arlt E, Kessler SM, Kielstein H, Krug S, Bazwinsky-Wutschke I, Haemmerle M. Innate Immunity and Platelets: Unveiling Their Role in Chronic Pancreatitis and Pancreatic Cancer. Cancers (Basel) 2025; 17:1689. [PMID: 40427186 PMCID: PMC12110028 DOI: 10.3390/cancers17101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/10/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal forms of cancer, characterized by a highly desmoplastic tumor microenvironment. One main risk factor is chronic pancreatitis (CP). Progression of CP to PDAC is greatly influenced by persistent inflammation promoting genomic instability, acinar-ductal metaplasia, and pancreatic intraepithelial neoplasia (PanIN) formation. Components of the extracellular matrix, including immune cells, can modulate this progression phase. This includes cells of the innate immune system, such as natural killer (NK) cells, macrophages, dendritic cells, mast cells, neutrophils, and myeloid-derived suppressor cells (MDSCs), either promoting or inhibiting tumor growth. On one hand, innate immune cells can trigger inflammatory responses that support tumor progression by releasing cytokines and growth factors, fostering tumor cell proliferation, invasion, and metastasis. On the other hand, they can also activate immune surveillance mechanisms, which can limit tumor development. For example, NK cells are cytotoxic innate lymphoid cells that are able to kill tumor cells, and active dendritic cells are crucial for a functioning anti-tumor immune response. In contrast, mast cells and MDSCs rather support a pro-tumorigenic tumor microenvironment that is additionally sustained by platelets. Once thought to play a role in hemostasis only, platelets are now recognized as key players in inflammation and cancer progression. By releasing cytokines, growth factors, and pro-angiogenic mediators, platelets help shape an immunosuppressive microenvironment that promotes fibrotic remodeling, tumor initiation, progression, metastasis, and immune evasion. Neutrophils and macrophages exist in different functional subtypes that can both act pro- and anti-tumorigenic. Understanding the complex interactions between innate immune cells, platelets, and early precursor lesions, as well as PDAC cells, is crucial for developing new therapeutic approaches that can harness the immune and potentially also the coagulation system to target and eliminate tumors, offering hope for improved patient outcomes.
Collapse
Affiliation(s)
- Juliane Blümke
- Institute of Pathology, Section of Experimental Pathology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany;
| | - Moritz Schameitat
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Atul Verma
- Department of Internal Medicine I, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (A.V.); (S.K.)
| | - Celina Limbecker
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Elise Arlt
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Sonja M. Kessler
- Institute of Pharmacy, Experimental Pharmacology for Natural Sciences, Faculty of Natural Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Sebastian Krug
- Department of Internal Medicine I, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (A.V.); (S.K.)
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ivonne Bazwinsky-Wutschke
- Institute of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; (M.S.); (C.L.); (H.K.); (I.B.-W.)
| | - Monika Haemmerle
- Institute of Pathology, Section of Experimental Pathology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany;
| |
Collapse
|
3
|
Yan B, Fritsche AK, Haußner E, Inamdar TV, Laumen H, Boettcher M, Gericke M, Michl P, Rosendahl J. From Genes to Environment: Elucidating Pancreatic Carcinogenesis Through Genetically Engineered and Risk Factor-Integrated Mouse Models. Cancers (Basel) 2025; 17:1676. [PMID: 40427173 PMCID: PMC12110317 DOI: 10.3390/cancers17101676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/07/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic cancer is characterized by late diagnosis, therapy resistance, and poor prognosis, necessitating the exploration of early carcinogenesis and prevention methods. Preclinical mouse models have evolved from cell line-based to human tumor tissue- or organoid-derived xenografts, now to humanized mouse models and genetically engineered mouse models (GEMMs). GEMMs, primarily driven by oncogenic Kras mutations and tumor suppressor gene alterations, offer a realistic platform for investigating pancreatic cancer initiation, progression, and metastasis. The incorporation of inducible somatic mutations and CRISPR-Cas9 screening methods has expanded their utility. To better recapitulate tumor initiation triggered by inflammatory cues, common pancreatic risk factors are being integrated into model designs. This approach aims to decipher the role of environmental factors as secondary or parallel triggers of tumor initiation alongside oncogenic burdens. Emerging models exploring pancreatitis, obesity, diabetes, and other risk factors offer significant translational potential. This review describes current mouse models for studying pancreatic carcinogenesis, their combination with inflammatory factors, and their utility in evaluating pathogenesis, providing guidance for selecting the most suitable models for pancreatic cancer research.
Collapse
Affiliation(s)
- Bin Yan
- Department of Internal Medicine IV, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Anne-Kristin Fritsche
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany;
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany;
| | - Erik Haußner
- Institute of Molecular Medicine, Section for Molecular Medicine of Signal Transduction, Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.H.); (M.B.)
| | - Tanvi Vikrant Inamdar
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (T.V.I.); (H.L.)
| | - Helmut Laumen
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (T.V.I.); (H.L.)
| | - Michael Boettcher
- Institute of Molecular Medicine, Section for Molecular Medicine of Signal Transduction, Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.H.); (M.B.)
| | - Martin Gericke
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany;
| | - Patrick Michl
- Department of Internal Medicine IV, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Jonas Rosendahl
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (T.V.I.); (H.L.)
| |
Collapse
|
4
|
Roscigno G, Jacobs S, Toledo B, Borea R, Russo G, Pepe F, Serrano MJ, Calabrò V, Troncone G, Giovannoni R, Giovannetti E, Malapelle U. The potential application of stroma modulation in targeting tumor cells: focus on pancreatic cancer and breast cancer models. Semin Cancer Biol 2025:S1044-579X(25)00060-4. [PMID: 40373890 DOI: 10.1016/j.semcancer.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/08/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer development and spreading being considered as "the dark side of the tumor". Within this term tumor cells, immune components, supporting cells, extracellular matrix and a myriad of bioactive molecules that synergistically promote tumor development and therapeutic resistance, are included. Recent findings revealed the profound impacts of TME on cancer development, serving as physical support, critical mediator and biodynamic matrix in cancer evolution, immune modulation, and treatment outcomes. TME targeting strategies built on vasculature, immune checkpoints, and immuno-cell therapies, have paved the way for revolutionary clinical interventions. On this basis, the relevance of pre-clinical and clinical investigations has rapidly become fundamental for implementing novel therapeutical strategies breaking cell-cell and cell -mediators' interactions between TME components and tumor cells. This review summarizes the key players in the breast and pancreatic TME, elucidating the intricate interactions among cancer cells and their essential role for cancer progression and therapeutic resistance. Different tumors such breast and pancreatic cancer have both different and similar stroma features, that might affect therapeutic strategies. Therefore, this review aims to comprehensively evaluate recent findings for refining breast and pancreatic cancer therapies and improve patient prognoses by exploiting the TME's complexity in the next future.
Collapse
Affiliation(s)
- Giuseppina Roscigno
- Department of Biology, Complesso Universitario Monte Sant'Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Sacha Jacobs
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| | - Belen Toledo
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén E-23071, Spain.
| | - Roberto Borea
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy.
| | - Gianluca Russo
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Francesco Pepe
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Maria Jose Serrano
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and Cancer Interception Group, PTS Granada, Avenida de la Ilustración 114, Granada 18016, Spain.
| | - Viola Calabrò
- Department of Biology, Complesso Universitario Monte Sant'Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Roberto Giovannoni
- Department of Biology, Genetic Unit, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy.
| | - Umberto Malapelle
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy.
| |
Collapse
|
5
|
Kobayashi K, Sawada Y, Sahara K, Kikuchi Y, Miyake K, Yabushita Y, Homma Y, Kumamoto T, Matsuyama R, Endo I. Clinical Relevance of High-Grade Pancreatic Intraepithelial Neoplasia at the Pancreatic Transection Margin in Patients with Pancreatic Ductal Adenocarcinoma. Ann Surg Oncol 2025:10.1245/s10434-025-17400-y. [PMID: 40360836 DOI: 10.1245/s10434-025-17400-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/13/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND The clinical relevance of high-grade pancreatic intraepithelial neoplasia (PanIN) at the pancreatic transection margin (PTM) during resection of pancreatic ductal adenocarcinoma (PDAC) remains unclear. PATIENTS AND METHODS A total of 358 patients who underwent R0 resection for PDAC between January 2010 and December 2022 were included. The permanent sections used for the intraoperative frozen section diagnosis of PTM were evaluated for the PanIN grade. RESULTS Among 358 patients, 35 patients had low-grade PanIN (9.8%), and 17 had high-grade PanIN (4.7%) at the PTM. The 2-year overall survival (OS), disease-free survival (DSS), and relapse-free survival (RFS) did not differ markedly among patients with normal epithelium, low-grade PanIN, or high-grade PanIN at the margin. As the clinical features differed between patients with high-grade PanIN at the PTM and those without, we adjusted the patients' background factors using propensity score matching. The 2-year OS, DSS, and RFS rates were not significantly different between the groups. In addition, we investigated the details of 17 cases of high-grade PanIN in the PTM. The analysis revealed that 11 patients experienced recurrence after surgery. Among them, two cases of T1N0 showed recurrence in the remnant pancreas more than 2 years after surgery, while nine cases exhibited recurrence outside the remnant pancreas, such as the liver and lungs, within 2 years. CONCLUSIONS Patients with high-grade PanIN at the PTM did not show a significantly different prognosis than those without; however, recurrence in the remnant pancreas was observed in long-term survivors. Therefore, rigorous long-term follow-up is essential for such patients.
Collapse
Affiliation(s)
- Kei Kobayashi
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yu Sawada
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Kota Sahara
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yutaro Kikuchi
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kentaro Miyake
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasuhiro Yabushita
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuki Homma
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takafumi Kumamoto
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
6
|
Toriyama K, Masago K, Shibata N, Haneda M, Kuwahara T, Natsume S, Kobayashi S, Fujita Y, Sasaki E, Yamao K, Kawashima H, Shimizu Y, Hara K, Yatabe Y, Hosoda W. Clinicopathological and molecular characterization of KRAS wild-type pancreatic ductal adenocarcinomas reveals precursor lesions with oncogenic mutations and fusions in RAS pathway genes. J Pathol 2025. [PMID: 40317966 DOI: 10.1002/path.6432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/07/2025] [Accepted: 03/26/2025] [Indexed: 05/07/2025]
Abstract
Pancreatic ductal adenocarcinomas (PDACs) with wild-type KRAS constitute a small fraction of PDACs, and these tumors were recently shown to harbor frequent actionable oncogenic mutations and fusions. However, the clinicopathological features of KRAS wild-type PDAC have not been well studied. Additionally, precancerous lesions occurring in patients with KRAS wild-type PDACs have rarely been characterized. Here, we investigated the clinicopathological characteristics and outcomes of 75 patients with KRAS wild-type PDAC. Molecular analyses were performed in 40 patients using targeted DNA and whole-exome sequencing and targeted RNA sequencing. We demonstrated that patients with metastatic PDAC with wild-type KRAS were younger (median 59.5 years) than those with mutated KRAS (median 67 years, p < 0.000055). The wild-type KRAS status was not a significant prognostic factor for metastatic disease. Molecularly, genes in the RAS pathway are frequently mutated or rearranged (46%, 16/35), including mutations in BRAF, NRAS, HRAS, EGFR, MAP2K1, FGFR1, FGFR3 and ERBB4 and fusions of FGFR2 (FGFR2::CCDC147, FGFR2::CAT, FGFR2::TXLNA), ALK (STRN::ALK, EML4::ALK), and BRAF (TRIP11::BRAF). Mismatch repair deficiency was identified in 10% (4/39) of patients. Potentially actionable alterations were identified frequently in KRAS wild-type PDACs (30%, 12/40), in which nontubular-type carcinomas were significantly enriched with actionable alterations compared with tubular adenocarcinomas [67% (6/9) versus 16% (5/31); p = 0.007]. Finally, we investigated the precursors of PDACs in 13 pancreatectomy specimens from patients with KRAS wild-type PDAC. We identified three pancreatic intraepithelial neoplasias (PanINs) and two intraductal papillary mucinous neoplasms (IPMNs) harboring oncogenic fusions of ALK and BRAF and driver mutations in BRAF and AKT1. This study suggests that in the context of unmutated KRAS, PDAC is driven by alternative oncogenic mutations or fusions of RAS pathway genes, which may be introduced during the early phase of tumorigenesis. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Kazuhiro Toriyama
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuhiro Masago
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Noriko Shibata
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Masataka Haneda
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | | | - Seiji Natsume
- Department of Gastroenterological Surgery, Aichi Cancer Center, Nagoya, Japan
| | - Shota Kobayashi
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Yasuko Fujita
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Eiichi Sasaki
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Kenji Yamao
- Department of Gastroenterology, Narita Memorial Hospital, Toyohashi, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Shimizu
- Department of Gastroenterological Surgery, Aichi Cancer Center, Nagoya, Japan
| | - Kazuo Hara
- Department of Gastroenterology, Aichi Cancer Center, Nagoya, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Waki Hosoda
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| |
Collapse
|
7
|
Stoop TF, Javed AA, Oba A, Koerkamp BG, Seufferlein T, Wilmink JW, Besselink MG. Pancreatic cancer. Lancet 2025; 405:1182-1202. [PMID: 40187844 DOI: 10.1016/s0140-6736(25)00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 04/07/2025]
Abstract
Pancreatic cancer is frequently a lethal disease with an aggressive tumour biology often presenting with non-specific symptoms. Median survival is approximately 4 months with a 5-year survival of 13%. Surveillance is recommended in individuals with familial pancreatic cancer, specific mutations, and high-risk intraductal papillary mucinous neoplasm, as they are at high risk of developing pancreatic cancer. Chemotherapy combined with surgical resection remains the cornerstone of treatment. However, only a small subset of patients are candidates for surgery. Multi-agent chemotherapy has improved survival in the palliative setting for patients with metastatic disease, as (neo)adjuvant and induction therapy have in patients with borderline resectable and locally advanced pancreatic. Given that pancreatic cancer is predicted to become the second leading cause of cancer-related death by 2030, novel therapies are urgently needed.
Collapse
Affiliation(s)
- Thomas F Stoop
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Ammar A Javed
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands; Division of Surgical Oncology, Department of Surgery, New York University Medical Center, New York, NY, USA
| | - Atsushi Oba
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Ariake, Tokyo, Japan; Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan; Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Thomas Seufferlein
- Department of International Medicine I, Ulm University Hospital, Ulm, Germany
| | - Johanna W Wilmink
- Department of Medical Oncology, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Marc G Besselink
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
8
|
Liaki V, Rosas-Perez B, Guerra C. Unlocking the Genetic Secrets of Pancreatic Cancer: KRAS Allelic Imbalances in Tumor Evolution. Cancers (Basel) 2025; 17:1226. [PMID: 40227826 PMCID: PMC11987834 DOI: 10.3390/cancers17071226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) belongs to the types of cancer with the highest lethality. It is also remarkably chemoresistant to the few available cytotoxic therapeutic options. PDAC is characterized by limited mutational heterogeneity of the known driver genes, KRAS, CDKN2A, TP53, and SMAD4, observed in both early-stage and advanced tumors. In this review, we summarize the two proposed models of genetic evolution of pancreatic cancer. The gradual or stepwise accumulated mutations model has been widely studied. On the contrary, less evidence exists on the more recent simultaneous model, according to which rapid tumor evolution is driven by the concurrent accumulation of genetic alterations. In both models, oncogenic KRAS mutations are the main initiating event. Here, we analyze the emerging topic of KRAS allelic imbalances and how it arises during tumor evolution, as it is often detected in advanced and metastatic PDAC. We also summarize recent evidence on how it affects tumor biology, metastasis, and response to therapy. To this extent, we highlight the necessity to include studies of KRAS allelic frequencies in the design of future therapeutic strategies against pancreatic cancer.
Collapse
Affiliation(s)
- Vasiliki Liaki
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (B.R.-P.); (C.G.)
| | - Blanca Rosas-Perez
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (B.R.-P.); (C.G.)
| | - Carmen Guerra
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; (B.R.-P.); (C.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Zhao Y, Wen C, Wang Q, Qing Y, Tondi S, Reina C, Šabanović B, Chang CY, Lai C, Wang H, Agerbaek MØ, Clausen TM, Gustavsson T, Theander TG, Salanti A, Meny CC, Shen B, Aicher A, Tang J, Heeschen C. Use of the Malaria Protein VAR2CSA for the Detection of Small Extracellular Vesicles to Diagnose Adenocarcinoma. J Extracell Vesicles 2025; 14:e70067. [PMID: 40241173 PMCID: PMC12003099 DOI: 10.1002/jev2.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge for early diagnosis due to the lack of sensitive and specific biomarkers. This encouraged us to explore the diagnostic value of cancer-derived small extracellular vesicles (sEVs) as early detection biomarkers. We previously showed that the recombinant malaria protein VAR2CSA (rVAR2) selectively binds to oncofetal chondroitin sulfate (ofCS) on the surfaces of cancer cells, which might be useful for identifying cancer-derived sEVs. Indeed, flow cytometry revealed strong ofCS expression in PDAC cell-derived sEVs, as evidenced by the presence of mutant KRAS, a common genetic alteration in PDAC. Plasma from PDAC patients showed significantly higher ofCS+ sEV levels compared to healthy donors and patients with benign gastrointestinal diseases. ROC analysis for ofCS+ sEVs revealed an AUC of 0.9049 for the detection of all-stage and 0.9222 for early-stage PDAC. Notably, mutant KRAS was also detected in these patient-derived sEVs. Most intriguingly, combining ofCS+ sEVs and CA19-9 resulted in an AUC of 0.9707 for the detection of early PDAC. Our study demonstrates that rVAR2 is suitable for detecting ofCS+ cancer-derived sEVs in plasma, thereby providing high efficiency for identifying PDAC patients among a diverse population. These findings suggest that rVAR2-based sEV detection could serve as a powerful diagnostic tool to improve patient survival through early detection.
Collapse
Affiliation(s)
- Yaru Zhao
- Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chenlei Wen
- Research Institute of Pancreatic Disease, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Pancreatic Disease Center, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Qi Wang
- Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yue Qing
- Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Serena Tondi
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute FPO‐IRCCS, CandioloTurinItaly
| | - Chiara Reina
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute FPO‐IRCCS, CandioloTurinItaly
| | - Berina Šabanović
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute FPO‐IRCCS, CandioloTurinItaly
| | - Cherry Yin‐Yi Chang
- Department of Medicine, School of MedicineChina Medical UniversityTaichungTaiwan
- Department of Obstetrics and GynecologyChina Medical University HospitalTaichungTaiwan
| | - Chu‐Hu Lai
- Precision Immunotherapy, Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
| | - Huimin Wang
- Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Mette Ø. Agerbaek
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
- VarCT DiagnosticsCopenhagenDenmark
| | - Thomas M. Clausen
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Tobias Gustavsson
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
- VAR2 PharmaceuticalsCopenhagenDenmark
| | - Thor G. Theander
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Ali Salanti
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Clara Csilla Meny
- 2 Institute for Pathology and Experimental Oncology ResearchSemmelweis UniversityBudapestHungary
| | - Baiyong Shen
- Research Institute of Pancreatic Disease, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Pancreatic Disease Center, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Alexandra Aicher
- Precision Immunotherapy, Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
| | - Jiajia Tang
- Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Christopher Heeschen
- Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of MedicineShanghaiChina
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute FPO‐IRCCS, CandioloTurinItaly
| |
Collapse
|
10
|
Arechederra M, Bik E, Rojo C, Elurbide J, Elizalde M, Kruk B, Krasnodębski M, Pertkiewicz J, Kozieł S, Grąt M, Raszeja‐Wyszomirska J, Rullan M, Alkorta‐Aranburu G, Oyón D, Fernández‐Barrena MG, Candels LS, Białek A, Krupa Ł, Schneider KM, Urman J, Strnad P, Trautwein C, Milkiewicz P, Krawczyk M, Ávila MA, Berasain C. Mutational Analysis of Bile Cell-Free DNA in Primary Sclerosing Cholangitis: A Pilot Study. Liver Int 2025; 45:e70049. [PMID: 40029142 PMCID: PMC11874897 DOI: 10.1111/liv.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is a chronic liver disease characterised by inflammation and fibrosis of the bile ducts, conferring an increased risk of cholangiocarcinoma (CCA). However, detecting CCA early in PSC patients remains challenging due to the limited sensitivity of conventional diagnostic methods, including imaging or bile duct brush cytology during endoscopic retrograde cholangiopancreatography (ERCP). This study aims to evaluate the potential of bile cell-free DNA (cfDNA) mutational analysis, termed the Bilemut assay, as a tool for CCA detection in PSC patients. METHODS Sixty-three PSC patients undergoing ERCP due to biliary strictures were prospectively recruited. Bile samples were collected, and cfDNA was extracted and analysed using the Oncomine Pan-Cancer Cell-Free assay. Twenty healthy liver donors were included for comparison. Samples with a mutant allele frequency (MAF) ≥ 0.1% were considered positive. Correlations between mutational status and clinical characteristics were assessed. RESULTS cfDNA mutational analysis was successful in all bile samples. Mutations predominantly in KRAS, GNAS, and TP53 were detected in 36.5% (23/63) of PSC patients, compared to 10% (2/20) of healthy donors (p = 0.0269). The clinical characteristics of Bilemut-positive and -negative patients were comparable, though there was a trend towards a lower prevalence of inflammatory bowel disease in the Bilemut-positive group. Among PSC patients diagnosed with CCA during follow-up, 75% were Bilemut-positive, suggesting an association between mutational status and malignancy risk. CONCLUSIONS Mutational analysis of cfDNA obtained from bile collected from PSC patients undergoing ERCP is feasible. Implementing the Bilemut assay may help identify patients needing closer surveillance and further imaging studies.
Collapse
Affiliation(s)
- Maria Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUNUniversity of NavarraPamplonaSpain
- IdiSNANavarra Institute for Health ResearchPamplonaSpain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute)MadridSpain
| | - Emil Bik
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
| | - Carla Rojo
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUNUniversity of NavarraPamplonaSpain
| | - Jasmin Elurbide
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUNUniversity of NavarraPamplonaSpain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute)MadridSpain
| | - María Elizalde
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUNUniversity of NavarraPamplonaSpain
| | - Beata Kruk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
| | - Maciej Krasnodębski
- Department of General Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
| | - Jan Pertkiewicz
- Department of General Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
| | - Sławomir Kozieł
- Department of General Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
| | - Michał Grąt
- Department of General Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
| | - Joanna Raszeja‐Wyszomirska
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
| | - Maria Rullan
- IdiSNANavarra Institute for Health ResearchPamplonaSpain
- Department of Gastroenterology and HepatologyNavarra University HospitalPamplonaSpain
| | | | - Daniel Oyón
- Department of Gastroenterology and HepatologyHospital General Universitario Gregorio MarañónMadridSpain
| | - Maite G. Fernández‐Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUNUniversity of NavarraPamplonaSpain
- IdiSNANavarra Institute for Health ResearchPamplonaSpain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute)MadridSpain
| | - Lena S. Candels
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER)AachenGermany
| | - Andrzej Białek
- Department of GastroenterologyPomeranian Medical UniversitySzczecinPoland
| | - Łukasz Krupa
- Department of Gastroenterology and Hepatology With Internal Disease UnitTeaching Hospital No 1 in RzeszówRzeszówPoland
- Medical DepartmentUniversity of RzeszówRzeszówPoland
| | - Kai M. Schneider
- Department of Medicine 1University Hospital Carl Gustav Carus Dresden, Technische Universität (TU)DresdenGermany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU)DresdenGermany
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, TUD Dresden University of TechnologyDresdenGermany
- Department of Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Jesús Urman
- IdiSNANavarra Institute for Health ResearchPamplonaSpain
- Department of Gastroenterology and HepatologyNavarra University HospitalPamplonaSpain
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER)AachenGermany
| | - Christian Trautwein
- Department of ToxicologyLeibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
- Translational Medicine Group, Pomeranian Medical UniversitySzczecinPoland
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical FacultyUniversity of Duisburg‐EssenEssenGermany
| | - Matías A. Ávila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUNUniversity of NavarraPamplonaSpain
- IdiSNANavarra Institute for Health ResearchPamplonaSpain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute)MadridSpain
| | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUNUniversity of NavarraPamplonaSpain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute)MadridSpain
| |
Collapse
|
11
|
Tanaka J, Nakagawa T, Ono Y, Kamura Y, Ishida T, Kawabata H, Takahashi K, Sato H, Liss AS, Mizukami Y, Yokoi T. Highly multiplexed digital PCR assay for simultaneous quantification of variant allele frequencies and copy number alterations of KRAS and GNAS in pancreatic cancer precursors. Mol Oncol 2025. [PMID: 40077847 DOI: 10.1002/1878-0261.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/18/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasms (IPMNs) are pancreatic ductal adenocarcinoma (PDAC) precursor lesions. Detecting these precursors and monitoring their progression are crucial for early PDAC diagnosis. Digital PCR (dPCR) is a highly sensitive nucleic acid quantification technique and offers a cost-effective option for patient follow-up. However, the clinical utility of conventional dPCR is restricted by multiplexing constraints, particularly due to the challenge of simultaneously quantifying multiple mutations and amplifications. In this study, we applied highly multiplexed dPCR and melting curve analysis to simultaneously measure single nucleotide mutations and amplifications of KRAS and GNAS. The developed 14-plex assay included both wild-type and mutant KRAS, a common driver gene in both PanIN and IPMN, and GNAS, which is specifically mutated in IPMN, along with RPP30, a reference gene for copy number alterations (CNAs). This multiplex dPCR method detected all target mutations with a limit of detection below 0.2% while quantifying CNAs. Additionally, the assay accurately quantified variant allele frequencies in liquid biopsy and tissue samples from both pancreatic neoplasm precursor and PDAC patients, indicating its potential for use in comprehensive patient follow-up.
Collapse
Affiliation(s)
- Junko Tanaka
- Center for Digital Services - Healthcare, Research & Development Group, Hitachi, Ltd., Tokyo, Japan
| | - Tatsuo Nakagawa
- Center for Digital Services - Healthcare, Research & Development Group, Hitachi, Ltd., Tokyo, Japan
| | - Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Japan
- Department of Advanced Genomic Community Healthcare, Asahikawa Medical University, Japan
| | - Yoshio Kamura
- Center for Digital Services - Healthcare, Research & Development Group, Hitachi, Ltd., Tokyo, Japan
| | - Takeshi Ishida
- Center for Digital Services - Healthcare, Research & Development Group, Hitachi, Ltd., Tokyo, Japan
| | - Hidemasa Kawabata
- Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Japan
| | - Kenji Takahashi
- Department of Advanced Genomic Community Healthcare, Asahikawa Medical University, Japan
- Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Japan
| | - Hiroki Sato
- Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Japan
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew S Liss
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yusuke Mizukami
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Japan
- Department of Advanced Genomic Community Healthcare, Asahikawa Medical University, Japan
- Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Japan
| | - Takahide Yokoi
- Center for Digital Services - Healthcare, Research & Development Group, Hitachi, Ltd., Tokyo, Japan
| |
Collapse
|
12
|
Anastasio G, Felaco M, Lamolinara A, Pizzo FD, Cacciagrano E, Mottini C, Mutarelli M, Di Modugno F, Iezzi M, Cardone L. Enhancing PDAC therapy: Decitabine-olaparib synergy targets KRAS-dependent tumors. iScience 2025; 28:111842. [PMID: 40008360 PMCID: PMC11851998 DOI: 10.1016/j.isci.2025.111842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 02/27/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) shows limited response to chemotherapy, partly due to the absence of effective biomarkers for personalized treatment. Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are found in 90% of PDAC cases, and tumors dependent on KRAS (dKRAS) can be identified using gene expression signature scores. Previous research indicates that dKRAS-PDAC cells are sensitive to decitabine (DEC), an FDA-approved drug for hematological cancers, though its use in solid tumors is limited by side effects. We discovered that low-dose DEC combined with the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib (OLA) enhances antitumor activity in dKRAS-PDAC. DEC induces DNA damage and activates the ataxia telangiectasia (ATR)/ataxia telangiectasia mutated (ATM)-mediated DNA damage response (DDR), with PARP1-mediated repair playing a key role. Inhibiting PARP with OLA further improves efficacy, even in BRCA1/2-wild-type and homologous recombination (HR)-proficient tumors but not in KRAS-independent tumors. The combination was especially effective in dKRAS-PDAC with a BRCA2 mutation, preventing metastasis growth. Our results support the clinical evaluation of DEC+OLA in PDAC.
Collapse
Affiliation(s)
- Giorgia Anastasio
- Institute of Biochemistry and Cellular Biology, National Research Council, Monterotondo-Scalo, 00015 Rome, Italy
| | - Michela Felaco
- Institute of Biochemistry and Cellular Biology, National Research Council, Monterotondo-Scalo, 00015 Rome, Italy
- Unit of Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Alessia Lamolinara
- Center for Advanced Studies and Technology, 66100 Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesco del Pizzo
- Center for Advanced Studies and Technology, 66100 Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Elisa Cacciagrano
- Center for Advanced Studies and Technology, 66100 Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carla Mottini
- UOSD SAFU Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Margherita Mutarelli
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Naples, Italy
| | - Francesca Di Modugno
- Unit of Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Manuela Iezzi
- Center for Advanced Studies and Technology, 66100 Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Luca Cardone
- Institute of Biochemistry and Cellular Biology, National Research Council, Monterotondo-Scalo, 00015 Rome, Italy
- Unit of Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
13
|
Sobhani N, Pittacolo M, D’Angelo A, Marchegiani G. Recent Anti-KRAS G12D Therapies: A "Possible Impossibility" for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2025; 17:704. [PMID: 40002297 PMCID: PMC11853620 DOI: 10.3390/cancers17040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer, able to thrive in a challenging tumor microenvironment. Current standard therapies, including surgery, radiation, chemotherapy, and chemoradiation, have shown a dismal survival prognosis, resulting in less than a year of life in the metastatic setting. Methods: The pressing need to find better therapeutic methods brought about the discovery of new targeted therapies against the infamous KRAS mutations, the major oncological drivers of PDAC. Results: The most common KRAS mutation is KRASG12D, which causes a conformational change in the protein that constitutively activates downstream signaling pathways driving cancer hallmarks. Novel anti-KRASG12D therapies have been developed for solid-organ tumors, including small compounds, pan-RAS inhibitors, protease inhibitors, chimeric T cell receptors, and therapeutic vaccines. Conclusions: This comprehensive review summarizes current knowledge on the biology of KRAS-driven PDAC, the latest therapeutic options that have been experimentally validated, and developments in ongoing clinical trials.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matteo Pittacolo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy;
| | - Alberto D’Angelo
- Department of Medicine, Northern General Hospital, Sheffield S5 7AT, UK;
| | - Giovanni Marchegiani
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy;
| |
Collapse
|
14
|
Lansbergen MF, Dings MPG, Koster J, Labots M, Kerver ED, Jochems A, Homs MYV, de Vos-Geelen J, Hendriks MP, Tanck MWT, Wilmink JW, van Laarhoven HWM, Bijlsma MF. KRAS mutation status integrated with RNA subtyping improves prognostic modeling in FOLFIRINOX-treated metastatic pancreatic cancer. MED 2025:100601. [PMID: 39938521 DOI: 10.1016/j.medj.2025.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/05/2024] [Accepted: 01/14/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND First-line chemotherapy (5-fluorouracil, leucovorin, irinotecan, and oxaliplatin [FOLFIRINOX]) benefits few patients with metastatic pancreatic ductal adenocarcinoma (mPDAC). Prognostic markers for treatment-related survival are needed. This study validated the added benefit of whole-genome sequencing (WGS) to transcriptome-based classification in modeling FOLFIRINOX-related survival. METHODS Patients with mPDAC planning to start FOLFIRINOX were included in a prospective nationwide cohort. Pretreatment biopsies were submitted to WGS and RNA sequencing. Samples of non-FOLFIRINOX-treated patients were included for exploratory analyses. FINDINGS WGS was performed in biopsies from 108 FOLFIRINOX-treated patients and 51 non-FOLFIRINOX-treated patients. 12% of the tumors were KRAS wild type. These tumors had more targetable alterations (42% vs. 17%) and were associated with a longer median overall survival (mOS) than KRAS mutant tumors (7.8 months in KRAS mutant vs. 17.7 months in wild-type tumors, p = 0.0024). Transcriptome-based clustering revealed a tumor subgroup showing low classical and basal-like gene expression, enriched for KRAS wild-type status (p < 0.0001), a so-called "classifier-negative" subtype. The gene expression of these classifier-negative tumors correlated with neural-like signatures. For patients with a homologous recombination-deficient (HRD) tumor, mOS was not increased (8.0 months in homologous recombination-proficient [HRP] vs. 13.3 months in HRD tumors, p = 0.21). CONCLUSIONS KRAS wild-type tumors are a distinct PDAC subgroup with a better prognosis. Consequently, KRAS status assessment before transcriptome-based subtyping can stratify patients into three prognostic molecular subgroups (KRAS wild type, KRAS mutant classical, and KRAS mutant basal like). This integrative way of classification should be validated prior to incorporation in diagnostic practice. FUNDING ZonMw "Good Use of Medicine" program (848101012).
Collapse
Affiliation(s)
- Marjolein F Lansbergen
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, 1081 HV Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam, 1081 BT Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, 1081 BT Amsterdam, the Netherlands
| | - Mark P G Dings
- Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam, 1081 BT Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, 1081 BT Amsterdam, the Netherlands
| | - Jan Koster
- Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam, 1081 BT Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, 1081 BT Amsterdam, the Netherlands
| | - Mariette Labots
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 BT Amsterdam, the Netherlands; Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, the Netherlands
| | - Emile D Kerver
- Department of Medical Oncology, OLVG, 1091 AC Amsterdam, the Netherlands
| | - Anouk Jochems
- Department of Internal Medicine, Haaglanden Medical Center, 2512 VA The Hague, the Netherlands
| | - Marjolein Y V Homs
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, the Netherlands
| | - Judith de Vos-Geelen
- Department of Medical Oncology, GROW - Research Institute for Oncology & Reproduction, Maastricht University Medical Center, 6229 HX Maastricht, the Netherlands
| | - Mathijs P Hendriks
- Department of Medical Oncology, Northwest Clinics, 1815 JD Alkmaar, the Netherlands
| | - Michael W T Tanck
- Department of Epidemiology and Data Science, Amsterdam Public Health, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Johanna W Wilmink
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, 1081 HV Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, 1081 BT Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, 1081 HV Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, 1081 BT Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam, 1081 BT Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, 1081 BT Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Meng H, Nan M, Li Y, Ding Y, Fang X, Ma W, Zhang M. PD-L1 knockout or ZG16 overexpression inhibits PDAC progression and modulates TAM polarization. Front Immunol 2025; 16:1510179. [PMID: 39958358 PMCID: PMC11826313 DOI: 10.3389/fimmu.2025.1510179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/02/2025] [Indexed: 02/18/2025] Open
Abstract
CRISPR/Cas9-mediated genome editing has the potential to delete PD-L1 both on the cell surface and inside the cell, thereby inhibiting tumor growth and migration and overcoming immunosuppression. ZG16, with its lectin structure, can reduce PD-L1 expression on the cell surface. However, direct comparison of two approaches on PD-L1 expression in Pancreatic ductal adenocarcinoma (PDAC) cells has not yet been investigated. In this study, we established two Panc-1 cell line: one with PD-L1 knockout and another with ZG16 overexpression. Both methods promoted the polarization of tumor-associated macrophages (TAMs) to the M1 phenotype, as indicated by increased levels of the M1 marker CD11c+ in vitro and in vivo. Meanwhile, we observed a reduction in the M2 marker CD206+, upregulation of immune activation-related cytokines/chemokines, and a decrease in immunosuppressive cytokines and tumor angiogenesis factors. In summary, both PD-L1 knockout and ZG16 overexpression represent promising approaches for PDAC treatment.
Collapse
Affiliation(s)
- Hui Meng
- *Correspondence: Mingzhi Zhang, ; Hui Meng,
| | | | | | | | | | | | - Mingzhi Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Pian LL, Song MH, Wang TF, Qi L, Peng TL, Xie KP. Identification and analysis of pancreatic intraepithelial neoplasia: opportunities and challenges. Front Endocrinol (Lausanne) 2025; 15:1401829. [PMID: 39839479 PMCID: PMC11746065 DOI: 10.3389/fendo.2024.1401829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Pancreatic intraepithelial neoplasia (PanIN) is the most common precursor lesion of pancreatic ductal adenocarcinoma (PDAC), which has poor prognosis with a short median overall survival of 6-12 months and a low 5-year survival rate of approximately 3%. It is crucial to remove PanIN lesions to prevent the development of invasive PDAC, as PDAC spreads rapidly outside the pancreas. This review aims to provide the latest knowledge on PanIN risk, pathology, cellular origin, genetic susceptibility, and diagnosis, while identifying research gaps that require further investigation in this understudied area of precancerous lesions. PanINs are classified into PanIN 1, PanIN 2, and PanIN 3, with PanIN 3 having the highest likelihood of developing into invasive PDAC. Differentiating between PanIN 2 and PanIN 3 is clinically significant. Genetic alterations found in PDAC are also present in PanIN and increase with the grade of PanIN. Imaging methods alone are insufficient for distinguishing PanIN, necessitating the use of genetic and molecular tests for identification. In addition, metabolomics technologies and miRNAs are playing an increasingly important role in the field of cancer diagnosis, offering more possibilities for efficient identification of PanIN. Although detecting and stratifying the risk of PanIN poses challenges, the combined utilization of imaging, genetics, and metabolomics holds promise for improving patient survival in this field.
Collapse
Affiliation(s)
- Ling-ling Pian
- School of Medicine, The South China University of Technology, Guangzhou, Guangdong, China
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
| | - Mei-hui Song
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
| | - Teng-fei Wang
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Ling Qi
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
| | - Tie-li Peng
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
| | - Ke-ping Xie
- School of Medicine, The South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Norton C, Shaw MS, Rubnitz Z, Smith J, Soares HP, Nevala-Plagemann CD, Garrido-Laguna I, Florou V. KRAS Mutation Status and Treatment Outcomes in Patients With Metastatic Pancreatic Adenocarcinoma. JAMA Netw Open 2025; 8:e2453588. [PMID: 39777438 PMCID: PMC11707629 DOI: 10.1001/jamanetworkopen.2024.53588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/05/2024] [Indexed: 01/11/2025] Open
Abstract
Importance Despite the high prevalence of KRAS alterations in pancreatic ductal adenocarcinoma (PDAC), the clinical impact of common KRAS mutations with different cytotoxic regimens is unknown. This evidence is important to inform current treatment and provide a benchmark for emergent targeted KRAS therapies in metastatic PDAC. Objective To assess the clinical implications of common KRAS G12 mutations in PDAC and to compare outcomes of standard-of-care multiagent therapies across these common mutations. Design, Setting, and Participants This retrospective cohort study obtained deidentified clinical data for 5382 patients from a nationwide (US-based) clinicogenomic database. The deidentified data originated from approximately 280 US cancer clinics (approximately 800 sites of care). Patients diagnosed with metastatic PDAC from February 9, 2010, to September 20, 2022, and with sufficient follow-up and treatment data were included. Main Outcomes and Measures Median overall survival (OS) and time to next treatment (TTNT) were calculated for each KRAS mutation group. Hazard ratios (HRs) were generated using multivariate Cox proportional hazards models for KRAS mutations and mutation-treatment combinations. Results A total of 2433 patients with PDAC were included in the analysis (mean age at first treatment, 67.0 [range, 66.0-68.0] years; 1340 male [55.1%]). Among 2023 patients with KRAS mutations, those with G12R had the longest median TTNT (6.0 [95% CI, 5.2-6.6] months) and the longest median OS (13.2 [95% CI, 10.6-15.2] months). Patients with KRAS G12D and G12V mutations had a significantly higher risk of disease progression (HRs, 1.15; [95% CI, 1.04-1.29; P = .009] and 1.16 [95% CI, 1.04-1.30; P = .01], respectively) and death (HRs, 1.29 [95% CI, 1.15-1.45; P < .001] and 1.23 [95% CI, 1.09-1.39; P < .001], respectively) compared with KRAS wild type. The FOLFIRINOX regimen (fluorouracil, irinotecan, oxaliplatin, and leucovorin) had a significantly lower risk of treatment progression and death than gemcitabine with (HRs, 1.19 [95% CI, [1.09-1.29; P < .001] and 1.18 [95% CI, 1.07-1.29; P < .001], respectively) or without (HRs, 1.37 [95% CI, 1.11-1.69; P = .003] and 1.41 [95% CI 1.13-1.75; P = .002], respectively) nab-paclitaxel across all patients. Conclusions and Relevance In this cohort study of 2433 patients with PDAC, KRAS G12D and G12V mutations were associated with worse patient outcomes compared with KRAS wild type. KRAS G12R was associated with more favorable patient outcomes, and FOLFIRINOX was associated with better patient outcomes than gemcitabine-based therapies. These findings highlight the need for more effective systemic therapies for these groups of patients.
Collapse
Affiliation(s)
- Carter Norton
- Huntsman Cancer Institute, University of Utah Health Care, Salt Lake City
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Zachary Rubnitz
- Department of Internal Medicine, Division of Oncology, University of Utah Health Care, Salt Lake City
- Department of Internal Medicine, University of Utah Health Care, Salt Lake City
| | - Jarrod Smith
- Department of Internal Medicine, Division of Oncology, University of Utah Health Care, Salt Lake City
- Department of Internal Medicine, University of Utah Health Care, Salt Lake City
| | - Heloisa P. Soares
- Huntsman Cancer Institute, University of Utah Health Care, Salt Lake City
- Department of Internal Medicine, Division of Oncology, University of Utah Health Care, Salt Lake City
| | - Christopher D. Nevala-Plagemann
- Huntsman Cancer Institute, University of Utah Health Care, Salt Lake City
- Department of Internal Medicine, Division of Oncology, University of Utah Health Care, Salt Lake City
| | - Ignacio Garrido-Laguna
- Huntsman Cancer Institute, University of Utah Health Care, Salt Lake City
- Department of Internal Medicine, Division of Oncology, University of Utah Health Care, Salt Lake City
| | - Vaia Florou
- Huntsman Cancer Institute, University of Utah Health Care, Salt Lake City
- Department of Internal Medicine, Division of Oncology, University of Utah Health Care, Salt Lake City
| |
Collapse
|
18
|
Hashimoto A, Hashimoto S. Plasticity and Tumor Microenvironment in Pancreatic Cancer: Genetic, Metabolic, and Immune Perspectives. Cancers (Basel) 2024; 16:4094. [PMID: 39682280 DOI: 10.3390/cancers16234094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer has long been believed to be a genetic disease caused by the accumulation of mutations in key genes involved in cellular processes. However, recent advances in sequencing technology have demonstrated that cells with cancer driver mutations are also present in normal tissues in response to aging, environmental damage, and chronic inflammation, suggesting that not only intrinsic factors within cancer cells, but also environmental alterations are important key factors in cancer development and progression. Pancreatic cancer tissue is mostly comprised of stromal cells and immune cells. The desmoplasmic microenvironment characteristic of pancreatic cancer is hypoxic and hypotrophic. Pancreatic cancer cells may adapt to this environment by rewiring their metabolism through epigenomic changes, enhancing intrinsic plasticity, creating an acidic and immunosuppressive tumor microenvironment, and inducing noncancerous cells to become tumor-promoting. In addition, pancreatic cancer has often metastasized to local and distant sites by the time of diagnosis, suggesting that a similar mechanism is operating from the precancerous stage. Here, we review key recent findings on how pancreatic cancers acquire plasticity, undergo metabolic reprogramming, and promote immunosuppressive microenvironment formation during their evolution. Furthermore, we present the following two signaling pathways that we have identified: one based on the small G-protein ARF6 driven by KRAS/TP53 mutations, and the other based on the RNA-binding protein Arid5a mediated by inflammatory cytokines, which promote both metabolic reprogramming and immune evasion in pancreatic cancer. Finally, the striking diversity among pancreatic cancers in the relative importance of mutational burden and the tumor microenvironment, their clinical relevance, and the potential for novel therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
19
|
Bastea LI, Liu X, Fleming AK, Pandey V, Döppler H, Edenfield BH, Krishna M, Zhang L, Thompson EA, Grandgenett PM, Hollingsworth MA, Fairweather D, Clemens D, Storz P. Coxsackievirus and adenovirus receptor expression facilitates enteroviral infections to drive the development of pancreatic cancer. Nat Commun 2024; 15:10547. [PMID: 39627248 PMCID: PMC11615305 DOI: 10.1038/s41467-024-55043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
The development of pancreatic cancer requires both, acquisition of an oncogenic mutation in KRAS as well as an inflammatory insult. However, the physiological causes for pancreatic inflammation are less defined. We show here that oncogenic KRas-expressing pre-neoplastic lesion cells upregulate coxsackievirus (CVB) and adenovirus receptor (CAR). This facilitates infections from enteroviruses such as CVB3, which can be detected in approximately 50% of pancreatic cancer patients. Moreover, using an animal model we show that a one-time pancreatic infection with CVB3 in control mice is transient, but in the presence of oncogenic KRas drives chronic inflammation and rapid development of pancreatic cancer. We further demonstrate that a knockout of CAR in pancreatic lesion cells blocks these CVB3-induced effects. Our data demonstrate that KRas-caused lesions promote the development of pancreatic cancer by enabling certain viral infections.
Collapse
Affiliation(s)
- Ligia I Bastea
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Xiang Liu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alicia K Fleming
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Veethika Pandey
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Heike Döppler
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Murli Krishna
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Lizhi Zhang
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Diseases, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Dahn Clemens
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
20
|
Chao T, Wang ZX, Bowne WB, Yudkoff CJ, Torjani A, Swaminathan V, Kavanagh TR, Roadarmel A, Sholevar CJ, Cannaday S, Krampitz G, Zhan T, Gorgov E, Nevler A, Lavu H, Yeo CJ, Peiper SC, Jiang W. Association of Mutant KRAS Alleles With Morphology and Clinical Outcomes in Pancreatic Ductal Adenocarcinoma. Arch Pathol Lab Med 2024; 148:1299-1309. [PMID: 38452805 DOI: 10.5858/arpa.2023-0005-oa] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 03/09/2024]
Abstract
CONTEXT.— Mutant KRAS is the main oncogenic driver in pancreatic ductal adenocarcinomas (PDACs). However, the clinical and phenotypic implications of harboring different mutant KRAS alleles remain poorly understood. OBJECTIVE.— To characterize the potential morphologic and clinical outcome differences in PDACs harboring distinct mutant KRAS alleles. DESIGN.— Cohort 1 consisted of 127 primary conventional PDACs with no neoadjuvant therapy, excluding colloid/mucinous, adenosquamous, undifferentiated, and intraductal papillary mucinous neoplasm-associated carcinomas, for which an in-house 42-gene mutational panel had been performed. A morphologic classification system was devised wherein each tumor was assigned as conventional, papillary/large duct (P+LD, defined as neoplastic glands with papillary structure and/or with length ≥0.5 mm), or poorly differentiated (when the aforementioned component was 60% or more of the tumor). Cohort 2 was a cohort of 88 PDACs in The Cancer Genome Atlas, which were similarly analyzed. RESULTS.— In both cohorts, there was significant enrichment of P+LD morphology in PDACs with KRAS G12V and G12R compared with G12D. In the entire combined cohort, Kaplan-Meier analyses showed longer overall survival (OS) with KRAS G12R as compared with G12D (median OS of 1255 versus 682 days, P = .03) and in patients whose PDACs displayed P+LD morphology as compared with conventional morphology (median OS of 1175 versus 684 days, P = .04). In the adjuvant-only subset, KRAS G12R had the longest OS compared with G12D, G12V, and other alleles (median OS unreached/undefined versus 1009, 1129, and 1222 days, respectively). CONCLUSIONS.— PDACs with different mutant KRAS alleles are associated with distinct morphologies and clinical outcomes, with KRAS G12R allele associated with P+LD morphology and longer OS when compared with G12D using Kaplan-Meier studies.
Collapse
Affiliation(s)
- Timothy Chao
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Zi-Xuan Wang
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Wilbur B Bowne
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
- the Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, Pennsylvania (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo, Jiang)
| | - Clifford J Yudkoff
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Ava Torjani
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Vishal Swaminathan
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Taylor R Kavanagh
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Austin Roadarmel
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Cyrus J Sholevar
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Shawnna Cannaday
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
- the Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, Pennsylvania (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo, Jiang)
| | - Geoffrey Krampitz
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
- the Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, Pennsylvania (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo, Jiang)
| | - Tingting Zhan
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Eliyahu Gorgov
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
- the Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, Pennsylvania (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo, Jiang)
| | - Avinoam Nevler
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
- the Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, Pennsylvania (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo, Jiang)
| | - Harish Lavu
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
- the Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, Pennsylvania (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo, Jiang)
| | - Charles J Yeo
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
- the Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, Pennsylvania (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo, Jiang)
| | - Stephen C Peiper
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Wei Jiang
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
- the Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, Pennsylvania (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo, Jiang)
| |
Collapse
|
21
|
Zhang D, Luo Y, Lin Y, Fang Z, Zheng H, An M, Xie Q, Wu Z, Yu C, Yang J, Yu M, Chen C, Chen R. Endosomal Trafficking Bypassed by the RAB5B-CD109 Interplay Promotes Axonogenesis in KRAS-Mutant Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405092. [PMID: 39488792 DOI: 10.1002/advs.202405092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/13/2024] [Indexed: 11/04/2024]
Abstract
Perineural invasion (PNI) represents a unique biological feature associated with poor prognosis in pancreatic ductal adenocarcinoma (PDAC), especially in the presence of KRAS mutations. Extracellular vesicle (EV)-packaged circular RNAs (circRNAs) function as essential mediators of tumor microenvironment communication, triggering PDAC cell invasion and distant metastasis. However, the regulatory mechanisms of EV-packaged circRNAs in the PNI of KRAS-mutant PDAC have not yet been elucidated. Herein, a KRASG12D mutation-responsive EV-packaged circRNA, circPNIT, which positively correlated with PNI in PDAC patients is identified. Functionally, KRASG12D PDAC-derived EV-packaged circPNIT promoted axonogenesis and PNI both in vitro and in vivo. Mechanistically, the circPNIT-mediated Rab5B-CD109 interplay bypassed traditional endosomal trafficking to anchor Rab5B to the lipid rafts of multivesicular bodies and packaged circPNIT into CD109+ EVs. Subsequently, CD109+ EVs delivered circPNIT to neurons by binding to TRPV1 and facilitating DSCAML1 transcription-induced axonogenesis, which in turn enhanced the PNI by activating the GFRα1/RET pathway. Importantly, circPNIT-loaded CD109+ EVs are established to dramatically promote PNI in a KRASG12D/+ Trp53R172H/+ Pdx-1-Cre mouse model. Collectively, the findings highlight the mechanism underlying how EV-packaged circRNAs mediate the PNI of KRAS-mutant PDAC cells through the Rab5B endosomal bypass, identifying circPNIT as an effective target for the treatment of neuro-metastatic PDAC.
Collapse
Affiliation(s)
- Dingwen Zhang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
| | - Yuming Luo
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, 510120, P. R. China
| | - Zhou Fang
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510080, P. R. China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, 510120, P. R. China
| | - Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, 510120, P. R. China
| | - Qingyu Xie
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510080, P. R. China
| | - Zhuo Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
| | - Chao Yu
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510080, P. R. China
| | - Jiabin Yang
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510080, P. R. China
| | - Min Yu
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, 510120, P. R. China
| | - Rufu Chen
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
| |
Collapse
|
22
|
Nishiyama H, Niinuma T, Kitajima H, Ishiguro K, Yamamoto E, Sudo G, Sasaki H, Yorozu A, Aoki H, Toyota M, Kai M, Suzuki H. HOXA11-As Promotes Lymph Node Metastasis Through Regulation of IFNL and HMGB Family Genes in Pancreatic Cancer. Int J Mol Sci 2024; 25:12920. [PMID: 39684631 DOI: 10.3390/ijms252312920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Recent studies have shown that long noncoding RNAs (lncRNAs) play pivotal roles in the development and progression of cancer. In the present study, we aimed to identify lncRNAs associated with lymph node metastasis in pancreatic ductal adenocarcinoma (PDAC). We analyzed data from The Cancer Genome Atlas (TCGA) database to screen for genes overexpressed in primary PDAC tumors with lymph node metastasis. Our screen revealed 740 genes potentially associated with lymph node metastasis, among which were multiple lncRNA genes located in the HOXA locus, including HOXA11-AS. Elevated expression of HOXA11-AS was associated with more advanced tumor stages and shorter overall survival in PDAC patients. HOXA11-AS knockdown suppressed proliferation and migration of PDAC cells. RNA-sequencing analysis revealed that HOXA11-AS knockdown upregulated interferon lambda (IFNL) family genes and downregulated high-mobility group box (HMGB) family genes in PDAC cells. Moreover, HMGB3 knockdown suppressed proliferation and migration by PDAC cells. These results suggest that HOXA11-AS contributes to PDAC progression, at least in part, through regulation of IFNL and HMGB family genes and that HOXA11 AS is a potential therapeutic target in PDAC.
Collapse
Affiliation(s)
- Hayato Nishiyama
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Kazuya Ishiguro
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Gota Sudo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Hajime Sasaki
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Hironori Aoki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Mutsumi Toyota
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| |
Collapse
|
23
|
Graham S, Dmitrieva M, Vendramini-Costa DB, Francescone R, Trujillo MA, Cukierman E, Wood LD. From precursor to cancer: decoding the intrinsic and extrinsic pathways of pancreatic intraepithelial neoplasia progression. Carcinogenesis 2024; 45:801-816. [PMID: 39514554 PMCID: PMC12098012 DOI: 10.1093/carcin/bgae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the progression of pancreatic intraepithelial neoplasia (PanIN) to pancreatic ductal adenocarcinoma through a dual lens of intrinsic molecular alterations and extrinsic microenvironmental influences. PanIN development begins with Kirsten rat sarcoma viral oncogene (KRAS) mutations driving PanIN initiation. Key additional mutations in cyclin-dependent kinase inhibitor 2A (CDKN2A), tumor protein p53 (TP53), and mothers against decapentaplegic homolog 4 (SMAD4) disrupt cell cycle control and genomic stability, crucial for PanIN progression from low-grade to high-grade dysplasia. Additional molecular alterations in neoplastic cells, including epigenetic modifications and chromosomal alterations, can further contribute to neoplastic progression. In parallel with these alterations in neoplastic cells, the microenvironment, including fibroblast activation, extracellular matrix remodeling, and immune modulation, plays a pivotal role in PanIN initiation and progression. Crosstalk between neoplastic and stromal cells influences nutrient support and immune evasion, contributing to tumor development, growth, and survival. This review underscores the intricate interplay between cell-intrinsic molecular drivers and cell-extrinsic microenvironmental factors, shaping PanIN predisposition, initiation, and progression. Future research aims to unravel these interactions to develop targeted therapeutic strategies and early detection techniques, aiming to alleviate the severe impact of pancreatic cancer by addressing both genetic predispositions and environmental influences.
Collapse
Affiliation(s)
- Sarah Graham
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Mariia Dmitrieva
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA 19111, United States
| | - Debora Barbosa Vendramini-Costa
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, United States
| | - Ralph Francescone
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, United States
| | - Maria A Trujillo
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Edna Cukierman
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA 19111, United States
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, United States
| |
Collapse
|
24
|
Erreni M, Fumagalli MR, D’Anna R, Sollai M, Bozzarelli S, Nappo G, Zanini D, Parente R, Garlanda C, Rimassa L, Terracciano LM, Biswas SK, Zerbi A, Mantovani A, Doni A. Depicting the cellular complexity of pancreatic adenocarcinoma by Imaging Mass Cytometry: focus on cancer-associated fibroblasts. Front Immunol 2024; 15:1472433. [PMID: 39575252 PMCID: PMC11578750 DOI: 10.3389/fimmu.2024.1472433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) represents the complexity of interaction between cancer and cells of the tumor microenvironment (TME). Immune cells affect tumor cell behavior, thus driving cancer progression. Cancer-associated fibroblasts (CAFs) are responsible of the desmoplastic and fibrotic reaction by regulating deposition and remodeling of extracellular matrix (ECM). As tumor-promoting cells abundant in PDAC ECM, CAFs represent promising targets for novel anticancer interventions. However, relevant clinical trials are hampered by the lack of specific markers and elusive differences among CAF subtypes. Indeed, while single-cell transcriptomic analyses have provided important information on the cellular constituents of PDACs and related molecular pathways, studies based on the identification of protein markers in tissues aimed at identifying CAF subtypes and new molecular targets result incomplete. Methods Herein, we applied multiplexed Imaging Mass Cytometry (IMC) at single-cell resolution on 8 human PDAC tissues to depict the PDAC composing cells, and profiling immune cells, endothelial cells (ECs), as well as endocrine cells and tumor cells. Results We focused on CAFs by characterizing up to 19 clusters distinguished by phenotype, spatiality, and interaction with immune and tumor cells. We report evidence that specific subtypes of CAFs (CAFs 10 and 11) predominantly are enriched at the tumor-stroma interface and closely associated with tumor cells. CAFs expressing different combinations of FAP, podoplanin and cadherin-11, were associated with a higher level of CA19-9. Moreover, we identified specific subsets of FAP+ and podoplanin+/cadherin-11+ CAFs enriched in patients with negative prognosis. Discussion The present study provides new general insights into the complexity of the PDAC microenvironment by defining phenotypic heterogeneities and spatial distributions of CAFs, thus suggesting different functions of their subtypes in the PDAC microenvironment.
Collapse
Affiliation(s)
- Marco Erreni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Maria Rita Fumagalli
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Raffaella D’Anna
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Mauro Sollai
- Pathology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Silvia Bozzarelli
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Gennaro Nappo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Damiano Zanini
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Raffaella Parente
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luigi Maria Terracciano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pathology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Subhra K. Biswas
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Alessandro Zerbi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Andrea Doni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
25
|
Liu P, Jacques J, Hwang CI. Epigenetic Landscape of DNA Methylation in Pancreatic Ductal Adenocarcinoma. EPIGENOMES 2024; 8:41. [PMID: 39584964 PMCID: PMC11587027 DOI: 10.3390/epigenomes8040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, characterized by its aggressive progression and dismal prognosis. Advances in epigenetic profiling, specifically DNA methylation analysis, have significantly deepened our understanding of PDAC pathogenesis. This review synthesizes findings from recent genome-wide DNA methylation studies, which have delineated a complex DNA methylation landscape differentiating between normal and cancerous pancreatic tissues, as well as across various stages and molecular subtypes of PDAC. These studies identified specific differentially methylated regions (DMRs) that not only enhance our grasp of the epigenetic drivers of PDAC but also offer potential biomarkers for early diagnosis and prognosis, enabling the customization of therapeutic approaches. The review further explores how DNA methylation profiling could facilitate the development of subtype-tailored therapies, potentially improving treatment outcomes based on precise molecular characterizations. Overall, leveraging DNA methylation alterations as functional biomarkers holds promise for advancing our understanding of disease progression and refining PDAC management strategies, which could lead to improved patient outcomes and a deeper comprehension of the disease's underlying biological mechanisms.
Collapse
Affiliation(s)
- Peiyi Liu
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (P.L.); (J.J.)
| | - Juliette Jacques
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (P.L.); (J.J.)
| | - Chang-Il Hwang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (P.L.); (J.J.)
- University of California Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
26
|
Gong J, Li X, Feng Z, Lou J, Pu K, Sun Y, Hu S, Zhou Y, Song T, Shangguan M, Zhang K, Lu W, Dong X, Wu J, Zhu H, He Q, Xu H, Wu Y. Sorcin can trigger pancreatic cancer-associated new-onset diabetes through the secretion of inflammatory cytokines such as serpin E1 and CCL5. Exp Mol Med 2024; 56:2535-2547. [PMID: 39516378 PMCID: PMC11612510 DOI: 10.1038/s12276-024-01346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 07/28/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
A rise in blood glucose is an early warning sign of underlying pancreatic cancer (PC) and may be an indicator of genetic events in PC progression. However, there is still a lack of mechanistic research on pancreatic cancer-associated new-onset diabetes (PCAND). In the present study, we identified a gene SRI, which possesses a SNP with the potential to distinguish PCAND and Type 2 diabetes mellitus (T2DM), by machine learning on the basis of the UK Biobank database. In vitro and in vivo, sorcin overexpression induced pancreatic β-cell dysfunction. Sorcin can form a positive feedback loop with STAT3 to increase the transcription of serpin E1 and CCL5, which may directly induce β-cell dysfunction. In 88 biopsies, the expression of sorcin was elevated in PC tissues, especially in PCAND samples. Furthermore, plasma serpin E1 levels are higher in peripheral blood samples from PCAND patients than in those from T2DM patients. In conclusion, sorcin may be the key driver in PCAND, and further study on the sorcin-STAT3-serpin E1/CCL5 signaling axis may help us better understand the pathogenesis of PCAND and identify potential biomarkers.
Collapse
Affiliation(s)
- Jiali Gong
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Surgery, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Xiawei Li
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Zengyu Feng
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianyao Lou
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kaiyue Pu
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongji Sun
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Surgery, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Sien Hu
- Department of Surgery, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yizhao Zhou
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tianyu Song
- Department of Surgery, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Meihua Shangguan
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kai Zhang
- School of Public Health and Eye Center The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Wenjie Lu
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Dong
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Wu
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Wenzhou, Zhejiang University, Wenzhou, Zhejiang, China
| | - Hong Zhu
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiaojun He
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
- Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Hongxia Xu
- Innovation Institute for Artificial Intelligence in Medicine and Liangzhu Laboratory, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Yulian Wu
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Surgery, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| |
Collapse
|
27
|
Kobayashi-Ooka Y, Akagi T, Sukezane T, Yanagita E, Itoh T, Sasai K. Cultures derived from pancreatic cancer xenografts with long-term gemcitabine treatment produce chemoresistant secondary xenografts: Establishment of isogenic gemcitabine-sensitive and -resistant models. Pathol Res Pract 2024; 263:155632. [PMID: 39393265 DOI: 10.1016/j.prp.2024.155632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
In attempts to establish sophisticated models to reproduce the process of acquired drug resistance, we transformed normal human pancreatic ductal epithelial cells by introducing genes for multiple cellular factors. We also created isogenic gemcitabine-sensitive and -resistant models by short- and long-term gemcitabine treatment, respectively. These models demonstrated differences in drug resistance in vivo, but not in vitro. Gemcitabine treatment also induced squamous transdifferentiation in xenografts in mice. The transcription factor p63 was identified as a possible resistance-determining factor but was unlikely to be solely responsible for the resistance to gemcitabine. This system would prove useful to discover novel molecular targets to overcome chemotherapy resistance, by allowing the evaluation of molecules of interest in xenograft models after in vitro genetic ablation.
Collapse
Affiliation(s)
| | | | | | - Emmy Yanagita
- Division of Diagnostic Pathology, Kobe University Graduate School Medicine, Kobe, Hyogo, Japan
| | - Tomoo Itoh
- Division of Diagnostic Pathology, Kobe University Graduate School Medicine, Kobe, Hyogo, Japan
| | - Ken Sasai
- KAN Research Institute, Inc., Kobe, Hyogo, Japan.
| |
Collapse
|
28
|
Palanivel C, Somers TN, Gabler BM, Chen Y, Zeng Y, Cox JL, Seshacharyulu P, Dong J, Yan Y, Batra SK, Ouellette MM. Rac1 GTPase Regulates the βTrCP-Mediated Proteolysis of YAP Independently of the LATS1/2 Kinases. Cancers (Basel) 2024; 16:3605. [PMID: 39518045 PMCID: PMC11545309 DOI: 10.3390/cancers16213605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Oncogenic mutations in the KRAS gene are detected in >90% of pancreatic cancers (PC). In genetically engineered mouse models of PC, oncogenic KRAS drives the formation of precursor lesions and their progression to invasive PC. The Yes-associated Protein (YAP) is a transcriptional coactivator required for transformation by the RAS oncogenes and the development of PC. In Ras-driven tumors, YAP can also substitute for oncogenic KRAS to drive tumor survival after the repression of the oncogene. Ras oncoproteins exert their transforming properties through their downstream effectors, including the PI3K kinase, Rac1 GTPase, and MAPK pathways. Methods: To identify Ras effectors that regulate YAP, YAP levels were measured in PC cells exposed to inhibitors of oncogenic K-Ras and its effectors. Results: In PC cells, the inhibition of Rac1 leads to a time-dependent decline in YAP protein, which could be blocked by proteosome inhibitor MG132. This YAP degradation after Rac1 inhibition was observed in a range of cell lines using different Rac1 inhibitors, Rac1 siRNA, or expression of dominant negative Rac1T17N mutant. Several E3 ubiquitin ligases, including SCFβTrCP, regulate YAP protein stability. To be recognized by this ligase, the βTrCP degron of YAP (amino acid 383-388) requires its phosphorylation by casein kinase 1 at Ser384 and Ser387, but these events must first be primed by the phosphorylation of Ser381 by LATS1/2. Using Flag-tagged mutants of YAP, we show that YAP degradation after Rac1 inhibition requires the integrity of this degron and is blocked by the silencing of βTrCP1/2 and by the inhibition of casein kinase 1. Unexpectedly, YAP degradation after Rac1 inhibition was still observed after the silencing of LATS1/2 or in cells carrying a LATS1/2 double knockout. Conclusions: These results reveal Rac1 as an oncogenic KRAS effector that contributes to YAP stabilization in PC cells. They also show that this regulation of YAP by Rac1 requires the SCFβTrCP ligase but occurs independently of the LATS1/2 kinases.
Collapse
Affiliation(s)
- Chitra Palanivel
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Tabbatha N. Somers
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
| | - Bailey M. Gabler
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Yongji Zeng
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Jesse L. Cox
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| | - Jixin Dong
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| | - Michel M. Ouellette
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| |
Collapse
|
29
|
Than MT, O'Hara M, Stanger BZ, Reiss KA. KRAS-Driven Tumorigenesis and KRAS-Driven Therapy in Pancreatic Adenocarcinoma. Mol Cancer Ther 2024; 23:1378-1388. [PMID: 39118358 PMCID: PMC11444872 DOI: 10.1158/1535-7163.mct-23-0519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with significant morbidity and mortality and is projected to be the second leading cause of cancer-related deaths by 2030. Mutations in KRAS are found in the vast majority of PDAC cases and plays an important role in the development of the disease. KRAS drives tumor cell proliferation and survival through activating the MAPK pathway to drive cell cycle progression and to lead to MYC-driven cellular programs. Moreover, activated KRAS promotes a protumorigenic microenvironment through forming a desmoplastic stroma and by impairing antitumor immunity. Secretion of granulocyte-macrophage colony-stimulating factor and recruitment of myeloid-derived suppressor cells and protumorigenic macrophages results in an immunosuppressive environment while secretion of secrete sonic hedgehog and TGFβ drive fibroblastic features characteristic of PDAC. Recent development of several small molecules to directly target KRAS marks an important milestone in precision medicine. Many molecules show promise in preclinical models of PDAC and in early phase clinical trials. In this review, we discuss the underlying cell intrinsic and extrinsic roles of KRAS in PDAC tumorigenesis, the pharmacologic development of KRAS inhibition, and therapeutic strategies to target KRAS in PDAC.
Collapse
Affiliation(s)
- Minh T Than
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark O'Hara
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kim A Reiss
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Tang J, Zheng Q, Wang Q, Zhao Y, Ananthanarayanan P, Reina C, Šabanović B, Jiang K, Yang MH, Meny CC, Wang H, Agerbaek MØ, Clausen TM, Gustavsson T, Wen C, Borghi F, Mellano A, Fenocchio E, Gregorc V, Sapino A, Theander TG, Fu D, Aicher A, Salanti A, Shen B, Heeschen C. CTC-derived pancreatic cancer models serve as research tools and are suitable for precision medicine approaches. Cell Rep Med 2024; 5:101692. [PMID: 39163864 PMCID: PMC11524981 DOI: 10.1016/j.xcrm.2024.101692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/12/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses significant clinical challenges, often presenting as unresectable with limited biopsy options. Here, we show that circulating tumor cells (CTCs) offer a promising alternative, serving as a "liquid biopsy" that enables the generation of in vitro 3D models and highly aggressive in vivo models for functional and molecular studies in advanced PDAC. Within the retrieved CTC pool (median 65 CTCs/5 mL), we identify a subset (median content 8.9%) of CXCR4+ CTCs displaying heightened stemness and metabolic traits, reminiscent of circulating cancer stem cells. Through comprehensive analysis, we elucidate the importance of CTC-derived models for identifying potential targets and guiding treatment strategies. Screening of stemness-targeting compounds identified stearoyl-coenzyme A desaturase (SCD1) as a promising target for advanced PDAC. These results underscore the pivotal role of CTC-derived models in uncovering therapeutic avenues and ultimately advancing personalized care in PDAC.
Collapse
Affiliation(s)
- Jiajia Tang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qi Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yaru Zhao
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Preeta Ananthanarayanan
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Chiara Reina
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Berina Šabanović
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Ke Jiang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ming-Hsin Yang
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Clara Csilla Meny
- 2(nd) Institute for Pathology and Experimental Oncology Research, Semmelweis University, 1085 Budapest, Hungary
| | - Huimin Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mette Ø Agerbaek
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen N, Denmark; VarCT Diagnostics, Ole Maaloes vej 3, 2200 Copenhagen, Denmark
| | - Thomas Mandel Clausen
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Tobias Gustavsson
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen N, Denmark; VAR2Pharmaceuticals, Ole Maaloes vej 3, 2200 Copenhagen, Denmark
| | - Chenlei Wen
- Research Institute of Pancreatic Disease, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Felice Borghi
- Department of Surgical Oncology, Cancer Institute FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Alfredo Mellano
- Department of Surgical Oncology, Cancer Institute FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Elisabetta Fenocchio
- Department of Medical Oncology, Cancer Institute FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Vanesa Gregorc
- Department of Medical Oncology, Cancer Institute FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Anna Sapino
- Department of Pathology, Cancer Institute FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Thor G Theander
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Da Fu
- Research Institute of Pancreatic Disease, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Alexandra Aicher
- Precision Immunotherapy, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404328, Taiwan; Immunology Research and Development Center, China Medical University, Taichung 404328, Taiwan
| | - Ali Salanti
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Baiyong Shen
- Research Institute of Pancreatic Disease, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Christopher Heeschen
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Turin, Italy.
| |
Collapse
|
31
|
Schrier I, Slotki-Itzchakov O, Elkis Y, Most-Menachem N, Adato O, Fitoussi-Allouche D, Shpungin S, Unger R, Nir U. Fer governs mTORC1 regulating pathways and sustains viability of pancreatic ductal adenocarcinoma cells. Front Oncol 2024; 14:1427029. [PMID: 39206154 PMCID: PMC11349523 DOI: 10.3389/fonc.2024.1427029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with a high percentage of morbidity. The deciphering and identification of novel targets and tools for intervening with its adverse progression are therefore of immense importance. To address this goal we adopted a specific inhibitor of the intracellular tyrosine kinase Fer, whose expression level is upregulated in PDAC tumors, and is associated with poor prognosis of patients. Subjecting PDAC cells to the E260-Fer inhibitor, unraveled its simultaneous effects on the mitochondria, and on a non-mitochondrial ERK1/2 regulatory cascade. E260 caused severe mitochondrial deformation, resulting in cellular- aspartate and ATP depletion, and followed by the activation of the metabolic sensor AMPK. This led to the phosphorylation and deactivation of the bona fide AMPK substrate, RAPTOR, which serves as a positive regulator of the mTORC1 metabolic hub. Accordingly, this resulted in the inhibition of the mTORC1 activity. In parallel, E260 downregulated the activation state of the ERK1/2 kinases, and their ability to neutralize the mTORC1 suppressor TSC2, thereby accentuating the inhibition of mTORC1. Importantly, both activation of AMPK and downregulation of ERK1/2 and mTORC1 were also achieved upon the knockdown of Fer, corroborating the regulatory role of Fer in these processes. Concomitantly, in PDAC tumors and not in healthy pancreatic tissues, the expression levels of Fer demonstrate moderate but statistically significant positive correlation with the expression levels of mTOR and its downstream effector LARP1. Finally, targeting the Fer driven activation of mTORC1, culminated in necrotic death of the treated PDAC cells, envisaging a new intervention tool for the challenging PDAC disease.
Collapse
Affiliation(s)
- Ilan Schrier
- Department of Surgery, Rabin Medical Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orel Slotki-Itzchakov
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yoav Elkis
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Nofar Most-Menachem
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Orit Adato
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Sally Shpungin
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Uri Nir
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
32
|
Kiemen AL, Wu PH, Braxton AM, Cornish TC, Hruban RH, Wood LD, Wirtz D, Zwicker D. Power-law growth models explain incidences and sizes of pancreatic cancer precursor lesions and confirm spatial genomic findings. SCIENCE ADVANCES 2024; 10:eado5103. [PMID: 39058773 PMCID: PMC11277401 DOI: 10.1126/sciadv.ado5103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Pancreatic ductal adenocarcinoma is a rare but lethal cancer. Recent evidence suggests that pancreatic intraepithelial neoplasia (PanIN), a microscopic precursor lesion that gives rise to pancreatic cancer, is larger and more prevalent than previously believed. Better understanding of the growth-law dynamics of PanINs may improve our ability to understand how a miniscule fraction makes the transition to invasive cancer. Here, using three-dimensional tissue mapping, we analyzed >1000 PanINs and found that lesion size is distributed according to a power law. Our data suggest that in bulk, PanIN size can be predicted by general growth behavior without consideration for the heterogeneity of the pancreatic microenvironment or an individual's age, history, or lifestyle. Our models suggest that intraductal spread and fusing of lesions drive our observed size distribution. This analysis lays the groundwork for future mathematical modeling efforts integrating PanIN incidence, morphology, and molecular features to understand tumorigenesis and demonstrates the utility of combining experimental measurement with dynamic modeling in understanding tumorigenesis.
Collapse
Affiliation(s)
- Ashley L. Kiemen
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alicia M. Braxton
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Toby C. Cornish
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ralph H. Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D. Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David Zwicker
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| |
Collapse
|
33
|
Stigliani A, Ialchina R, Yao J, Czaplinska D, Dai Y, Andersen HB, Rennie S, Andersson R, Pedersen SF, Sandelin A. Adaptation to an acid microenvironment promotes pancreatic cancer organoid growth and drug resistance. Cell Rep 2024; 43:114409. [PMID: 38944837 DOI: 10.1016/j.celrep.2024.114409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/11/2023] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Harsh environments in poorly perfused tumor regions may select for traits driving cancer aggressiveness. Here, we investigated whether tumor acidosis interacts with driver mutations to exacerbate cancer hallmarks. We adapted mouse organoids from normal pancreatic duct (mN10) and early pancreatic cancer (mP4, KRAS-G12D mutation, ± p53 knockout) from extracellular pH 7.4 to 6.7, representing acidic niches. Viability was increased by acid adaptation, a pattern most apparent in wild-type (WT) p53 organoids, and exacerbated upon return to pH 7.4. This led to increased survival of acid-adapted organoids treated with gemcitabine and/or erlotinib, and, in WT p53 organoids, acid-induced attenuation of drug effects. New genetic variants became dominant during adaptation, yet they were unlikely to be its main drivers. Transcriptional changes induced by acid and drug adaptation differed overall, but acid adaptation increased the expression of gemcitabine resistance genes. Thus, adaptation to acidosis increases cancer cell viability after chemotherapy.
Collapse
Affiliation(s)
- Arnaud Stigliani
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark
| | - Renata Ialchina
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, DK2100 Copenhagen Ø, Denmark
| | - Jiayi Yao
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark
| | - Dominika Czaplinska
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, DK2100 Copenhagen Ø, Denmark
| | - Yifan Dai
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark
| | - Henriette Berg Andersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, DK2100 Copenhagen Ø, Denmark
| | - Sarah Rennie
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark
| | - Robin Andersson
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, DK2100 Copenhagen Ø, Denmark.
| | - Albin Sandelin
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark.
| |
Collapse
|
34
|
Mottini C, Auciello FR, Manni I, Pilarsky C, Caputo D, Caracciolo G, Rossetta A, Di Gennaro E, Budillon A, Blandino G, Roca MS, Piaggio G. The cross-talk between the macro and micro-environment in precursor lesions of pancreatic cancer leads to new and promising circulating biomarkers. J Exp Clin Cancer Res 2024; 43:198. [PMID: 39020414 PMCID: PMC11256648 DOI: 10.1186/s13046-024-03117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024] Open
Abstract
Pancreatic cancer (PC) is a clinically challenging tumor to combat due to its advanced stage at diagnosis as well as its resistance to currently available therapies. The absence of early symptoms and known detectable biomarkers renders this disease incredibly difficult to detect/manage. Recent advances in the understanding of PC biology have highlighted the importance of cancer-immune cell interactions, not only in the tumor micro-environment but also in distant systemic sites, like the bone marrow, spleen and circulating immune cells, the so-called macro-environment. The response of the macro-environment is emerging as a determining factor in tumor development by contributing to the formation of an increasingly immunogenic micro-environment promoting tumor homeostasis and progression. We will summarize the key events associated with the feedback loop between the tumor immune micro-environment (TIME) and the tumor immune macroenvironment (TIMaE) in pancreatic precancerous lesions along with how it regulates disease development and progression. In addition, liquid biopsy biomarkers capable of diagnosing PC at an early stage of onset will also be discussed. A clearer understanding of the early crosstalk between micro-environment and macro-environment could contribute to identifying new molecular therapeutic targets and biomarkers, consequently improving early PC diagnosis and treatment.
Collapse
Affiliation(s)
- Carla Mottini
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Francesca Romana Auciello
- UOC Translational Oncology Research, IRCSS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Isabella Manni
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | | | | | - Giulio Caracciolo
- Dipartimento Di Medicina Molecolare Sapienza, Università Di Roma, Rome, Italy
| | | | - Elena Di Gennaro
- Experimental Pharmacology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Giovanni Blandino
- UOC Translational Oncology Research, IRCSS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Maria Serena Roca
- Experimental Pharmacology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy.
| | - Giulia Piaggio
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| |
Collapse
|
35
|
Mustafa M, Abbas K, Alam M, Habib S, Zulfareen, Hasan GM, Islam S, Shamsi A, Hassan I. Investigating underlying molecular mechanisms, signaling pathways, emerging therapeutic approaches in pancreatic cancer. Front Oncol 2024; 14:1427802. [PMID: 39087024 PMCID: PMC11288929 DOI: 10.3389/fonc.2024.1427802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Pancreatic adenocarcinoma, a clinically challenging malignancy constitutes a significant contributor to cancer-related mortality, characterized by an inherently poor prognosis. This review aims to provide a comprehensive understanding of pancreatic adenocarcinoma by examining its multifaceted etiologies, including genetic mutations and environmental factors. The review explains the complex molecular mechanisms underlying its pathogenesis and summarizes current therapeutic strategies, including surgery, chemotherapy, and emerging modalities such as immunotherapy. Critical molecular pathways driving pancreatic cancer development, including KRAS, Notch, and Hedgehog, are discussed. Current therapeutic strategies, including surgery, chemotherapy, and radiation, are discussed, with an emphasis on their limitations, particularly in terms of postoperative relapse. Promising research areas, including liquid biopsies, personalized medicine, and gene editing, are explored, demonstrating the significant potential for enhancing diagnosis and treatment. While immunotherapy presents promising prospects, it faces challenges related to immune evasion mechanisms. Emerging research directions, encompassing liquid biopsies, personalized medicine, CRISPR/Cas9 genome editing, and computational intelligence applications, hold promise for refining diagnostic approaches and therapeutic interventions. By integrating insights from genetic, molecular, and clinical research, innovative strategies that improve patient outcomes can be developed. Ongoing research in these emerging fields holds significant promise for advancing the diagnosis and treatment of this formidable malignancy.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Zulfareen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sidra Islam
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
36
|
Wang M, Xie Y, Liu J, Li A, Chen L, Stromberg A, Arnold SM, Liu C, Wang C. A Probabilistic Approach to Estimate the Temporal Order of Pathway Mutations Accounting for Intra-Tumor Heterogeneity. Cancers (Basel) 2024; 16:2488. [PMID: 39001551 PMCID: PMC11240401 DOI: 10.3390/cancers16132488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The development of cancer involves the accumulation of somatic mutations in several essential biological pathways. Delineating the temporal order of pathway mutations during tumorigenesis is crucial for comprehending the biological mechanisms underlying cancer development and identifying potential targets for therapeutic intervention. Several computational and statistical methods have been introduced for estimating the order of somatic mutations based on mutation profile data from a cohort of patients. However, one major issue of current methods is that they do not take into account intra-tumor heterogeneity (ITH), which limits their ability to accurately discern the order of pathway mutations. To address this problem, we propose PATOPAI, a probabilistic approach to estimate the temporal order of mutations at the pathway level by incorporating ITH information as well as pathway and functional annotation information of mutations. PATOPAI uses a maximum likelihood approach to estimate the probability of pathway mutational events occurring in a specific sequence, wherein it focuses on the orders that are consistent with the phylogenetic structure of the tumors. Applications to whole exome sequencing data from The Cancer Genome Atlas (TCGA) illustrate our method's ability to recover the temporal order of pathway mutations in several cancer types.
Collapse
Affiliation(s)
- Menghan Wang
- Department of Statistics, University of Kentucky, Lexington, KY 40536, USA; (M.W.); (A.S.)
| | - Yanqi Xie
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA; (Y.X.); (C.L.)
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (J.L.); (L.C.); (S.M.A.)
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Austin Li
- Department of Computer Science, Princeton University, Princeton, NJ 08540, USA;
| | - Li Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (J.L.); (L.C.); (S.M.A.)
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Arnold Stromberg
- Department of Statistics, University of Kentucky, Lexington, KY 40536, USA; (M.W.); (A.S.)
| | - Susanne M. Arnold
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (J.L.); (L.C.); (S.M.A.)
- Division of Medical Oncology, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Chunming Liu
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA; (Y.X.); (C.L.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (J.L.); (L.C.); (S.M.A.)
| | - Chi Wang
- Department of Statistics, University of Kentucky, Lexington, KY 40536, USA; (M.W.); (A.S.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (J.L.); (L.C.); (S.M.A.)
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
37
|
Inoue T, Mandai K, Uno K. Multiple Carcinomas In Situ Scattered Throughout the Pancreas Diagnosed by Assessing Focal Pancreatic Parenchymal Atrophy. Pancreas 2024; 53:e544-e545. [PMID: 38888843 DOI: 10.1097/mpa.0000000000002332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Affiliation(s)
- Takato Inoue
- Department of Gastroenterology, Kyoto Second Red Cross Hospital, Kyoto City, Kyoto, Japan
| | | | | |
Collapse
|
38
|
Cho CJ, Brown JW, Mills JC. Origins of cancer: ain't it just mature cells misbehaving? EMBO J 2024; 43:2530-2551. [PMID: 38773319 PMCID: PMC11217308 DOI: 10.1038/s44318-024-00099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
A pervasive view is that undifferentiated stem cells are alone responsible for generating all other cells and are the origins of cancer. However, emerging evidence demonstrates fully differentiated cells are plastic, can be coaxed to proliferate, and also play essential roles in tissue maintenance, regeneration, and tumorigenesis. Here, we review the mechanisms governing how differentiated cells become cancer cells. First, we examine the unique characteristics of differentiated cell division, focusing on why differentiated cells are more susceptible than stem cells to accumulating mutations. Next, we investigate why the evolution of multicellularity in animals likely required plastic differentiated cells that maintain the capacity to return to the cell cycle and required the tumor suppressor p53. Finally, we examine an example of an evolutionarily conserved program for the plasticity of differentiated cells, paligenosis, which helps explain the origins of cancers that arise in adults. Altogether, we highlight new perspectives for understanding the development of cancer and new strategies for preventing carcinogenic cellular transformations from occurring.
Collapse
Affiliation(s)
- Charles J Cho
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
39
|
Zhang H, Sun Y, Wang Z, Huang X, Tang L, Jiang K, Jin X. ZDHHC20-mediated S-palmitoylation of YTHDF3 stabilizes MYC mRNA to promote pancreatic cancer progression. Nat Commun 2024; 15:4642. [PMID: 38821916 PMCID: PMC11143236 DOI: 10.1038/s41467-024-49105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 05/24/2024] [Indexed: 06/02/2024] Open
Abstract
Post-translational modifications of proteins in malignant transformation and tumor maintenance of pancreatic ductal adenocarcinoma (PDAC) in the context of KRAS signaling remain poorly understood. Here, we use the KPC mouse model to examine the effect of palmitoylation on pancreatic cancer progression. ZDHHC20, upregulated by KRAS, is abnormally overexpressed and associated with poor prognosis in patients with pancreatic cancer. Dysregulation of ZDHHC20 promotes pancreatic cancer progression in a palmitoylation-dependent manner. ZDHHC20 inhibits the chaperone-mediated autophagic degradation of YTHDF3 through S-palmitoylation of Cys474, which can result in abnormal accumulation of the oncogenic product MYC and thereby promote the malignant phenotypes of cancer cells. Further, we design a biologically active YTHDF3-derived peptide to competitively inhibit YTHDF3 palmitoylation mediated by ZDHHC20, which in turn downregulates MYC expression and inhibits the progression of KRAS mutant pancreatic cancer. Thus, these findings highlight the therapeutic potential of targeting the ZDHHC20-YTHDF3-MYC signaling axis in pancreatic cancer.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhaokai Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoju Huang
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin Jin
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
40
|
Ji Y, Xu Q, Wang W. Single-cell transcriptome reveals the heterogeneity of malignant ductal cells and the prognostic value of REG4 and SPINK1 in primary pancreatic ductal adenocarcinoma. PeerJ 2024; 12:e17350. [PMID: 38827297 PMCID: PMC11141562 DOI: 10.7717/peerj.17350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/17/2024] [Indexed: 06/04/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related deaths, with very limited therapeutic options available. This study aims to comprehensively depict the heterogeneity and identify prognostic targets for PDAC with single-cell RNA sequencing (scRNA-seq) analysis. Methods ScRNA-seq analysis was performed on 16 primary PDAC and three adjacent lesions. A series of analytical methods were applied for analysis in cell clustering, gene profiling, lineage trajectory analysis and cell-to-cell interactions. In vitro experiments including colony formation, wound healing and sphere formation assay were performed to assess the role of makers. Results A total of 32,480 cells were clustered into six major populations, among which the ductal cell cluster expressing high copy number variants (CNVs) was defined as malignant cells. Malignant cells were further subtyped into five subgroups which exhibited specific features in immunologic and metabolic activities. Pseudotime trajectory analysis indicated that components of various oncogenic pathways were differentially expressed along tumor progression. Furthermore, intensive substantial crosstalk between ductal cells and stromal cells was identified. Finally, genes (REG4 and SPINK1) screened out of differentially expressed genes (DEGs) were upregulated in PDAC cell lines. Silencing either of them significantly impaired proliferation, invasion, migration and stemness of PDAC cells. Conclusions Our findings offer a valuable resource for deciphering the heterogeneity of malignant ductal cells in PDAC. REG4 and SPINK1 are expected to be promising targets for PDAC therapy.
Collapse
MESH Headings
- Female
- Humans
- Male
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatitis-Associated Proteins
- Prognosis
- Single-Cell Analysis
- Transcriptome
- Trypsin Inhibitor, Kazal Pancreatic/genetics
- Trypsin Inhibitor, Kazal Pancreatic/metabolism
Collapse
Affiliation(s)
- Yutian Ji
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | | | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| |
Collapse
|
41
|
Wang Y, Liu S, Wang Y, Li B, Liang J, Chen Y, Tang B, Yu S, Wang H. KDM5B promotes SMAD4 loss-driven drug resistance through activating DLG1/YAP to induce lipid accumulation in pancreatic ductal adenocarcinoma. Cell Death Discov 2024; 10:252. [PMID: 38789418 PMCID: PMC11126577 DOI: 10.1038/s41420-024-02020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Inactivated suppressor of mothers against decapentaplegic homolog (SMAD) 4 significantly affects cancer development in pancreatic ductal adenocarcinoma (PDAC). However, the contribution of smad4 loss to drug resistance in PDAC is largely undetermined. In the present study, we reported that the loss of SMAD4 endows PDAC cells the ability to drug resistance through upregulating histone lysine demethylase, Lysine-Specific Demethylase 5B (KDM5B, also known as JARID1B or PLU1). Upregulated KDM5B was found in PDAC, associated with poor prognosis and recurrence of PDAC patients. Upregulated KDM5B promotes PDAC tumor malignancy, i.e. cancer cells stemness and drug resistance in vitro and in vivo, while KDM5B knockout exerts opposite effects. Mechanistically, loss of Smad4-mediated upregulation of KDM5B promotes drug resistance through inhibiting the discs-large homolog 1 (DLG1), thereby facilitating nuclear translocation of YAP to induce de novo lipogenesis. Moreover, m6A demethylase FTO is involved in the upregulation of KDM5B by maintaining KDM5B mRNA stability. Collectively, the present study suggested FTO-mediated KDM5B stabilization in the context of loss of Smad4 activate DLG1/YAP1 pathway to promote tumorigenesis by reprogramming lipid accumulation in PDAC. Our study confirmed that the KDM5B-DLG1-YAP1 pathway axis plays a crucial role in the genesis and progression of PDAC, and KDM5B was expected to become a target for the treatment of PDAC. The schematic diagram of KDM5B-DLG1-YAP pathway axis in regulating drug resistance of PDAC to gemcitabine (GEM). In the context of SMAD4 loss PDAC cells, FTO-mediated stabilization and upregulation of KDM5B promotes drug resistance through directly targeting DLG1 to promote YAP1 translocation to nucleus to induce de novo lipogenesis (DNL).
Collapse
Affiliation(s)
- Yumin Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
- Pharmaceutical College Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Shiqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Yan Wang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, P. R. China
| | - Baibei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Jiaming Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Yu Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Bo Tang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| | - Shuiping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| | - Hongquan Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
- Pharmaceutical College Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| |
Collapse
|
42
|
Long SA, Amparo AM, Goodhart G, Ahmad SA, Waters AM. Evaluation of KRAS inhibitor-directed therapies for pancreatic cancer treatment. Front Oncol 2024; 14:1402128. [PMID: 38800401 PMCID: PMC11116577 DOI: 10.3389/fonc.2024.1402128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Despite significant advancements in the treatment of other cancers, pancreatic ductal adenocarcinoma (PDAC) remains one of the world's deadliest cancers. More than 90% of PDAC patients harbor a Kirsten rat sarcoma (KRAS) gene mutation. Although the clinical potential of anti-KRAS therapies has long been realized, all initial efforts to target KRAS were unsuccessful. However, with the recent development of a new generation of KRAS-targeting drugs, multiple KRAS-targeted treatment options for patients with PDAC have entered clinical trials. In this review, we provide an overview of current standard of care treatment, describe RAS signaling and the relevance of KRAS mutations, and discuss RAS isoform- and mutation-specific differences. We also evaluate the clinical efficacy and safety of mutation-selective and multi-selective inhibitors, in the context of PDAC. We then provide a comparison of clinically relevant KRAS inhibitors to second-line PDAC treatment options. Finally, we discuss putative resistance mechanisms that may limit the clinical effectiveness of KRAS-targeted therapies and provide a brief overview of promising therapeutic approaches in development that are focused on mitigating these resistance mechanisms.
Collapse
Affiliation(s)
- Szu-Aun Long
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Amber M. Amparo
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Grace Goodhart
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Syed A. Ahmad
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew M. Waters
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
43
|
Braxton AM, Kiemen AL, Grahn MP, Forjaz A, Parksong J, Mahesh Babu J, Lai J, Zheng L, Niknafs N, Jiang L, Cheng H, Song Q, Reichel R, Graham S, Damanakis AI, Fischer CG, Mou S, Metz C, Granger J, Liu XD, Bachmann N, Zhu Y, Liu Y, Almagro-Pérez C, Jiang AC, Yoo J, Kim B, Du S, Foster E, Hsu JY, Rivera PA, Chu LC, Liu F, Fishman EK, Yuille A, Roberts NJ, Thompson ED, Scharpf RB, Cornish TC, Jiao Y, Karchin R, Hruban RH, Wu PH, Wirtz D, Wood LD. 3D genomic mapping reveals multifocality of human pancreatic precancers. Nature 2024; 629:679-687. [PMID: 38693266 DOI: 10.1038/s41586-024-07359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/26/2024] [Indexed: 05/03/2024]
Abstract
Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors of pancreatic cancer, but their small size and inaccessibility in humans make them challenging to study1. Critically, the number, dimensions and connectivity of human PanINs remain largely unknown, precluding important insights into early cancer development. Here, we provide a microanatomical survey of human PanINs by analysing 46 large samples of grossly normal human pancreas with a machine-learning pipeline for quantitative 3D histological reconstruction at single-cell resolution. To elucidate genetic relationships between and within PanINs, we developed a workflow in which 3D modelling guides multi-region microdissection and targeted and whole-exome sequencing. From these samples, we calculated a mean burden of 13 PanINs per cm3 and extrapolated that the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that most PanINs originate as independent clones with distinct somatic mutation profiles. Some spatially continuous PanINs were found to contain multiple KRAS mutations; computational and in situ analyses demonstrated that different KRAS mutations localize to distinct cell subpopulations within these neoplasms, indicating their polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs raises important questions about mechanisms that drive precancer initiation and confer differential progression risk in the human pancreas. This detailed 3D genomic mapping of molecular alterations in human PanINs provides an empirical foundation for early detection and rational interception of pancreatic cancer.
Collapse
Affiliation(s)
- Alicia M Braxton
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ashley L Kiemen
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mia P Grahn
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - André Forjaz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeeun Parksong
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jaanvi Mahesh Babu
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiaying Lai
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Lily Zheng
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Noushin Niknafs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liping Jiang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haixia Cheng
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianqian Song
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rebecca Reichel
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Graham
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander I Damanakis
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Catherine G Fischer
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephanie Mou
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cameron Metz
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julie Granger
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiao-Ding Liu
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Niklas Bachmann
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yutong Zhu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - YunZhou Liu
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Cristina Almagro-Pérez
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ann Chenyu Jiang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeonghyun Yoo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bridgette Kim
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Scott Du
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Eli Foster
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jocelyn Y Hsu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Paula Andreu Rivera
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Linda C Chu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fengze Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elliot K Fishman
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan Yuille
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth D Thompson
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert B Scharpf
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Toby C Cornish
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
| | - Rachel Karchin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
44
|
Saba E, Farhat M, Daoud A, Khashan A, Forkush E, Menahem NH, Makkawi H, Pandi K, Angabo S, Kawasaki H, Plaschkes I, Parnas O, Zamir G, Atlan K, Elkin M, Katz L, Nussbaum G. Oral bacteria accelerate pancreatic cancer development in mice. Gut 2024; 73:770-786. [PMID: 38233197 DOI: 10.1136/gutjnl-2023-330941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
OBJECTIVE Epidemiological studies highlight an association between pancreatic ductal adenocarcinoma (PDAC) and oral carriage of the anaerobic bacterium Porphyromonas gingivalis, a species highly linked to periodontal disease. We analysed the potential for P. gingivalis to promote pancreatic cancer development in an animal model and probed underlying mechanisms. DESIGN We tracked P. gingivalis bacterial translocation from the oral cavity to the pancreas following administration to mice. To dissect the role of P. gingivalis in PDAC development, we administered bacteria to a genetically engineered mouse PDAC model consisting of inducible acinar cell expression of mutant Kras (Kras +/LSL-G12D; Ptf1a-CreER, iKC mice). These mice were used to study the cooperative effects of Kras mutation and P. gingivalis on the progression of pancreatic intraepithelial neoplasia (PanIN) to PDAC. The direct effects of P. gingivalis on acinar cells and PDAC cell lines were studied in vitro. RESULTS P. gingivalis migrated from the oral cavity to the pancreas in mice and can be detected in human PanIN lesions. Repetitive P. gingivalis administration to wild-type mice induced pancreatic acinar-to-ductal metaplasia (ADM), and altered the composition of the intrapancreatic microbiome. In iKC mice, P. gingivalis accelerated PanIN to PDAC progression. In vitro, P. gingivalis infection induced acinar cell ADM markers SOX9 and CK19, and intracellular bacteria protected PDAC cells from reactive oxygen species-mediated cell death resulting from nutrient stress. CONCLUSION Taken together, our findings demonstrate a causal role for P. gingivalis in pancreatic cancer development in mice.
Collapse
Affiliation(s)
- Elias Saba
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Maria Farhat
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Alaa Daoud
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Arin Khashan
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Esther Forkush
- Gastroenterology, Hadassah Medical Center, Jerusalem, Israel
| | - Noam Hallel Menahem
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Hasnaa Makkawi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Karthikeyan Pandi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Sarah Angabo
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Hiromichi Kawasaki
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
- Central Research Institute, Wakunaga Pharmaceutical Co Ltd, Koda-cho, Akitakata-shi, Hiroshima, Japan
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oren Parnas
- Immunology and Cancer Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gideon Zamir
- Experimental Surgery, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | - Michael Elkin
- Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Lior Katz
- Department of Gastroenterology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gabriel Nussbaum
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| |
Collapse
|
45
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
46
|
Reshkin SJ, Cardone RA, Koltai T. Genetic Signature of Human Pancreatic Cancer and Personalized Targeting. Cells 2024; 13:602. [PMID: 38607041 PMCID: PMC11011857 DOI: 10.3390/cells13070602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Pancreatic cancer is a highly lethal disease with a 5-year survival rate of around 11-12%. Surgery, being the treatment of choice, is only possible in 20% of symptomatic patients. The main reason is that when it becomes symptomatic, IT IS the tumor is usually locally advanced and/or has metastasized to distant organs; thus, early diagnosis is infrequent. The lack of specific early symptoms is an important cause of late diagnosis. Unfortunately, diagnostic tumor markers become positive at a late stage, and there is a lack of early-stage markers. Surgical and non-surgical cases are treated with neoadjuvant and/or adjuvant chemotherapy, and the results are usually poor. However, personalized targeted therapy directed against tumor drivers may improve this situation. Until recently, many pancreatic tumor driver genes/proteins were considered untargetable. Chemical and physical characteristics of mutated KRAS are a formidable challenge to overcome. This situation is slowly changing. For the first time, there are candidate drugs that can target the main driver gene of pancreatic cancer: KRAS. Indeed, KRAS inhibition has been clinically achieved in lung cancer and, at the pre-clinical level, in pancreatic cancer as well. This will probably change the very poor outlook for this disease. This paper reviews the genetic characteristics of sporadic and hereditary predisposition to pancreatic cancer and the possibilities of a personalized treatment according to the genetic signature.
Collapse
Affiliation(s)
- Stephan J. Reshkin
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Tomas Koltai
- Oncomed, Via Pier Capponi 6, 50132 Florence, Italy
| |
Collapse
|
47
|
Cortesi A, Gandolfi F, Arco F, Di Chiaro P, Valli E, Polletti S, Noberini R, Gualdrini F, Attanasio S, Citron F, Ho IL, Shah R, Yen EY, Spinella MC, Ronzoni S, Rodighiero S, Mitro N, Bonaldi T, Ghisletti S, Monticelli S, Viale A, Diaferia GR, Natoli G. Activation of endogenous retroviruses and induction of viral mimicry by MEK1/2 inhibition in pancreatic cancer. SCIENCE ADVANCES 2024; 10:eadk5386. [PMID: 38536927 PMCID: PMC10971493 DOI: 10.1126/sciadv.adk5386] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/21/2024] [Indexed: 02/08/2025]
Abstract
While pancreatic ductal adenocarcinomas (PDACs) are addicted to KRAS-activating mutations, inhibitors of downstream KRAS effectors, such as the MEK1/2 kinase inhibitor trametinib, are devoid of therapeutic effects. However, the extensive rewiring of regulatory circuits driven by the attenuation of the KRAS pathway may induce vulnerabilities of therapeutic relevance. An in-depth molecular analysis of the transcriptional and epigenomic alterations occurring in PDAC cells in the initial hours after MEK1/2 inhibition by trametinib unveiled the induction of endogenous retroviruses (ERVs) escaping epigenetic silencing, leading to the production of double-stranded RNAs and the increased expression of interferon (IFN) genes. We tracked ERV activation to the early induction of the transcription factor ELF3, which extensively bound and activated nonsilenced retroelements and synergized with IRF1 (interferon regulatory factor 1) in the activation of IFNs and IFN-stimulated genes. Trametinib-induced viral mimicry in PDAC may be exploited in the rational design of combination therapies in immuno-oncology.
Collapse
Affiliation(s)
- Alice Cortesi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Francesco Gandolfi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Fabiana Arco
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Pierluigi Di Chiaro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Emanuele Valli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Sara Polletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Francesco Gualdrini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Sergio Attanasio
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Francesca Citron
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - I-lin Ho
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rutvi Shah
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Er-Yen Yen
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mara Cetty Spinella
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Simona Ronzoni
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Nico Mitro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti,” Università degli Studi di Milano, Milano 20133, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti,” Università degli Studi di Milano, Milano 20133, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Silvia Monticelli
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Gioacchino Natoli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| |
Collapse
|
48
|
Hu J, Jiang J, Xu B, Li Y, Wang B, He S, Ren X, Shi B, Zhang X, Zheng H, Hua B, Liu R. Bioinformatics analyses of infiltrating immune cell participation on pancreatic ductal adenocarcinoma progression and in vivo experiment of the therapeutic effect of Shuangshen granules. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117590. [PMID: 38113986 DOI: 10.1016/j.jep.2023.117590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuangshen granules (SSG), a nationally patented Chinese medicinal formula, including Panax quinquefolium L., Panax notoginseng (Burkill) F. H. Chen, and Cordyceps sinensis (Berk.) Sacc., has demonstrated remarkable therapeutic effects on pancreatic cancer in clinical treatment for nearly 10 years. Previous pharmacological researches have found that its main components, including ginsenosides and cordycepin have anticancer or preventive effects on pancreatic ductal adenocarcinoma (PDAC), which may be associated with immune metabolism. However, the underlying pharmacological mechanism of SSG in the truncation effect of PDAC progression is still unclear. AIM OF THE STUDY To comprehensively understand the infiltrating immune cells during the different stages of the PDAC development chain and search for immune-related biomarkers that could potentially serve as drug targets through bioinformatic analysis. Meanwhile, the truncation effect of SSG on PDAC progression was also investigated. MATERIALS AND METHODS The gene expression profiles at different PDAC developmental stages, including normal pancreas, pancreatic intraepithelial neoplasia (PanIN), and PDAC, were retrieved from the GEO database. The GEO2R tool was used to identify differentially expressed genes among the three groups. Functional enrichment analysis was performed with the GSEA software and Metascape platform. The CIBERSORT algorithm evaluated immune cell infiltration in the three groups, and immune-related biomarkers were identified. Correlation analysis was employed to examine the association between immune cells and the biomarkers. One of these biomarkers was selected for immunohistochemistry validation in human samples. Lastly, the effectiveness of SSG against PDAC progression and the influence on the selected biomarker were validated in vivo. The underlying pharmacological mechanisms were also explored. RESULTS One dataset was obtained, where the functional enrichment of DEGs primarily involved immune effector processes and cytokine production of immune cells. The differential immune cells reflected during the progression from PanIN to PDAC were B memory cells, monocytes, M2 macrophages, and activated dendritic cells. The upregulation of ACTA2 was closely associated with M2 macrophage regulation. The immunohistochemistry on human samples validated significant differences in ACTA2 expression levels as the PDAC progressed. Moreover, animal experiments revealed that the national patented drug SSG ameliorated the pathological changes, decreased the expression of ACTA2 and its functional protein α-smooth muscle actin during PDAC progression. The underlying pharmacological mechanism was related to the regulation of macrophage polarization and downregulation of TGF-β/Smad signaling pathway. CONCLUSIONS The immunosuppressive environment changes during the PDAC progression. ACTA2 is a potential immuned-target for drug prevention of PDAC, while SSG could be a promising drug candidate.
Collapse
Affiliation(s)
- Jiaqi Hu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Juling Jiang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bowen Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bei Wang
- China-Japan Friendship Hospital, Beijing, China
| | - Shulin He
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoling Ren
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bolun Shi
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
49
|
Nakahashi H, Oda T, Shimomura O, Akashi Y, Takahashi K, Miyazaki Y, Furuta T, Kuroda Y, Louphrasitthiphol P, Mathis BJ, Tateno H. Aberrant Glycosylation in Pancreatic Ductal Adenocarcinoma 3D Organoids Is Mediated by KRAS Mutations. JOURNAL OF ONCOLOGY 2024; 2024:1529449. [PMID: 38528852 PMCID: PMC10963106 DOI: 10.1155/2024/1529449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/23/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
Aberrant glycosylation in tumor cells is a hallmark during carcinogenesis. KRAS gene mutations are the most well-known oncogenic abnormalities but their association with glycan alterations in pancreatic ductal adenocarcinoma (PDAC) is largely unknown. We employed patient-derived 3D organoids to culture pure live PDAC cells, excluding contamination by fibroblasts and immune cells, to gasp the comprehensive cancer cell surface glycan expression profile using lectin microarray and transcriptomic analyses. Surgical specimens from 24 PDAC patients were digested and embedded into a 3D culture system. Surface-bound glycans of 3D organoids were analyzed by high-density, 96-lectin microarrays. KRAS mutation status and expression of various glycosyltransferases were analyzed by RNA-seq. We successfully established 16 3D organoids: 14 PDAC, 1 intraductal papillary mucinous neoplasm (IPMN), and 1 normal pancreatic duct. KRAS was mutated in 13 (7 G12V, 5 G12D, 1 Q61L) and wild in 3 organoids (1 normal duct, 1 IPMN, 1 PDAC). Lectin reactivity of AAL (Aleuria aurantia) and AOL (Aspergillus oryzae) with binding activity to α1-3 fucose was higher in organoids with KRAS mutants than those with KRAS wild-type. FUT6 (α1-3fucosyltransferase 6) and FUT3 (α1-3/4 fucosyltransferase 3) expression was also higher in KRAS mutants than wild-type. Meanwhile, mannose-binding lectin (rRSL [Ralstonia solanacearum] and rBC2LA [Burkholderia cenocepacia]) signals were higher while those of galactose-binding lectins (rGal3C and rCGL2) were lower in the KRAS mutants. We demonstrated here that PDAC 3D-cultured organoids with KRAS mutations were dominantly covered in increased fucosylated glycans, pointing towards novel treatment targets and/or tumor markers.
Collapse
Affiliation(s)
- Hiromitsu Nakahashi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Osamu Shimomura
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Yoshimasa Akashi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Kazuhiro Takahashi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Yoshihiro Miyazaki
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Yukihito Kuroda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Pakavarin Louphrasitthiphol
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, Tsukuba, Japan
| | - Hiroaki Tateno
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| |
Collapse
|
50
|
Tan YQ, Sun B, Zhang X, Zhang S, Guo H, Basappa B, Zhu T, Sethi G, Lobie PE, Pandey V. Concurrent inhibition of pBADS99 synergistically improves MEK inhibitor efficacy in KRAS G12D-mutant pancreatic ductal adenocarcinoma. Cell Death Dis 2024; 15:173. [PMID: 38409090 PMCID: PMC10897366 DOI: 10.1038/s41419-024-06551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
Therapeutic targeting of KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) has remained a significant challenge in clinical oncology. Direct targeting of KRAS has proven difficult, and inhibition of the KRAS effectors have shown limited success due to compensatory activation of survival pathways. Being a core downstream effector of the KRAS-driven p44/42 MAPK and PI3K/AKT pathways governing intrinsic apoptosis, BAD phosphorylation emerges as a promising therapeutic target. Herein, a positive association of the pBADS99/BAD ratio with higher disease stage and worse overall survival of PDAC was observed. Homology-directed repair of BAD to BADS99A or small molecule inhibition of BADS99 phosphorylation by NCK significantly reduced PDAC cell viability by promoting cell cycle arrest and apoptosis. NCK also abrogated the growth of preformed colonies of PDAC cells in 3D culture. Furthermore, high-throughput screening with an oncology drug library to identify potential combinations revealed a strong synergistic effect between NCK and MEK inhibitors in PDAC cells harboring either wild-type or mutant-KRAS. Mechanistically, both mutant-KRAS and MEK inhibition increased the phosphorylation of BADS99 in PDAC cells, an effect abrogated by NCK. Combined pBADS99-MEK inhibition demonstrated strong synergy in reducing cell viability, enhancing apoptosis, and achieving xenograft stasis in KRAS-mutant PDAC. In conclusion, the inhibition of BADS99 phosphorylation enhances the efficacy of MEK inhibition, and their combined inhibition represents a mechanistically based and potentially effective therapeutic strategy for the treatment of KRAS-mutant PDAC.
Collapse
Affiliation(s)
- Yan Qin Tan
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, 519087, Guangdong, People's Republic of China
| | - Bowen Sun
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Xi Zhang
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Shuwei Zhang
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Hui Guo
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India
| | - Tao Zhu
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
- Hefei National Laboratory for Physical Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China.
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|