1
|
Maher S, Sweeney T, Vigors S, McDonald M, O'Doherty JV. Effects of organic acid-preserved cereal grains in sow diets during late gestation and lactation on the performance and faecal microbiota of sows and their offspring. J Anim Sci Biotechnol 2025; 16:43. [PMID: 40069903 PMCID: PMC11899052 DOI: 10.1186/s40104-025-01171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/20/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Organic acids (OA) and maternal nutritional strategies have been demonstrated to promote piglet health and development. The objective of this study was to investigate the effects of incorporating OA-preserved cereal grains into sow diets during late gestation and lactation, aiming to reduce the metabolic demands of lactation while optimising offspring development and growth until slaughter. The experiment compared OA-preserved wheat and barley to conventionally dried grains, focusing on sow and offspring performance, as well as their faecal microbiota during lactation. Forty sows were blocked based on parity, body weight and back fat thickness on d 100 of gestation and assigned to one of two diets: a dried grain lactation diet and a preserved grain lactation diet. Sow faecal samples were collected at farrowing for the coefficient of apparent total tract digestibility (CATTD) of nutrients and microbial analysis. Offspring faecal samples were collected on d 10 postpartum and at weaning (d 26 postpartum) for microbial analysis. RESULTS Sow body weight, back fat changes, gestation and lactation length, total piglets born, wean-to-oestrus interval, and lactation efficiency were unaffected by sow diet (P > 0.05). However, sows offered the preserved grain diet exhibited improved CATTD of dry matter, nitrogen, gross energy, and neutral detergent fibre (P < 0.05). While no maternal effect was observed on offspring growth during lactation (P > 0.05), pigs from sows offered the preserved grain diet showed improved growth and feed efficiency from weaning until slaughter (d 168) compared to those from sows offered the dried grain diet (P < 0.05). The preserved grain diet also reduced the abundance of Proteobacteria in sow faeces at farrowing and in their offspring on d 10 postpartum, and improved piglet faecal scores throughout lactation (P = 0.05). At weaning, piglets from sows offered the preserved grain diet exhibited an increased abundance of Lactobacillus and reduced abundance of Alistipes in their faeces (P < 0.05). CONCLUSION OA-preserved grains enhanced the CATTD of nutrients in sows, promoted healthier piglet faecal scores during lactation, and improved offspring growth performance post-weaning, potentially linked to beneficial changes observed in the faecal microbiota of sows and their offspring during lactation.
Collapse
Affiliation(s)
- Shane Maher
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Stafford Vigors
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - John V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
2
|
Shibata C, Muratsubaki T, Shibata S, Aizawa E, Watanabe S, Kanazawa M, Fukudo S. A randomized controlled trial of environmental richness on gastrointestinal symptoms, salivary cortisol, and gut microbiota in early childhood. Sci Rep 2025; 15:8493. [PMID: 40075129 PMCID: PMC11903663 DOI: 10.1038/s41598-025-86618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 01/13/2025] [Indexed: 03/14/2025] Open
Abstract
Gastrointestinal (GI) symptoms are common and can affect children's social lives. This study investigated the effects of exposure to a rich natural environment on GI symptoms, salivary cortisol levels, salivary amylase levels, and the gut microbiota in young children. Children aged 5-6 years from four kindergartens in Japan were randomly assigned to two groups: a nature childcare group and a regular childcare group. The children were exposed to their respective conditions once weekly for one month. Before and after the intervention, GI symptoms were detected using the Children's Somatization Inventory to calculate a 'GI score' and categorize participants into GI and control groups (primary outcome measure). Fecal examinations were performed for gut microbiota using 16 S-rRNA analysis, salivary cortisol and amylase levels were quantified, and the Child Behavior Checklist was administered. The two groups had similar GI symptoms, salivary cortisol and amylase levels, and behavioral characteristics. Following the intervention, significant differences in the GI score, abdominal pain, constipation, Shannon index value, and salivary cortisol and amylase levels (p < 0.05) were observed between the two childcare groups. Spending free and abundant time in nature during early childhood could help maintain digestive system homeostasis, increase gut microbiota diversity, and reduce cortisol levels.
Collapse
Affiliation(s)
- Chikako Shibata
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Miyagi, Japan.
- Department of Exercise Education for Children, Faculty of Sports Science, Sendai University, Sendai, Japan.
| | - Tomohiko Muratsubaki
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Miyagi, Japan
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
| | - Suguru Shibata
- Department of Early Childhood Education, Koriyama Women's University Junior College, Koriyama, Japan
| | - Emiko Aizawa
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Miyagi, Japan
- Department of Health and Nutrition, Faculty of Human Sciences, Sendai Shirayuri Women's College, Sendai, Japan
| | - Satoshi Watanabe
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Miyagi, Japan
| | - Motoyori Kanazawa
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Miyagi, Japan
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
| | - Shin Fukudo
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Miyagi, Japan
- Research Center for Accelerator and Radioisotope Science, Tohoku University, Sendai, Japan
- Department of Psychosomatic Medicine, Japanese Red Cross Ishinomaki Hospital, Ishinomaki, Japan
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
3
|
Meerschaert KA, Chiu IM. The gut-brain axis and pain signalling mechanisms in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2025; 22:206-221. [PMID: 39578592 DOI: 10.1038/s41575-024-01017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Visceral pain is a major clinical problem and one of the most common reasons patients with gastrointestinal disorders seek medical help. Peripheral sensory neurons that innervate the gut can detect noxious stimuli and send signals to the central nervous system that are perceived as pain. There is a bidirectional communication network between the gastrointestinal tract and the nervous system that mediates pain through the gut-brain axis. Sensory neurons detect mechanical and chemical stimuli within the intestinal tissues, and receive signals from immune cells, epithelial cells and the gut microbiota, which results in peripheral sensitization and visceral pain. This Review focuses on molecular communication between these non-neuronal cell types and neurons in visceral pain. These bidirectional interactions can be dysregulated during gastrointestinal diseases to exacerbate visceral pain. We outline the anatomical pathways involved in pain processing in the gut and how cell-cell communication is integrated into this gut-brain axis. Understanding how bidirectional communication between the gut and nervous system is altered during disease could provide new therapeutic targets for treating visceral pain.
Collapse
Affiliation(s)
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Wang R, Liao Y, Deng Y, Shuang R. Unraveling the Health Benefits and Mechanisms of Time-Restricted Feeding: Beyond Caloric Restriction. Nutr Rev 2025; 83:e1209-e1224. [PMID: 38954563 DOI: 10.1093/nutrit/nuae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Time-restricted feeding (TRF) is a lifestyle intervention that aims to maintain a consistent daily cycle of feeding and fasting to support robust circadian rhythms. Recently, it has gained scientific, medical, and public attention due to its potential to enhance body composition, extend lifespan, and improve overall health, as well as induce autophagy and alleviate symptoms of diseases like cardiovascular diseases, type 2 diabetes, neurodegenerative diseases, cancer, and ischemic injury. However, there is still considerable debate on the primary factors that contribute to the health benefits of TRF. Despite not imposing strict limitations on calorie intake, TRF consistently led to reductions in calorie intake. Therefore, while some studies suggest that the health benefits of TRF are primarily due to caloric restriction (CR), others argue that the key advantages of TRF arise not only from CR but also from factors like the duration of fasting, the timing of the feeding period, and alignment with circadian rhythms. To elucidate the roles and mechanisms of TRF beyond CR, this review incorporates TRF studies that did not use CR, as well as TRF studies with equivalent energy intake to CR, which addresses the previous lack of comprehensive research on TRF without CR and provides a framework for future research directions.
Collapse
Affiliation(s)
- Ruhan Wang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 43000, China
| | - Yan Deng
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Rong Shuang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| |
Collapse
|
5
|
Ullah H, Arbab S, Chang C, Bibi S, Muhammad N, Rehman SU, Suleman, Ullah I, Hassan IU, Tian Y, Li K. Gut microbiota therapy in gastrointestinal diseases. Front Cell Dev Biol 2025; 13:1514636. [PMID: 40078367 PMCID: PMC11897527 DOI: 10.3389/fcell.2025.1514636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
The human gut microbiota, consisting of trillions of microorganisms, plays a crucial role in gastrointestinal (GI) health and disease. Dysbiosis, an imbalance in microbial composition, has been linked to a range of GI disorders, including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, and colorectal cancer. These conditions are influenced by the interactions between the gut microbiota, the host immune system, and the gut-brain axis. Recent research has highlighted the potential for microbiome-based therapeutic strategies, such as probiotics, prebiotics, fecal microbiota transplantation (FMT), and dietary modifications, to restore microbial balance and alleviate disease symptoms. This review examines the role of gut microbiota in the pathogenesis of common gastrointestinal diseases and explores emerging therapeutic approaches aimed at modulating the microbiome. We discuss the scientific foundations of these interventions, their clinical effectiveness, and the challenges in their implementation. The review underscores the therapeutic potential of microbiome-targeted treatments as a novel approach to managing GI disorders, offering personalized and alternative options to conventional therapies. As research in this field continues to evolve, microbiome-based interventions hold promise for improving the treatment and prevention of gastrointestinal diseases.
Collapse
Affiliation(s)
- Hanif Ullah
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Safia Arbab
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chengting Chang
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Saira Bibi
- Department of Zoology Hazara University Manshera, Dhodial, Pakistan
| | - Nehaz Muhammad
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Sajid Ur Rehman
- School of Public Health and Emergency Management, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Suleman
- Department of Zoology, Government Post Graduate Collage, Swabi, Pakistan
- Higher Education Department, Civil Secretariat Peshawar, Peshawar, Pakistan
| | - Irfan Ullah
- Department of Biotechnology and Genetics Engineering, Hazara University, Manshera, Pakistan
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University Manshera, Manshera, Pakistan
| | - Yali Tian
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Kusumi K, Islam MS, Banker H, Safadi FF, Raina R. Navigating the microbial maze: unraveling the connection between gut microbiome and pediatric kidney and urinary tract disease. Pediatr Nephrol 2025; 40:339-353. [PMID: 38829563 DOI: 10.1007/s00467-024-06357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 06/05/2024]
Abstract
The gut microbiome is made up of trillions of bacteria, viruses, archaea, and microbes that play a significant role in the maintenance of normal physiology in humans. Recent research has highlighted the effects of the microbiome and its dysbiosis in the pathogenesis and maintenance of kidney disease, especially chronic kidney disease (CKD) and its associated cardiovascular disease. While studies have addressed the kidney-microbiome axis in adults, how dysbiosis may uniquely impact pediatric kidney disease patients is not well-established. This narrative review highlights all relevant studies focusing on the microbiome and pediatric kidney disease that were published between 7/2015 and 7/2023. This review highlights pediatric-specific considerations including growth and bone health as well as emphasizing the need for increased pediatric research. Understanding microbiome-kidney interactions may allow for novel, less invasive interventions such as dietary changes and the use of probiotics to improve preventive care and ameliorate long-term morbidity and mortality in this vulnerable population.
Collapse
Affiliation(s)
- Kirsten Kusumi
- Pediatric Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | | - Rupesh Raina
- Division of Nephrology, Department of Pediatrics, Akron Children's Hospital, Akron, OH, USA.
- Northeast Ohio Medical University, Rootstown, OH, USA.
- Akron Nephrology Associates, Cleveland Clinic Akron General, Akron, OH, USA.
| |
Collapse
|
7
|
Ahamed MF, Shafi FB, Nahiduzzaman M, Ayari MA, Khandakar A. Interpretable deep learning architecture for gastrointestinal disease detection: A Tri-stage approach with PCA and XAI. Comput Biol Med 2025; 185:109503. [PMID: 39647242 DOI: 10.1016/j.compbiomed.2024.109503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/17/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
GI abnormalities significantly increase mortality rates and impose considerable strain on healthcare systems, underscoring the essential requirement for rapid detection, precise diagnosis, and efficient strategic treatment. To develop a CAD system, this study aims to automatically classify GI disorders utilizing various deep learning methodologies. The proposed system features a three-stage lightweight architecture, consisting of a feature extractor using PSE-CNN, a feature selector employing PCA, and a classifier based on DELM. The framework, designed with only 24 layers and 1.25 million parameters, is employed on the largest dataset, GastroVision, containing 8000 images of 27 GI disorders. To improve visual clarity, a sequential preprocessing strategy is implemented. The model's robustness is evaluated through 5-fold cross-validation. Additionally, several XAI methods, namely Grad-CAM, heatmaps, saliency maps, SHAP, and activation feature maps, are used to explore the model's interpretability. Statistical significance is ensured by calculating the p-value, demonstrating the framework's reliability. The proposed model PSE-CNN-PCA-DELM has achieved outstanding results in the first stage, categorizing the diseases' positions into three primary classes, with average accuracy (97.24 %), precision (97.33 ± 0.01 %), recall (97.24 ± 0.01 %), F1-score (97.33 ± 0.01 %), ROC-AUC (99.38 %), and AUC-PR (98.94 %). In the second stage, the dataset is further divided into nine separate classes, considering the overall disease characteristics, and achieves excellent outcomes with average performance rates of 90.00 %, 89.71 ± 0.11 %, 89.59 ± 0.14 %, 89.51 ± 0.12 %, 98.49 %, and 94.63 %, respectively. The third stage involves a more detailed classification into twenty-seven classes, maintaining strong performance with scores of 93.00 %, 82.69 ± 0.37 %, 83.00 ± 0.38 %, 81.54 ± 0.35 %, 97.38 %, and 88.03 %, respectively. The framework's compact size of 14.88 megabytes and average testing time of 59.17 milliseconds make it highly efficient. Its effectiveness is further validated through comparisons with several TL approaches. Practically, the framework is extremely resilient for clinical implementation.
Collapse
Affiliation(s)
- Md Faysal Ahamed
- Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh.
| | - Fariya Bintay Shafi
- Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh.
| | - Md Nahiduzzaman
- Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh.
| | | | - Amith Khandakar
- Department of Electrical Engineering, College of Engineering, Qatar Univeristy, Doha, Qatar.
| |
Collapse
|
8
|
Yao L, Zhou X, Jiang X, Chen H, Li Y, Xiong X, Tang Y, Zhang H, Qiao P. High-fat diet promotes gestational diabetes mellitus through modulating gut microbiota and bile acid metabolism. Front Microbiol 2025; 15:1480446. [PMID: 39935515 PMCID: PMC11810896 DOI: 10.3389/fmicb.2024.1480446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/27/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction Gestational diabetes mellitus (GDM) is a condition characterized by glucose intolerance during pregnancy, estimated to affect approximately 20% of the whole pregnancies and is increasing in prevalence globally. However, there is still a big gap in knowledge about the association between gut microbiota associated metabolism alterations and GDM development. Methods All the participants accomplished the validated internet-based dietary questionnaire for Chinese and serum, fecal samples were collected. HFD, control diet or colesevelam intervention was fed to GDM mice models or Fxr-/- mice models, with or without antibiotics cocktail treatment. Fecal microbiota transplantation were used for further validation. Gut microbiota and metabolites were detected by metagenomic sequencing and high-performance liquid chromatography-mass spectrometry, respectively. Bile acids of serum, fecal samples from human and mice were analysised. Body weight, average feed intake, blood glucose, insulin levels and oral glucose tolerance test was performed among each groups. Expression levels of Fxr, Shp and Fgf15 mRNA and protein were detected by quantitative reverse transcription polymerase chain reaction and western blot, respectively. Results Our data indicated that high fat diet (HFD) was linked with higher prevalence of GDM, and HFD was positively associated with poor prognosis in GDM patients. Moreover, compared with normal diet (ND) group, GDM patients from HFD group performed a loss of gut microbiota diversity and enrichment of Alistipes onderdonkii, Lachnospiraceae bacterium 1_7_58FAA, and Clostridium aspaaragiforme while ruduction of Akkermansiaceae, Paraprevotell xylaniphila, and Prevotella copri. Additionally, HFD aggravated GDM in mice and gut microbiota depletion by antibiotics crippled the effect of excess fat intake. BAs profile altered in HFD GDM patients and mice models. Fecal microbiota transplantation (FMT) further confirmed that gut microbiota contributed to bile acids (BAs) metabolic dysfunction during HFD-associated GDM development. Mechanically, HFD-FMT administration activated Fxr, Shp, and Fgf15 activity, disturbed the glucose metabolism and aggravated insulin resistance but not in HFD-FMT Fxr-/- mice and ND-FMT Fxr-/- mice. Furthermore, colesevelam intervention alleviated HFD-associated GDM development, improved BAs metabolism, suppressed Fxr, Shp, and Fgf15 activity only in WT mice but not in the Fxr-/- HFD + Colesevelam group and Fxr-/- HFD group. HFD induced GDM and contributed to poor prognosis in GDM parturients through inducing gut microbial dysbiosis and metabolic alteration, especially appeared in BAs profile. Moreover, Fxr pathway participated in regulating HFD-associated gut microbiota disordered BAs metabolites and aggravating GDM in mice. Discussion Modulating gut microbiota and BAs metabolites could be a potential therapeutic strategy in the prevention and treatment of HFD-associated GDM.
Collapse
Affiliation(s)
- Lei Yao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuefei Zhou
- Department of Gynaecology and Obstetrics, The Center of Red Cross Hospital of Harbin, Harbin, China
| | - Xianqi Jiang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Chen
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanliang Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Xiong
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Tang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haogang Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengfei Qiao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Ricci C, Saracino IM, Valerii MC, Spigarelli R, Bellocchio I, Spisni E. Very-Low-Absorbable Geraniol for the Treatment of Irritable Bowel Syndrome: A "Real-World" Open-Label Study on 1585 Patients. Nutrients 2025; 17:328. [PMID: 39861460 PMCID: PMC11767699 DOI: 10.3390/nu17020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the efficacy of a very-low-absorbable geraniol formulation, administered as a food supplement, in patients with irritable bowel syndrome (IBS) in a real-world setting in Italy. METHODS This open-label study was conducted in Italy on patients diagnosed with IBS and treated for 4 weeks with 240 mg/day of Palmarosa essential oil, absorbed on 960 mg of ginger root powder to obtain a very-low-absorbable geraniol formulation. Baseline characteristics, including demographic and symptoms were recorded using the IBS Severity Scoring System (IBS-SSS). After 28 ± 7 days, the patients were asked to complete the IBS-SSS questionnaire again. The primary objective was to confirm the effects of a very-low-absorbable geraniol formulation on self-reported symptoms of IBS and the quality of life of affected individuals. The secondary objective was to confirm the effect of the treatment on the different IBS subtypes. RESULTS A total of 1585 patients were included in the study, with a mean age of 44.8 years and 56.4% women. Following the 4-week supplementation period, significant decreases were observed in the patients' IBS-SSS (-67.9%) and all the primary IBS symptoms, such as abdominal distention (-82.3%), unsatisfaction with bowel habits (-46.2%), and interference with quality of life (QoL) (-64.9%) (all p < 0.01). The patients' stool type improved significantly. Treatment was effective in all IBS subtypes. CONCLUSIONS Treatment with very-low-adsorbable geraniol food supplement was associated with improvements in symptoms and bowel habits in all IBS subtypes in a real-world setting in Italy. These findings support the use of geraniol as an effective option for patients with IBS regardless of the disease subtype.
Collapse
Affiliation(s)
- Chiara Ricci
- Gastroenterology Unit, ASST Spedali Civili di Brescia, University of Brescia, Piazza del Mercato 15, 25121 Brescia, Italy;
| | - Ilaria Maria Saracino
- Microbiology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Maria Chiara Valerii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (R.S.); (I.B.); (E.S.)
| | - Renato Spigarelli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (R.S.); (I.B.); (E.S.)
| | - Irene Bellocchio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (R.S.); (I.B.); (E.S.)
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (R.S.); (I.B.); (E.S.)
| |
Collapse
|
10
|
Bush JR, Alfa MJ. Consumption of resistant potato starch produces changes in gut microbiota that correlate with improvements in abnormal bowel symptoms: a secondary analysis of a clinical trial. BMC Nutr 2024; 10:152. [PMID: 39605008 PMCID: PMC11600726 DOI: 10.1186/s40795-024-00962-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Studies have linked a lack of dietary fibre, including resistant starch (RS), to disease-associated changes in intestinal bacteria. Healthy people often report abnormal bowel symptoms (ABS), including bloating, constipation, abdominal pain, and diarrhea, however, connections between these symptoms and the gut microbiota are poorly understood. Determining correlations between ABS and taxonomic groups may provide predictive value for using prebiotics to mitigate ABS in combination with stool microbiome testing. METHODS Post hoc analysis of a three-arm randomized, double-blind, placebo-controlled clinical trial evaluating the effects of 3.5 g and 7 g resistant potato starch (RPS) doses or placebo was conducted. The study population (n = 70) were healthy adults aged 18-69 years old living in and around Guelph, ON. Participants evaluated their stools using the Bristol Stool Chart and also recorded any ABS daily. The presence of ABS was compared between treatment arms at baseline and changes in ABS were compared within treatment arms over 1- and 4-week periods. Pearson correlation analysis was used to identify significant relationships between changes in ABS and changes in bacterial taxa. RESULTS Abdominal pain, belching, bloating, constipation, diarrhea, gas, and feeling unwell were reported by participants at low levels at baseline. Neither RPS nor placebo had significant effects on mean ABS scores. However, we identified positive correlations between treatment-dependent changes in symptoms and changes in Granulicatella, Haemophilus, Lachnospira, Olsenella, Papillibacter, Turicibacter, unclassified Enterobacteriaceae, unclassified Fusobacteriaceae, unclassified Pasteurellaceae, and unclassified Gammaproteobacteria. We also identified negative correlations between treatment-dependent changes in symptoms and changes in Anaerotruncus, Dorea, RFN20, Victivallis, unclassified Coriobacteriaceae, and unclassified Oxalobacteraceae. These Pearson correlations were significant after correction for repeated testing. The mean relative abundance of these taxa did not change in response to treatment. Finally, macronutrient intake was unaffected by RPS or placebo treatments. CONCLUSION Changes in ABS can be positively or negatively correlated with changes in specific gut microbiota, creating opportunities for personalized microbiome-targeted interventions to resolve ABS. TRIAL REGISTRATION The trial was registered at ClinicalTrials.gov (NCT05242913) on February 16, 2022.
Collapse
|
11
|
Li J, Ghosh TS, Arendt E, Shanahan F, O'Toole PW. Cross-Cohort Gut Microbiome Signatures of Irritable Bowel Syndrome Presentation and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308313. [PMID: 39243395 PMCID: PMC11538712 DOI: 10.1002/advs.202308313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/02/2024] [Indexed: 09/09/2024]
Abstract
Irritable bowel syndrome (IBS) is a prevalent disorder of gut-brain interaction without a reliable cure. Evidence suggests that an alteration of the gut microbiome may contribute to IBS pathogenesis, motivating the development of microbiome-targeted therapies to alleviate IBS symptoms. However, IBS-specific microbiome signatures are variable across cohorts. A total of 9204 datasets were meta-analyzed, derived from fourteen IBS microbiome discovery cohorts, three validation cohorts for diet-microbiome interactions, and five rifaximin therapy cohorts. The consistent bacterial species and functional signatures associated with IBS were identified. Network analysis revealed two distinct IBS-enriched microbiota clusters; obligate anaerobes that are found commonly in the gut, and facultative anaerobes typically present in the mouth, implying a possible association between oral bacterial translocation to gut and IBS pathogenesis. By analyzing diet-microbiome interactions, microbiota-targeted diets that can potentially modulate the altered gut microbiota of IBS subjects toward a healthy status were identified. Furthermore, rifaximin treatment of IBS subjects was linked with a reduction in the abundance of facultatively anaerobic pathobionts. Gut microbiome signatures were identified across IBS cohorts that may inform the development of therapies for microbiome modulation in IBS. The microbiota-targeted diet patterns described may enable nutritional intervention trials in IBS and for assisting dietary management.
Collapse
Affiliation(s)
- Junhui Li
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFIreland
- School of MicrobiologyUniversity College CorkCorkT12 K8AFIreland
| | - Tarini Shankar Ghosh
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFIreland
- School of MicrobiologyUniversity College CorkCorkT12 K8AFIreland
- Present address:
Indraprastha Institute of Information Technology DelhiNew Delhi110020India
| | - Elke Arendt
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFIreland
- School of Food and Nutritional SciencesUniversity College CorkCorkT12 K8AFIreland
| | - Fergus Shanahan
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFIreland
- Department of MedicineUniversity College CorkCorkT12 K8AFIreland
| | - Paul W. O'Toole
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFIreland
- School of MicrobiologyUniversity College CorkCorkT12 K8AFIreland
| |
Collapse
|
12
|
Ren Q, He C, Sun Y, Gao X, Zhou Y, Qin T, Zhang Z, Wang X, Wang J, Wei S, Wang F. Asiaticoside improves depressive-like behavior in mice with chronic unpredictable mild stress through modulation of the gut microbiota. Front Pharmacol 2024; 15:1461873. [PMID: 39494347 PMCID: PMC11527651 DOI: 10.3389/fphar.2024.1461873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Background Asiaticoside, the main active ingredient of Centella asiatica, is a pentacyclic triterpenoid compound. Previous studies have suggested that asiaticoside possesses neuroprotective and anti-depressive properties, however, the mechanism of its anti-depressant action not fully understood. In recent years, a growing body of research on anti-depressants has focused on the microbiota-gut-brain axis, we noted that disruption of the gut microbial community structure and diversity can induce or exacerbate depression, which plays a key role in the regulation of depression. Methods Behavioral experiments were conducted to detect depression-like behavior in mice through sucrose preference, forced swimming, and open field tests. Additionally, gut microbial composition and short-chain fatty acid (SCFA) levels in mouse feces were analyzed 16S rRNA sequencing and gas chromatography-mass spectrometry (GC-MS). Hippocampal brain-derived neurotrophic factor (BDNF) and 5-hydroxytryptamine receptor 1A (5-HT1A) expression in mice was assessed by western blotting. Changes in serum levels of inflammatory factors, neurotransmitters, and hormones were measured in mice using ELISA. Results This study revealed that oral administration of asiaticoside significantly improved depression-like behavior in chronic unpredictable mild stress (CUMS) mice. It partially restored the gut microbial community structure in CUMS mice, altered SCFA metabolism, regulated the hypothalamic-pituitary-adrenal axis (HPA axis) and inflammatory factor levels, upregulated BDNF and 5-HT1A receptor protein expression, and increased serum serotonin (5-hydroxytryptamine, 5-HT) concentration. These findings reveal that asiaticoside exerts antidepressant effects via the microbiota-gut-brain axis. Conclusions These results suggested that asiaticoside exerts antidepressant effects through the microbiota-gut-brain axis in a CUMS mouse model.
Collapse
Affiliation(s)
- Qingyi Ren
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chenxi He
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yuhong Sun
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaowei Gao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yan Zhou
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Tao Qin
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhuo Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaodong Wang
- Department of Hepatobiliary Disease, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jun Wang
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siping Wei
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin, China
| | - Fang Wang
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Li Y, Xue J, Zhang Z, Wang W, Wang Y, Zhang W. Alteration of gut microbiota in Henoch-Schönlein purpura children with gastrointestinal involvement. Ir J Med Sci 2024; 193:2397-2406. [PMID: 38967706 DOI: 10.1007/s11845-024-03750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND The compositional and structural changes of gut microbiota were closely related to the status of Henoch-Schönlein purpura (HSP). AIMS To investigate if clinical indicators and gut microbiota differ between HSP patients with or without gastrointestinal (GI) involvement and to explore the alterations of fecal microbiota in HSP children with and without GI symptoms. METHODS A total of 22 children with HSP were enrolled in the study. Fecal microbiota composition was analyzed by 16S rRNA sequencing. Clinical indicators, fecal microbial diversity, and compositions were compared between the two groups. RESULTS Respectively, 9 patients with GI involvement (HSP-A) and 13 patients without GI involvement (HSP-N) were enrolled. Prealbumin (PA) and the ratio of immunoglobulin A (IgA) / complement (C)3 were significantly decreased in the HSP-A group and an elevated D-dimer was found in the HSP-N group. The relative abundances of Blautia, Lachnospira, and Haemophilus were significantly higher in the HSP-A group compared to HSP-N. Lower levels of unidentified Prevotellaceae, Parabacteroides, and Romboutsia were found in HSP-A patients. The linear discriminant analysis effect size (LEfSe) showed that the biomarkers for the HSP-A group included Blautia, Anaerostipes, Veillonella, Lachnospira, and Haemophilus. For the HSP-N group, unidentified Prevotellaceae, Intestinibacter, Romboutsia, and Akkermansia were the prominent biomarkers at the genus level. Additionally, the ratio of IgA/C3 exhibited a negative correlation with the genus Blautia. Meanwhile, PA showed negatively correlation with Veillonella. CONCLUSIONS These results provide a broader understanding for future microbial-based therapies to decrease the development of GI involvement and improve the clinical outcome of HSP in children.
Collapse
Affiliation(s)
- Ye Li
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Avenue, Jinan, 250012, Shandong, China
| | - Jiang Xue
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Avenue, Jinan, 250012, Shandong, China
| | - Zhaohua Zhang
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Avenue, Jinan, 250012, Shandong, China
| | - Wei Wang
- Department of Respiratory Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yulong Wang
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Avenue, Jinan, 250012, Shandong, China.
| | - Weiquan Zhang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
14
|
Sadler RA, Mallard BA, Shandilya UK, Hachemi MA, Karrow NA. The Immunomodulatory Effects of Selenium: A Journey from the Environment to the Human Immune System. Nutrients 2024; 16:3324. [PMID: 39408290 PMCID: PMC11479232 DOI: 10.3390/nu16193324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Selenium (Se) is an essential nutrient that has gained attention for its impact on the human immune system. The purpose of this review is to explore Se's immunomodulatory properties and to make up-to-date information available so novel therapeutic applications may emerge. People acquire Se through dietary ingestion, supplementation, or nanoparticle applications. These forms of Se can beneficially modulate the immune system by enhancing antioxidant activity, optimizing the innate immune response, improving the adaptive immune response, and promoting healthy gut microbiota. Because of these many actions, Se supplementation can help prevent and treat pathogenic diseases, autoimmune diseases, and cancers. This review will discuss Se as a key micronutrient with versatile applications that supports disease management due to its beneficial immunomodulatory effects. Further research is warranted to determine safe dosing guidelines to avoid toxicity and refine the application of Se in medical treatments.
Collapse
Affiliation(s)
- Rebecka A. Sadler
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (U.K.S.)
| | - Bonnie A. Mallard
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada;
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (U.K.S.)
| | - Mohammed A. Hachemi
- Adisseo France S.A.S., 10, Place du Général de Gaulle, 92160 Antony, France;
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (U.K.S.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada;
| |
Collapse
|
15
|
Trivedi A, Bose D, Moffat K, Pearson E, Walsh D, Cohen D, Skupsky J, Chao L, Golier J, Janulewicz P, Sullivan K, Krengel M, Tuteja A, Klimas N, Chatterjee S. Gulf War Illness Is Associated with Host Gut Microbiome Dysbiosis and Is Linked to Altered Species Abundance in Veterans from the BBRAIN Cohort. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1102. [PMID: 39200711 PMCID: PMC11354743 DOI: 10.3390/ijerph21081102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024]
Abstract
Gulf War Illness (GWI) is a debilitating condition marked by chronic fatigue, cognitive problems, pain, and gastrointestinal (GI) complaints in veterans who were deployed to the 1990-1991 Gulf War. Fatigue, GI complaints, and other chronic symptoms continue to persist more than 30 years post-deployment. Several potential mechanisms for the persistent illness have been identified and our prior pilot study linked an altered gut microbiome with the disorder. This study further validates and builds on our prior preliminary findings of host gut microbiome dysbiosis in veterans with GWI. Using stool samples and Multidimensional Fatigue Inventory (MFI) data from 89 GW veteran participants (63 GWI cases and 26 controls) from the Boston biorepository, recruitment, and integrative network (BBRAIN) for Gulf War Illness, we found that the host gut bacterial signature of veterans with GWI showed significantly different Bray-Curtis beta diversity than control veterans. Specifically, a higher Firmicutes to Bacteroidetes ratio, decrease in Akkermansia sp., Bacteroides thetaiotamicron, Bacteroides fragilis, and Lachnospiraceae genera and increase in Blautia, Streptococcus, Klebsiella, and Clostridium genera, that are associated with gut, immune, and brain health, were shown. Further, using MaAsLin and Boruta algorithms, Coprococcus and Eisenbergiella were identified as important predictors of GWI with an area under the curve ROC predictive value of 74.8%. Higher self-reported MFI scores in veterans with GWI were also significantly associated with an altered gut bacterial diversity and species abundance of Lachnospiraceae and Blautia. These results suggest potential therapeutic targets for veterans with GWI that target the gut microbiome and specific symptoms of the illness.
Collapse
Affiliation(s)
- Ayushi Trivedi
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.)
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.)
| | - Kelly Moffat
- CosmosID, Germantown, MD 20874, USA; (K.M.); (D.W.)
| | | | - Dana Walsh
- CosmosID, Germantown, MD 20874, USA; (K.M.); (D.W.)
| | - Devra Cohen
- Miami VA Healthcare System, Miami, FL 33125, USA;
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
| | - Jonathan Skupsky
- VA Research and Development, VA Long Beach Health Care, Long Beach, CA 90822, USA;
| | - Linda Chao
- San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
| | - Julia Golier
- J. Peters VA Medical Center, Bronx, NY 10468, USA;
- Psychiatry Department, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY 10029, USA
| | - Patricia Janulewicz
- Department of Environmental Health, Boston University School of Public Health, 715 Albany St. T4W, Boston, MA 02130, USA; (P.J.)
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, 715 Albany St. T4W, Boston, MA 02130, USA; (P.J.)
| | - Maxine Krengel
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02130, USA;
| | - Ashok Tuteja
- Division of Gastroenterology, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA;
| | - Nancy Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
- Geriatric Research and Education Clinical Center, Miami VA Heathcare System, Miami, FL 33125, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.)
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
- Department of Medicine, Infectious Disease, UCI School of Medicine, Irvine, CA 92697, USA
| |
Collapse
|
16
|
Xu J, Xu H, Yang F, Xie Y, Cai F, Mao S, Lu M, Zhuang H, Hua Z. Different depths of food restriction and high-fat diet refeeding in mice impact host obesity and metabolic phenotypes with correlative changes in the gut microbiota. MedComm (Beijing) 2024; 5:e641. [PMID: 39021516 PMCID: PMC11253304 DOI: 10.1002/mco2.641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
Overweight and obesity affect almost 2 billion adults worldwide, and food restriction (FR) is commonly used to reduce body fat. Whether refeeding (Re) after FR at different ages and to different degrees leads to overweight and its possible mechanisms are uncertain. In this study, adult and young mice were both restricted to 15% and 40% of their casual food intake, and then were fed 60% high-fat chow (FR15%-Re, FR40%-Re), whereas the control groups(CON) consumed high-fat or normal food throughout, respectively. The results of the study suggest that mild FR-heavy feeding may lead to more significant abnormal fat accumulation, liver damage, and increased recruitment of intestinal inflammatory factors and immune cells in mice of different ages and involves multiple types of alterations in the gut microbiota. Further fecal transplantation experiments as well as serum and liver enzyme-linked immunosorbent assay experiments preliminarily suggest that the link between lipid metabolism and inflammatory responses and the gut microbiota may be related to the regulation of the gut and live by Lipopolysaccharides(LPS) and Peroxisome Proliferator-Activated Receptor-Alpha(PPAR-α). In addition, our study may also serve as a reference for studying obesity prevention and treatment programs at different ages.
Collapse
Affiliation(s)
- Jiaqi Xu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower HospitalSchool of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing UniversityNanjingChina
| | - Huangru Xu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower HospitalSchool of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing UniversityNanjingChina
| | - Feiyan Yang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower HospitalSchool of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing UniversityNanjingChina
| | - Yawen Xie
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower HospitalSchool of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing UniversityNanjingChina
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower HospitalSchool of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing UniversityNanjingChina
| | - Siyu Mao
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower HospitalSchool of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing UniversityNanjingChina
| | - Min Lu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower HospitalSchool of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing UniversityNanjingChina
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower HospitalSchool of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing UniversityNanjingChina
| | - Zi‐Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower HospitalSchool of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing UniversityNanjingChina
- Faculty of Pharmaceutical SciencesXinxiang Medical UniversityXinxiangChina
- Changzhou High‐Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.ChangzhouChina
| |
Collapse
|
17
|
Gryaznova M, Smirnova Y, Burakova I, Morozova P, Lagutina S, Chizhkov P, Korneeva O, Syromyatnikov M. Fecal Microbiota Characteristics in Constipation-Predominant and Mixed-Type Irritable Bowel Syndrome. Microorganisms 2024; 12:1414. [PMID: 39065182 PMCID: PMC11278693 DOI: 10.3390/microorganisms12071414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a common condition that affects the lifestyle of patients. It is associated with significant changes in the composition of the gut microbiome, but the underlying microbial mechanisms remain to be fully understood. We study the fecal microbiome of patients with constipation-predominant IBS (IBS-C) and mixed-type IBS (IBS-M). METHODS We sequenced the V3 region of the 16S rRNA on the Ion Torrent PGM sequencing platform to study the microbiome. RESULTS In the patients with IBS-C and IBS-M, an increase in alpha diversity was found, compared to the healthy group, and differences in beta diversity were also noted. At the phylum level, both IBS subtypes showed an increase in the Firmicutes/Bacteroidetes ratio, as well as an increase in the abundance of Actinobacteria and Verrucomicrobiota. Changes in some types of bacteria were characteristic of only one of the IBS subtypes, while no statistically significant differences in the composition of the microbiome were detected between IBS-C and IBS-M. CONCLUSIONS This study was the first to demonstrate the association of Turicibacter sanguinis, Mitsuokella jalaludinii, Erysipelotrichaceae UCG-003, Senegalimassilia anaerobia, Corynebacterium jeikeium, Bacteroides faecichinchillae, Leuconostoc carnosum, and Parabacteroides merdae with IBS subtypes.
Collapse
Affiliation(s)
- Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (Y.S.); (I.B.); (P.M.); (O.K.)
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (Y.S.); (I.B.); (P.M.); (O.K.)
| | - Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (Y.S.); (I.B.); (P.M.); (O.K.)
| | - Polina Morozova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (Y.S.); (I.B.); (P.M.); (O.K.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia;
| | - Svetlana Lagutina
- Department of Polyclinic Therapy, Voronezh State Medical University Named after N.N. Burdenko, 394036 Voronezh, Russia;
| | - Pavel Chizhkov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia;
| | - Olga Korneeva
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (Y.S.); (I.B.); (P.M.); (O.K.)
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (Y.S.); (I.B.); (P.M.); (O.K.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia;
| |
Collapse
|
18
|
Rajindrajith S, Boey CCM, Devanarayana NM, Niriella MA, Thapar N, Benninga MA. Navigating through 65 years of insights: lessons learned on functional abdominal pain in children. Eur J Pediatr 2024:10.1007/s00431-024-05667-4. [PMID: 38972964 DOI: 10.1007/s00431-024-05667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
In 1958, Apley and Naish authored a groundbreaking paper in Archives of Disease in Childhood, elucidating the epidemiology and risk factors of recurrent abdominal pain in children-a subject that had confounded clinicians of their time. Surprisingly, even after 65 years, there are several unanswered questions regarding the etiology, pathophysiology, and management of pediatric abdominal pain. Contrary to the prevailing notion that children naturally outgrow functional abdominal pain, compelling evidence suggests it's possible these children develop a number of clinically significant psychological issues that could profoundly impact their quality of life and, consequently, future health and educational outcomes. In this light, we aimed to comprehensively review the current literature to update the knowledge of practicing clinicians on functional abdominal pain, summarizing the evidence from the last 65 years.Conclusion: The enduring unanswered questions surrounding childhood abdominal pain continue to challenge clinicians, resulting in unnecessary investigations, thereby contributing to substantial healthcare expenditures. It is also evident that children with long-standing symptoms would progress to adulthood with the potential to develop irritable bowel syndrome and many psychological disturbances. Several key interventions using pharmacological agents, such as amitriptyline, showed that some of these drugs are no more effective than the placebo in clinical trials. Several research during the recent past suggest that psychological interventions such as gut-directed hypnotherapy alleviate symptoms and ensure better prognosis in the long run. Therefore, clinicians and researchers must join hands to explore the pathophysiological mechanisms underpinning functional abdominal pain and novel therapeutic strategies to ensure the well-being of these children. What is Known: • Functional abdominal pain disorders are common among children, with a worldwide prevalence of 13.5% of children suffering from at least one of these disorders • These disorders contribute to a significant reduction in the quality of life of affected children and their families and lead to an array of psychological problems What is New: • The biological basis of functional abdominal pain is becoming more explicit, including complex interactions between altered microbiome, deranged motility, and psychological dysfunction with gut-brain interactions • Novel approaches giving minimal emphasis on pharmacological interventions and exploring psychological interventions are showing promising results.
Collapse
Affiliation(s)
- Shaman Rajindrajith
- Department of Pediatrics, Faculty of Medicine, University of Colombo, Colombo 8, 00800, Western Province, Sri Lanka.
| | - Christopher Chiong-Meng Boey
- Department of Paediatrics, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- Department of Paediatrics, Faculty of Medicine, University of Malaya, Kuala Lampur, Malaysia
| | | | | | - Nikhil Thapar
- Department of Gastroenterology, Hepatology and Liver Transplant, Queensland Children's Hospital, Brisbane, Australia
| | - Marc Alexander Benninga
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
JohnBritto JS, Di Ciaula A, Noto A, Cassano V, Sciacqua A, Khalil M, Portincasa P, Bonfrate L. Gender-specific insights into the irritable bowel syndrome pathophysiology. Focus on gut dysbiosis and permeability. Eur J Intern Med 2024; 125:10-18. [PMID: 38467533 DOI: 10.1016/j.ejim.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disorder involving the brain-gut interaction. IBS is characterized by persistent abdominal pain and changes in bowel habits. IBS exerts significant impacts on quality of life and imposes huge economic costs. Global epidemiological data reveal variations in IBS prevalence, both globally and between genders, necessitating comprehensive studies to uncover potential societal and cultural influences. While the exact pathophysiology of IBS remains incompletely understood, the mechanism involves a dysregulation of the brain-gut axis, leading to disturbed intestinal motility, local inflammation, altered intestinal permeability, visceral sensitivity, and gut microbiota composition. We reviewed several gender-related pathophysiological aspects of IBS pathophysiology, by focusing on gut dysbiosis and intestinal permeability. This perspective paves the way to personalized and multidimensional clinical management of individuals with IBS.
Collapse
Affiliation(s)
- Jerlin Stephy JohnBritto
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Antonino Noto
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Velia Cassano
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy.
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
20
|
Wang Y, Liu Q, Liu Y, Qiao W, Zhao J, Cao H, Liu Y, Chen L. Advances in the composition, efficacy, and mimicking of human milk phospholipids. Food Funct 2024; 15:6254-6273. [PMID: 38787648 DOI: 10.1039/d4fo00539b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Phospholipids are the essential components of human milk, contributing to the enhancement of cognitive development, regulation of immune functions, and mitigation of elevated cholesterol levels. Infant formulas supplemented with phospholipids can change the composition, content, and globule membrane structure of milk lipids, improving their digestive properties and nutritional value. However, mimicking phospholipids in infant formulas is currently limited, and the supplemented standards of phospholipid species and amounts in infant formulas are unknown. Consequently, there is a significant difference between the phospholipids in infant formulas and those in human milk. This article reviews the recent progress in human milk phospholipid research, aiming to describe the composition, content, and positive effects of human milk phospholipids, as well as summarises the dietary sources of phospholipid supplementation and the current state of human milk phospholipid mimicking in infant formulas. This review provides clear directions for research on mimicking human milk phospholipids and evaluating the nutritional functions of phospholipids in infants.
Collapse
Affiliation(s)
- Yuru Wang
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Qian Liu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Huiru Cao
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Sanyuan Foods Co. Ltd., No. 8, Yingchang Street 100076, Yinghai Town, Daxing District, Beijing, China.
| |
Collapse
|
21
|
Bolia R. All Fibers Are Not Created Equal. Gastroenterology 2024:S0016-5085(24)05059-5. [PMID: 38880214 DOI: 10.1053/j.gastro.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024]
Affiliation(s)
- Rishi Bolia
- Department of Gastroenterology, Hepatology, and Liver Transplant, Queensland Children's Hospital, Brisbane, Australia
| |
Collapse
|
22
|
Otaru N, Pugin B, Plüss S, Hojsak I, Braegger C, Lacroix C. A pilot case-control study on the fecal microbiota of pediatric functional abdominal pain-not otherwise specified and the role of early life stress. MICROBIOME RESEARCH REPORTS 2024; 3:32. [PMID: 39421253 PMCID: PMC11485736 DOI: 10.20517/mrr.2023.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 10/19/2024]
Abstract
Background: Gut microbial features and the role of early life stress in pediatric functional abdominal pain-not otherwise specified (FAP-NOS) have never been investigated before. Here, we hypothesize that early life stress is more prevalent in FAP-NOS compared to healthy controls and that fecal microbial profiles and related metabolites differ between groups. Methods: In an international multicenter case-control study, FAP-NOS patients (n = 40) were compared to healthy controls (n = 55). Stool samples and demographic and clinical data including early life traumatic events and antibiotics treatments were collected from children aged four to twelve years. Fecal microbial profiles were assessed with 16S rRNA gene amplicon sequencing. Microbial metabolite concentrations in fecal supernatant, including short-chain fatty acids and amino acids, were detected via liquid chromatography. Results: Microbial richness was increased in FAP-NOS compared to healthy controls and microbial composition (unweighted UniFrac) differed between groups. Three distinct amplicon sequencing variants and two distinct species were enriched in FAP-NOS compared to controls, with no observed changes at higher taxonomic levels. No differences in microbial metabolites and early life stress were observed between groups. Conclusion: The presented hypothesis could not be proven, with no observed differences in occurrence of early life stress, and fecal microbial metabolic profiles between pediatric FAP-NOS and healthy controls. Pediatric FAP-NOS patients exhibited mild differences in the fecal microbial community compared with controls. Further large-scale studies with high-resolution techniques are warranted to address the biological relevance of present observations.
Collapse
Affiliation(s)
- Nize Otaru
- Nutrition Research Unit, University Children’s Hospital Zürich, Zürich 8032, Switzerland
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology (HEST), ETH Zürich, Zürich 8092, Switzerland
| | - Benoît Pugin
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology (HEST), ETH Zürich, Zürich 8092, Switzerland
| | - Serafina Plüss
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology (HEST), ETH Zürich, Zürich 8092, Switzerland
| | - Iva Hojsak
- Referral Center for Pediatric Gastroenterology and Nutrition, Children’s Hospital Zagreb, Zagreb 10000, Croatia
- University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Christian Braegger
- Nutrition Research Unit, University Children’s Hospital Zürich, Zürich 8032, Switzerland
- Authors contributed equally
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology (HEST), ETH Zürich, Zürich 8092, Switzerland
- Authors contributed equally
| |
Collapse
|
23
|
Zeevenhooven J, Zeevenhooven L, Biesbroek A, Schappin R, Vlieger AM, van Sleuwen BE, L'Hoir MP, Benninga MA. Functional gastrointestinal disorders, quality of life, and behaviour in adolescents with history of infant colic. Acta Paediatr 2024; 113:1435-1443. [PMID: 38535502 DOI: 10.1111/apa.17215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 06/09/2024]
Abstract
AIM To assess the prevalence of functional gastrointestinal disorders (FGIDs), health-related quality of life (HRQOL), and behavioural problems in a cohort of adolescents with a history of infant colic (IC), as defined by Wessel's criteria. METHODS 388 adolescents, aged 15-18 years, who participated in a randomised controlled trial for infants with colic, were invited for our observational follow-up study. Prevalence of FGIDs was assessed with the Rome IV Questionnaire on Paediatric Gastrointestinal Disorders (RIV-QPGD), HRQOL through self-report of the Paediatric Quality of Life Inventory (PedsQL), and behavioural problems through parent-report of the child behaviour checklist (CBCL). Multivariable models were used to compare prevalence rates of FGIDs and HRQOL scores. RESULTS 190 (49%) adolescents with a history of IC (cases) and 381 controls were included (median age 17.0 [IQR 16.0-17.0] and 16.0 [15.0-17.0] years, respectively). Cases had a significantly higher risk for postprandial distress syndrome compared to controls (aOR 2.49 (95%CI 1.18-5.25), p = 0.002). After multivariable regression, total, physical and school HRQOL scores were significantly lower in cases compared to controls (p = 0.003, 0.001, and 0.009). CONCLUSION Adolescents with a history of IC demonstrate higher prevalence rates of postprandial distress syndrome compared to controls. However, conclusions should be made with caution due to attrition and information bias.
Collapse
Affiliation(s)
- Judith Zeevenhooven
- Department of Medical Psychology and Social Work, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Emma Children's Hospital, Amsterdam UMC, Pediatric Gastroenterology, Hepatology and Nutrition, University of Amsterdam, Amsterdam, The Netherlands
| | - Lucas Zeevenhooven
- Department of Medical Psychology and Social Work, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Angela Biesbroek
- Department of Medical Psychology and Social Work, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Renske Schappin
- Department of Medical Psychology and Social Work, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arine M Vlieger
- Department of Pediatrics, St. Antonius Hospital, Nieuwegein, The Netherlands
| | | | - Monique P L'Hoir
- Nutrition and Health over the Lifecourse, Wageningen University & Research, Wageningen, The Netherlands
| | - Marc A Benninga
- Emma Children's Hospital, Amsterdam UMC, Pediatric Gastroenterology, Hepatology and Nutrition, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Liu X, Li M, Jian C, Qin X. Characterization of "microbiome-metabolome-immunity" in depressed rats with divergent responses to Paroxetine. J Affect Disord 2024; 352:201-213. [PMID: 38346646 DOI: 10.1016/j.jad.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVES Selective serotonin reuptake inhibitors (SSRIs) are the first-line anti-depressants. Unfortunately, about 30 % depressed patients do not effectively respond to SSRIs. It is still unclear that the gastrointestinal characteristics of responders and non-responders, and the differences. METHODS Herein, we characterized gut microbiome and metabolome of depressed rats with differential responses to Paroxetine (PX) by 16S rRNA sequencing and 1H NMR-based metabolomics, respectively. On top of this, we constructed both inter- and inner-layer networks, intuitively showing the correlations among behavioral indicators, immune factors, intestinal bacteria, and differential metabolites. RESULTS Consequently, we found that depressed rats differently responded to PX, which could be divided into PX responsive (PX-R) and non-responsive (PX-N) groups. Firstly, the depressive behaviors of PX-R rats and PX-N rats significantly differed. Meanwhile, inflammatory balance was also characterized for depressed rats with different responses to PX. Overall, PX-R rats and PX-N rats exhibited differential gut microbiome and metabolome, including intestinal structures, intestinal functions, metabolic profiles, metabolites, and metabolic pathways. LIMITATIONS Metabolites that identified by metabolomics based on 1H NMR are not comprehensive enough. CONCLUSIONS Taken together, our study demonstrated that gut microbiome and metabolome, as well as related functions, are of significance in differential responses of depressed rats to PX, which might be novel insights in uncovering the mechanisms of differences in efficacies of antidepressants.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China.
| | - Mengyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Chen Jian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
25
|
Cadena-Ullauri S, Guevara-Ramírez P, Ruiz-Pozo VA, Tamayo-Trujillo R, Paz-Cruz E, Zambrano-Villacres R, Simancas-Racines D, Zambrano AK. The effect of intermittent fasting on microbiota as a therapeutic approach in obesity. Front Nutr 2024; 11:1393292. [PMID: 38725575 PMCID: PMC11079193 DOI: 10.3389/fnut.2024.1393292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Obesity, a public health challenge, arises from a complex interplay of factors such as dietary habits and genetic predisposition. Alterations in gut microbiota, characterized by an imbalance between Firmicutes and Bacteroidetes, further exacerbate metabolic dysregulation, promoting inflammation and metabolic disturbances. Intermittent fasting (IF) emerges as a promising dietary strategy showing efficacy in weight management and favoring fat utilization. Studies have used mice as animal models to demonstrate the impact of IF on gut microbiota composition, highlighting enhanced metabolism and reduced inflammation. In humans, preliminary evidence suggests that IF promotes a healthy microbiota profile, with increased richness and abundance of beneficial bacterial strains like Lactobacillus and Akkermansia. However, further clinical trials are necessary to validate these findings and elucidate the long-term effects of IF on microbiota and obesity. Future research should focus on specific tissues and cells, the use of advanced -omics techniques, and exploring the interaction of IF with other dietary patterns, to analyze microbiota composition, gene expression, and potential synergistic effects for enhanced metabolic health. While preliminary evidence supports the potential benefits of IF in obesity management and microbiota regulation, further research with diverse populations and robust methodologies is necessary to understand its implications and optimize personalized dietary interventions. This review explores the potential impact of IF on gut microbiota and its intricate relationship with obesity. Specifically, we will focus on elucidating the underlying mechanisms through which IF affects microbiota composition, as well as its subsequent effects on obesity.
Collapse
Affiliation(s)
- Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
26
|
Consales A, Toscano L, Ceriotti C, Tiraferri V, Castaldi S, Giannì ML. From womb to world: mapping gut microbiota-related health literacy among Italian mothers, a cross-sectional study. BMC Public Health 2024; 24:1012. [PMID: 38605379 PMCID: PMC11010343 DOI: 10.1186/s12889-024-18497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND The gut microbiota is a key determinant of long-term health. Promoting maternal health literacy may enhance children well-being. Aim of the present study was to assess gut microbiota-related health literacy of Italian women and identify potential gaps in awareness. METHODS A cross-sectional survey study was conducted using an online questionnaire (17 questions) on determinants and long-term impact of infant gut microbiota. The survey targeted Italian pregnant women and mothers of children under 2 years old, and was distributed through various social media channels between September 28th and November 15th, 2022. A total score was calculated as the sum of positive answers. Data on demographics, pregnancy status, and pre-existing knowledge of the infant gut microbiota were also collected. Descriptive and inferential statistics were applied. RESULTS The questionnaire was completed by 1076 women. Median total score was 9 [7-11]. The 81.7% of respondents declared prior knowledge of the gut microbiota. The internet was among the most commonly cited primary sources of information. Independent predictors of total score were having a university degree (B = 0.656, p = 0.002) and prior knowledge (B = 2.246, p < 0.001). Conversely, older age was associated with lower total scores (B = -0.092, p < 0.001). The least known determinants of infant gut microbiota were gestational BMI, prematurity, mode of delivery and NICU stay. Pregnant women failed to recognize the role of breastfeeding in the development of infant gut microbiota more frequently than non-pregnant women. The 97.5% of participants reported increased interest in the gut microbiota, with heightened interest associated with prior knowledge. CONCLUSIONS Our study revealed a moderate level of knowledge about infant gut microbiota among respondents, emphasizing the positive impact of prior knowledge on understanding and interest. Targeted educational interventions are needed to address awareness gaps, especially concerning the influence of breastfeeding on infant gut microbiota. Healthcare providers have the potential to enhance women's knowledge and awareness of this topic.
Collapse
Affiliation(s)
- Alessandra Consales
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Letizia Toscano
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Chiara Ceriotti
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Valentina Tiraferri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Silvana Castaldi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Quality Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Lorella Giannì
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
27
|
Zhou Y, Tang J, Du W, Zhang Y, Ye BC. Screening potential biomarkers associated with insulin resistance in high-fat diet-fed mice by integrating metagenomics and untargeted metabolomics. Microbiol Spectr 2024; 12:e0409423. [PMID: 38411058 PMCID: PMC10986473 DOI: 10.1128/spectrum.04094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
Insulin resistance is the primary pathophysiological basis for metabolic syndrome and type 2 diabetes. Gut microbiota and microbiota-derived metabolites are pivotal in insulin resistance. However, identifying the specific microbes and key metabolites with causal roles is a challenging task, and the underlying mechanisms require further exploration. Here, we successfully constructed a model of insulin resistance in mice induced by a high-fat diet (HFD) and screened potential biomarkers associated with insulin resistance by integrating metagenomics and untargeted metabolomics. Our findings showed a significant increase in the abundance of 30 species of Alistipes in HFD mice compared to normal diet (ND) mice, while the abundance of Desulfovibrio and Candidatus Amulumruptor was significantly lower in HFD mice than in ND mice. Non-targeted metabolomics analysis identified 21 insulin resistance-associated metabolites, originating from the microbiota or co-metabolized by both the microbiota and the host. These metabolites were primarily enriched in aromatic amino acid metabolism (tryptophan metabolism, tyrosine metabolism, and phenylalanine metabolism) and arginine biosynthesis. Further analysis revealed a significant association between the three distinct genera and 21 differentiated metabolites in the HFD and ND mice. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of representative genomes from 12 species of the three distinct genera further revealed the functional potential in aromatic amino acid metabolism and arginine biosynthesis. This study lays the groundwork for future investigations into the mechanisms through which the gut microbiota and its metabolites impact insulin resistance. IMPORTANCE In this study, we aim to identify the microbes and metabolites linked to insulin resistance, some of which have not been previously reported in insulin resistance-related studies. This adds a complementary dimension to existing research. Furthermore, we establish a correlation between alterations in the gut microbiota and metabolite levels. These findings serve as a foundation for identifying the causal bacterial species and metabolites. They also offer insights that guide further exploration into the mechanisms through which these factors influence host insulin resistance.
Collapse
Affiliation(s)
- Yunyan Zhou
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Jiahui Tang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wei Du
- Laboratory of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yong Zhang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Laboratory of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
28
|
Wiley KS, Gregg AM, Fox MM, Lagishetty V, Sandman CA, Jacobs JP, Glynn LM. Contact with caregivers is associated with composition of the infant gastrointestinal microbiome in the first 6 months of life. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24858. [PMID: 37804008 PMCID: PMC10922139 DOI: 10.1002/ajpa.24858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2023] [Accepted: 09/24/2023] [Indexed: 10/08/2023]
Abstract
OBJECTIVES Little is known about how physical contact at birth and early caregiving environments influence the colonization of the infant gastrointestinal microbiome. We investigated how infant contact with caregivers at birth and within the first 2 weeks of life relates to the composition of the gastrointestinal microbiome in a sample of U.S. infants (n = 60). METHODS Skin-to-skin and physical contact with caregivers at birth and early caregiving environments were surveyed at 2 weeks postpartum. Stool samples were collected from infants at 2 weeks, 2, 6, and 12 months of age and underwent 16S rRNA sequencing as a proxy for the gastrointestinal microbiome. Associations between early caregiving environments and alpha and beta diversity, and differential abundance of bacteria at the genus level were assessed using PERMANOVA, and negative binomial mixed models in DEseq2. RESULTS Time in physical contact with caregivers explained 10% of variation in beta diversity at 2 weeks' age. The number of caregivers in the first few weeks of life explained 9% of variation in beta diversity at 2 weeks and the number of individuals in physical contact at birth explained 11% of variation in beta diversity at 6 months. Skin-to-skin contact on the day of birth was positively associated with the abundance of eight genera. Infants held for by more individuals had greater abundance of eight genera. DISCUSSION Results reveal a potential mechanism (skin-to-skin and physical contact) by which caregivers influence the infant gastrointestinal microbiome. Our findings contribute to work exploring the social transmission of microbes.
Collapse
Affiliation(s)
- Kyle S Wiley
- Department of Anthropology, UCLA, Los Angeles, California, USA
- Department of Psychiatry & Biobehavioral Sciences, UCLA, Los Angeles, California, USA
| | - Andrew M Gregg
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Molly M Fox
- Department of Anthropology, UCLA, Los Angeles, California, USA
- Department of Psychiatry & Biobehavioral Sciences, UCLA, Los Angeles, California, USA
| | - Venu Lagishetty
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Curt A Sandman
- Department of Psychiatry and Human Behavior, UC Irvine, Irvine, California, USA
| | - Jonathan P Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Laura M Glynn
- Department of Psychology, Chapman University, Orange, California, USA
| |
Collapse
|
29
|
So SY, Badu S, Wu Q, Yalcinkaya N, Mirabile Y, Castaneda R, Musaad S, Heitkemper M, Savidge TC, Shulman RJ. Sex-Dependent Efficacy of Dietary Fiber in Pediatric Functional Abdominal Pain. Gastroenterology 2024; 166:645-657.e14. [PMID: 38123024 DOI: 10.1053/j.gastro.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND & AIMS Functional abdominal pain disorders (FAPDs) are more prevalent in female patients. Dietary fiber may alleviate FAPD symptoms; however, whether this effect is sex dependent remains unclear. We investigated the sex dependency of dietary fiber benefit on abdominal pain in children with FAPDs and explored the potential involvement of the gut microbiome. METHODS In 2 cross-sectional cohorts of children with FAPDs (n = 209) and healthy control individuals (n = 105), we correlated dietary fiber intake with abdominal pain symptoms after stratifying by sex. We also performed sex-stratified and sex-interaction analyses on data from a double-blind trial in children with irritable bowel syndrome randomized to psyllium fiber (n = 39) or placebo (n = 49) for 6 weeks. Shotgun metagenomics was used to investigate gut microbiome community changes potentially linking dietary fiber intake with abdominal pain. RESULTS In the cross-sectional cohorts, fiber intake inversely correlated with pain symptoms in boys (pain episodes: r = -0.24, P = .005; pain days: r = -0.24, P = 0.004) but not in girls. Similarly, in the randomized trial, psyllium fiber reduced the number of pain episodes in boys (P = .012) but not in girls. Generalized linear regression models confirmed that boys treated with psyllium fiber had greater reduction in pain episodes than girls (P = .007 for fiber × sex × time interaction). Age, sexual development, irritable bowel syndrome subtype, stool form, and microbiome composition were not significant determinants in the dietary fiber effects on pain reduction. CONCLUSIONS Dietary fiber preferentially reduces abdominal pain frequency in boys, highlighting the importance of considering sex in future dietary intervention studies for FAPDs. (ClincialTrials.gov, Number NCT00526903).
Collapse
Affiliation(s)
- Sik Yu So
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Shyam Badu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Qinglong Wu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Nazli Yalcinkaya
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Yiming Mirabile
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Robert Castaneda
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Salma Musaad
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Margaret Heitkemper
- Department of Biobehavioral Nursing and Health Informatics, School of Nursing, University of Washington, Seattle, Washington
| | - Tor C Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Robert J Shulman
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital, Houston, Texas.
| |
Collapse
|
30
|
Pak R, Cho M, Pride K, Abd-Elsayed A. The Gut Microbiota and Chronic Pain. Curr Pain Headache Rep 2024; 28:259-269. [PMID: 38345694 DOI: 10.1007/s11916-024-01221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/16/2024]
Abstract
PURPOSE OF REVIEW To examine the effects and interactions between gut microbia and chronic pain. RECENT FINDINGS The gut microbiome has been an area of interest in both the scientific and general audience due to a growing body of evidence suggesting its influence in a variety of health and disease states. Communication between the central nervous system (CNS) and gut microbiome is said to be bidirectional, in what is referred to as the gut-brain axis. Chronic pain is a prevalent costly personal and public health burden and so, there is a vested interest in devising safe and efficacious treatments. Numerous studies, many of which are animal studies, have been conducted to examine the gut microbiome's role in the pathophysiology of chronic pain states, such as neuropathy, inflammation, visceral pain, etc. As the understanding of this relationship grows, so does the potential for therapeutic targeting of the gut microbiome in chronic pain.
Collapse
Affiliation(s)
- Ray Pak
- Department of Physical Medicine and Rehabilitation, New York Medical College/Metropolitan, New York, NY, USA
| | - Michelle Cho
- Department of Physical Medicine and Rehabilitation, New York Medical College/Metropolitan, New York, NY, USA
| | - Keth Pride
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, B6/319 CSC, Madison, WI, 53792-3272, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, B6/319 CSC, Madison, WI, 53792-3272, USA.
| |
Collapse
|
31
|
Mikulska J, Pietrzak D, Rękawek P, Siudaj K, Walczak-Nowicka ŁJ, Herbet M. Celiac disease and depressive disorders as nutritional implications related to common factors - A comprehensive review. Behav Brain Res 2024; 462:114886. [PMID: 38309373 DOI: 10.1016/j.bbr.2024.114886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Celiac disease (CD) is an immune-mediated disease affecting the small intestine. The only treatment strategy for CD is the gluten-free diet (GFD). One of the more common mental disorders in CD patients is major depressive disorder (MDD). The influence of GFD on the occurrence of MDD symptoms in patients with CD will be evaluated. This diet often reduces nutritional deficiencies in these patients and also helps to reduce depressive symptoms. Both disease entities are often dominated by the same deficiencies of nutrients such as iron, zinc, selenium, iodine, or B and D vitamins. Deficiencies of particular components in CD can favor MDD and vice versa. Gluten can adversely affect the mental state of patients without CD. Also, intestinal microbiota may play an important role in the described process. This work aims to comprehensively assess the common factors involved in the pathomechanisms of MDD and CD, with particular emphasis on nutrient imbalances. Given the complexity of both disease entities, and the many common links, more research related to improving mental health in these patients and the implementation of a GFD would need to be conducted, but it appears to be a viable pathway to improving the quality of life and health of people struggling with CD and MDD. Therefore, probiotics, micronutrients, macronutrients, and vitamin supplements are recommended to reduce the risk of MDD, given that they may alleviate the symptoms of both these disease entities. In turn, in patients with MDD, it is worth considering testing for CD.
Collapse
Affiliation(s)
- Joanna Mikulska
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| | - Diana Pietrzak
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| | - Paweł Rękawek
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| | - Krystian Siudaj
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| | - Łucja Justyna Walczak-Nowicka
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland.
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
32
|
Jang JH, Jang SY, Ahn S, Oh JY, Yeom M, Ko SJ, Park JW, Kwon SK, Kim K, Lee IS, Hahm DH, Park HJ. Chronic Gut Inflammation and Dysbiosis in IBS: Unraveling Their Contribution to Atopic Dermatitis Progression. Int J Mol Sci 2024; 25:2753. [PMID: 38473999 DOI: 10.3390/ijms25052753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Emerging evidence suggests a link between atopic dermatitis (AD) and gastrointestinal disorders, particularly in relation to gut microbial dysbiosis. This study explored the potential exacerbation of AD by gut inflammation and microbial imbalances using an irritable bowel syndrome (IBS) mouse model. Chronic gut inflammation was induced in the model by intrarectal injection of 2,4,6-trinitrobenzene sulfonic acid (TNBS), followed by a 4-week development period. We noted significant upregulation of proinflammatory cytokines in the colon and evident gut microbial dysbiosis in the IBS mice. Additionally, these mice exhibited impaired gut barrier function, increased permeability, and elevated systemic inflammation markers such as IL-6 and LPS. A subsequent MC903 challenge on the right cheek lasting for 7 days revealed more severe AD symptoms in IBS mice compared to controls. Further, fecal microbial transplantation (FMT) from IBS mice resulted in aggravated AD symptoms, a result similarly observed with FMT from an IBS patient. Notably, an increased abundance of Alistipes in the feces of IBS mice correlated with heightened systemic and localized inflammation in both the gut and skin. These findings collectively indicate that chronic gut inflammation and microbial dysbiosis in IBS are critical factors exacerbating AD, highlighting the integral relationship between gut and skin health.
Collapse
Affiliation(s)
- Jae-Hwan Jang
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 05854, Republic of Korea
| | - Sun-Young Jang
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Anatomy and Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sora Ahn
- Department of Anatomy and Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ju-Young Oh
- Department of Anatomy and Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mijung Yeom
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seok-Jae Ko
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Woo Park
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soon-Kyeong Kwon
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyuseok Kim
- Department of Ophthalmology, Otorhinolaryngology, and Dermatology of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - In-Seon Lee
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Meridian & Acupoint, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dae-Hyun Hahm
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hi-Joon Park
- Department of Anatomy and Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of KHU-KIST Convergence Science & Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
33
|
Rosa D, Zablah RA, Vazquez-Frias R. Unraveling the complexity of Disorders of the Gut-Brain Interaction: the gut microbiota connection in children. Front Pediatr 2024; 11:1283389. [PMID: 38433954 PMCID: PMC10904537 DOI: 10.3389/fped.2023.1283389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/27/2023] [Indexed: 03/05/2024] Open
Abstract
"Disorders of Gut-Brain Interaction (DGBIs)," formerly referred to as "Functional Gastrointestinal Disorders (FGIDs)," encompass a prevalent array of chronic or recurring gastrointestinal symptoms that notably impact the quality of life for affected children and their families. Recent studies have elucidated the intricate pathophysiology of DGBIs, underscoring their correlation with gut microbiota. This review seeks to explore the present comprehension of the gut microbiota's role in DGBI development. While other factors can contribute to DGBIs, the gut microbiota prominently influences the onset and progression of these conditions. According to the Rome IV diagnostic criteria, DGBI prevalence is approximately 40% worldwide. The Rome Foundation has diligently worked for nearly three decades to refine our comprehension of DGBIs. By centering on the gut microbiota, this review sheds light on potential therapeutic interventions for DGBIs, potentially enhancing the quality of life for pediatric patients and their families.
Collapse
Affiliation(s)
- Dimas Rosa
- Grupo de Investigación del Caribe y Centroamérica para la Microbiota, Probióticos y Prebióticos, GICCAMPP, la Romana, Dominican Republic
| | - Roberto Arturo Zablah
- Grupo de Investigación del Caribe y Centroamérica para la Microbiota, Probióticos y Prebióticos, GICCAMPP, la Romana, Dominican Republic
- Servicio de Gastroenterología y Endoscopia Digestiva, Hospital de Niños “Benjamín Bloom”, San Salvador, El Salvador
| | - Rodrigo Vazquez-Frias
- Grupo de Investigación del Caribe y Centroamérica para la Microbiota, Probióticos y Prebióticos, GICCAMPP, la Romana, Dominican Republic
- Departamento de Gastroenterología y Nutrición Pediátrica, Instituto Nacional de Salud Hospital Infantil de México Federico Gómez, Ciudad de México, México
| |
Collapse
|
34
|
Paukkonen I, Törrönen EN, Lok J, Schwab U, El-Nezami H. The impact of intermittent fasting on gut microbiota: a systematic review of human studies. Front Nutr 2024; 11:1342787. [PMID: 38410639 PMCID: PMC10894978 DOI: 10.3389/fnut.2024.1342787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/25/2024] [Indexed: 02/28/2024] Open
Abstract
Background Intermittent fasting (IF) has gained popularity in interventions targeting overweight, obesity and metabolic syndrome. IF may affect the gut microbiome composition and therefore have various effects on gut microbiome mediated functions in humans. Research on the effects of IF on human gut microbiome is limited. Therefore, the objective of this systematic review was to determine how different types of IF affect the human gut microbiome. Methods A literature search was conducted for studies investigating the association of different types of IF and gut microbiota richness, alpha and beta diversity, and composition in human subjects. Databases included Cochrane Library (RRID:SCR_013000), PubMed (RRID:SCR_004846), Scopus (RRID:SCR_022559) and Web of Science (RRID:SCR_022706). A total of 1,332 studies were retrieved, of which 940 remained after removing duplicates. Ultimately, a total of 8 studies were included in the review. The included studies were randomized controlled trials, quasi-experimental studies and pilot studies implementing an IF intervention (time-restricted eating, alternate day fasting or 5:2 diet) in healthy subjects or subjects with any disease. Results Most studies found an association between IF and gut microbiota richness, diversity and compositional changes. There was heterogeneity in the results, and bacteria which were found to be statistically significantly affected by IF varied widely depending on the study. Conclusion The findings in this systematic review suggest that IF influences gut microbiota. It seems possible that IF can improve richness and alpha diversity. Due to the substantial heterogeneity of the results, more research is required to validate these findings and clarify whether the compositional changes might be beneficial to human health. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021241619.
Collapse
Affiliation(s)
- Isa Paukkonen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Elli-Noora Törrönen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johnson Lok
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Hani El-Nezami
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Molecular and Cell Biology Research Area, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
35
|
Zhao XQ, Wang L, Zhu CL, Xue XH, Xia XJ, Wu XL, Wu YD, Liu SQ, Zhang GP, Bai YY, Fotina H, Hu JH. Oral Administration of the Antimicrobial Peptide Mastoparan X Alleviates Enterohemorrhagic Escherichia coli-Induced Intestinal Inflammation and Regulates the Gut Microbiota. Probiotics Antimicrob Proteins 2024; 16:138-151. [PMID: 36515889 DOI: 10.1007/s12602-022-10013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 12/15/2022]
Abstract
The gut microbiota plays an important role in intestinal immune system development and in driving inflammation. Antibiotic administration for therapeutic purposes causes an imbalance in the gut microbiota. Antimicrobial peptides can regulate the gut microbiota and maintain intestinal homeostasis. The aim of this study was to investigate the anti-inflammatory effects and regulation of the gut microbiota by the orally administered antimicrobial peptide mastoparan X (MPX). In this study, Escherichia coli was used to induce intestinal inflammation, and the results showed that MPX+ E. coli alleviated weight loss and intestinal pathological changes in necropsy specimens of E. coli-infected mice. MPX+ E. coli reduced the serum levels of the inflammation-related proteins interleukin-2, interleukin-6, tumour necrosis factor-α, myeloperoxidase, and lactate dehydrogenase on days 7 and 28. Furthermore, MPX+ E. coli increased the length of villi and reduced the infiltration of inflammatory cells into the jejunum and colon post infection. Scanning electron microscopy and transmission electron microscopy results showed that MPX could improve the morphology of jejunum villi and microvilli and increase tight junction protein levels. 16S rRNA sequencing analysis of caecal content samples showed that the species diversity and richness were lower in the E. coli-infected group. At the genus level, MPX+ E. coli significantly reduced the abundance of Bacteroidales and Alistipes and enhanced the relative abundance of Muribaculaceae. Alpha-diversity analyses (Shannon index) showed that MPX significantly increased the microbial diversity of mice. Overall, this study is the first to investigate the effects of oral administration of MPX on intestinal inflammation and the gut microbiota, providing a new perspective regarding the prevention of enteritis and maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Xue Qin Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
- Divisions of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Chun Ling Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiang Hong Xue
- Divisions of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiao Jing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xi Long Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Yun Di Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Shan Qin Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | - Gai Ping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yue Yu Bai
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hanna Fotina
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine.
| | - Jian He Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| |
Collapse
|
36
|
Wu Q, Badu S, So SY, Treangen TJ, Savidge TC. The pan-microbiome profiling system Taxa4Meta identifies clinical dysbiotic features and classifies diarrheal disease. J Clin Invest 2024; 134:e170859. [PMID: 37962956 PMCID: PMC10786686 DOI: 10.1172/jci170859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Targeted metagenomic sequencing is an emerging strategy to survey disease-specific microbiome biomarkers for clinical diagnosis and prognosis. However, this approach often yields inconsistent or conflicting results owing to inadequate study power and sequencing bias. We introduce Taxa4Meta, a bioinformatics pipeline explicitly designed to compensate for technical and demographic bias. We designed and validated Taxa4Meta for accurate taxonomic profiling of 16S rRNA amplicon data acquired from different sequencing strategies. Taxa4Meta offers significant potential in identifying clinical dysbiotic features that can reliably predict human disease, validated comprehensively via reanalysis of individual patient 16S data sets. We leveraged the power of Taxa4Meta's pan-microbiome profiling to generate 16S-based classifiers that exhibited excellent utility for stratification of diarrheal patients with Clostridioides difficile infection, irritable bowel syndrome, or inflammatory bowel diseases, which represent common misdiagnoses and pose significant challenges for clinical management. We believe that Taxa4Meta represents a new "best practices" approach to individual microbiome surveys that can be used to define gut dysbiosis at a population-scale level.
Collapse
Affiliation(s)
- Qinglong Wu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Shyam Badu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Sik Yu So
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Todd J. Treangen
- Department of Computer Science, Rice University, Houston, Texas, USA
| | - Tor C. Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
37
|
Wang W, Wang M, Peng H, Huang J, Wu T. Association of major depressive disorder and increased risk of irritable bowel syndrome: A population-based cohort study and a two-sample Mendelian randomization study in the UK biobank. J Affect Disord 2024; 345:419-426. [PMID: 37852586 DOI: 10.1016/j.jad.2023.10.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/08/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE To examine the association between depression and the risk of incident irritable bowel syndrome (IBS). METHODS We included 98,564 participants free of IBS in the UK biobank. Depression was defined by self-report and Hospital Episode Statistics. The main outcome was incident IBS. Cox proportional hazards regression models and two-sample mendelian randomization were performed to estimate the risk of incident IBS. RESULTS Among 98,564 participants, 8770 (8.9 %) participants had a depression diagnosis at baseline. During a median of 12.9-year follow-up, 224 cases of incident IBS were identified in patients with depression (2.0 per 1000 person-years), compared with 1625 cases in reference individuals (1.5 per 1000 person-years). After adjustment, the hazard ratio of incident IBS associated with depression was 1.26 (95 % CI: 1.01-1.41). Sensitivity analysis indicated similar results. The two-sample mendelian randomization based on the inverse variance weighted method provided evidence for the harmful role of depression in an increased risk of IBS with an OR of 1.57 (95 % CI: 1.24-1.99). LIMITATIONS Depression was mainly measured by self-report online CIDI-SF in the current study, rather than the gold diagnostic criteria including clinical structured interview, which might lead to potential measurement error. Lifestyle behaviors might change during the long-term follow-up, and time-varying covariates (i.e., smoking and alcohol status) may bias the estimate. CONCLUSIONS Depression is associated with an increased risk of incident IBS. Further studies are warranted to confirm the role of depression on incident IBS and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Xicheng District, Beijing 100088, China
| | - Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Beijing 100191, China
| | - Hexiang Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Beijing 100191, China
| | - Jie Huang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Beijing 100191, China.
| |
Collapse
|
38
|
Wal A, Wal P, Verma N, Pandey SS, Krishnan K, Bhowmick M. Children and Adolescents with Irritable Bowel Syndrome: Treatment and Management. Curr Pediatr Rev 2024; 20:166-177. [PMID: 36443973 DOI: 10.2174/1573396319666221128094843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/13/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a disorder that causes stomach pain in children and adolescents. It may also impact one's quality of life. IBS is linked to gastrointestinal issues such as diarrhoea and constipation. Despite the identification of several potential pathophysiological pathways, the aetiology of IBS remained unknown. OBJECTIVE The aim of this paper is to discuss the diagnosis, pathogenesis, case studies and treatment of Irritable bowel syndrome in children and adolescents. METHODS This systematic review covered relevant papers from the previous ten years that were accessible in Science Direct, Elsevier, NCBI, and Web of Science related to the pathophysiology and function of pharmacological drugs such as antidepressants, antispasmodics, prokinetics, and antibiotics in children with irritable bowel syndrome. RESULTS Only a few prospective therapy techniques have been investigated in children, and even fewer of those have been demonstrated to be effective. This article presents case studies including 50-59 children, which demonstrate a favourable acceptable impact that is more effective than a placebo in terms of reducing symptoms and improving the overall quality of life in children who have irritable bowel syndrome. Furthermore, the majority of the pathophysiological explanations and treatment options discussed are based on adult studies. These major issues arose when treating paediatric IBS, and they must be addressed in order to properly treat children with IBS. Trials that focus on many combinations of pharmacological and non-pharmacological therapies seem to be more helpful. DISCUSSION In recent years, a number of systematic reviews have been conducted to evaluate the efficacy of medication treatments in children for IBS; however, the dependability of these systematic reviews needs to be further investigated owing to the various experimental designs and levels of evidence used. This article highlights paediatric therapy options, including pharmaceutical medications such as antidepressants, antispasmodics, prokinetics, and antibiotics. The goal is to alleviate IBS symptoms while also enhancing the quality of life for children with this illness.
Collapse
Affiliation(s)
- Ankita Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Nh2 Kanpur Agra Highway Bhaunti, Kanpur, UP, India
| | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Nh2 Kanpur Agra Highway Bhaunti, Kanpur, UP, India
| | - Neha Verma
- Department of Pharmacy, Pranveer Singh Institute of Technology, Nh2 Kanpur Agra Highway Bhaunti, Kanpur, UP, India
| | | | - Karthickeyan Krishnan
- Institute of Science Technology & Advanced Studies Pallavaram, Chennai, 600117, Tamil Nadu, 600117, India
| | - Mithun Bhowmick
- D101 Shikshak Niketan, Campus of Bengal College of Pharmaceutical Sciences and Research, Bidhananagar Durgapur, West Bengal, 713212, India
| |
Collapse
|
39
|
Dicks LMT. Our Mental Health Is Determined by an Intrinsic Interplay between the Central Nervous System, Enteric Nerves, and Gut Microbiota. Int J Mol Sci 2023; 25:38. [PMID: 38203207 PMCID: PMC10778721 DOI: 10.3390/ijms25010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Bacteria in the gut microbiome play an intrinsic part in immune activation, intestinal permeability, enteric reflex, and entero-endocrine signaling. The gut microbiota communicates with the central nervous system (CNS) through the production of bile acids, short-chain fatty acids (SCFAs), glutamate (Glu), γ-aminobutyric acid (GABA), dopamine (DA), norepinephrine (NE), serotonin (5-HT), and histamine. A vast number of signals generated in the gastrointestinal tract (GIT) reach the brain via afferent fibers of the vagus nerve (VN). Signals from the CNS are returned to entero-epithelial cells (EES) via efferent VN fibers and communicate with 100 to 500 million neurons in the submucosa and myenteric plexus of the gut wall, which is referred to as the enteric nervous system (ENS). Intercommunications between the gut and CNS regulate mood, cognitive behavior, and neuropsychiatric disorders such as autism, depression, and schizophrenia. The modulation, development, and renewal of nerves in the ENS and changes in the gut microbiome alter the synthesis and degradation of neurotransmitters, ultimately influencing our mental health. The more we decipher the gut microbiome and understand its effect on neurotransmission, the closer we may get to developing novel therapeutic and psychobiotic compounds to improve cognitive functions and prevent mental disorders. In this review, the intricate control of entero-endocrine signaling and immune responses that keep the gut microbiome in a balanced state, and the influence that changing gut bacteria have on neuropsychiatric disorders, are discussed.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
40
|
Zhou H, Yu B, Sun J, Chen H, Liu Z, Ge L, Chen D. Comparison of maternal and neonatal gut microbial community and function in a porcine model. Anim Biotechnol 2023; 34:2972-2978. [PMID: 36165762 DOI: 10.1080/10495398.2022.2126367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Our knowledge of the difference in maternal and neonatal gut microbiota composition is not fully understood. Using the Bama miniature pig model, the bacterial community in the feces from sows and piglets was analyzed on an IonS5TMXL platform targeting the single-end reads strategy. Results revealed that the maternal and neonatal bacteria profile in the pig model was distinct. Compared with the piglets, sows had higher proportions of bacteria in Spirochetes, Clostridiales, and Spirochaetales (p < 0.10) and had a lower abundance of bacteria in Tyzzerella (p < 0.05) and Alistipes (p < 0.10). Meanwhile, the proportions of bacteria in Oscillibacter and the index of Chao1, Shannon, and observed_species increased in the sows compared with those in the piglets (p < 0.05). Moreover, the abundance of bacteria associated with the human disease was higher (p < 0.05) and the population of bacteria associated with cellular processes was lower (p < 0.05) in the piglets compared with those in the sows. Collectively, the diversity and beneficial bacteria populations in the sow fecal microbiota exhibit more than those in the piglets. This study indicates that maternal fecal microbiota may be a beneficial source of transplanted bacteria to promote healthy function in neonates.
Collapse
Affiliation(s)
- Hua Zhou
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
41
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
42
|
Wang S, Zang M, Yang X, Lv L, Chen L, Cui J, Liu Y, Xia Y, Zhou N, Yang Z, Li Y, Shi B. Gut microbiome in men with chronic prostatitis/chronic pelvic pain syndrome: profiling and its predictive significance. World J Urol 2023; 41:3019-3026. [PMID: 37684401 DOI: 10.1007/s00345-023-04587-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
PURPOSE To investigate the difference in gut microbiome composition between patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and healthy controls, and to assess the potential of gut microbiota as predictive markers for CP/CPPS risk. METHODS The present study included 41 CP/CPPS patients and 43 healthy controls in China. Fecal specimen data were obtained and analysed using 16S rRNA gene sequencing. Alpha and beta-diversity indices, relative microbiome abundances, cluster analysis, and linear discriminant analysis effect size (LEfSe) were employed. Microbial biomarkers were selected for the development of a diagnostic classification model, and the functional prediction was conducted using PICRUSt2. RESULTS Alpha-diversity measures revealed no statistically significant difference in bacterial community structure between CP/CPPS patients and controls. However, significant differences were observed in the relative abundances of several bacterial genera. Beta-diversity analysis revealed a distinct separation between the two groups. Significant inter-group differences were noted at various taxonomic levels, with specific bacterial genera being significantly different in abundance. The LEfSe analysis indicated that three bacterial species were highly representative and seven bacterial species were low in CP/CPPS patients as compared to the control group. A diagnostic model for CP/CPPS based on microbial biomarkers exhibited good performance. PICRUSt2 functional profiling indicated significant differences in the development and regeneration pathway. CONCLUSION Significant differences in the gut microbiome composition were found between groups. The study provided a novel diagnostic model for CP/CPPS based on microbiota, presenting promising potential for future therapeutic targets and non-invasive diagnostic biomarkers for CP/CPPS patients.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, 250012, Shandong, China
- University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong, China
| | - Maolin Zang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, 250012, Shandong, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Linchen Lv
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, 250012, Shandong, China
- University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong, China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, 250012, Shandong, China
| | - Jianfeng Cui
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, 250012, Shandong, China
| | - Yaxiao Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, 250012, Shandong, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yangyang Xia
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, 250012, Shandong, China
| | - Nan Zhou
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, 250012, Shandong, China
| | - Zizhuo Yang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, 250012, Shandong, China
| | - Yan Li
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, 250012, Shandong, China.
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, 250012, Shandong, China.
- University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong, China.
| |
Collapse
|
43
|
Tao E, Wu Y, Hu C, Zhu Z, Ye D, Long G, Chen B, Guo R, Shu X, Zheng W, Zhang T, Jia X, Du X, Fang M, Jiang M. Early life stress induces irritable bowel syndrome from childhood to adulthood in mice. Front Microbiol 2023; 14:1255525. [PMID: 37849921 PMCID: PMC10577190 DOI: 10.3389/fmicb.2023.1255525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Background Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorder. Traditionally, early life stress (ELS) is predisposed to IBS in adult. However, whether ELS induces IBS in early life remains unclear. Methods Separated cohort studies were conducted in neonatal male pups of C57BL/6 mice by maternal separation (MS) model. MS and non-separation mice were scheduled to be evaluated for prime IBS-phenotypes, including visceral hypersensitivity, intestinal motility, intestinal permeability, and anxiety-like behavior. Ileal contents and fecal samples were collected and analyzed by 16S rRNA gene sequencing and bacterial community analyses. Subcellular structures of intestinal epithelial, such as epithelial tight junctions and mitochondria, were observed under transmission electron microscopy. Results MS induced visceral hypersensitivity and decreased total intestinal transit time from childhood to adulthood. In addition, MS induced intestinal hyperpermeability and anxiety-like behavior from adolescence to adulthood. Besides, MS affected intestinal microbial composition from childhood to adulthood. Moreover, MS disrupted intestinal mitochondrial structure from childhood to adulthood. Conclusion The study showed for the first time that MS induced IBS from early life to adulthood in mice. The disrupted intestinal mitochondrial structure and the significant dysbiosis of intestinal microbiota in early life may contribute to the initiation and progress of IBS from early life to adulthood.
Collapse
Affiliation(s)
- Enfu Tao
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
- Department of Neonatology and NICU, Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Yuhao Wu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Chenmin Hu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Zhenya Zhu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Diya Ye
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Gao Long
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Bo Chen
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Rui Guo
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Xiaoli Shu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Wei Zheng
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Ting Zhang
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Xinyi Jia
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Xiao Du
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mizu Jiang
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| |
Collapse
|
44
|
Wan C, Kong X, Liao Y, Chen Q, Chen M, Ding Q, Liu X, Zhong W, Xu C, Liu W, Wang B. Bibliometric analysis of the 100 most-cited papers about the role of gut microbiota in irritable bowel syndrome from 2000 to 2021. Clin Exp Med 2023; 23:2759-2772. [PMID: 36522553 DOI: 10.1007/s10238-022-00971-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
AIM Over the last few decades, gut microbiota research has been the focus of intense research and this field has become particularly important. This research aimed to provide a quantitative evaluation of the 100 most-cited articles on gut microbiota and IBS and highlight the most important advances in this field. METHODS The database Web of Science Core Collection was used to download the bibliometric information the top 100 most-cited papers. Microsoft Excel 2021, CiteSpace, VOSviewer, R software, and an online analytical platform ( https://bibliometric.com/ ) were was applied to perform bibliometric analysis of these papers. RESULTS The total citation frequency in the top 100 article ranged from 274 to 2324, with an average citation of 556.57. A total of 24 countries/regions made contributions to the top 100 cited papers, and USA, Ireland, and China were the most top three productive countries. Cryan JF was the most frequently nominated author, and of the top 100 articles, 20 listed his name. Top-cited papers mainly came from the Gastroenterology (n = 13, citations = 6373) and Gut (n = 9, citations = 3903). There was a significant citation path, indicating publications in molecular/biology/immunology primarily cited journals in molecular/biology/genetics fields. Keywords analysis suggested that the main topics on gut microbiota and IBS were mechanisms of microbiome in brain-gut axis." Behavior" was the keyword with the strongest burst strength (2.36), followed by "anxiety like behavior" (2.24), "intestinal microbiota" (2.19), and "chain fatty acid" (1.99), and "maternal separation" (1.95). CONCLUSION This study identified and provided the bibliometric information of the top 100 cited publications related to gut microbiota and IBS. The results provided a general overview of this topic and might help researchers to better understand the evolution, Influential findings and hotspots in researching gut microbiota and IBS, thus providing new perspectives and novel research ideas in this specific area.
Collapse
Affiliation(s)
- Changshan Wan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Xiangxu Kong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Yusheng Liao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Qiuyu Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Mengshi Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Qian Ding
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Xiaotong Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, No. 190, Jieyuan Road, Hongqiao District, Tianjin, 300121, China.
| | - Wentian Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China.
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China.
| |
Collapse
|
45
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
46
|
Peng S, Xia Y, Wang Y, Yu X, Wu Z, Zhang L, Xu K, Shen L, Luo H. Research hotspots and trend analysis of abdominal pain in inflammatory bowel disease: a bibliometric and visualized analysis. Front Pharmacol 2023; 14:1220418. [PMID: 37808188 PMCID: PMC10552780 DOI: 10.3389/fphar.2023.1220418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Aims: The study aimed to provide a bibliometric and visual analysis of research on abdominal pain in inflammatory bowel disease and discuss the current status, research hotspots, and future developments. Methods: We used the Web of Science Core Collection to comprehensively search the literature on abdominal pain-related research in IBD published between 2003 and 2022. The bibliometric and visual analysis was performed through CiteSpace, VOSviewer software, R language, and the bibliometric online analysis platform, including authors, institutions, countries, journals, references, and keywords in the literature. Results: A total of 3,503 relevant articles are included, indicating that the number of articles in this field has increased in recent years. The United States leads the way with a dominant position in terms of article output, followed by China and JAPAN. United States (967 articles), University of Calgary (98 articles), and World Journal of Gastroenterology (127 articles) are the top publishing countries, institutions, and journals, respectively; keyword analysis shows that gut microbiota, depression, stress, visceral hypersensitivity, and multidisciplinary approach are the hot spots and trends in this research area. Conclusion: Abdominal pain-related studies in IBD have received increasing attention in the past two decades. This study provides the first bibliometric analysis of papers in this research area using visualization software and data information mining. It provides insights into this field's current status, hot spots, and trends. However, many outstanding issues in this research area still need further exploration to provide a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Shuai Peng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyun Yu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zunan Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Xu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
47
|
Lu G, Zhang S, Wang R, Zhang Z, Wang W, Wen Q, Zhang F, Li P. Global Trends in Research of Pain-Gut-Microbiota Relationship and How Nutrition Can Modulate This Link. Nutrients 2023; 15:3704. [PMID: 37686738 PMCID: PMC10490108 DOI: 10.3390/nu15173704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
INTRODUCTION The link between gut microbiota and chronic painful conditions has recently gained attention. Nutrition, as a common intervention in daily life and medical practice, is closely related to microbiota and pain. However, no published bibliometric reports have analyzed the scientific literature concerning the link. METHODS AND RESULTS We used bibliometrics to identify the characteristics of the global scientific output over the past 20 years. We also aimed to capture and describe how nutrition can modulate the abovementioned link. Relevant papers were searched in the Web of Science database. All necessary publication and citation data were acquired and exported to Bibliometrix for further analyses. The keywords mentioned were illustrated using visualization maps. In total, 1551 papers shed light on the relationship from 2003 to 2022. However, only 122 papers discussed how nutritional interventions can modulate this link. The citations and attention were concentrated on the gut microbiota, pain, and probiotics in terms of the pain-gut relationship. Nutritional status has gained attention in motor themes of a thematic map. CONCLUSIONS This bibliometric analysis was applied to identify the scientific literature linking gut microbiota, chronic painful conditions, and nutrition, revealing the popular research topics and authors, scientific institutions, countries, and journals in this field. This study enriches the evidence moving boundaries of microbiota medicine as a clinical medicine.
Collapse
Affiliation(s)
- Gaochen Lu
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Sheng Zhang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Rui Wang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Zulun Zhang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Weihong Wang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Quan Wen
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Faming Zhang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- National Clinical Research Center for Digestive Diseases, Xi’an 710032, China
| | - Pan Li
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (G.L.); (S.Z.); (R.W.); (Z.Z.); (W.W.); (Q.W.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
48
|
Finnegan D, Tocmo R, Loscher C. Targeted Application of Functional Foods as Immune Fitness Boosters in the Defense against Viral Infection. Nutrients 2023; 15:3371. [PMID: 37571308 PMCID: PMC10421353 DOI: 10.3390/nu15153371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
In recent times, the emergence of viral infections, including the SARS-CoV-2 virus, the monkeypox virus, and, most recently, the Langya virus, has highlighted the devastating effects of viral infection on human life. There has been significant progress in the development of efficacious vaccines for the prevention and control of viruses; however, the high rates of viral mutation and transmission necessitate the need for novel methods of control, management, and prevention. In recent years, there has been a shift in public awareness on health and wellbeing, with consumers making significant dietary changes to improve their immunity and overall health. This rising health awareness is driving a global increase in the consumption of functional foods. This review delves into the benefits of functional foods as potential natural means to modulate the host immune system to enhance defense against viral infections. We provide an overview of the functional food market in Europe and discuss the benefits of enhancing immune fitness in high-risk groups, including the elderly, those with obesity, and people with underlying chronic conditions. We also discuss the immunomodulatory mechanisms of key functional foods, including dairy proteins and hydrolysates, plant-based functional foods, fermentates, and foods enriched with vitamin D, zinc, and selenium. Our findings reveal four key immunity boosting mechanisms by functional foods, including inhibition of viral proliferation and binding to host cells, modulation of the innate immune response in macrophages and dendritic cells, enhancement of specific immune responses in T cells and B cells, and promotion of the intestinal barrier function. Overall, this review demonstrates that diet-derived nutrients and functional foods show immense potential to boost viral immunity in high-risk individuals and can be an important approach to improving overall immune health.
Collapse
Affiliation(s)
| | | | - Christine Loscher
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (D.F.); (R.T.)
| |
Collapse
|
49
|
Colella M, Charitos IA, Ballini A, Cafiero C, Topi S, Palmirotta R, Santacroce L. Microbiota revolution: How gut microbes regulate our lives. World J Gastroenterol 2023; 29:4368-4383. [PMID: 37576701 PMCID: PMC10415973 DOI: 10.3748/wjg.v29.i28.4368] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/16/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
The human intestine is a natural environment ecosystem of a complex of diversified and dynamic microorganisms, determined through a process of competition and natural selection during life. Those intestinal microorganisms called microbiota and are involved in a variety of mechanisms of the organism, they interact with the host and therefore are in contact with the organs of the various systems. However, they play a crucial role in maintaining host homeostasis, also influencing its behaviour. Thus, microorganisms perform a series of biological functions important for human well-being. The host provides the microorganisms with the environment and nutrients, simultaneously drawing many benefits such as their contribution to metabolic, trophic, immunological, and other functions. For these reasons it has been reported that its quantitative and qualitative composition can play a protective or harmful role on the host health. Therefore, a dysbiosis can lead to an association of unfavourable factors which lead to a dysregulation of the physiological processes of homeostasis. Thus, it has pre-viously noted that the gut microbiota can participate in the pathogenesis of autoimmune diseases, chronic intestinal inflammation, diabetes mellitus, obesity and atherosclerosis, neurological disorders (e.g., neurological diseases, autism, etc.) colorectal cancer, and more.
Collapse
Affiliation(s)
- Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Ioannis Alexandros Charitos
- Maugeri Clinical Scientific Research Institutes (IRCCS) of Pavia - Division of Pneumology and Respiratory Rehabilitation, Scientific Institute of Bari, Bari 70124, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Concetta Cafiero
- Area of Molecular Pathology, Anatomic Pathology Unit, Fabrizio Spaziani Hospital, Frosinone 03100, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani”, Elbasan 3001, Albania
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, Bari 70124, Italy
| |
Collapse
|
50
|
Sun W, Zhu J, Qin G, Huang Y, Cheng S, Chen Z, Zhang Y, Shu Y, Zeng X, Guo R. Lonicera japonica polysaccharides alleviate D-galactose-induced oxidative stress and restore gut microbiota in ICR mice. Int J Biol Macromol 2023:125517. [PMID: 37353132 DOI: 10.1016/j.ijbiomac.2023.125517] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Lonicera japonica polysaccharides (LJPs) exhibit anti-aging effect in nematodes. Here, we further studied the function of LJPs on aging-related disorders in D-galactose (D-gal)-induced ICR mice. Four groups of mice including the control group, the D-gal-treated group, the intervening groups with low and high dose of LJPs (50 and 100 mg/kg/day) were raised for 8 weeks. The results showed that intragastric administration with LJPs improved the organ indexes of D-gal-treated mice. Moreover, LJPs improved the activity of superoxide dismutase (SOD), catalase (CAT) as well as glutathione peroxidase (GSH-Px) and decreasing the malondialdehyde (MDA) level in serum, liver and brain. Meanwhile, LJPs restored the content of acetylcholinesterase (AChE) in the brain. Further, LJPs reversed the liver tissue damages in aging mice. Mechanistically, LJPs alleviate oxidative stress at least partially through regulating Nrf2 signaling. Additionally, LJPs restored the gut microbiota composition of D-gal-treated mice by adjusting the Firmicutes/Bacteroidetes ratio at the phylum level and upregulating the relative abundances of Lactobacillaceae and Bifidobacteriacesa. Notably, the KEGG pathways involved in hazardous substances degradation and flavone and flavonol biosynthesis were significantly enhanced by LJPs treatment. Overall, our study uncovers the role of LJPs in modulating oxidative stress and gut microbiota in the D-gal-induced aging mice.
Collapse
Affiliation(s)
- Wenwen Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiahao Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guanyu Qin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yujie Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Siying Cheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhengzhi Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yeyang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yifan Shu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Renpeng Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|