1
|
Zhang L, Li J, Zhang Q, Gao J, Zhao K, Asai Y, Hu Z, Gao H. An Integrative analysis of single-cell RNA-seq, transcriptome and Mendelian randomization for the Identification and validation of NAD + Metabolism-Related biomarkers in ulcerative colitis. Int Immunopharmacol 2025; 145:113765. [PMID: 39647286 DOI: 10.1016/j.intimp.2024.113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Ulcerative colitis (UC) is a chronic and refractory inflammatory disease of the colon and rectum. This study utilized bioinformatics methods to explore the potential of Nicotinamide adenine dinucleotide (NAD+) metabolism-related genes (NMRGs) as key genes in UC. Using the GSE87466 dataset, differentially expressed NMRGs were identified through differential expression analysis, weighted gene co-expression network analysis (WGCNA), and NMRG scoring. These NMRGs were used as exposure factors, with UC as the outcome, to identify causal candidate genes through Mendelian randomization (MR) analysis. Key genes were further validated as biomarkers using machine learning and expression validation in external datasets (GSE75214, GSE224758). A nomogram based on the expression levels of these biomarkers was constructed to predict UC risk, and the biomarkers' expression was validated through real-time quantitative polymerase chain reaction (RT-qPCR). Subsequently, signaling pathway analysis, enrichment analysis, immune infiltration analysis, and drug prediction were conducted to comprehensively understand the biological roles of the key genes in the human body. Single-cell (GSE116222) and spatial transcriptomic analyses (GSE189184) revealed the expression patterns of these key genes in specific cell types. NCF2, IL1B, S100A8, and SLC26A2 were identified as biomarkers, with NCF2 and IL1B serving as protective factors and S100A8 and SLC26A2 as risk factors for UC. The nomogram based on these biomarkers demonstrated strong predictive value. Functional analysis revealed significant IL1B, NCF2, and S100A8 enrichment in pathways such as IL-4 and IL-13 signaling, while SLC26A2 was strongly associated with respiratory electron transport. Significant differences in immune cells, such as macrophages and neutrophils, were also observed. Single-cell analysis showed high expression of NCF2, IL1B, and S100A8 in monocytes, while SLC26A2 was primarily expressed in epithelial cells, intestinal epithelial cells, and mast cells. Overall, these findings reveal the roles of NMRGs, providing valuable insights into the diagnosis and treatment of UC patients.
Collapse
Affiliation(s)
- Longxiang Zhang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Jian Li
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Qiqi Zhang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Jianshu Gao
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Keke Zhao
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Yersen Asai
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Ziying Hu
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Hongliang Gao
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China.
| |
Collapse
|
2
|
Gorelik MG, Gorelik AJ, Fishbein SRS, Fehlmann T, Deepak P, Bogdan R, Dantas G, Jain U. Improving Differentiation of Crohn's Disease and Ulcerative Colitis Proteomes through Protein-Wide Association Study Feature Selection in Machine Learning. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.13.24316854. [PMID: 39606394 PMCID: PMC11601736 DOI: 10.1101/2024.11.13.24316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background and Aims Diagnostic differentiation between Crohn's disease (CD) and ulcerative colitis (UC) is crucial for timely and suitable therapeutic measures. The current gold standard for differentiating between CD and UC involves endoscopy and histology, which are invasive and costly. We aimed to identify blood plasma proteomic signatures using a Protein-Wide Association Study (PWAS) approach to differentiate CD from UC and evaluate the efficacy of these signatures as features in machine learning (ML) classifiers. Methods Among participants (n=1,106; nCD=636; nUC=470) of the Study of a Prospective Adult Research Cohort with IBD (SPARC), plasma protein (n=2,920) levels were estimated using Olink proteomics. A PWAS with Bonferroni correction for multiple testing was used to identify proteins associated with disease states after controlling for age, sex, and disease severity. ML classifiers examined the diagnostic utility of these models. Feature importance was determined via SHapley Additive exPlanations (SHAP) analysis. Results Thirteen proteins which were significantly differentially abundant in CD vs UC (all |β|s > 0.22, all adjusted p values < 8.42E-06). Random forest models of proteins differentiated between CD and UC with models trained only on PWAS identified proteins (Average ROC-AUC 0.73) outperforming models trained of the full proteome (Average ROC-AUC 0.62). SHAP analysis revealed that Granzyme B, insulin-like peptide 5 (INSL5), and interleukin-12 subunit beta (IL-12B) were the most important features. Conclusions Our findings demonstrate that PWAS-based feature selection approaches are a powerful method to identify features in complex, noisy datasets. Importantly, we have identified novel peptide based biomarkers such as INSL5, that can be potentially used to complement existing strategies to differentiate between CD and UC.
Collapse
Affiliation(s)
- Mark G Gorelik
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Aaron J Gorelik
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Skye R S Fishbein
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tara Fehlmann
- Crohn's and Colitis Foundation, New York, New York, USA
| | - Parakkal Deepak
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Gautam Dantas
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Umang Jain
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
James JP, Riis LB, Søkilde R, Malham M, Høgdall E, Langholz E, Nielsen BS. Short noncoding RNAs as predictive biomarkers for the development from inflammatory bowel disease unclassified to Crohn's disease or ulcerative colitis. PLoS One 2024; 19:e0297353. [PMID: 38408066 PMCID: PMC10896517 DOI: 10.1371/journal.pone.0297353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/22/2023] [Indexed: 02/28/2024] Open
Abstract
Numerous pathogenic processes are mediated by short noncoding RNAs (sncRNA). Twenty percent of inflammatory bowel disease (IBD) patients are labelled as IBD unclassified (IBDU) at disease onset. Most IBDU patients are reclassified as Crohn's disease (CD) or ulcerative colitis (UC) within few years. Since the therapeutic methods for CD and UC differ, biomarkers that can forecast the categorization of IBDU into CD or UC are highly desired. Here, we investigated whether sncRNAs can predict CD or UC among IBDU patients. 35 IBDU patients who were initially diagnosed with IBDU were included in this retrospective investigation; of them, 12, 15, and 8 were reclassified into CD (IBDU-CD), UC (IBDU-UC), or remained as IBDU (IBDU-IBDU), respectively. Eight IBD patients, were included as references. SncRNA profiling on RNA from mucosal biopsies were performed using Affymetrix miRNA 4.0 array. Selected probe sets were validated using RT-qPCR. Among all patients and only adults, 306 and 499 probe sets respectively were differentially expressed between IBDU-CD and IBDU-UC. Six of the probe sets were evaluated by RT-qPCR, of which miR-182-5p, miR-451a and ENSG00000239080 (snoU13) together with age and sex resulted in an AUC of 78.6% (95% CI: 60-97) in discriminating IBDU-CD from IBDU-UC. Based on the three sncRNAs profile it is possible to predict if IBDU patients within 3 years will be reclassified as CD or UC. We showed that the expression profile of IBDU patients differ from that of definite CD or UC, suggesting that a subgroup of IBDU patients may compose a third unique IBD subtype.
Collapse
Affiliation(s)
- Jaslin P. James
- Department of Pathology, Herlev University Hospital, Herlev, Denmark
| | - Lene Buhl Riis
- Department of Pathology, Herlev University Hospital, Herlev, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rolf Søkilde
- Bioneer A/S, Hørsholm, Kogle Allé 2, Hørsholm, Denmark
| | - Mikkel Malham
- The Pediatric Department, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark
- Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescents and Adults, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Estrid Høgdall
- Department of Pathology, Herlev University Hospital, Herlev, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ebbe Langholz
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Gastroenheden, Herlev University Hospital, Herlev, Denmark
| | | |
Collapse
|
4
|
Yang Y, Hua Y, Zheng H, Jia R, Ye Z, Su G, Gu Y, Zhan K, Tang K, Qi S, Wu H, Qin S, Huang S. Biomarkers prediction and immune landscape in ulcerative colitis: Findings based on bioinformatics and machine learning. Comput Biol Med 2024; 168:107778. [PMID: 38070204 DOI: 10.1016/j.compbiomed.2023.107778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) presents diagnostic and therapeutic difficulties. The primary objective of this study is to identify efficacious biomarkers for diagnosis and treatment, as well as acquire a deeper understanding of the immuneological characteristics associated with the disease. METHODS Datasets relating to UC were obtained from GEO database. Among these, three datasets were merged to create a metadata for bioinformatics analysis and machine learning. Additionally, one dataset specifically utilized for external validation. Least absolute shrinkage and selection operator (LASSO) and random forest (RF) were employed to screen signature genes. The artificial neural network (ANN) model and receiver operating characteristic (ROC) curve were used to assess the diagnostic performance of signature genes. The single sample gene set enrichment analysis (ssGSEA) was applied to reveal the immune landscape. Finally, the relationship between the signature genes, immune infiltration, and clinical characteristics was investigated through correlation analysis. RESULT By intersecting the result of LASSO, RF and WGCNA, 8 signature genes were identified, including S100A8, IL-1B, CXCL1, TCN1, MMP10, GREM1, DUOX2 and SLC6A14. The biological progress of this gene mostly encompasses acute inflammatory response, aggregation and chemotaxis of leukocyte, and response to lipopolysaccharide by mediating IL-17 signaling pathway, NF-kappa B signaling pathway, TNF signaling pathway, NOD-like receptor signaling pathway. Immune infiltration analysis shows 25 immune cells are significantly elevated in UC samples. Moreover, these signature genes exhibit a strong correlation with various immune cells and a mild to moderate correlation with the Mayo score. CONCLUSION S100A8, IL-1B, CXCL1, TCN1, MMP10, GREM1, DUOX2 and SLC6A14 have been identified as credible potential biomarkers for the diagnosis and therapy of UC. The immune response mediated by these signature biomarkers plays a crucial role in the occurrence and advancement of UC by means of the reciprocal interaction between the signature biomarkers and immune-infiltrated cells.
Collapse
Affiliation(s)
- Yuanming Yang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Yiwei Hua
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Huan Zheng
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Rui Jia
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhining Ye
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Guifang Su
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Yueming Gu
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Kai Zhan
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Kairui Tang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Shuhao Qi
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Haomeng Wu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, China
| | - Shumin Qin
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, China.
| | - Shaogang Huang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, China; Yang Chunbo academic experience inheritance studio of Guangdong provincial hospital of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
5
|
James JP, Nielsen BS, Christensen IJ, Langholz E, Malham M, Poulsen TS, Holmstrøm K, Riis LB, Høgdall E. Mucosal expression of PI3, ANXA1, and VDR discriminates Crohn's disease from ulcerative colitis. Sci Rep 2023; 13:18421. [PMID: 37891214 PMCID: PMC10611705 DOI: 10.1038/s41598-023-45569-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Differential diagnosis of inflammatory bowel disease (IBD) to Crohn's disease (CD) or ulcerative colitis (UC) is crucial for treatment decision making. With the aim of generating a clinically applicable molecular-based tool to classify IBD patients, we assessed whole transcriptome analysis on endoscopy samples. A total of 408 patient samples were included covering both internal and external samples cohorts. Whole transcriptome analysis was performed on an internal cohort of FFPE IBD samples (CD, n = 16 and UC, n = 17). The 100 most significantly differentially expressed genes (DEG) were tested in two external cohorts. Ten of the DEG were further processed by functional enrichment analysis from which seven were found to show consistent significant performance in discriminating CD from UC: PI3, ANXA1, VDR, MTCL1, SH3PXD2A-AS1, CLCF1, and CD180. Differential expression of PI3, ANXA1, and VDR was reproduced by RT-qPCR, which was performed on an independent sample cohort of 97 patient samples (CD, n = 44 and UC, n = 53). Gene expression levels of the three-gene profile, resulted in an area under the curve of 0.84 (P = 0.02) in discriminating CD from UC, and therefore appear as an attractive molecular-based diagnostic tool for clinicians to distinguish CD from UC.
Collapse
Affiliation(s)
| | | | - Ib Jarle Christensen
- Department of Pathology, Herlev University Hospital, Borgmester Ib Juuls Vej 73, 2730, Herlev, Denmark
| | - Ebbe Langholz
- Gastroenheden D, Herlev University Hospital, 2730, Herlev, Denmark
- Institute for Clinical Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Mikkel Malham
- The Department of Pediatric and Adolescence Medicine, Copenhagen University Hospital-Amager and Hvidovre, 2650, Hvidovre, Denmark
- Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescents and Adults, Hvidovre Hospital, University of Copenhagen, 2650, Hvidovre, Denmark
| | - Tim Svenstrup Poulsen
- Department of Pathology, Herlev University Hospital, Borgmester Ib Juuls Vej 73, 2730, Herlev, Denmark
| | - Kim Holmstrøm
- Bioneer A/S, Hørsholm, Kogle Allé 2, 2970, Hørsholm, Denmark
| | - Lene Buhl Riis
- Department of Pathology, Herlev University Hospital, Borgmester Ib Juuls Vej 73, 2730, Herlev, Denmark
- Institute for Clinical Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Estrid Høgdall
- Department of Pathology, Herlev University Hospital, Borgmester Ib Juuls Vej 73, 2730, Herlev, Denmark
- Institute for Clinical Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| |
Collapse
|
6
|
Zheng Z, Zhan S, Zhou Y, Huang G, Chen P, Li B. Pediatric Crohn's disease diagnosis aid via genomic analysis and machine learning. Front Pediatr 2023; 11:991247. [PMID: 37033178 PMCID: PMC10076664 DOI: 10.3389/fped.2023.991247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Determination of pediatric Crohn's disease (CD) remains a major diagnostic challenge. However, the rapidly emerging field of artificial intelligence has demonstrated promise in developing diagnostic models for intractable diseases. Methods We propose an artificial neural network model of 8 gene markers identified by 4 classification algorithms based on Gene Expression Omnibus database for diagnostic of pediatric CD. Results The model achieved over 85% accuracy and area under ROC curve value in both training set and testing set for diagnosing pediatric CD. Additionally, immune infiltration analysis was performed to address why these markers can be integrated to develop a diagnostic model. Conclusion This study supports further clinical facilitation of precise disease diagnosis by integrating genomics and machine learning algorithms in open-access database.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Department of Pediatrics, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, China
- Correspondence: Zhiwei Zheng
| | - Sha Zhan
- School of Chinese Medicine, Jinan University, Guangzhou, China
| | - Yongmao Zhou
- Department of Pediatrics, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, China
| | - Ganghua Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Pan Chen
- Department of Pediatrics, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, China
| | - Baofei Li
- Department of Pediatrics, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, China
| |
Collapse
|
7
|
Moraes Holst L, Halfvarson J, Carlson M, Hedin C, Kruse R, Lindqvist CM, Bergemalm D, Almér S, Bresso F, Ling Lundström M, Repsilber D, D’Amato M, Keita Å, Hjortswang H, Söderholm J, Sundin J, Törnblom H, Simrén M, Strid H, Magnusson MK, Öhman L. Downregulated Mucosal Autophagy, Alpha Kinase-1 and IL-17 Signaling Pathways in Active and Quiescent Ulcerative Colitis. Clin Exp Gastroenterol 2022; 15:129-144. [PMID: 35928254 PMCID: PMC9343467 DOI: 10.2147/ceg.s368040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background Improved mucosal immune profiling in active and quiescent colonic inflammatory bowel disease (IBD) is needed to develop therapeutic options for treating and preventing flares. This study therefore aimed to provide a comprehensive mucosal characterization with emphasis on immunological host response of patients with active ulcerative colitis (UC active), UC during remission (UC remission) and active colonic Crohn’s disease (CD active). Methods Colonic biopsies from 47 study subjects were collected for gene expression and pathway analyses using the NanoString host-response panel, including 776 genes and 56 immune-related pathways. Results The majority of mucosal gene expression and signaling pathway scores were increased in active IBD (n=27) compared to healthy subjects (n=10). However, both active IBD and UC remission (n=10) demonstrated decreased gene expression and signaling pathway scores related to autophagy, alpha kinase-1 and IL-17 signaling pathways compared to healthy subjects. Further, UC remission was characterized by decreased scores of several signaling pathways linked to homeostasis along with increased mononuclear cell migration pathway score as compared to healthy subjects. No major differences in the colonic mucosal gene expression between CD active (n=7) and UC (n=20) active were observed. Conclusion This study indicates that autophagy, alpha kinase-1 and IL-17 signaling pathways are persistently downregulated in UC irrespective of disease activity. Further, UC patients in remission present a unique mucosal environment, potentially preventing patients from reaching and sustaining true homeostasis. These findings may enable better comprehension of the remitting and relapsing pattern of colonic IBD and guide future treatment and prevention of flares.
Collapse
Affiliation(s)
- Luiza Moraes Holst
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marie Carlson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Charlotte Hedin
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Robert Kruse
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Carl Mårten Lindqvist
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Daniel Bergemalm
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Sven Almér
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Francesca Bresso
- Karolinska University Hospital, Gastroenterology Unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Stockholm, Sweden
| | | | - Dirk Repsilber
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Mauro D’Amato
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain
| | - Åsa Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Henrik Hjortswang
- Department of Clinical and Experimental Science, Linköping University, Linköping, Sweden
| | - Johan Söderholm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Sundin
- Department of Internal Medicine & Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, Gothenburg, Sweden
| | - Hans Törnblom
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Simrén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Functional Gastrointestinal and Motility Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hans Strid
- Department of Internal Medicine, Södra Älvsborg Hospital, Borås, Sweden
| | - Maria K Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Correspondence: Lena Öhman, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, Tel +46703616499, Email
| |
Collapse
|
8
|
Jacobsen GE, Fernández I, Quintero MA, Santander AM, Pignac-Kobinger J, Damas OM, Deshpande AR, Kerman DH, Ban Y, Gao Z, Silva TC, Wang L, Beecham AH, McCauley JL, Burgueño JF, Abreu MT. Lamina Propria Phagocyte Profiling Reveals Targetable Signaling Pathways in Refractory Inflammatory Bowel Disease. GASTRO HEP ADVANCES 2022; 1:380-392. [PMID: 36061955 PMCID: PMC9438737 DOI: 10.1016/j.gastha.2022.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Gillian E. Jacobsen
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Medical Scientist Training Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Irina Fernández
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Maria A. Quintero
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Ana M. Santander
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Judith Pignac-Kobinger
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Oriana M. Damas
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Amar R. Deshpande
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - David H. Kerman
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Yuguang Ban
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Zhen Gao
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Tiago C. Silva
- Division of Biostatistics, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Ashley H. Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Jacob L. McCauley
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Juan F. Burgueño
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Maria T. Abreu
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
9
|
Whittamore JM, Hatch M. Oxalate Flux Across the Intestine: Contributions from Membrane Transporters. Compr Physiol 2021; 12:2835-2875. [PMID: 34964122 DOI: 10.1002/cphy.c210013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial oxalate transport is fundamental to the role occupied by the gastrointestinal (GI) tract in oxalate homeostasis. The absorption of dietary oxalate, together with its secretion into the intestine, and degradation by the gut microbiota, can all influence the excretion of this nonfunctional terminal metabolite in the urine. Knowledge of the transport mechanisms is relevant to understanding the pathophysiology of hyperoxaluria, a risk factor in kidney stone formation, for which the intestine also offers a potential means of treatment. The following discussion presents an expansive review of intestinal oxalate transport. We begin with an overview of the fate of oxalate, focusing on the sources, rates, and locations of absorption and secretion along the GI tract. We then consider the mechanisms and pathways of transport across the epithelial barrier, discussing the transcellular, and paracellular components. There is an emphasis on the membrane-bound anion transporters, in particular, those belonging to the large multifunctional Slc26 gene family, many of which are expressed throughout the GI tract, and we summarize what is currently known about their participation in oxalate transport. In the final section, we examine the physiological stimuli proposed to be involved in regulating some of these pathways, encompassing intestinal adaptations in response to chronic kidney disease, metabolic acid-base disorders, obesity, and following gastric bypass surgery. There is also an update on research into the probiotic, Oxalobacter formigenes, and the basis of its unique interaction with the gut epithelium. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Jonathan M Whittamore
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Marguerite Hatch
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Liu H, Li T, Zhong S, Yu M, Huang W. Intestinal epithelial cells related lncRNA and mRNA expression profiles in dextran sulphate sodium-induced colitis. J Cell Mol Med 2021; 25:1060-1073. [PMID: 33300279 PMCID: PMC7812259 DOI: 10.1111/jcmm.16174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022] Open
Abstract
Intestinal epithelial barrier damage caused by intestinal epithelial cells (IECs) dysfunction plays a crucial role in the pathogenesis and development of inflammatory bowel disease (IBD). Recently, some studies have suggested the emerging role of long non-coding RNAs (lncRNAs) in IBD. The aim of this study was to reveal lncRNAs and mRNA expression profiles in IECs from a mouse model of colitis and to expand our understanding in the intestinal epithelial barrier regulation. IECs from the colons of wild-type mice and dextran sulphate sodium (DSS)-induced mice were isolated for high-throughput RNA-sequencing. A total of 254 up-regulated and 1013 down-regulated mRNAs and 542 up-regulated and 766 down-regulated lncRNAs were detected in the DSS group compared with the Control group. Four mRNAs and six lncRNAs were validated by real-time quantitative PCR. Function analysis showed that dysregulated mRNAs participated in TLR7 signalling pathway, IL-1 receptor activity, BMP receptor binding and IL-17 signalling pathway. Furthermore, the possibility of indirect interactions between differentially expressed mRNAs and lncRNAs was illustrated by the competing endogenous RNA (ceRNA) network. LncRNA ENSMUST00000128026 was predicted to bind to mmu-miR-6899-3p, regulating Dnmbp expression. LncRNA NONMMUT143162.1 was predicted to competitively bind to mmu-miR-6899-3p, regulating Tnip3 expression. Finally, the protein-protein interaction (PPI) network analysis was constructed with 311 nodes and 563 edges. And the highest connectivity degrees were Mmp9, Fpr2 and Ccl3. These results provide novel insights into the functions of lncRNAs and mRNAs involved in the regulation of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Huan Liu
- The Precision Medicine InstituteThe Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
- Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Teming Li
- Department of General SurgeryXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Shizhen Zhong
- Guangdong Engineering Research Center for Translation of Medical 3D Printing ApplicationGuangdong Provincial Key Laboratory of Medical BiomechanicsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Min Yu
- Department of General SurgeryXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Wenhua Huang
- The Precision Medicine InstituteThe Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Engineering Research Center for Translation of Medical 3D Printing ApplicationGuangdong Provincial Key Laboratory of Medical BiomechanicsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
- Pathological Diagnosis and Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| |
Collapse
|
11
|
Honig G, Heller C, Hurtado-Lorenzo A. Defining the Path Forward for Biomarkers to Address Unmet Needs in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2020; 26:1451-1462. [PMID: 32812036 PMCID: PMC7500521 DOI: 10.1093/ibd/izaa210] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 12/16/2022]
Abstract
Despite major advances in the inflammatory bowel diseases field, biomarkers to enable personalized and effective management are inadequate. Disease course and treatment response are highly variable, with some patients experiencing mild disease progression, whereas other patients experience severe or complicated disease. Periodic endoscopy is performed to assess disease activity; as a result, it takes months to ascertain whether a treatment is having a positive impact on disease progression. Minimally invasive biomarkers for prognosis of disease course, prediction of treatment response, monitoring of disease activity, and accurate diagnosis based on improved disease phenotyping and classification could improve outcomes and accelerate the development of novel therapeutics. Rapidly developing technologies have great potential in this regard; however, the discovery, validation, and qualification of biomarkers will require partnerships including academia, industry, funders, and regulators. The Crohn's & Colitis Foundation launched the IBD Biomarker Summit to bring together key stakeholders to identify and prioritize critical unmet needs; prioritize promising technologies and consortium approaches to address these needs; and propose harmonization approaches to improve comparability of data across studies. Here, we summarize the outcomes of the 2018 and 2019 meetings, including consensus-based unmet needs in the clinical and drug development context. We highlight ongoing consortium efforts and promising technologies with the potential to address these needs in the near term. Finally, we summarize actionable recommendations for harmonization, including data collection tools for improved consistency in disease phenotyping; standardization of informed consenting; and development of guidelines for sample management and assay validation. Taken together, these outcomes demonstrate that there is an exceptional alignment of priorities across stakeholders for a coordinated effort to address unmet needs of patients with inflammatory bowel diseases through biomarker science.
Collapse
|
12
|
Klein O, Fogt F, Hollerbach S, Nebrich G, Boskamp T, Wellmann A. Classification of Inflammatory Bowel Disease from Formalin-Fixed, Paraffin-Embedded Tissue Biopsies via Imaging Mass Spectrometry. Proteomics Clin Appl 2020; 14:e1900131. [PMID: 32691971 DOI: 10.1002/prca.201900131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/25/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE Discrimination between ulcerative colitis (UC) and Crohn's disease (CD) by histologic features alone can be challenging and often leads to inaccurate initial diagnoses in inflammatory bowel disease (IBD) patients. This is mostly due to an overlap of clinical and histologic features. However, exact diagnosis is not only important for patient treatment but it also has a socioeconomic impact. It is therefore important to develop and improve diagnostic tools complementing traditional histomorphological approaches. EXPERIMENTAL DESIGN In this retrospective proof-of-concept study, the utilization of MALDI imaging is explored in combination with multi-variate data analysis methods to classify formalin-fixed, paraffin-embedded (FFPE) colon biopsies from UC (87 biopsies, 14 patients), CD (71 biopsies, 14 patients), and normal colonic (21 biopsies, 14 patients) tissues. RESULTS The proposed method results in an overall balanced accuracy of 85.7% on patient and of 80.4% on sample level, thus demonstrating that the assessment of IBD from FFPE tissue specimens via MALDI imaging is feasible. CONCLUSIONS AND CLINICAL RELEVANCE The results emphasize the high potential of this method to distinguish IBD subtypes in FFPE tissue sections, which is a prerequisite for further investigations in retrospective multicenter studies, as well as for a future implementation into clinical routine.
Collapse
Affiliation(s)
- Oliver Klein
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Franz Fogt
- Penn Presbyterian Medical Center, Hospital of the University of Pennsylvania, 51N 39th Street, Philadelphia, PA, 19104, USA
| | - Stephan Hollerbach
- Department of Gastroenterology, AKH Celle, Siemensplatz 4, 29223, Celle, Germany
| | - Grit Nebrich
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tobias Boskamp
- Center for Industrial Mathematics, University of Bremen, Bibliothekstr. 5, 28359, Bremen, Germany.,SCiLS, Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359, Bremen, Germany
| | - Axel Wellmann
- Institute of Pathology, Wittinger Strasse 14, 29223, Celle, Germany
| |
Collapse
|
13
|
Cheng C, Hua J, Tan J, Qian W, Zhang L, Hou X. Identification of differentially expressed genes, associated functional terms pathways, and candidate diagnostic biomarkers in inflammatory bowel diseases by bioinformatics analysis. Exp Ther Med 2019; 18:278-288. [PMID: 31258663 PMCID: PMC6566124 DOI: 10.3892/etm.2019.7541] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel diseases (IBDs), including ulcerative colitis (UC) and Crohn's disease (CD), are chronic inflammatory disorders caused by genetic influences, the immune system and environmental factors. However, the underlying pathogenesis of IBDs and the pivotal molecular interactions remain to be fully elucidated. The aim of the present study was to identify genetic signatures in patients with IBDs and elucidate the potential molecular mechanisms underlying IBD subtypes. The gene expression profiles of the GSE75214 datasets were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in UC and CD patients compared with controls using the GEO2R tool. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of DEGs were performed using DAVID. Furthermore, protein-protein interaction (PPI) networks of the DEGs were constructed using Cytoscape software. Subsequently, significant modules were selected and the hub genes were identified. In the GO and KEGG pathway analysis, the top enriched pathways in UC and CD included Staphylococcus aureus infection, rheumatoid arthritis, complement and coagulation cascades, PI3K/Akt signaling pathway and osteoclast differentiation. In addition, the GO terms in the category biological process significantly enriched by these genes were inflammatory response, immune response, leukocyte migration, cell adhesion, response to molecules of bacterial origin and extracellular matrix (ECM) organization. However, several other biological processes (GO terms) and pathways (e.g., ‘chemotaxis’, ‘collagen catabolic process’ and ‘ECM-receptor interaction’) exhibited significant differences between the two subtypes of IBD. The top 10 hub genes were identified from the PPI network using respective DEGs. Of note, the hub genes G protein subunit gamma 11 (GNG11), G protein subunit beta 4 (GNB4), Angiotensinogen (AGT), Phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) and C-C motif chemokine receptor 7 (CCR7) are disease-specific and may be used as biomarkers for differentiating UC from CD. Furthermore, module analysis further confirmed that common significant pathways involved in the pathogenesis of IBD subtypes were associated with chemokine-induced inflammation, innate immunity, adapted immunity and infectious microbes. In conclusion, the present study identified DEGs, key target genes, functional pathways and enrichment analysis of IBDs, enhancing the understanding of the pathogenesis of IBDs and also advancing the clarification of the underlying molecular mechanisms of UC and CD. Furthermore, these results may provide potential molecular targets and diagnostic biomarkers for UC and CD.
Collapse
Affiliation(s)
- Chunwei Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Juan Hua
- Department of Cardiology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei 430015, P.R. China
| | - Jun Tan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
14
|
Di Narzo AF, Brodmerkel C, Telesco SE, Argmann C, Peters LA, Li K, Kidd B, Dudley J, Cho J, Schadt EE, Kasarskis A, Dobrin R, Hao K. High-Throughput Identification of the Plasma Proteomic Signature of Inflammatory Bowel Disease. J Crohns Colitis 2019; 13:462-471. [PMID: 30445421 PMCID: PMC6441306 DOI: 10.1093/ecco-jcc/jjy190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The molecular aetiology of inflammatory bowel disease [IBD] and its two subtypes, ulcerative colitis [UC] and Crohn's disease [CD], have been carefully investigated at genome and transcriptome levels. Recent advances in high-throughput proteome quantification has enabled comprehensive large-scale plasma proteomics studies of IBD. METHODS The study used two cohorts: [1] The CERTIFI-cohort: 42 samples from the CERTIFI trial of anti-TNFα-refractory CD patients; [2] the PROgECT-UNITI-HCs cohort: 46 UC samples of the PROgECT study, 84 CD samples of the UNITI I and UNITI II studies, and 72 healthy controls recruited in Mount Sinai Hospital, New York, USA. The plasma proteome for these two cohorts was quantified using high-throughput platforms. RESULTS For the PROgECT-UNITI-HCs cohort, we measured a total of 1310 proteins. Of these, 493 proteins showed different plasma levels in IBD patients to the plasma levels in controls at 10% false discovery rate [FDR], among which 11 proteins had a fold change greater than 2. The proteins upregulated in IBD were associated with immunity functionality, whereas the proteins downregulated in IBD were associated with nutrition and metabolism. The proteomic profiles were very similar between UC and CD. In the CERTIFI cohort, 1014 proteins were measured, and it was found that the plasma protein level had little correlation with the blood or intestine transcriptomes. CONCLUSIONS We report the largest proteomics study to date on IBD and controls. A large proportion of plasma proteins are altered in IBD, which provides insights into the disease aetiology and indicates a potential for biomarker discovery.
Collapse
Affiliation(s)
- Antonio F Di Narzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren A Peters
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, a Mount Sinai venture, Stamford, CT, USA
| | | | - Brian Kidd
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joel Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy Cho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, a Mount Sinai venture, Stamford, CT, USA
| | - Andrew Kasarskis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Seidler U, Nikolovska K. Slc26 Family of Anion Transporters in the Gastrointestinal Tract: Expression, Function, Regulation, and Role in Disease. Compr Physiol 2019; 9:839-872. [DOI: 10.1002/cphy.c180027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Sadr M, Moazzami B, Soleimanifar N, Elhamian N, Rezaei A, Ebrahimi Daryani N, Rezaei N. Single Nucleotide Polymorphisms of PTPN22 Gene in Iranian Patients with Ulcerative Colitis. Fetal Pediatr Pathol 2019; 38:8-13. [PMID: 30636557 DOI: 10.1080/15513815.2018.1543371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES Protein tyrosine phosphatase non-receptor type 22 gene (PTPN22) single-nucleotide polymorphisms (SNP) have been associated with a number of different autoimmune diseases. This study aimed to investigate the association of five polymorphisms of PTPN22 gene with susceptibility to ulcerative colitis (UC) in Iran. MATERIALS AND METHODS A total of 67 patients diagnosed with UC (35 female and 32 male all under 18 years) and 93 healthy subjects were selected. The samples were genotyped for the, rs12760457, rs2476601, rs1310182, rs1217414, and rs33996649 in PTPN22 gene using real-time polymerase chain reaction (PCR) allelic discrimination TaqMan genotyping assays. RESULTS The frequencies of the rs1310182 A and G alleles, and also the AA and GG genotypes were significantly different between the patient and the control groups (p < 0.05). The carriage of G allele of rs1310182 was significantly associated with increased risk of UC (OR (95% CI) = 1.17 (0.70-1.98), p < 0.001). Moreover, the genotype GG of SNP rs1310182 was significantly associated with UC (OR (95% CI) = 2.32 (1.13-4.76), p < 0.01). No association was found between other PTPN22 gene SNPs among UC patients. CONCLUSION PTPN22 gene polymorphism in rs1310182 could play a crucial role in susceptibility to UC.
Collapse
Affiliation(s)
- Maryam Sadr
- a Molecular Immunology Research Center, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Bobak Moazzami
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Narjes Soleimanifar
- a Molecular Immunology Research Center, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Nazanin Elhamian
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Arezoo Rezaei
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Nasser Ebrahimi Daryani
- c Department of Gastroenterology and Hepatology , Tehran University of Medical Sciences , Tehran , Iran
| | - Nima Rezaei
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,d Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,e Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| |
Collapse
|
17
|
Boyd M, Thodberg M, Vitezic M, Bornholdt J, Vitting-Seerup K, Chen Y, Coskun M, Li Y, Lo BZS, Klausen P, Jan Schweiger P, Pedersen AG, Rapin N, Skovgaard K, Dahlgaard K, Andersson R, Terkelsen TB, Lilje B, Troelsen JT, Petersen AM, Jensen KB, Gögenur I, Thielsen P, Seidelin JB, Nielsen OH, Bjerrum JT, Sandelin A. Characterization of the enhancer and promoter landscape of inflammatory bowel disease from human colon biopsies. Nat Commun 2018; 9:1661. [PMID: 29695774 PMCID: PMC5916929 DOI: 10.1038/s41467-018-03766-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/12/2018] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal disorder, with two main types: Crohn’s disease (CD) and ulcerative colitis (UC), whose molecular pathology is not well understood. The majority of IBD-associated SNPs are located in non-coding regions and are hard to characterize since regulatory regions in IBD are not known. Here we profile transcription start sites (TSSs) and enhancers in the descending colon of 94 IBD patients and controls. IBD-upregulated promoters and enhancers are highly enriched for IBD-associated SNPs and are bound by the same transcription factors. IBD-specific TSSs are associated to genes with roles in both inflammatory cascades and gut epithelia while TSSs distinguishing UC and CD are associated to gut epithelia functions. We find that as few as 35 TSSs can distinguish active CD, UC, and controls with 85% accuracy in an independent cohort. Our data constitute a foundation for understanding the molecular pathology, gene regulation, and genetics of IBD. Many SNPs associated with inflammatory bowel disease are located in non-coding genomic regions. Here, the authors perform CAGE-sequencing on descending colon biopsies of Crohn’s disease and ulcerative colitis patients to map transcription start sites and enhancer activity for analysis of regulatory regions.
Collapse
Affiliation(s)
- Mette Boyd
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Malte Thodberg
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Morana Vitezic
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Jette Bornholdt
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Kristoffer Vitting-Seerup
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Yun Chen
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Mehmet Coskun
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Yuan Li
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 2730, Herlev, Denmark
| | - Bobby Zhao Sheng Lo
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark.,Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 2730, Herlev, Denmark
| | - Pia Klausen
- Department of Gastroenterology, Surgical Section, Herlev Hospital, 2730, Herlev, Denmark
| | - Pawel Jan Schweiger
- Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | | | - Nicolas Rapin
- Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark.,The Finsen Laboratory, Rigshospitalet, University of Copenhagen, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Katja Dahlgaard
- Department of Science and Environment (INM), Roskilde University, 4000, Roskilde, Denmark
| | - Robin Andersson
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Thilde Bagger Terkelsen
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Berit Lilje
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | | | - Andreas Munk Petersen
- Hvidovre Hospital, Gastrounit Medical Division, University of Copenhagen, 2650, Hvidovre, Denmark.,Hvidovre Hospital, Department of Clinical Microbiology, University of Copenhagen, 2650, Hvidovre, Denmark
| | - Kim Bak Jensen
- Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Ismail Gögenur
- Centre for Surgical Science, Department of Surgery, Zealand University Hospital, 4600, Koege, Denmark
| | - Peter Thielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 2730, Herlev, Denmark
| | - Jakob Benedict Seidelin
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 2730, Herlev, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 2730, Herlev, Denmark
| | - Jacob Tveiten Bjerrum
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 2730, Herlev, Denmark.
| | - Albin Sandelin
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark. .,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark.
| |
Collapse
|
18
|
D'Arcangelo G, Aloi M. Inflammatory Bowel Disease-Unclassified in Children: Diagnosis and Pharmacological Management. Paediatr Drugs 2017; 19:113-120. [PMID: 28150131 DOI: 10.1007/s40272-017-0213-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inflammatory bowel diseases are chronic disorders of the gastrointestinal tract that include Crohn's disease (CD), ulcerative colitis (UC) and inflammatory bowel disease-unclassified (IBDU). The latter defines a subgroup of patients with clinical and endoscopic evidence of chronic colitis, without specific features of either CD or UC. These patients will possibly be re-classified as having UC or CD during the follow-up, although a significant percentage of them will keep the diagnosis of IBDU. IBDU is the rarest subtype of IBD, both in children and in adults, although it is twice as common among the pediatric population, especially in the younger ages. The diagnosis can only be made after a comprehensive diagnostic work-up, combining clinical history, physical and laboratory examination, upper and lower gastrointestinal endoscopy, with histology and imaging of the small bowel. The therapeutic strategy is borrowed from that of UC and CD, although recent data suggest that IBDU has a lower therapeutic burden with a generally mild disease course and a good response to mesalamine. Since there are only few published data on pediatric IBDU, and no guidelines on its management are available, this review aims at summarizing the most recent evidence for the diagnostic work-up with a specific focus on medical and surgical options in the treatment of IBDU.
Collapse
Affiliation(s)
- Giulia D'Arcangelo
- Department of Pediatrics, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Marina Aloi
- Department of Pediatrics, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
19
|
Yu C, Xiong Y, Chen D, Li Y, Xu B, Lin Y, Tang Z, Jiang C, Wang L. Ameliorative effects of atractylodin on intestinal inflammation and co-occurring dysmotility in both constipation and diarrhea prominent rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 21:1-9. [PMID: 28066135 PMCID: PMC5214900 DOI: 10.4196/kjpp.2017.21.1.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/31/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022]
Abstract
Intestinal disorders often co-occur with inflammation and dysmotility. However, drugs which simultaneously improve intestinal inflammation and co-occurring dysmotility are rarely reported. Atractylodin, a widely used herbal medicine, is used to treat digestive disorders. The present study was designed to characterize the effects of atractylodin on amelioration of both jejunal inflammation and the co-occurring dysmotility in both constipation-prominent (CP) and diarrhea-prominent (DP) rats. The results indicated that atractylodin reduced proinflammatory cytokines TNF-α, IL-1β, and IL-6 in the plasma and inhibited the expression of inflammatory mediators iNOS and NF-kappa B in jejunal segments in both CP and DP rats. The results indicated that atractylodin exerted stimulatory effects and inhibitory effects on the contractility of jejunal segments isolated from CP and DP rats respectively, showing a contractile-state-dependent regulation. Atractylodin-induced contractile-state-dependent regulation was also observed by using rat jejunal segments in low and high contractile states respectively (5 pairs of low/high contractile states). Atractylodin up-regulated the decreased phosphorylation of 20 kDa myosin light chain, protein contents of myosin light chain kinase (MLCK), and MLCK mRNA expression in jejunal segments of CP rats and down-regulated those increased parameters in DP rats. Taken together, atractylodin alleviated rat jejunal inflammation and exerted contractile-state-dependent regulation on the contractility of jejunal segments isolated from CP and DP rats respectively, suggesting the potential clinical implication for ameliorating intestinal inflammation and co-occurring dysmotility.
Collapse
Affiliation(s)
- Changchun Yu
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Yongjian Xiong
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Dapeng Chen
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Yanli Li
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Bin Xu
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Yuan Lin
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Zeyao Tang
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Chunling Jiang
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Li Wang
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
20
|
Walker SJ, Beavers DP, Fortunato J, Krigsman A. A Putative Blood-Based Biomarker for Autism Spectrum Disorder-Associated Ileocolitis. Sci Rep 2016; 6:35820. [PMID: 27767057 PMCID: PMC5073317 DOI: 10.1038/srep35820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal symptoms are common in children with autism spectrum disorder (ASD). A significant proportion of children with ASD and gastrointestinal symptoms have histologic evidence of ileocolitis (inflammation of the terminal ileum and/or colon). We previously reported the molecular characterization of gastrointestinal biopsy tissue from ASD children with ileocolitis (ASDIC+) compared to anatomically similar inflamed tissue from typically developing children with inflammatory bowel disease (IBD; i.e. Crohn’s disease or ulcerative colitis) and typically developing children with gastrointestinal symptoms but no evidence of gastrointestinal mucosal inflammation (TDIC−). ASDIC+ children had a gene expression profile that, while primarily overlapping with known IBD, had distinctive differences. The present study confirms these findings and replicates this molecular characterization in a second cohort of cases (ASDIC+) and controls (TDIC−). In these two separate case/control mucosal-based cohorts, we have demonstrated overlap of 59 differentially expressed transcripts (DETs) unique to inflamed ileocolonic tissue from symptomatic ASDIC+ children. We now report that 9 of these 59 transcripts are also differentially expressed in the peripheral blood of the second cohort of ASDIC+ children. This set of transcripts represents a putative blood-based biomarker for ASD-associated ileocolonic inflammation.
Collapse
Affiliation(s)
- Stephen J Walker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston Salem, NC, USA
| | - Daniel P Beavers
- Department of Biostatistical Sciences, Public Health Sciences, Wake Forest University Health Sciences, Winston Salem, NC, USA
| | - John Fortunato
- Pediatric Gastroenterology, Hepatology, and Nutrition, Ann &Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Arthur Krigsman
- Pediatric Gastroenterology Resources, 148 Beach 9th Street, Suite 2B, Far Rockaway, NY, USA
| |
Collapse
|
21
|
Abdul Rani R, Raja Ali RA, Lee YY. Irritable bowel syndrome and inflammatory bowel disease overlap syndrome: pieces of the puzzle are falling into place. Intest Res 2016; 14:297-304. [PMID: 27799880 PMCID: PMC5083258 DOI: 10.5217/ir.2016.14.4.297] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022] Open
Abstract
Irritable bowel syndrome (IBS), a common gastrointestinal disorder involving the gut-brain axis, and inflammatory bowel disease (IBD), a chronic relapsing inflammatory disorder, are both increasing in incidence and prevalence in Asia. Both have significant overlap in terms of symptoms, pathophysiology, and treatment, suggesting the possibility of IBS and IBD being a single disease entity albeit at opposite ends of the spectrum. We examined the similarities and differences in IBS and IBD, and offer new thoughts and approaches to the disease paradigm.
Collapse
Affiliation(s)
- Rafiz Abdul Rani
- Gastroenterology Unit, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Raja Affendi Raja Ali
- Gastroenterology Unit, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
22
|
de Bruyn M, Vandooren J, Ugarte-Berzal E, Arijs I, Vermeire S, Opdenakker G. The molecular biology of matrix metalloproteinases and tissue inhibitors of metalloproteinases in inflammatory bowel diseases. Crit Rev Biochem Mol Biol 2016; 51:295-358. [PMID: 27362691 DOI: 10.1080/10409238.2016.1199535] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Quigley EMM. Overlapping irritable bowel syndrome and inflammatory bowel disease: less to this than meets the eye? Therap Adv Gastroenterol 2016; 9:199-212. [PMID: 26929782 PMCID: PMC4749858 DOI: 10.1177/1756283x15621230] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Though distinct in terms of pathology, natural history and therapeutic approach, irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) have some features in common. These include shared symptomatology and largely similar demographics. However, in most instances, clinical presentation, together with laboratory, imaging and endoscopic findings will readily permit the differentiation of active IBD from IBS. More problematic is the situation where a subject with IBD, in apparent remission, continues to complain of symptoms which, in aggregate, satisfy commonly employed criteria for the diagnosis of IBS. Access to methodologies, such the assay for levels of calprotectin in feces, now allows identification of ongoing inflammation in some such individuals and prompts appropriate therapy. More challenging is the IBD patient with persisting symptoms and no detectable evidence of inflammation; is this coincident IBS, IBS triggered by IBD or an even more subtle level of IBD activity unrecognized by available laboratory or imaging methods? Arguments can be advanced for each of these proposals; lacking definitive data, this issue remains unresolved. The occurrence of IBS-type symptoms in the IBD patient, together with some data suggesting a very subtle level of 'inflammation' or 'immune activation' in IBS, raises other questions: is IBS a prodromal form of IBD; and are IBS and IBD part of the spectrum of the same disease? All of the available evidence indicates that the answer to both these questions should be a resounding 'no'. Indeed, the whole issue of overlap between IBS and IBD should be declared moot given their differing pathophysiologies, contrasting natural histories and divergent treatment paths. The limited symptom repertoire of the gastrointestinal tract may well be fundamental to the apparent confusion that has, of late, bedeviled this area.
Collapse
|
24
|
Sifuentes-Dominguez L, Patel AS. Genetics and Therapeutics in Pediatric Ulcerative Colitis: the Past, Present and Future. F1000Res 2016; 5. [PMID: 26973787 PMCID: PMC4776672 DOI: 10.12688/f1000research.7440.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2016] [Indexed: 12/19/2022] Open
Abstract
Ulcerative colitis (UC) is a relapsing and remitting disease with significant phenotypic and genotypic variability. Though more common in adults, UC is being increasingly diagnosed in childhood. The subsequent lifelong course of disease results in challenges for the patient and physician. Currently, there is no medical cure for UC. Even though surgical removal of the colon can be curative, complications including infertility in females make colectomy an option often considered only when the disease presents with life-threatening complications or when medical management fails. One of the greatest challenges the clinician faces in the care of patients with UC is the inability to predict at diagnosis which patient is going to respond to a specific therapy or will eventually require surgery. This therapeutic conundrum frames the discussion to follow, specifically the concept of individualized or personalized treatment strategies based on genetic risk factors. As we move to therapeutics, we will elucidate traditional approaches and discuss known and novel agents. As we look to the future, we can expect increasing integrated approaches using several scientific disciplines to inform how genetic interactions shape and mold the pathogenesis and therapeutics of UC.
Collapse
Affiliation(s)
| | - Ashish S Patel
- Children's Health, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
25
|
Soubières AA, Poullis A. Emerging role of novel biomarkers in the diagnosis of inflammatory bowel disease. World J Gastrointest Pharmacol Ther 2016; 7:41-50. [PMID: 26855811 PMCID: PMC4734953 DOI: 10.4292/wjgpt.v7.i1.41] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/06/2015] [Accepted: 11/11/2015] [Indexed: 02/06/2023] Open
Abstract
There is currently no gold standard test for the diagnosis of inflammatory bowel disease (IBD). Physicians must rely on a number of diagnostic tools including clinical and endoscopic evaluation as well as histologic, serologic and radiologic assessment. The real difficulty for physicians in both primary and secondary care is differentiating between patients suffering from functional symptoms and those with true underlying IBD. Alongside this, there is always concern regarding the possibility of a missed, or delayed diagnosis of ulcerative colitis (UC) or Crohn’s disease. Even once the diagnosis of IBD has been made, there is often uncertainty in distinguishing between cases of UC or Crohn’s. As a consequence, in cases of incorrect diagnosis, optimal treatment and management may be adversely affected. Endoscopic evaluation can be uncomfortable and inconvenient for patients. It carries significant risks including perforation and in terms of monetary cost, is expensive. The use of biomarkers to help in the diagnosis and differentiation of IBD has been increasing over time. However, there is not yet one biomarker, which is sensitive of specific enough to be used alone in diagnosing IBD. Current serum testing includes C-reactive protein and erythrocyte sedimentation rate, which are cheap, reliable but non-specific and thus not ideal. Stool based testing such as faecal calprotectin is a much more specific tool and is currently in widespread clinical use. Non-invasive sampling is of the greatest clinical value and with the recent advances in metabolomics, genetics and proteomics, there are now more tools available to develop sensitive and specific biomarkers to diagnose and differentiate between IBD. Many of these new advances are only in early stages of development but show great promise for future clinical use.
Collapse
|
26
|
Liu Z, Shen B. Overcoming difficulty in diagnosis and differential diagnosis of Crohn's disease: the potential role of serological and genetic tests. Expert Rev Mol Diagn 2015; 15:1133-41. [PMID: 26295589 DOI: 10.1586/14737159.2015.1068121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Crohn's disease (CD) represents a heterogeneous group of chronic inflammatory disorders with various phenotypes. Establishing a definite diagnosis of CD should be based upon a combined assessment of clinical, endoscopic, radiological and pathological features. Although segmental disease distribution, transmural inflammation and non-caseating epithelioid granulomas have been considered as a 'hallmarks' for CD, clear diagnosis of CD in some patients has been challenging, due to overlapping endoscopic, radiographic and histologic features with other inflammatory bowel disease-like conditions. Laboratory markers (serological and genetic tests) may provide additional clues for the diagnosis and differential diagnosis of CD. This review focuses on the application of the currently available serological and genomic markers and in diagnosis and differential diagnosis of CD.
Collapse
Affiliation(s)
- Zhaoxiu Liu
- a 1 Department of Gastroenterology, Affiliated Hospital of Nantong University, Jiangsu, China
| | | |
Collapse
|
27
|
Tontini GE, Vecchi M, Pastorelli L, Neurath MF, Neumann H. Differential diagnosis in inflammatory bowel disease colitis: State of the art and future perspectives. World J Gastroenterol 2015; 21:21-46. [PMID: 25574078 PMCID: PMC4284336 DOI: 10.3748/wjg.v21.i1.21] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/31/2014] [Accepted: 09/16/2014] [Indexed: 02/06/2023] Open
Abstract
Distinction between Crohn’s disease of the colon-rectum and ulcerative colitis or inflammatory bowel disease (IBD) type unclassified can be of pivotal importance for a tailored clinical management, as each entity often involves specific therapeutic strategies and prognosis. Nonetheless, no gold standard is available and the uncertainty of diagnosis may frequently lead to misclassification or repeated examinations. Hence, we have performed a literature search to address the problem of differential diagnosis in IBD colitis, revised current and emerging diagnostic tools and refined disease classification strategies. Nowadays, the differential diagnosis is an untangled issue, and the proper diagnosis cannot be reached in up to 10% of patients presenting with IBD colitis. This topic is receiving emerging attention, as medical therapies, surgical approaches and leading prognostic outcomes require more and more disease-specific strategies in IBD patients. The optimization of standard diagnostic approaches based on clinical features, biomarkers, radiology, endoscopy and histopathology appears to provide only marginal benefits. Conversely, emerging diagnostic techniques in the field of gastrointestinal endoscopy, molecular pathology, genetics, epigenetics, metabolomics and proteomics have already shown promising results. Novel advanced endoscopic imaging techniques and biomarkers can shed new light for the differential diagnosis of IBD, better reflecting diverse disease behaviors based on specific pathogenic pathways.
Collapse
|
28
|
Bjerrum JT, Wang Y, Hao F, Coskun M, Ludwig C, Günther U, Nielsen OH. Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn's disease and healthy individuals. Metabolomics 2015; 11:122-133. [PMID: 25598765 PMCID: PMC4289537 DOI: 10.1007/s11306-014-0677-3] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/14/2014] [Indexed: 12/12/2022]
Abstract
This study employs spectroscopy-based metabolic profiling of fecal extracts from healthy subjects and patients with active or inactive ulcerative colitis (UC) and Crohn's disease (CD) to substantiate the potential use of spectroscopy as a non-invasive diagnostic tool and to characterize the fecal metabolome in inflammatory bowel disease (IBD). Stool samples from 113 individuals (UC 48, CD 44, controls 21) were analyzed by 1H nuclear magnetic resonance (NMR) spectroscopy (Bruker 600 MHz, Bruker BioSpin, Rheinstetten, Germany). Data were analyzed with principal component analysis and orthogonal-projection to latent structure-discriminant analysis using SIMCA-P + 12 and MATLAB. Significant differences were found in the metabolic profiles making it possible to differentiate between active IBD and controls and between UC and CD. The metabolites holding differential power primarily belonged to a range of amino acids, microbiota-related short chain fatty acids, and lactate suggestive of an inflammation-driven malabsorption and dysbiosis of the normal bacterial ecology. However, removal of patients with intestinal surgery and anti-TNF-α antibody treatment eliminated the discriminative power regarding UC versus CD. This study consequently demonstrates that 1H NMR spectroscopy of fecal extracts is a potential non-invasive diagnostic tool and able to characterize the inflammation-driven changes in the metabolic profiles related to malabsorption and dysbiosis. Intestinal surgery and medication are to be accounted for in future studies, as it seems to be factors of importance in the discriminative process.
Collapse
Affiliation(s)
- Jacob Tveiten Bjerrum
| | - Yulan Wang
| | - Fuhua Hao
| | - Mehmet Coskun
| | - Christian Ludwig
| | - Ulrich Günther
| | - Ole Haagen Nielsen
| |
Collapse
|
29
|
Multigene analysis unveils distinctive expression profiles of helper T-cell-related genes in the intestinal mucosa that discriminate between ulcerative colitis and Crohn's disease. Inflamm Bowel Dis 2014; 20:967-77. [PMID: 24739631 DOI: 10.1097/mib.0000000000000028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Although the involvement of helper T (Th) and regulatory T (Treg) cell-related immune molecules in pathogenesis of inflammatory bowel disease (IBD) is widely accepted, no discriminatory mucosal expression profiles of these molecules between ulcerative colitis (UC) and Crohn's disease (CD) have been clarified. METHODS Mucosal expression of 17 cytokines and transcription factors related to Th1, Th2, Th17, and Treg were measured by quantitative PCR in endoscopic biopsies from inflamed (40 from UC [UCI] and 20 from CD [CDI]) and noninflamed (47, 22, and 25 from UC, CD, and controls, respectively) colon or ileum. The discriminatory power of these markers to differentiate between the 2 diseases was evaluated by linear discriminant analysis and, unsupervised, principal component analysis. RESULTS By univariate analysis, many targets were markedly increased in inflamed versus noninflamed areas. However, marker expression was almost comparable between UCI and CDI, with the largest difference in UCI-predominant interleukin (IL) 21 and IL-13 with area under the receiver operating characteristic curve (AUC) values of 0.704 and 0.664, respectively. In contrast, combinations of 2 to 7 markers improved UCI versus CDI discrimination with AUC = 0.875 to 0.975. Among these, a 5-maker set (interferon-γ, IL-12 p35, T-bet, GATA3, and IL-21) demonstrated an AUC of 0.949 and a misclassification rate of 8.3%. Principal component analysis also markedly separated UCI and CDI. CONCLUSIONS Inflamed mucosae from UC and CD could be discriminated with high accuracy using combinations of Th cell-related markers. Multigene analysis, possibly reflecting the underlying pathogenesis, is expected to be useful for diagnosis, monitoring and further defining distinctive characteristics in inflammatory bowel disease.
Collapse
|
30
|
Bjerrum JT, Nyberg C, Olsen J, Nielsen OH. Assessment of the validity of a multigene analysis in the diagnostics of inflammatory bowel disease. J Intern Med 2014; 275:484-93. [PMID: 24206446 DOI: 10.1111/joim.12160] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The findings of a previous multigene study indicated that the expression of a panel of seven specific genes had strong differential power regarding inflammatory bowel disease (IBD) versus non-IBD, as well as ulcerative colitis (UC) versus Crohn's disease (CD). This prospective confirmatory study based on an independent patient cohort from a national Danish IBD centre was conducted in an attempt to verify these earlier observations. DESIGN, SETTING AND PARTICIPANTS A total of 119 patients were included in the study (CD, UC and controls). Three mucosal biopsies were retrieved from the left side of the colon of each patient. RNA was extracted, and RT-PCR was performed to retain expression profiles from the seven selected genes. Expression data from the training set (18 CD, 20 UC and 20 controls) were used to build a classification model, using quadratic discriminant analysis, and data from the test set (20 CD, 21 UC and 20 controls) were used to test the validity of the model. RESULTS The present investigation did not confirm the previous observation that a panel of seven specific genes is able to distinguish between patients with CD and UC, whereas the discriminative power for IBD versus control subjects was substantiated. CONCLUSION Our results fail to demonstrate that the previously identified seven-gene classification model is able to discriminate between CD and UC but suggest that the gene panel merely discriminates between inflamed and noninflamed colonic tissue. Thus, a reliable and simple diagnostic tool is still warranted for optimal diagnosis and treatment of patients with IBD, especially the subgroup with unclassified disease.
Collapse
Affiliation(s)
- J T Bjerrum
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Cellular & Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
31
|
Lawrance IC. The importance of validating proposed genetic profiles in IBD. J Intern Med 2014; 275:481-3. [PMID: 24344969 DOI: 10.1111/joim.12180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- I C Lawrance
- Fremantle Hospital, Centre for Inflammatory Bowel Disease, Fremantle, WA, Australia
| |
Collapse
|
32
|
von Stein P. Inflammatory bowel disease classification through multigene analysis: fact or fiction? Expert Rev Mol Diagn 2014; 9:7-10. [DOI: 10.1586/14737159.9.1.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Alper SL, Sharma AK. The SLC26 gene family of anion transporters and channels. Mol Aspects Med 2013; 34:494-515. [PMID: 23506885 DOI: 10.1016/j.mam.2012.07.009] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/21/2012] [Indexed: 02/08/2023]
Abstract
The phylogenetically ancient SLC26 gene family encodes multifunctional anion exchangers and anion channels transporting a broad range of substrates, including Cl(-), HCO3(-), sulfate, oxalate, I(-), and formate. SLC26 polypeptides are characterized by N-terminal cytoplasmic domains, 10-14 hydrophobic transmembrane spans, and C-terminal cytoplasmic STAS domains, and appear to be homo-oligomeric. SLC26-related SulP proteins of marine bacteria likely transport HCO3(-) as part of oceanic carbon fixation. SulP genes present in antibiotic operons may provide sulfate for antibiotic biosynthetic pathways. SLC26-related Sultr proteins transport sulfate in unicellular eukaryotes and in plants. Mutations in three human SLC26 genes are associated with congenital or early onset Mendelian diseases: chondrodysplasias for SLC26A2, chloride diarrhea for SLC26A3, and deafness with enlargement of the vestibular aqueduct for SLC26A4. Additional disease phenotypes evident only in mouse knockout models include oxalate urolithiasis for Slc26a6 and Slc26a1, non-syndromic deafness for Slc26a5, gastric hypochlorhydria for Slc26a7 and Slc26a9, distal renal tubular acidosis for Slc26a7, and male infertility for Slc26a8. STAS domains are required for cell surface expression of SLC26 proteins, and contribute to regulation of the cystic fibrosis transmembrane regulator in complex, cell- and tissue-specific ways. The protein interactomes of SLC26 polypeptides are under active investigation.
Collapse
Affiliation(s)
- Seth L Alper
- Renal Division and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | |
Collapse
|
34
|
Bjerrum JT, Rantalainen M, Wang Y, Olsen J, Nielsen OH. Integration of transcriptomics and metabonomics: improving diagnostics, biomarker identification and phenotyping in ulcerative colitis. Metabolomics 2013; 10:280-290. [PMID: 25221466 PMCID: PMC4161940 DOI: 10.1007/s11306-013-0580-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/10/2013] [Indexed: 12/18/2022]
Abstract
A systems biology approach to multi-faceted diseases has provided an opportunity to establish a holistic understanding of the processes at play. Thus, the current study merges transcriptomics and metabonomics data in order to improve diagnostics, biomarker identification and to explore the possibilities of a molecular phenotyping of ulcerative colitis (UC) patients. Biopsies were obtained from the descending colon of 43 UC patients (22 active UC and 21 quiescent UC) and 15 controls. Genome-wide gene expression analyses were performed using Affymetrix GeneChip Human Genome U133 Plus 2.0. Metabolic profiles were generated using 1H Nuclear magnetic resonance spectroscopy (Bruker 600 MHz, Bruker BioSpin, Rheinstetten, Germany). Data were analyzed with the use of orthogonal-projection to latent structure-discriminant analysis and a multivariate logistic regression model fitted by lasso. Prediction performance was evaluated using nested Monte Carlo cross-validation. The prediction performance of the merged data sets and that of relative small (<20 variables) multivariate biomarker panels suggest that it is possible to discriminate between active UC, quiescent UC, and controls; between patients with or without steroid dependency, as well as between early or late disease onset. Consequently, this study demonstrates that the novel approach of integrating metabonomics and transcriptomics combines the better of the two worlds, and provides us with clinical applicable candidate biomarker panels. These combined panels improve diagnostics and more importantly also the molecular phenotyping in UC and provide insight into the pathophysiological processes at play, making optimized and personalized medication a possibility.
Collapse
Affiliation(s)
- Jacob Tveiten Bjerrum
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mattias Rantalainen
- Department of Statistics, Oxford University, Oxford, UK
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Yulan Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People’s Republic of China
| | - Jørgen Olsen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Li BQ, Huang T, Zhang J, Zhang N, Huang GH, Liu L, Cai YD. An ensemble prognostic model for colorectal cancer. PLoS One 2013; 8:e63494. [PMID: 23658834 PMCID: PMC3642113 DOI: 10.1371/journal.pone.0063494] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/03/2013] [Indexed: 02/01/2023] Open
Abstract
Colorectal cancer can be grouped into Dukes A, B, C, and D stages based on its developments. Generally speaking, more advanced patients have poorer prognosis. To integrate progression stage prediction systems with recurrence prediction systems, we proposed an ensemble prognostic model for colorectal cancer. In this model, each patient was assigned a most possible stage and a most possible recurrence status. If a patient was predicted to be recurrence patient in advanced stage, he would be classified into high risk group. The ensemble model considered both progression stages and recurrence status. High risk patients and low risk patients predicted by the ensemble model had a significant different disease free survival (log-rank test p-value, 0.0016) and disease specific survival (log-rank test p-value, 0.0041). The ensemble model can better distinguish the high risk and low risk patients than the stage prediction model and the recurrence prediction model alone. This method could be applied to the studies of other diseases and it could significantly improve the prediction performance by ensembling heterogeneous information.
Collapse
Affiliation(s)
- Bi-Qing Li
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Tao Huang
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York City, New York, United States of America
| | - Jian Zhang
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, P. R. China
| | - Ning Zhang
- Department of Biomedical Engineering, Tianjin University, Tianjin Key Lab of BME Measurement, Tianjin, P. R. China
| | - Guo-Hua Huang
- Institute of Systems Biology, Shanghai University, Shanghai, P. R. China
| | - Lei Liu
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
- * E-mail: (LL); (YDC)
| | - Yu-Dong Cai
- Institute of Systems Biology, Shanghai University, Shanghai, P. R. China
- * E-mail: (LL); (YDC)
| |
Collapse
|
36
|
Walker SJ, Fortunato J, Gonzalez LG, Krigsman A. Identification of unique gene expression profile in children with regressive autism spectrum disorder (ASD) and ileocolitis. PLoS One 2013; 8:e58058. [PMID: 23520485 PMCID: PMC3592909 DOI: 10.1371/journal.pone.0058058] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 01/31/2013] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal symptoms are common in children with autism spectrum disorder (ASD) and are often associated with mucosal inflammatory infiltrates of the small and large intestine. Although distinct histologic and immunohistochemical properties of this inflammatory infiltrate have been previously described in this ASD(GI) group, molecular characterization of these lesions has not been reported. In this study we utilize transcriptome profiling of gastrointestinal mucosal biopsy tissue from ASD(GI) children and three non-ASD control groups (Crohn's disease, ulcerative colitis, and histologically normal) in an effort to determine if there is a gene expression profile unique to the ASD(GI) group. Comparison of differentially expressed transcripts between the groups demonstrated that non-pathologic (normal) tissue segregated almost completely from inflamed tissue in all cases. Gene expression profiles in intestinal biopsy tissue from patients with Crohn's disease, ulcerative colitis, and ASD(GI), while having significant overlap with each other, also showed distinctive features for each group. Taken together, these results demonstrate that ASD(GI) children have a gastrointestinal mucosal molecular profile that overlaps significantly with known inflammatory bowel disease (IBD), yet has distinctive features that further supports the presence of an ASD-associated IBD variant, or, alternatively, a prodromal phase of typical inflammatory bowel disease. Although we report qPCR confirmation of representative differentially expressed transcripts determined initially by microarray, these findings may be considered preliminary to the extent that they require further confirmation in a validation cohort.
Collapse
Affiliation(s)
- Stephen J Walker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston Salem, North Carolina, United States of America.
| | | | | | | |
Collapse
|
37
|
Gillberg L, Varsanyi M, Sjöström M, Lördal M, Lindholm J, Hellström PM. Nitric oxide pathway-related gene alterations in inflammatory bowel disease. Scand J Gastroenterol 2012; 47:1283-97. [PMID: 22900953 DOI: 10.3109/00365521.2012.706830] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To reveal specific gene activation in nitric oxide (NO)-related inflammation we studied differential gene expression in inflammatory bowel disease (IBD). METHODS Total RNA was isolated from 20 biopsies of inflamed mucosa from Crohn's disease (CD) and ulcerative colitis (UC) patients each as well as from six controls, labeled with (32)P-dCTP and hybridized to a human NO gene array. Significant genes were analyzed for functional gene interactions and heatmaps generated by hierarchical clustering. A selection of differentially expressed genes was further evaluated with immunohistochemical staining. RESULTS Significant gene expression differences were found for 19 genes in CD and 23 genes in UC compared to controls, both diseases with high expression of ICAM1 and IL-8. Correlation between microarray expression and corresponding protein expression was significant (r = 0.47, p = 0.002). Clustering analysis together with functional gene interaction analysis revealed clusters of coregulation and coexpression in CD and UC: transcripts involved in angiogenesis, inflammatory response mediated by the transcription factor hypoxia-inducible factor 1, and tissue fibrosis. Also, a fourth cluster with transcripts regulated by the transcription factor Sp1 was found in UC. CONCLUSIONS Expression analysis in CD and UC revealed disease-specific regulation of NO-related genes, which might be involved in perpetuating inflammatory disease activity in IBD.
Collapse
Affiliation(s)
- Linda Gillberg
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
38
|
Poulsen NA, Andersen V, Møller JC, Møller HS, Jessen F, Purup S, Larsen LB. Comparative analysis of inflamed and non-inflamed colon biopsies reveals strong proteomic inflammation profile in patients with ulcerative colitis. BMC Gastroenterol 2012; 12:76. [PMID: 22726388 PMCID: PMC3441502 DOI: 10.1186/1471-230x-12-76] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/15/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Accurate diagnostic and monitoring tools for ulcerative colitis (UC) are missing. Our aim was to describe the proteomic profile of UC and search for markers associated with disease exacerbation. Therefore, we aimed to characterize specific proteins associated with inflamed colon mucosa from patients with acute UC using mass spectrometry-based proteomic analysis. METHODS Biopsies were sampled from rectum, sigmoid colon and left colonic flexure from twenty patients with active proctosigmoiditis and from four healthy controls for proteomics and histology. Proteomic profiles of whole colonic biopsies were characterized using 2D-gel electrophoresis, and peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was applied for identification of differently expressed protein spots. RESULTS A total of 597 spots were annotated by image analysis and 222 of these had a statistically different protein level between inflamed and non-inflamed tissue in the patient group. Principal component analysis clearly grouped non-inflamed samples separately from the inflamed samples indicating that the proteomic signature of colon mucosa with acute UC is strong. Totally, 43 individual protein spots were identified, including proteins involved in energy metabolism (triosephosphate isomerase, glycerol-3-phosphate-dehydrogenase, alpha enolase and L-lactate dehydrogenase B-chain) and in oxidative stress (superoxide dismutase, thioredoxins and selenium binding protein). CONCLUSIONS A distinct proteomic profile of inflamed tissue in UC patients was found. Specific proteins involved in energy metabolism and oxidative stress were identified as potential candidate markers for UC.
Collapse
|
39
|
McCormick JB, Hammer RR, Farrell RM, Geller G, James KM, Loftus EV, Mercer MB, Tilburt JC, Sharp RR. Experiences of patients with chronic gastrointestinal conditions: in their own words. Health Qual Life Outcomes 2012; 10:25. [PMID: 22401607 PMCID: PMC3349594 DOI: 10.1186/1477-7525-10-25] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 03/08/2012] [Indexed: 12/15/2022] Open
Abstract
Background Irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) are chronic conditions affecting millions of individuals in the United States. The symptoms are well-documented and can be debilitating. How these chronic gastrointestinal (GI) conditions impact the daily lives of those afflicted is not well documented, especially from a patient's perspective. Methods Here we describe data from a series of 22 focus groups held at three different academic medical centers with individuals suffering from chronic GI conditions. All focus groups were audio recorded and transcribed. Two research team members independently analyzed transcripts from each focus group following an agreed upon coding scheme. Results One-hundred-thirty-six individuals participated in our study, all with a chronic GI related condition. They candidly discussed three broad themes that characterize their daily lives: identification of disease and personal identity, medications and therapeutics, and daily adaptations. These all tie to our participants trying to deal with symptoms on a daily basis. We find that a recurrent topic underlying these themes is the dichotomy of experiencing uncertainty and striving for control. Conclusions Study participants' open dialogue and exchange of experiences living with a chronic GI condition provide insight into how these conditions shape day-to-day activities. Our findings provide fertile ground for discussions about how clinicians might best facilitate, acknowledge, and elicit patients' stories in routine care to better address their experience of illness.
Collapse
|
40
|
Janczewska I, Kapraali M, Saboonchi F, Nekzada Q, Wessulv Å, Khoshkar J, Marouf F, Gorsetman J, Risberg D, Lissing M, Wirström G, Sandstedt B. Clinical application of the multigene analysis test in discriminating between ulcerative colitis and Crohn's disease: a retrospective study. Scand J Gastroenterol 2012; 47:162-9. [PMID: 22229803 DOI: 10.3109/00365521.2011.647065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
METHODS The newly described--multigene analysis test (DiBiCol) identifying 7 inflammatory bowel disease (IBD)-specific genes in colonic mucosal biopsy differentiating between ulcerative colitis (UC) and Crohn's disease (CD) with active inflammation--is a new addition to existing methods with a higher stated sensitivity and specificity. Method biopsy material from 78 patients with a complicated course diagnosed as most probably UC in 38, CD in 18 and inflammatory bowel disease unclassified (IBDU) in 22 were investigated by DiBiCol. RESULTS DiBiCol showed a pattern consistent with CD in 13 patients with UC and led to change of diagnosis in 3 patients and a strong suggestion of CD in 8 patients. A total of 2 patients remained as UC. DiBiCol showed a pattern of UC in 4 patients of 18 with CD leading to a changing of diagnosis to UC in 3 patients, but the fourth remained as CD. In 22 patients with IBDU DiBiCol showed a pattern consistent with UC in 7 cases and with CD in 13 cases. A new evaluation 1 year after the DiBiCol allowed the assessment of clinical diagnosis in 10 patients confirmed in 9 of 10 patients by DiBiCol. In patients with acute flare of colitis the clinical diagnosis corresponded in 10 of 12 UC and in 5 of 6 CD cases. SUMMARY Adopting the DiBiCol test led to a change of the primary diagnosis in a significant number of patients with the initial diagnosis of UC and CD and suggested a clinically probable diagnosis in most of the patients with IBDU and in those with an acute flare of colitis.
Collapse
Affiliation(s)
- I Janczewska
- Department of Clinical Sciences, Karolinska Institutet, Division of Internal Medicine Danderyd Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
N-nitroso compound exposure-associated transcriptomic profiles are indicative of an increased risk for colorectal cancer. Cancer Lett 2011; 309:1-10. [PMID: 21669488 DOI: 10.1016/j.canlet.2011.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 01/31/2023]
Abstract
Endogenous formation of N-nitroso compounds (NOCs), which are known animal carcinogens, could contribute to human carcinogenesis but definitive evidence is still lacking. To investigate the relevance of NOCs in human colorectal cancer (CRC) development, we analyzed whole genome gene expression modifications in human colon biopsies in relation to fecal NOC exposure. We had a particular interest in patients suffering from intestinal inflammation as this may stimulate endogenous NOC formation, and consequently predispose to CRC risk. Inflammatory bowel disease (IBD) patients diagnosed with ulcerative colitis and irritable bowel syndrome patients without inflammation, serving as controls, were therefore recruited. Fecal NOC were demonstrated in the majority of subjects. By associating gene expression levels of all subjects to fecal NOC levels, we identified a NOC exposure-associated transcriptomic response that suggests that physiological NOC concentrations may potentially induce genotoxic responses and chromatin modifications in human colon tissue, both of which are linked to carcinogenicity. In a network analysis, chromatin modifications were linked to 11 significantly modulated histone genes, pointing towards a possible epigenetic mechanism that may be relevant in comprehending NOC-induced carcinogenesis. In addition, pro-inflammatory transcriptomic modifications were identified in visually non-inflamed regions of the IBD colon. However, fecal NOC levels were slightly but not significantly increased in IBD patients, suggesting that inflammation did not strongly stimulate NOC formation. We conclude that NOC exposure is associated with gene expression modifications in the human colon that may suggest a potential role of these compounds in CRC development.
Collapse
|
42
|
Janczewska I, Nekzada Q, Kapraali M. Crohn's disease after gastric bypass surgery. BMJ Case Rep 2011; 2011:bcr.07.2010.3168. [PMID: 22693320 PMCID: PMC3109695 DOI: 10.1136/bcr.07.2010.3168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bariatric surgery for the treatment of severe obesity has increased dramatically in recent years in the USA and parts of Western Europe. The most commonly used technique is the Roux-en Y gastric bypass (RYGBP). Several nutritional and gastrointestinal complications after bariatric surgery have been described during the last 10 years. The authors present two patients with diarrhoea and malnutrition; one after RYGBP and the other after jejunoileal bypass surgery. These patients were subsequently diagnosed with Crohn's disease.
Collapse
Affiliation(s)
- Izabella Janczewska
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
43
|
Bragde H, Jansson U, Jarlsfelt I, Söderman J. Gene expression profiling of duodenal biopsies discriminates celiac disease mucosa from normal mucosa. Pediatr Res 2011; 69:530-7. [PMID: 21378598 DOI: 10.1203/pdr.0b013e318217ecec] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Celiac disease (CD) is identified by histopathologic changes in the small intestine which normalize during a gluten-free diet. The histopathologic assessment of duodenal biopsies is usually routine but can be difficult. This study investigated gene expression profiling as a diagnostic tool. A total of 109 genes were selected to reflect alterations in crypt-villi architecture, inflammatory response, and intestinal permeability and were examined for differential expression in normal mucosa compared with CD mucosa in pediatric patients. Biopsies were classified using discriminant analysis of gene expression. Fifty genes were differentially expressed, of which eight (APOC3, CYP3A4, OCLN, MAD2L1, MKI67, CXCL11, IL17A, and CTLA4) discriminated normal mucosa from CD mucosa without classification errors using leave-one-out cross-validation (n = 39) and identified the degree of mucosal damage. Validation using an independent set of biopsies (n = 27) resulted in four discrepant cases. Biopsies from two of these cases showed a patchy distribution of lesions, indicating that discriminant analysis based on single biopsies failed to identify CD mucosa. In the other two cases, serology support class according to discriminant analysis and histologic specimens were judged suboptimal but assessable. Gene expression profiling shows promise as a diagnostic tool and for follow-up of CD, but further evaluation is needed.
Collapse
Affiliation(s)
- Hanna Bragde
- Division of Medical Diagnostics, Ryhov County Hospital, Jönköping SE-551 85, Sweden
| | | | | | | |
Collapse
|
44
|
Broadhurst MJ, Leung JM, Kashyap V, McCune JM, Mahadevan U, McKerrow JH, Loke P. IL-22+ CD4+ T cells are associated with therapeutic trichuris trichiura infection in an ulcerative colitis patient. Sci Transl Med 2010; 2:60ra88. [PMID: 21123809 DOI: 10.1126/scitranslmed.3001500] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ulcerative colitis, a type of inflammatory bowel disease, is less common in countries endemic for helminth infections, suggesting that helminth colonization may have the potential to regulate intestinal inflammation in inflammatory bowel diseases. Indeed, therapeutic effects of experimental helminth infection have been reported in both animal models and clinical trials. Here, we provide a comprehensive cellular and molecular portrait of dynamic changes in the intestinal mucosa of an individual who infected himself with Trichuris trichiura to treat his symptoms of ulcerative colitis. Tissue with active colitis had a prominent population of mucosal T helper (T(H)) cells that produced the inflammatory cytokine interleukin-17 (IL-17) but not IL-22, a cytokine involved in mucosal healing. After helminth exposure, the disease went into remission, and IL-22-producing T(H) cells accumulated in the mucosa. Genes involved in carbohydrate and lipid metabolism were up-regulated in helminth-colonized tissue, whereas tissues with active colitis showed up-regulation of proinflammatory genes such as IL-17, IL-13RA2, and CHI3L1. Therefore, T. trichiura colonization of the intestine may reduce symptomatic colitis by promoting goblet cell hyperplasia and mucus production through T(H)2 cytokines and IL-22. Improved understanding of the physiological effects of helminth infection may lead to new therapies for inflammatory bowel diseases.
Collapse
Affiliation(s)
- Mara J Broadhurst
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Willing BP, Dicksved J, Halfvarson J, Andersson AF, Lucio M, Zheng Z, Järnerot G, Tysk C, Jansson JK, Engstrand L. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 2010; 139:1844-1854.e1. [PMID: 20816835 DOI: 10.1053/j.gastro.2010.08.049] [Citation(s) in RCA: 773] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 08/21/2010] [Accepted: 08/26/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The composition of the gastrointestinal microbiota is thought to have an important role in the etiology of inflammatory bowel diseases (IBDs) such as Crohn's disease (CD) and ulcerative colitis (UC). Interindividual variation and an inability to detect less abundant bacteria have made it difficult to correlate specific bacteria with disease. METHODS We used 454 pyrotag sequencing to determine the compositions of microbial communities in feces samples collected from a cohort of 40 twin pairs who were concordant or discordant for CD or UC, and in mucosal samples from a subset of the cohort. The cohort primarily comprised patients who were in remission, but also some with active disease. RESULTS The profiles of the microbial community differed with disease phenotypes; relative amounts of bacterial populations correlated with IBD phenotypes. The microbial compositions of individuals with CD differed from those of healthy individuals, but were similar between healthy individuals and individuals with UC. Profiles from individuals with CD that predominantly involved the ileum differed from those with CD that predominantly involved the colon; several bacterial populations increased or decreased with disease type. Changes specific to patients with ileal CD included the disappearance of core bacteria, such as Faecalibacterium and Roseburia, and increased amounts of Enterobacteriaceae and Ruminococcus gnavus. CONCLUSIONS Bacterial populations differ in abundance among individuals with different phenotypes of CD. Specific species of bacteria are associated with ileal CD; further studies should investigate their role in pathogenesis.
Collapse
Affiliation(s)
- Ben P Willing
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fasseu M, Tréton X, Guichard C, Pedruzzi E, Cazals-Hatem D, Richard C, Aparicio T, Daniel F, Soulé JC, Moreau R, Bouhnik Y, Laburthe M, Groyer A, Ogier-Denis E. Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with inflammatory bowel disease. PLoS One 2010; 5. [PMID: 20957151 PMCID: PMC2950152 DOI: 10.1371/journal.pone.0013160] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 09/05/2010] [Indexed: 02/07/2023] Open
Abstract
Background Ulcerative Colitis (UC) and Crohn's Disease (CD) are two chronic Inflammatory Bowel Diseases (IBD) affecting the intestinal mucosa. Current understanding of IBD pathogenesis points out the interplay of genetic events and environmental cues in the dysregulated immune response. We hypothesized that dysregulated microRNA (miRNA) expression may contribute to IBD pathogenesis. miRNAs are small, non-coding RNAs which prevent protein synthesis through translational suppression or mRNAs degradation, and regulate several physiological processes. Methodology/Findings Expression of mature miRNAs was studied by Q-PCR in inactive colonic mucosa of patients with UC (8), CD (8) and expressed relative to that observed in healthy controls (10). Only miRNAs with highly altered expression (>5 or <0.2 -fold relative to control) were considered when Q-PCR data were analyzed. Two subsets of 14 (UC) and 23 (CD) miRNAs with highly altered expression (5.2->100 -fold and 0.05–0.19 -fold for over- and under- expression, respectively; 0.001<p≤0.05) were identified in quiescent colonic mucosa, 8 being commonly dysregulated in non-inflamed UC and CD (mir-26a,-29a,-29b,-30c,-126*,-127-3p,-196a,-324-3p). Several miRNA genes with dysregulated expression co-localize with acknowledged IBD-susceptibility loci while others, (eg. clustered on 14q32.31), map on chromosomal regions not previously recognized as IBD-susceptibility loci. In addition, in silico clustering analysis identified 5 miRNAs (mir-26a,-29b,-126*,-127-3p,-324-3p) that share coordinated dysregulation of expression both in quiescent and in inflamed colonic mucosa of IBD patients. Six miRNAs displayed significantly distinct alteration of expression in non-inflamed colonic biopsies of UC and CD patients (mir-196b,-199a-3p,-199b-5p,-320a,-150,-223). Conclusions/Significance Our study supports miRNAs as crucial players in the onset and/or relapse of inflammation from quiescent mucosal tissues in IBD patients. It allows speculating a role for miRNAs as contributors to IBD susceptibility and suggests that some of the miRNA with altered expression in the quiescent mucosa of IBD patients may define miRNA signatures for UC and CD and help develop new diagnostic biomarkers.
Collapse
Affiliation(s)
- Magali Fasseu
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
| | - Xavier Tréton
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
- Service de Gastroentérologie et d'Assistance Nutritive, Hôpital Beaujon, Clichy, France
| | - Cécile Guichard
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
| | - Eric Pedruzzi
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
| | - Dominique Cazals-Hatem
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
- Service d'Anatomo-Pathologie, Hôpital Beaujon, Clichy, France
| | - Christophe Richard
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
| | - Thomas Aparicio
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
- Service de Gastroentérologie, Hôpital Xavier Bichat, Paris, France
| | - Fanny Daniel
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
| | - Jean-Claude Soulé
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
- Service de Gastroentérologie, Hôpital Xavier Bichat, Paris, France
| | - Richard Moreau
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
| | - Yoram Bouhnik
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
- Service de Gastroentérologie et d'Assistance Nutritive, Hôpital Beaujon, Clichy, France
| | - Marc Laburthe
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
| | - André Groyer
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
- * E-mail:
| | - Eric Ogier-Denis
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
| |
Collapse
|
47
|
Schirbel A, Fiocchi C. Inflammatory bowel disease: Established and evolving considerations on its etiopathogenesis and therapy. J Dig Dis 2010; 11:266-76. [PMID: 20883422 DOI: 10.1111/j.1751-2980.2010.00449.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Modern studies of inflammatory bowel disease (IBD) pathogenesis have been pursued for about four decades, a period of time where the pace of progress has been steadily increasing. This progress has occurred in parallel with and is largely due to developments in multiple basic scientific disciplines that range from population and social studies, genetics, microbiology, immunology, biochemistry, cellular and molecular biology, and DNA engineering. From this cumulative and constantly expanding knowledge base the fundamental pillars of IBD pathogenesis appear to have been identified and consolidated during the last couple of decades. Presently there is a general consensus among basic IBD investigators that both Crohn's disease (CD) and ulcerative colitis (UC) are the result of the combined effects of four basic components: global changes in the environment, the input of multiple genetic variations, alterations in the intestinal microbiota, and aberrations of innate and adaptive immune responses. There is also agreement on the conclusion that none of these four components can by itself trigger or maintain intestinal inflammation. A combination of various factors, and most likely of all four factors, is probably needed to bring about CD or UC in individual patients, but each patient or set of patients seems to have a different combination of alterations leading to the disease. This would imply that different causes and diverse mechanisms underlie IBD, and this could also explain why every patient displays his or her own clinical manifestations and a personalized response to therapy, and requires tailored approaches with different medications. While we are becoming increasingly aware of the importance of this individual variability, we have only a superficial notion of the reasons why this occurs, as hinted by the uniqueness of the genetic background and of the gut flora in each person. So, we are apparently facing the paradox of having to deal with the tremendous complexity of the mechanisms responsible for chronic intestinal inflammation in the setting of each patient's individuality in the response to this biological complexity. This obviously poses considerable challenges to reaching a full understanding of IBD pathogenesis, but being aware of the difficulties is the first step in finding answers to them.
Collapse
Affiliation(s)
- Anja Schirbel
- Department of Hepatology and Gastroenterology, Charité- Universitätsmedizin, Berlin, Germany
| | | |
Collapse
|
48
|
Mendrick DL, Schnackenberg L. Genomic and metabolomic advances in the identification of disease and adverse event biomarkers. Biomark Med 2010; 3:605-15. [PMID: 20477528 DOI: 10.2217/bmm.09.43] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Incomplete knowledge of tissue pathogenesis is hampering the identification of biomarkers for the appropriate therapeutic targets to prevent or inhibit disease processes, and the prediction and diagnosis of injury due to disease and adverse events of drug therapy. The revolution in genomics and metabolomics, combined with advanced bioinformatics and computational methods for mining such large, complex data sets, are beginning to provide critical insights into tissue injury. Such results will move us closer to the promise of personalized medicine.
Collapse
Affiliation(s)
- Donna L Mendrick
- Division of Systems Toxicology, HFT-230, National Center for Toxicological Research, US FDA, 3900 NCTR Road, Jefferson, AR 72079-4502, USA.
| | | |
Collapse
|
49
|
Heneghan JF, Akhavein A, Salas MJ, Shmukler BE, Karniski LP, Vandorpe DH, Alper SL. Regulated transport of sulfate and oxalate by SLC26A2/DTDST. Am J Physiol Cell Physiol 2010; 298:C1363-75. [PMID: 20219950 PMCID: PMC2889644 DOI: 10.1152/ajpcell.00004.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 03/04/2010] [Indexed: 12/25/2022]
Abstract
Nephrolithiasis in the Slc26a6(-/-) mouse is accompanied by 50-75% reduction in intestinal oxalate secretion with unchanged intestinal oxalate absorption. The molecular identities of enterocyte pathways for oxalate absorption and for Slc26a6-independent oxalate secretion remain undefined. The reported intestinal expression of SO(4)(2-) transporter SLC26A2 prompted us to characterize transport of oxalate and other anions by human SLC26A2 and mouse Slc26a2 expressed in Xenopus oocytes. We found that hSLC26A2-mediated [(14)C]oxalate uptake (K(1/2) of 0.65 +/- 0.08 mM) was cis-inhibited by external SO(4)(2-) (K(1/2) of 3.1 mM). hSLC26A2-mediated bidirectional oxalate/SO(4)(2-) exchange exhibited extracellular SO(4)(2-) K(1/2) of 1.58 +/- 0.44 mM for exchange with intracellular [(14)C]oxalate, and extracellular oxalate K(1/2) of 0.14 +/- 0.11 mM for exchange with intracellular (35)SO(4)(2-). Influx rates and K(1/2) values for mSlc26a2 were similar. hSLC26A2-mediated oxalate/Cl(-) exchange and bidirectional SO(4)(2-)/Cl(-) exchange were not detectably electrogenic. Both SLC26A2 orthologs exhibited nonsaturable extracellular Cl(-) dependence for efflux of intracellular [(14)C]oxalate, (35)SO(4)(2-), or (36)Cl(-). Rate constants for (36)Cl(-) efflux into extracellular Cl(-), SO(4)(2-), and oxalate were uniformly 10-fold lower than for oppositely directed exchange. Acidic extracellular pH (pH(o)) inhibited all modes of hSLC26A2-mediated anion exchange. In contrast, acidic intracellular pH (pH(i)) selectively activated exchange of extracellular Cl(-) for intracellular (35)SO(4)(2-) but not for intracellular (36)Cl(-) or [(14)C]oxalate. Protein kinase C inhibited hSLC26A2 by reducing its surface abundance. Diastrophic dysplasia mutants R279W and A386V of hSLC26A2 exhibited similar reductions in uptake of both (35)SO(4)(2-) and [(14)C]oxalate. A386V surface abundance was reduced, but R279W surface abundance was at wild-type levels.
Collapse
|
50
|
Pellissier S, Dantzer C, Canini F, Mathieu N, Bonaz B. Psychological adjustment and autonomic disturbances in inflammatory bowel diseases and irritable bowel syndrome. Psychoneuroendocrinology 2010; 35:653-62. [PMID: 19910123 DOI: 10.1016/j.psyneuen.2009.10.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 09/12/2009] [Accepted: 10/09/2009] [Indexed: 02/07/2023]
Abstract
Psychological factors and the autonomic nervous system (ANS) are implicated in the pathogenesis of inflammatory bowel diseases (IBD) and irritable bowel syndrome (IBS). This study aimed to assess, firstly the way IBS and IBD patients cope with their pathology according to their affective adjustment and secondly the possible links between these affective adjustments and ANS reactivity. Patients with Crohn's disease (CD; n=26), ulcerative colitis (UC; n=22), or IBS (n=27) were recruited and compared to 21 healthy subjects based on psychological variables (trait- and state anxiety, depressive symptomatology, negative mood, perceived stress, coping, health locus of control) and sympatho-vagal balance through heart-rate variability monitored at rest. A principal component analysis, performed on all affective variables, isolated a leading factor labelled as "affective adjustment". In each disease, patients were distributed into positive and negative affective adjustment. In all the diseases, a positive affect was associated with problem-focused coping, and a negative affect with emotion-focused coping and external health locus of control. Results show that the sympatho-vagal balance varied according to the disease. In CD presenting positive affectivity, an adapted high sympathetic activity was observed. In UC, a parasympathetic blunt was observed in the presence of negative affectivity and an equilibrated sympatho-vagal balance in the presence of positive affectivity. In contrast, in IBS, an important dysautonomia (with high sympathetic and low parasympathetic tone) was constantly observed whatever the affective adjustment. In conclusion, this study suggests that the equilibrium of the ANS is differentially adapted according to the disease. This equilibrium is conjugated with positive affective and cognitive adjustment in IBD (CD and UC) but not in IBS.
Collapse
Affiliation(s)
- Sonia Pellissier
- Stress et Interactions Neuro-Digestives (SIND), Grenoble Institut des Neurosciences (GIN), Centre de Recherche INSERM 836 UJF-CEA-CHU, Grenoble F-38043, France
| | | | | | | | | |
Collapse
|