1
|
Fondevila MF, Novoa E, Fernandez U, Dorta V, Parracho T, Kreimeyer H, Garcia-Vence M, Chantada-Vazquez MP, Bravo SB, Porteiro B, Cabaleiro A, Koning M, Senra A, Souto Y, Verheij J, Guallar D, Fidalgo M, Meijnikman AS, da Silva Lima N, Dieguez C, Gonzalez-Rellan MJ, Nogueiras R. Inhibition of hepatic p63 ameliorates steatohepatitis with fibrosis in mice. Mol Metab 2024; 85:101962. [PMID: 38815625 PMCID: PMC11180345 DOI: 10.1016/j.molmet.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVE p63 is a transcription factor involved in multiple biological functions. In the liver, the TAp63 isoform induces lipid accumulation in hepatocytes. However, the role of liver TAp63 in the progression of metabolic dysfunction-associated steatohepatitis (MASH) with fibrosis is unknown. METHODS We evaluated the hepatic p63 levels in different mouse models of steatohepatitis with fibrosis induced by diet. Next, we used virogenetic approaches to manipulate the expression of TAp63 in adult mice under diet-induced steatohepatitis with fibrosis and characterized the disease condition. Finally, we performed proteomics analysis in mice with overexpression and knockdown of hepatic TAp63. RESULTS Levels of TAp63, but not of ΔN isoform, are increased in the liver of mice with diet-induced steatohepatitis with fibrosis. Both preventive and interventional strategies for the knockdown of hepatic TAp63 significantly ameliorated diet-induced steatohepatitis with fibrosis in mice fed a methionine- and choline-deficient diet (MCDD) and choline deficient and high fat diet (CDHFD). The overexpression of hepatic TAp63 in mice aggravated the liver condition in mice fed a CDHFD. Proteomic analysis in the liver of these mice revealed alteration in multiple proteins and pathways, such as oxidative phosphorylation, antioxidant activity, peroxisome function and LDL clearance. CONCLUSIONS These results indicate that liver TAp63 plays a critical role in the progression of diet-induced steatohepatitis with fibrosis, and its inhibition ameliorates the disease.
Collapse
Affiliation(s)
- Marcos F Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain; Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Eva Novoa
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain
| | - Uxia Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain
| | - Valentina Dorta
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Tamara Parracho
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Henriette Kreimeyer
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maria Garcia-Vence
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705, Spain
| | - Maria P Chantada-Vazquez
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705, Spain
| | - Susana B Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705, Spain
| | - Begoña Porteiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Alba Cabaleiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Mijra Koning
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Yara Souto
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Joanne Verheij
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Diana Guallar
- Department of Biochemistry and Molecular Biology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Miguel Fidalgo
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Abraham S Meijnikman
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Natalia da Silva Lima
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Maria J Gonzalez-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain; Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, M5T 3H7, Canada
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain; Galicia Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, 15702, Spain.
| |
Collapse
|
2
|
Fondevila MF, Novoa E, Gonzalez-Rellan MJ, Fernandez U, Heras V, Porteiro B, Parracho T, Dorta V, Riobello C, da Silva Lima N, Seoane S, Garcia-Vence M, Chantada-Vazquez MP, Bravo SB, Senra A, Leiva M, Marcos M, Sabio G, Perez-Fernandez R, Dieguez C, Prevot V, Schwaninger M, Woodhoo A, Martinez-Chantar ML, Schwabe R, Cubero FJ, Varela-Rey M, Crespo J, Iruzubieta P, Nogueiras R. p63 controls metabolic activation of hepatic stellate cells and fibrosis via an HER2-ACC1 pathway. Cell Rep Med 2024; 5:101401. [PMID: 38340725 PMCID: PMC10897550 DOI: 10.1016/j.xcrm.2024.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/19/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
The p63 protein has pleiotropic functions and, in the liver, participates in the progression of nonalcoholic fatty liver disease (NAFLD). However, its functions in hepatic stellate cells (HSCs) have not yet been explored. TAp63 is induced in HSCs from animal models and patients with liver fibrosis and its levels positively correlate with NAFLD activity score and fibrosis stage. In mice, genetic depletion of TAp63 in HSCs reduces the diet-induced liver fibrosis. In vitro silencing of p63 blunts TGF-β1-induced HSCs activation by reducing mitochondrial respiration and glycolysis, as well as decreasing acetyl CoA carboxylase 1 (ACC1). Ectopic expression of TAp63 induces the activation of HSCs and increases the expression and activity of ACC1 by promoting the transcriptional activity of HER2. Genetic inhibition of both HER2 and ACC1 blunt TAp63-induced activation of HSCs. Thus, TAp63 induces HSC activation by stimulating the HER2-ACC1 axis and participates in the development of liver fibrosis.
Collapse
Affiliation(s)
- Marcos F Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain.
| | - Eva Novoa
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain
| | - Maria J Gonzalez-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Uxia Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain
| | - Violeta Heras
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Begoña Porteiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Tamara Parracho
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Valentina Dorta
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Cristina Riobello
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Natalia da Silva Lima
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Samuel Seoane
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Garcia-Vence
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15705 Santiago de Compostela, Spain
| | - Maria P Chantada-Vazquez
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15705 Santiago de Compostela, Spain
| | - Susana B Bravo
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15705 Santiago de Compostela, Spain
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Magdalena Leiva
- Department of Immunology, Ophthalmology, & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain; CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Marcos
- University of Salamanca, Department of Internal Medicine, University Hospital of Salamanca-IBSAL, 37008 Salamanca, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Roman Perez-Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Vincent Prevot
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, European Genomic Institute for Diabetes (EGID), 59000 Lille, France
| | - Markus Schwaninger
- University of Lübeck, Institute for Experimental and Clinical Pharmacology and Toxicology, 23562 Lübeck, Germany
| | - Ashwin Woodhoo
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria L Martinez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Robert Schwabe
- Department of Medicine, Columbia University, New York, NY 10027, USA
| | - Francisco J Cubero
- Department of Immunology, Ophthalmology, & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain; CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Varela-Rey
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, 39008 Santander, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, 39008 Santander, Spain
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain; Galicia Agency of Innovation (GAIN), Xunta de Galicia, 15702 Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Lennartz M, Ullmann VS, Gorbokon N, Uhlig R, Rico SD, Kind S, Reiswich V, Viehweger F, Kluth M, Hube-Magg C, Bernreuther C, Büscheck F, Putri D, Clauditz TS, Fraune C, Hinsch A, Jacobsen F, Krech T, Lebock P, Steurer S, Burandt E, Minner S, Marx AH, Simon R, Sauter G, Menz A. Cytokeratin 13 (CK13) expression in cancer: a tissue microarray study on 10,439 tumors. APMIS 2023; 131:77-91. [PMID: 36269681 DOI: 10.1111/apm.13280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/17/2022] [Indexed: 01/11/2023]
Abstract
Cytokeratin 13 (CK13) is a type I acidic low molecular weight cytokeratin, which is mainly expressed in urothelium and in the squamous epithelium of various sites of origin. Loss of CK13 has been implicated in the development and progression of squamous epithelial neoplasms. To comprehensively determine CK13 expression in normal and neoplastic tissues, a tissue microarray containing 10,439 samples from 131 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. CK13 immunostaining was detectable in 42 (32.1%) of the 131 tumor categories including 24 (18.3%) tumor types with at least one strongly positive case. The highest rate of positive staining was found in various urothelial neoplasms (52.1-92.3%) including Brenner tumor of the ovary (86.8%) and in squamous cell carcinomas from various sites of origin (39.1-77.6%), Warthin tumors of parotid glands (66.7%), adenosquamous carcinomas of the cervix (33.3%), thymomas (16.0%), and endometroid carcinomas of the ovary (15.3%). Twenty other epithelial or germ cell neoplasms showed - a usually weak - CK13 positivity in less than 15% of the cases. In bladder cancer, reduced CK13 expression was linked to high grade and advanced stage (p < 0.0001 each). In squamous cell carcinoma of the cervix, reduced CK13 immunostaining was related to high grade (p = 0.0295) and shortened recurrence-free (p = 0.0094) and overall survival (p = 0.0274). In a combined analysis of 1,151 squamous cell carcinomas from 11 different sites of origin, reduced CK13 staining was linked to high grade (p = 0.0050). Our data provide a comprehensive overview on CK13 expression in normal and neoplastic human tissues. CK13 expression predominates in urothelial neoplasms and in squamous cell carcinomas of different organs, and a loss of CK13 expression is associated with aggressive disease in these tumors.
Collapse
Affiliation(s)
- Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Verena Sofia Ullmann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Devita Putri
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Patrick Lebock
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Venkitachalam S, Babu D, Ravillah D, Katabathula RM, Joseph P, Singh S, Udhayakumar B, Miao Y, Martinez-Uribe O, Hogue JA, Kresak AM, Dawson D, LaFramboise T, Willis JE, Chak A, Garman KS, Blum AE, Varadan V, Guda K. The Ephrin B2 Receptor Tyrosine Kinase Is a Regulator of Proto-oncogene MYC and Molecular Programs Central to Barrett's Neoplasia. Gastroenterology 2022; 163:1228-1241. [PMID: 35870513 PMCID: PMC9613614 DOI: 10.1053/j.gastro.2022.07.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/20/2022] [Accepted: 07/12/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS Mechanisms contributing to the onset and progression of Barrett's (BE)-associated esophageal adenocarcinoma (EAC) remain elusive. Here, we interrogated the major signaling pathways deregulated early in the development of Barrett's neoplasia. METHODS Whole-transcriptome RNA sequencing analysis was performed in primary BE, EAC, normal esophageal squamous, and gastric biopsy tissues (n = 89). Select pathway components were confirmed by quantitative polymerase chain reaction in an independent cohort of premalignant and malignant biopsy tissues (n = 885). Functional impact of selected pathway was interrogated using transcriptomic, proteomic, and pharmacogenetic analyses in mammalian esophageal organotypic and patient-derived BE/EAC cell line models, in vitro and/or in vivo. RESULTS The vast majority of primary BE/EAC tissues and cell line models showed hyperactivation of EphB2 signaling. Transcriptomic/proteomic analyses identified EphB2 as an endogenous binding partner of MYC binding protein 2, and an upstream regulator of c-MYC. Knockdown of EphB2 significantly impeded the viability/proliferation of EAC and BE cells in vitro/in vivo. Activation of EphB2 in normal esophageal squamous 3-dimensional organotypes disrupted epithelial maturation and promoted columnar differentiation programs, notably including MYC. EphB2 and MYC showed selective induction in esophageal submucosal glands with acinar ductal metaplasia, and in a porcine model of BE-like esophageal submucosal gland spheroids. Clinically approved inhibitors of MEK, a protein kinase that regulates MYC, effectively suppressed EAC tumor growth in vivo. CONCLUSIONS The EphB2 signaling is frequently hyperactivated across the BE-EAC continuum. EphB2 is an upstream regulator of MYC, and activation of EphB2-MYC axis likely precedes BE development. Targeting EphB2/MYC could be a promising therapeutic strategy for this often refractory and aggressive cancer.
Collapse
Affiliation(s)
- Srividya Venkitachalam
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Deepak Babu
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Durgadevi Ravillah
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ramachandra M Katabathula
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Peronne Joseph
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Salendra Singh
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Bhavatharini Udhayakumar
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Yanling Miao
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Omar Martinez-Uribe
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Joyce A Hogue
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Adam M Kresak
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Dawn Dawson
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Thomas LaFramboise
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Joseph E Willis
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Amitabh Chak
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Katherine S Garman
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Andrew E Blum
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio; Division of Gastroenterology, Northeast Ohio Veteran Affairs Healthcare System, Cleveland, Ohio
| | - Vinay Varadan
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio.
| | - Kishore Guda
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio.
| |
Collapse
|
5
|
Vins N, Sugathan S, Al Menhali A, Karam SM. Overgrowth of Squamocolumnar Junction and Dysregulation of Stem Cell Lineages in the Stomach of Vitamin A-Deficient Mice. Nutrients 2022; 14:nu14163334. [PMID: 36014840 PMCID: PMC9412427 DOI: 10.3390/nu14163334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
Junctional epithelia are common sites for pathological transformations. In mice, the stratified epithelium of the forestomach joins the simple glandular epithelium of the cardia at the limiting ridge. We previously demonstrated the expression of vitamin A receptors in the gastric stem/progenitor cells and their progeny and found that excess retinoic acid enhances cellular dynamics of gastric epithelium. This study examines how deficiency of vitamin A would alter gastric epithelial stem cell lineages. Three-week-old mice of both genders were weaned and fed with a vitamin A deficient (VAD) diet for 4 or 8 months. Sex- and weight-matched littermate mice received a standard (control) diet. To label S-phase cells, all mice received a single intraperitoneal injection of 5-bromo-2-deoxyuridine before being euthanized. Stomach tissues were processed for microscopic examination and protein analysis to investigate stem cell lineages using different stains, lectins, or antibodies. The Student’s t-test was used to compare quantified data showing differences between control and VAD groups. Eight-month-vitamin-A deficiency caused enlarged forestomach and overgrowth of the squamocolumnar junction with metaplastic and dysplastic cardiac glands, formation of intramucosal cysts, loss of surface mucosal integrity, increased amount of luminal surface mucus, and upregulation of trefoil factor 1 and H+,K+-ATPase. These changes were associated with decreased cell proliferation and upregulation of p63. In conclusion, vitamin A is necessary for maintaining gastric epithelial integrity and its deficiency predisposes the mouse stomach to precancerous lesions.
Collapse
Affiliation(s)
- Neethu Vins
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Subi Sugathan
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Asma Al Menhali
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Centre for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sherif M. Karam
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Centre for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: ; Tel.: +971-3-713-7493
| |
Collapse
|
6
|
Esworthy RS, Doroshow JH, Chu FF. The beginning of GPX2 and 30 years later. Free Radic Biol Med 2022; 188:419-433. [PMID: 35803440 PMCID: PMC9341242 DOI: 10.1016/j.freeradbiomed.2022.06.232] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
We published the first paper to characterize GPX2 (aka GSHPx-GI) as a selenoenzyme with glutathione peroxidase activity in 1993. Among the four Se-GPX isozymes, GPX1-4, GPX1 and GPX2 are closely related in terms of structure, substrate specificities, and subcellular localization. What sets them apart are distinct patterns of gene regulation, tissue distribution and response to selenium. While we identified the digestive tract epithelium as the main site of GPX2 expression, later work has shown GPX2 is found more widely in epithelial tissues with concentration of expression in stem cell and proliferative compartments. GPX2 expression is regulated over a wide range of levels by many pathways, including NRF2, WNT, p53, RARE and this often results in attaching undue significance to GPX2 as GPX2 is only a part of a system of hydroperoxidase activities, including GPX1, peroxiredoxins and catalase. These other activities may play equal or greater roles, particularly in cell lines cultured without selenium supplementation and often with very low GPX2 levels. This could be assessed by examining levels of mRNA and protein among these various peroxidases at the outset of studies. As an example, it was found that GPX1 responds to the absence of GPX2 in mouse ileum and colon epithelium with higher expression. As such, both Gpx1 and Gpx2 had to be knocked out in mice to produce ileocolitis. However, we note that the actual role of GPX1 and GPX2 in relation to peroxiredoxin function is unclear. There may be an interdependence that requires only low amounts of GPX1 and/or GPX2 in a supporting role to maintain proper peroxiredoxin function. GPX2 levels may be prognostic for cancer progression in colon, breast, prostate and liver, however, there is no consistent trend for higher or lower levels to be favorable.
Collapse
Affiliation(s)
- R Steven Esworthy
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute of City of Hope. Duarte, California, USA, 91010.
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Fong-Fong Chu
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute of City of Hope. Duarte, California, USA, 91010.
| |
Collapse
|
7
|
Fang Y, Li W, Chen X. P63 Deficiency and CDX2 Overexpression Lead to Barrett's-Like Metaplasia in Mouse Esophageal Epithelium. Dig Dis Sci 2021; 66:4263-4273. [PMID: 33469811 PMCID: PMC8286978 DOI: 10.1007/s10620-020-06756-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The cellular origin and molecular mechanisms of Barrett's esophagus (BE) are still controversial. Trans-differentiation is a mechanism characterized by activation of the intestinal differentiation program and inactivation of the squamous differentiation program. AIMS Renal capsule grafting (RCG) was used to elucidate whether CDX2 overexpression on the basis of P63 deficiency in the esophageal epithelium may generate intestinal metaplasia. METHODS P63-/-;Villin-Cdx2 embryos were generated by crossing P63+/- mice with Villin-Cdx2 mice. E18.5 esophagus was xenografted in a renal capsule grafting (RCG) model. At 1, 2, or 4 weeks after RCG, the mouse esophagus was immunostained for a proliferation marker (BrdU), squamous transcription factors (SOX2, PAX9), squamous differentiation markers (CK5, CK4, and CK1), intestinal transcription factors (CDX1, HNF1α, HNF4α, GATA4, and GATA6), intestinal columnar epithelial cell markers (A33, CK8), goblet cell marker (MUC2, TFF3), Paneth cell markers (LYZ and SOX9), enteroendocrine cell marker (CHA), and Tuft cell marker (DCAMKL1). RESULTS The P63-/-;Villin-Cdx2 RCG esophagus was lined with proliferating PAS/AB+ cuboidal cells and formed an intestinal crypt-like structure. The goblet cell markers (TFF3 and MUC2) and intestinal transcription factors (CDX1, HNF1α, HNF4α, GATA4, and GATA6) were expressed although no typical morphology of goblet cells was observed. Other intestinal cell markers including enteroendocrine cell marker (CHA), Paneth cell markers (LYZ and Sox9), and intestinal secretory cell marker (UEA/WGA) were also expressed in the P63-/-;Villin-Cdx2 RCG esophagus. Squamous cell markers (PAX9 and SOX2) were also expressed, suggesting a transitional phenotype. CONCLUSION CDX2 overexpression on the basis of P63 deficiency in esophageal epithelial cells induces Barrett's-like metaplasia in vivo. Additional factors may be needed to drive this transitional phenotype into full-blown BE.
Collapse
Affiliation(s)
- Yu Fang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400045, China,Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George St., Durham, NC 27707. USA
| | - Wenbo Li
- Department of Gastroenterology, 960 Hospital, Clinical Teaching Hospital of JinZhou Medical University, Jinan 250031, China,Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George St., Durham, NC 27707. USA
| | - Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George St., Durham, NC 27707. USA
| |
Collapse
|
8
|
Xu Y, Zhao H, Tong Y, Wang W, Huang J, Zhu W. Comparative Analysis of Clinicopathological Characteristics, Survival Features, and Protein Expression Between Basaloid and Squamous Cell Carcinoma of the Esophagus. Int J Gen Med 2021; 14:3929-3939. [PMID: 34345181 PMCID: PMC8323856 DOI: 10.2147/ijgm.s314054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023] Open
Abstract
Background Basaloid squamous cell carcinoma (BSCC) is a rare variant of squamous cell carcinoma (SCC) of the esophagus. This study aimed to assess the discrepancy in clinicopathological characteristics and protein expression between esophageal BSCC and typical esophageal SCC. Study Design We reviewed 40 cases of esophageal BSCC. As controls, 63 well-differentiated SCC (WSCC) patients, 70 moderately differentiated SCC (MSCC) patients, and 51 poorly differentiated SCC (PSCC) patients were selected. The clinicopathologic characteristics and immunoreactivity of Ki-67, p53, p63, and epidermal growth factor receptor (EGFR) were then evaluated in the BSCC and typical SCC patients. Results The 5-year survival rates for the BSCC patients were 27.5%. The prognostic outcomes of the BSCC group were similar to those of the PSCC and MSCC groups but worse than that of the WSCC group, with a significant difference (P=0.045). Ki-67 expression was significantly higher in the BSCC group than that in the WSCC group (P < 0.05). Meanwhile, there were no significant differences in the expression of the other molecular markers (p53, p63, and EGFR) between the typical SCC and BSCC groups (P > 0.05). The median survival time of esophageal the BSCC patients with low p53 expression was significantly longer than that of the patients with high p53 expression (P=0.026). Further, the median survival time of the esophageal BSCC patients with high p63 expression was significantly longer than that of the patients with low p63 expression (P=0.041). Meanwhile, Ki-67 and EGFR expressions were not correlated with OS in the BSCC group. Conclusion Esophageal BSCC has a more clinically virulent course. Notably, p53 and p63 expression are associated with prognosis in BSCC. These findings conject that evaluation of multiple cancer biomarkers might be a promising auxiliary diagnostic indicator in BSCC.
Collapse
Affiliation(s)
- Yingying Xu
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China
| | - Huanyu Zhao
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China
| | - Yusuo Tong
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China
| | - Wanwei Wang
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China
| | - Jing Huang
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China
| | - Weiguo Zhu
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China
| |
Collapse
|
9
|
Isoforms of the p53 Family and Gastric Cancer: A Ménage à Trois for an Unfinished Affair. Cancers (Basel) 2021; 13:cancers13040916. [PMID: 33671606 PMCID: PMC7926742 DOI: 10.3390/cancers13040916] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The p53 family is a complex family of transcription factors with different cellular functions that are involved in several physiological processes. A massive amount of data has been accumulated on their critical role in the tumorigenesis and the aggressiveness of cancers of different origins. If common features are observed, there are numerous specificities that may reflect particularities of the tissues from which the cancers originated. In this regard, gastric cancer tumorigenesis is rather remarkable, as it is induced by bacterial and viral infections, various chemical carcinogens, and familial genetic alterations, which provide an example of the variety of molecular mechanisms responsible for cell transformation and how they impact the p53 family. This review summarizes the knowledge gathered from over 40 years of research on the role of the p53 family in gastric cancer, which still displays one of the most elevated mortality rates amongst all types of cancers. Abstract Gastric cancer is one of the most aggressive cancers, with a median survival of 12 months. This illustrates its complexity and the lack of therapeutic options, such as personalized therapy, because predictive markers do not exist. Thus, gastric cancer remains mostly treated with cytotoxic chemotherapies. In addition, less than 20% of patients respond to immunotherapy. TP53 mutations are particularly frequent in gastric cancer (±50% and up to 70% in metastatic) and are considered an early event in the tumorigenic process. Alterations in the expression of other members of the p53 family, i.e., p63 and p73, have also been described. In this context, the role of the members of the p53 family and their isoforms have been investigated over the years, resulting in conflicting data. For instance, whether mutations of TP53 or the dysregulation of its homologs may represent biomarkers for aggressivity or response to therapy still remains a matter of debate. This uncertainty illustrates the lack of information on the molecular pathways involving the p53 family in gastric cancer. In this review, we summarize and discuss the most relevant molecular and clinical data on the role of the p53 family in gastric cancer and enumerate potential therapeutic innovative strategies.
Collapse
|
10
|
Bakhshwin AM, Gordon IO, Brown KB, Liu X, Allende DS. Head-to-Head Comparison of p63 and p40 in Non-Neuroendocrine Carcinomas of the Tubal Gut. Int J Surg Pathol 2020; 28:835-843. [PMID: 32466705 DOI: 10.1177/1066896920924821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES. With targeted agents, characterizing carcinomas of the gastrointestinal (GI) tract has become more important. We aim to determine the usefulness of p40 in classifying GI tract carcinomas. METHODS. Seventy-five GI carcinomas including 28 squamous cell carcinomas (SCC), 2 adenosquamous carcinomas (ASCA), 21 poorly differentiated carcinomas (PDCA), and 24 adenocarcinomas (AdCA; control group) were stained for p40, p63, and CK5/6. Tumors were scored from 0 to 5 based on extent of staining and marked as positive (score >2) or negative. RESULTS. p63 was positive in 100% of SCC/ASCA and 12.5% of AdCA. p40 was positive in 92.5% of SCC/ASCA and 4.1% of AdCA. In the PDCA subset, a panel including p63, p40, and MOC31 was the best way to accurately classify most cases. CONCLUSIONS. p63 and CK5/6 are more sensitive but less specific than p40 for SCC/ASCA in GI carcinomas. In PDCA, a panel approach including p63, CK5/6, and p40 may be best in classifying these cases.
Collapse
Affiliation(s)
| | | | | | - Xiuli Liu
- 197266University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
11
|
Albasri AM, Elkablawy MA, Ansari IA, Alhujaily AS, Khalil AA. The prognostic significance of p63 cytoplasmic expression in colorectal cancer. An immunohistochemical study. Saudi Med J 2019; 40:432-439. [PMID: 31056618 PMCID: PMC6535166 DOI: 10.15537/smj.2019.5.24162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Objectives: To evaluate p63 expression pattern in Saudi colorectal cancer (CRC) patients and correlate that with clinicopathological parameters and its role in carcinogenesis and prognosis. Methods: Archival tumor samples were analyzed by immunohistochemistry for p63 expression in 324 consecutive Saudi patients diagnosed with CRC between January 2006 and December 2017 at the Pathology Department of a tertiary care Hospital, Madinah, Saudi Arabia. Results: P63 over-expression was absent in normal mucosa, while 12.5% cases of adenoma showed its over-expression. In CRC, p63 expression was high in 24.1% of cases. There were no significant correlations between p63 expression and gender, tumor location, tumor size, and tumor histologic differentiation. However, high p63 expression revealed a significant correlation with age (p=0.035), tumor type (p=0.004), American Joint Committee on Cancer stage (p=0.046), lymph node metastasis (p=0.006), lymphovascular invasion (p=0.006), distant metastasis (p=0.049) high Ki67 expression (p=0.000) and K-ras expression (p=0.002). The Kaplan-Meier analysis revealed a shorter period of survival with p63 over-expression (p<0.001). The Cox-regression model analysis showed that p63 over-expression was an independent prognostic marker in CRC (p=0.000). Conclusion: P63 expression increased from normal to adenoma to carcinoma sequence. Moreover, p63 cytoplasmic expression seems to be related to high Ki67 indexing, K-ras expression, advanced tumor stage and poor clinical outcome of CRC. These findings suggest a significant role of cytoplasmic p63 expression in tumor progression and prognosis.
Collapse
Affiliation(s)
- Abdulkader M Albasri
- Pathology Department, Faculty of Medicine, Taibah University, Al Madinah Al Munawwarah, Kingdom of Saudi Arabia. E-mail.
| | | | | | | | | |
Collapse
|
12
|
Que J, Garman KS, Souza RF, Spechler SJ. Pathogenesis and Cells of Origin of Barrett's Esophagus. Gastroenterology 2019; 157:349-364.e1. [PMID: 31082367 PMCID: PMC6650338 DOI: 10.1053/j.gastro.2019.03.072] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
In patients with Barrett's esophagus (BE), metaplastic columnar mucosa containing epithelial cells with gastric and intestinal features replaces esophageal squamous mucosa damaged by gastroesophageal reflux disease. This condition is estimated to affect 5.6% of adults in the United States, and is a major risk factor for esophageal adenocarcinoma. Despite the prevalence and importance of BE, its pathogenesis is incompletely understood and there are disagreements over the cells of origin. We review mechanisms of BE pathogenesis, including transdifferentiation and transcommitment, and discuss potential cells of origin, including basal cells of the squamous epithelium, cells of esophageal submucosal glands and their ducts, cells of the proximal stomach, and specialized populations of cells at the esophagogastric junction (residual embryonic cells and transitional basal cells). We discuss the concept of metaplasia as a wound-healing response, and how cardiac mucosa might be the precursor of the intestinal metaplasia of BE. Finally, we discuss shortcomings in current diagnostic criteria for BE that have important clinical implications.
Collapse
Affiliation(s)
- Jianwen Que
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, New York, New York.
| | - Katherine S. Garman
- Division of Gastroenterology, Department of Medicine, Duke University School of Medicine. Durham, NC
| | - Rhonda F. Souza
- Center for Esophageal Diseases, Department of Medicine, Baylor University Medical Center at Dallas, and Center for Esophageal Research, Department of Medicine, Baylor Scott & White Research Institute, Dallas, TX
| | - Stuart Jon Spechler
- Center for Esophageal Diseases, Department of Medicine, Baylor University Medical Center at Dallas, Dallas, Texas; Center for Esophageal Research, Department of Medicine, Baylor Scott & White Research Institute, Dallas, Texas.
| |
Collapse
|
13
|
The cyclical hit model: how paligenosis might establish the mutational landscape in Barrett's esophagus and esophageal adenocarcinoma. Curr Opin Gastroenterol 2019; 35:363-370. [PMID: 31021922 DOI: 10.1097/mog.0000000000000540] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW In this review, we explore a paligenosis-based model to explain Barrett's esophagus development and progression: 'the cyclical hit model.' RECENT FINDINGS Genomic analyses have highlighted the high mutational burden of esophageal adenocarcinoma, Barrett's esophagus, and even normal esophageal epithelium. Somatic mutations in key genes including TP53 occur early in the neoplastic progression sequence of Barrett's esophagus, whereas chromosomal amplification resulting in oncogene activation occurs as a critical late event. Paligenosis is a shared injury response mechanism characterized by activation of autophagy, expression of progenitor markers, and increased mTORC signaling-induced cell-cycle reentry. In the setting of chronic injury/inflammation, cycles of paligenosis may allow accumulation of mutations until eventually the mutational burden, in concert perhaps with mutations in key driver oncogenes, finally alters the cell's ability to redifferentiate, leading to the emergence of a potential neoplastic clone. SUMMARY Under conditions of chronic gastroesophageal refluxate exposure, the normal esophageal squamous epithelium might undergo multiple cycles of paligenosis, allowing initially silent mutations to accumulate until key events impart mutant clones with an oncogenic survival advantage.
Collapse
|
14
|
Xian W, Duleba M, Zhang Y, Yamamoto Y, Ho KY, Crum C, McKeon F. The Cellular Origin of Barrett's Esophagus and Its Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1123:55-69. [PMID: 31016595 DOI: 10.1007/978-3-030-11096-3_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The incidence of esophageal adenocarcinoma is rapidly increasing in Western countries. This is despite the introduction of sophisticated endoscopic techniques and our ability to readily monitor the presumed precursor lesion known as Barrett's esophagus. Preemptive approaches, including radiofrequency ablation (RFA), and photodynamic therapy (PDT) for Barrett's esophagus and dysplasia are achieving dramatic initial results. Although the long-term efficacy of these nonspecific ablative therapies is awaiting longitudinal studies, reports of recurrences are increasing. More targeted therapies, particularly directed at the stem cells of Barrett's esophagus, demand knowing the origin of this intestinal metaplasia (IM). The prevailing concept holds that Barrett's esophagus arises from the "transcommitment" of esophageal stem cells to produce an intestine-like epithelium. An alternative explanation derives from the discovery of a discrete population of residual embryonic cells (RECs) existing at the gastroesophageal junction in normal individuals that expands and colonizes regions of the esophagus denuded by chronic reflux. These RECs form IM within days of esophageal injury, suggesting a novel mechanism of tumorigenesis.A corollary of this work is that the Barrett's stem cell is distinct from that of the squamous epithelium and, once identified, will form the basis of new preemptive strategies for addressing Barrett's and its related neoplasia.
Collapse
Affiliation(s)
- Wa Xian
- McGovern Medical School, University of Texas Health Science Center in Houston, Houston, TX, USA.
| | - Marcin Duleba
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Yanting Zhang
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Yusuke Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Khek Yu Ho
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher Crum
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Frank McKeon
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
15
|
Abstract
Chronic injury and inflammation in the esophagus can cause a change in cellular differentiation known as metaplasia. Most commonly, the differentiation changes manifest as Barrett's esophagus (BE), characterized by the normal stratified squamous epithelium converting into a cuboidal-columnar, glandular morphology. BE cells can phenotypically resemble specific normal cell types of the stomach or intestine, or they can have overlapping phenotypes in disorganized admixtures. The stomach can also undergo metaplasia characterized by aberrant gastric or intestinal differentiation patterns. In both organs, it has been argued that metaplasia may represent a recapitulation of the embryonic or juvenile gastrointestinal tract, as cells access a developmental progenitor genetic program that can help repair damaged tissue. Here, we review the normal development of esophagus and stomach, and describe how BE represents an intermixing of cells resembling gastric pseudopyloric (SPEM) and intestinal metaplasia. We discuss a cellular process recently termed "paligenosis" that governs how mature, differentiated cells can revert to a proliferating progenitor state in metaplasia. We discuss the "Cyclical Hit" theory in which paligenosis might be involved in the increased risk of metaplasia for progression to cancer. However, somatic mutations might occur in proliferative phases and then be warehoused upon redifferentiation. Through years of chronic injury and many rounds of paligenosis and dedifferentiation, eventually a cell with a mutation that prevents dedifferentiation may arise and clonally expand fueling stable metaplasia and potentially thereafter acquiring additional mutations and progressing to dysplasia and cancer.
Collapse
Affiliation(s)
- Ramon U Jin
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason C Mills
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
16
|
Park HR, Kim YW, Park JH, Maeng YH, Nojima T, Hashimoto H, Park YK. Low Expression of P63 and P73 in Osteosarcoma. TUMORI JOURNAL 2018; 90:239-43. [PMID: 15237589 DOI: 10.1177/030089160409000214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background The recent discovery of two p53-related genes, p63 and p73, has revealed an additional level of complexity to the study of p53 function. Both genes encode multiple proteins arising from alternative promoter usage and splicing, with transactivation, DNA-binding, and tetramerization domains. Recent data support a role for p63 in squamous and transitional cell carcinomas, as well as in certain lymphomas and thymomas. Methods To characterize the involvement of p63 and p73 in the development of osteosarcoma, we analyzed the expression and mutation of TAp63 and TAp73 in six osteosarcoma cell lines and twelve osteosarcoma specimens. Results Semiquantitative DNA/PCR analysis revealed that eight (67%) and six (50%) out of twelve osteosarcoma specimens showed significantly reduced levels of p63 and p73 transcription, respectively. Direct sequencing of the entire coding region detected no mutations in cell lines or osteosarcoma specimens. Conclusions Our data suggest that low expression of p63 and p73 is relatively common in osteosarcomas and might contribute to their molecular pathogenesis.
Collapse
Affiliation(s)
- Hye-Rim Park
- Department of Pathology, College of Medicine, Hallym University, Anyang, Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Krüger L, Gonzalez LM, Pridgen TA, McCall SJ, von Furstenberg RJ, Harnden I, Carnighan GE, Cox AM, Blikslager AT, Garman KS. Ductular and proliferative response of esophageal submucosal glands in a porcine model of esophageal injury and repair. Am J Physiol Gastrointest Liver Physiol 2017; 313:G180-G191. [PMID: 28572084 PMCID: PMC5625137 DOI: 10.1152/ajpgi.00036.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/12/2017] [Accepted: 05/25/2017] [Indexed: 02/08/2023]
Abstract
Esophageal injury is a risk factor for diseases such as Barrett's esophagus (BE) and esophageal adenocarcinoma. To improve understanding of signaling pathways associated with both normal and abnormal repair, animal models are needed. Traditional rodent models of esophageal repair are limited by the absence of esophageal submucosal glands (ESMGs), which are present in the human esophagus. Previously, we identified acinar ductal metaplasia in human ESMGs in association with both esophageal injury and cancer. In addition, the SOX9 transcription factor has been associated with generation of columnar epithelium and the pathogenesis of BE and is present in ESMGs. To test our hypothesis that ESMGs activate after esophageal injury with an increase in proliferation, generation of a ductal phenotype, and expression of SOX9, we developed a porcine model of esophageal injury and repair using radiofrequency ablation (RFA). The porcine esophagus contains ESMGs, and RFA produces a consistent and reproducible mucosal injury in the esophagus. Here we present a temporal assessment of this model of esophageal repair. Porcine esophagus was evaluated at 0, 6, 18, 24, 48, and 72 h and 5 and 7 days following RFA and compared with control uninjured esophagus. Following RFA, ESMGs demonstrated an increase in ductal phenotype, echoing our prior studies in humans. Proliferation increased in both squamous epithelium and ESMGs postinjury with a prominent population of SOX9-positive cells in ESMGs postinjury. This model promises to be useful in future experiments evaluating mechanisms of esophageal repair.NEW & NOTEWORTHY A novel porcine model of injury and repair using radiofrequency ablation has been developed, allowing for reproducible injury to the esophagus to study repair in an animal model with esophageal submucosal glands, a key anatomical feature and missing in rodent models but possibly harboring progenitor cells. There is a strong translational component to this porcine model given the anatomical and physiological similarities between pigs and humans.
Collapse
Affiliation(s)
- Leandi Krüger
- 1Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina;
| | - Liara M. Gonzalez
- 1Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina;
| | - Tiffany A. Pridgen
- 1Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina;
| | | | | | - Ivan Harnden
- 2Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina; and
| | - Gwendolyn E. Carnighan
- 1Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina;
| | - Abigail M. Cox
- 1Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina;
| | - Anthony T. Blikslager
- 1Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina;
| | - Katherine S. Garman
- 2Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina; and
| |
Collapse
|
18
|
von Furstenberg RJ, Li J, Stolarchuk C, Feder R, Campbell A, Kruger L, Gonzalez LM, Blikslager AT, Cardona DM, McCall SJ, Henning SJ, Garman KS. Porcine Esophageal Submucosal Gland Culture Model Shows Capacity for Proliferation and Differentiation. Cell Mol Gastroenterol Hepatol 2017; 4:385-404. [PMID: 28936470 PMCID: PMC5602779 DOI: 10.1016/j.jcmgh.2017.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/13/2017] [Indexed: 02/09/2023]
Abstract
BACKGROUND & AIMS Although cells comprising esophageal submucosal glands (ESMGs) represent a potential progenitor cell niche, new models are needed to understand their capacity to proliferate and differentiate. By histologic appearance, ESMGs have been associated with both overlying normal squamous epithelium and columnar epithelium. Our aim was to assess ESMG proliferation and differentiation in a 3-dimensional culture model. METHODS We evaluated proliferation in human ESMGs from normal and diseased tissue by proliferating cell nuclear antigen immunohistochemistry. Next, we compared 5-ethynyl-2'-deoxyuridine labeling in porcine ESMGs in vivo before and after esophageal injury with a novel in vitro porcine organoid ESMG model. Microarray analysis of ESMGs in culture was compared with squamous epithelium and fresh ESMGs. RESULTS Marked proliferation was observed in human ESMGs of diseased tissue. This activated ESMG state was recapitulated after esophageal injury in an in vivo porcine model, ESMGs assumed a ductal appearance with increased proliferation compared with control. Isolated and cultured porcine ESMGs produced buds with actively cycling cells and passaged to form epidermal growth factor-dependent spheroids. These spheroids were highly proliferative and were passaged multiple times. Two phenotypes of spheroids were identified: solid squamous (P63+) and hollow/ductal (cytokeratin 7+). Microarray analysis showed spheroids to be distinct from parent ESMGs and enriched for columnar transcripts. CONCLUSIONS Our results suggest that the activated ESMG state, seen in both human disease and our porcine model, may provide a source of cells to repopulate damaged epithelium in a normal manner (squamous) or abnormally (columnar epithelium). This culture model will allow the evaluation of factors that drive ESMGs in the regeneration of injured epithelium. The raw microarray data have been uploaded to the National Center for Biotechnology Information Gene Expression Omnibus (accession number: GSE100543).
Collapse
Key Words
- 3D Culture
- 3D, 3-dimensional
- ANOVA, analysis of variance
- Acinar Ductal Metaplasia
- Adult Stem Cell
- BE, Barrett’s esophagus
- Barrett’s Esophagus
- CK7, cytokeratin 7
- DMSO, dimethyl sulfoxide
- EAC, esophageal adenocarcinoma
- EGF, epidermal growth factor
- ESMG, esophageal submucosal gland
- EdU, 5-ethynyl-2′-deoxyuridine
- Esophagus
- IHC, immunohistochemistry
- PBS, phosphate-buffered saline
- PCNA, proliferating cell nuclear antigen
- RFA, radiofrequency ablation
Collapse
Affiliation(s)
| | - Joy Li
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Christina Stolarchuk
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Rachel Feder
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Alexa Campbell
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Leandi Kruger
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina
| | - Liara M. Gonzalez
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina
| | - Anthony T. Blikslager
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina
| | - Diana M. Cardona
- Department of Pathology, Duke University, Durham, North Carolina
| | | | - Susan J. Henning
- Division of Gastroenterology, Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, North Carolina
| | - Katherine S. Garman
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina,Correspondence Address correspondence to: Katherine S. Garman, MD, Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Box 3913, Durham, North Carolina 27710. fax: (919) 684-4983.Division of GastroenterologyDepartment of MedicineDuke University Medical CenterBox 3913DurhamNorth Carolina 27710
| |
Collapse
|
19
|
Abstract
The origin of the progenitor cell for Barrett's esophagus remains a major unsolved mystery. Understanding the source of this progenitor may improve strategies to prevent the development of esophageal adenocarcinoma. Esophageal submucosal glands (ESMGs) and ducts may serve as a potential source of progenitor cells that respond to esophageal injury. Through the use of human histologic and molecular analysis, ESMGs and ducts have been described in physical continuity with areas of columnar esophagus, and shared mutations have been described between ESMG ducts and Barrett's esophagus. Acinar ductal metaplasia, associated with carcinogenesis in other organs, occurs within ESMGs with human esophageal injury and esophageal adenocarcinoma. By using atypical animal models, a squamous epithelial defect well above the gastroesophageal junction healed to columnar epithelium and continuity of ESMG ducts was noted in the new epithelium. Increased proliferation in ESMGs and ducts in response to injury also has been noted in human beings and animals.
Collapse
|
20
|
Bhardwaj V, Horvat A, Korolkova O, Washington MK, El-Rifai W, Dikalov SI, Zaika AI. Prevention of DNA damage in Barrett's esophageal cells exposed to acidic bile salts. Carcinogenesis 2016; 37:1161-1169. [PMID: 27655834 DOI: 10.1093/carcin/bgw100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/01/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
Esophageal adenocarcinoma (EA) is one of the fastest rising tumors in the USA. The major risk factor for EA is gastroesophageal reflux disease (GERD). During GERD, esophageal cells are exposed to refluxate which contains gastric acid frequently mixed with duodenal bile. This may lead to mucosal injury and Barrett's metaplasia (BE) that are important factors contributing to development of EA. In this study, we investigated DNA damage in BE cells exposed to acidic bile salts and explored for potential protective strategies. Exposure of BE cells to acidic bile salts led to significant DNA damage, which in turn, was due to generation of reactive oxygen species (ROS). We found that acidic bile salts induce a rapid increase in superoxide radicals and hydrogen peroxide, which were determined using electron paramagnetic resonance spectroscopy and Amplex Red assay. Analyzing a panel of natural antioxidants, we identified apocynin to be the most effective in protecting esophageal cells from DNA damage induced by acidic bile salts. Mechanistic analyses showed that apocynin inhibited ROS generation and increases the DNA repair capacity of BE cells. We identified BRCA1 and p73 proteins as apocynin targets. Downregulation of p73 inhibited the protective effect of apocynin. Taken together, our results suggest potential application of natural compounds such as apocynin for prevention of reflux-induced DNA damage and GERD-associated tumorigenesis.
Collapse
Affiliation(s)
- Vikas Bhardwaj
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.,Department of Surgery
| | | | | | | | - Wael El-Rifai
- Department of Surgery.,Department of Cancer Biology and
| | - Sergey I Dikalov
- Division of Clinical Pharmacology, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Alexander I Zaika
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA, .,Department of Surgery.,Department of Cancer Biology and
| |
Collapse
|
21
|
Comparison of p63 and p40 (ΔNp63) as Basal, Squamoid, and Myoepithelial Markers in Salivary Gland Tumors. Appl Immunohistochem Mol Morphol 2016; 24:501-8. [DOI: 10.1097/pai.0000000000000222] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Tan C, Qian X, Guan Z, Yang B, Ge Y, Wang F, Cai J. Potential biomarkers for esophageal cancer. SPRINGERPLUS 2016; 5:467. [PMID: 27119071 PMCID: PMC4833762 DOI: 10.1186/s40064-016-2119-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022]
Abstract
Esophageal cancer, which consist of esophageal adenocarcinoma and esophageal squamous cell carcinoma, is one of the most common malignant tumors in the world, especially in the south of Iran and China. To find and investigate the biomarkers in the initiation, development and progression of esophageal cancer will help us predict the prognosis of esophageal cancer patients and improve the curative effect and survival rate. Here, we reviewed the potential biomarkers of esophageal cancer in three aspects: Immunohistochemical markers, blood-based markers, miRNA markers and Gene expression profiling. All these biomarkers provided promising therapeutic targets for the diagnosis, treatment, and prognosis of esophageal cancer.
Collapse
Affiliation(s)
- Cheng Tan
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321 China
| | - Xia Qian
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321 China
| | - Zhifeng Guan
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321 China
| | - Baixia Yang
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321 China
| | - Yangyang Ge
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321 China
| | - Feng Wang
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321 China
| | - Jing Cai
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321 China
| |
Collapse
|
23
|
Wang DH, Souza RF. Transcommitment: Paving the Way to Barrett's Metaplasia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 908:183-212. [PMID: 27573773 DOI: 10.1007/978-3-319-41388-4_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Barrett's esophagus is the condition in which metaplastic columnar epithelium that predisposes to cancer development replaces stratified squamous epithelium in the distal esophagus. Potential sources for the cell or tissue of origin for metaplastic Barrett's epithelium are reviewed including native esophageal differentiated squamous cells, progenitor cells native to the esophagus located within the squamous epithelium or in the submucosal glands or ducts, circulating bone marrow-derived stem cells, and columnar progenitor cells from the squamocolumnar junction or the gastric cardia that proximally shift into the esophagus to fill voids left by damaged squamous epithelium. Wherever its source the original cell must undergo molecular reprogramming (i.e., either transdifferentiation or transcommitment) to give rise to specialized intestinal metaplasia. Transcription factors that specify squamous, columnar, intestinal, and mucus-secreting epithelial differentiation are discussed. An improved understanding of how esophageal columnar metaplasia forms could lead to development of effective treatment or prevention strategies for Barrett's esophagus. It could also more broadly inform upon normal tissue development and differentiation, wound healing, and stem cell biology.
Collapse
Affiliation(s)
- David H Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, Esophageal Diseases Center, Medical Service, VA North Texas Health Care System, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8852, USA.
| | - Rhonda F Souza
- Division of Digestive and Liver Diseases, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, Esophageal Diseases Center, Medical Service (111B1), VA North Texas Health Care System, University of Texas Southwestern Medical Center, 4500 S. Lancaster Road, Dallas, TX, 75216, USA
| |
Collapse
|
24
|
Krishnadath KK, Wang KK. Molecular pathogenesis of Barrett esophagus: current evidence. Gastroenterol Clin North Am 2015; 44:233-47. [PMID: 26021192 DOI: 10.1016/j.gtc.2015.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article focuses on recent findings on the molecular mechanisms involved in esophageal columnar metaplasia. Signaling pathways and their downstream targets activate specific transcription factors leading to the expression of columnar and the more specific intestinal-type of genes, which gives rise to Barrett metaplasia. Several animal models have been generated to validate and study these distinct molecular pathways but also to identify the Barrett progenitor cell. Currently, the many aspects involved in the development of esophageal metaplasia that have been elucidated can serve to develop novel molecular therapies to improve treatment or prevent metaplasia. Nevertheless, several key events are still poorly understood and require further investigation.
Collapse
Affiliation(s)
- Kausilia K Krishnadath
- Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands.
| | | |
Collapse
|
25
|
McDonald SAC, Lavery D, Wright NA, Jansen M. Barrett oesophagus: lessons on its origins from the lesion itself. Nat Rev Gastroenterol Hepatol 2015; 12:50-60. [PMID: 25365976 DOI: 10.1038/nrgastro.2014.181] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Barrett oesophagus develops when the lower oesophageal squamous epithelium is replaced with columnar epithelium, which shows both intestinal and gastric differentiation. No consensus has been reached on the origin of Barrett oesophagus. Theories include a direct origin from the oesophageal-stratified squamous epithelium, or by proximal migration of the gastric cardiac epithelium with subsequent intestinalization. Variations of this theory suggest the origin is a distinctive cell at the squamocolumnar junction, the oesophageal gland ducts, or circulating bone-marrow-derived cells. Much of the supporting evidence comes from experimental models and not from studies of Barrett mucosa. In this Perspectives article, we look at the Barrett lesion itself: at its phenotype, its complexity, its clonal architecture and its stem cell organization. We conclude that Barrett glands are unique structures, but share many similarities with gastric glands undergoing the process of intestinal metaplasia. We conclude that current evidence most strongly supports an origin from stem cells in the cardia.
Collapse
Affiliation(s)
- Stuart A C McDonald
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1 2AD, UK
| | - Danielle Lavery
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1 2AD, UK
| | - Nicholas A Wright
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1 2AD, UK
| | - Marnix Jansen
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1 2AD, UK
| |
Collapse
|
26
|
Wang DH, Tiwari A, Kim ME, Clemons NJ, Regmi NL, Hodges WA, Berman DM, Montgomery EA, Watkins DN, Zhang X, Zhang Q, Jie C, Spechler SJ, Souza RF. Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett's metaplasia. J Clin Invest 2014; 124:3767-80. [PMID: 25083987 DOI: 10.1172/jci66603] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/12/2014] [Indexed: 12/20/2022] Open
Abstract
Metaplasia can result when injury reactivates latent developmental signaling pathways that determine cell phenotype. Barrett's esophagus is a squamous-to-columnar epithelial metaplasia caused by reflux esophagitis. Hedgehog (Hh) signaling is active in columnar-lined, embryonic esophagus and inactive in squamous-lined, adult esophagus. We showed previously that Hh signaling is reactivated in Barrett's metaplasia and overexpression of Sonic hedgehog (SHH) in mouse esophageal squamous epithelium leads to a columnar phenotype. Here, our objective was to identify Hh target genes involved in Barrett's pathogenesis. By microarray analysis, we found that the transcription factor Foxa2 is more highly expressed in murine embryonic esophagus compared with postnatal esophagus. Conditional activation of Shh in mouse esophageal epithelium induced FOXA2, while FOXA2 expression was reduced in Shh knockout embryos, establishing Foxa2 as an esophageal Hh target gene. Evaluation of patient samples revealed FOXA2 expression in Barrett's metaplasia, dysplasia, and adenocarcinoma but not in esophageal squamous epithelium or squamous cell carcinoma. In esophageal squamous cell lines, Hh signaling upregulated FOXA2, which induced expression of MUC2, an intestinal mucin found in Barrett's esophagus, and the MUC2-processing protein AGR2. Together, these data indicate that Hh signaling induces expression of genes that determine an intestinal phenotype in esophageal squamous epithelial cells and may contribute to the development of Barrett's metaplasia.
Collapse
|
27
|
Mari L, Milano F, Parikh K, Straub D, Everts V, Hoeben KK, Fockens P, Buttar NS, Krishnadath KK. A pSMAD/CDX2 complex is essential for the intestinalization of epithelial metaplasia. Cell Rep 2014; 7:1197-210. [PMID: 24794431 DOI: 10.1016/j.celrep.2014.03.074] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 12/13/2013] [Accepted: 03/31/2014] [Indexed: 12/22/2022] Open
Abstract
The molecular mechanisms leading to epithelial metaplasias are poorly understood. Barrett's esophagus is a premalignant metaplastic change of the esophageal epithelium into columnar epithelium, occurring in patients suffering from gastroesophageal reflux disease. Mechanisms behind the development of the intestinal subtype, which is associated with the highest cancer risk, are unclear. In humans, it has been suggested that a nonspecialized columnar metaplasia precedes the development of intestinal metaplasia. Here, we propose that a complex made up of at least two factors needs to be activated simultaneously to drive the expression of intestinal type of genes. Using unique animal models and robust in vitro assays, we show that the nonspecialized columnar metaplasia is a precursor of intestinal metaplasia and that pSMAD/CDX2 interaction is essential for the switch toward an intestinal phenotype.
Collapse
Affiliation(s)
- Luigi Mari
- Centre for Experimental & Molecular Medicine, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Francesca Milano
- Centre for Experimental & Molecular Medicine, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Section of Hematology and Clinical Immunology, Department of Internal and Experimental Medicine, Ospedale S. Maria della Misericordia, University of Perugia, 06156 Perugia, Italy
| | - Kaushal Parikh
- Centre for Experimental & Molecular Medicine, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Danielle Straub
- Centre for Experimental & Molecular Medicine, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Vincent Everts
- Core facility Cellular Imaging/LCAM-AMC, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Kees K Hoeben
- Core facility Cellular Imaging/LCAM-AMC, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Paul Fockens
- Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Navtej S Buttar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55902, USA
| | - Kausilia K Krishnadath
- Centre for Experimental & Molecular Medicine, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands; Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands.
| |
Collapse
|
28
|
Arason AJ, Jonsdottir HR, Halldorsson S, Benediktsdottir BE, Bergthorsson JT, Ingthorsson S, Baldursson O, Sinha S, Gudjonsson T, Magnusson MK. deltaNp63 has a role in maintaining epithelial integrity in airway epithelium. PLoS One 2014; 9:e88683. [PMID: 24533135 PMCID: PMC3922990 DOI: 10.1371/journal.pone.0088683] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 01/09/2014] [Indexed: 11/18/2022] Open
Abstract
The upper airways are lined with a pseudostratified bronchial epithelium that forms a barrier against unwanted substances in breathing air. The transcription factor p63, which is important for stratification of skin epithelium, has been shown to be expressed in basal cells of the lungs and its ΔN isoform is recognized as a key player in squamous cell lung cancer. However, the role of p63 in formation and maintenance of bronchial epithelia is largely unknown. The objective of the current study was to determine the expression pattern of the ΔN and TA isoforms of p63 and the role of p63 in the development and maintenance of pseudostratified lung epithelium in situ and in culture. We used a human bronchial epithelial cell line with basal cell characteristics (VA10) to model bronchial epithelium in an air-liquid interface culture (ALI) and performed a lentiviral-based silencing of p63 to characterize the functional and phenotypic consequences of p63 loss. We demonstrate that ΔNp63 is the major isoform in the human lung and its expression was exclusively found in the basal cells lining the basement membrane of the bronchial epithelium. Knockdown of p63 affected proliferation and migration of VA10 cells and facilitated cellular senescence. Expression of p63 is critical for epithelial repair as demonstrated by wound healing assays. Importantly, generation of pseudostratified VA10 epithelium in the ALI setup depended on p63 expression and goblet cell differentiation, which can be induced by IL-13 stimulation, was abolished by the p63 knockdown. After knockdown of p63 in primary bronchial epithelial cells they did not proliferate and showed marked senescence. We conclude that these results strongly implicate p63 in the formation and maintenance of differentiated pseudostratified bronchial epithelium.
Collapse
Affiliation(s)
- Ari Jon Arason
- Stem Cell Research Unit, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | | | - Jon Thor Bergthorsson
- Stem Cell Research Unit, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Saevar Ingthorsson
- Stem Cell Research Unit, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland
| | - Olafur Baldursson
- Department of Pulmonary Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Satrajit Sinha
- Department of Biochemistry, Center for Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, United States of America
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland
| | - Magnus K. Magnusson
- Stem Cell Research Unit, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland
- * E-mail:
| |
Collapse
|
29
|
Re M, Zizzi A, Ferrante L, Stramazzotti D, Goteri G, Gioacchini FM, Olivieri F, Magliulo G, Rubini C. p63 and Ki-67 immunostainings in laryngeal squamous cell carcinoma are related to survival. Eur Arch Otorhinolaryngol 2014; 271:1641-51. [PMID: 24402377 DOI: 10.1007/s00405-013-2833-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/19/2013] [Indexed: 12/29/2022]
Abstract
To examine the prognostic significance of the immunohistochemical expression of p63 and Ki-67 oncoproteins in patients with laryngeal squamous cell carcinoma, a retrospective evaluation was carried out on a cohort of 108 patients with primary laryngeal squamous cell carcinoma (LSCC) treated by primary surgery. For the immunohistochemical evaluation, tissue section obtained by formalin-fixed and paraffin-embedded tissue blocks from resection of each patient was used. Clinicopathologic data were associated with the immunostaining results. The association among the considered variables was assessed by Fisher's exact test, Mann-Whitney test, non-parametric χ(2) test, and Spearman's rho rank test was used to assess the relations among them. Differences in p63 and Ki-67 immunoreactivity among the different groups were compared via Kruskal-Wallis test and post hoc tests were performed using Mann-Whitney test with Bonferroni correction. The overall survival rate was estimated via Kaplan-Meier method, and the cumulative incidence functions for different groups were compared using log-rank statistics. Cox proportional hazard model was employed in a multivariate analysis to assess the effect of prognostic factors in the overall survival rate. Furthermore, taking into account death due to other causes, we estimated LSCC-related survival and disease-free survival rates using competing risk analysis. The results of immunohistochemical examination showed a statistically significant relationship between the up-regulation of P63 and Ki-67, an increase in histological grading, and primary tumours associated with lymph node metastases. p63 and Ki-67 up-regulation was related to a shorter disease-free survival and a significant association was found between p63 and Ki-67 percentage of positive cells and patient survival. Finally, we noticed a significant relation between p63 and Ki-67 (ρ = 0.87). On the other hand, no statistically significant associations were found between p63 and Ki-67 down-regulation and clinicopathologic data. Our findings suggest that abnormal p63 and Ki-67 immunoreactivity may be involved in the early phases of laryngeal tumorigenesis and may become a significant prognostic predictor for both overall and disease-free survivals. These biomarkers could thus help in the selection of high-risk patients with LSCC who may benefit from more aggressive therapy or chemoprevention.
Collapse
Affiliation(s)
- M Re
- Department of Otorhinolaryngology, Polytechnic University of the Marches, "Ospedali Riuniti" of Ancona, Via Conca 71, 60020, Ancona, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ramasubramanian A, Ramani P, Sherlin HJ, Premkumar P, Natesan A, Thiruvengadam C. Immunohistochemical evaluation of oral epithelial dysplasia using cyclin-D1, p27 and p63 expression as predictors of malignant transformation. J Nat Sci Biol Med 2013; 4:349-58. [PMID: 24082731 PMCID: PMC3783779 DOI: 10.4103/0976-9668.117011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To evaluate the degree of expression of cyclin-D1, p27 and p63 in mild, moderate and severe dysplasia using immunohistochemical evaluation in order to illustrate their prognostic value and attempt to propose a molecular grading system for oral epithelial dysplasia. MATERIALS AND METHODS The analysis included thirty cases of mild, moderate and severe dysplasia from Department of Oral and Maxillofacial Pathology, Saveetha Dental College, Chennai after a critical review of the Hematoxylin and Eosin (H and E) stained sections. They were subjected to immunohistochemical evaluation using the markers cyclin-D1, p27 and p63. The assessment of the expression based on staining intensity and distribution of immunohistochemical staining of the various markers was analyzed followed by statistical analysis. RESULTS A highly significant increase in the expression of cyclin-D1 (P < 0.000) and p63 (P < 0.001) and a moderately significant decrease in the expression of p27 (P < 0.012) with the increasing severity of dysplasia was observed in our study. CONCLUSIONS The result of our research affirms the fact that the increase in the expression of markers of cell cycle regulators such as cyclin D1, decrease in the expression of cell cycle inhibitors like p27 and increased expression of p63 in parallel with the increasing severity of dysplasia, emphasizes the use of immunohistochemical markers cyclin D1, p27 and p63 as prognostic markers for better understanding the behaviour of these potentially malignant disorders aiming towards proposing a molecular grading system for oral epithelial dysplasia to enable timely management prior to their possible malignant transformation.
Collapse
Affiliation(s)
- Abilasha Ramasubramanian
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha University, No. 162, Poonamallee High Road, Velappanchavadi, Chennai, Tamilnadu, India
| | - Pratibha Ramani
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha University, No. 162, Poonamallee High Road, Velappanchavadi, Chennai, Tamilnadu, India
| | - Herald J. Sherlin
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha University, No. 162, Poonamallee High Road, Velappanchavadi, Chennai, Tamilnadu, India
| | - Priya Premkumar
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha University, No. 162, Poonamallee High Road, Velappanchavadi, Chennai, Tamilnadu, India
| | - Anuja Natesan
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha University, No. 162, Poonamallee High Road, Velappanchavadi, Chennai, Tamilnadu, India
| | - Chandrasekar Thiruvengadam
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha University, No. 162, Poonamallee High Road, Velappanchavadi, Chennai, Tamilnadu, India
| |
Collapse
|
31
|
Delineating Molecular Mechanisms of Squamous Tissue Homeostasis and Neoplasia: Focus on p63. J Skin Cancer 2013; 2013:632028. [PMID: 23710361 PMCID: PMC3655637 DOI: 10.1155/2013/632028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/14/2013] [Indexed: 11/18/2022] Open
Abstract
Mouse models have informed us that p63 is critical for normal epidermal development and homeostasis. The p53/p63/p73 family is expressed as multiple protein isoforms due to a combination of alternative promoter usage and C-terminal alternative splicing. These isoforms can mimic or interfere with one another, and their balance ultimately determines biological outcome in a context-dependent manner. While not frequently mutated, p63, and in particular the ΔNp63 subclass, is commonly overexpressed in human squamous cell cancers. In vitro keratinocytes and murine transgenic and transplantation models have been invaluable in elucidating the contribution of altered p63 levels to cancer development, and studies have identified the roles for ΔNp63 isoforms in keratinocyte survival and malignant progression, likely due in part to their transcriptional regulatory function. These findings can be extended to human cancers; for example, the novel recognition of NFκB/c-Rel as a downstream effector of p63 has identified a role for NFκB/c-Rel in human squamous cell cancers. These models will be critical in enhancing the understanding of the specific molecular mechanisms of cancer development and progression.
Collapse
|
32
|
Wong HH, Chu P. Immunohistochemical features of the gastrointestinal tract tumors. J Gastrointest Oncol 2012; 3:262-84. [PMID: 22943017 DOI: 10.3978/j.issn.2078-6891.2012.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 03/29/2012] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal tract tumors include a wide variety of vastly different tumors and on a whole are one of the most common malignancies in western countries. These tumors often present at late stages as distant metastases which are then biopsied and may be difficult to differentiate without the aid of immunohistochemical stains. With the exception of pancreatic and biliary tumors where there are no distinct immunohistochemical patterns, most gastrointestinal tumors can be differentiated by their unique immunohistochemical profile. As the size of biopsies decrease, the role of immunohistochemical stains will become even more important in determining the origin and differentiation of gastrointestinal tract tumors.
Collapse
Affiliation(s)
- Hannah H Wong
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | | |
Collapse
|
33
|
DiMaio MA, Kwok S, Montgomery KD, Lowe AW, Pai RK. Immunohistochemical panel for distinguishing esophageal adenocarcinoma from squamous cell carcinoma: a combination of p63, cytokeratin 5/6, MUC5AC, and anterior gradient homolog 2 allows optimal subtyping. Hum Pathol 2012; 43:1799-807. [PMID: 22748473 DOI: 10.1016/j.humpath.2012.03.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 12/23/2022]
Abstract
Distinguishing adenocarcinoma and squamous cell carcinoma of the esophagus is often based on morphological criteria and can be difficult in small biopsies. We analyzed commonly used immunohistochemical markers (p63, cytokeratin 5/6, cytokeratin 7, CDX2, MUC2, and MUC5AC) and 2 new markers, anterior gradient homolog 2 and SOX2, in esophageal carcinomas to establish the best panel to distinguish these tumors. Tissue microarrays with 69 esophageal adenocarcinomas and 41 whole sections of esophageal squamous cell carcinomas were stained for these markers and semiquantitatively scored. Sensitivities and specificities were calculated for individual markers and select combinations using the morphological diagnosis as a gold standard. All squamous cell carcinomas expressed p63 with 38 of 41 demonstrating reactivity in more than 75% of tumor cells. Cytokeratin 5/6 expression was seen in 40 of 41 squamous cell carcinomas with 39 of 41 demonstrating reactivity in more than 75% of tumor cells. SOX2 expression was present in 35 of 41 of squamous cell carcinomas but also in 24 of 69 of adenocarcinomas, frequently demonstrating extensive reactivity in adenocarcinomas. Anterior gradient homolog 2 was highly sensitive for adenocarcinoma and present in 68 of 69 of cases, but anterior gradient homolog 2 reactivity was also identified in 15 of 41 of squamous cell carcinomas, typically demonstrating focal reactivity in squamous cell carcinoma. MUC5AC expression was seen almost exclusively in adenocarcinomas with only a single squamous cell carcinoma demonstrating focal MUC5AC staining. Overall, the dual expression of both p63 and cytokeratin 5/6 was 99% specific and 98% sensitive for squamous cell carcinoma. In addition, anterior gradient homolog 2 and MUC5AC are useful positive markers of adenocarcinoma in the setting of absent or diminished p63 and cytokeratin 5/6 staining.
Collapse
Affiliation(s)
- Michael A DiMaio
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
34
|
Chen H, Fang Y, Tevebaugh W, Orlando RC, Shaheen NJ, Chen X. Molecular mechanisms of Barrett's esophagus. Dig Dis Sci 2011; 56:3405-20. [PMID: 21984436 PMCID: PMC3750118 DOI: 10.1007/s10620-011-1885-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/16/2011] [Indexed: 12/11/2022]
Abstract
Barrett's esophagus (BE) is defined as the metaplastic conversion of esophageal squamous epithelium to intestinalized columnar epithelium. As a premalignant lesion of esophageal adenocarcinoma (EAC), BE develops as a result of chronic gastroesophageal reflux disease (GERD). Many studies have been conducted to understand the molecular mechanisms of this disease. This review summarizes recent results involving squamous and intestinal transcription factors, signaling pathways, stromal factors, microRNAs, and other factors in the development of BE. A conceptual framework is proposed to guide future studies. We expect elucidation of the molecular mechanisms of BE to help in the development of improved management of GERD, BE, and EAC.
Collapse
Affiliation(s)
- Hao Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Yu Fang
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Whitney Tevebaugh
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Roy C. Orlando
- Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7080, USA
| | - Nicholas J. Shaheen
- Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7080, USA
| | - Xiaoxin Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA,Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7080, USA,Corresponding authors: Xiaoxin Luke Chen, MD, PhD, Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA. Tel: 919-530-6425; Fax: 919-530-7780;
| |
Collapse
|
35
|
p53 Family: Role of Protein Isoforms in Human Cancer. J Nucleic Acids 2011; 2012:687359. [PMID: 22007292 PMCID: PMC3191818 DOI: 10.1155/2012/687359] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/04/2011] [Indexed: 01/07/2023] Open
Abstract
TP53, TP63, and TP73 genes comprise the p53 family. Each gene produces protein isoforms through multiple mechanisms including extensive alternative mRNA splicing. Accumulating evidence shows that these isoforms play a critical role in the regulation of many biological processes in normal cells. Their abnormal expression contributes to tumorigenesis and has a profound effect on tumor response to curative therapy. This paper is an overview of isoform diversity in the p53 family and its role in cancer.
Collapse
|
36
|
Voltaggio L, Montgomery EA, Lam-Himlin D. A Clinical and Histopathologic Focus on Barrett Esophagus and Barrett-Related Dysplasia. Arch Pathol Lab Med 2011; 135:1249-60. [DOI: 10.5858/arpa.2011-0019-ra] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Context.—Barrett esophagus is a metaplastic, premalignant lesion associated with approximately 0.5% annual incidence of progression to esophageal adenocarcinoma. Diagnosis and screening of Barrett esophagus and Barrett-related dysplasia relies on histologic evaluation of endoscopic mucosal biopsies, a process that is burdened with interobserver variability.
Objectives.—To review the histologic features and classification of Barrett esophagus and Barrett-related dysplasia, to discuss the underlying difficulties in diagnosis and pitfalls, and to provide a brief review of new developments related to therapeutic modalities for patients diagnosed with dysplasia.
Data Sources.—Sources include a review of relevant literature indexed in PubMed (US National Library of Medicine).
Conclusions.—In spite of interobserver variability, histologic assessment of dysplasia is currently the accepted method of surveillance, and subsequent patient management is dictated by this evaluation. Although not universal, endoscopic therapy is increasingly important in replacing esophagectomy for patients with high-grade dysplasia or early carcinoma.
Collapse
|
37
|
Role of p63 in cancer development. Biochim Biophys Acta Rev Cancer 2011; 1816:57-66. [PMID: 21515338 DOI: 10.1016/j.bbcan.2011.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/05/2011] [Accepted: 04/08/2011] [Indexed: 12/22/2022]
Abstract
Since their initial identification p53 homologues p63 and p73 have been expected to play a role in cancer development due to their close homology to p53, notoriously one of the most mutated genes in cancer. However soon after their discovery the awareness that these genes were rarely mutated in cancer seemed to indicate that they did not play a role in its development. However a large number of data collected in the following years indicated that altered expression rather than mutation could be found in different neoplasia and play a role in its biology. In particular p63 due to its fundamental role in epithelial development seems to play a role in a number of tumors of epithelial origin. In this review we summarize some of the evidence linking p63 to carcinogenesis.
Collapse
|
38
|
The role of p63 in cancer, stem cells and cancer stem cells. Cell Mol Biol Lett 2011; 16:296-327. [PMID: 21442444 PMCID: PMC6275999 DOI: 10.2478/s11658-011-0009-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/07/2011] [Indexed: 01/01/2023] Open
Abstract
The transcription factor p63 has important functions in tumorigenesis, epidermal differentiation and stem cell self-renewal. The TP63 gene encodes multiple protein isoforms that have different or even antagonistic roles in these processes. The balance of p63 isoforms, together with the presence or absence of the other p53 family members, p73 and p53, has a striking biological impact. There is increasing evidence that interactions between p53-family members, whether cooperative or antagonistic, are involved in various cell processes. This review summarizes the current understanding of the role of p63 in tumorigenesis, metastasis, cell migration and senescence. In particular, recent data indicate important roles in adult stem cell and cancer stem cell regulation and in the response of cancer cells to therapy.
Collapse
|
39
|
Newnham GM, Conron M, McLachlan S, Dobrovic A, Do H, Li J, Opeskin K, Thompson N, Wright GM, Thomas DM. Integrated mutation, copy number and expression profiling in resectable non-small cell lung cancer. BMC Cancer 2011; 11:93. [PMID: 21385341 PMCID: PMC3058106 DOI: 10.1186/1471-2407-11-93] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 03/07/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The aim of this study was to identify critical genes involved in non-small cell lung cancer (NSCLC) pathogenesis that may lead to a more complete understanding of this disease and identify novel molecular targets for use in the development of more effective therapies. METHODS Both transcriptional and genomic profiling were performed on 69 resected NSCLC specimens and results correlated with mutational analyses and clinical data to identify genetic alterations associated with groups of interest. RESULTS Combined analyses identified specific patterns of genetic alteration associated with adenocarcinoma vs. squamous differentiation; KRAS mutation; TP53 mutation, metastatic potential and disease recurrence and survival. Amplification of 3q was associated with mutations in TP53 in adenocarcinoma. A prognostic signature for disease recurrence, reflecting KRAS pathway activation, was validated in an independent test set. CONCLUSIONS These results may provide the first steps in identifying new predictive biomarkers and targets for novel therapies, thus improving outcomes for patients with this deadly disease.
Collapse
Affiliation(s)
- Genni M Newnham
- Department of Oncology, St Vincent's Hospital, (Victoria Pde), Melbourne, (3065), Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, (Tin Alley), Melbourne, (3010), Australia
| | - Matthew Conron
- Department of Respiratory Medicine, St Vincent's Hospital, (Victoria Pde), Melbourne, (3065), Australia
| | - SueAnne McLachlan
- Department of Oncology, St Vincent's Hospital, (Victoria Pde), Melbourne, (3065), Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, (Tin Alley), Melbourne, (3010), Australia
| | - Alexander Dobrovic
- Department of Pathology, Peter MacCallum Cancer Centre, (St Andrews Place), East Melbourne, (3002), Australia
- Department of Pathology, The University of Melbourne, (Tin Alley), Melbourne, (3010), Australia
| | - Hongdo Do
- Department of Pathology, Peter MacCallum Cancer Centre, (St Andrews Place), East Melbourne, (3002), Australia
- Department of Pathology, The University of Melbourne, (Tin Alley), Melbourne, (3010), Australia
| | - Jason Li
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, (St Andrews Place), East Melbourne, (3002), Australia
| | - Kenneth Opeskin
- Department of Anatomical Pathology, St Vincent's Hospital, (Victoria Pde), Melbourne, (3065), Australia
| | - Natalie Thompson
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, (St Andrews Place), East Melbourne, (3002), Australia
| | - Gavin M Wright
- Department of Thoracic Surgery, St Vincent's Hospital, (Victoria Pde), Melbourne, (3065), Australia
| | - David M Thomas
- Centre for Genomics and Predictive Medicine, Peter MacCallum Cancer Centre, (St Andrews Place), East Melbourne, (3002), Australia
| |
Collapse
|
40
|
|
41
|
Abstract
The past few years have brought new advances in our understanding of the molecular mechanisms underlying the development of Barrett's esophagus and esophageal adenocarcinoma. Although knowledge of the genetic basis for these conditions has not yet translated into clinically useful biomarkers, the current pace of biomedical discovery holds endless possibilities for molecular medicine to improve the diagnosis and management of patients with these conditions. This article provides a useful conceptual basis for understanding the molecular events involved in the making of Barrett metaplasia and in its neoplastic progression, and provides a rationale for evaluating studies on the application of molecular medicine to the diagnosis and management of patients with Barrett's esophagus and esophageal adenocarcinoma.
Collapse
Affiliation(s)
- David H. Wang
- Assistant Professor, Departments of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical School, and the Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Rhonda F. Souza
- Associate Professor, Departments of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical School, and the Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
42
|
Dabelsteen S, Hercule P, Barron P, Rice M, Dorsainville G, Rheinwald JG. Epithelial cells derived from human embryonic stem cells display p16INK4A senescence, hypermotility, and differentiation properties shared by many P63+ somatic cell types. Stem Cells 2009; 27:1388-99. [PMID: 19489101 PMCID: PMC2733375 DOI: 10.1002/stem.64] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human embryonic stem (hES) cells can generate cells expressing p63, K14, and involucrin, which have been proposed to be keratinocytes. Although these hES-derived, keratinocyte-like (hESderK) cells form epithelioid colonies when cultured in a fibroblast feeder system optimal for normal tissue-derived keratinocytes, they have a very short replicative lifespan unless engineered to express HPV16 E6E7. We report here that hESderK cells undergo senescence associated with p16(INK4A) expression, unrelated to telomere status. Transduction to express bmi1, a repressor of the p16(INK4A)/p14(ARF) locus, conferred upon hESderK cells and keratinocytes a substantially extended lifespan. When exposed to transforming growth factor beta or to an incompletely processed form of Laminin-332, three lifespan-extended or immortalized hESderK lines that we studied became directionally hypermotile, a wound healing and invasion response previously characterized in keratinocytes. In organotypic culture, hESderK cells stratified and expressed involucrin and K10, as do epidermal keratinocytes in vivo. However, their growth requirements were less stringent than keratinocytes. We then extended the comparison to endoderm-derived, p63(+)/K14(+) urothelial and tracheobronchial epithelial cells. Primary and immortalized lines of these cell types had growth requirements and hypermotility responses similar to keratinocytes and bmi1 expression facilitated their immortalization by engineering to express the catalytic subunit of telomerase (TERT). In organotypic culture, they stratified and exhibited squamous metaplasia, expressing involucrin and K10. Thus, hESderK cells proved to be distinct from all three normal p63(+) cell types tested. These results indicate that hESderK cells cannot be identified conclusively as keratinocytes or even as ectodermal cells, but may represent an incomplete form of, or deviation from, normal p63(+) lineage development.
Collapse
Affiliation(s)
- Sally Dabelsteen
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
43
|
Cao LY, Yin Y, Li H, Jiang Y, Zhang HF. Expression and clinical significance of S100A2 and p63 in esophageal carcinoma. World J Gastroenterol 2009; 15:4183-8. [PMID: 19725154 PMCID: PMC2738816 DOI: 10.3748/wjg.15.4183] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression and clinical significance of S100A2 mRNA and protein, p63 protein in esophageal squamous cell carcinoma (ESCC) and their roles in carcinogenesis and progression of esophageal carcinoma (EC).
METHODS: Immunohistochemical staining (S-P method) for S100A2 and p63 protein were performed in 40 samples of ESCC and 40 samples of normal esophageal mucosa. In situ hybridization (ISH) was used to detect the expression of S100A2 mRNA.
RESULTS: Expression of S100A2 mRNA in ESCC was positive in 77.5% of samples, which was lower than that in normal mucosa (100%) by ISH (P = 0.002). The expression level of S100A2 mRNA was closely related to differentiation and and node-metastasis (P = 0.012, P = 0.008). Expression of S100A2 protein was positive in 72.5% of ESCC samples and expression of p63 protein was positive in 37.5% of ESCC samples, and was lower than that in normal mucosa (100%) (P = 0.000). The expression of S100A2 protein was correlated with the differentiation and node-metastasis (P = 0.007, P = 0.001), but no relationship was observed between the expression of p63 protein and clinical pathological manifestations. S100A2 protein was positively correlated with the expression of S100A2 mRNA, and negatively associated with the expression of p63 protein (P = 0.000, P = 0.002).
CONCLUSION: S100A2 and p63 protein both play important roles in the carcinogenesis of ESCC. An investigation into the combined expression of S100A2 and p63 may be helpful in early diagnosis and in evaluating the prognosis of ESCC.
Collapse
|
44
|
Multilayered epithelium in mucosal biopsy specimens from the gastroesophageal junction region is a histologic marker of gastroesophageal reflux disease. Am J Surg Pathol 2009; 33:818-25. [PMID: 19295405 DOI: 10.1097/pas.0b013e3181984697] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Barrett esophagus (BE) is defined as a columnar metaplasia of the distal esophagus that develops as a result of chronic gastroesophageal reflux disease (GERD). A distinctive type of multilayered epithelium (ME) that exhibits features of both squamous and columnar epithelium has been hypothesized to represent an early, or intermediate, phase in the development of BE. The aim of this prospective study was to evaluate the prevalence and specificity of ME in mucosal biopsies of the squamocolumnar junction (SCJ) from patients who had GERD, either with or without BE. During endoscopic examination of the esophagus, 2 biopsy specimens were obtained from across the SCJ from 27 patients with BE, 12 patients who had GERD without BE, and 14 controls who had no symptoms or endoscopic or histologic signs of GERD. ME was present at the SCJ in 33%, 33%, and 0% of BE, GERD, and control patients, respectively. Compared with control subjects, the prevalence of ME was significantly higher in both GERD and BE patients (P<0.05). In GERD patients without BE, ME was always detected adjacent to areas of cardia-type mucosa composed of mucous glands. ME from GERD patients and BE patients had a similar immunophenotype, showing expression of the intestinal markers MUC2 and cdx-2 in 38% and 77% of cases, respectively. The prevalence of expression of these markers in ME was significantly different from nongoblet epithelium in control patients. Our results provide further evidence that ME may represent an early, transitional form of columnar metaplasia, and that ME may be used as a histologic marker of reflux disease in mucosal biopsies from the gastroesophageal junction region.
Collapse
|
45
|
Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. Dev Cell 2009; 16:588-99. [PMID: 19386267 DOI: 10.1016/j.devcel.2009.02.010] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/16/2008] [Accepted: 02/18/2009] [Indexed: 12/22/2022]
Abstract
We demonstrate that conditional ablation of the homeobox transcription factor Cdx2 from early endoderm results in the replacement of the posterior intestinal epithelium with keratinocytes, a dramatic cell fate conversion caused by ectopic activation of the foregut/esophageal differentiation program. This anterior homeotic transformation of the intestine was first apparent in the early embryonic Cdx2-deficient gut by a caudal extension of the expression domains of several key foregut endoderm regulators. While the intestinal transcriptome was severely affected, Cdx2 deficiency only transiently modified selected posterior Hox genes and the primary enteric Hox code was maintained. Further, we demonstrate that Cdx2-directed intestinal cell fate adoption plays an important role in the establishment of normal epithelial-mesenchymal interactions, as multiple signaling pathways involved in this process were severely affected. We conclude that Cdx2 controls important aspects of intestinal identity and development, and that this function is largely independent of the enteric Hox code.
Collapse
|
46
|
Dijckmeester WA, Wijnhoven BPL, Watson DI, Leong MP, Michael MZ, Mayne GC, Bright T, Astill D, Hussey DJ. MicroRNA-143 and -205 expression in neosquamous esophageal epithelium following Argon plasma ablation of Barrett's esophagus. J Gastrointest Surg 2009; 13:846-53. [PMID: 19190970 DOI: 10.1007/s11605-009-0799-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 01/03/2009] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Ablation of Barrett's esophagus using Argon plasma coagulation (APC) is usually followed by the formation of a neosquamous epithelium. Investigating simple columnar or stratified squamous epithelium associated cytokeratin and microRNA (miRNA) expression in neo-squamous epithelium could help determine the identity and stability of the neosquamous epithelium. METHODS Nine patients underwent ablation of Barrett's esophagus with APC. Biopsies were collected from Barrett's esophagus mucosa and proximal normal squamous epithelium before ablation, and from neosquamous and normal squamous epithelium after ablation. Additional esophageal mucosal biopsies from ten nonrefluxing subjects were used as a reference. RNA was extracted and real-time polymerase chain reaction was used to measure the expression of the cytokeratins CK-8 and CK-14 and the microRNAs miR-143 and miR-205. RESULTS CK-8 and miR-143 expression were significantly higher in Barrett's esophagus mucosa, compared to neosquamous and normal squamous epithelium before and after APC, whereas miRNA-205 and CK-14 expression was significantly lower in Barrett's esophagus mucosa compared to all categories of squamous mucosa. The expression of CK-8, CK-14, miR-205, and miR-143 was similar between neosquamous epithelium compared to normal squamous epithelium in patients with Barrett's esophagus. Only miR-143 expression was significantly higher in neosquamous and normal squamous epithelium before and after APC compared to normal squamous epithelium from control subjects (p < 0.004). CONCLUSIONS The expression levels of cytokeratins and miRNAs studied in post-ablation neosquamous epithelium and normal squamous epithelium in patients with Barrett's esophagus are similar. In patients with Barrett's esophagus, miR-143 expression is still elevated in both neosquamous mucosa, and the squamous mucosa above the metaplastic segment, suggesting that this mucosa may not be normal; i.e., it is different to that seen in subjects without Barrett's esophagus. miR-143 could promote a Barrett's epithelium gene expression pattern, and this could have a role in development of Barrett's esophagus.
Collapse
Affiliation(s)
- Willem A Dijckmeester
- Department of Surgery, Flinders University, Room 3D211, Flinders Medical Centre, Bedford Park, South Australia, 5042, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ogawa E, Okuyama R, Egawa T, Nagoshi H, Obinata M, Tagami H, Ikawa S, Aiba S. p63/p51-induced onset of keratinocyte differentiation via the c-Jun N-terminal kinase pathway is counteracted by keratinocyte growth factor. J Biol Chem 2008; 283:34241-9. [PMID: 18849344 DOI: 10.1074/jbc.m804101200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
p63/p51, a homolog of the tumor suppressor protein p53, is chiefly expressed in epithelial tissues, including the epidermis. p63 affects cell death similar to p53, and also plays important roles in the development of epithelial tissues and the maintenance of epithelial stem cells. Because it remains unclear how p63 regulates epithelial cell differentiation, we examined the function(s) of p63 in keratinocyte differentiation through the use of a keratinocyte culture system. DeltaNp63alpha (DeltaNp51B), a p63 isoform specifically expressed in basal keratinocytes, suppressed the differentiation of specific late-stage proteins, such as filaggrin and loricrin. In contrast, DeltaNp63alpha induced keratin 1 (K1), which is expressed at the start of differentiation, via c-Jun N-terminal kinase (JNK)/AP-1 activation. However, p63 did not induce K1 expression in the basal layer in vivo, although basal keratinocytes had high levels of p63. This discrepancy was explained by the suppression of K1 expression by dermis-secreted keratinocyte growth factor. This suppression occurred via extracellular signal-related kinase (ERK) signaling, and counteracted the p63-mediated induction of K1. Thus, a precise balance between p63 and keratinocyte growth factor mediates the onset of epithelial cell differentiation, through JNK and ERK signaling. These data may provide mechanistic explanations for the pathological features of skin diseases, including psoriasis.
Collapse
Affiliation(s)
- Eisaku Ogawa
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Souza RF, Krishnan K, Spechler SJ. Acid, bile, and CDX: the ABCs of making Barrett's metaplasia. Am J Physiol Gastrointest Liver Physiol 2008; 295:G211-8. [PMID: 18556417 DOI: 10.1152/ajpgi.90250.2008] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Barrett's esophagus, a squamous-to-columnar cell metaplasia that develops as a result of chronic gastroesophageal reflux disease (GERD), is a risk factor for esophageal adenocarcinoma. The molecular events underlying the pathogenesis of Barrett's metaplasia are poorly understood, but recent studies suggest that interactions among developmental signaling pathways, morphogenetic factors, and Caudal homeobox (Cdx) genes play key roles. Strong expression of Cdx genes normally is found in the intestine but not in the esophagus and stomach. When mice are genetically engineered so that their gastric cells express Cdx, the stomach develops a metaplastic, intestinal-type epithelium similar to that of Barrett's esophagus. Exposure to acid and bile has been shown to activate the Cdx promoter in certain esophageal cell lines, and Cdx expression has been found in inflamed esophageal squamous epithelium and in the specialized intestinal metaplasia of Barrett's esophagus. Barrett's metaplasia must be sustained by stem cells, which might be identified by putative, intestinal stem cell markers like leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and doublecortin and CaM kinase-like-1 (DCAMKL-1). Emerging concepts in tumor biology suggest that Barrett's cancers may develop from growth-promoting mutations in metaplastic stem cells or their progenitor cell progeny. This report reviews the roles of developmental signaling pathways and the Cdx genes in the development of normal gut epithelia and the potential mechanisms whereby GERD may induce the esophageal expression of Cdx genes and other morphogenetic factors that mediate the development of Barrett's metaplasia. The role of stem cells in the development of metaplasia and in carcinogenesis and the potential for therapies directed at those stem cells also is addressed.
Collapse
Affiliation(s)
- Rhonda F Souza
- Department of Medicine, Veterans Affairs North Texas Health Care System and the University of Texas Southwestern Medical School, USA.
| | | | | |
Collapse
|
49
|
Expression of p63 and p73 in retinoblastoma: a clinicopathological correlation study. Exp Eye Res 2008; 87:312-8. [PMID: 18619959 DOI: 10.1016/j.exer.2008.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 06/12/2008] [Accepted: 06/14/2008] [Indexed: 01/19/2023]
Abstract
The aim of the study was to explore the expression profile of p63, p73 and their delta isoforms in the retinoblastoma tumor samples and to correlate with clinicopathological parameters. Immunohistochemistry was performed for p63, delta p63, p73 and delta p73 on the archival paraffin sections of retinoblastoma and correlated with clinicopathological features. Western blotting was performed to confirm immunoreactivity results. p63 immunoreactivity was observed in 59% (29/49) of the RB specimens. p63 was expressed in 60% (20/33) low risk tumors and in 56% (9/16) of high risk tumors. p73 was expressed in 77% (38/49) RB specimens. Among the 33 low risk tumors, p73 was expressed in 69% (23/33) tumors and among the 26 high risk tumors, p73 was expressed in 93% (15/16) tumors. High risk tumors showed significantly increased expression of p73 compared to tumors with low risk (P<0.05). This is the first correlation between p63/p73 expression and histopathology in human RB tumors. Our study showed increased expression of p73 in high risk tumors (P<0.05) compared to low risk tumors. Further functional studies are required to explore the role of p63, p73 and their respective isoforms in retinoblastoma.
Collapse
|
50
|
Chen X, Qin R, Liu B, Ma Y, Su Y, Yang CS, Glickman JN, Odze RD, Shaheen NJ. Multilayered epithelium in a rat model and human Barrett's esophagus: similar expression patterns of transcription factors and differentiation markers. BMC Gastroenterol 2008; 8:1. [PMID: 18190713 PMCID: PMC2267197 DOI: 10.1186/1471-230x-8-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 01/11/2008] [Indexed: 02/07/2023] Open
Abstract
Background In rats, esophagogastroduodenal anastomosis (EGDA) without concomitant chemical carcinogen treatment leads to gastroesophageal reflux disease, multilayered epithelium (MLE, a presumed precursor in intestinal metaplasia), columnar-lined esophagus, dysplasia, and esophageal adenocarcinoma. Previously we have shown that columnar-lined esophagus in EGDA rats resembled human Barrett's esophagus (BE) in its morphology, mucin features and expression of differentiation markers (Lab. Invest. 2004;84:753–765). The purpose of this study was to compare the phenotype of rat MLE with human MLE, in order to gain insight into the nature of MLE and its potential role in the development of BE. Methods Serial sectioning was performed on tissue samples from 32 EGDA rats and 13 patients with established BE. Tissue sections were immunohistochemically stained for a variety of transcription factors and differentiation markers of esophageal squamous epithelium and intestinal columnar epithelium. Results We detected MLE in 56.3% (18/32) of EGDA rats, and in all human samples. As expected, both rat and human squamous epithelium, but not intestinal metaplasia, expressed squamous transcription factors and differentiation markers (p63, Sox2, CK14 and CK4) in all cases. Both rat and human intestinal metaplasia, but not squamous epithelium, expressed intestinal transcription factors and differentiation markers (Cdx2, GATA4, HNF1α, villin and Muc2) in all cases. Rat MLE shared expression patterns of Sox2, CK4, Cdx2, GATA4, villin and Muc2 with human MLE. However, p63 and CK14 were expressed in a higher proportion of rat MLE compared to humans. Conclusion These data indicate that rat MLE shares similar properties to human MLE in its expression pattern of these markers, not withstanding small differences, and support the concept that MLE may be a transitional stage in the metaplastic conversion of squamous to columnar epithelium in BE.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Cancer Research Program, Julius L, Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|