1
|
Yew KC, Tan QR, Lim PC, Low WY, Lee CY. Assessing the impact of direct-acting antivirals on hepatitis C complications: a systematic review and meta-analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1421-1431. [PMID: 37728622 DOI: 10.1007/s00210-023-02716-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Direct-acting antivirals (DAA) have become the treatment of choice for hepatitis C. Nevertheless, efficacy of DAA in preventing hepatitis C complications remains uncertain. We evaluated the impact of DAA on hepatocellular carcinoma (HCC) occurrence and recurrence, all-cause mortality, liver decompensation and liver transplantation as compared to non-DAA treated hepatitis C and the association to baseline liver status. A systematic search for articles from March 1993 to March 2022 was conducted using three electronic databases. Randomized, case-control and cohort studies with comparison to non-DAA treatment and reporting at least one outcome were included. Meta-analysis and sub-group meta-analysis based on baseline liver status were performed. Of 1497 articles retrieved, 19 studies were included, comprising of 266,310 patients (56.07% male). DAA reduced HCC occurrence significantly in non-cirrhosis (RR 0.80, 95% CI 0.69-0.92) and cirrhosis (RR 0.39, 95% CI 0.24-0.64) but not in decompensated cirrhosis. DAA treatment lowered HCC recurrence (RR 0.71, 95% CI 0.55-0.92) especially in patients with baseline HCC and waiting for liver transplant. DAA also reduced all-cause mortality (RR 0.43, 95% CI 0.23-0.78) and liver decompensation (RR 0.52, 95% CI 0.33-0.83) significantly. However, DAA did not prevent liver transplantation. The study highlighted the importance of early DAA initiation in hepatitis C treatment for benefits beyond sustained virological response. DAA therapy prevented HCC particularly in non-cirrhosis and compensated cirrhosis groups indicating benefits in preventing further worsening of liver status. Starting DAA early also reduced HCC recurrence, liver decompensation, and all-cause mortality.
Collapse
Affiliation(s)
- Kuo Chao Yew
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Quan Rui Tan
- Imperial College London-Nanyang Technological University Lee Kong Chian School of Medicine, Singapore, Singapore
- Ministry of Health Holdings Pte Ltd, Singapore, Singapore
| | - Phei Ching Lim
- Pharmacy Department, Hospital Pulau Pinang, Ministry of Health Malaysia, Georgetown, Penang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Wei Yang Low
- Imperial College London-Nanyang Technological University Lee Kong Chian School of Medicine, Singapore, Singapore
- Ministry of Health Holdings Pte Ltd, Singapore, Singapore
| | - Chong Yew Lee
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
2
|
Vaikunthanathan T, Landmann E, Correa DM, Romano M, Trevelin SC, Peng Q, Crespo E, Corrado M, Lozano JJ, Pearce EL, Perpinan E, Zoccarato A, Siew L, Edwards-Hicks J, Khan R, Luu NT, Thursz MR, Newsome PN, Martinez-Llordella M, Shah N, Lechler RI, Shah AM, Sanchez-Fueyo A, Lombardi G, Safinia N. Dysregulated anti-oxidant signalling and compromised mitochondrial integrity negatively influence regulatory T cell function and viability in liver disease. EBioMedicine 2023; 95:104778. [PMID: 37657135 PMCID: PMC10480539 DOI: 10.1016/j.ebiom.2023.104778] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Dysregulated inflammatory responses and oxidative stress are key pathogenic drivers of chronic inflammatory diseases such as liver cirrhosis (LC). Regulatory T cells (Tregs) are essential to prevent excessive immune activation and maintain tissue homeostasis. While inflammatory cues are well known to modulate the function and stability of Tregs, the extent to which Tregs are influenced by oxidative stress has not been fully explored. METHODS The phenotypic and functional properties of CD4+CD25+CD127lo/- Tregs isolated from patients with LC were compared to healthy controls (HC). Treg redox state was investigated by characterizing intracellular reactive oxygen species (ROS), NADPH oxidase-2 (Nox2) activity, mitochondrial function, morphology, and nuclear factor-erythroid 2-related factor (Nrf2) antioxidant signalling. The relevance of Nrf2 and its downstream target, Heme-oxygenase-1 (HO-1), in Treg function, stability, and survival, was further assessed using mouse models and CRISPR/Cas9-mediated HO-1 knock-out. FINDINGS Circulating Tregs from LC patients displayed a reduced suppressive function, correlating with liver disease severity, associated with phenotypic abnormalities and increased apoptosis. Mechanistically, this was linked to a dysregulated Nrf2 signalling with resultant lower levels of HO-1, enhanced Nox2 activation, and impaired mitochondrial respiration and integrity. The functional deficit in LC Tregs could be partially recapitulated by culturing control Tregs in patient sera. INTERPRETATION Our findings reveal that Tregs rely on functional redox homeostasis for their function, stability, and survival. Targeting Treg specific anti-oxidant pathways may have therapeutic potential to reverse the Treg impairment in conditions of oxidative damage such as advanced liver disease. FUNDING This study was funded by the Wellcome Trust (211113/A/18/Z).
Collapse
Affiliation(s)
- Trishan Vaikunthanathan
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, SE5 9NU, United Kingdom.
| | - Emmanuelle Landmann
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, SE5 9NU, United Kingdom.
| | - Diana Marin Correa
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, SE5 9NU, United Kingdom.
| | - Marco Romano
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, 5th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, United Kingdom.
| | - Silvia Cellone Trevelin
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, SE5 9NU, United Kingdom.
| | - Qi Peng
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, 5th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, United Kingdom.
| | - Elena Crespo
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, SE5 9NU, United Kingdom.
| | - Mauro Corrado
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Juan-José Lozano
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph Stelzmannstrasse 26, 50931, Cologne, Germany.
| | - Erika L Pearce
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), Calle Rossello 153 Bajos, O8036, Barcelona, Spain.
| | - Elena Perpinan
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, SE5 9NU, United Kingdom.
| | - Anna Zoccarato
- Department of Immunometabolism, Max Planck Institute of Immunobiology & Epigenetics, Stübeweg 51, 79108, Freiburg, Germany.
| | - Leonard Siew
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, 5th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, United Kingdom.
| | - Joy Edwards-Hicks
- Centre for Liver and Gastroenterology Research and Birmingham National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.
| | - Reenam Khan
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, Liver Unit, 10th Floor QEQM Building, St Mary's Hospital, W2 1NY, London, United Kingdom.
| | - Nguyet-Thin Luu
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, Liver Unit, 10th Floor QEQM Building, St Mary's Hospital, W2 1NY, London, United Kingdom.
| | - Mark R Thursz
- Institute of Liver Sciences, King's College Hospital NHS Foundation Trust, London, SE5 9NU, United Kingdom.
| | - Philip N Newsome
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, Liver Unit, 10th Floor QEQM Building, St Mary's Hospital, W2 1NY, London, United Kingdom.
| | - Marc Martinez-Llordella
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, SE5 9NU, United Kingdom.
| | - Naina Shah
- James Black Centre, Department of Cardiovascular sciences, British Heart Foundation Centre of Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, SE5 9NU, United Kingdom.
| | - Robert I Lechler
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, 5th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, United Kingdom.
| | - Ajay M Shah
- Department of Immunometabolism, Max Planck Institute of Immunobiology & Epigenetics, Stübeweg 51, 79108, Freiburg, Germany.
| | - Alberto Sanchez-Fueyo
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, SE5 9NU, United Kingdom.
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, 5th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, United Kingdom.
| | - Niloufar Safinia
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, SE5 9NU, United Kingdom.
| |
Collapse
|
3
|
Zhang L, Chu C, Lin X, Sun R, Li Z, Chen S, Liu Y, Wu J, Yu Z, Liu X. Tunable Nanoparticles with Aggregation-Induced Emission Heater for Precise Synergistic Photothermal and Thermodynamic Oral Cancer Therapy of Patient-Derived Tumor Xenograft. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205780. [PMID: 37078783 PMCID: PMC10265040 DOI: 10.1002/advs.202205780] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/12/2023] [Indexed: 05/03/2023]
Abstract
The fluorophores in the second near-infrared (NIR-II) biological window (1000 - 1700 nm) show great application prospects in the fields of biology and optical communications. However, both excellent radiative transition and nonradiative transition cannot be achieved simultaneously for the majority of traditional fluorophores. Herein, tunable nanoparticles formulated with aggregation-induced emission (AIE) heater are developed rationally. The system can be implemented via the development of an ideal synergistic system that can not only produce photothermal from nonspecific triggers but also trigger carbon radical release. Once accumulating in tumors and subsequently being irradiated with 808 nm laser, the nanoparticles (NMB@NPs) encapsulated with NMDPA-MT-BBTD (NMB) are splitted due to the photothermal effect of NMB, leading to the decomposition of azo bonds in the nanoparticle matrix to generate carbon radical. Accompanied by second near-infrared (NIR-II) window emission from the NMB, fluorescence image-guided thermodynamic therapy (TDT) and photothermal therapy (PTT) which significantly inhibited the growth of oral cancer and negligible systemic toxicity is achieved synergistically. Taken together, this AIE luminogens-based synergistic photothermal-thermodynamic strategy brings a new insight into the design of superior versatile fluorescent NPs for precise biomedical applications and holds great promise to enhance the therapeutic efficacy of cancer therapy.
Collapse
Affiliation(s)
- Leitao Zhang
- Department of Oral and Maxillofacial SurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Chengyan Chu
- Department of Oral and Maxillofacial SurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjing210023China
| | - Xuefeng Lin
- Pingshan District People's Hospital of ShenzhenPingshan General Hospital of Southern Medical UniversityShenzhenGuangdong518118China
| | - Rui Sun
- Department of Laboratory MedicineDongguan Institute of Clinical Cancer ResearchAffiliated Dongguan HospitalSouthern Medical UniversityDongguan523018China
| | - Zibo Li
- Department of Laboratory MedicineDongguan Institute of Clinical Cancer ResearchAffiliated Dongguan HospitalSouthern Medical UniversityDongguan523018China
| | - Sijia Chen
- Department of Oral and Maxillofacial SurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yinqiao Liu
- Department of Oral and Maxillofacial SurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jian Wu
- Center of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong Province510080China
| | - Zhiqiang Yu
- Department of Laboratory MedicineDongguan Institute of Clinical Cancer ResearchAffiliated Dongguan HospitalSouthern Medical UniversityDongguan523018China
| | - Xiqiang Liu
- Department of Oral and Maxillofacial SurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
4
|
Cerrito L, Ainora ME, Nicoletti A, Garcovich M, Riccardi L, Pompili M, Gasbarrini A, Zocco MA. Elastography as a predictor of liver cirrhosis complications after hepatitis C virus eradication in the era of direct-acting antivirals. World J Hepatol 2021; 13:1663-1676. [PMID: 34904036 PMCID: PMC8637667 DOI: 10.4254/wjh.v13.i11.1663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/08/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation due to hepatitis C virus (HCV) infection leads to liver fibrosis and rearrangement of liver tissue, which is responsible for the development of portal hypertension (PH) and hepatocellular carcinoma (HCC). The advent of direct-acting antiviral drugs has revolutionized the natural history of HCV infection, providing an overall eradication rate of over 90%. Despite a significant decrease after sustained virological response (SVR), the rate of HCC and liver-related complications is not completely eliminated in patients with advanced liver disease. Although the reasons are still unclear, cirrhosis itself has a residual risk for the development of HCC and other PH-related complications. Ultrasound elastography is a recently developed non-invasive technique for the assessment of liver fibrosis. Following the achievement of SVR, liver stiffness (LS) usually decreases, as a consequence of reduced inflammation and, possibly, fibrosis. Recent studies emphasized the application of LS assessment in the management of patients with SVR in order to define the risk for developing the complications of chronic liver disease (functional decompensation, gastrointestinal bleeding, HCC) and to optimize long-term prognostic outcomes in clinical practice.
Collapse
Affiliation(s)
- Lucia Cerrito
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Catholic University of Rome (Italy), Rome 00168, Italy
| | - Maria Elena Ainora
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Catholic University of Rome (Italy), Rome 00168, Italy
| | - Alberto Nicoletti
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Catholic University of Rome (Italy), Rome 00168, Italy
| | - Matteo Garcovich
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Catholic University of Rome (Italy), Rome 00168, Italy
| | - Laura Riccardi
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Catholic University of Rome (Italy), Rome 00168, Italy
| | - Maurizio Pompili
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Catholic University of Rome (Italy), Rome 00168, Italy
| | - Antonio Gasbarrini
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Catholic University of Rome (Italy), Rome 00168, Italy
| | - Maria Assunta Zocco
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Catholic University of Rome (Italy), Rome 00168, Italy
| |
Collapse
|
5
|
Abdel Alem S, Elsharkawy A, El Akel W, Abdelaziz AO, Salama RM, El-Sayed MH, El Kassas M, Anees M, Shedeed M, Abdelsalam F, Ziada DH, El Shazly Y, El-Serafy M, Waked I, Esmat G, Doss W. Liver stiffness measurements and FIB-4 are predictors of response to sofosbuvir-based treatment regimens in 7256 chronic HCV patients. Expert Rev Gastroenterol Hepatol 2019; 13:1009-1016. [PMID: 31418303 DOI: 10.1080/17474124.2019.1653183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objectives: To assess the role of baseline liver stiffness (LS) by Transient elastography (TE) and FIB-4 in the prediction of virological response to sofosbuvir - based regimens in chronic HCV patients.Methods: A retrospective, multicenter study including 7256 chronic HCV patients who received different sofosbuvir-based regimens. Baseline demographic and laboratory data were recorded. TE was performed with FIB-4 calculation at baseline.Results: Sustained virological response at week 12 post-treatment (SVR12) was 91.4%. Pretreatment TE values and FIB-4 were significantly lower among sustained responders (17.8 ± 11.5 kPa, 2.66 ± 1.98, respectively) versus relapsers (24.5 ± 13.9 kPa, 4.02 ± 3.3, respectively). Best cutoff levels for LS by TE and FIB-4 score for prediction of failure to treatment response were 16.7 kPa and 2.4, respectively. Among different treatment protocol, patients with FIB-4 > 2.4, TE values >16.7 kPa are more prone to treatment failure except when using SOF/SIM treatment regimens.Conclusion: Baseline LS by TE and FIB-4 score may be useful for predicting treatment outcome in the new era of DAAs and could be integrated into pretreatment assessment of chronic HCV patients for better optimization of patient management.
Collapse
Affiliation(s)
- Shereen Abdel Alem
- Endemic Medicine and Hepatogastroenterology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aisha Elsharkawy
- Endemic Medicine and Hepatogastroenterology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Wafaa El Akel
- Endemic Medicine and Hepatogastroenterology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ashraf O Abdelaziz
- Endemic Medicine and Hepatogastroenterology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rabab Maamoun Salama
- Endemic Medicine and Hepatogastroenterology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Mohamed El Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan university, Cairo, Egypt
| | - Mahmoud Anees
- Department of Tropical Medicine & Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mahmoud Shedeed
- Department of infectious and Endemic Diseases, Faculty of medicine, Suez Canal University, Ismailia, Egypt
| | - Fatma Abdelsalam
- Department of hepatology, gastroenterology and infectious diseases, Banha University, Banh, Egypt
| | - Dina H Ziada
- Department of Tropical Medicine & Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Yehia El Shazly
- Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Magdy El-Serafy
- Endemic Medicine and Hepatogastroenterology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Imam Waked
- Department of Hepatology, National Liver Institute, Menoufyia University, Menoufyia, Egypt
| | - Gamal Esmat
- Endemic Medicine and Hepatogastroenterology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Wahid Doss
- Endemic Medicine and Hepatogastroenterology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Ríos-Ocampo WA, Navas MC, Faber KN, Daemen T, Moshage H. The cellular stress response in hepatitis C virus infection: A balancing act to promote viral persistence and host cell survival. Virus Res 2018; 263:1-8. [PMID: 30599163 DOI: 10.1016/j.virusres.2018.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/03/2018] [Accepted: 12/28/2018] [Indexed: 01/14/2023]
Abstract
Oxidative- and endoplasmic reticulum (ER)-stress are common events during hepatitis C virus (HCV) infection and both regulate cell survival and determine clinical outcome. In response to intrinsic and extrinsic cellular stress, different adaptive mechanisms have evolved in hepatocytes to restore cellular homeostasis like the anti-oxidant response, the unfolded protein response (UPR) and the integrated stress response (ISR). In this review, we focus on the cellular stress response in the context of acute and chronic HCV infection. The mechanisms of induction and modulation of oxidative- and ER-stress are reviewed and analyzed from both perspectives: viral persistence and cell survival. Besides, we delve into the activation of the eIF2α/ATF4 pathway and selective autophagy induction; pathways involved in the elimination of harmful viral proteins after oxidative stress induction. For this, the negative role of autophagy upon HCV infection or negative regulation of viral replication is analyzed. Finally, we hypothesize that the cellular stress response in hepatocytes plays a major role for HCV control thus acting as an important host-factor for virus clearance during the early stages of HCV infection.
Collapse
Affiliation(s)
- W Alfredo Ríos-Ocampo
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Grupo Gastrohepatología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.
| | - María-Cristina Navas
- Grupo Gastrohepatología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Toos Daemen
- Department Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
7
|
Zarkovic K, Jakovcevic A, Zarkovic N. Contribution of the HNE-immunohistochemistry to modern pathological concepts of major human diseases. Free Radic Biol Med 2017; 111:110-126. [PMID: 27993730 DOI: 10.1016/j.freeradbiomed.2016.12.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
Excessive production of reactive oxygen species can induce peroxidation of the polyunsaturated fatty acids thus generating reactive aldehydes like 4-hydroxy-2-nonenal (HNE), denoted as "the second messenger of free radicals". Because HNE has high binding affinity for cysteine, histidine and lysine it forms relatively stable and hardly metabolized protein adducts. By changing structure and function of diverse structural and regulatory proteins, HNE achieves not only cytotoxic, but also regulatory functions in various pathophysiological processes. Numerous animal model studies and clinical trials confirmed HNE as one of the crucial factors in development and progression of many disorders, in particular of cancer, (neuro)degenerative, metabolic and inflammatory diseases. Since HNE has multiple biological effects and is in the living system usually bound to proteins and peptides, many research groups work on development of specific immunochemical methods targeting the HNE-histidine adducts as major bioactive marker of lipid peroxidation, following the research pathway initiated by Hermann Esterbauer, who discovered HNE in 60's. Such immunohistochemical studies did not only prove the high biomedical importance of HNE, but have also given new insights into major diseases of the modern man. Immunohistochemical studies have shown reversibility of formation of the HNE-protein adducts, as well as differential onset of the HNE-mediated lipid peroxidation between age- associated atherosclerosis and photoaging, revealing eventually selective anti-cancer effects of HNE produced by non-malignant cells in vicinity of cancer. This review summarizes some of the HNE-histidine immunohistochemistry findings we believe are of broad biomedical interest and could inspire new studies in the field.
Collapse
Affiliation(s)
- Kamelija Zarkovic
- University of Zagreb, School of Medicine, Clinical Hospital Centre Zagreb, Croatia.
| | - Antonia Jakovcevic
- University of Zagreb, School of Medicine, Clinical Hospital Centre Zagreb, Croatia
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Zagreb, Croatia
| |
Collapse
|
8
|
Zou L, Chen S, Li L, Wu T. The protective effect of hyperoside on carbon tetrachloride-induced chronic liver fibrosis in mice via upregulation of Nrf2. ACTA ACUST UNITED AC 2017; 69:451-460. [PMID: 28434817 DOI: 10.1016/j.etp.2017.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 01/12/2023]
Abstract
CONTEXT Hyperoside was used to treat cardiovascular disease for many years in China. It was shown great effect on regulation of lipid metabolism. But there is lack of reports about the effects of hyperoside on liver diseases. OBJECTIVE This study was designed to investigate the potentially protective effects of hyperoside and the role of transcription factor nuclear factor-erythroid 2(NF-E2)-related factor 2 (Nrf2) signaling in the regulation on Carbon Tetrachloride (CCl4)-induced chronic liver fibrosis in mice. MATERIALS AND METHODS All mice were divided into six groups containing 6 animals per group. Mice in different group were given relative processing for 4 weeks. The potentially protective effects of hyperoside on CCl4-induced chronic liver fibrosis in mice were depicted histologically and biochemically. RESULTS CCl4 administration caused a marked increase in the levels of serum aminotransferases, serum monoamine oxidase (MAO) and lipid peroxidation, MAO in mouse liver homogenates. Also decreased activities of cellular antioxidant defense enzymes were found after CCl4 exposure. Histopathological changes induced by CCl4 including regenerative nodules, deteriorated parenchyma. Hyperoside and silymarin reduced these changes and attenuated the pathological effects of CCl4 induced liver injury. In addition, hyperoside exhibited antioxidant effects in vitro. In Western blot analysis, the protein level of Nrf2 was downregulated after CCl4 administration and reversed by hyperoside. CONCLUSION Hyperoside increased the activity of the antioxidant and phase II detoxifying enzymes through the activation of Nrf2 nuclear translocated in the CCl4-induced liver fibrosis mice.
Collapse
Affiliation(s)
- Liyi Zou
- School of Pharmacy, Guangdong Medical University, Dongguan 523-808, China
| | - Shaoru Chen
- State key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Li Li
- Dongguan Scientific Research Center, Guangong Medical University, Dongguan, Guangdong, 523-808, China.
| | - Tie Wu
- School of Pharmacy, Guangdong Medical University, Dongguan 523-808, China.
| |
Collapse
|
9
|
Noninvasive Assessment of Liver Fibrosis By Transient Elastography and FIB4/APRI for Prediction of Treatment Response in Chronic Hepatitis C-An Experience from a Tertiary Care Hospital. J Clin Exp Hepatol 2016; 6:282-290. [PMID: 28003717 PMCID: PMC5157918 DOI: 10.1016/j.jceh.2016.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 08/11/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Liver fibrosis and its sequel cirrhosis represent a major health care burden, and assessment of fibrosis by biopsy is gradually being replaced by noninvasive methods. In clinical practice, the determination of fibrosis stage is important, since patients with advanced fibrosis have faster progression to cirrhosis and antiviral therapy is indicated in these patients. AIMS To assess the role of transient elastography (TE) and compare it with APRI and FIB4 for predicting liver fibrosis and assessing the effect of host and viral factors on fibrosis and treatment outcome in CHC patients. METHODS In a retrospective analysis, 330 CHC patients underwent liver stiffness measurement (LSM) by TE and tests needed for calculating APRI and FIB4 scores at baseline. 228 patients received a combination of Pegylated IFN-based antiviral therapy and were analyzed for therapeutic response. RESULTS The study included 330 patients (median age 39 years [range 18-67]), predominantly males (n = 227, 68.8%) with baseline LSMs. The median liver stiffness was 7.8 kPa (range 3.2-69.1 kPa). LSMs and its thresholds for severe fibrosis progression (≥9.5 kPa) and cirrhosis (≥12.5 kPa) were significantly higher in patients with age ≥40 years, diabetes mellitus, and patients with significant alcohol intake (P = 0.003 to P < 0.001). By taking TE as a reference, the diagnostic accuracy of FIB4 scores for predicting cirrhosis (AUROC 0.896) was good (+LR 13.4) compared to APRI (AUROC 0.823) with moderate likelihood ratio (+LR 6.9). Among 228 treated patients the SVR rate in genotype 3 was 70% versus 57.8% in genotype 1. Fibrosis score F4 (P = 0.023) and HCV genotype (P = 0.008) were independent predictors of SVR. CONCLUSION The study shows that LSM by TE and fibrosis assessment by FIB4/APRI scores can be used with fair reliability to predict fibrosis and treatment response in patients with CHC infection.
Collapse
Key Words
- ALT, alanine transaminases
- APRI, AST to Platelet ratio index
- AST, aspartate transaminases
- BMI, body mass index
- CHB, chronic hepatitis B
- CLD, chronic liver disease
- DM, diabetes mellitus
- ETR, end of treatment response
- EVR, early virological response
- FIB4, fibrosis-4 score
- HCV, hepatitis C
- IQR/M, interquartile range/median
- LB, liver biopsy
- LF, liver fibrosis
- LSM, liver stiffness measurement
- NPV, negative predictive value
- PEG INF, Pegylated Interferon
- PPV, positive predictive value
- RBV, Ribavarin
- RGT, response guided treatment
- ROC, receiver operating characteristic
- RVR, rapid virological response
- SVR, sustained virological response
- TE, transient elastography
- chronic hepatitis C
- kPa, kilopascals
- liver biopsy
- liver fibrosis
- noninvasive markers
- transient elastography
Collapse
|
10
|
Rauff B, Douglas MW. Role of fibrogenic and inflammatory cytokines in HCV-induced fibrosis. Future Virol 2015. [DOI: 10.2217/fvl.15.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
HCV is one of the main causative agents of liver fibrosis and hepatocellular carcinoma. Liver inflammation resulting from HCV infection triggers fibrosis. In HCV-related fibrosis, differentiated hepatic stellate cells (HSCs) known as myofibroblasts participate in the fibrogenic and inflammatory response. TGF-β1 and CTGF, released from these HSCs, have been implicated as master cytokines mediating HCV induced hepatic fibrosis. PDGF is another potent mitogen, which facilitates the progression of liver fibrosis by enhancing the proliferation and migration of HSCs. In addition to these major cytokines, the release of TNF-α, IL-6, IL-1b and IL-10 by immune cells also promotes the effect of HCV induced fibrosis. Targeting these cytokines may offer the potential for treatments to prevent or cure fibrosis.
Collapse
Affiliation(s)
- Bisma Rauff
- Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, NSW, Australia
| | - Mark W Douglas
- Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, NSW, Australia
- Centre for Infectious Diseases & Microbiology, Marie Bashir Institute for Infectious Diseases & Biosecurity, University of Sydney at Westmead Hospital, NSW, Australia
| |
Collapse
|
11
|
Khan M, Syed GH, Kim SJ, Siddiqui A. Mitochondrial dynamics and viral infections: A close nexus. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:2822-33. [PMID: 25595529 PMCID: PMC4500740 DOI: 10.1016/j.bbamcr.2014.12.040] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/09/2014] [Accepted: 12/25/2014] [Indexed: 12/17/2022]
Abstract
Viruses manipulate cellular machinery and functions to subvert intracellular environment conducive for viral proliferation. They strategically alter functions of the multitasking mitochondria to influence energy production, metabolism, survival, and immune signaling. Mitochondria either occur as heterogeneous population of individual organelles or large interconnected tubular network. The mitochondrial network is highly susceptible to physiological and environmental insults, including viral infections, and is dynamically maintained by mitochondrial fission and fusion. Mitochondrial dynamics in tandem with mitochondria-selective autophagy 'mitophagy' coordinates mitochondrial quality control and homeostasis. Mitochondrial dynamics impacts cellular homeostasis, metabolism, and innate-immune signaling, and thus can be major determinant of the outcome of viral infections. Herein, we review how mitochondrial dynamics is affected during viral infections and how this complex interplay benefits the viral infectious process and associated diseases.
Collapse
Affiliation(s)
- Mohsin Khan
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gulam Hussain Syed
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Seong-Jun Kim
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Aleem Siddiqui
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Nishitsuji H, Funami K, Shimizu Y, Ujino S, Seya T, Shimotohno K. Hepatitis C Virus (HCV)-Induced Inflammation: The Role of Cross-Talk Between HCV-Infected Hepatocytes and Stellate Cells. INFLAMMATION AND IMMUNITY IN CANCER 2015:109-121. [DOI: 10.1007/978-4-431-55327-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Over-activation of TLR5 signaling by high-dose flagellin induces liver injury in mice. Cell Mol Immunol 2014; 12:729-42. [PMID: 25418468 DOI: 10.1038/cmi.2014.110] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 01/09/2023] Open
Abstract
Flagellin is a potent activator of a broad range of cell types that are involved in innate and adaptive immunity. Therefore, it is a good adjuvant candidate for vaccines, and it might function as a biological protectant against both major acute radiation syndrome during cancer radiotherapy and a mitigator of radiation emergencies. However, accumulating evidence has implicated flagellin in the occurrence of some inflammatory diseases, such as acute lung inflammation, cardiovascular collapse and inflammatory bowel disease. The aim of this study was to elucidate whether only flagellin-TLR5 signaling activation plays a role in the pathophysiology of liver or whether some other flagellin activity also contributes to liver injury either via bacterial infections or during clinical applications. Recombinant flagellin proteins with or without TLR5-stimulating activity were used to evaluate the role of flagellin-TLR5 signaling in liver injury in wild-type and TLR5 KO mice. Gross lesions and large areas of hepatocellular necrosis were observed in liver tissue 12 h after the intraperitoneal administration of 100 or 200 µg flagellin (FliC) in a dose- and time-dependent manner in wild-type mice, but not in TLR5 KO mice. Deletion of the N-terminal or TLR5 binding domain of flagellin inhibited flagellin-induced inflammatory responses and the subsequent acute liver function abnormality and damage. These data confirmed that flagellin is an essential determinant of liver injury and demonstrated that the over-activation of TLR5 signaling by high-dose flagellin caused acute inflammatory responses, neutrophil accumulation and oxidative stress in the liver, which contributes to the progression and severity of flagellin-induced liver injury.
Collapse
|
14
|
Involvement of DNA damage response pathways in hepatocellular carcinoma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:153867. [PMID: 24877058 PMCID: PMC4022277 DOI: 10.1155/2014/153867] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/23/2014] [Accepted: 03/25/2014] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) has been known as one of the most lethal human malignancies, due to the difficulty of early detection, chemoresistance, and radioresistance, and is characterized by active angiogenesis and metastasis, which account for rapid recurrence and poor survival. Its development has been closely associated with multiple risk factors, including hepatitis B and C virus infection, alcohol consumption, obesity, and diet contamination. Genetic alterations and genomic instability, probably resulted from unrepaired DNA lesions, are increasingly recognized as a common feature of human HCC. Dysregulation of DNA damage repair and signaling to cell cycle checkpoints, known as the DNA damage response (DDR), is associated with a predisposition to cancer and affects responses to DNA-damaging anticancer therapy. It has been demonstrated that various HCC-associated risk factors are able to promote DNA damages, formation of DNA adducts, and chromosomal aberrations. Hence, alterations in the DDR pathways may accumulate these lesions to trigger hepatocarcinogenesis and also to facilitate advanced HCC progression. This review collects some of the most known information about the link between HCC-associated risk factors and DDR pathways in HCC. Hopefully, the review will remind the researchers and clinicians of further characterizing and validating the roles of these DDR pathways in HCC.
Collapse
|
15
|
Alcohol induced hepatic degeneration in a hepatitis C virus core protein transgenic mouse model. Int J Mol Sci 2014; 15:4126-41. [PMID: 24608925 PMCID: PMC3975388 DOI: 10.3390/ijms15034126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/08/2014] [Accepted: 02/26/2014] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) has become a major public health issue. It is prevalent in most countries. HCV infection frequently begins without clinical symptoms, before progressing to persistent viremia, chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC) in the majority of patients (70% to 80%). Alcohol is an independent cofactor that accelerates the development of HCC in chronic hepatitis C patients. The purpose of the current study was to evaluate ethanol-induced hepatic changes in HCV core-Tg mice and mutant core Tg mice. Wild type (NTG), core wild-Tg mice (TG-K), mutant core 116-Tg mice (TG-116) and mutant core 99-Tg mice (TG-99) were used in this investigation. All groups were given drinking water with 10% ethanol and 5% sucrose for 13 weeks. To observe liver morphological changes, we performed histopathological and immunohistochemical examinations. Histopathologically, NTG, TG-K and TG-116 mice showed moderate centrilobular necrosis, while severe centrilobular necrosis and hepatocyte dissociation were observed in TG-99 mice with increasing lymphocyte infiltration and piecemeal necrosis. In all groups, a small amount of collagen fiber was found, principally in portal areas. None of the mice were found to have myofibroblasts based on immunohistochemical staining specific for α-SMA. CYP2E1-positive cells were clearly detected in the centrilobular area in all groups. In the TG-99 mice, we also observed cells positive for CK8/18, TGF-β1 and phosphorylated (p)-Smad2/3 and p21 around the necrotic hepatocytes in the centrilobular area (p < 0.01). Based on our data, alcohol intake induced piecemeal necrosis and hepatocyte dissociation in the TG-99 mice. These phenomena involved activation of the TGF-β1/p-Smad2/3/p21 signaling pathway in hepatocytes. Data from this study will be useful for elucidating the association between alcohol intake and HCV infection.
Collapse
|
16
|
Wu CF, Lin YL, Huang YT. Hepatitis C virus core protein stimulates fibrogenesis in hepatic stellate cells involving the obese receptor. J Cell Biochem 2013; 114:541-50. [PMID: 22961938 DOI: 10.1002/jcb.24392] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 08/30/2012] [Indexed: 12/17/2022]
Abstract
Hepatitis C virus core protein (HCVcp), which is secreted by infected cells, is reported as an immunomodulator in immune cells. However, the effects of HCVcp on hepatic stellate cells (HSCs), the key cells in liver fibrosis, still remain unclear. In this study, we investigated the effects of HCVcp on obese receptor (ObR) related downstream signaling pathways and fibrogenic gene expression in HSCs. LX-2, a human HSC line, was incubated with HCVcp. Inhibitors and short interfering RNAs were used to interrogate the mechanisms of HCVcp action on HSCs. HCVcp (20-100 ng/ml) concentration-dependently stimulated α-smooth muscle actin (α-SMA) protein expression and mRNA expression of α-SMA, procollagen α2(I) and TGF-β1 genes, with a plateau of 220% of controls at 100 ng/ml. HCVcp induced mRNA and protein expression of ObR. Blocking of Ob-Rb with a neutralizing antibody inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and AMPKα stimulated by HCVcp. Furthermore, knockdown of Ob-Rb down-regulated HCVcp-induced STAT3, AKT, and AMPKα phosphorylation, and reversed HCVcp-suppressed mRNA expression of matrix metalloproteinase (MMP)-1, peroxisome proliferator-activated receptor (PPAR)γ and sterol regulatory element binding protein-1c (SREBP-1c) genes. AMPKα signaling blockade reversed HCVcp-suppressed SREBP-1c mRNA expression. HCVcp stimulated reactive oxygen species formation and gp91(phox) (a component of NADPH oxidase) protein expression, together with AKT phosphorylation, leading to suppression of PPARγ and SREBP-1c genes. Our results provide a new finding that HCVcp induced ObR-dependent Janus Kinase (JAK) 2-STAT3, AMPKα, and AKT signaling pathways and modulated downstream fibrogenetic gene expression in HSCs.
Collapse
Affiliation(s)
- Ching-Fen Wu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | |
Collapse
|
17
|
Machida K. Tumor-initiating stem-like cells and drug resistance: carcinogenesis through Toll-like receptors, environmental factors, and virus. Drug Deliv Transl Res 2013; 3:152-64. [PMID: 25787983 PMCID: PMC10578060 DOI: 10.1007/s13346-012-0115-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neoplasms contain distinct subpopulations of cells known as tumor-initiating stem-like cells (TICs) that have been identified as key drivers of tumor growth and malignant progression with drug resistance. Stem cells normally proliferate through self-renewing divisions in which the two daughter cells differ markedly in their proliferative potential, with one displaying the differentiation phenotypes and another retaining self-renewing activity. Therefore, understanding the molecular mechanisms of hepatocarcinogenesis will be required for the eventual development of improved therapeutic modalities for treating hepatocellular carcinoma (HCC). Hepatitis C virus (HCV) and hepatitis B virus is a major cause of HCC. Compelling epidemiologic evidence identifies obesity and alcohol as co-morbidity factors that can increase the risk of HCV patients for HCC, especially in alcoholics or obese patients. The mechanisms underlying liver oncogenesis, and how environmental factors contribute to this process, are not yet understood. The HCV-Toll-like receptor 4 (TLR4)-Nanog signaling network is established since alcohol/obesity-associated endotoxemia then activates TLR4 signaling, resulting in the induction of the stem cell marker Nanog expression and liver tumors. Liver TICs are highly sensitized to leptin and exposure of TICs to leptin increases the expression and activity of an intrinsic pluripotency-associated transcriptional network comprised of signal transducer and activator of transcription 3, SOX2, OCT4, and Nanog. Stimulation of the pluripotency network may have significant implications for hepatocellular oncogenesis via genesis and maintenance of TICs. It is important to understand how HCV induces liver cancer through genesis of TICs so that better prevention and treatment can be found. This article reviews the oncogenic pathways to generate TICs.
Collapse
Affiliation(s)
- Keigo Machida
- Department of Molecular Microbiology and Immunology, Research Center for ALPD and Cirrhosis, University of Southern California School of Medicine, 503C-HMR, Los Angeles, CA, 90033, USA,
| |
Collapse
|
18
|
Wang Y, Cheng M, Zhang B, Nie F, Jiang H. Dietary supplementation of blueberry juice enhances hepatic expression of metallothionein and attenuates liver fibrosis in rats. PLoS One 2013; 8:e58659. [PMID: 23554912 PMCID: PMC3595269 DOI: 10.1371/journal.pone.0058659] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/05/2013] [Indexed: 12/19/2022] Open
Abstract
Aim To investigate the effect of blueberry juice intake on rat liver fibrosis and its influence on hepatic antioxidant defense. Methods Rabbiteye blueberry was used to prepare fresh juice to feed rats by daily gastric gavage. Dan-shao-hua-xian capsule (DSHX) was used as a positive control for liver fibrosis protection. Liver fibrosis was induced in male Sprague-Dawley rats by subcutaneous injection of CCl4 and feeding a high-lipid/low-protein diet for 8 weeks. Hepatic fibrosis was evaluated by Masson staining. The expression of α-smooth muscle actin (α-SMA) and collagen III (Col III) were determined by immunohistochemical techniques. The activities of superoxide dismutase (SOD) and malondialdehyde (MDA) in liver homogenates were determined. Metallothionein (MT) expression was detected by real-time RT-PCR and immunohistochemical techniques. Results Blueberry juice consumption significantly attenuates CCl4-induced rat hepatic fibrosis, which was associated with elevated expression of metallothionein (MT), increased SOD activity, reduced oxidative stress, and decreased levels of α-SMA and Col III in the liver. Conclusion Our study suggests that dietary supplementation of blueberry juice can augment antioxidative capability of the liver presumably via stimulating MT expression and SOD activity, which in turn promotes HSC inactivation and thus decreases extracellular matrix collagen accumulation in the liver, and thereby alleviating hepatic fibrosis.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Clinical Microbiology and Immunology, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou Province, China
| | - Mingliang Cheng
- Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou Province, China
- * E-mail:
| | - Baofang Zhang
- Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou Province, China
| | - Fei Nie
- Guizhou Academy of Sciences, Guiyang, Guizhou Province, China
| | - Hongmei Jiang
- Department of Clinical Microbiology and Immunology, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou Province, China
| |
Collapse
|
19
|
Chen S, Zou L, Li L, Wu T. The protective effect of glycyrrhetinic acid on carbon tetrachloride-induced chronic liver fibrosis in mice via upregulation of Nrf2. PLoS One 2013; 8:e53662. [PMID: 23341968 PMCID: PMC3544925 DOI: 10.1371/journal.pone.0053662] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 12/03/2012] [Indexed: 12/22/2022] Open
Abstract
This study was designed to investigate the potentially protective effects of glycyrrhetinic acid (GA) and the role of transcription factor nuclear factor-erythroid 2(NF-E2)-related factor 2 (Nrf2) signaling in the regulation of Carbon Tetrachloride (CCl4)-induced chronic liver fibrosis in mice. The potentially protective effects of GA on CCl4-induced chronic liver fibrosis in mice were depicted histologically and biochemically. Firstly, histopathological changes including regenerative nodules, inflammatory cell infiltration and fibrosis were induced by CCl4.Then, CCl4 administration caused a marked increase in the levels of serum aminotransferases (GOT, GPT), serum monoamine oxidase (MAO) and lipid peroxidation (MDA) as well as MAO in the mice liver homogenates. Also, decreased nuclear Nrf2 expression, mRNA levels of its target genes such as superoxide dismutase 3 (SOD3), catalase (CAT), glutathione peroxidase 2 (GPX2), and activity of cellular antioxidant enzymes were found after CCl4 exposure. All of these phenotypes were markedly reversed by the treatment of the mice with GA. In addition, GA exhibited the antioxidant effects in vitro by on FeCl2-ascorbate induced lipid peroxidation in mouse liver homogenates, and on DPPH scavenging activity. Taken together, these results suggested that GA can protect the liver from oxidative stress in mice, presumably through activating the nuclear translocation of Nrf2, enhancing the expression of its target genes and increasing the activity of the antioxidant enzymes. Therefore, GA may be an effective hepatoprotective agent and viable candidate for treating liver fibrosis and other oxidative stress-related diseases.
Collapse
Affiliation(s)
- Shaoru Chen
- The Pharmacy of GuangDong Medical College, DongGuan, GuangDong, China
| | - Liyi Zou
- The Pharmacy of GuangDong Medical College, DongGuan, GuangDong, China
| | - Li Li
- The Pharmacy of GuangDong Medical College, DongGuan, GuangDong, China
| | - Tie Wu
- The Pharmacy of GuangDong Medical College, DongGuan, GuangDong, China
- * E-mail:
| |
Collapse
|
20
|
B cells in chronically hepatitis C virus-infected individuals lack a virus-induced mutation signature in the TP53, CTNNB1, and BCL6 genes. J Virol 2012; 87:2956-62. [PMID: 23269799 DOI: 10.1128/jvi.03081-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is considered to have a causative role in B-cell lymphoproliferative diseases, including B-cell lymphomas, in chronic virus carriers. Previous data from in vitro HCV-infected B-cell lines and peripheral blood mononuclear cells from HCV-positive individuals suggested that HCV might have a direct mutagenic effect on B cells, inducing mutations in the tumor suppressor gene TP53 and the proto-oncogenes BCL6 and CTNNB1 (β-catenin). To clarify whether HCV indeed has a mutagenic effect on B cells in vivo, we analyzed naive and memory B cells from the peripheral blood of four chronic HCV carriers and intrahepatic B cells from the livers of two HCV-positive patients for mutations in the three reported target genes. However, no mutations were found in the TP53 and CTNNB1 genes. For BCL6, which is a physiological target of the somatic hypermutation process in germinal-center B cells, the mutation levels identified were not higher than those reported in the respective B-cell subsets in healthy individuals. Hence, we conclude that in chronic HCV carriers, the virus does not generally induce mutations in the cancer-related genes TP53, CTNNB1, and BCL6 in B cells. Based on these findings, new targets have to be investigated as potential mediators of HCV-associated B-cell lymphomagenesis.
Collapse
|
21
|
Hegazy SK, El-Bedewy M, Yagi A. Antifibrotic effect of aloe vera in viral infection-induced hepatic periportal fibrosis. World J Gastroenterol 2012; 18:2026-34. [PMID: 22563189 PMCID: PMC3342600 DOI: 10.3748/wjg.v18.i17.2026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 02/20/2012] [Accepted: 02/26/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the anti-oxidative and anti-fibrotic effects of aloe vera in patients with liver fibrosis.
METHODS: Aloe vera high molecular weight fractions (AHM) were processed by patented hyper-dry system in combination of freeze-dry technique with microwave and far infrared-ray radiation. Fifteen healthy volunteers as the control group and 40 patients were included. The patients were randomly subdivided into two equal groups: the conventional group was treated with placebo (starch), and AHM group was treated with 0.15 gm/d AHM, both for 12 consecutive weeks. The patients were investigated before and after treatment. Serum activity of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), hyaluronic acid (HA), transforming growth factor-β (TGF-β) and matrixmetalloproteinase-2 (MMP-2) were determined. The reduced glutathione (GSH) and malondialdehyde (MDA) levels in liver were assayed and the expression of hepatic α-smooth muscle actin (α-SMA) was identified by immunohistochemistry.
RESULTS: At the start of the study, the hematoxylin and eosin staining revealed fibro-proliferated bile ductules, thick fibrous septa and dense inflammatory cellular infiltration in the patients before treatment. The use of AHM for 12 wk significantly ameliorated the fibrosis, inhibited the inflammation, and resulted in minimal infiltration and minimal fibrosis compared to the conventional group. The enzyme activities of the liver (ALT, AST and ALP) were attenuated after treatment in both groups, and the decrease in the AHM group was more significant as compared with the conventional group. Similar to the AST, the MDA levels were significantly higher before treatment, and were attenuated after treatment in both groups. In contrast, the hepatic glutathione content in the patients were decreased significantly in the AHM group compared to the controls. The serum levels of the fibrosis markers (HA, TGF-β and MMP-2) were also reduced significantly after treatment. The expression of α-SMA was modified in patients before and after treatment as compared with the normal controls. In the conventional group, there was only thin and incomplete parenchymal α-SMA positive septum joining the thickened centrilobular veins, while in the AHM group, few α-SMA positive cells were present in sinusoid and lobule after treatment.
CONCLUSION: Oral supplementation with AHM could be helpful in alleviating the fibrosis and inflammation of hepatic fibrosis patients.
Collapse
|
22
|
Pavlidis C, Panoutsopoulos GI, Tiniakos D, Koutsounas S, Vlachogiannakos J, Zouboulis-Vafiadis I. Serum leptin and ghrelin in chronic hepatitis C patients with steatosis. World J Gastroenterol 2011; 17:5097-104. [PMID: 22171144 PMCID: PMC3235593 DOI: 10.3748/wjg.v17.i46.5097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 05/03/2011] [Accepted: 05/10/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the associations between leptin and ghrelin concentrations and sustained virological response (SVR) in chronic hepatitis C patients with steatosis.
METHODS: We retrospectively assessed 56 patients infected with hepatitis C virus (HCV) genotype-1 and 40 with HCV genotype-3. Patients with decompensated cirrhosis, and those with other causes of chronic liver disease, were excluded. Serum HCV-RNA concentrations were measured before the initiation of treatment; at weeks 12 (for genotype 1 patients), 24 and 48 during treatment; and 24 wk after the end of treatment. Genotype was determined using INNO-LIPA HCV assays, and serum leptin and ghrelin concentrations were measured using enzyme-linked immunosorbent assay. Biopsy specimens were scored according to the Ishak system and steatosis was graded as mild, moderate, or severe, according to the Brunt classification.
RESULTS: Overall, SVR was positively related to the presence of genotype-3, to biopsy-determined lower histological stage of liver disease, and lower grade of steatosis. Patients ≥ 40 years old tended to be less responsive to therapy. In genotype-1 infected patients, SVR was associated with a lower grade of liver steatosis, milder fibrosis, and an absence of insulin resistance. Genotype-1 infected patients who did not achieve SVR had significantly higher leptin concentrations at baseline, with significant increases as the severity of steatosis worsened, whereas those who achieved SVR had higher ghrelin concentrations. In genotype-3 infected patients, SVR was associated only with fibrosis stage and lower homeostasis model assessment insulin resistance at baseline, but not with the degree of steatosis or leptin concentrations. Genotype-3 infected patients who achieved SVR showed significant decreases in ghrelin concentration at end of treatment. Baseline ghrelin concentrations were elevated in responders of both genotypes who had moderate and severe steatosis.
CONCLUSION: Increased serum leptin before treatment may predict non-SVR, especially in HCV genotype-1 infected patients, whereas increased ghrelin may predict SVR in genotype-1.
Collapse
|
23
|
Coenen M, Nischalke HD, Krämer B, Langhans B, Glässner A, Schulte D, Körner C, Sauerbruch T, Nattermann J, Spengler U. Hepatitis C virus core protein induces fibrogenic actions of hepatic stellate cells via toll-like receptor 2. J Transl Med 2011; 91:1375-82. [PMID: 21537327 DOI: 10.1038/labinvest.2011.78] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatic stellate cells (HSCs) represent the main fibrogenic cell type accumulating extracellular matrix in the liver. Recent data suggest that hepatitis C virus (HCV) core protein may directly activate HSCs. Therefore, we examined the influence of recombinant HCV core protein on human HSCs. Primary human HSCs and the human HSC line LX-2 were stimulated with recombinant HCV proteins core and envelope 2 protein. Expression of procollagen type I α-1, α-smooth muscle actin, cysteine- and glycine-rich protein 2, glial fibrillary acidic protein, tissue growth factor β1, matrix metalloproteinases 2 (MMP2) and 13, tissue inhibitor of metalloproteinases 1 and 2 was investigated by real-time PCR. Intracellular signaling pathways of ERK1/2, p38 and, jun-amino-terminal kinase (JNK) were analyzed by western blot analysis. Recombinant HCV core protein induced upregulation of procollagen type I α-1, α-smooth muscle actin, MMP 2 and 13, tissue inhibitor of metalloproteinases 1 and 2, tissue growth factor β1, cysteine- and glycine-rich protein 2, and glial fibrillary acidic protein mRNA expression, whereas HCV envelope 2 protein did not exert any significant effect. Blocking of toll-like receptor 2 (TLR2) with a neutralizing antibody prevented mRNA upregulation by HCV core protein confirming that the TLR2 pathway was involved. Furthermore, western blot analysis revealed HCV-induced phosphorylation of the TLR2-dependent signaling molecules ERK1/2, p38 and JNK mitogen-activated kinases. Our in vitro results demonstrate a direct effect of HCV core protein on activation of HSCs toward a profibrogenic state, which is mediated via the TLR2 pathway. Manipulating the TLR2 pathway may thus provide a new approach for antifibrotic therapies in HCV infection.
Collapse
Affiliation(s)
- Martin Coenen
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Eksioglu EA, Zhu H, Bayouth L, Bess J, Liu HY, Nelson DR, Liu C. Characterization of HCV interactions with Toll-like receptors and RIG-I in liver cells. PLoS One 2011; 6:e21186. [PMID: 21695051 PMCID: PMC3117876 DOI: 10.1371/journal.pone.0021186] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 05/23/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIM The aim of this study was to examine the mechanisms of IFN induction and viral escape. In order to accomplish the goal we compared our new hepatoma cell line LH86, which has intact TLR3 and RIG-I expression and responds to HCV by inducing IFN, with Huh7.5 cells which lack those features. METHODS The initial interaction of LH86 cells, Huh7.5 cells or their transfected counter parts (LH86 siRIG-I, siTLR3 or siTLR7 and Huh7.5 RIG-I, TLR3 or TLR7) after infection with HCV (strain JFH-1) was studied by measuring the expression levels of IFNβ, TRAIL, DR4, DR5 and their correlation to viral replication. RESULTS HCV replicating RNA induces IFN in LH86 cells. The IFN induction system is functional in LH86, and the expression of the RIG-I and TLR3 in LH86 is comparable to the primary hepatocytes. Both proteins appear to play important roles in suppression of viral replication. We found that innate immunity against HCV is associated with the induction of apoptosis by RIG-I through the TRAIL pathway and the establishment of an antiviral state by TLR3. HCV envelope proteins interfere with the expression of TLR3 and RIG-I. CONCLUSION These findings correlate with the lower expression level of PRRs in HCV chronic patients and highlight the importance of the PRRs in the initial interaction of the virus and its host cells. This work represents a novel mechanism of viral pathogenesis for HCV and demonstrates the role of PRRs in viral infection.
Collapse
Affiliation(s)
- Erika A. Eksioglu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Haizhen Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Biology and Research Center of Cancer Prevention and Treatment of Hunan University & Hunan Tumor Hospital, Changsha, Hunan Province, China
| | - Lilly Bayouth
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Jennifer Bess
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Hong-yan Liu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - David R. Nelson
- Department of Medicine, Division of Hepatobiliary Diseases, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Chen Liu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Medicine, Division of Hepatobiliary Diseases, University of Florida College of Medicine, Gainesville, Florida, United States of America
| |
Collapse
|
25
|
Denk H. What is expected from the pathologist in the diagnosis of viral hepatitis? Virchows Arch 2011; 458:377-92. [PMID: 21359546 DOI: 10.1007/s00428-011-1057-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/03/2011] [Indexed: 02/06/2023]
Abstract
The clinician expects from the pathologist a clinically relevant diagnosis on the basis of liver biopsy interpretation. Today, a liver biopsy, as invasive procedure, is only justified when a significant benefit for the patient can be expected particularly with respect to the clinical management. Consequently, liver biopsy is usually not required in uncomplicated acute viral hepatitis. It is, however, an important diagnostic tool in chronic hepatitis and in transplanted liver to confirm the clinical diagnosis and to assess stage and grade of necroinflammation, treatment efficiency, and concurrent diseases. The diagnosis of liver disease is based on teamwork between clinician and pathologist. Evaluation of the biopsy in the clinical context requires clinical information and appropriate size and handling of the biopsy specimen. Aim of this review is the discussion of morphologic features of acute and chronic viral hepatitis with regard to their clinical relevance.
Collapse
Affiliation(s)
- Helmut Denk
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036, Graz, Austria.
| |
Collapse
|
26
|
Wagoner J, Morishima C, Graf TN, Oberlies NH, Teissier E, Pécheur EI, Tavis JE, Polyak SJ. Differential in vitro effects of intravenous versus oral formulations of silibinin on the HCV life cycle and inflammation. PLoS One 2011; 6:e16464. [PMID: 21297992 PMCID: PMC3030583 DOI: 10.1371/journal.pone.0016464] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/17/2010] [Indexed: 12/19/2022] Open
Abstract
Silymarin prevents liver disease in many experimental rodent models, and is the most popular botanical medicine consumed by patients with hepatitis C. Silibinin is a major component of silymarin, consisting of the flavonolignans silybin A and silybin B, which are insoluble in aqueous solution. A chemically modified and soluble version of silibinin, SIL, has been shown to potently reduce hepatitis C virus (HCV) RNA levels in vivo when administered intravenously. Silymarin and silibinin inhibit HCV infection in cell culture by targeting multiple steps in the virus lifecycle. We tested the hepatoprotective profiles of SIL and silibinin in assays that measure antiviral and anti-inflammatory functions. Both mixtures inhibited fusion of HCV pseudoparticles (HCVpp) with fluorescent liposomes in a dose-dependent fashion. SIL inhibited 5 clinical genotype 1b isolates of NS5B RNA dependent RNA polymerase (RdRp) activity better than silibinin, with IC50 values of 40-85 µM. The enhanced activity of SIL may have been in part due to inhibition of NS5B binding to RNA templates. However, inhibition of the RdRps by both mixtures plateaued at 43-73%, suggesting that the products are poor overall inhibitors of RdRp. Silibinin did not inhibit HCV replication in subgenomic genotype 1b or 2a replicon cell lines, but it did inhibit JFH-1 infection. In contrast, SIL inhibited 1b but not 2a subgenomic replicons and also inhibited JFH-1 infection. Both mixtures inhibited production of progeny virus particles. Silibinin but not SIL inhibited NF-κB- and IFN-B-dependent transcription in Huh7 cells. However, both mixtures inhibited T cell proliferation to similar degrees. These data underscore the differences and similarities between the intravenous and oral formulations of silibinin, which could influence the clinical effects of this mixture on patients with chronic liver diseases.
Collapse
Affiliation(s)
- Jessica Wagoner
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Chihiro Morishima
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Tyler N. Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Elodie Teissier
- Institut de Biologie et Chimie des Protéines, UMR CNRS 5086, Université Lyon 1, IFR128 Lyon Biosciences Gerland, Lyon, France
- CNRS-Universite Claude Bernard, Lyon, France
| | - Eve-Isabelle Pécheur
- Institut de Biologie et Chimie des Protéines, UMR CNRS 5086, Université Lyon 1, IFR128 Lyon Biosciences Gerland, Lyon, France
- CNRS-Universite Claude Bernard, Lyon, France
| | - John E. Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephen J. Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
27
|
Zaki MES, Saudy N, El Diasty A. Study of nitric oxide in patients with chronic hepatitis C genotype 4: relationship to viremia and response to antiviral therapy. Immunol Invest 2010; 39:598-610. [PMID: 20653427 DOI: 10.3109/08820131003720710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hepatitis C virus (HCV) infection is a global medical problem. The role of Nitric oxide (NO) in chronic viral hepatitis is still unknown. It may play a prominent role as an antiviral agent that reduces its replication or as a mediator that causes accumulation of oxidative DNA damage and oncogenesis. The present study was carried out to study effect of combined peginterferon and ribavirin therapy for hepatitis C on NO in both responders and in non responder patients. The study included seventy three patients with positive serological markers for HCV. They were classified according to presence or absence of HCV viremia and the response to therapy. In addition sixteen control subjects were included. NO levels were determined as the stable end product nitrate and nitrite. Serum nitrite and nitrate concentrations in the patients with viral hepatitis were significantly higher than normal subjects and patients with serological evidence of hepatitis C infection in absence of viral load. The levels of nitrite >or= 31 microM, nitrate >or= 15 microM and NO(2)/NO(3) ratio < 1.5 microM were associated with increased risk of resistance to therapy. The multivariate logistic regression analysis showed that NO(2)/NO(3) ratio at levels < 1.5 microM was associated with HCV eradication independently. This study provides new insight into the pathogenesis of hepatitis C and highlights the effect of combined peginterferon and ribavirin on nitrite and nitrate as markers of endogenous NO system. There is a limitation level of NO that if it is increased above it may lead to non response to antiviral therapy. Therefore, it may be an important factor for chronic hepatitis C, which suggests an additional therapeutic pathway of anti-oxidants in combination with the standard regimen for further study.
Collapse
Affiliation(s)
- Maysaa El Sayed Zaki
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Egypt.
| | | | | |
Collapse
|
28
|
Aishima S, Fujita N, Mano Y, Iguchi T, Taketomi A, Maehara Y, Oda Y, Tsuneyoshi M. p62+ Hyaline inclusions in intrahepatic cholangiocarcinoma associated with viral hepatitis or alcoholic liver disease. Am J Clin Pathol 2010; 134:457-65. [PMID: 20716803 DOI: 10.1309/ajcp53yvvjcndzir] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mallory bodies (MBs) and hyaline globules (HGs) are recognized as hepatocellular cytoplasmic inclusions in liver diseases. We reviewed 123 intrahepatic cholangiocarcinomas (ICCs) and encountered 16 cases (13.0%) in which cancer cells had MB-type inclusions and/or HG-type inclusions, both of which are positive for p62 and ubiquitin. The HG type was present in all 16 cases, and 5 cases contained the MB type. Of 16 patients, 12 had chronic liver disease that was related to alcoholic abuse in 4, hepatitis B surface antigen-positive in 3, and hepatitis C virus antibody-positive in 8. Viral infection and liver cirrhosis were more common in ICCs with p62+ inclusions (P = .0004 and P = .0199, respectively). Of 16 ICCs, 15 with hyaline inclusions had a peripheral tumor location (P = .0052). On ultrastructural examination, the MB type had an electron-dense fibrillar appearance, while the HG type appeared as rounded masses of granular materials. Our results suggest that intracytoplasmic hyaline bodies occasionally can be found in cholangiocarcinoma with chronic liver disease related to viral hepatitis or alcoholic intake.
Collapse
|
29
|
Machida K, Tsukamoto H, Liu JC, Han YP, Govindarajan S, Lai MMC, Akira S, Ou JHJ. c-Jun mediates hepatitis C virus hepatocarcinogenesis through signal transducer and activator of transcription 3 and nitric oxide-dependent impairment of oxidative DNA repair. Hepatology 2010; 52:480-92. [PMID: 20683948 PMCID: PMC3107125 DOI: 10.1002/hep.23697] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) occurs in a significant number of patients with hepatitis C virus (HCV) infection. HCV causes double-strand DNA breaks and enhances the mutation frequency of proto-oncogenes and tumor suppressors. However, the underlying mechanisms for these oncogenic events are still elusive. Here, we studied the role of c-Jun, signal transducer and activator of transcription 3 (STAT3), and nitric oxide (NO) in spontaneous and diethylnitrosamine (DEN)-initiated and/or phenobarbital (Pb)-promoted HCC development using HCV core transgenic (Tg) mice. The viral core protein induces hepatocarcinogenesis induction as a tumor initiator under promotion by Pb treatment alone. Conditional knockout of c-jun and stat3 in hepatocytes achieves a nearly complete, additive effect on prevention of core-induced spontaneous HCC or core-enhanced HCC incidence caused by DEN/Pb. Core protein induces hepatocyte proliferation and the expression of inflammatory cytokines (interleukin-6, tumor necrosis factor-alpha, interleukin-1) and inducible NO synthase (iNOS); the former is dependent on c-Jun and STAT3, and the latter on c-Jun. Oxidative DNA damage repair activity is impaired by the HCV core protein due to reduced DNA glycosylase activity for the excision of 8-oxo-2'-deoxyguanosine. This impairment is abrogated by iNOS inhibition or c-Jun deficiency, but aggravated by the NO donor or iNOS-inducing cytokines. The core protein also suppresses apoptosis mediated by Fas ligand because of c-Jun-dependent Fas down-regulation. CONCLUSION These results indicate that the HCV core protein potentiates chemically induced HCC through c-Jun and STAT3 activation, which in turn, enhances cell proliferation, suppresses apoptosis, and impairs oxidative DNA damage repair, leading to hepatocellular transformation.
Collapse
Affiliation(s)
- Keigo Machida
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang YP, Cheng ML, Zhang BF, Mu M, Wu J. Effects of blueberry on hepatic fibrosis and transcription factor Nrf2 in rats. World J Gastroenterol 2010; 16:2657-63. [PMID: 20518088 PMCID: PMC2880779 DOI: 10.3748/wjg.v16.i21.2657] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of blueberry on hepatic fibrosis and NF-E2-related factor 2 (Nrf2) transcription factor in rats.
METHODS: Forty-five male Sprague-Dawley rats were randomly divided into control group (A); CCl4-induced hepatic fibrosis group (B); blueberry prevention group (C); Dan-shao-hua-xian capsule (DSHX) prevention group (D); and blueberry + DSHX prevention group (E). Liver fibrosis was induced in rats by subcutaneous injection of CCl4 and a high-lipid/low-protein diet for 8 wk (except the control group). The level of hyaluronic acid (HA) and alanine aminotransferase (ALT) in serum was examined. The activity of superoxide dismutase (SOD), glutathione-S-transferase (GST) and malondialdehyde (MDA) in liver homogenates was determined. The degree of hepatic fibrosis was evaluated by hematoxylin and eosin and Masson staining. Expression of Nrf2 and NADPH quinone oxidoreductase 1 (Nqo1) was detected by real-time reversed transcribed-polymerase chain reaction, immunohistochemical techniques, and western blotting.
RESULTS: Compared with group B, liver indices, levels of serum HA and ALT of groups C, D and E were reduced (liver indices: 0.038 ± 0.008, 0.036 ± 0.007, 0.036 ± 0.005 vs 0.054 ± 0.009, P < 0.05; HA: 502.33 ± 110.57 ng/mL, 524.25 ± 255.42 ng/mL, 499.25 ± 198.10 ng/mL vs 828.50 ± 237.83 ng/mL, P < 0.05; ALT: 149.44 ± 16.51 U/L, 136.88 ± 10.07 U/L, 127.38 ± 11.03 U/L vs 203.25 ± 31.62 U/L, P < 0.05), and SOD level was significantly higher, but MDA level was lower, in liver homogenates (SOD: 1.36 ± 0.09 U/mg, 1.42 ± 0.13 U/mg, 1.50 ± 0.15 U/mg vs 1.08 ± 0.19 U/mg, P < 0.05; MDA: 0.294 ± 0.026 nmol/mg, 0.285 ± 0.025 nmol/mg, 0.284 ± 0.028 nmol/mg vs 0.335 ± 0.056 nmol/mg, P < 0.05). Meanwhile, the stage of hepatic fibrosis was significantly weakened (P < 0.05). Compared with group A, the activity of GST liver homogenates and expression levels of Nrf2 and Nqo1 in group B were elevated (P < 0.05). The expression level of Nrf2 and Nqo1 in groups C, D, and E were increased as compared with group B, but the difference was not significant.
CONCLUSION: Blueberry has preventive and protective effects on CCl4-induced hepatic fibrosis by reducing hepatocyte injury and lipid peroxidation. However, these effects may not be related to the activation of Nrf2 during long-term of CCl4.
Collapse
|
31
|
Klimenko OV, Vobruba V, Martasek P. Influence of the lung mechanical ventilation with injurious parameters on 7-ketocholesterol synthesis in Sus Scrofa. BMB Rep 2010; 43:257-62. [DOI: 10.5483/bmbrep.2010.43.4.257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Steatosis and hepatic expression of genes regulating lipid metabolism in Japanese patients infected with hepatitis C virus. J Gastroenterol 2010; 45:95-104. [PMID: 19789836 DOI: 10.1007/s00535-009-0133-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 08/20/2009] [Indexed: 02/04/2023]
Abstract
PURPOSE Steatosis is a histological finding associated with the progression of chronic hepatitis C. The aims of this study were to elucidate risk factors associated with steatosis and to evaluate the association between steatosis and hepatic expression of genes regulating lipid metabolism. METHODS We analyzed 297 Japanese patients infected with hepatitis C virus and a subgroup of 100 patients who lack metabolic factors for steatosis. We determined intrahepatic mRNA levels of 18 genes regulating lipid metabolism in these 100 patients using real-time reverse transcription-polymerase chain reaction. Levels of peroxisome proliferator-activated receptor alpha and sterol regulatory element-binding protein 1 proteins were assessed by immunohistochemistry. RESULTS Steatosis was present in 171 (57%) of 297 patients. The presence of steatosis was independently associated with a higher body mass index, higher levels of gamma-glutamyl transpeptidase and triglyceride, and a higher fibrosis stage. Steatosis was present in 43 (43%) of 100 patients lacking metabolic factors. Levels of mRNA and protein of peroxisome proliferator-activated receptor alpha, which regulates beta-oxidation of fatty acid, were lower in patients with steatosis than in patients without steatosis. CONCLUSIONS These findings indicate that impaired degradation of lipid may contribute to the development of hepatitis C virus-related steatosis.
Collapse
|
33
|
Abstract
Silymarin, also known as milk thistle extract, inhibits hepatitis C virus (HCV) infection and also displays antioxidant, anti-inflammatory, and immunomodulatory actions that contribute to its hepatoprotective effects. In the current study, we evaluated the hepatoprotective actions of the seven major flavonolignans and one flavonoid that comprise silymarin. Activities tested included inhibition of: HCV cell culture infection, NS5B polymerase activity, TNF-alpha-induced NF-kappaB transcription, virus-induced oxidative stress, and T-cell proliferation. All compounds were well tolerated by Huh7 human hepatoma cells up to 80 muM, except for isosilybin B, which was toxic to cells above 10 muM. Select compounds had stronger hepatoprotective functions than silymarin in all assays tested except in T cell proliferation. Pure compounds inhibited JFH-1 NS5B polymerase but only at concentrations above 300 muM. Silymarin suppressed TNF-alpha activation of NF-kappaB dependent transcription, which involved partial inhibition of IkappaB and RelA/p65 serine phosphorylation, and p50 and p65 nuclear translocation, without affecting binding of p50 and p65 to DNA. All compounds blocked JFH-1 virus-induced oxidative stress, including compounds that lacked antiviral activity. The most potent compounds across multiple assays were taxifolin, isosilybin A, silybin A, silybin B, and silibinin, a mixture of silybin A and silybin B. The data suggest that silymarin- and silymarin-derived compounds may influence HCV disease course in some patients. Studies where standardized silymarin is dosed to identify specific clinical endpoints are urgently needed.
Collapse
|
34
|
Dionisio N, Garcia-Mediavilla MV, Sanchez-Campos S, Majano PL, Benedicto I, Rosado JA, Salido GM, Gonzalez-Gallego J. Hepatitis C virus NS5A and core proteins induce oxidative stress-mediated calcium signalling alterations in hepatocytes. J Hepatol 2009; 50:872-82. [PMID: 19303156 DOI: 10.1016/j.jhep.2008.12.026] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 11/18/2008] [Accepted: 12/09/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS The hepatitis C virus (HCV) structural core and non-structural NS5A proteins induce in liver cells a series of intracellular events, including elevation of reactive oxygen and nitrogen species (ROS/RNS). Since oxidative stress is associated to altered intracellular Ca(2+) homeostasis, we aimed to investigate the effect of these proteins on Ca(2+) mobilization in human hepatocyte-derived transfected cells, and the protective effect of quercetin treatment. METHODS Ca(2+) mobilization and actin reorganization were determined by spectrofluorimetry. Production of ROS/RNS was determined by flow cytometry. RESULTS Cells transfected with NS5A and core proteins showed enhanced ROS/RNS production and resting cytosolic Ca(2+) concentration, and reduced Ca(2+) concentration into the stores. Phenylephrine-evoked Ca(2+) release, Ca(2+) entry and extrusion by the plasma membrane Ca(2+)-ATPase were significantly reduced in transfected cells. Similar effects were observed in cytokine-activated cells. Phenylephrine-evoked actin reorganization was reduced in the presence of core and NS5A proteins. These effects were significantly prevented by quercetin. Altered Ca(2+) mobilization and increased calpain activation were observed in replicon-containing cells. CONCLUSIONS NS5A and core proteins induce oxidative stress-mediated Ca(2+) homeostasis alterations in human hepatocyte-derived cells, which might underlie the effects of both proteins in the pathogenesis of liver disorders associated to HCV infection.
Collapse
Affiliation(s)
- Natalia Dionisio
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Cáceres, Spain
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Pár A, Rőth E, Miseta A, Hegedűs G, Pár G, Hunyady B, Vincze Á. Effects of silymarin supplementation in patients with chronic hepatitis C receiving PEG-IFN + ribavirin antiviral therapy. A placebo-controlled double blind study. ACTA ACUST UNITED AC 2009. [DOI: 10.1556/cemed.3.2009.28517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
36
|
Pár A, Roth E, Miseta A, Hegedüs G, Pár G, Hunyady B, Vincze A. [Effects of supplementation with the antioxidant flavonoid, silymarin, in chronic hepatitis C patients treated with peg-interferon + ribavirin. A placebo-controlled double blind study]. Orv Hetil 2009; 150:73-9. [PMID: 19103558 DOI: 10.1556/oh.2009.28517] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
UNLABELLED Since oxidative stress may play a pathogenetic role in chronic hepatitis C, and sustained virological response to antiviral therapy is limited in HCV1 genotype infection, a double blind study was performed in HCV1 patients treated with pegylated interferon + ribavirin, to assess the efficacy of supplementation with the antioxidant flavonoid silymarin. PATIENTS AND METHODS Thirty-two naive HCV1 positive patients with biopsy proven chronic hepatitis C, to be treated with pegylated interferon + ribavirin, have been randomized: group A): 16 patients have been given the antiviral therapy for 6-12 months plus placebo for the first 3 months; group B): 16 patients have been treated with pegylated interferon + ribavirin for 6-12 months plus silymarin, 2 x 166 mg/day, was given for 3 months. Serum alanine aminotransferase and HCV-RNA levels as well as parameters of oxidative stress such as plasma or red blood cell hemolysate, malondialdehyde, superoxide dismutase, glutathione peroxidase, catalase and myeloperoxidase were determined after 0, 1, 3, 6 and 12 months during the treatment. Sustained virological response as undetectable serum HCV RNA was evaluated 24 weeks after the end of therapy. RESULTS In the silymarin group, a more rapid decrease in the malondialdehyde level as well as a marked decrease in superoxide dismutase and an increase in myeloperoxidase activity after month 12 were found, alanine aminotransferase normalized in 6/16 (vs control 9/16) cases, and sustained virological response occurred in 3/16 (vs 7/16) patients. DISCUSSION/CONCLUSION Although silymarin supportation to antiviral therapy improved oxidative stress, it was able to affect favourably neither the alanine aminotransferase nor the sustained virological response. These contradictory findings may be related to randomization bias as patients in study group B had more negative predictors of response: they were older with higher fibrosis score and even with more severe pretreatment baseline oxidative stress. Regarding the recently published in vitro experiments with silybinin on HCV replication as well as the newest convincing clinical observations, we do suggest further studies with more than three times higher doses of silymarin in controlled trials to assess the value of this supplementation in antivirally treated HCV patients.
Collapse
Affiliation(s)
- Alajos Pár
- Pécsi Tudományegyetem, Altalános Orvostudományi Kar I. Belgyógyászati Klinika, Pécs.
| | | | | | | | | | | | | |
Collapse
|
37
|
van der Poorten D, George J. Disease-specific mechanisms of fibrosis: hepatitis C virus and nonalcoholic steatohepatitis. Clin Liver Dis 2008; 12:805-24, ix. [PMID: 18984468 DOI: 10.1016/j.cld.2008.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our mechanistic understanding of liver fibrosis has increased dramatically in recent years for all liver diseases and for hepatitis C and nonalcoholic steatohepatitis (NASH) in particular. Hepatitis C causes liver injury and fibrosis through direct cytopathic means, direct and indirect interactions with hepatic stellate cells, and activation of the immune system. Steatosis and insulin resistance, which are intrinsic deficits in NASH, are also of great importance in hepatitis C and may be induced by viral or host metabolic factors. For NASH, the key mediators of damage include oxidative stress, fat compartmentalization, visceral fat, apoptosis, and adipokine derangement. This article explores in depth the disease-specific mechanisms of fibrosis in hepatitis C and NASH, with a focus on recent developments.
Collapse
|
38
|
Chuma M, Hige S, Nakanishi M, Ogawa K, Natsuizaka M, Yamamoto Y, Asaka M. 8-Hydroxy-2'-deoxy-guanosine is a risk factor for development of hepatocellular carcinoma in patients with chronic hepatitis C virus infection. J Gastroenterol Hepatol 2008; 23:1431-6. [PMID: 18854000 DOI: 10.1111/j.1440-1746.2008.05502.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Increased production of reactive oxygen species, which cause oxidative DNA damage, is considered to be related to hepatocarcinogenesis. 8-Hydroxy-2'-deoxy-guanosine (8-OHdG) is a useful marker of DNA damage induced by oxidative stress. The aim of this study was to determine whether expression of 8-OHdG is a risk factor for the development of hepatocellular carcinoma (HCC) in patients with hepatitis C virus (HCV) infection. METHODS The expression of 8-OHdG in liver biopsy specimens was assessed immunohistochemically. In total, 104 patients with chronic HCV infection who were diagnosed on liver biopsy between January 1987 and December 2002 were studied retrospectively. Univariate and multivariate analyses using age, gender, habitual drinking, tobacco exposure, diabetes mellitus, serum alanine aminotransferase level, HCV genotype, hepatic fibrosis, inflammation, steatosis, and 8-OHdG expression in liver biopsy specimens were conducted to identify factors related to the development of HCC. RESULTS On multivariate analysis, 8-OHdG and fibrosis were independent and significant risk factors for HCC development (relative risk, 2.48; P = 0.023; relative risk, 5.35; P = 0.001, respectively). Furthermore, the cumulative incidence rate of HCC in 39 patients with high 8-OHdG expression levels was significantly greater than that in 65 patients with low 8-OHdG expression levels (P = 0.043). In addition, liver 8-OHdG expression was correlated with hepatic inflammation. CONCLUSIONS 8-OHdG is a risk factor for the development of HCC in patients with chronic HCV infection. Patients with chronic HCV who express 8-OHdG should be monitored carefully for the development of HCC.
Collapse
Affiliation(s)
- Makoto Chuma
- Department of Gastroentelology and Hematology, Hokkaido University Hospital, Kitaku, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Rubiolo JA, Mithieux G, Vega FV. Resveratrol protects primary rat hepatocytes against oxidative stress damage: activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes. Eur J Pharmacol 2008; 591:66-72. [PMID: 18616940 DOI: 10.1016/j.ejphar.2008.06.067] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 04/23/2008] [Accepted: 06/08/2008] [Indexed: 02/07/2023]
Abstract
Oxidative stress is recognized as an important factor in the development of liver pathologies. The reactive oxygen species endogenously generated or as a consequence of xenobiotic metabolism are eliminated by enzymatic and nonenzymatic cellular systems. Besides endogen defences, the antioxidant consumption in the diet has an important role in the protection against the development of diseases product of oxidative damage. Resveratrol is a naturally occurring compound which is part of the human diet. This molecule has been shown to have many biological properties, including antioxidant activity. We decided to test if resveratrol could protect primary hepatocytes in culture from oxidative stress damage and if so, to determine if this compound affects the cellular detoxifying systems and their regulation through the Nrf2 transcription factor that regulates the expression of antioxidant and phase II detoxifying enzymes. Cell death by necrosis was detected by measuring the activity of lactate dehydrogenase liberated to the medium. The activities of antioxidant and phase II enzymes were measured using previously described methods. Activation of the Nrf2 transcription factor was studied by confocal microscopy and the Nrf2 and its coding mRNA levels were determined by western blot and quantitative PCR respectively. Resveratrol pre-treatment effectively protected hepatocytes in culture exposed to oxidative stress, increasing the activities of catalase, superoxide dismutase, glutathione peroxidase, NADPH quinone oxidoreductase and glutathione-S-transferase. Resveratrol increases the level of Nrf2 and induces its translocation to the nucleus. Also, it increases the concentration of the coding mRNA for Nrf2. In this work we show that resveratrol could be a useful drug for the protection of liver cells from oxidative stress induced damage.
Collapse
Affiliation(s)
- Juan Andrés Rubiolo
- Departamento de Fisiología, Facultad de Veterinaria Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | | | | |
Collapse
|
40
|
Vidali M, Tripodi MF, Ivaldi A, Zampino R, Occhino G, Restivo L, Sutti S, Marrone A, Ruggiero G, Albano E, Adinolfi LE. Interplay between oxidative stress and hepatic steatosis in the progression of chronic hepatitis C. J Hepatol 2008; 48:399-406. [PMID: 18164507 DOI: 10.1016/j.jhep.2007.10.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 09/13/2007] [Accepted: 10/19/2007] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIMS The contribution of oxidative stress to the pathogenesis of chronic hepatitis C (CHC) is still poorly elucidated. This study investigated the relationship between oxidative stress, insulin resistance, steatosis and fibrosis in CHC. METHODS IgG against malondialdehyde-albumin adducts and HOMA-IR were measured as markers of oxidative stress and insulin resistance, respectively, in 107 consecutive CHC patients. RESULTS Oxidative stress was present in 61% of the patients, irrespective of age, gender, viral load, BMI, aminotransferase level, histology activity index (HAI) and HCV genotype. Insulin resistance and steatosis were evident in 80% and 70% of the patients, respectively. In the patients infected by HCV genotype non-3, but not in those with genotype 3 infection HOMA-IR (p<0.03), steatosis (p=0.02) and fibrosis (p<0.05) were higher in the subjects with oxidative stress than in those without. Multiple regression analysis revealed that, HOMA-IR (p<0.01), fibrosis (p<0.01) and oxidative stress (p<0.05) were independently associated with steatosis, whereas steatosis was independently associated with oxidative stress (p<0.03) and HOMA-IR (p<0.02). Steatosis (p<0.02) and HAI (p=0.007) were also independent predictors of fibrosis. CONCLUSIONS In patients infected by HCV genotype non-3, oxidative stress and insulin resistance contribute to steatosis, which in turn exacerbates both insulin resistance and oxidative stress and accelerates the progression of fibrosis.
Collapse
Affiliation(s)
- Matteo Vidali
- Department of Medical Sciences, University Amedeo Avogadro of East Piedmont, Novara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Neuschwander-Tetri BA. Hepatitis C virus-induced insulin resistance: not all genotypes are the same. Gastroenterology 2008; 134:619-22. [PMID: 18242225 DOI: 10.1053/j.gastro.2007.12.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Balasubramanian A, Groopman JE, Ganju RK. Underlying pathophysiology of HCV infection in HIV-positive drug users. J Addict Dis 2008; 27:75-82. [PMID: 18681194 PMCID: PMC2720610 DOI: 10.1300/j069v27n02_09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
HCV and HIV infections are very common among injection drug users (IDUs). It is well known that 80-90% of HIV-infected IDUs are also infected with HCV. Furthermore, patients with HCV/HIV co-infection are at a higher risk of progressing to end-stage liver disease, namely cirrhosis. Even though there is increasing global awareness of HCV/HIV co-infection and extended therapeutic programs for this infected population, little is known about the HCV/HIV pathophysiology that mediates the rapid progression to hepatic disease. Liver disease caused by HCV/HIV co-infection is characterized by inflammation and cell-death. Recent reports suggest that the HIV and HCV envelope proteins may induce apoptosis and inflammation in hepatocytes via a novel pathway involving collaborative signaling. Moreover, HCV/HIV co-infection may also alter the cytokine production in vivo. Further studies to elucidate the molecular mechanisms of HCV and HIV-mediated pathogenesis will help in the development of therapeutic strategies against HCV/HIV co-infection in these patients.
Collapse
Affiliation(s)
- Anuradha Balasubramanian
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Jerome E. Groopman
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Ramesh K. Ganju
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
43
|
Guidotti LG, Chisari FV. Immunobiology and pathogenesis of viral hepatitis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:23-61. [PMID: 18039107 DOI: 10.1146/annurev.pathol.1.110304.100230] [Citation(s) in RCA: 589] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among the many viruses that are known to infect the human liver, hepatitis B virus (HBV) and hepatitis C virus (HCV) are unique because of their prodigious capacity to cause persistent infection, cirrhosis, and liver cancer. HBV and HCV are noncytopathic viruses and, thus, immunologically mediated events play an important role in the pathogenesis and outcome of these infections. The adaptive immune response mediates virtually all of the liver disease associated with viral hepatitis. However, it is becoming increasingly clear that antigen-nonspecific inflammatory cells exacerbate cytotoxic T lymphocyte (CTL)-induced immunopathology and that platelets enhance the accumulation of CTLs in the liver. Chronic hepatitis is characterized by an inefficient T cell response unable to completely clear HBV or HCV from the liver, which consequently sustains continuous cycles of low-level cell destruction. Over long periods of time, recurrent immune-mediated liver damage contributes to the development of cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Luca G Guidotti
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
44
|
Mechanisms of Disease: HCV-induced liver injury. ACTA ACUST UNITED AC 2007; 4:622-34. [DOI: 10.1038/ncpgasthep0961] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 08/20/2007] [Indexed: 02/08/2023]
|
45
|
Rekha RD, Amali AA, Her GM, Yeh YH, Gong HY, Hu SY, Lin GH, Wu JL. Thioacetamide accelerates steatohepatitis, cirrhosis and HCC by expressing HCV core protein in transgenic zebrafish Danio rerio. Toxicology 2007; 243:11-22. [PMID: 17997003 DOI: 10.1016/j.tox.2007.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 09/03/2007] [Accepted: 09/03/2007] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the common cancers worldwide, caused by Hepatitis C virus (HCV) and hepatotoxins. Here we report the development of HCC in wild type as well as HCV core protein (HCP)-transgenic zebrafish upon treatment with a hepatotoxin, thioacetamide (TAA). Two-fold accelerated HCC development could be achieved in the TAA-treated transgenic fish, that is, the progression of the disease in TAA-treated wild type zebrafish developed HCC in 12 weeks whereas that of HCP-transgenic zebrafish shortened the HCC progression to 6 weeks. Histopathological observation showed the specific pathological features of HCC. The HCC progression was confirmed through RT-PCR that revealed an up and down regulation of different marker genes at various stages of HCC progression such as, steatohepatitis, fibrosis and HCC. Moreover, HCV core protein expressed in the HCP-transgenic zebrafish and TAA synergistically accelerate the HCC development. It must be mentioned that, this is the first report revealing HCV core protein along with TAA to induce HCC in zebrafish, particularly, in a short period of time comparing to mice model. As zebrafish has already been considered as a good human disease model and in this context, this HCC-zebrafish model may serve as a powerful preclinical platform to study the molecular events in hepatocarcinogenesis, therapeutic strategies and for evaluating chemoprevention strategies in HCC.
Collapse
Affiliation(s)
- Ravikumar Deepa Rekha
- Laboratory of Marine Molecular Biology and Biotechnology, Institute of Cellular and Organismic Biology, Academia Sinica, NanKang, Taipei 11529, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Teixeira R, Marcos LA, Friedman SL. Immunopathogenesis of hepatitis C virus infection and hepatic fibrosis: New insights into antifibrotic therapy in chronic hepatitis C. Hepatol Res 2007; 37:579-95. [PMID: 17517074 DOI: 10.1111/j.1872-034x.2007.00085.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fibrosis and cirrhosis represent the consequences of a sustained wound-healing response to chronic liver injury of any cause. Chronic hepatitis C virus (HCV) has emerged as a leading cause of cirrhosis in the USA and throughout the world. HCV may induce fibrogenesis directly by hepatic stellate cell activation or indirectly by promoting oxidative stress and apoptosis of infected cells. The ultimate result of chronic HCV injury is the accumulation of extracellular matrix with high density type I collagen within the subendothelial space of Disse, culminating in cirrhosis with hepatocellular dysfunction. The treatment of hepatitis C with the combination of pegylated interferon and ribavirin is still both problematic and costly, has suboptimal efficacy, serious side effects and a high level of intolerance, and is contraindicated in many patients. Hence, new approaches have assumed greater importance, for which there is an urgent need. The sustained progress in understanding the pathophysiology of hepatic fibrosis in the past two decades has increased the possibility of developing drugs specifically targeting the fibrogenic process. Future efforts should identify genetic markers associated with fibrosis risk in order to tailor the treatment of HCV infection based on genetically regulated pathways of injury and/or fibrosis. Such advances will expand the arsenal to overcome liver fibrosis, particularly in patients with hepatic diseases who have limited treatment options, such as those patients with chronic hepatitis C who have a high risk of fibrosis progression and recurrent HCV disease after liver transplantation.
Collapse
Affiliation(s)
- Rosângela Teixeira
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | |
Collapse
|
47
|
Maki A, Kono H, Gupta M, Asakawa M, Suzuki T, Matsuda M, Fujii H, Rusyn I. Predictive power of biomarkers of oxidative stress and inflammation in patients with hepatitis C virus-associated hepatocellular carcinoma. Ann Surg Oncol 2007; 14:1182-90. [PMID: 17195915 DOI: 10.1245/s10434-006-9049-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND This study evaluated the relationship between inflammation, intra-hepatic oxidative stress, oxidative DNA damage and the progression of liver carcinogenesis in hepatitis C virus (HCV)-infected humans. METHODS Non-cancerous liver tissues were collected from 30 patients with an HCV-associated solitary hepatocellular carcinoma (HCC) who received curative tumor removal. After surgery, the patients were followed at monthly intervals at the outpatient clinic. Distribution of the inflammatory cells (CD68+), the number of 8-hydroxydeoxyguanosine (8-OHdG) DNA adducts and 4-hydroxynonenal (HNE) protein adducts and the expression of apurinic/apyrimidinic endonuclease (APE) were determined by immunohistochemical analysis in serial liver sections from tumor-free parenchyma at the surgical margin around the tumor. RESULTS Significant positive correlations were observed between the number of CD68+ cells, the amount of HNE protein adducts, and the number of 8-OHdG adducts in liver tissue of patients with HCC and HCV. The cumulative disease-free survival was significantly shorter in patients with the highest percentage of 8-OHdG-positive hepatocytes. Using a Cox proportional hazard model, 8-OHdG, HNE and CD68 were determined to be good biomarkers for predicting disease-free survival in patients with HCC and HCV. CONCLUSIONS These results support the hypothesis that HCV-induced inflammation causes oxidative DNA damage and promotes hepatocarcinogenesis which directly affects the clinical outcome. Since patients with greater intra-hepatic oxidative stress had a higher incidence of HCC recurrence, we suggest that oxidative stress biomarkers could potentially be used as a useful clinical diagnostic tool to predict the duration of disease-free survival in patients with HCV-associated HCC.
Collapse
Affiliation(s)
- Akira Maki
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina at Chapel Hill, CB #7431, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Polyak SJ, Morishima C, Shuhart MC, Wang CC, Liu Y, Lee DYW. Inhibition of T-cell inflammatory cytokines, hepatocyte NF-kappaB signaling, and HCV infection by standardized Silymarin. Gastroenterology 2007; 132:1925-36. [PMID: 17484885 DOI: 10.1053/j.gastro.2007.02.038] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 02/08/2007] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Chronic hepatitis C is a serious global medical problem necessitating effective treatment. Because standard of care with pegylated interferon plus ribavirin therapy is costly, has significant side effects, and fails to cure about half of all infections, many patients seek complementary and alternative medicine to improve their health, such as Silymarin, derived from milk thistle (Silybum marianum). Milk thistle's clinical benefits for chronic hepatitis C are unsettled due to variability in standardization of the herbal product. METHODS In the current study, we focused on the anti-inflammatory and antiviral properties of a standardized Silymarin extract (MK-001). RESULTS MK-001 inhibited expression of tumor necrosis factor-alpha in anti-CD3 stimulated human peripheral blood mononuclear cells and nuclear factor kappa B-dependent transcription in human hepatoma Huh7 cells. Moreover, MK-001 dose dependently inhibited infection of Huh7 and Huh7.5.1 cells by JFH-1 virus. MK-001 displayed both prophylactic and therapeutic effects against HCV infection, and when combined with interferon-alpha, inhibited HCV replication more than interferon-alpha alone. Commercial preparations of Silymarin also displayed antiviral activity, although the effects were not as potent as MK-001. Antiviral effects of the extract were attributable in part to induction of Stat1 phosphorylation, while interferon-independent mechanisms were suggested when the extract was biochemically fractionated by high-performance liquid chromatography. Silybin A, silybin B, and isosilybin A, isosilybin B elicited the strongest anti-NF-kappaB and anti-HCV actions. These effects were independent of MK-001-induced cytotoxicity. CONCLUSIONS The data indicate that Silymarin exerts anti-inflammatory and antiviral effects, and suggest that complementary and alternative medicine-based approaches may assist in the management of patients with chronic hepatitis C.
Collapse
Affiliation(s)
- Stephen J Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98104-2499, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Luedde T, Trautwein C. The role of oxidative stress and antioxidant treatment in liver surgery and transplantation. Liver Transpl 2006; 12:1733-5. [PMID: 17133562 DOI: 10.1002/lt.20990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Lalazar G, Ilan Y. Histamine dihydrochloride: actions and efficacy in the treatment of chronic hepatitis C infection. Expert Rev Anti Infect Ther 2006; 4:377-85. [PMID: 16771615 DOI: 10.1586/14787210.4.3.377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The host immune response, in addition to viral factors, is the critical determinant of the pathological consequences of hepatitis C virus infection. Current therapies for genotype 1 are unsuccessful in a substantial number of patients. Histamine dihydrochloride by virtue of its histamine H2 agonistic activity, has the potential to prevent damage induced by oxidative stress in tissues and can protect T and natural killer lymphocytes from oxygen radical-induced functional inhibition and apoptosis, thereby, potentiating interferon-alpha-induced activation of these cells. Coadministration of histamine dihydrochloride and interferon therapy for chronic hepatitis C virus infection was tested in several clinical trials. However, conflicting data and the relatively small numbers of patients enrolled, suggest that this combination should be the focus of further investigation.
Collapse
Affiliation(s)
- Gadi Lalazar
- Hadassah Hebrew University Medical Center, Liver Unit, Department of Medicine, Jerusalem, IL91120, POB 12000, Israel.
| | | |
Collapse
|