1
|
Nakagawa T, Honda T, Inagaki S, Yuasa T, Tourtas T, Schlötzer-Schrehardt U, Kruse F, Aouimeur I, Vaitinadapoule H, Travers G, He Z, Gain P, Koizumi N, Thuret G, Okumura N. Involvement of TGF-β signaling pathway-associated genes in the corneal endothelium of patients with Fuchs endothelial corneal dystrophy. Exp Eye Res 2025; 255:110334. [PMID: 40081749 DOI: 10.1016/j.exer.2025.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
This study investigated the involvement of TGF-β signaling pathway-associated genes in the pathogenesis of Fuchs endothelial corneal dystrophy (FECD). The RNA-sequencing analysis of corneal endothelial cells (CECs) from FECD patients revealed significant alterations in multiple TGF-β superfamily genes, with 9 genes upregulated (including BMP6, GDF5, and TGF-β2) and 10 genes downregulated (including BMP2, NOG, and INHBA) compared to controls. Quantitative PCR validation confirmed the elevated expression of GDF5 (3.35-fold in non-expanded and 7.66-fold in expanded TCF4), TGF-β2 (6.17-fold and 11.5-fold), and TGF-β1 (1.78-fold and 1.58-fold) in FECD patients with and without TCF4 trinucleotide repeat expansion. Ex-vivo experiments using donor corneas demonstrated that TGF-β2 stimulation significantly increased the expression of extracellular matrix (ECM) components associated with guttae formation, including fibronectin, types I and VI collagens, and other matrix proteins. Immunofluorescence confirmed increased fibronectin protein expression in the corneal endothelium following TGF-β1 or TGF-β2 treatment. This study provides the first comprehensive analysis of TGF-β superfamily involvement in FECD and suggests that GDF5, found to be upregulated in FECD, may contribute to the disease process. These findings further indicate that dysregulation of TGF-β signaling pathways drives the characteristic ECM accumulation in FECD, potentially offering new therapeutic targets for this progressive corneal disease involving fibrosis-related alterations. Future research is warranted to clarify GDF5's specific role and mechanistic impact on FECD pathogenesis.
Collapse
Affiliation(s)
- Tatsuya Nakagawa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Tetsuro Honda
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Soichiro Inagaki
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Taichi Yuasa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Theofilos Tourtas
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Friedrich Kruse
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ines Aouimeur
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Hanielle Vaitinadapoule
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Gauthier Travers
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Zhiguo He
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France
| | - Philippe Gain
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France; Ophthalmology Department, University Hospital, Saint-Etienne, France
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Gilles Thuret
- Laboratory for Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health & Innovation Campus, Jean Monnet University, Saint-Etienne, France; Ophthalmology Department, University Hospital, Saint-Etienne, France.
| | - Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan.
| |
Collapse
|
2
|
Merchant A, Chaudhry P, Singh M, Lemos T, Fargal E, Siddiqi I, O'Connell C, Zhao Z. Smoothened Inhibitor, PF-04449913 Inhibits the Development of Myelofibrosis in a JAK2V617F Transgenic Mouse Model by Reducing TGF-β and MAPK Signaling Pathways. RESEARCH SQUARE 2025:rs.3.rs-6580439. [PMID: 40386398 PMCID: PMC12083679 DOI: 10.21203/rs.3.rs-6580439/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Treatment of JAK2V617F driven myeloproliferative neoplasms (MPNs) with Ruxolitinib (JAK inhibitor, JAKi) has shown limited disease-modifying benefits and has led to the search for other pathways as potential therapeutic targets for this disease. We investigated the effects of Smoothened inhibition (SMOi) using the small-molecule inhibitor PF-04449913 (PF-13) in a JAK2V617F transgenic mouse model that recapitulates many of the phenotypes of MPNs including bone marrow fibrosis and splenomegaly. We show both that hedgehog (Hh) signaling pathway is activated in JAK2V617F cells and that SMOi reduces splenomegaly in JAK2V617F mice. In a murine bone marrow transplant model, we show that SMOi also reduces JAK2V617F allelic burden. JAK2V617F mice show increased pERK and NF-κB signaling, which is reduced with SMOi. Finally, we found that SMO inhibitor blocks bone marrow fibrosis by reducing TGF-β signaling. In conclusion, this report provides critical insight into the mechanism of action of SMO inhibitors in JAK2V617F associated MPN.
Collapse
Affiliation(s)
| | | | | | | | | | - Imran Siddiqi
- University of Southern California-Keck School of Medicine
| | | | | |
Collapse
|
3
|
Wang K, Cao J, Yao M, Zhang Q, Lin H, Qin L, Zhang Z, Wei J, Zhang H, He Y, Qu C, Liu M, Miao J. Biosynthesis of the Natural Antioxidant Mycosporine-Glycine and Its Anti-Photodamage Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11094-11109. [PMID: 40272539 DOI: 10.1021/acs.jafc.5c03351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Ultraviolet B (UVB) radiation directly damages the skin, leading to disorders, increasing the demand for natural UV-absorbing compounds as alternatives to synthetic sunscreens. Mycosporine-like amino acids (MAAs), particularly mycosporine-glycine (M-Gly), are promising due to their antioxidant properties, low molecular weight, and high molar extinction coefficient. However, its application is limited by low natural abundance. In this study, we identified and recombined three genes (mysA, mysB, mysC) from Microcystis aeruginosa to enable M-Gly production in Escherichia coli BL21(DE3). M-Gly was purified via high performance liquid chromatography (HPLC) and characterized using UV, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and nuclear magnetic resonance (NMR) spectroscopy. We explored its preventive and therapeutic effects on UVB-induced skin damage in HaCaT cells and mice. Western blot analysis suggests that M-Gly activates TGF-β/Smad and WNT/β-catenin signaling pathways to promote skin repair. This research provides an efficient synthesis platform for M-Gly and supports its potential use in therapeutics for skin photodamage.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Qingdao Key Laboratory of Marine Natural Products Research and Development Laboratory, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Junhan Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengke Yao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Qing Zhang
- Qingdao Key Laboratory of Marine Natural Products Research and Development Laboratory, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Huan Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ling Qin
- Qingdao Key Laboratory of Marine Natural Products Research and Development Laboratory, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zhi Zhang
- Qingdao Key Laboratory of Marine Natural Products Research and Development Laboratory, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jinzheng Wei
- Qingdao Key Laboratory of Marine Natural Products Research and Development Laboratory, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Haibo Zhang
- Qingdao Key Laboratory of Marine Natural Products Research and Development Laboratory, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yingying He
- Qingdao Key Laboratory of Marine Natural Products Research and Development Laboratory, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Changfeng Qu
- Qingdao Key Laboratory of Marine Natural Products Research and Development Laboratory, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jinlai Miao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
4
|
Schwartz A, Malik M, Driggers P, Catherino WH. Relugolix reduces leiomyoma extracellular matrix production via the transforming growth factor-beta pathway. F&S SCIENCE 2025; 6:213-220. [PMID: 39733929 DOI: 10.1016/j.xfss.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/19/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
OBJECTIVE To determine if the oral gonadotropin-releasing hormone antagonist relugolix affects leiomyoma extracellular matrix production through the transforming growth factor-beta (TGF-β) pathway. DESIGN Laboratory study. SUBJECTS None. EXPOSURE Exposure of human leiomyoma cells to TGF-β and/or relugolix. MAIN OUTCOME MEASURES Production of TGF-β, pSMAD2/3, SMAD2/3, collagen 1A1 (COL1A1), fibronectin (FN1), and versican (VCAN) in treated and untreated leiomyoma cells. RESULTS Transforming growth factor-beta 3 production decreased at 24 hours with relugolix 10 nM (0.80 ± 0.09-fold) and 100 nM (0.86 ± 0.06-fold) and at 48 hours with relugolix 1 nM (0.86 ± 0.05-fold) and 100 nM (0.86 ± 0.06-fold). pSMAD2/3 production decreased at 24 hours with relugolix 1 nM (0.71 ± 0.01-fold), 10 nM (0.68 ± 0.01-fold), and 100 nM (0.41 ± 0.10-fold). Compared with relugolix treatment alone at the same concentration, combination treatment at 24 hours resulted in significantly increased COL1A1, FN1, and VCAN production with relugolix 1 nM, 10 nM, and 100 nM. At 48 hours, combination treatment resulted in significantly increased COL1A1, FN1, and VCAN production with relugolix 10 nM and 100 nM. CONCLUSION Relugolix regulated leiomyoma size by decreasing COL1A1, FN1, and VCAN production. This effect is at least partly through the TGF-β pathway.
Collapse
Affiliation(s)
- Adina Schwartz
- Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland; Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Minnie Malik
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Paul Driggers
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - William H Catherino
- Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland; Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland.
| |
Collapse
|
5
|
Vaitkus Z, Vitkauskiene A, Labanauskas L, Vaitkus J, Lozovskis P, Vaitkus S, Janulaityte I. Gene Expression of Extracellular Matrix Proteins, MMPs, and TIMPs in Post-Operative Tissues of Chronic Rhinosinusitis Patients. Cells 2025; 14:654. [PMID: 40358177 PMCID: PMC12072078 DOI: 10.3390/cells14090654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/08/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Chronic rhinosinusitis (CRS) is a persistent inflammatory condition of the sinus mucosa characterized by significant tissue remodeling. This study aimed to evaluate the gene expression of extracellular matrix (ECM) proteins, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs) in post-operative tissues of CRS patients. A total of 30 patients diagnosed with CRS, divided into CRSwNP (with nasal polyps) and CRSsNP (without nasal polyps) groups, were compared with a control group of 10 individuals undergoing nasal surgeries for non-CRS conditions. Gene expression analysis was conducted using quantitative real-time PCR, and plasma cytokine levels were measured via ELISA. Results indicated significantly higher expression of collagen I, collagen III, fibronectin, vimentin, periostin, and tenascin C in CRS tissues, especially in CRSsNP patients. Conversely, elastin expression was markedly lower. MMP-2, MMP-9, TIMP-1, and TIMP-2 expression was significantly altered, with CRSsNP showing lower levels compared to CRSwNP and controls. TGF-β1 expression was elevated in both CRS groups, particularly in CRSsNP, highlighting its role in fibrosis and ECM remodeling. Additionally, increased plasma concentrations of TSLP and TGF-β1 suggest epithelial activation and immune dysregulation in CRS. These findings underscore distinct remodeling profiles in CRS endotypes, emphasizing the need for targeted therapeutic strategies based on molecular phenotyping. Understanding ECM dysregulation and inflammatory pathways in CRS may lead to improved, individualized treatment approaches.
Collapse
Affiliation(s)
- Zygimantas Vaitkus
- Department of Ear, Nose and Throat, Faculty of Medicine, Academy of Medicine at Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (Z.V.); (J.V.); (S.V.)
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Faculty of Medicine, Academy of Medicine at Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.V.); (P.L.)
| | - Liutauras Labanauskas
- Department of Pediatrics, Faculty of Medicine, Academy of Medicine at Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Justinas Vaitkus
- Department of Ear, Nose and Throat, Faculty of Medicine, Academy of Medicine at Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (Z.V.); (J.V.); (S.V.)
| | - Povilas Lozovskis
- Department of Laboratory Medicine, Faculty of Medicine, Academy of Medicine at Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.V.); (P.L.)
| | - Saulius Vaitkus
- Department of Ear, Nose and Throat, Faculty of Medicine, Academy of Medicine at Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (Z.V.); (J.V.); (S.V.)
| | - Ieva Janulaityte
- Department of Laboratory Medicine, Faculty of Medicine, Academy of Medicine at Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.V.); (P.L.)
| |
Collapse
|
6
|
Han SH, Suh HJ, Lee SJ, Chang YB. Synergistic effects of oral milk ceramide-collagen peptides mixtures in preventing UV-induced inflammation and photoaging through TGF-β and NF-κB/MAPK signaling pathways in UV-exposed hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 268:113171. [PMID: 40319715 DOI: 10.1016/j.jphotobiol.2025.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/16/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
This study investigates the synergistic effects of oral milk ceramide-collagen peptides in inhibiting UV-induced inflammation and preventing photoaging. The optimal ratio of milk ceramide to collagen peptides was determined in HaCaT cells, and the effects of oral supplementation of milk ceramide-collagen peptides were evaluated in UV-exposed hairless mice. HaCaT cells did not exhibit cytotoxicity when treated with milk ceramide and collagen peptides at concentrations up to 200 μg/mL. UVB exposure decreased cell viability, but treatment with the milk ceramide-collagen peptides mixtures (1:1, 1:3) prevented further viability loss and improved collagen peptides synthesis markers, including MMPs and TIMPs. The combination also enhanced moisture-related factors (AQP3, FLG) and reduced inflammatory cytokines (IL-6, IL-1β) and COX expression. In hairless mice, oral supplementation of milk ceramide-collagen peptides mixture (1:1 ratio) improved skin hydration, reduced erythema, TEWL, skin thickness, and wrinkle formation in a dose-dependent manner. The treatment also suppressed the expression of MMPs and TIMPs, promoting collagen peptides synthesis. Furthermore, the mixtures regulated NF-κB and MAPK signaling pathways, reducing inflammation and photoaging. These results suggest that the 1:1 milk ceramide-collagen peptides mixture effectively prevents UV-induced skin damage and photoaging by enhancing collagen peptides production and improving skin barrier function.
Collapse
Affiliation(s)
- Sung Hee Han
- Institute of Human Behavior & Genetics, Korea University, 02841 Seoul, Republic of Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Sang Jun Lee
- Holistic Bio Co., Ltd, 13494 Seongnam, Republic of Korea
| | - Yeok Boo Chang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Gao Q, Wang J, Zhang H, Wang J, Jing Y, Su J. Organoid Vascularization: Strategies and Applications. Adv Healthc Mater 2025:e2500301. [PMID: 40285576 DOI: 10.1002/adhm.202500301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Organoids provide 3D structures that replicate native tissues in biomedical research. The development of vascular networks within organoids enables oxygen and nutrient delivery while facilitating metabolic waste removal, which supports organoid growth and maturation. Recent studies demonstrate that vascularized organoid models offer insights into tissue interactions and promote tissue regeneration. However, the current limitations in establishing functional vascular networks affect organoid growth, viability, and clinical translation potential. This review examines the development of vascularized organoids, including the mechanisms of angiogenesis and vasculogenesis, construction strategies, and biomedical applications. The approaches are categorized into in vivo and in vitro methods, with analysis of their specific advantages and limitations. The review also discusses emerging techniques such as bioprinting and gene editing for improving vascularization and functional integration in organoid-based therapies. Current developments in organoid vascularization indicate potential applications in modeling human diseases and developing therapeutic strategies, contributing to advances in translational research.
Collapse
Affiliation(s)
- Qianmin Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Hao Zhang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Jianhua Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| |
Collapse
|
8
|
Ghanemi A, Yoshioka M, St-Amand J. A Single Intraperitoneal Secreted Protein Acidic and Rich in Cysteine Injection in Mice Is Towards an Exercise-like Phenotype. BIOLOGY 2025; 14:398. [PMID: 40282263 PMCID: PMC12025124 DOI: 10.3390/biology14040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is a protein widely expressed in various tissues. The metabolic and functional exploration of SPARC indicated it as a mediator of the exercise-induced effects. Furthermore, SPARC overexpression mimics exercise effects (including anti-aging phenotype), whereas its knockout both reduces the exercise-induced phenotype and increases aging. Each of these previous studies has been carried out for weeks and, therefore, indicates chronic effects of SPARC. To complete the puzzle, there is a need to explore the acute effects of SPARC. Thus, this study reports results of selected molecular and metabolic explorations of mice following a single injection of SPARC. Following both a validation of the Western blot as a detection method of SPARC in the serum and the optimization of the post-injection sacrifice time, mice (male and female) were injected with either SPARC or saline and sacrificed after 4 h. Body weight, selected tissues weights, and glycemia were measured. Muscle (tibialis anterior)-that was also harvested after the sacrifice and frozen-was used to measure the expression of selected proteins related to metabolism, protein hemostasis, and muscle development. Briefly, the results indicate a protein expression pattern towards improved glucose metabolism, oxidative phosphorylation, mitochondrial biogenesis, extracellular matrix remodeling, myogenesis, and protein synthesis. On the other hand, the expression of other proteins is towards decreased muscle protein degradation. There were no significant effects of SPARC injection on glycemia. These findings represent an important step towards developing a pharmacology based on injecting SPARC to achieve therapeutic effects that basically mimic exercise benefits, including anti-aging, metabolic enhancement, and muscle development. This is of particular importance for individuals who are unable to perform the required physical activity due to physical disabilities, aging, or hospitalization.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Faculty of Pharmacy, Laval University, Quebec, QC G1V 0A6, Canada
- Université Laval’s Research Centre: The Tissue Engineering Laboratory (LOEX), Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1J 1Z4, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
9
|
Guo C, Rizkalla AS, Hamilton DW. FGF and TGF-β growth factor isoform modulation of human gingival and periodontal ligament fibroblast wound healing phenotype. Matrix Biol 2025; 136:9-21. [PMID: 39756500 DOI: 10.1016/j.matbio.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/18/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Release of growth factors in the tissue microenvironment is a critical process in the repair and regeneration of periodontal tissues, regulating fibroblast behavior and phenotype. As a result of the complex architecture of the periodontium, distinct fibroblast populations in the periodontal ligament and gingival connective tissue exist in close proximity. Growth factor therapies for periodontal regeneration have gained traction, but quantification of their effects on multiple different fibroblast populations that are required for repair has been poorly investigated. In this study, we examined the effects of TGF-β1, TGF-β3, FGF-2, and FGF-9 on human gingival fibroblasts (hGF) and human periodontal ligament cells (hPDL), as well as the combined effects of TGF-β3 and FGF-2. We show that FGF-2 enhances cell migration while TGF-β1 and TGF-β3 promotes matrix production, and TGF-β1 promotes fibroblast to myofibroblast transition. Interestingly, the combination of TGF-β3 and FGF-2, acting through both p-SMAD3 and p-ERK pathways, mitigates the inhibitory effects of TGF-β3 on migration in hPDL cells, suggesting synergistic and complimentary effects of FGF-2 and TGF-β3. Additionally, fibronectin production in hGF increased when treated with the combined TGF-β3+FGF-2 compared to FGF-2 alone, indicating that the effects of TGF-β3 in promoting extracellular matrix production are still active in the combined treatment condition. Finally, our study highlights that FGF-9 did not influence migration, α-SMA expression, or extracellular matrix production in either cell type, emphasizing the unique roles of specific growth factors in cellular responses. The synergistic effects observed with combined TGF-β3 and FGF-2 treatments present promising avenues for further research and clinical advancements in regenerative medicine.
Collapse
Affiliation(s)
- Chengyu Guo
- Department of Anatomy and Cell Biology, Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada; Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada
| | - Amin S Rizkalla
- Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada; Department of Chemical and Biochemical, Thompson Engineering Building, Western University, London, Ontario, N6A 5B9, Canada
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada; Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada.
| |
Collapse
|
10
|
Roy A, Hoff A, Her TK, Ariyaratne G, Gutiérrez RL, Tahawi MHDN, Rajagopalan KS, Brown MR, Omori K, Lewis-Brinkman S, Nguyen T, Soto-González A, Peterson QP, Matveyenko AV, Javeed N. Lipotoxicity Induces β-cell Small Extracellular Vesicle-Mediated β-cell Dysfunction in Male Mice. Endocrinology 2025; 166:bqaf067. [PMID: 40179251 PMCID: PMC12006739 DOI: 10.1210/endocr/bqaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/19/2024] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Chronically elevated circulating excess free fatty acids (ie, lipotoxicity) is a pathological process implicated in several metabolic disorders, including obesity-driven type 2 diabetes (T2D). Lipotoxicity exerts detrimental effects on pancreatic islet β-cells by reducing glucose-stimulated insulin secretion (GSIS), altering β-cell transcriptional identity, and promoting apoptosis. While β-cell-derived small extracellular vesicles (sEV) have been shown to contribute to β-cell failure in T2D, their specific role in lipotoxicity-mediated β-cell failure remains to be elucidated. In this work, we demonstrate that lipotoxicity enhances the release of sEVs from β-cells, which exhibit altered proteomic and lipidomic profiles. These palmitate (PAL)-exposed extracellular vesicles (EVs) induce β-cell dysfunction in healthy mouse and human islets and trigger significant islet transcriptional changes, including the upregulation of genes associated with the TGFβ/Smad3 pathway, as noted by RNA sequencing. Importantly, pharmacological inhibition of the TGFβI/II receptor improved PAL EV-induced β-cell dysfunction, underscoring their involvement in activating the TGFβ/Smad3 pathway during this process. We have comprehensively characterized lipotoxic β-cell sEVs and implicated their role in inducing β-cell functional failure in T2D. These findings highlight potential avenues for therapeutic interventions targeting sEV-mediated pathways to preserve β-cell health in metabolic disorders.
Collapse
Affiliation(s)
- Abhishek Roy
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexandra Hoff
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tracy K Her
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Gallage Ariyaratne
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Roberto-León Gutiérrez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - M H D Noor Tahawi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Matthew R Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kazuno Omori
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Sean Lewis-Brinkman
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Thanh Nguyen
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Quinn P Peterson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, MN 55905, USA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, MN 55905, USA
| | - Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Roh DE, Park NR, Choi BG, Kang Y, Kim JE, Kim YH. TGFBI regulates pulmonary vascular remodeling through endothelial-to-mesenchymal transition in pulmonary arterial hypertension. Biochem Biophys Res Commun 2025; 751:151435. [PMID: 39908906 DOI: 10.1016/j.bbrc.2025.151435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disorder characterized by elevated pulmonary artery pressure, right ventricular (RV) hypertrophy, and vascular remodeling. Transforming growth factor-β-induced protein (TGFBI) is an extracellular matrix protein regulated by TGF-β that plays a critical role in pulmonary vascular remodeling in PAH. Here, we investigated the role of TGFBI in monocrotaline-induced PAH pathogenesis and evaluated the therapeutic effects of the endothelin receptor antagonist bosentan. Monocrotaline administration resulted in marked RV hypertrophy and increased medial wall thickness of pulmonary arterioles, accompanied by elevated TGFBI expression in both pulmonary vasculature and serum. Notably, bosentan treatment effectively reversed these pathological changes. In lung tissue, PAH induced upregulation of TGF-β1 and enhanced SMAD2/3 phosphorylation, both of which were normalized by bosentan. While TGFBI expression exhibited variable patterns in the heart, liver, and kidneys, TGF-β signaling alterations were predominantly observed in the lungs. Additionally, PAH promoted endothelial-to-mesenchymal transition (EndMT) in lung tissue, as evidenced by decreased expression of endothelial markers (CD31 and VE-cadherin) and increased expression of mesenchymal markers (Endothelin 1, COL1A1, COL3A1, SLUG, and Snail). Bosentan treatment effectively reversed these EndMT-related changes. Collectively, these findings highlight a critical role for TGFBI and TGF-β signaling in pulmonary vascular remodeling during PAH development, primarily through modulation of EndMT. This study suggests that targeting TGFBI may represent a promising therapeutic strategy for PAH management.
Collapse
Affiliation(s)
- Da Eun Roh
- Department of Pediatrics, School of Medicine, Kyungpook National University, Division of Pediatric Cardiology, Kyungpook National University Children's Hospital, Daegu, 41404, Republic of Korea
| | - Na Rae Park
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; Cell & Matrix Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Bo Geum Choi
- Department of Pediatrics, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Youra Kang
- Cell & Matrix Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea; Cell & Matrix Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Yeo Hyang Kim
- Department of Pediatrics, School of Medicine, Kyungpook National University, Division of Pediatric Cardiology, Kyungpook National University Children's Hospital, Daegu, 41404, Republic of Korea; Cell & Matrix Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
12
|
Doglioni G, Fernández-García J, Igelmann S, Altea-Manzano P, Blomme A, La Rovere R, Liu XZ, Liu Y, Tricot T, Nobis M, An N, Leclercq M, El Kharraz S, Karras P, Hsieh YH, Solari FA, Martins Nascentes Melo L, Allies G, Scopelliti A, Rossi M, Vermeire I, Broekaert D, Ferreira Campos AM, Neven P, Maetens M, Van Baelen K, Alkan HF, Planque M, Floris G, Sickmann A, Tasdogan A, Marine JC, Scheele CLGJ, Desmedt C, Bultynck G, Close P, Fendt SM. Aspartate signalling drives lung metastasis via alternative translation. Nature 2025; 638:244-250. [PMID: 39743589 DOI: 10.1038/s41586-024-08335-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/01/2024] [Indexed: 01/04/2025]
Abstract
Lung metastases occur in up to 54% of patients with metastatic tumours1,2. Contributing factors to this high frequency include the physical properties of the pulmonary system and a less oxidative environment that may favour the survival of cancer cells3. Moreover, secreted factors from primary tumours alter immune cells and the extracellular matrix of the lung, creating a permissive pre-metastatic environment primed for the arriving cancer cells4,5. Nutrients are also primed during pre-metastatic niche formation6. Yet, whether and how nutrients available in organs in which tumours metastasize confer cancer cells with aggressive traits is mostly undefined. Here we found that pulmonary aspartate triggers a cellular signalling cascade in disseminated cancer cells, resulting in a translational programme that boosts aggressiveness of lung metastases. Specifically, we observe that patients and mice with breast cancer have high concentrations of aspartate in their lung interstitial fluid. This extracellular aspartate activates the ionotropic N-methyl-D-aspartate receptor in cancer cells, which promotes CREB-dependent expression of deoxyhypusine hydroxylase (DOHH). DOHH is essential for hypusination, a post-translational modification that is required for the activity of the non-classical translation initiation factor eIF5A. In turn, a translational programme with TGFβ signalling as a central hub promotes collagen synthesis in lung-disseminated breast cancer cells. We detected key proteins of this mechanism in lung metastases from patients with breast cancer. In summary, we found that aspartate, a classical biosynthesis metabolite, functions in the lung environment as an extracellular signalling molecule to promote aggressiveness of metastases.
Collapse
Affiliation(s)
- Ginevra Doglioni
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Juan Fernández-García
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sebastian Igelmann
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Laboratory of Metabolic Regulation and Signaling in Cancer, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-University of Seville-CSIC-University Pablo de Olavide, Seville, Spain
| | - Arnaud Blomme
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium
| | - Rita La Rovere
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Xiao-Zheng Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Yawen Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Tine Tricot
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Max Nobis
- Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
- Intravital Imaging Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ning An
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium
| | - Marine Leclercq
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium
| | - Sarah El Kharraz
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Yu-Heng Hsieh
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Fiorella A Solari
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | | | - Gabrielle Allies
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Annalisa Scopelliti
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Matteo Rossi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ines Vermeire
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Dorien Broekaert
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ana Margarida Ferreira Campos
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Patrick Neven
- Department of Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - Marion Maetens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Karen Van Baelen
- Department of Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - H Furkan Alkan
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Spatial Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Giuseppe Floris
- Department of Pathology, UZ Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Laboratory of Translational Cell And Tissue Research, KU Leuven, Leuven, Belgium
| | - Albert Sickmann
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
- Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Colinda L G J Scheele
- Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Pierre Close
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
13
|
Imren G, Karaosmanoglu B, Muratoglu B, Ozdemir C, Utine GE, Simsek-Kiper PO, Taskiran EZ. Unraveling the Role of RSPRY1 in TGF-β Pathway Dysregulation: Insights into the Pathogenesis of Spondyloepimetaphyseal Dysplasia. Int J Mol Sci 2025; 26:1134. [PMID: 39940902 PMCID: PMC11817781 DOI: 10.3390/ijms26031134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Skeletal dysplasias, characterized by bone, cartilage, and connective tissue abnormalities, often arise due to disruptions in extracellular matrix (ECM) dynamics and growth factor-dependent signaling pathways. RSPRY1, a secreted protein with RING and SPRY domains, has been implicated in bone development, yet its exact role remains to be determined. RSPRY1 gene mutations are associated with spondyloepimetaphyseal dysplasia (SEMD), a rare skeletal disorder characterized by severe epiphyseal and metaphyseal deformities. This study aimed to determine the molecular and cellular mechanisms by which RSPRY1 deficiency affects skeletal homeostasis. Transcriptome analysis of fibroblasts from patients with homozygous RSPRY1 mutations showed there was significant enrichment of transforming growth factor beta (TGF-β) signaling and ECM-related pathways. Functional wound healing assays showed that RSPRY1 knockout fibroblasts exhibited enhanced motility, a phenotype that was abrogated in RSPRY1 + SMAD3 double knockout fibroblasts, highlighting the SMAD3-dependence of RSPRY1's effects. The observed limited response to exogenous TGF-β in RSPRY1-deficient cells indicated that there was constitutive pathway activation. These findings show that RSPRY1 is a critical regulator of TGF-β signaling in ECM dynamics and cell motility, contributing to the pathophysiology of SEMD. An improvement in our understanding of the molecular roles of RSPRY1 might yield novel therapeutic strategies that target TGF-β signaling in patients with SEMD and other skeletal dysplasias.
Collapse
Affiliation(s)
- Gozde Imren
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, 06100 Ankara, Türkiye; (G.I.); (B.K.)
- Department of Medical and Surgical Research, Institute of Health Sciences, Hacettepe University, 06100 Ankara, Türkiye
| | - Beren Karaosmanoglu
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, 06100 Ankara, Türkiye; (G.I.); (B.K.)
| | - Bihter Muratoglu
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, 06100 Ankara, Türkiye
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100 Ankara, Türkiye
| | - Cansu Ozdemir
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, 06100 Ankara, Türkiye
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100 Ankara, Türkiye
| | - Gulen Eda Utine
- Department of Pediatric Genetics, Faculty of Medicine, Hacettepe University, 06100 Ankara, Türkiye
| | - Pelin Ozlem Simsek-Kiper
- Department of Pediatric Genetics, Faculty of Medicine, Hacettepe University, 06100 Ankara, Türkiye
| | - Ekim Z. Taskiran
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, 06100 Ankara, Türkiye; (G.I.); (B.K.)
- Department of Medical and Surgical Research, Institute of Health Sciences, Hacettepe University, 06100 Ankara, Türkiye
| |
Collapse
|
14
|
Lu C, Wei J, Gao C, Sun M, Dong D, Mu Z. Molecular signaling pathways in doxorubicin-induced nephrotoxicity and potential therapeutic agents. Int Immunopharmacol 2025; 144:113373. [PMID: 39566381 DOI: 10.1016/j.intimp.2024.113373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Doxorubicin (DOX), an anthracycline chemotherapeutic agent, is extensively utilized in the clinical management of both solid and hematological malignancies. Nevertheless, the clinical application of this treatment is significantly limited by adverse reactions and toxicity that may arise during or after administration. Its cytotoxic effects are multifaceted, with cardiotoxicity being the most prevalent side effect. Furthermore, it has the potential to adversely affect other organs, including the brain, kidneys, liver, and so on. Notably, it has been reported that DOX may cause renal failure in patients and there is currently no effective treatment for DOX-induced kidney damage, which has raised a high concern about DOX-induced nephrotoxicity (DIN). Although the precise molecular mechanisms underlying DIN remain incompletely elucidated, prior research has indicated that reactive oxygen species (ROS) are pivotal in this process, triggering a cascade of detrimental pathways including apoptosis, inflammation, dysregulated autophagic flux, and fibrosis. In light of these mechanisms, decades of research have uncovered several DIN-associated signaling pathways and found multiple potential therapeutic agents targeting them. Thus, this review intends to delineate the DIN associated signaling pathways, including AMPK, JAKs/STATs, TRPC6/RhoA/ROCK1, YAP/TEAD, SIRTs, Wnt/β-catenin, TGF-β/Smad, MAPK, Nrf2/ARE, NF-κB, and PI3K/AKT, and to summarize their potential regulatory agents, which provide a reference for the development of novel medicines against DIN.
Collapse
Affiliation(s)
- Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China; Department of Urology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China.
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China.
| | - Zhongyi Mu
- Department of Urology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
15
|
Lai W, Song Y, Tollefsen KE, Hvidsten TR. SOLA: dissecting dose-response patterns in multi-omics data using a semi-supervised workflow. Front Genet 2024; 15:1508521. [PMID: 39687738 PMCID: PMC11647027 DOI: 10.3389/fgene.2024.1508521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
An increasing number of ecotoxicological studies have used omics-data to understand the dose-response patterns of environmental stressors. However, very few have investigated complex non-monotonic dose-response patterns with multi-omics data. In the present study, we developed a novel semi-supervised network analysis workflow as an alternative to benchmark dose (BMD) modelling. We utilised a previously published multi-omics dataset generated from Daphnia magna after chronic gamma radiation exposure to obtain novel knowledge on the dose-dependent effects of radiation. Our approach combines 1) unsupervised co-expression network analysis to group genes with similar dose responses into modules; 2) supervised classification of these modules by relevant response patterns; 3) reconstruction of regulatory networks based on transcription factor binding motifs to reveal the mechanistic underpinning of the modules; 4) differential co-expression network analysis to compare the discovered modules across two datasets with different exposure periods; and 5) pathway enrichment analysis to integrate transcriptomics and metabolomics data. Our method unveiled both known and novel effects of gamma radiation, provide insight into shifts in responses from low to high dose rates, and can be used as an alternative approach for multi-omics dose-response analysis in future. The workflow SOLA (Semi-supervised Omics Landscape Analysis) is available at https://gitlab.com/wanxin.lai/SOLA.git.
Collapse
Affiliation(s)
- Wanxin Lai
- Bioinformatics and Applied Statistics (BIAS), Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Akershus, Norway
| | - You Song
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Akershus, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Akershus, Norway
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Akershus, Norway
| | - Torgeir R. Hvidsten
- Bioinformatics and Applied Statistics (BIAS), Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Akershus, Norway
| |
Collapse
|
16
|
Fu Z, Yang G, Yun SY, Jang JM, Ha HC, Shin IC, Back MJ, Piao Y, Kim DK. Hyaluronan and proteoglycan link protein 1 - A novel signaling molecule for rejuvenating aged skin. Matrix Biol 2024; 134:30-47. [PMID: 39226945 DOI: 10.1016/j.matbio.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
The skin seems to rejuvenate upon exposure to factors within the circulation of young organisms. Intrinsic factors that modulate skin aging are poorly understood. We used heterochronic parabiosis and aptamer-based proteomics to identify serum-derived rejuvenating factors. We discovered a novel extracellular function of hyaluronan and proteoglycan link protein 1 (HAPLN1). Its serum levels decreased with age, disturbing the integrity of the skin extracellular matrix, which is predominantly composed of collagen I and hyaluronan; levels of various markers, which decrease in aged skin, were significantly restored in vivo and in vitro by the administration of recombinant human HAPLN1 (rhHAPLN1). rhHAPLN1 protected transforming growth factor beta receptor 2 on the cell surface from endocytic degradation via mechanisms such as regulation of viscoelasticity, CD44 clustering. Moreover, rhHAPLN1 regulated the levels of nuclear factor erythroid 2-related factor 2, phosphorylated nuclear factor kappa B, and some cyclin-dependent kinase inhibitors such as p16 and p21. Therefore, rhHAPLN1 may act as a novel biomechanical signaling protein to rejuvenate aged skin.
Collapse
Affiliation(s)
- Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - Goowon Yang
- HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - So Yoon Yun
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - In Chul Shin
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Moon Jung Back
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yongwei Piao
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea.
| |
Collapse
|
17
|
Ávila-Fernández P, Etayo-Escanilla M, Sánchez-Porras D, Fernández-Valadés R, Campos F, Garzón I, Carriel V, Alaminos M, García-García ÓD, Chato-Astrain J. Spatiotemporal characterization of extracellular matrix maturation in human artificial stromal-epithelial tissue substitutes. BMC Biol 2024; 22:263. [PMID: 39558321 PMCID: PMC11575135 DOI: 10.1186/s12915-024-02065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Tissue engineering techniques offer new strategies to understand complex processes in a controlled and reproducible system. In this study, we generated bilayered human tissue substitutes consisting of a cellular connective tissue with a suprajacent epithelium (full-thickness stromal-epithelial substitutes or SESS) and human tissue substitutes with an epithelial layer generated on top of an acellular biomaterial (epithelial substitutes or ESS). Both types of artificial tissues were studied at sequential time periods to analyze the maturation process of the extracellular matrix. RESULTS Regarding epithelial layer, ESS cells showed active proliferation, positive expression of cytokeratin 5, and low expression of differentiation markers, whereas SESS epithelium showed higher differentiation levels, with a progressive positive expression of cytokeratin 10 and claudin. Stromal cells in SESS tended to accumulate and actively synthetize extracellular matrix components such as collagens and proteoglycans in the stromal area in direct contact with the epithelium (zone 1), whereas these components were very scarce in ESS. Regarding the basement membrane, ESS showed a partially differentiated structure containing fibronectin-1 and perlecan. However, SESS showed higher basement membrane differentiation, with positive expression of fibronectin 1, perlecan, nidogen 1, chondroitin-6-sulfate proteoglycans, agrin, and collagens types IV and VII, although this structure was negative for lumican. Finally, both ESS and SESS proved to be useful tools for studying metabolic pathway regulation, revealing differential activation and upregulation of the transforming growth factor-β pathway in ESS and SESS. CONCLUSIONS These results confirm the relevance of epithelial-stromal interaction for extracellular matrix development and differentiation, especially regarding basement membrane components, and suggest the usefulness of bilayered artificial tissue substitutes to reproduce ex vivo the extracellular matrix maturation and development process of human tissues.
Collapse
Affiliation(s)
- Paula Ávila-Fernández
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, Granada, Spain
| | - Miguel Etayo-Escanilla
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Sánchez-Porras
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ricardo Fernández-Valadés
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Division of Pediatric Surgery, University Hospital Virgen de Las Nieves, Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, University of Granada, Avenida Doctor Jesús Candel Fábregas, 11, E18016, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| |
Collapse
|
18
|
Gill HK, Yin S, Nerurkar NL, Lawlor JC, Lee C, Huycke TR, Mahadevan L, Tabin CJ. Hox gene activity directs physical forces to differentially shape chick small and large intestinal epithelia. Dev Cell 2024; 59:2834-2849.e9. [PMID: 39116876 PMCID: PMC11537829 DOI: 10.1016/j.devcel.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 04/15/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
Hox transcription factors play crucial roles in organizing developmental patterning across metazoa, but how these factors trigger regional morphogenesis has largely remained a mystery. In the developing gut, Hox genes help demarcate identities of intestinal subregions early in embryogenesis, which ultimately leads to their specialization in both form and function. Although the midgut forms villi, the hindgut develops sulci that resolve into heterogeneous outgrowths. Combining mechanical measurements of the embryonic chick intestine and mathematical modeling, we demonstrate that the posterior Hox gene HOXD13 regulates biophysical phenomena that shape the hindgut lumen. We further show that HOXD13 acts through the transforming growth factor β (TGF-β) pathway to thicken, stiffen, and promote isotropic growth of the subepithelial mesenchyme-together, these features lead to hindgut-specific surface buckling. TGF-β, in turn, promotes collagen deposition to affect mesenchymal geometry and growth. We thus identify a cascade of events downstream of positional identity that direct posterior intestinal morphogenesis.
Collapse
Affiliation(s)
- Hasreet K Gill
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sifan Yin
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Nandan L Nerurkar
- The Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA
| | - John C Lawlor
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - ChangHee Lee
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tyler R Huycke
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - L Mahadevan
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Clifford J Tabin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Touny AA, Venkataraman B, Ojha S, Pessia M, Subramanian VS, Hariharagowdru SN, Subramanya SB. Phytochemical Compounds as Promising Therapeutics for Intestinal Fibrosis in Inflammatory Bowel Disease: A Critical Review. Nutrients 2024; 16:3633. [PMID: 39519465 PMCID: PMC11547603 DOI: 10.3390/nu16213633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVE Intestinal fibrosis, a prominent consequence of inflammatory bowel disease (IBD), presents considerable difficulty owing to the absence of licensed antifibrotic therapies. This review assesses the therapeutic potential of phytochemicals as alternate methods for controlling intestinal fibrosis. Phytochemicals, bioactive molecules originating from plants, exhibit potential antifibrotic, anti-inflammatory, and antioxidant activities, targeting pathways associated with inflammation and fibrosis. Compounds such as Asperuloside, Berberine, and olive phenols have demonstrated potential in preclinical models by regulating critical signaling pathways, including TGF-β/Smad and NFκB, which are integral to advancing fibrosis. RESULTS The main findings suggest that these phytochemicals significantly reduce fibrotic markers, collagen deposition, and inflammation in various experimental models of IBD. These phytochemicals may function as supplementary medicines to standard treatments, perhaps enhancing patient outcomes while mitigating the adverse effects of prolonged immunosuppressive usage. Nonetheless, additional clinical trials are necessary to validate their safety, effectiveness, and bioavailability in human subjects. CONCLUSIONS Therefore, investigating phytochemicals may lead to crucial advances in the formulation of innovative treatment approaches for fibrosis associated with IBD, offering a promising avenue for future therapeutic development.
Collapse
Affiliation(s)
- Aya A. Touny
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Ahram Canadian University, Giza 12581, Egypt
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Mauro Pessia
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | | | - Shamanth Neralagundi Hariharagowdru
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sandeep B. Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
20
|
Moua T, Baqir M, Ryu JH. What Is on the Horizon for Treatments in Idiopathic Pulmonary Fibrosis? J Clin Med 2024; 13:6304. [PMID: 39518443 PMCID: PMC11546700 DOI: 10.3390/jcm13216304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal lung disease most commonly encountered in older individuals. Several decades of research have contributed to a better understanding of its pathogenesis, though only two drugs thus far have shown treatment efficacy, i.e., by slowing the decline of lung function. The pathogenesis of IPF remains incompletely understood and involves multiple complex interactions and mechanisms working in tandem or separately to result in unchecked deposition of extracellular matrix components and collagen characteristic of the disease. These mechanisms include aberrant response to injury in the alveolar epithelium, inappropriate communication between epithelial cells and mesenchymal cells, imbalances between oxidative injury and tissue repair, recruitment of inflammatory pathways that induce fibrosis, and cell senescence leading to sustained activation and proliferation of fibroblasts and myofibroblasts. Targeted approaches to each of these mechanistic pathways have led to recent clinical studies evaluating the safety and efficacy of several agents. This review highlights selected concepts in the pathogenesis of IPF as a rationale for understanding current or future therapeutic approaches, followed by a review of several selected agents and their recent or active clinical studies. Current novel therapies include approaches to attenuating or modifying specific cellular or signaling processes in the fibrotic pathway, modifying inflammatory and metabolic derangements, and minimizing inappropriate cell senescence.
Collapse
Affiliation(s)
- Teng Moua
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; (M.B.); (J.H.R.)
| | | | | |
Collapse
|
21
|
Chen Z, Chen T, Lin R, Zhang Y. Circulating inflammatory proteins and abdominal aortic aneurysm: A two-sample Mendelian randomization and colocalization analyses. Cytokine 2024; 182:156700. [PMID: 39033731 DOI: 10.1016/j.cyto.2024.156700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVES Inflammatory proteins are implicated in the progression of abdominal aortic aneurysms (AAA); however, it remains debated whether they are causal or consequential. This study aimed to assess the influence of circulating inflammatory proteins on AAA via two-sample Mendelian randomization (MR) and colocalization analysis. METHODS Summary data on 91 circulating inflammatory protein levels were extracted from a comprehensive protein quantitative trait loci (pQTL) study involving 14,824 individuals. Genetic associations with AAA were derived from the FinnGen study (3,869 cases and 381,977 controls). MR analysis was conducted to assess the relationships between proteins and AAA risk. Colocalization analysis was employed to explore potential shared causal variants between identified proteins and AAA. RESULTS Using a two-sample bidirectional MR study, our findings suggested that genetically predicted elevated levels of TGFB1 (OR = 1.21, P = 0.003), SIRT2 (OR = 1.196, P = 0.031) and TNFSF14 (OR = 1.129, P = 0.034) were linked to an increased risk of AAA. Conversely, genetically predicted higher levels of CD40 (OR = 0.912, P = 0.049), IL2RB (OR = 0.839, P = 0.028) and KITLG (OR = 0.827, P = 0.008) were associated with a decreased risk of AAA. Colocalization analyses supported the association of TGFB1 and SIRT2 levels with AAA risk. CONCLUSIONS The proteome-wide MR and colocalization study identified TGFB1 and SIRT2 as being associated with the risk of AAA, warranting further investigation as potential therapeutic targets.
Collapse
Affiliation(s)
- Zhan Chen
- Department of Vascular Surgery, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, China
| | - Tingting Chen
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ruimin Lin
- Department of Vascular Surgery, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, China.
| | - Yue Zhang
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
22
|
Zhang J, Yang Z, Zhang C, Gao S, Liu Y, Li Y, He S, Yao J, Du J, You B, Han Y. PALMD haploinsufficiency aggravates extracellular matrix remodeling in vascular smooth muscle cells and promotes calcification. Am J Physiol Cell Physiol 2024; 327:C1012-C1022. [PMID: 39246140 DOI: 10.1152/ajpcell.00217.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
Reduced PALMD expression is strongly associated with the development of calcified aortic valve stenosis; however, the role of PALMD in vascular calcification remains unknown. Calcified arteries were collected from mice to detect PALMD expression. Heterozygous Palmd knockout (Palmd+/-) mice were established to explore the role of PALMD in subtotal nephrectomy-induced vascular calcification. RNA sequencing was applied to detect molecular changes in aortas from Palmd+/- mice. Primary Palmd+/- vascular smooth muscle cells (VSMCs) or PALMD-silenced VSMCs by short interfering RNA were used to analyze PALMD function in phenotypic changes and calcification. PALMD haploinsufficiency aggravated subtotal nephrectomy-induced vascular calcification. RNA sequencing analysis showed that loss of PALMD disturbed the synthesis and degradation of the extracellular matrix (ECM) in aortas, including collagens and matrix metalloproteinases (Col6a6, Mmp2, Mmp9, etc.). In vitro experiments revealed that PALMD-deficient VSMCs were more susceptible to high phosphate-induced calcification. Downregulation of SMAD6 expression and increased levels of p-SMAD2 were detected in Palmd+/- VSMCs, suggesting that transforming growth factor-β signaling may be involved in PALMD haploinsufficiency-induced vascular calcification. Our data revealed that PALMD haploinsufficiency causes ECM dysregulation in VSMCs and aggravates vascular calcification. Our findings suggest that reduced PALMD expression is also linked to vascular calcification, and PALMD may be a potential therapeutic target for this disease. NEW & NOTEWORTHY We found that PALMD haploinsufficiency causes extracellular matrix dysregulation, reduced PALMD expression links to vascular calcification, and PALMD mutations may lead to the risk of both calcific aortic valve stenosis and vascular calcification.
Collapse
Affiliation(s)
- Jichao Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Zhao Yang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Congcong Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Shijuan Gao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yan Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yingkai Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Songyuan He
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jing Yao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Bin You
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yingchun Han
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
23
|
Liu L, Yi P, Jiang C, Hu B. Cloning and Expression Analysis of TGF-β Type I Receptor Gene in Hyriopsis cumingii. Zoolog Sci 2024; 41:436-447. [PMID: 39436005 DOI: 10.2108/zs240031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/02/2024] [Indexed: 10/23/2024]
Abstract
The TGF-β signaling pathway plays an important role in wound healing and immune response. In this study, a TGF-β type I receptor (TGF-βRI) homolog was cloned and characterized from freshwater mussel Hyriopsis cumingii. The full-length cDNA of the TGF-β RI gene was 2017 bp, with a 1554 bp open reading frame (ORF), and encoded 517 amino acids. The predictive analysis further identified distinct regions within the TGF-βRI protein: a signal peptide, a membrane outer region, a transmembrane region, and an intracellular region. Real-time quantitative PCR results showed that the TGF-β RI gene was expressed in all tissues of healthy mussels. The transcripts of TGF-β RI in hemocytes and hepatopancreas were significantly up-regulated at different periods after stimulation with Aeromonas hydrophila and peptidoglycan (PGN) (P < 0.05). The mRNA expression of TGF-β RI progressively increased from day 1 to day 10 after trauma (P < 0.05), and it returned to the initial level by day 15. The expression levels of TGF-β , Smad5, MMP1/19, and TIMP1/2, but not Smad3/4, were significantly up-regulated at different time points after trauma. However, the expression levels of TGF-β , MMP1/19, and TIMP2 were decreased after treatment with the inhibitor SB431542. Furthermore, the recombinant TGF-βRI proteins were expressed in vitro and existed in the form of inclusion bodies. Western blotting results showed that TGF-βRI proteins were expressed constitutively in various tissues of mussels, and their expression was up-regulated after trauma, which was consistent with the mRNA expression trend. These results indicate that TGF-β RI is involved in the process of wound repair and immune response.
Collapse
Affiliation(s)
- Linying Liu
- Life Science College, Nanchang University, Nanchang 330031, China
| | - Peipei Yi
- Jiangxi Aquatic Biological Conservation and Rescue Center, Nanchang 330000, China
| | - Chengyi Jiang
- Life Science College, Nanchang University, Nanchang 330031, China
| | - Baoqing Hu
- Life Science College, Nanchang University, Nanchang 330031, China,
| |
Collapse
|
24
|
Yu Y, Cai Y, Yang F, Yang Y, Cui Z, Shi D, Bai R. Vascular smooth muscle cell phenotypic switching in atherosclerosis. Heliyon 2024; 10:e37727. [PMID: 39309965 PMCID: PMC11416558 DOI: 10.1016/j.heliyon.2024.e37727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Atherosclerosis (AS) is a complex pathology process involving intricate interactions among various cells and biological processes. Vascular smooth muscle cells (VSMCs) are the predominant cell type in normal arteries, and under atherosclerotic stimuli, VSMCs respond to altered blood flow and microenvironment changes by downregulating contractile markers and switching their phenotype. This review overviews the diverse phenotypes of VSMCs, including the canonical contractile VSMCs, synthetic VSMCs, and phenotypes resembling macrophages, foam cells, myofibroblasts, osteoblasts/chondrocytes, and mesenchymal stem cells. We summarize their presumed protective and pro-atherosclerotic roles in AS development. Additionally, we underscore the molecular mechanisms and regulatory pathways governing VSMC phenotypic switching, encompassing transcriptional regulation, biochemical factors, plaque microenvironment, epigenetics, miRNAs, and the cytoskeleton, emphasizing their significance in AS development. Finally, we outline probable future research directions targeting VSMCs, offering insights into potential therapeutic strategies for AS management.
Collapse
Affiliation(s)
- Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Yankai Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuorui Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| |
Collapse
|
25
|
Bai XD, Fei WC, Liu YC, Yang SP. Enzymatically modified isoquercitrin and its protective effects against photoaging: In-vitro and clinical studies. Photochem Photobiol 2024; 100:1475-1488. [PMID: 38185856 DOI: 10.1111/php.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 01/09/2024]
Abstract
This research examines the anti-aging potential of the flavonoid derivative of isoquercitrin known as enzymatically modified isoquercitrin (EMIQ). Initial HPLC analyses showed that EMIQ used in the study contained 1-12 glucosides and 10.7% pentahydroxyflavonoids, promising potent antioxidant properties. In subsequent in-vitro studies with UVA-exposed human dermal fibroblasts (HDFa), EMIQ demonstrated protective properties by reducing collagen damage. It modulated both the TGFβ/Smad pathway and the MMP1 pathway, contributing to collagen preservation. This protective effect was further confirmed using the T-Skin™ model, a reconstructed full-thickness human skin model, which illustrated that EMIQ could defend the physiological structures of both the epidermis and dermis against UV radiation. A 28-day clinical trial with 30 volunteers aged 31-55 years highlighted EMIQ's effectiveness. Participants using EMIQ-containing Essence displayed reduced facial trans-epidermal water loss and skin roughness, alongside improved skin elasticity. This study emphasizes EMIQ's potential as an anti-photoaging ingredient in cosmetics, warranting further research. The findings pave the way for developing innovative skincare products addressing photoaging effects.
Collapse
Affiliation(s)
- Xue-Dong Bai
- R&D Center of Shanghai Huiwen Biotech Co., Ltd, Shanghai, China
| | - Wei-Cheng Fei
- R&D Center of Shanghai Huiwen Biotech Co., Ltd, Shanghai, China
| | - Yu-Chen Liu
- R&D Center of Shanghai Huiwen Biotech Co., Ltd, Shanghai, China
| | - Sheng-Ping Yang
- R&D Center of Shanghai Huiwen Biotech Co., Ltd, Shanghai, China
| |
Collapse
|
26
|
Banerjee A, Singh P, Sheikh PA, Kumar A, Koul V, Bhattacharyya J. A multifunctional silk-hyaluronic acid self-healing hydrogel laden with alternatively activated macrophage-derived exosomes reshape microenvironment of diabetic wound and accelerate healing. Int J Biol Macromol 2024; 270:132384. [PMID: 38754682 DOI: 10.1016/j.ijbiomac.2024.132384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The impairment of phenotype switching of pro-inflammatory M1 to pro-healing M2 macrophage induced by hyperglycemic microenvironment often elevates oxidative stress, impairs angiogenesis, and leads to chronic non-healing wounds in diabetic patients. Administration of M2 macrophage-derived exosomes (M2Exo) at wound site is known to polarize M1 to M2 macrophage and can accelerate wound healing by enhancing collagen deposition, angiogenesis, and re-epithelialization. In the present study, M2Exo were conjugated with oxidized hyaluronic acid and mixed with PEGylated silk fibroin to develop self-healing Exo-gel to achieve an efficient therapy for diabetic wounds. Exo-gel depicted porous networked morphology with self-healing and excellent water retention behaviour. Fibroblast cells treated with Exo-gel showed significant uptake of M2Exo that increased their proliferation and migration in vitro. Interestingly, in a diabetic wound model of wistar rats, Exo-gel treatment induced 75 % wound closure within 7 days with complete epithelial layer regeneration by modulating cytokine levels, stimulating fibroblast-keratinocyte interaction and migration, angiogenesis, and organized collagen deposition. Taken together, this study suggests that Exo-gel depict properties of an excellent wound healing matrix and can be used as a therapeutic alternative to treat chronic non-healing diabetic wounds.
Collapse
Affiliation(s)
- Ahana Banerjee
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, New Delhi-110029, India
| | - Prerna Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India
| | - Parvaiz A Sheikh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India; Centre of Excellence for Orthopedics and Prosthetics, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India; Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India
| | - Veena Koul
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, New Delhi-110029, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, New Delhi-110029, India.
| |
Collapse
|
27
|
Baek J, Kim JH, Park J, Kim DH, Sa S, Han JS, Kim W. 1-Kestose Blocks UVB-Induced Skin Inflammation and Promotes Type I Procollagen Synthesis via Regulating MAPK/AP-1, NF-κB and TGF-β/Smad Pathway. J Microbiol Biotechnol 2024; 34:911-919. [PMID: 38379292 DOI: 10.4014/jmb.2311.11020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/26/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024]
Abstract
Solar UVB irradiation cause skin photoaging by inducing the high expression of matrix metalloproteinase (MMPs) to inhibit the expression of Type1 procollagen synthesis. 1-Kestose, a natural trisaccharide, has been indicated to show a cytoprotective role in UVB radiation-induced-HaCaT cells. However, few studies have confirmed the anti-aging effects. In the present study, we evaluated the anti-photoaging and pathological mechanism of 1-kestose using Human keratinocytes (HaCaT) cells. The results found that 1-kestose pretreatment remarkably reduced UVB-generated reactive oxygen species (ROS) accumulation in HaCaT cells. 1-Kestose suppressed UVB radiation-induced MMPs expressions by blocking MAPK/AP-1 and NF-κB p65 translocation. 1-Kestose pretreatment increased Type 1 procollagen gene expression levels by activating TGF-β/Smad signaling pathway. Taken together, our results demonstrate that 1-kestose may serve as a potent natural trisaccharide for inflammation and photoaging prevention.
Collapse
Affiliation(s)
- Jihye Baek
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Jong-Hwa Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Jiwon Park
- Food R&D Center, Samyang Corp., Seongnam 13488, Republic of Korea
| | - Do Hyun Kim
- Food R&D Center, Samyang Corp., Seongnam 13488, Republic of Korea
| | - Soonok Sa
- Food R&D Center, Samyang Corp., Seongnam 13488, Republic of Korea
| | - Jung-Sook Han
- Food R&D Center, Samyang Corp., Seongnam 13488, Republic of Korea
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| |
Collapse
|
28
|
Cicchinelli S, Gemma S, Pignataro G, Piccioni A, Ojetti V, Gasbarrini A, Franceschi F, Candelli M. Intestinal Fibrogenesis in Inflammatory Bowel Diseases: Exploring the Potential Role of Gut Microbiota Metabolites as Modulators. Pharmaceuticals (Basel) 2024; 17:490. [PMID: 38675450 PMCID: PMC11053610 DOI: 10.3390/ph17040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Fibrosis, sustained by the transformation of intestinal epithelial cells into fibroblasts (epithelial-to-mesenchymal transition, EMT), has been extensively studied in recent decades, with the molecular basis well-documented in various diseases, including inflammatory bowel diseases (IBDs). However, the factors influencing these pathways remain unclear. In recent years, the role of the gut microbiota in health and disease has garnered significant attention. Evidence suggests that an imbalanced or dysregulated microbiota, along with environmental and genetic factors, may contribute to the development of IBDs. Notably, microbes produce various metabolites that interact with host receptors and associated signaling pathways, influencing physiological and pathological changes. This review aims to present recent evidence highlighting the emerging role of the most studied metabolites as potential modulators of molecular pathways implicated in intestinal fibrosis and EMT in IBDs. These studies provide a deeper understanding of intestinal inflammation and fibrosis, elucidating the molecular basis of the microbiota role in IBDs, paving the way for future treatments.
Collapse
Affiliation(s)
- Sara Cicchinelli
- Department of Emergency, S.S. Filippo e Nicola Hospital, 67051 Avezzano, Italy;
| | - Stefania Gemma
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giulia Pignataro
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Andrea Piccioni
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Veronica Ojetti
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
29
|
Song L, Golman M, Abraham AC, Zelzer E, Thomopoulos S. A role for TGFβ signaling in Gli1+ tendon and enthesis cells. FASEB J 2024; 38:e23568. [PMID: 38522021 PMCID: PMC10962263 DOI: 10.1096/fj.202301452r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
The development of musculoskeletal tissues such as tendon, enthesis, and bone relies on proliferation and differentiation of mesenchymal progenitor cells. Gli1+ cells have been described as putative stem cells in several tissues and are presumed to play critical roles in tissue formation and maintenance. For example, the enthesis, a fibrocartilage tissue that connects tendon to bone, is mineralized postnatally by a pool of Gli1+ progenitor cells. These cells are regulated by hedgehog signaling, but it is unclear if TGFβ signaling, necessary for tenogenesis, also plays a role in their behavior. To examine the role of TGFβ signaling in Gli1+ cell function, the receptor for TGFβ, TbR2, was deleted in Gli1-lineage cells in mice at P5. Decreased TGFβ signaling in these cells led to defects in tendon enthesis formation by P56, including defective bone morphometry underlying the enthesis and decreased mechanical properties. Immunohistochemical staining of these Gli1+ cells showed that loss of TGFβ signaling reduced proliferation and increased apoptosis. In vitro experiments using Gli1+ cells isolated from mouse tail tendons demonstrated that TGFβ controls cell proliferation and differentiation through canonical and non-canonical pathways and that TGFβ directly controls the tendon transcription factor scleraxis by binding to its distant enhancer. These results have implications in the development of treatments for tendon and enthesis pathologies.
Collapse
Affiliation(s)
- Lee Song
- Department of Orthopedic Surgery, Columbia University, New York, NY10032, USA
| | - Mikhail Golman
- Department of Orthopedic Surgery, Columbia University, New York, NY10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY10027, USA
| | - Adam C. Abraham
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY10027, USA
| |
Collapse
|
30
|
Fox SC, Waskiewicz AJ. Transforming growth factor beta signaling and craniofacial development: modeling human diseases in zebrafish. Front Cell Dev Biol 2024; 12:1338070. [PMID: 38385025 PMCID: PMC10879340 DOI: 10.3389/fcell.2024.1338070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Humans and other jawed vertebrates rely heavily on their craniofacial skeleton for eating, breathing, and communicating. As such, it is vital that the elements of the craniofacial skeleton develop properly during embryogenesis to ensure a high quality of life and evolutionary fitness. Indeed, craniofacial abnormalities, including cleft palate and craniosynostosis, represent some of the most common congenital abnormalities in newborns. Like many other organ systems, the development of the craniofacial skeleton is complex, relying on specification and migration of the neural crest, patterning of the pharyngeal arches, and morphogenesis of each skeletal element into its final form. These processes must be carefully coordinated and integrated. One way this is achieved is through the spatial and temporal deployment of cell signaling pathways. Recent studies conducted using the zebrafish model underscore the importance of the Transforming Growth Factor Beta (TGF-β) and Bone Morphogenetic Protein (BMP) pathways in craniofacial development. Although both pathways contain similar components, each pathway results in unique outcomes on a cellular level. In this review, we will cover studies conducted using zebrafish that show the necessity of these pathways in each stage of craniofacial development, starting with the induction of the neural crest, and ending with the morphogenesis of craniofacial elements. We will also cover human skeletal and craniofacial diseases and malformations caused by mutations in the components of these pathways (e.g., cleft palate, craniosynostosis, etc.) and the potential utility of zebrafish in studying the etiology of these diseases. We will also briefly cover the utility of the zebrafish model in joint development and biology and discuss the role of TGF-β/BMP signaling in these processes and the diseases that result from aberrancies in these pathways, including osteoarthritis and multiple synostoses syndrome. Overall, this review will demonstrate the critical roles of TGF-β/BMP signaling in craniofacial development and show the utility of the zebrafish model in development and disease.
Collapse
|
31
|
Isali I, Wong TR, Wu CHW, Scarberry K, Gupta S, Erickson BA, Breyer BN. Genomic Risk Factors for Urethral Stricture: A Systematic Review and Gene Network Analysis. Urology 2024; 184:251-258. [PMID: 38160764 DOI: 10.1016/j.urology.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE To identify genes that may play a role in urethral stricture and summarize the results of studies that have documented variations in gene expression among individuals with urethral stricture compared to healthy individuals. METHODS A systematic search was conducted in Cochrane, Ovid, Web of Science, and PubMed, limiting the results to articles published between January 1, 2000 and January 30, 2023. Only studies comparing the difference in gene expression between individuals with urethral stricture and healthy individuals utilizing molecular techniques to measure gene expression in blood, urine, or tissue samples were included in this systematic review. Gene network and pathway analyses were performed using Cytoscape software, with input data obtained from our systematic review of differentially expressed genes in urethral stricture. RESULTS Four studies met our criteria for inclusion. The studies used molecular biology methods to quantify gene expression data from specimens. The analysis revealed gene expressions of CXCR3 and NOS2 were downregulated in urethral tissue samples, while TGFB1, UPK3A, and CTGF were upregulated in plasma, urine and urethral tissue samples, respectively, in patients with urethral stricture compared to healthy controls. The analysis demonstrated that the most significant pathways were associated with phosphoinositide 3-kinase (PI3 kinase) and transforming growth factor beta 1/suppressor of mothers against decapentaplegic (TGF-β1/SMAD) signaling pathways. CONCLUSION This systematic review identified gene expression variations in several candidate genes and identified underlying biological pathways associated with urethral stricture. These findings could inform further research and potentially shift treatment and prevention strategies for urethral stricture.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | - Thomas R Wong
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | - Chen-Han Wilfred Wu
- Department of Urology, Case Western Reserve University, Cleveland, OH; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| | - Kyle Scarberry
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | - Shubham Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | | | - Benjamin N Breyer
- Department of Urology, University of California San Francisco, San Francisco, CA; Department of Biostatistics and Epidemiology, University of California San Francisco, San Francisco, CA.
| |
Collapse
|
32
|
Ahuja S, Zaheer S. Multifaceted TGF-β signaling, a master regulator: From bench-to-bedside, intricacies, and complexities. Cell Biol Int 2024; 48:87-127. [PMID: 37859532 DOI: 10.1002/cbin.12097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Physiological embryogenesis and adult tissue homeostasis are regulated by transforming growth factor-β (TGF-β), an evolutionarily conserved family of secreted polypeptide factors, acting in an autocrine and paracrine manner. The role of TGF-β in inflammation, fibrosis, and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, especially fibrosis and cancer, overexpressed TGF-β causes extracellular matrix deposition, epithelial-mesenchymal transition, cancer-associated fibroblast formation, and/or angiogenesis. In this review article, we have tried to dive deep into the mechanism of action of TGF-β in inflammation, fibrosis, and carcinogenesis. As TGF-β and its downstream signaling mechanism are implicated in fibrosis and carcinogenesis blocking this signaling mechanism appears to be a promising avenue. However, targeting TGF-β carries substantial risk as this pathway is implicated in multiple homeostatic processes and is also known to have tumor-suppressor functions. There is a need for careful dosing of TGF-β drugs for therapeutic use and patient selection.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
33
|
Callaway DA, Penkala IJ, Zhou S, Knowlton JJ, Cardenas-Diaz F, Babu A, Morley MP, Lopes M, Garcia BA, Morrisey EE. TGF-β controls alveolar type 1 epithelial cell plasticity and alveolar matrisome gene transcription in mice. J Clin Invest 2024; 134:e172095. [PMID: 38488000 PMCID: PMC10947970 DOI: 10.1172/jci172095] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/05/2024] [Indexed: 03/19/2024] Open
Abstract
Premature birth disrupts normal lung development and places infants at risk for bronchopulmonary dysplasia (BPD), a disease disrupting lung health throughout the life of an individual and that is increasing in incidence. The TGF-β superfamily has been implicated in BPD pathogenesis, however, what cell lineage it impacts remains unclear. We show that TGFbr2 is critical for alveolar epithelial (AT1) cell fate maintenance and function. Loss of TGFbr2 in AT1 cells during late lung development leads to AT1-AT2 cell reprogramming and altered pulmonary architecture, which persists into adulthood. Restriction of fetal lung stretch and associated AT1 cell spreading through a model of oligohydramnios enhances AT1-AT2 reprogramming. Transcriptomic and proteomic analyses reveal the necessity of TGFbr2 expression in AT1 cells for extracellular matrix production. Moreover, TGF-β signaling regulates integrin transcription to alter AT1 cell morphology, which further impacts ECM expression through changes in mechanotransduction. These data reveal the cell intrinsic necessity of TGF-β signaling in maintaining AT1 cell fate and reveal this cell lineage as a major orchestrator of the alveolar matrisome.
Collapse
Affiliation(s)
- Danielle A. Callaway
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute
| | - Ian J. Penkala
- Penn-CHOP Lung Biology Institute
- Department of Cell and Developmental Biology, and
| | - Su Zhou
- Penn-CHOP Lung Biology Institute
- Department of Cell and Developmental Biology, and
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan J. Knowlton
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute
| | - Fabian Cardenas-Diaz
- Penn-CHOP Lung Biology Institute
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Apoorva Babu
- Penn-CHOP Lung Biology Institute
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael P. Morley
- Penn-CHOP Lung Biology Institute
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariana Lopes
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin A. Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward E. Morrisey
- Penn-CHOP Lung Biology Institute
- Department of Cell and Developmental Biology, and
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Whitehead AJ, Atcha H, Hocker JD, Ren B, Engler AJ. AP-1 signaling modulates cardiac fibroblast stress responses. J Cell Sci 2023; 136:jcs261152. [PMID: 37994565 PMCID: PMC10753496 DOI: 10.1242/jcs.261152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
Matrix remodeling outcomes largely dictate patient survival post myocardial infarction. Moreover, human-restricted noncoding regulatory elements have been shown to worsen fibrosis, but their mechanism of action remains elusive. Here, we demonstrate, using induced pluripotent stem cell-derived cardiac fibroblasts (iCFs), that inflammatory ligands abundant in the remodeling heart after infarction activate AP-1 transcription factor signaling pathways resulting in fibrotic responses. This observed signaling induces deposition of fibronectin matrix and is further capable of supporting immune cell adhesion; pathway inhibition blocks iCF matrix production and cell adhesion. Polymorphisms in the noncoding regulatory elements within the 9p21 locus (also referred to as ANRIL) redirect stress programs, and in iCFs, they transcriptionally silence the AP-1 inducible transcription factor GATA5. The presence of these polymorphisms modulate iCF matrix production and assembly and reduce cell-cell signaling. These data suggest that this signaling axis is a critical modulator of cardiac disease models and might be influenced by noncoding regulatory elements.
Collapse
Affiliation(s)
- Alexander J. Whitehead
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Hamza Atcha
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - James D. Hocker
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA
- Laboratory of Gene Regulation, Ludwig Institute for Cancer Research, La Jolla, CA 92037, USA
| | - Bing Ren
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA
- Laboratory of Gene Regulation, Ludwig Institute for Cancer Research, La Jolla, CA 92037, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
35
|
Shukla R, Arshee MR, Laws MJ, Flaws JA, Bagchi MK, Wagoner Johnson AJ, Bagchi IC. Chronic exposure of mice to phthalates enhances TGF beta signaling and promotes uterine fibrosis. Reprod Toxicol 2023; 122:108491. [PMID: 37863342 DOI: 10.1016/j.reprotox.2023.108491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Phthalates are synthetic chemicals widely used as plasticizers and stabilizers in various consumer products. Because of the extensive production and use of phthalates, humans are exposed to these chemicals daily. While most studies focus on a single phthalate, humans are exposed to a mixture of phthalates on a regular basis. The impact of continuous exposure to phthalate mixture on uterus is largely unknown. Thus, we conducted studies in which adult female mice were exposed for 6 months to 0.15 ppm and 1.5 ppm of a mixture of phthalates via chow ad libitum. Our studies revealed that consumption of phthalate mixture at 0.15 ppm and 1.5 ppm for 6 months led to a significant increase in the thickness of the myometrial layer compared to control. Further investigation employing RNA-sequencing revealed an elevated transforming growth factor beta (TGF-β) signaling in the uteri of mice fed with phthalate mixture. TGF-β signaling is associated with the development of fibrosis, a consequence of excessive accumulation of extracellular matrix components, such as collagen fibers in a tissue. Consistent with this observation, we found a higher incidence of collagen deposition in uteri of mice exposed to phthalate mixture compared to unexposed controls. Second Harmonic Generation (SHG) imaging showed disorganized collagen fibers and nanoindentation indicated a local increase in uterine stiffness upon exposure to phthalate mixture. Collectively, our results demonstrate that chronic exposure to phthalate mixture can have adverse effects on uterine homeostasis.
Collapse
Affiliation(s)
- Ritwik Shukla
- Departments of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mahmuda R Arshee
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mary J Laws
- Departments of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jodi A Flaws
- Departments of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Milan K Bagchi
- Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amy J Wagoner Johnson
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Indrani C Bagchi
- Departments of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
36
|
Lee RH, Boregowda SV, Shigemoto-Kuroda T, Bae E, Haga CL, Abbery CA, Bayless KJ, Haskell A, Gregory CA, Ortiz LA, Phinney DG. TWIST1 and TSG6 are coordinately regulated and function as potency biomarkers in human MSCs. SCIENCE ADVANCES 2023; 9:eadi2387. [PMID: 37948519 PMCID: PMC10637745 DOI: 10.1126/sciadv.adi2387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) have been evaluated in >1500 clinical trials, but outcomes remain suboptimal because of knowledge gaps in quality attributes that confer potency. We show that TWIST1 directly represses TSG6 expression that TWIST1 and TSG6 are inversely correlated across bone marrow-derived MSC (BM-MSC) donor cohorts and predict interdonor differences in their proangiogenic, anti-inflammatory, and immune suppressive activity in vitro and in sterile inflammation and autoimmune type 1 diabetes preclinical models. Transcript profiling of TWIST1HiTSG6Low versus TWISTLowTSG6Hi BM-MSCs revealed previously unidentified roles for TWIST1/TSG6 in regulating cellular oxidative stress and TGF-β2 in modulating TSG6 expression and anti-inflammatory activity. TWIST1 and TSG6 levels also correlate to donor stature and predict differences in iPSC-derived MSC quality attributes. These results validate TWIST1 and TSG6 as biomarkers that predict interdonor differences in potency across laboratories and assay platforms, thereby providing a means to manufacture MSC products tailored to specific diseases.
Collapse
Affiliation(s)
- Ryang Hwa Lee
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Siddaraju V. Boregowda
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Taeko Shigemoto-Kuroda
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - EunHye Bae
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Christopher L. Haga
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Colette A. Abbery
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Kayla J. Bayless
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Andrew Haskell
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Carl A. Gregory
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Luis A. Ortiz
- Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Donald G. Phinney
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| |
Collapse
|
37
|
Patricelli C, Lehmann P, Oxford JT, Pu X. Doxorubicin-induced modulation of TGF-β signaling cascade in mouse fibroblasts: insights into cardiotoxicity mechanisms. Sci Rep 2023; 13:18944. [PMID: 37919370 PMCID: PMC10622533 DOI: 10.1038/s41598-023-46216-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
Doxorubicin (DOX)-induced cardiotoxicity has been widely observed, yet the specific impact on cardiac fibroblasts is not fully understood. Additionally, the modulation of the transforming growth factor beta (TGF-β) signaling pathway by DOX remains to be fully elucidated. This study investigated DOX's ability to modulate the expression of genes and proteins involved in the TGF-β signaling cascade in mouse fibroblasts from two sources by assessing the impact of DOX treatment on TGF-β inducible expression of pivotal genes and proteins within fibroblasts. Mouse embryonic fibroblasts (NIH3T3) and mouse primary cardiac fibroblasts (CFs) were treated with DOX in the presence of TGF-β1 to assess changes in protein levels by western blot and changes in mRNA levels by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our results revealed a dose-dependent reduction in cellular communication network factor 2 (CCN2) protein levels upon DOX treatment in both NIH3T3 and CFs, suggesting an antifibrotic activity by DOX in these fibroblasts. However, DOX only inhibited the TGF-β1 induced expression of COL1 in NIH3T3 cells but not in CFs. In addition, we observed that DOX treatment reduced the expression of BMP1 in NIH3T3 but not primary cardiac fibroblasts. No significant changes in SMAD2 protein expression and phosphorylation in either cells were observed after DOX treatment. Finally, DOX inhibited the expression of Atf4 gene and increased the expression of Cdkn1a, Id1, Id2, Runx1, Tgfb1, Inhba, Thbs1, Bmp1, and Stat1 genes in NIH3T3 cells but not CFs, indicating the potential for cell-specific responses to DOX and its modulation of the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Conner Patricelli
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, 83725-1512, USA
| | - Parker Lehmann
- Idaho College of Osteopathic Medicine, Meridian, ID, 83642-8046, USA
| | - Julia Thom Oxford
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, 83725-1512, USA
- Biomolecular Research Center, Boise State University, Boise, ID, 83725-1511, USA
- Department of Biological Sciences, Boise State University, Boise, ID, 83725-1515, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID, 83725-1511, USA.
- Department of Biological Sciences, Boise State University, Boise, ID, 83725-1515, USA.
| |
Collapse
|
38
|
Li H, Luo S, Wang H, Chen Y, Ding M, Lu J, Jiang L, Lyu K, Huang S, Shi H, Chen H, Li S. The mechanisms and functions of TGF-β1 in tendon healing. Injury 2023; 54:111052. [PMID: 37738787 DOI: 10.1016/j.injury.2023.111052] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Tendon injury accounts for 30% of musculoskeletal diseases and often leads to disability, pain, healthcare cost, and lost productivity. Following injury to tendon, tendon healing proceeds via three overlapping healing processes. However, due to the structural defects of the tendon itself, the tendon healing process is characterized by the formation of excessive fibrotic scar tissue, and injured tendons rarely return to native tendons, which can easily contribute to tendon reinjury. Moreover, the resulting fibrous scar is considered to be a precipitating factor for subsequent degenerative tendinopathy. Despite this, therapies are almost limited because underlying molecular mechanisms during tendon healing are still unknown. Transforming Growth Factor-β1 (TGF-β1) is known as one of most potent profibrogenic factors during tendon healing process. However, blockage TGF-β1 fails to effectively enhance tendon healing. A detailed understanding of real abilities of TGF-β1 involved in tendon healing can bring promising perspectives for therapeutic value that improve the tendon healing process. Thus, in this review, we describe recent efforts to identify and characterize the roles and mechanisms of TGF-β1 involved at each stage of the tendon healing and highlight potential roles of TGF-β1 leading to the fibrotic response to tendon injury.
Collapse
Affiliation(s)
- Hanyue Li
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Shengyu Luo
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Hao Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yixuan Chen
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - MingZhe Ding
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Jingwei Lu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Li Jiang
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Kexin Lyu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Shilin Huang
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Houyin Shi
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Hui Chen
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sen Li
- School of Physical Education, Southwest Medical University, Luzhou, China.
| |
Collapse
|
39
|
Hadvina R, Lotfy Khaled M, Akoto T, Zhi W, Karamichos D, Liu Y. Exosomes and their miRNA/protein profile in keratoconus-derived corneal stromal cells. Exp Eye Res 2023; 236:109642. [PMID: 37714423 PMCID: PMC10842962 DOI: 10.1016/j.exer.2023.109642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Keratoconus (KC) is a corneal thinning disorder and a leading cause of corneal transplantation worldwide. Exosomes are small, secreted extracellular vesicles (30-150 nm) that mediate cellular communication via their protein, lipid, and nucleic acid content. We aimed to characterize the exosomes secreted by primary corneal fibroblasts from subjects with or without KC. Using human keratoconus stromal fibroblast cells (HKC, n = 4) and healthy stromal fibroblasts (HCF, n = 4), we collected and isolated exosomes using serial ultracentrifugation. Using nanoparticle tracking analysis (NTA) with ZetaView®, we compared the size and concentration of isolated exosomes. Different exosomal markers were identified and quantified using a transmission electron microscope (TEM) (CD81) and Western blot (CD9 and CD63). Exosomal miRNA profiles were determined by qRT-PCR using Exiqon Human panel I miRNA assays of 368 pre-selected miRNAs. Proteomic profiles were determined using a label-free spectral counting method with mass spectrometry. Differential expression analysis for miRNAs and proteins was done using student's t-test with a significance cutoff of p-value ≤0.05. We successfully characterized exosomes isolated from HCFs using several complementary techniques. We found no significant differences in the size, quantity, or morphology between exosomes secreted by HCFs with or without KC. Expression of CD81 was confirmed by immuno-EM, and expression of CD63 and CD9 with western blots in all exosome samples. We detected the expression of 72-144 miRNAs (threshold cycle Ct < 36) in all exosome samples. In HKC-derived exosome samples, miR-328-3p, miR-532-5p, miR-345-5p, and miR-424-5p showed unique expression, while let-7c-5p and miR-665 have increased expression. Protein profiling identified 157 proteins in at least half of the exosome samples, with 38 known exosomal proteins. We identified 12 up- and 2 down-regulated proteins in HKC-derived exosomes. The proteins are involved in membrane-bounded vesicles, cytoskeletal, calcium binding, and nucleotide binding. These proteins are predicted to be regulated by NRF2, miR-205, and TGF-β1, which are involved in KC pathogenesis. We successfully characterized the HKC-derived exosomes and profiled their miRNA and protein contents, suggesting their potential role in KC development. Further studies are necessary to determine if and how these exosomes with differential protein/miRNA profiles contribute to the pathogenesis of KC.
Collapse
Affiliation(s)
- Rachel Hadvina
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA, 30912, USA; Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Mariam Lotfy Khaled
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA, 30912, USA; Department of Biochemistry, Cairo University, Egypt
| | - Theresa Akoto
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA, 30912, USA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA, 30912, USA; Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
40
|
Sano T, Ochiai T, Nagayama T, Nakamura A, Kubota N, Kadowaki T, Wakabayashi T, Iwatsubo T. Genetic Reduction of Insulin Signaling Mitigates Amyloid-β Deposition by Promoting Expression of Extracellular Matrix Proteins in the Brain. J Neurosci 2023; 43:7226-7241. [PMID: 37699718 PMCID: PMC10601373 DOI: 10.1523/jneurosci.0071-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/16/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023] Open
Abstract
The insulin/IGF-1 signaling (IIS) regulates a wide range of biological processes, including aging and lifespan, and has also been implicated in the pathogenesis of Alzheimer's disease (AD). We and others have reported that reduced signaling by genetic ablation of the molecules involved in IIS (e.g., insulin receptor substrate 2 [IRS-2]) markedly mitigates amyloid plaque formation in the brains of mouse models of AD, although the molecular underpinnings of the amelioration remain unsolved. Here, we revealed, by a transcriptomic analysis of the male murine cerebral cortices, that the expression of genes encoding extracellular matrix (ECM) was significantly upregulated by the loss of IRS-2. Insulin signaling activity negatively regulated the phosphorylation of Smad2 and Smad3 in the brain, and suppressed TGF-β/Smad-dependent expression of a subset of ECM genes in brain-derived cells. The ECM proteins inhibited Aβ fibril formation in vitro, and IRS-2 deficiency suppressed the aggregation process of Aβ in the brains of male APP transgenic mice as revealed by injection of aggregation seeds in vivo Our results propose a novel mechanism in AD pathophysiology whereby IIS modifies Aβ aggregation and amyloid pathology by altering the expression of ECM genes in the brain.SIGNIFICANCE STATEMENT The insulin/IGF-1 signaling (IIS) has been recognized as a regulator of aging, a leading risk factor for the onset of Alzheimer's disease (AD). In AD mouse models, genetic deletion of key IIS molecules markedly reduces the amyloid plaque formation in the brain, although the molecular underpinnings of this amelioration remain elusive. We found that the deficiency of insulin receptor substrate 2 leads to an increase in the expression of various extracellular matrices (ECMs) in the brain, potentially through TGF-β/Smad signaling. Furthermore, some of those ECMs exhibited the potential to inhibit amyloid plaque accumulation by disrupting the formation of Aβ fibrils. This study presents a novel mechanism by which IIS regulates Aβ accumulation, which may involve altered brain ECM expression.
Collapse
Affiliation(s)
- Toshiharu Sano
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Toshitaka Ochiai
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- Pharmacology Department, Drug Research Center, Kaken Pharmaceutical Company, LTD, Kyoto, 607-8042, Japan
| | - Takeru Nagayama
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ayaka Nakamura
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Clinical Nutrition Therapy, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- Toranomon Hospital, Tokyo, 105-8470, Japan
| | - Tomoko Wakabayashi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Innovative Dementia Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
41
|
Seo JH, Lee HJ, Sim DY, Park JE, Ahn CH, Park SY, Cho AR, Koo J, Shim BS, Kim B, Kim SH. Honokiol inhibits epithelial-mesenchymal transition and hepatic fibrosis via activation of Ecadherin/GSK3β/JNK and inhibition of AKT/ERK/p38/β-catenin/TMPRSS4 signaling axis. Phytother Res 2023; 37:4092-4101. [PMID: 37253375 DOI: 10.1002/ptr.7871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Though Honokiol was known to have anti-inflammatory, antioxidant, anticancer, antithrombotic, anti-viral, metabolic, antithrombotic, and neurotrophic activities, the underlying mechanisms of Honokiol on epithelial-mesenchymal transition (EMT) mediated liver fibrosis still remain elusive so far. Anti-EMT and antifibrotic effects of Honokiol were explored in murine AML-12 hepatocyte cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, wound healing assay, Western blotting and also in CCl4-induced liver injury mouse model by immunohistochemistry. Honokiol significantly suppressed transforming growth factor β1 (TGF-β1)-induced EMT and migration of AML-12 cells along with decreased EMT phenotypes such as loss of cell adhesion and formation of fibroblast like mesenchymal cells in TGF-β1-treated AML-12 cells. Consistently, Honokiol suppressed the expression of Snail and transmembrane protease serine 4 (TMPRSS4), but not p-Smad3, and activated E-cadherin in TGF-β1-treated AML-12 cells. Additionally, Honokiol reduced the expression of β-catenin, p-AKT, p-ERK, p-p38 and increased phosphorylation of glycogen synthase kinase 3 beta (GSK3β) and JNK in TGF-β1-treated AML-12 cells via TGF-β1/nonSmad pathway. Conversely, GSK3β inhibitor SB216763 reversed the ability of Honokiol to reduce Snail, β-catenin and migration and activate E-cadherin in TGF-β1-treated AML-12 cells. Also, Honokiol suppressed hepatic steatosis and necrosis by reducing the expression of TGF-β1 and α-SMA in liver tissues of CCl4 treated mice. These findings provide scientific evidence that Honokiol suppresses EMT and hepatic fibrosis via activation of E-cadherin/GSK3β/JNK and inhibition of AKT/ERK/p38/β-catenin/TMPRSS4 signaling axis.
Collapse
Affiliation(s)
- Jae Hwa Seo
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Su-Yeon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ah-Reum Cho
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinsuk Koo
- Division of Horticulture & Medicinal Plant, Andong National University, Andong, Republic of Korea
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
42
|
Sosnowska M, Kutwin M, Koczoń P, Chwalibog A, Sawosz E. Polyhydroxylated Fullerene C 60(OH) 40 Nanofilms Promote the Mesenchymal-Epithelial Transition of Human Liver Cancer Cells via the TGF-β1/Smad Pathway. J Inflamm Res 2023; 16:3739-3761. [PMID: 37663761 PMCID: PMC10474868 DOI: 10.2147/jir.s415378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Background The various growth factors change the phenotype of neoplastic cells from sedentary (epithelial) to invasive (mesenchymal), which weaken intercellular connections and promote chemotaxis. It can be assumed that the use of anti-inflammatory polyhydroxyfull nanofilms will restore the sedentary phenotype of neoplastic cells in the primary site of the tumor and, consequently, increase the effectiveness of the therapy. Methods The studies were carried out on liver cancer cells HepG2, C3A and SNU-449, and non-cancer hepatic cell line THLE-3. Transforming growth factor (TGF), epidermal growth factor and tumor necrosis factor were used to induce the epithelial-mesenchymal transition. C60(OH)40 nanofilm was used to induce the mesenchymal-epithelial transition. Obtaining an invasive phenotype was confirmed on the basis of changes in the morphology using inverted light microscopy. RT-PCR was used to confirm mesenchymal or epithelial phenotype based on e-cadherin, snail, vimentin expression or others. Water colloids at a concentration of 100 mg/L were used to create nanofilms of fullerene, fullerenol, diamond and graphene oxide. The ELISA test for the determination of TGF expression and growth factor antibody array were used to select the most anti-inflammatory carbon nanofilm. Mitochondrial activity and proliferation of cells were measured by XTT and BrdU tests. Results Cells lost their natural morphology of cells growing in clusters and resembled fibroblast cells after adding a cocktail of factors. Among the four allotropic forms of carbon tested, only the C60(OH)40 nanofilm inhibited the secretion of TGF in all the cell lines used and inhibited the secretion of other factors, including insulin-like growth factor system. Nanofilm C60(OH)40 was non-toxic to liver cells and inhibited the TGF-β1/Smad pathway of invasive cells treated with the growth factor cocktail. Conclusion The introduction of an anti-inflammatory, nontoxic component that can induce the mesenchymal-epithelial transition of cancer cells may represent a future adjuvant therapy after tumor resection.
Collapse
Affiliation(s)
- Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
43
|
Yu J, Zhao X, Yan X, Li W, Liu Y, Wang J, Wang J, Yang Y, Hao Y, Liang Z, Tao Y, Yuan Y, Du Z. Aloe-emodin ameliorated MI-induced cardiac remodeling in mice via inhibiting TGF-β/SMAD signaling via up-regulating SMAD7. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154793. [PMID: 37011420 DOI: 10.1016/j.phymed.2023.154793] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Aloe-emodin (AE), a natural anthraquinone extract from traditional Chinese medicinal plants, has been certified to protect against acute myocardial ischemia. However, its effect on cardiac remodeling after chronic myocardial infarction (MI) and the possible mechanism remain unclear. PURPOSE This study investigated the effect of AE on cardiac remodeling and oxidative damage induced by myocardial infarction (MI) in vitro and explored the underlying mechanisms. METHODS Echocardiography and Masson staining were used to demonstrate myocardial dysfunction and fibrosis. Cell apoptosis was detected by TUNEL staining. The expressions of fibrosis-related factors such as type I collagen, α-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF) were detected by Western blot. RESULTS Our data demonstrated that AE treatment significantly improved cardiac function, reduced structural remodeling, and reduced cardiac apoptosis and oxidative stress in mice with myocardial infarction. In vitro, AE could protect neonatal mouse cardiomyocytes (NMCM) from angiotensin II (Ang II)-induced cardiomyocyte hypertrophy and apoptosis, and significantly inhibited (p < 0.05) Ang II-induced reactive oxygen species (ROS) increase. Furthermore, AE treatment significantly reversed the Ang ii-induced upregulation. CONCLUSION In summary, our work reveals for the first time that AE activates the TGF-β signaling pathway by up-regulating Smad7 expression, which in turn regulates the expression of fibrosis-related genes, ultimately improving cardiac function, inhibiting the development of cardiac fibrosis and hypertrophy in rats with chronic MI.
Collapse
Affiliation(s)
- Jie Yu
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiuye Zhao
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiuqing Yan
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wen Li
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yunqi Liu
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiapan Wang
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jia Wang
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yilian Yang
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Hao
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhen Liang
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yiping Tao
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ye Yuan
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; National key laboratory of frigid cardiovascular disease, Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Zhimin Du
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; National key laboratory of frigid cardiovascular disease, Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
44
|
Callaway DA, Penkala IJ, Zhou S, Cardenas-Diaz F, Babu A, Morley MP, Lopes M, Garcia BA, Morrisey EE. TGFβ controls alveolar type 1 epithelial cell plasticity and alveolar matrisome gene transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540035. [PMID: 37214932 PMCID: PMC10197675 DOI: 10.1101/2023.05.09.540035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Premature birth disrupts normal lung development and places infants at risk for bronchopulmonary dysplasia (BPD), a disease increasing in incidence which disrupts lung health throughout the lifespan. The TGFβ superfamily has been implicated in BPD pathogenesis, however, what cell lineage it impacts remains unclear. We show that Tgfbr2 is critical for AT1 cell fate maintenance and function. Loss of Tgfbr2 in AT1 cells during late lung development leads to AT1-AT2 cell reprogramming and altered pulmonary architecture, which persists into adulthood. Restriction of fetal lung stretch and associated AT1 cell spreading through a model of oligohydramnios enhances AT1-AT2 reprogramming. Transcriptomic and proteomic analysis reveal the necessity of Tgfbr2 expression in AT1 cells for extracellular matrix production. Moreover, TGFβ signaling regulates integrin transcription to alter AT1 cell morphology, which further impacts ECM expression through changes in mechanotransduction. These data reveal the cell intrinsic necessity of TGFβ signaling in maintaining AT1 cell fate and reveal this cell lineage as a major orchestrator of the alveolar matrisome.
Collapse
|
45
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
46
|
Akoto T, Cai J, Nicholas S, McCord H, Estes AJ, Xu H, Karamichos D, Liu Y. Unravelling the Impact of Cyclic Mechanical Stretch in Keratoconus-A Transcriptomic Profiling Study. Int J Mol Sci 2023; 24:7437. [PMID: 37108600 PMCID: PMC10139219 DOI: 10.3390/ijms24087437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Biomechanical and molecular stresses may contribute to the pathogenesis of keratoconus (KC). We aimed to profile the transcriptomic changes in healthy primary human corneal (HCF) and KC-derived cells (HKC) combined with TGFβ1 treatment and cyclic mechanical stretch (CMS), mimicking the pathophysiological condition in KC. HCFs (n = 4) and HKCs (n = 4) were cultured in flexible-bottom collagen-coated 6-well plates treated with 0, 5, and 10 ng/mL of TGFβ1 with or without 15% CMS (1 cycle/s, 24 h) using a computer-controlled Flexcell FX-6000T Tension system. We used stranded total RNA-Seq to profile expression changes in 48 HCF/HKC samples (100 bp PE, 70-90 million reads per sample), followed by bioinformatics analysis using an established pipeline with Partek Flow software. A multi-factor ANOVA model, including KC, TGFβ1 treatment, and CMS, was used to identify differentially expressed genes (DEGs, |fold change| ≥ 1.5, FDR ≤ 0.1, CPM ≥ 10 in ≥1 sample) in HKCs (n = 24) vs. HCFs (n = 24) and those responsive to TGFβ1 and/or CMS. PANTHER classification system and the DAVID bioinformatics resources were used to identify significantly enriched pathways (FDR ≤ 0.05). Using multi-factorial ANOVA analyses, 479 DEGs were identified in HKCs vs. HCFs including TGFβ1 treatment and CMS as cofactors. Among these DEGs, 199 KC-altered genes were responsive to TGFβ1, thirteen were responsive to CMS, and six were responsive to TGFβ1 and CMS. Pathway analyses using PANTHER and DAVID indicated the enrichment of genes involved in numerous KC-relevant functions, including but not limited to degradation of extracellular matrix, inflammatory response, apoptotic processes, WNT signaling, collagen fibril organization, and cytoskeletal structure organization. TGFβ1-responsive KC DEGs were also enriched in these. CMS-responsive KC-altered genes such as OBSCN, CLU, HDAC5, AK4, ITGA10, and F2RL1 were identified. Some KC-altered genes, such as CLU and F2RL1, were identified to be responsive to both TGFβ1 and CMS. For the first time, our multi-factorial RNA-Seq study has identified many KC-relevant genes and pathways in HKCs with TGFβ1 treatment under CMS, suggesting a potential role of TGFβ1 and biomechanical stretch in KC development.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jingwen Cai
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sarah Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Hayden McCord
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Amy J. Estes
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Hongyan Xu
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
47
|
Han DH, Shin MK, Oh JW, Lee J, Sung JS, Kim M. Chronic Exposure to TDI Induces Cell Migration and Invasion via TGF-β1 Signal Transduction. Int J Mol Sci 2023; 24:ijms24076157. [PMID: 37047129 PMCID: PMC10093867 DOI: 10.3390/ijms24076157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Toluene diisocyanate (TDI) is commonly used in manufacturing, and it is highly reactive and causes respiratory damage. This study aims to identify the mechanism of tumorigenesis in bronchial epithelial cells induced by chronic TDI exposure. In addition, transcriptome analysis results confirmed that TDI increases transforming growth factor-beta 1 (TGF-β1) expression and regulates genes associated with cancerous characteristics in bronchial cells. Our chronically TDI-exposed model exhibited elongated spindle-like morphology, a mesenchymal characteristic. Epithelial-mesenchymal transition (EMT) was evaluated following chronic TDI exposure, and EMT biomarkers increased concentration-dependently. Furthermore, our results indicated diminished cell adhesion molecules and intensified cell migration and invasion. In order to investigate the cellular regulatory mechanisms resulting from chronic TDI exposure, we focused on TGF-β1, a key factor regulated by TDI exposure. As predicted, TGF-β1 was significantly up-regulated and secreted in chronically TDI-exposed cells. In addition, SMAD2/3 was also activated considerably as it is the direct target of TGF-β1 and TGF-β1 receptors. Inhibiting TGF-β1 signaling through blocking of the TGF-β receptor attenuated EMT and cell migration in chronically TDI-exposed cells. Our results corroborate that chronic TDI exposure upregulates TGF-β1 secretion, activates TGF-β1 signal transduction, and leads to EMT and other cancer properties.
Collapse
Affiliation(s)
- Dong-Hee Han
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea
| | - Min Kyoung Shin
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea
| | - Jin Wook Oh
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea
| | - Junha Lee
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea
| | - Min Kim
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea
| |
Collapse
|
48
|
da Costa Fernandes CJ, Ferreira MR, Zambuzzi WF. Cyclopamine targeting hedgehog modulates nuclear control of the osteoblast activity. Cells Dev 2023; 174:203836. [PMID: 36972848 DOI: 10.1016/j.cdev.2023.203836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/11/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
It is known that cellular events underlying the processes of bone maintenance, remodeling, and repair have their basis in the embryonic production of bone. Shh signaling is widely described developing important morphogenetic control in bone by modifying the activity of osteoblast. Furthermore, identifying whether it is associated with the modulation of nuclear control is very important to be the basis for further applications. Experimentally, osteoblasts were exposed with cyclopamine (CICLOP) considering up to 1 day and 7 days, here considered an acute and chronic responses respectively. Firstly, we have validated the osteogenic model in vitro by exposing the osteoblasts to classical differentiating solution up to 7 days to allow the analysis of alkaline phosphatase and mineralization. Conversely, our data shows that differentiating osteoblasts present higher activity of inflammasome-related genes, while Shh signaling members were lower, suggesting a negative feedback between them. Thereafter, to better know about the role of Shh signaling on this manner, functional assays using CICLOP (5 μM) were performed and the data validates the previously hypothesis that Shh represses inflammasome related genes activities. Altogether, our data supports the anti-inflammatory effect of Shh signaling by suppressing Tnfα, Tgfβ and inflammasome related genes during osteoblast differentiation, and this comprehension might support the understanding the molecular and cellular mechanisms related in bone regeneration by reporting molecular-related osteoblast differentiation.
Collapse
|
49
|
Ghanemi A, Yoshioka M, St-Amand J. Secreted Protein Acidic and Rich in Cysteine ( SPARC)-Mediated Exercise Effects: Illustrative Molecular Pathways against Various Diseases. Diseases 2023; 11:diseases11010033. [PMID: 36810547 PMCID: PMC9944512 DOI: 10.3390/diseases11010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
The strong benefits of exercise, in addition to the development of both the therapeutic applications of physical activity and molecular biology tools, means that it has become very important to explore the underlying molecular patterns linking exercise and its induced phenotypic changes. Within this context, secreted protein acidic and rich in cysteine (SPARC) has been characterized as an exercise-induced protein that would mediate and induce some important effects of exercise. Herein, we suggest some underlying pathways to explain such SPARC-induced exercise-like effects. Such mechanistic mapping would not only allow us to understand the molecular processes of exercise and SPARC effects but would also highlight the potential to develop novel molecular therapies. These therapies would be based on mimicking the exercise benefits via either introducing SPARC or pharmacologically targeting the SPARC-related pathways to produce exercise-like effects. This is of a particular importance for those who do not have the ability to perform the required physical activity due to disabilities or diseases. The main objective of this work is to highlight selected potential therapeutic applications deriving from SPARC properties that have been reported in various publications.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-(418)-654-2296; Fax: +1-(418)-654-2761
| |
Collapse
|
50
|
Blood Inflammatory-like and Lung Resident-like Eosinophils Affect Migration of Airway Smooth Muscle Cells and Their ECM-Related Proliferation in Asthma. Int J Mol Sci 2023; 24:ijms24043469. [PMID: 36834879 PMCID: PMC9958882 DOI: 10.3390/ijms24043469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Airway remodeling is a hallmark feature of asthma, and one of its key structural changes is increased airway smooth muscle (ASM) mass and disturbed extracellular matrix (ECM) homeostasis. Eosinophil functions in asthma are broadly defined; however, we lack knowledge about eosinophil subtypes' interaction with lung structural cells and their effect on the airway's local microenvironment. Therefore, we investigated the effect of blood inflammatory-like eosinophils (iEOS-like) and lung resident-like eosinophils (rEOS-like) on ASM cells via impact on their migration and ECM-related proliferation in asthma. A total of 17 non-severe steroid-free allergic asthma (AA), 15 severe eosinophilic asthma (SEA) patients, and 12 healthy control subjects (HS) were involved in this study. Peripheral blood eosinophils were enriched using Ficoll gradient centrifugation and magnetic separation, subtyped by using magnetic separation against CD62L. ASM cell proliferation was assessed by AlamarBlue assay, migration by wound healing assay, and gene expression by qRT-PCR analysis. We found that blood iEOS-like and rEOS-like cells from AA and SEA patients' upregulated genes expression of contractile apparatus proteins, COL1A1, FN, TGF-β1 in ASM cells (p < 0.05), and SEA eosinophil subtypes demonstrated the highest effect on sm-MHC, SM22, and COL1A1 gene expression. Moreover, AA and SEA patients' blood eosinophil subtypes promoted migration of ASM cells and their ECM-related proliferation, compared with HS (p < 0.05) with the higher effect of rEOS-like cells. In conclusion, blood eosinophil subtypes may contribute to airway remodeling by upregulating contractile apparatus and ECM component production in ASM cells, further promoting their migration and ECM-related proliferation, with a stronger effect of rEOS-like cells and in SEA.
Collapse
|