1
|
Luo X, Sun J, Kong D, Lei Y, Gong F, Zhang T, Shen Z, Wang K, Luo H, Xu Y. The role of germanium in diseases: exploring its important biological effects. J Transl Med 2023; 21:795. [PMID: 37940963 PMCID: PMC10634018 DOI: 10.1186/s12967-023-04643-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
With the development of organic germanium and nanotechnology, germanium serves multiple biological functions, and its potential value in biochemistry and medicine has increasingly captured the attention of researchers. In recent years, germanium has gradually gained significance as a material in the field of biomedicine and shows promising application prospects. However, there has been a limited amount of research conducted on the biological effects and mechanisms of germanium, and a systematic evaluation is still lacking. Therefore, the aim of this review is to systematically examine the application of germanium in the field of biomedicine and contribute new insights for future research on the functions and mechanisms of germanium in disease treatment. By conducting a comprehensive search on MEDLINE, EMBASE, and Web of Science databases, we systematically reviewed the relevant literature on the relationship between germanium and biomedicine. In this review, we will describe the biological activities of germanium in inflammation, immunity, and antioxidation. Furthermore, we will discuss its role in the treatment of neuroscience and oncology-related conditions. This comprehensive exploration of germanium provides a valuable foundation for the future application of this element in disease intervention, diagnosis, and prevention.
Collapse
Affiliation(s)
- Xiao Luo
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Jiaxue Sun
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Deshenyue Kong
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yi Lei
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Fangyou Gong
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Tong Zhang
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Zongwen Shen
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Kunhua Wang
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China.
- Yunnan University, Kunming, 650032, China.
| | - Huayou Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Yu Xu
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China.
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
2
|
The chemical character of polysaccharides from processed Morindae officinalis and their effects on anti-liver damage. Int J Biol Macromol 2019; 141:410-421. [DOI: 10.1016/j.ijbiomac.2019.08.213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/21/2019] [Accepted: 08/24/2019] [Indexed: 02/08/2023]
|
3
|
Yumimoto K, Sugiyama S, Mimori K, Nakayama KI. Potentials of C-C motif chemokine 2-C-C chemokine receptor type 2 blockers including propagermanium as anticancer agents. Cancer Sci 2019; 110:2090-2099. [PMID: 31111571 PMCID: PMC6609805 DOI: 10.1111/cas.14075] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation plays an essential role in the development and progression of most cancers. Chemokine C‐C motif chemokine 2 (CCL2) and its receptor C‐C chemokine receptor type 2 (CCR2) constitute a key signaling axis in inflammation that has recently attracted much interest on the basis of evidence showing its association with cancer progression. Propagermanium (3‐oxygermylpropionic acid polymer) is an organogermanium compound that is given for the treatment of hepatitis B in Japan and which inhibits the CCL2‐CCR2 signaling pathway. Herein, we review the importance of the CCL2‐CCR2 axis as a target in cancer treatment as shown by studies in mice and humans with pharmacological agents including propagermanium.
Collapse
Affiliation(s)
- Kanae Yumimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shigeaki Sugiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Qi Z, Wang X, Wei H, Sun R, Tian Z. Infiltrating neutrophils aggravate metabolic liver failure in fah-deficient mice. Liver Int 2015; 35:774-85. [PMID: 24840069 DOI: 10.1111/liv.12594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/12/2014] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Mice deficient in tyrosine catabolic enzyme fumarylacetoacetate hydrolase (fah(-/-) ) was a useful animal model for studying liver failure. Tyrosine metabolic toxicants accumulate in hepatocytes over time in fah(-/-) mice, leading to hepatocyte necrosis which we propose release many type of damage associated molecular patterns (DAMPs) and cause chronic inflammation. However, whether immune-mediated inflammations cause a second wave of liver damage in fah(-/-) mice have never been investigated. METHODS The progressive changes in body weight, survival rate and liver inflammation were examined after the protective drug (NTBC) withdrawal. Cell depletion and receptor blocking were used to define the key immune cells and molecules in liver injury. RESULTS After removing of NTBC, fah(-/-) mice lost their body weight gradually, and finally died when the body weight largely reduced (low to 70%), along with increased serum ALT and total bilirubin. Importantly, a large amount of liver-infiltrating neutrophils were observed. Neutrophils depletion reduced the liver failure, and resulted in a better survival of fah(-/-) mice after NTBC withdrawal. The liver tissues produce more CCR2 chemokine, with neutrophils expressing more CCR2. CCR2 inhibition reduced the number of liver-infiltrating neutrophils and increased the expression of repair cytokine IL-22, with a longer survival of fah(-/-) mice after NTBC withdrawal. CONCLUSIONS The excess infiltrating neutrophils exacerbate liver failure in fah(-/-) mice which can be attenuated by blocking CCR2.
Collapse
Affiliation(s)
- Ziping Qi
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | | | | | | | | |
Collapse
|
5
|
The role of chemokines in hepatitis C virus-mediated liver disease. Int J Mol Sci 2014; 15:4747-79. [PMID: 24646914 PMCID: PMC3975423 DOI: 10.3390/ijms15034747] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 12/21/2022] Open
Abstract
The hepatitis C virus (HCV) is a global health problem affecting more than 170 million people. A chronic HCV infection is associated with liver fibrosis, liver cirrhosis and hepatocellular carcinoma. To enable viral persistence, HCV has developed mechanisms to modulate both innate and adaptive immunity. The recruitment of antiviral immune cells in the liver is mainly dependent on the release of specific chemokines. Thus, the modulation of their expression could represent an efficient viral escape mechanism to hamper specific immune cell migration to the liver during the acute phase of the infection. HCV-mediated changes in hepatic immune cell chemotaxis during the chronic phase of the infection are significantly affecting antiviral immunity and tissue damage and thus influence survival of both the host and the virus. This review summarizes our current understanding of the HCV-mediated modulation of chemokine expression and of its impact on the development of liver disease. A profound knowledge of the strategies used by HCV to interfere with the host's immune response and the pro-fibrotic and pro-carcinogenic activities of HCV is essential to be able to design effective immunotherapies against HCV and HCV-mediated liver diseases.
Collapse
|
6
|
Hepatoprotective effect of germanium-containing Spirulina in rats with d-galactosamine- and lipopolysaccharide-induced hepatitis. Br J Nutr 2013; 111:135-40. [DOI: 10.1017/s0007114513001943] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present study, the protective effects of dietary Spirulina (SP) and germanium-containing Spirulina (GeSP) were compared in rats with liver injury induced by an intraperitoneal injection of d-galactosamine and lipopolysaccharide (GalN/LPS). Wistar rats were fed one of the following diets: the basal diet (GalN/LPS-CON group; n 6), the basal diet supplemented with 5 % SP or GeSP (GalN/LPS-SP and GalN/LPS-GeSP group, respectively; n 7 each). After administering these diets for 7 d, each rat was intraperitoneally injected with GalN/LPS. Increases in plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were suppressed in the GalN/LPS-GeSP group (GalN/LPS-CON v. GalN/LPS-GeSP: ALT 1052 (sem 187) v. 509 (sem 88) IU/l and AST 2183 (sem 368) v. 1170 (sem 196) IU/l) following the injection of GalN/LPS. Plasma levels of interferon-γ (IFN-γ) and TNF-α in GeSP-fed rats were significantly lower when compared with those in the GalN/LPS-CON group (GalN/LPS-CON v. GalN/LPS-GeSP: IFN-γ 142·8 (sem 17·5) v. 66·8 (sem 9·7) pg/ml and TNF-α 72·3 (sem 15·4) v. 31·2 (sem 6·8) pg/ml). However, the decrease in these levels observed in the GalN/LPS-SP group was not as prominent as those observed in the GalN/LPS-GeSP group. Furthermore, the increase in liver catalase (CAT) and glutathione peroxidase (GPx) activities, as well as the level of oxidised glutathione (GSSG), was more suppressed in GeSP-fed rats (GalN/LPS-CON v. GalN/LPS-GeSP: CAT 457 (sem 47) v. 262 (sem 54) U/mg liver protein; GPx 1·30 (sem 0·11) v. 0·53 (sem 0·09) U/mg liver protein; GSSG 2·18 (sem 0·33) v. 1·31 (sem 0·24) mmol/kg liver) after the injection of GalN/LPS. These changes were more pronounced in the GalN/LPS-GeSP group than in the GalN/LPS-SP group. These results suggest that GeSP could afford a significant protective effect in the alleviation of GalN/LPS-induced hepatic damage. In addition, the results indicate that GeSP is more effective than SP.
Collapse
|
7
|
Kang YS, Cha JJ, Hyun YY, Cha DR. Novel C-C chemokine receptor 2 antagonists in metabolic disease: a review of recent developments. Expert Opin Investig Drugs 2011; 20:745-56. [PMID: 21466412 DOI: 10.1517/13543784.2011.575359] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION C-C chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1, and its receptor, C-C chemokine receptor 2 (CCR2), play important roles in various inflammatory diseases. Recently, it has been reported that the CCL2/CCR2 pathway also has an important role in the pathogenesis of metabolic syndrome through its association with obesity and related systemic complications. AREAS COVERED This review focuses on the roles of CCR2 in the pathogenesis of adipose tissue inflammation and other organ damage associated with metabolic syndrome, which is still a matter of debate in many studies. It also covers the use of novel CCR2 antagonists as therapies in such conditions. EXPERT OPINION There is abundant experimental evidence that the CCL2/CCR2 pathway may be involved in chronic low-grade inflammation of adipose tissue in obesity and related metabolic diseases. Although animal models of diabetes and obesity, as well as human trials, have produced controversial results, there is continued interest in the roles of CCR2 inhibition in metabolic disease. Further identification of the mechanisms for recruitment and activation of phagocytes and determination of the roles of other chemokines are needed. Future study of these fundamental questions will provide a clearer understanding of adipose tissue biology and potential therapeutic targets for treatment of obesity-related metabolic disease, including diabetic nephropathy.
Collapse
Affiliation(s)
- Young Sun Kang
- Medical College of Korea University, Ansan Hospital, Division of Nephrology, Department of Internal Medicine, Ansan City, Korea
| | | | | | | |
Collapse
|
8
|
Kataoka K, Kono Y, Sugimoto M, Furuichi Y, Shichiri M, Tanaka Y. Hepatocyte-protective and anti-oxidant effects of rifampicin on human chronic hepatitis C and murine acute hepatocyte disorder. Exp Ther Med 2010; 1:1041-1047. [PMID: 22993638 DOI: 10.3892/etm.2010.159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/21/2010] [Indexed: 12/22/2022] Open
Abstract
Rifampicin (RFP) is a semisynthetic antibiotic derived from the rifamycins and is one of the most commonly used pharmaceutical compounds worldwide in the treatment of tuberculosis. We previously reported that low-dose and long-term oral administration of RFP to 6 hepatitis C virus-related liver cirrhosis patients who were at high risk for presenting with hepatocellular carcinoma (HCC) resulted in a marked suppression of the occurrence of HCC without showing an adverse effect. The underlying mechanism was found to be due to the anticancer effect based on the potent anti-angiogenic properties of RFP. The present study revealed that RFP has an additional hepatocyte-protective effect by lowering the release of hepatic enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in chronic hepatitis C patients. Experimentally, we were able to show that RFP had hepatocyte-protective effects in acute hepatocyte disorder models of mice and rats induced by concanavalin A and by D-galactosamine, respectively: RFP significantly prevented an increase in the levels of ALT, AST and lactate dehydrogenase in these animal models. In addition, we found that RFP had a strong anti-oxidant action which was approximately three times stronger than the action of silibinin, an anti-inflammatory agent of human hepatic stellate cells, implicating that the hepatocyte-protective effects of RFP are mediated by its anti-oxidant activity. These results reveal that oral administration of RFP exerts not only a prophylactic effect on the occurrence or recurrence of HCC for an extensive period of time, but also exerts hepatocyte-protective effects on both human chronic hepatitis C and acute hepatocyte disorder in rodent models, and the anti-oxidant activity of RFP is implicated to participate in the latter effects.
Collapse
|
9
|
Tamura Y, Sugimoto M, Murayama T, Minami M, Nishikaze Y, Ariyasu H, Akamizu T, Kita T, Yokode M, Arai H. C-C chemokine receptor 2 inhibitor improves diet-induced development of insulin resistance and hepatic steatosis in mice. J Atheroscler Thromb 2010; 17:219-28. [PMID: 20179360 DOI: 10.5551/jat.3368] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Adipose tissue inflammation induced by macrophage infiltration through the MCP-1/CCR2 pathway is considered to play a pivotal role in the development of visceral obesity and insulin resistance. In the present study, therefore, we examined whether pharmacological inhibition of CCR2 is effective against the development of diet-induced metabolic disorders. METHODS C57BL/6 mice were fed a high fat and sucrose diet with or without propagermanium (CCR2 inhibitor, 5 or 50 mg/kg BW/day) for 12 weeks from 6 weeks of age. Then we analyzed lipid and glucose metabolism and tissue inflammation in the liver and adipose tissues along with serum markers in those mice. RESULTS AND CONCLUSION Propagermanium treatment slightly decreased body weight gain and visceral fat accumulation in diet-induced obese (DIO) mice. Further, propagermanium suppressed macrophage accumulation and shifted adipose tissue macrophage polarization from the pro-inflammatory (M1) state to anti-inflammatory (M2) state in DIO mice. Expressions of TNF-alpha and MCP-1 mRNA in adipose tissue were reduced by propagermanium treatment, indicating that propagermanim suppressed inflammation in adipose tissue. Propagermanium treatment also ameliorated glucose tolerance, insulin sensitivity, and decreased hepatic triglyceride in DIO mice. Thus, propagermanium improved diet-induced obesity and related metabolic disorders, such as insulin resistance and hepatic steatosis by suppressing inflammation in adipose tissue. Our data indicate that inhibition of CCR2 could improve diet-induced metabolic disorders, and that propagermanium may be a beneficial drug for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Yukinori Tamura
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tamura Y, Sugimoto M, Murayama T, Ueda Y, Kanamori H, Ono K, Ariyasu H, Akamizu T, Kita T, Yokode M, Arai H. Inhibition of CCR2 Ameliorates Insulin Resistance and Hepatic Steatosis in db/db Mice. Arterioscler Thromb Vasc Biol 2008; 28:2195-201. [DOI: 10.1161/atvbaha.108.168633] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective—
Recently, adipose tissue inflammation induced by macrophage infiltration through MCP-1/C-C chemokine receptor-2 (CCR2) pathway is considered to play a role in the development of visceral obesity and insulin resistance. In the present study, to further examine the role of CCR2 in the development of obesity and type 2 diabetes, we studied the effect of pharmacological inhibition of CCR2 from the early stage of obesity in db/db mice.
Methods and Results—
Db/+m (lean control) and db/db mice were fed with a standard diet with or without 0.005% propagermanium, as a CCR2 inhibitor for 12 weeks from 6 weeks of age. Propagermanium treatment decreased body weight gain, visceral fat accumulation, and the size of adipocytes only in db/db mice. Further, propagermanium suppressed macrophage accumulation and inflammation in adipose tissue. Propagermanium treatment also ameliorated glucose tolerance and insulin sensitivity, and decreased hepatic triglyceride contents in db/db mice.
Conclusions—
Propagermanium improved obesity and related metabolic disorders, such as insulin resistance and hepatic steatosis by suppressing inflammation in adipose tissue. Our data indicate that inhibition of CCR2 could improve obesity and type 2 diabetes by interfering adipose tissue inflammation, and that propagermanium may be a beneficial drug for the treatment of the metabolic syndrome.
Collapse
Affiliation(s)
- Yukinori Tamura
- From the Departments of Clinical Innovative Medicine (Y.T., M.S., T.M., M.Y.), Cardiovascular Medicine (Y.U., K.O., T.K.), Nephrology (H.K.), and Geriatric Medicine (H.A.), Kyoto University Graduate School of Medicine (H.A., T.A.), Translational Research Center, Kyoto University Hospital (H.A., T.A.), Japan
| | - Masayuki Sugimoto
- From the Departments of Clinical Innovative Medicine (Y.T., M.S., T.M., M.Y.), Cardiovascular Medicine (Y.U., K.O., T.K.), Nephrology (H.K.), and Geriatric Medicine (H.A.), Kyoto University Graduate School of Medicine (H.A., T.A.), Translational Research Center, Kyoto University Hospital (H.A., T.A.), Japan
| | - Toshinori Murayama
- From the Departments of Clinical Innovative Medicine (Y.T., M.S., T.M., M.Y.), Cardiovascular Medicine (Y.U., K.O., T.K.), Nephrology (H.K.), and Geriatric Medicine (H.A.), Kyoto University Graduate School of Medicine (H.A., T.A.), Translational Research Center, Kyoto University Hospital (H.A., T.A.), Japan
| | - Yukihiko Ueda
- From the Departments of Clinical Innovative Medicine (Y.T., M.S., T.M., M.Y.), Cardiovascular Medicine (Y.U., K.O., T.K.), Nephrology (H.K.), and Geriatric Medicine (H.A.), Kyoto University Graduate School of Medicine (H.A., T.A.), Translational Research Center, Kyoto University Hospital (H.A., T.A.), Japan
| | - Hiroshi Kanamori
- From the Departments of Clinical Innovative Medicine (Y.T., M.S., T.M., M.Y.), Cardiovascular Medicine (Y.U., K.O., T.K.), Nephrology (H.K.), and Geriatric Medicine (H.A.), Kyoto University Graduate School of Medicine (H.A., T.A.), Translational Research Center, Kyoto University Hospital (H.A., T.A.), Japan
| | - Koh Ono
- From the Departments of Clinical Innovative Medicine (Y.T., M.S., T.M., M.Y.), Cardiovascular Medicine (Y.U., K.O., T.K.), Nephrology (H.K.), and Geriatric Medicine (H.A.), Kyoto University Graduate School of Medicine (H.A., T.A.), Translational Research Center, Kyoto University Hospital (H.A., T.A.), Japan
| | - Hiroyuki Ariyasu
- From the Departments of Clinical Innovative Medicine (Y.T., M.S., T.M., M.Y.), Cardiovascular Medicine (Y.U., K.O., T.K.), Nephrology (H.K.), and Geriatric Medicine (H.A.), Kyoto University Graduate School of Medicine (H.A., T.A.), Translational Research Center, Kyoto University Hospital (H.A., T.A.), Japan
| | - Takashi Akamizu
- From the Departments of Clinical Innovative Medicine (Y.T., M.S., T.M., M.Y.), Cardiovascular Medicine (Y.U., K.O., T.K.), Nephrology (H.K.), and Geriatric Medicine (H.A.), Kyoto University Graduate School of Medicine (H.A., T.A.), Translational Research Center, Kyoto University Hospital (H.A., T.A.), Japan
| | - Toru Kita
- From the Departments of Clinical Innovative Medicine (Y.T., M.S., T.M., M.Y.), Cardiovascular Medicine (Y.U., K.O., T.K.), Nephrology (H.K.), and Geriatric Medicine (H.A.), Kyoto University Graduate School of Medicine (H.A., T.A.), Translational Research Center, Kyoto University Hospital (H.A., T.A.), Japan
| | - Masayuki Yokode
- From the Departments of Clinical Innovative Medicine (Y.T., M.S., T.M., M.Y.), Cardiovascular Medicine (Y.U., K.O., T.K.), Nephrology (H.K.), and Geriatric Medicine (H.A.), Kyoto University Graduate School of Medicine (H.A., T.A.), Translational Research Center, Kyoto University Hospital (H.A., T.A.), Japan
| | - Hidenori Arai
- From the Departments of Clinical Innovative Medicine (Y.T., M.S., T.M., M.Y.), Cardiovascular Medicine (Y.U., K.O., T.K.), Nephrology (H.K.), and Geriatric Medicine (H.A.), Kyoto University Graduate School of Medicine (H.A., T.A.), Translational Research Center, Kyoto University Hospital (H.A., T.A.), Japan
| |
Collapse
|
11
|
Kitagawa K, Wada T, Furuichi K, Hashimoto H, Ishiwata Y, Asano M, Takeya M, Kuziel WA, Matsushima K, Mukaida N, Yokoyama H. Blockade of CCR2 ameliorates progressive fibrosis in kidney. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:237-246. [PMID: 15215179 PMCID: PMC1618531 DOI: 10.1016/s0002-9440(10)63292-0] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/30/2004] [Indexed: 11/27/2022]
Abstract
Fibrosis is a hallmark of progressive organ diseases. Monocyte chemoattractant protein (MCP)-1, also termed as macrophage chemotactic and activating factor (MCAF/CCL2) and its receptor, CCR2 are presumed to contribute to progressive fibrosis. However, the therapeutic efficacy of MCP-1/CCR2 blockade in progressive fibrosis remains to be investigated. We hypothesized that blockade of CCR2 may lead to the improvement of fibrosis. To achieve this goal, we investigated renal interstitial fibrosis induced by a unilateral ureteral obstruction in CCR2 gene-targeted mice and mice treated with propagermanium or RS-504393, CCR2 inhibitors. Cell infiltrations, most of which were F4/80-positive, were reduced in CCR2 knockout mice. In addition, dual staining revealed that CCR2-positive cells were mainly F4/80-positive macrophages. Importantly, CCR2 blockade reduced renal interstitial fibrosis relative to wild-type mice. Concomitantly, renal transcripts and protein of MCP-1, transforming growth factor-beta, and type I collagen were decreased in CCR2-null mice. Further, this CCR2-dependent loop for renal fibrosis was confirmed by treatment with CCR2 antagonists in a unilateral ureteral obstruction model. These findings suggest that the therapeutic strategy of blocking CCR2 may prove beneficial for progressive fibrosis via the decrease in infiltration and activation of macrophages in the diseased kidneys.
Collapse
Affiliation(s)
- Kiyoki Kitagawa
- Department of Gastroenterology and Nephrology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Badr El-Din NK. Protective role of sanumgerman against γ-irradiation–induced oxidative stress in Ehrlich carcinoma-bearing mice. Nutr Res 2004. [DOI: 10.1016/j.nutres.2003.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Fujino M, Kawasaki M, Funeshima N, Kitazawa Y, Kosuga M, Okabe K, Hashimoto M, Yaginuma H, Mikoshiba K, Okuyama T, Suzuki S, Li XK. CrmA gene expression protects mice against concanavalin-A-induced hepatitis by inhibiting IL-18 secretion and hepatocyte apoptosis. Gene Ther 2003; 10:1781-90. [PMID: 12939645 DOI: 10.1038/sj.gt.3302067] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activated cytotoxic T-cell-mediated hepatocyte apoptosis via Fas/Fas-ligand and perforin/granzyme pathways are believed to involve the model of concanavalin A (ConA)-induced hepatitis. The purpose of the present study is to investigate whether the cytokine response modifier A (crmA) gene effectively inhibits the hepatocyte apoptosis of ConA-induced hepatitis. We examined survival rates, liver pathology, immune histological changes, and cytokine profiles from mice receiving the recombinant adenovirus vectors containing cre and/or crmA genes, transferred to the liver 3 days before ConA injection, and a crmA gene nonexpression control group. Injection of ConA into mice rapidly led to massive hepatocyte apoptosis, and infiltration of leukocytes, especially CD11b(+) inflammatory cells. In contrast, liver damage was dramatically reduced in the mice that expressed the crmA gene. However, infiltration by CD4(+) cells was not affected. The survival of the mice increased significantly to 100% in the treated group versus the control group. Furthermore, we demonstrated that interleukin (IL)-18 plays an important role in ConA-induced hepatitis, and that crmA expression significantly inhibited IL-18 secretion. Our results showed that the crmA gene effectively inhibits apoptosis induced by ConA hepatitis. This indicates a potential therapeutic usage of crmA for protection from cellular damage due to hepatitis.
Collapse
Affiliation(s)
- M Fujino
- Department of Innovative Surgery, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gaudenzi S, Furfaro MG, Pozzi D, Silvestri I, Congiu Castellano A. Cell-metal interaction studied by cytotoxic and FT-IR spectroscopic methods. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2003; 14:51-59. [PMID: 21782662 DOI: 10.1016/s1382-6689(03)00024-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Accepted: 02/26/2003] [Indexed: 05/31/2023]
Abstract
The main purpose of this work is to investigate the possibility of utilizing both a classical biological method to test cytotoxicity and a physical measurement procedure as the FT-IR spectroscopy to study the interaction between cells lines and heavy metals. Jurkart, a lymphocyte cell line, was treated with cadmium chloride, cadmium oxide and the organic germanium compound named Ge-oxy-132. The utilized value of heavy metal concentration allows us to obtain significant results with both methods and with all metals. In fact by using lower values of concentration any effect is revealed after treatment with germanium. The results of the simultaneous measurements by both experimental procedures are here reported for the first time and show that, while the cytotoxic effects of the two cadmium compounds are confirmed, the organic germanium compound reveals a very different and interesting interaction with Jurkart cells. The behaviour of the Jurkart cells upon the uptake of cadmium or organic germanium is very different: while treatment with CdO and CdCl(2) determines proteins denaturation and lipids oxidation in cells until the death, these processes are not revealed after Ge-oxy-132 treatment.
Collapse
Affiliation(s)
- Silvia Gaudenzi
- INFM and Dipartimento di Fisica, Università di Roma 'La Sapienza', P.le Aldo Moro 2, Rome, Italy
| | | | | | | | | |
Collapse
|
15
|
Yamashita T, Kawashima S, Ozaki M, Namiki M, Inoue N, Hirata KI, Yokoyama M. Propagermanium reduces atherosclerosis in apolipoprotein E knockout mice via inhibition of macrophage infiltration. Arterioscler Thromb Vasc Biol 2002; 22:969-74. [PMID: 12067906 DOI: 10.1161/01.atv.0000019051.88366.9c] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Monocyte chemoattractant protein-1 (MCP-1), which binds to C-C chemokine receptor 2, has been implicated as the primary source of monocyte chemoattractant function in the early stages of atherosclerosis. Recently, propagermanium, a drug used clinically for the treatment of chronic hepatitis in Japan, has been shown to inhibit C-C chemokine receptor 2 function and suppress monocyte/macrophage infiltration in vitro and in vivo. Given the importance of monocyte infiltration in atherogenesis, the inhibition of it by propagermanium might prevent atherosclerosis. Apolipoprotein E knockout (apoE-KO) mice were fed an atherogenic high cholesterol diet with or without 0.005% propagermanium for 8 or 12 weeks. Although the plasma lipid levels were unchanged by the drug treatment, atherosclerotic lesion area in the aortic root was reduced by 50% in the drug-treated apoE-KO mice compared with the nontreated apoE-KO mice after 8 weeks of cholesterol feeding (0.62+/-0.12 versus 1.27+/-0.07 mm2, respectively; P<0.01). Moreover, the accumulation of macrophages in the lesions was markedly reduced in the drug-treated group (macrophage positive area, 0.23+/-0.06 mm2 [drug-treated group] versus 0.67+/-0.07 mm2 [control group]; P<0.01). After 12 weeks of cholesterol feeding, atherosclerotic lesion formation in the aortic root and in the descending thoracic aorta was significantly reduced in the drug-treated group. Inhibition of macrophage infiltration by propagermanium prevented the formation of atherosclerotic lesions in apoE-KO mice. This drug may serve as a therapeutic tool for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Tomoya Yamashita
- Division of Cardiovascular and Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhang XL, Quan QZ, Sun ZQ, Wang YJ, Jiang XL, Wang D, Li WB. Protective effects of cyclosporine A on T-cell dependent ConA-induced liver injury in Kunming mice. World J Gastroenterol 2001; 7:569-71. [PMID: 11819832 PMCID: PMC4688676 DOI: 10.3748/wjg.v7.i4.569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- X L Zhang
- Department of Gastroenterology, Chinese PLA General Hospital of Jinan Command Area, Jinan 250031, Shandong Province, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Yokochi S, Hashimoto H, Ishiwata Y, Shimokawa H, Haino M, Terashima Y, Matsushima K. An anti-inflammatory drug, propagermanium, may target GPI-anchored proteins associated with an MCP-1 receptor, CCR2. J Interferon Cytokine Res 2001; 21:389-98. [PMID: 11440636 DOI: 10.1089/107999001750277862] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1) promotes the migration and activation of monocytes and plays a pivotal role in the development of chronic inflammation. Propagermanium (3-oxygermylpropionic acid polymer) has been used as a therapeutic agent against chronic hepatitis B in Japan. We report here that propagermanium specifically inhibits in vitro chemotactic migration of monocytes by MCP-1. Propagermanium did not inhibit binding of MCP-1 to a human monocytic cell line, THP-1 cells, or affect intracellular Ca(2+) mobilization or the cAMP concentration in MCP-1-treated THP-1 cells. The effect of propagermanium seems to require glycosylphosphatidylinositol (GPI)-anchored proteins, as cleavage of GPI anchors by phosphatidylinositol-phospholipase C (PI-PLC) eliminated the inhibitory activity of propagermanium. Anti-GPI-anchored protein antibodies, such as anti-CD55 and anti-CD59, reduced staining of C-C chemokine receptor 2 (CCR2) with an anti-CCR2 antibody against the N-terminus of CCR2 in a flow cytometric analysis, and these antibodies also selectively inhibited MCP-1-induced migration of THP-1 cells. Furthermore, under fluorescence microscopy, GPI-anchored proteins colocalized with CCR2 on THP-1 cells. These results suggest that propagermanium may target GPI-anchored proteins that are closely associated with CCR2 to selectively inhibit the MCP-1-induced chemotaxis, thus providing a mechanistic basis for the anti-inflammatory effects of the drug.
Collapse
Affiliation(s)
- S Yokochi
- Central Research Laboratory, Sanwa Kagaku Kenkyusho Co., Ltd., Hokusei-cho, Inabe-gun, Mie 511-0406, Japan
| | | | | | | | | | | | | |
Collapse
|