1
|
Lauterbach AL, Slezak AJ, Wang R, Cao S, Raczy MM, Watkins EA, Jimenez CJM, Hubbell JA. Mannose-Decorated Co-Polymer Facilitates Controlled Release of Butyrate to Accelerate Chronic Wound Healing. Adv Healthc Mater 2023; 12:e2300515. [PMID: 37503634 PMCID: PMC11468131 DOI: 10.1002/adhm.202300515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Indexed: 07/29/2023]
Abstract
Butyrate is a key bacterial metabolite that plays an important and complex role in modulation of immunity and maintenance of epithelial barriers. Its translation to clinic is limited by poor bioavailability, pungent smell, and the need for high doses, and effective delivery strategies have yet to realize clinical potential. Here, a novel polymeric delivery platform for tunable and sustainable release of butyrate consisting of a methacrylamide backbone with butyryl ester or phenyl ester side chains as well as mannosyl side chains, which is also applicable to other therapeutically relevant metabolites is reported. This platform's utility in the treatment of non-healing diabetic wounds is explored. This butyrate-containing material modulated immune cell activation in vitro and induced striking changes in the milieu of soluble cytokine and chemokine signals present within the diabetic wound microenvironment in vivo. This novel therapy shows efficacy in the treatment of non-healing wounds through the modulation of the soluble signals present within the wound, and importantly accommodates the critical temporal regulation associated with the wound healing process. Currently, the few therapies to address non-healing wounds demonstrate limited efficacy. This novel platform is positioned to address this large unmet clinical need and improve the closure of otherwise non-healing wounds.
Collapse
Affiliation(s)
| | - Anna J. Slezak
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Ruyi Wang
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Shijie Cao
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Michal M. Raczy
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Elyse A. Watkins
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | | | - Jeffrey A. Hubbell
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| |
Collapse
|
2
|
Wolf EW, Howard ZP, Duan L, Tam H, Xu Y, Cyster JG. GPR174 signals via G αs to control a CD86-containing gene expression program in B cells. Proc Natl Acad Sci U S A 2022; 119:e2201794119. [PMID: 35639700 PMCID: PMC9191659 DOI: 10.1073/pnas.2201794119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
GPR174 is abundantly expressed in B and T lymphocytes and has a role in restraining T cell responses, but the function of GPR174 in B cells is less clear. Here we report that upon in vitro culture B cells undergo a spontaneous GPR174-dependent activation process that is associated with marked changes in gene expression, including up-regulation of Cd86, Nr4a1, Ccr7, and phosphodiesterases. B cells lacking Gαs show a block in induction of the GPR174-dependent program. Spontaneous up-regulation of CD86 in cultured B cells is dependent on protein kinase A. Both GPR174- and Gαs-deficient B cells show enhanced survival in culture. In vivo, GPR174 contributes to NUR77 expression in follicular B cells and is needed for establishing a marginal zone compartment of normal size. Treatment of mice with lysophosphatidylserine (lysoPS), a GPR174 ligand, is sufficient to promote CD86 up-regulation by follicular B cells. These findings demonstrate that GPR174 can signal via Gαs to modulate B cell gene expression and show this can occur in vivo in response to lysoPS. Additionally, the findings illuminate a pathway that might be targeted to improve systems for the in vitro study of B cell responses.
Collapse
Affiliation(s)
- Elise W. Wolf
- HHMI, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Zachary P. Howard
- HHMI, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Lihui Duan
- HHMI, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Hanson Tam
- HHMI, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Ying Xu
- HHMI, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Jason G. Cyster
- HHMI, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| |
Collapse
|
3
|
Hussein YM, Hendawy DM, Alghamdy AN, Raafat N. Phenotypic and genetic evaluation of human monocyte-derived dendritic cells generated from whole blood for immunotherapy. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Dendritic cells (DCs) recognize different pathogens and cancer cells and activate the adaptive immune response. The generation of effective DC-based cancer vaccines depends on the appropriate differentiation of monocytes in vitro. This study aimed to standardize a protocol for the in vitro differentiation of human peripheral blood monocytes into immature DCs upon treatment with growth factors and generate monocyte-derived DCs (MoDCs). Peripheral blood mononuclear cells were separated from peripheral blood. After monocyte enrichment by plastic adhesion, monocytes were cultured for 6 days in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 to generate immature DCs. The cells were examined by microscopy. Using flow cytometry, DCs were evaluated for the expression of the CD83 and HLA-DR surface antigens, for the uptake of fluorescein isothiocyanate conjugated dextran, and also for the expression of CD80 and CD86 mRNA.
Results
CD80 and CD86 genes expression was upregulated at day six and exhibited a significant difference (P < 0.05). DCs showed positive expression of the CD83 and HLA-DR surface antigens by flow cytometry and FITC-conjugated dextran uptake.
Conclusion
This study represents a preliminary trial to generate immature MoDCs in vitro from blood monocytes collected by the flask adherence method. It offers a panel of surface markers for DCs characterization and provides Immature DCs for experimental procedures after 6 incubation days.
Collapse
|
4
|
Li Y, Yu Q, Zhao W, Zhang J, Liu W, Huang M, Zeng X. Oligomeric proanthocyanidins attenuate airway inflammation in asthma by inhibiting dendritic cells maturation. Mol Immunol 2017; 91:209-217. [PMID: 28963930 DOI: 10.1016/j.molimm.2017.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 12/23/2022]
Abstract
To date, although a promising anti-inflammatory activity of oligomeric proanthocyanidins (OPCs) has been observed in asthma, the mechanism responsible for these immunomodulatory properties remains obscure. Dendritic cells (DCs) that reside in the airway have been widely perceived as an important contributor to asthma. Our study was to demonstrate OPCs' effects on maturation and immunoregulation of pulmonary CD11c+ dendritic cells (DCs). BALB/c mice were exposed to ovalbumin (OVA) to induce murine model of asthma. In addition, pulmonary DCs and bone marrow-derived DCs (BMDCs) cultures were used to evaluate impacts of OPCs on DCs function. The results obtained here indicated that OPCs treatment dramatically reduced airway inflammation, such as the infiltration of inflammatory cells and the levels of allergen-specific serum IgE and Th2 cytokines. The expression of co-stimulatory molecules especially CD86 distributed on pulmonary DCs and bone marrow-derived DCs (BMDCs) also markedly declined. The phosphorylation of cAMP responsive element-binding protein (CREB) was significantly inhibited while no changes were observed in the expression of cAMP responsive element modulator (CREM). By transferring BMDCs into the airways of naïve mice, we found that OPCs-treated DCs (DC+OVA+OPC) were much less potent in promoting CD4+ T cells proliferation than OVA-pulsed DCs (DC+OVA), followed by the ameliorated eosinophilic inflammation in airway. Our findings tailor a novel profile of OPCs in the regulation of DCs function, shedding new light on the therapeutic potential of OPCs in asthma management.
Collapse
Affiliation(s)
- Yeshan Li
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Qijun Yu
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Wenxue Zhao
- Lung Biology Center, Department of Medicine, University of California San Francisco, San Francisco, California 94143, USA
| | - Jiaxiang Zhang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Wentao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Guangzhou Road, Nanjing, Jiangsu 210017, China
| | - Mao Huang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| | - Xiaoning Zeng
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
5
|
Romero-Tlalolini MA, Chávez Olmos P, Garrido E. Differential DNA methylation patterns in the CD86 gene controls its constitutive expression in keratinocytes. Biochem Biophys Res Commun 2013; 438:54-60. [PMID: 23867827 DOI: 10.1016/j.bbrc.2013.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 01/12/2023]
Abstract
The interaction of B7 family members with appropriate receptors is essential for an effective T cell response. CD80 and CD86 are the principal co-stimulatory molecules of this family and they are mainly expressed on professional antigen presenting cells (APCs), but also on several non-lymphoid cells. CD86 is constitutively expressed in keratinocytes from the spinous layer of normal cervical epithelium. However, the mechanisms that control the expression of this gene in epithelial cells remain unknown. We analyzed the DNA methylation status of the CD86 promoter and a CpG island located in the upstream intergenic region in keratinocyte-derived cell lines. In those cell lines where CD86 is expressed, a high degree of methylation in the CpG island was observed. However, a CpG dinucleotide within the cAMP response element (CRE) in the promoter region was consistently unmethylated and associated to the transcription factor CREB, as demonstrated by ChIP assays. The opposite methylation pattern was observed in cell lines where CD86 is not expressed, affecting also the binding of CREB. The analysis of the DNA methylation pattern of this gene in cells from the spinous and basal layers of normal cervical epithelium showed a similar profile to that observed in cell lines with and without expression of CD86 respectively. Our results indicate that the methylation pattern in the CD86 promoter and CpG island is closely related to the expression of this co-stimulatory molecule in keratinocytes.
Collapse
Affiliation(s)
- M A Romero-Tlalolini
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Mexico City, Mexico.
| | | | | |
Collapse
|
6
|
Modulation of histone deacetylase attenuates naloxone-precipitated opioid withdrawal syndrome. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:605-19. [DOI: 10.1007/s00210-012-0739-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 02/06/2012] [Indexed: 01/01/2023]
|
7
|
Kim HC, Choi KC, Choi HK, Kang HB, Kim MJ, Lee YH, Lee OH, Lee J, Kim YJ, Jun W, Jeong JW, Yoon HG. HDAC3 selectively represses CREB3-mediated transcription and migration of metastatic breast cancer cells. Cell Mol Life Sci 2010; 67:3499-510. [PMID: 20473547 PMCID: PMC11115716 DOI: 10.1007/s00018-010-0388-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/19/2010] [Accepted: 04/23/2010] [Indexed: 12/19/2022]
Abstract
We identified CREB3 as a novel HDAC3-interacting protein in a yeast two-hybrid screen for HDAC3-interacting proteins. Among all class I HDACs, CREB3 specifically interacts with HDAC3, in vitro and in vivo. HDAC3 efficiently inhibited CREB3-enhanced NF-κB activation, whereas the other class I HDACs did not alter NF-κB-dependent promoter activities or the expression of NF-κB target genes. Importantly, both knock-down of CREB3 and overexpression of HDAC3 suppressed the transcriptional activation of the novel CREB3-regulated gene, CXCR4. Furthermore, CREB3 was shown to bind to the CRE element in the CXCR4 promoter and to activate the transcription of the CXCR4 gene by causing dissociation of HDAC3 and subsequently increasing histone acetylation. Importantly, both the depletion of HDAC3 and the overexpression of CREB3 substantially increased the migration of MDA-MB-231 metastatic breast cancer cells. Taken together, these findings suggest that HDAC3 selectively represses CREB3-mediated transcriptional activation and chemotactic signalling in human metastatic breast cancer cells.
Collapse
Affiliation(s)
- Han-Cheon Kim
- Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, Brain Korea 21 Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung-Chul Choi
- Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, Brain Korea 21 Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo-Kyoung Choi
- Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, Brain Korea 21 Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hee-Bum Kang
- Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, Brain Korea 21 Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Mi-Jeong Kim
- Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, Brain Korea 21 Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yoo-Hyun Lee
- Department of Food and Nutrition, The University of Suwon, Suwon, Korea
| | - Ok-Hee Lee
- Severance Hospital Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University Health System, Seoul, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin-si, Kyunggi-do 446-701 South Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Jochiwon-eup, Yeongi-gun, Chungnam Korea
| | - Woojin Jun
- Department of Food and Nutrition, Chonnam National University, Gwangju, Korea
| | - Jae-Wook Jeong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, Brain Korea 21 Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Ahlmann M, Varga G, Sturm K, Lippe R, Benedyk K, Viemann D, Scholzen T, Ehrchen J, Müller FU, Seidl M, Matus M, Tsokos GC, Roth J, Tenbrock K. The cyclic AMP response element modulator {alpha} suppresses CD86 expression and APC function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:4167-74. [PMID: 19299714 PMCID: PMC2786066 DOI: 10.4049/jimmunol.0802976] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cAMP response element modulator (CREM)alpha is a widely expressed transcriptional repressor that is important for the termination of the T cell immune response and contributes to the abnormal T cell function in patients with systemic lupus erythematosus. We present evidence that APCs of Crem(-/-) mice express increased amounts of the costimulatory molecule CD86 and induce enhanced Ag-dependent and Ag-independent T cell proliferation. Similarly, human APCs in which CREMalpha was selectively suppressed expressed more CD86 on the surface membrane. CREMalpha was found to bind to the CD86 promoter and suppressed its activity. Transfer of APCs from Crem(-/-) mice into naive mice facilitated a significantly stronger contact dermatitis response compared with mice into which APCs from Crem(+/+) mice had been transferred. We conclude that CREMalpha is an important negative regulator of costimulation and APC-dependent T cell function both in vitro and in vivo.
Collapse
Affiliation(s)
- Martina Ahlmann
- Institute of Immunology, University of Münster, Münster Germany
- Department of Pediatrics, University of Münster, Münster Germany
| | - Georg Varga
- Institute of Immunology, University of Münster, Münster Germany
| | - Karsten Sturm
- Institute of Immunology, University of Münster, Münster Germany
- Interdisziplinäres Zentrum für Klinische Forschung Research Group 5, University of Münster, Münster Germany
| | - Ralph Lippe
- Institute of Immunology, University of Münster, Münster Germany
- Interdisziplinäres Zentrum für Klinische Forschung Research Group 5, University of Münster, Münster Germany
| | - Konrad Benedyk
- Institute of Immunology, University of Münster, Münster Germany
- Interdisziplinäres Zentrum für Klinische Forschung Research Group 5, University of Münster, Münster Germany
| | | | - Thomas Scholzen
- Institute of Cell Biology, University of Münster, Münster Germany
| | - Jan Ehrchen
- Institute of Immunology, University of Münster, Münster Germany
| | - Frank U. Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster Germany
| | - Matthias Seidl
- Institute of Pharmacology and Toxicology, University of Münster, Münster Germany
| | - Marek Matus
- Institute of Pharmacology and Toxicology, University of Münster, Münster Germany
| | - George C. Tsokos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster Germany
- Department of Pediatrics, University of Münster, Münster Germany
| | - Klaus Tenbrock
- Institute of Immunology, University of Münster, Münster Germany
- Interdisziplinäres Zentrum für Klinische Forschung Research Group 5, University of Münster, Münster Germany
- Department of Pediatrics, Rheinisch-Westfälische Technische Hochschule, Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Baradari V, Höpfner M, Huether A, Schuppan D, Scherübl H. Histone deacetylase inhibitor MS-275 alone or combined with bortezomib or sorafenib exhibits strong antiproliferative action in human cholangiocarcinoma cells. World J Gastroenterol 2007; 13:4458-66. [PMID: 17724801 PMCID: PMC4611578 DOI: 10.3748/wjg.v13.i33.4458] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the antiproliferative effect of the histone deacetylase (HDAC) inhibitor MS-275 on cholangiocarcinoma cells alone and in combination with conventional cytostatic drugs (gemcitabine or doxorubicin) or the novel anticancer agents sorafenib or bortezomib.
METHODS: Two human bile duct adenocarcinoma cell lines (EGI-1 and TFK-1) were studied. Crystal violet staining was used for detection of cell number changes. Cytotoxicity was determined by measuring the release of the cytoplasmic enzyme lactate dehydrogenase (LDH). Apoptosis was determined by measuring the enzyme activity of caspase-3. Cell cycle status reflected by the DNA content was detected by flow cytometry.
RESULTS: MS-275 treatment potently inhibited the proliferation of EGI-1 and TFK-1 cholangiocarcinoma cells by inducing apoptosis and cell cycle arrest. MS-275-induced apoptosis was characterized by activation of caspase-3, up-regulation of Bax and down-regulation of Bcl-2. Cell cycle was predominantly arrested at the G1/S checkpoint, which was associated with induction of the cyclin-dependent kinase inhibitor p21Waf/CIP1. Furthermore, additive anti-neoplastic effects were observed when MS-275 treatment was combined with gemcitabine or doxorubicin, while combination with the multi-kinase inhibitor sorafenib or the proteasome inhibitor bortezomib resulted in overadditive anti-neoplastic effects.
CONCLUSION: The growth of human cholangiocarcinoma cells can be potently inhibited by MS-275 alone or in combination with conventional cytostatic drugs or new, targeted anticancer agents.
Collapse
Affiliation(s)
- Viola Baradari
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | |
Collapse
|
10
|
Nencioni A, Beck J, Werth D, Grünebach F, Patrone F, Ballestrero A, Brossart P. Histone deacetylase inhibitors affect dendritic cell differentiation and immunogenicity. Clin Cancer Res 2007; 13:3933-41. [PMID: 17606727 DOI: 10.1158/1078-0432.ccr-06-2903] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Histone deacetylases (HDAC) modulate gene transcription and chromatin assembly by modifying histones at the posttranscriptional level. HDAC inhibitors have promising antitumor activity and are presently explored in clinical studies. Cumulating evidence in animal models of immune disorders also suggests immunosuppressive properties for these small molecules, although the underlying mechanisms remain at present poorly understood. Here, we have evaluated the effects of two HDAC inhibitors currently in clinical use, sodium valproate and MS-275, on human monocyte-derived DCs. EXPERIMENTAL DESIGN DCs were generated from monocytes through incubation with granulocyte macrophage colony-stimulating factor and interleukin-4. DC maturation was induced by addition of polyinosinic-polycytidylic acid. DC phenotype, immunostimulatory capacity, cytokine secretion, and migratory capacity were determined by flow cytometry, mixed leukocyte reaction, ELISA, and Transwell migration assay, respectively. Nuclear translocation of RelB, IFN regulatory factor (IRF)-3, and IRF-8 were determined by immunoblotting. RESULTS HDAC inhibition skews DC differentiation by preventing the acquisition of the DC hallmark CD1a and by affecting the expression of costimulation and adhesion molecules. In addition, macrophage inflammatory protein-3beta/chemokine, motif CC, ligand 19-induced migration, immunostimulatory capacity, and cytokine secretion by DCs are also profoundly impaired. The observed defects in DC function on exposure to HDAC inhibitors seem to reflect the obstruction of signaling through nuclear factor-kappaB, IRF-3, and IRF-8. CONCLUSIONS HDAC inhibitors exhibit strong immunomodulatory properties in human DCs. Our results support the evaluation of HDAC inhibitors in inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Alessio Nencioni
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Ortiz-Sánchez E, Chávez-Olmos P, Piña-Sánchez P, Salcedo M, Garrido E. Expression of the costimulatory molecule CD86, but not CD80, in keratinocytes of normal cervical epithelium and human papillomavirus-16 positive low squamous intraepithelial lesions. Int J Gynecol Cancer 2007; 17:571-580. [PMID: 17386046 DOI: 10.1111/j.1525-1438.2007.00904.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Keratinocytes have been traditionally considered as nonprofessional antigen presenting cells, since multipassaged cells from skin biopsies of healthy individuals do not constitutively express major histocompatibility complex (MHC) class II or costimulatory molecules, but can be induced to do so after exposure to interferon-gamma. In normal and human papillomavirus (HPV)-infected cervical epithelium, keratinocytes are affected by a variety of soluble mediators that could modulate the expression of molecules including costimulatory proteins; however, the presence of these molecules within the cervix has been poorly studied. Therefore, our aim was to further explore the presence of costimulatory molecules on normal cervical epithelium and HPV-16 positive low squamous intraepithelial lesions (LSIL). We found in situ CD86 (but not CD80) displayed on the surface of normal keratinocytes from the spinous layer of human cervical epithelium. The presence of the protein and its messenger RNA level (evaluated by in situ hybridization) was diminished in HPV-16 positive LSILs. Although downregulation of costimulatory molecules is frequently related to cytokines expression, we did not observe differences in the presence of interleukin-10, the main cytokine that inhibits CD86 expression. Expression of CD86 on keratinocytes from normal cervical epithelium could indicate the potentiality of these cells to activate cytotoxic T cells, while the shut-off of this molecule in HPV-16 positive lesions could be a mechanism for evading host immune surveillance, resulting in the persistent HPV infection and probable progression of cervical lesions.
Collapse
Affiliation(s)
- E Ortiz-Sánchez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF
| | | | | | | | | |
Collapse
|
12
|
Schnitzler AC, Burke JM, Wetzler LM. Induction of cell signaling events by the cholera toxin B subunit in antigen-presenting cells. Infect Immun 2007; 75:3150-9. [PMID: 17353279 PMCID: PMC1932910 DOI: 10.1128/iai.00581-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera toxin (CT) is one of the most effective and widely studied mucosal adjuvants. Although the ADP-ribosylating A subunit has been implicated in augmenting immune responses, the receptor-binding B subunit (CT-B) has greater immunogenicity and may be a repository of adjuvant activity without potential toxicity. In order to elucidate mechanisms of immune modulation by CT-B alone, primary B cells and macrophages were assessed for responses to CT-B in vitro, as measured by the expression of cell surface markers, cellular signaling events, and cytokine secretion. Increased phosphorylation of multiple signaling molecules, including Erk1/2 and p38, was detected. CT-B also induced transactivation of the transcription elements cyclic AMP-responsive element and NF-kappaB, the latter of which was inhibited by phosphotyrosine inhibition. While specific inhibition of MEK1/2 did not reduce CT-B induction of cell surface marker expression, it did attenuate CT-B-mediated interleukin-6 secretion. These data show that CT-B induces a set of signaling events related to cellular activation, surface molecule expression, and cytokine production that has potential implications for elucidating CT-B adjuvant activity in the absence of enzymatically active holotoxin.
Collapse
Affiliation(s)
- Aletta C Schnitzler
- Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
13
|
Rosato RR, Grant S. Histone deacetylase inhibitors: insights into mechanisms of lethality. Expert Opin Ther Targets 2007; 9:809-24. [PMID: 16083344 DOI: 10.1517/14728222.9.4.809] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Histone deacetylases (HDACs) have recently emerged as an important target for therapeutic intervention in cancer and potentially other human diseases. By modulating the acetylation status of histones, histone deacetylase inhibitors (HDACIs) alter the transcription of genes involved in cell growth, maturation, survival and apoptosis, among other processes. Early clinical results suggest a potentially useful role for HDACIs in the treatment of certain forms of lymphoma (e.g., cutaneous T cell lymphoma) and acute leukaemia. An unresolved question is how HDACIs induce cell death in tumour cells. Recent studies suggest that acetylation of nonhistone proteins may play an important role in the biological effects of this class of compounds, and may explain lack of correlation between histone acetylation and induction of cell death by HDACIs in some circumstances. Recently, attention has focussed on the effects of HDACIs on disruption of co-repressor complexes, induction of oxidative injury, upregulation of the expression of death receptors, generation of lipid second messengers such as ceramide, interference with the function of chaperone proteins and modulation of the activity of NF-kappaB as critical determinants of lethality. Aside from providing critical insights into the mechanism of action of HDACIs in neoplastic disease, these findings may provide a foundation for the rational development of combination studies, involving HDACIs in combination with either conventional cytotoxic drugs as well as more novel targeted agents.
Collapse
Affiliation(s)
- Roberto R Rosato
- Department of Medicine, Virginia Commonwealth University, Medical College of Virginia, Richmond, VA 23298, USA
| | | |
Collapse
|
14
|
Zou GM, Hu WY. LIGHT regulates CD86 expression on dendritic cells through NF-kappaB, but not JNK/AP-1 signal transduction pathway. J Cell Physiol 2006; 205:437-43. [PMID: 15895390 DOI: 10.1002/jcp.20420] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The members of the tumor necrosis factor (TNF) family play pivotal roles in the regulation of the immune system. LIGHT is a type II transmembrane protein belonging to the TNF family that was originally identified as a weak inducer of apoptosis. This cytokine has been extensively studied for its role in T cell regulation. Recently, we identified its role in inducing maturation of dendritic cells, such as LIGHT upregulated CD86 expression on dendritic cells in our previous report. However, the signal transduction pathway on this regulation remains unknown. In this study, we found that LIGHT activated NF-kappaB, p44/42 MAPK, but not JNK. LIGHT upregulates CD86 expression on DCs through activation of NF-kappaB, but not p44/42 signal pathway, because inhibition of NF-kappaB activity by its inhibitor could blunt the effect of LIGHT in up-regulation of CD86 expression, but neither inhibitor of p44/42 MAPK nor JNK inhibitor has this effect. Thus we demonstrate that LIGHT regulates CD86 expression through NF-kappaB signal transduction pathway but neither p44/42 MAPK nor JNK/AP-1 signaling pathway. We conclude that NF-kappaB signal plays a key role in LIGHT-mediated upregulation of CD86 expression.
Collapse
Affiliation(s)
- Gang-Ming Zou
- Section of Bone Marrow Transplantation, Rush University Medical Center, 2242 West Harrison St., Chicago, IL, USA.
| | | |
Collapse
|
15
|
Pei XY, Dai Y, Grant S. Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res 2004; 10:3839-3852. [PMID: 15173093 DOI: 10.1158/1078-0432.ccr-03-0561] [Citation(s) in RCA: 306] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE The purpose of this study was to examine interactions between the proteasome inhibitor bortezomib (Velcade) and the histone deacetylase (HDAC) inhibitors sodium butyrate and suberoylanilide hydroxamic acid in human multiple myeloma (MM) cells that are sensitive and resistant to conventional agents. EXPERIMENTAL DESIGN MM cells were exposed to bortezomib for 6 h before the addition of HDAC inhibitors (total, 26 h), after which reactive oxygen species (ROS), mitochondrial dysfunction, signaling and cell cycle pathways, and apoptosis were monitored. The functional role of ROS generation was assessed using the free radical scavenger N-acetyl-l-cysteine. RESULTS Preincubation with a subtoxic concentration of bortezomib markedly sensitized U266 and MM.1S cells to sodium butyrate- and suberoylanilide hydroxamic acid-induced mitochondrial dysfunction; caspase 9, 8, and 3 activation; and poly(ADP-ribose) polymerase degradation; resulting in synergistic apoptosis induction. These events were associated with nuclear factor kappaB inactivation, c-Jun NH(2)-terminal kinase activation, p53 induction, and caspase-dependent cleavage of p21(CIP1), p27(KIP1), and Bcl-2, as well as Mcl-1, X-linked inhibitor of apoptosis, and cyclin D1 down-regulation. The bortezomib/HDAC inhibitor regimen markedly induced ROS generation; moreover, apoptosis and c-Jun NH(2)-terminal kinase activation were attenuated by N-acetyl-l-cysteine. Dexamethasone- or doxorubicin-resistant MM cells failed to exhibit cross-resistance to the bortezomib/HDAC inhibitor regimen, nor did exogenous interleukin 6 or insulin-like growth factor I block apoptosis induced by this drug combination. Finally, bortezomib/HDAC inhibitors induced pronounced lethality in primary CD138(+) bone marrow cells from MM patients, but not in the CD138(-) cell population. CONCLUSIONS Sequential exposure to bortezomib in conjunction with clinically relevant HDAC inhibitors potently induces mitochondrial dysfunction and apoptosis in human MM cells through a ROS-dependent mechanism, suggesting that a strategy combining these agents warrants further investigation in MM.
Collapse
Affiliation(s)
- Xin-Yan Pei
- Department of Medicine,Virginia Commonwealth University, Medical College of Virginia, Richmond, Virginia 23298, USA
| | | | | |
Collapse
|