1
|
Tindle C, Fonseca AG, Taheri S, Katkar GD, Lee J, Maity P, Sayed IM, Ibeawuchi SR, Vidales E, Pranadinata RF, Fuller M, Stec DL, Anandachar MS, Perry K, Le HN, Ear J, Boland BS, Sandborn WJ, Sahoo D, Das S, Ghosh P. A living organoid biobank of patients with Crohn's disease reveals molecular subtypes for personalized therapeutics. Cell Rep Med 2024; 5:101748. [PMID: 39332415 PMCID: PMC11513829 DOI: 10.1016/j.xcrm.2024.101748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 08/31/2024] [Indexed: 09/29/2024]
Abstract
Crohn's disease (CD) is a complex and heterogeneous condition with no perfect preclinical model or cure. To address this, we explore adult stem cell-derived organoids that retain their tissue identity and disease-driving traits. We prospectively create a biobank of CD patient-derived organoid cultures (PDOs) from colonic biopsies of 53 subjects across all clinical subtypes and healthy subjects. Gene expression analyses enabled benchmarking of PDOs as tools for modeling the colonic epithelium in active disease and identified two major molecular subtypes: immune-deficient infectious CD (IDICD) and stress and senescence-induced fibrostenotic CD (S2FCD). Each subtype shows internal consistency in the transcriptome, genome, and phenome. The spectrum of morphometric, phenotypic, and functional changes within the "living biobank" reveals distinct differences between the molecular subtypes. Drug screens reverse subtype-specific phenotypes, suggesting phenotyped-genotyped CD PDOs can bridge basic biology and patient trials by enabling preclinical phase "0" human trials for personalized therapeutics.
Collapse
Affiliation(s)
- Courtney Tindle
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Ayden G Fonseca
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Sahar Taheri
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gajanan D Katkar
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jasper Lee
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Priti Maity
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Ibrahim M Sayed
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stella-Rita Ibeawuchi
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eleadah Vidales
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Rama F Pranadinata
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Mackenzie Fuller
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Dominik L Stec
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Kevin Perry
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA
| | - Helen N Le
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason Ear
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brigid S Boland
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - William J Sandborn
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Soumita Das
- HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA; Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; HUMANOID™ Center of Research Excellence (CoRE), University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Gao J, Li J, Luo Z, Wang H, Ma Z. Nanoparticle-Based Drug Delivery Systems for Inflammatory Bowel Disease Treatment. Drug Des Devel Ther 2024; 18:2921-2949. [PMID: 39055164 PMCID: PMC11269238 DOI: 10.2147/dddt.s461977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory condition characterized by recurring inflammation of the intestinal mucosa. However, the existing IBD treatments are ineffective and have serious side effects. The etiology of IBD is multifactorial and encompasses immune, genetic, environmental, dietary, and microbial factors. The nanoparticles (NPs) developed based on specific targeting methodologies exhibit great potential as nanotechnology advances. Nanoparticles are defined as particles between 1 and 100 nm in size. Depending on their size and surface functionality, NPs exhibit different properties. A variety of nanoparticle types have been employed as drug carriers for the treatment of inflammatory bowel disease (IBD), with encouraging outcomes observed in experimental models. They increase the bioavailability of drugs and enable targeted drug delivery, promoting localized treatment and thus enhancing efficacy. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines.
Collapse
Affiliation(s)
- Jian Gao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiannan Li
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zengyou Luo
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hongyong Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
3
|
Han J, Balasubramanian I, Flores JA, Bandyopadhyay S, Yang J, Liu Y, Singh R, Setty P, Kiela P, Ferraris R, Gao N. Intestinal lysozyme engagement of Salmonella Typhimurium stimulates the release of barrier-impairing InvE and Lpp1. J Biol Chem 2024; 300:107424. [PMID: 38823640 PMCID: PMC11255904 DOI: 10.1016/j.jbc.2024.107424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024] Open
Abstract
Lysozyme is a β-1,4-glycosidase that hydrolyzes the polysaccharide backbone of bacterial cell walls. With an additional bactericidal function mediated by a separate protein domain, lysozyme is considered a uniquely important antimicrobial molecule contributing to the host's innate immune response to infection. Elevated lysozyme production is found in various inflammatory conditions while patients with genetic risks for inflammatory bowel diseases demonstrate abnormal lysozyme expression, granule packaging, and secretion in Paneth cells. However, it remains unclear how a gain- or loss-of-function in host lysozyme may impact the host inflammatory responses to pathogenic infection. We challenged Lyz1-/- and ectopic Lyz1-expressing (Villin-Lyz1TG) mice with S. Typhimurium and then comprehensively assessed the inflammatory disease progression. We conducted proteomics analysis to identify molecules derived from human lysozyme-mediated processing of live Salmonella. We examined the barrier-impairing effects of these identified molecules in human intestinal epithelial cell monolayer and enteroids. Lyz1-/- mice are protected from infection in terms of morbidity, mortality, and barrier integrity, whereas Villin-Lyz1TG mice demonstrate exacerbated infection and inflammation. The growth and invasion of Salmonella in vitro are not affected by human or chicken lysozyme, whereas lysozyme encountering of live Salmonella stimulates the release of barrier-disrupting factors, InvE-sipC and Lpp1, which directly or indirectly impair the tight junctions. The direct engagement of host intestinal lysozyme with an enteric pathogen such as Salmonella promotes the release of virulence factors that are barrier-impairing and pro-inflammatory. Controlling lysozyme function may help alleviate the inflammatory progression.
Collapse
Affiliation(s)
- Jiangmeng Han
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | - Juan A Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | - Jiaxing Yang
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Yue Liu
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Rajbir Singh
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Prashanth Setty
- Department of Pediatrics, Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Pawel Kiela
- Department of Pediatrics, Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Ronaldo Ferraris
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology, and Neuroscience, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA.
| |
Collapse
|
4
|
Koo B, Yang C, Nyachoti CM. Effects of sanitary conditions with lipopolysaccharide injection and dietary valine supplementation on growth performance, immune response, bacterial profile, and microbial metabolites in weaned pigs. Arch Anim Nutr 2024; 78:225-241. [PMID: 39087698 DOI: 10.1080/1745039x.2024.2382278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
This study investigated the effects of dietary L-valine (Val) supplementation and sanitary conditions with lipopolysaccharide injection on growth performance, immune response, and intestinal bacterial profiles and metabolites in weaned pigs. Thirty-two weaned pigs (6.98 ± 0.47 kg) were randomly assigned to treatments in a 2 × 2 factorial arrangement based on dietary Val levels and sanitary conditions (low or high). The pigs were fed either a basal diet containing the standard levels of Val suggested by (NRC), (2012) or a basal diet supplemented with 0.1% L-Val. A room designated as a high sanitary room was washed weekly, whereas the designated low sanitary room was not washed throughout the experiment and 5 kg of manure from the nursery pig barn was spread on the pen floors on day 1. All data were analysed using a mixed procedure of SAS, with the individual pen as the experimental unit. The pigs raised in low sanitary conditions exhibited a lower (p < 0.05) average daily gain, average daily feed intake, and gain-to-feed ratio and a higher (p < 0.05) incidence of diarrhoea than those raised in high sanitary conditions during the 14-d experimental period. The pigs in the low sanitary group also had a lower (p < 0.05) concentration of butyrate in the jejunum and a higher (p < 0.05) concentration of NH3-N in the colon than those in the high sanitary group. Dietary Val supplementation was reduced (p < 0.05) plasma interleukin (IL)-1β and IL-1 receptor antagonist concentrations as well as isovalerate and NH3-N concentrations in the colon, regardless of sanitary conditions. Interactions between dietary Val supplementation and sanitary conditions were observed in the abundances of mRNA-encoding β-defensins 113, 125 and 129 (p < 0.05). In conclusion, dietary Val supplementation beneficially modulates inflammatory responses and microbial metabolites regardless of sanitary conditions while transcriptional levels of β-defensins are regulated by dietary Val supplementation in a manner dependent on housing hygiene conditions.
Collapse
Affiliation(s)
- Bonjin Koo
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
5
|
Wang Z, Zhen C, Guo X, Qu M, Zhang C, Song J, Fan X, Huang H, Xu R, Zhang J, Yuan J, Hong W, Li J, Wang F, Jiao Y, Linghu E. Landscape of gut mucosal immune cells showed gap of follicular or memory B cells into plasma cells in immunological non-responders. Clin Transl Med 2024; 14:e1699. [PMID: 38783408 PMCID: PMC11116468 DOI: 10.1002/ctm2.1699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The gut is an important site for human immunodeficiency virus (HIV) infection and immune responses. The role of gut mucosal immune cells in immune restoration in patients infected with HIV undergoing antiretroviral therapy remains unclear. METHODS Ileocytes, including 54 475 immune cells, were obtained from colonoscopic biopsies of five HIV-negative controls, nine immunological responders (IRs), and three immunological non-responders (INRs) and were analyzed using single-cell RNA sequencing. Immunohistochemical assays were performed for validation. The 16S rRNA gene was amplified using PCR in faecal samples to analyze faecal microbiota. Flow cytometry was used to analyze CD4+ T-cell counts and the activation of T cells. RESULTS This study presents a global transcriptomic profile of the gut mucosal immune cells in patients infected with HIV. Compared with the IRs, the INRs exhibited a lower proportion of gut plasma cells, especially the IGKC+IgA+ plasma cell subpopulation. IGKC+IgA+ plasma cells were negatively associated with enriched f. Prevotellaceae the INRs and negatively correlated with the overactivation of T cells, but they were positively correlated with CD4+ T-cell counts. The INRs exhibited a higher proportion of B cells than the IRs. Follicular and memory B cells were significantly higher in the INRs. Reduced potential was observed in the differentiation of follicular or memory B cells into gut plasma cells in INRs. In addition, the receptor-ligand pairs CD74_MIF and CD74_COPA of memory B/ follicular helper T cells were significantly reduced in the INRs, which may hinder the differentiation of memory and follicular B cells into plasma cells. CONCLUSIONS Our study shows that plasma cells are dysregulated in INRs and provides an extensive resource for deciphering the immune pathogenesis of HIV in INRs. KEY POINTS An investigation was carried out at the single-cell-level to analyze gut mucosal immune cells alterations in PLWH after ART. B cells were significantly increased and plasma cells were significantly decreased in the INRs compared to the IRs and NCs. There are gaps in the transition from gut follicular or memory B cellsinto plasma cells in INRs.
Collapse
Affiliation(s)
- Zerui Wang
- Senior Department of Gastroenterologythe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Cheng Zhen
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Xiaoyan Guo
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Mengmeng Qu
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Chao Zhang
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Jinwen Song
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Xing Fan
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Huihuang Huang
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Ruonan Xu
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Jiyuan Zhang
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Jinhong Yuan
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Weiguo Hong
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Jiaying Li
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Fu‐Sheng Wang
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Yan‐Mei Jiao
- Senior Department of Infectious Diseasesthe Fifth Medical Centre of Chinese PLA General HospitalNational Clinical Research Center for Infectious DiseasesBeijingChina
| | - Enqiang Linghu
- Senior Department of Gastroenterologythe First Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
6
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
7
|
Iyer K, Erkert L, Becker C. Know your neighbors: microbial recognition at the intestinal barrier and its implications for gut homeostasis and inflammatory bowel disease. Front Cell Dev Biol 2023; 11:1228283. [PMID: 37519301 PMCID: PMC10375050 DOI: 10.3389/fcell.2023.1228283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Intestinal epithelial cells (IECs) perform several physiological and metabolic functions at the epithelial barrier. IECs also play an important role in defining the overall immune functions at the mucosal region. Pattern recognition receptors (PRRs) on the cell surface and in other cellular compartments enable them to sense the presence of microbes and microbial products in the intestinal lumen. IECs are thus at the crossroads of mediating a bidirectional interaction between the microbial population and the immune cells present at the intestinal mucosa. This communication between the microbial population, the IECs and the underlying immune cells has a profound impact on the overall health of the host. In this review, we focus on the various PRRs present in different cellular compartments of IECs and discuss the recent developments in the understanding of their role in microbial recognition. Microbial recognition and signaling at the epithelial barrier have implications in the maintenance of intestinal homeostasis, epithelial barrier function, maintenance of commensals, and the overall tolerogenic function of PRRs in the gut mucosa. We also highlight the role of an aberrant microbial sensing at the epithelial barrier in the pathogenesis of inflammatory bowel disease (IBD) and the development of colorectal cancer.
Collapse
Affiliation(s)
- Krishna Iyer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, United States
| | - Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Jangir PK, Ogunlana L, Szili P, Czikkely M, Shaw LP, Stevens EJ, Yu Y, Yang Q, Wang Y, Pál C, Walsh TR, MacLean CR. The evolution of colistin resistance increases bacterial resistance to host antimicrobial peptides and virulence. eLife 2023; 12:e84395. [PMID: 37094804 PMCID: PMC10129329 DOI: 10.7554/elife.84395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Antimicrobial peptides (AMPs) offer a promising solution to the antibiotic resistance crisis. However, an unresolved serious concern is that the evolution of resistance to therapeutic AMPs may generate cross-resistance to host AMPs, compromising a cornerstone of the innate immune response. We systematically tested this hypothesis using globally disseminated mobile colistin resistance (MCR) that has been selected by the use of colistin in agriculture and medicine. Here, we show that MCR provides a selective advantage to Escherichia coli in the presence of key AMPs from humans and agricultural animals by increasing AMP resistance. Moreover, MCR promotes bacterial growth in human serum and increases virulence in a Galleria mellonella infection model. Our study shows how the anthropogenic use of AMPs can drive the accidental evolution of resistance to the innate immune system of humans and animals. These findings have major implications for the design and use of therapeutic AMPs and suggest that MCR may be difficult to eradicate, even if colistin use is withdrawn.
Collapse
Affiliation(s)
- Pramod K Jangir
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | - Lois Ogunlana
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | - Petra Szili
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research NetworkSzegedHungary
- Doctoral School of Multidisciplinary Medical Sciences, University of SzegedSzegedHungary
| | - Marton Czikkely
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research NetworkSzegedHungary
| | - Liam P Shaw
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | - Emily J Stevens
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | - Yang Yu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural UniversityGuangzhouChina
| | - Qiue Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and RegulaWon, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Yang Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural UniversityBeijingChina
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research NetworkSzegedHungary
| | - Timothy R Walsh
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | - Craig R MacLean
- Department of Biology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
9
|
Cui C, Wang X, Li L, Wei H, Peng J. Multifaceted involvements of Paneth cells in various diseases within intestine and systemically. Front Immunol 2023; 14:1115552. [PMID: 36993974 PMCID: PMC10040535 DOI: 10.3389/fimmu.2023.1115552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Serving as the guardians of small intestine, Paneth cells (PCs) play an important role in intestinal homeostasis maintenance. Although PCs uniquely exist in intestine under homeostasis, the dysfunction of PCs is involved in various diseases not only in intestine but also in extraintestinal organs, suggesting the systemic importance of PCs. The mechanisms under the participation of PCs in these diseases are multiple as well. The involvements of PCs are mostly characterized by limiting intestinal bacterial translocation in necrotizing enterocolitis, liver disease, acute pancreatitis and graft-vs-host disease. Risk genes in PCs render intestine susceptible to Crohn’s disease. In intestinal infection, different pathogens induce varied responses in PCs, and toll-like receptor ligands on bacterial surface trigger the degranulation of PCs. The increased level of bile acid dramatically impairs PCs in obesity. PCs can inhibit virus entry and promote intestinal regeneration to alleviate COVID-19. On the contrary, abundant IL-17A in PCs aggravates multi-organ injury in ischemia/reperfusion. The pro-angiogenic effect of PCs aggravates the severity of portal hypertension. Therapeutic strategies targeting PCs mainly include PC protection, PC-derived inflammatory cytokine elimination, and substituting AMP treatment. In this review, we discuss the influence and importance of Paneth cells in both intestinal and extraintestinal diseases as reported so far, as well as the potential therapeutic strategies targeting PCs.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinru Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lindeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Jian Peng,
| |
Collapse
|
10
|
Cardoso MH, Meneguetti BT, Oliveira-Júnior NG, Macedo MLR, Franco OL. Antimicrobial peptide production in response to gut microbiota imbalance. Peptides 2022; 157:170865. [PMID: 36038014 DOI: 10.1016/j.peptides.2022.170865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022]
Abstract
The gut microbiota presents essential functions in the immune response. The gut epithelium acts as a protective barrier and, therefore, can produce several antimicrobial peptides (AMPs) that can act against pathogenic microorganisms, including bacteria. Several factors cause a disturbance in gut microbiota, including the exacerbated and erroneous use of antibiotics. Antibiotic therapy has been closely related to bacterial resistance and is also correlated with undesired side-effects to the host, including the eradication of commensal bacteria. Consequently, this results in gut microbiota imbalance and inflammatory bowel diseases (IBD) development. In this context, AMPs in the gut epithelium play a restructuring role for gut microbiota. Some naturally occurring AMPs are selective for pathogenic bacteria, thus preserving the health microbiota. Therefore, AMPs produced by the host's epithelial cells represent effective molecules in treating gut bacterial infections. Bearing this in mind, this review focused on describing the importance of the host's AMPs in gut microbiota modulation and their role as anti-infective agents against pathogenic bacteria.
Collapse
Affiliation(s)
- Marlon H Cardoso
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790160, Brazil; Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, 79070900 Campo Grande, Mato Grosso do Sul, Brazil.
| | - Beatriz T Meneguetti
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
| | - Nelson G Oliveira-Júnior
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790160, Brazil
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, 79070900 Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790160, Brazil.
| |
Collapse
|
11
|
Flood P, Fanning A, Woznicki JA, Crowley T, Christopher A, Vaccaro A, Houston A, McSweeney S, Ross S, Hogan A, Brint E, Skowyra A, Bustamante M, Ambrose M, Moloney G, MacSharry J, Hammarström ML, Hurley M, Fitzgibbons C, Quigley EMM, Shanahan F, Zulquernain SA, McCarthy J, Dodson GS, Dabbagh K, McRae BL, Melgar S, Nally K. DNA sensor-associated type I interferon signaling is increased in ulcerative colitis and induces JAK-dependent inflammatory cell death in colonic organoids. Am J Physiol Gastrointest Liver Physiol 2022; 323:G439-G460. [PMID: 36165492 DOI: 10.1152/ajpgi.00104.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DNA sensor pathways can initiate inflammasome, cell death, and type I interferon (IFN) signaling in immune-mediated inflammatory diseases (IMIDs), including type I interferonopathies. We investigated the involvement of these pathways in the pathogenesis of ulcerative colitis (UC) by analyzing the expression of DNA sensor, inflammasome, and type I IFN biomarker genes in colonic mucosal biopsy tissue from control (n = 31), inactive UC (n = 31), active UC (n = 33), and a UC single-cell RNA-Seq dataset. The effects of type I IFN (IFN-β), IFN-γ, and TNF-α on gene expression, cytokine production, and cell death were investigated in human colonic organoids. In organoids treated with cytokines alone, or in combination with NLR family pyrin domain-containing 3 (NLRP3), caspase, or JAK inhibitors, cell death was measured, and supernatants were assayed for IL-1β/IL-18/CXCL10. The expression of DNA sensor pathway genes-PYHIN family members [absent in melanoma 2 (AIM2), IFI16, myeloid cell nuclear differentiation antigen (MNDA), and pyrin and HIN domain family member 1 (PYHIN1)- as well as Z-DNA-binding protein 1 (ZBP1), cyclic GMP-AMP synthase (cGAS), and DDX41 was increased in active UC and expressed in a cell type-restricted pattern. Inflammasome genes (CASP1, IL1B, and IL18), type I IFN inducers [stimulator of interferon response cGAMP interactor 1 (STING), TBK1, and IRF3), IFNB1, and type I IFN biomarker genes (OAS2, IFIT2, and MX2) were also increased in active UC. Cotreatment of organoids with IFN-β or IFN-γ in combination with TNFα increased expression of IFI16, ZBP1, CASP1, cGAS, and STING induced cell death and IL-1β/IL-18 secretion. This inflammatory cell death was blocked by the JAK inhibitor tofacitinib but not by inflammasome or caspase inhibitors. Increased type I IFN activity may drive elevated expression of DNA sensor genes and JAK-dependent but inflammasome-independent inflammatory cell death of colonic epithelial cells in UC.NEW & NOTEWORTHY This study found that patients with active UC have significantly increased colonic gene expression of cytosolic DNA sensor, inflammasome, STING, and type I IFN signaling pathways. The type I IFN, IFN-β, in combination with TNF-α induced JAK-dependent but NLRP3 and inflammasome-independent inflammatory cell death of colonic organoids. This novel inflammatory cell death phenotype is relevant to UC immunopathology and may partially explain the efficacy of the JAKinibs tofacitinib and upadacitinib in patients with UC.
Collapse
Affiliation(s)
- Peter Flood
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aine Fanning
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Tadhg Crowley
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | | | - Aileen Houston
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | | | - Sarah Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aileen Hogan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Elizabeth Brint
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Pathology, Cork University Hospital, University College Cork, Clinical Sciences Building, Cork, Ireland
| | | | | | - Monica Ambrose
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John MacSharry
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Medicine, University College Cork, Cork, Ireland
| | - Marie-Louise Hammarström
- Section of Infection and Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Margot Hurley
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | | | | | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Syed A Zulquernain
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Jane McCarthy
- Department of Gastroenterology, Mercy University Hospital, Cork, Ireland
| | | | | | - Bradford L McRae
- Immunology Discovery, Abbvie Bioresearch Center, Worcester, Massachusetts
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Ismail HTH, AbdelMageed M, Lindmark G, Hammarström ML, Hammarström S, Sitohy B. Prognostic Significance of GPR55 mRNA Expression in Colon Cancer. Int J Mol Sci 2022; 23:ijms23094556. [PMID: 35562947 PMCID: PMC9106053 DOI: 10.3390/ijms23094556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptor 55 (GPR55) probably plays a role in innate immunity and tumor immunosurveillance through its effect on immune cells, such as T cells and NK cells. In this study, the prognostic value of GPR55 in colon cancer (CC) was investigated. mRNA expression levels of GPR55 were determined in 382 regional lymph nodes of 121 CC patients with 12 years observation time after curative surgery. The same clinical material had previously been analyzed for expression levels of CEA, CXCL16, CXCL17, GPR35 V2/3 and LGR5 mRNAs. Clinical cutoffs of 0.1365 copies/18S rRNA unit for GPR55 and 0.1481 for the GPR55/CEA ratio were applied to differentiate between the high- and low-GPR55 expression groups. Kaplan–Meier survival analysis and Cox regression risk analysis were used to determine prognostic value. Improved discrimination between the two groups was achieved by combining GPR55 with CEA, CXCL16 or CXCL17 compared with GPR55 alone. The best result was obtained using the GPR55/CEA ratio, with an increased mean survival time of 14 and 33 months at 5 and 12 years observation time, respectively (p = 0.0003 and p = 0.003) for the high-GPR55/CEA group. The explanation for the observed improvement is most likely that GPR55 is a marker for T cells and B cells in lymph nodes, whereas CEA, CXCL16 and CXCL17, are markers for tumor cells of epithelial origin.
Collapse
Affiliation(s)
- Hager Tarek H. Ismail
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185 Umeå, Sweden; (H.T.H.I.); (M.A.); (M.-L.H.); (S.H.)
- Department of Radiation Sciences, Oncology, Umeå University, SE-90185 Umeå, Sweden
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Manar AbdelMageed
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185 Umeå, Sweden; (H.T.H.I.); (M.A.); (M.-L.H.); (S.H.)
- Department of Radiation Sciences, Oncology, Umeå University, SE-90185 Umeå, Sweden
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Gudrun Lindmark
- Institution of Clinical Sciences, Lund University, SE-25187 Helsingborg, Sweden;
| | - Marie-Louise Hammarström
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185 Umeå, Sweden; (H.T.H.I.); (M.A.); (M.-L.H.); (S.H.)
| | - Sten Hammarström
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185 Umeå, Sweden; (H.T.H.I.); (M.A.); (M.-L.H.); (S.H.)
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185 Umeå, Sweden; (H.T.H.I.); (M.A.); (M.-L.H.); (S.H.)
- Department of Radiation Sciences, Oncology, Umeå University, SE-90185 Umeå, Sweden
- Correspondence:
| |
Collapse
|
13
|
Ismail HTH, AbdelMageed M, Lindmark G, Hammarström ML, Hammarström S, Sitohy B. Prognostic Significance of GPR55 mRNA Expression in Colon Cancer. Int J Mol Sci 2022; 23:4556. [DOI: https:/doi.org/10.3390/ijms23094556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
G protein-coupled receptor 55 (GPR55) probably plays a role in innate immunity and tumor immunosurveillance through its effect on immune cells, such as T cells and NK cells. In this study, the prognostic value of GPR55 in colon cancer (CC) was investigated. mRNA expression levels of GPR55 were determined in 382 regional lymph nodes of 121 CC patients with 12 years observation time after curative surgery. The same clinical material had previously been analyzed for expression levels of CEA, CXCL16, CXCL17, GPR35 V2/3 and LGR5 mRNAs. Clinical cutoffs of 0.1365 copies/18S rRNA unit for GPR55 and 0.1481 for the GPR55/CEA ratio were applied to differentiate between the high- and low-GPR55 expression groups. Kaplan–Meier survival analysis and Cox regression risk analysis were used to determine prognostic value. Improved discrimination between the two groups was achieved by combining GPR55 with CEA, CXCL16 or CXCL17 compared with GPR55 alone. The best result was obtained using the GPR55/CEA ratio, with an increased mean survival time of 14 and 33 months at 5 and 12 years observation time, respectively (p = 0.0003 and p = 0.003) for the high-GPR55/CEA group. The explanation for the observed improvement is most likely that GPR55 is a marker for T cells and B cells in lymph nodes, whereas CEA, CXCL16 and CXCL17, are markers for tumor cells of epithelial origin.
Collapse
|
14
|
Gu D, Nan Q, Miao Y, Yang H, Li M, Ye Y, Miao J. KT2 alleviates ulcerative colitis by reducing Th17 cell differentiation through the miR-302c-5p/STAT3 axis. Eur J Cell Biol 2022; 101:151223. [PMID: 35405463 DOI: 10.1016/j.ejcb.2022.151223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The abnormal differentiation of Th17 cells aggravates ulcerative colitis (UC). Antimicrobial peptides (AMPs) exert pivotal protection functions against UC. KT2 is a cationic AMP that mediates colon cancer development. However, KT2's function in UC remains unclear. METHODS The UC mouse model was induced by administering 2.5% dextran sulfate sodium, and the mice were given an enema of KT2. KT2's function in UC and Th17 cell differentiation in vivo was evaluated through various molecular experiments. The KT2's function in Th17 cell differentiation in vitro was evaluated by the proportion of CD4+ IL-17+ T cells, IL-17 levels, and RORγt expression levels. Meanwhile, the mechanism was assessed through quantitative real-time PCR, various loss-of-function assays, and dual-luciferase reporter gene assay. RESULTS KT2 restrained Th17 cell differentiation in both in vivo and in vitro UC models and slowed the UC process. KT2 elevated miR-302c-5p expression, as well as restrained Th17 cell differentiation by increasing miR-302c-5p. Meanwhile, miR-302c-5p interacted with the signal transducer and activator of transcription 3 (STAT3) and negatively regulated its expression. Furthermore, our data revealed that KT2 restrained the activation of STAT3 by elevating miR-302c-5p, thereby inhibiting Th17 cell differentiation. CONCLUSION KT2 alleviates UC by repressing Th17 cell differentiation through the miR-302c-5p/STAT3 axis.
Collapse
Affiliation(s)
- Dandan Gu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Qiong Nan
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Maojuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Yan Ye
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Jiarong Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China.
| |
Collapse
|
15
|
AbdelMageed M, Ismail HTH, Olsson L, Lindmark G, Hammarström ML, Hammarström S, Sitohy B. Clinical Significance of Stem Cell Biomarkers EpCAM, LGR5 and LGR4 mRNA Levels in Lymph Nodes of Colon Cancer Patients. Int J Mol Sci 2021; 23:403. [DOI: https:/doi.org/10.3390/ijms23010403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
The significance of cancer stem cells (CSCs) in initiation and progression of colon cancer (CC) has been established. In this study, we investigated the utility of measuring mRNA expression levels of CSC markers EpCAM, LGR5 and LGR4 for predicting survival outcome in surgically treated CC patients. Expression levels were determined in 5 CC cell lines, 66 primary CC tumors and 382 regional lymph nodes of 121 CC patients. Prognostic relevance was determined using Kaplan-Meier survival and Cox regression analyses. CC patients with lymph nodes expressing high levels of EpCAM, LGR5 or LGR4 (higher than a clinical cutoff of 0.07, 0.06 and 2.558 mRNA copies/18S rRNA unit, respectively) had a decreased mean survival time of 32 months for EpCAM and 42 months for both LGR5 and LGR4 at a 12-year follow-up (p = 0.022, p = 0.005 and p = 0.011, respectively). Additional patients at risk for recurrence were detected when LGR5 was combined with the biomarkers CXCL17 or CEA plus CXCL16. In conclusion, the study underscores LGR5 as a particularly useful prognostic biomarker and illustrates the strength of combining biomarkers detecting different subpopulations of cancer cells and/or cells in the tumor microenvironment for predicting recurrence.
Collapse
|
16
|
Clinical Significance of Stem Cell Biomarkers EpCAM, LGR5 and LGR4 mRNA Levels in Lymph Nodes of Colon Cancer Patients. Int J Mol Sci 2021; 23:ijms23010403. [PMID: 35008827 PMCID: PMC8745090 DOI: 10.3390/ijms23010403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022] Open
Abstract
The significance of cancer stem cells (CSCs) in initiation and progression of colon cancer (CC) has been established. In this study, we investigated the utility of measuring mRNA expression levels of CSC markers EpCAM, LGR5 and LGR4 for predicting survival outcome in surgically treated CC patients. Expression levels were determined in 5 CC cell lines, 66 primary CC tumors and 382 regional lymph nodes of 121 CC patients. Prognostic relevance was determined using Kaplan-Meier survival and Cox regression analyses. CC patients with lymph nodes expressing high levels of EpCAM, LGR5 or LGR4 (higher than a clinical cutoff of 0.07, 0.06 and 2.558 mRNA copies/18S rRNA unit, respectively) had a decreased mean survival time of 32 months for EpCAM and 42 months for both LGR5 and LGR4 at a 12-year follow-up (p = 0.022, p = 0.005 and p = 0.011, respectively). Additional patients at risk for recurrence were detected when LGR5 was combined with the biomarkers CXCL17 or CEA plus CXCL16. In conclusion, the study underscores LGR5 as a particularly useful prognostic biomarker and illustrates the strength of combining biomarkers detecting different subpopulations of cancer cells and/or cells in the tumor microenvironment for predicting recurrence.
Collapse
|
17
|
CEACAM5, KLK6, SLC35D3, POSTN, and MUC2 mRNA Analysis Improves Detection and Allows Characterization of Tumor Cells in Lymph Nodes of Patients Who Have Colon Cancer. Dis Colon Rectum 2021; 64:1354-1363. [PMID: 34192710 PMCID: PMC8492186 DOI: 10.1097/dcr.0000000000002151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Lymph node metastasis is the single most important prognostic risk factor for recurrence in patients with colon cancer who have undergone curative surgery. The routine method for detecting disseminated tumor cells in lymph nodes is microscopic examination of one or a few hematoxylin and eosin-stained tissue sections by a trained pathologist. This method, however, is insensitive mainly because less than 1% of the lymph node volume is examined, leading to misclassification. OBJECTIVE This study aimed to investigate whether analysis of a selected group of biomarker mRNAs improves detection and characterization of lymph node metastases/micrometastases compared with the routine method. DESIGN This study is a side-by-side comparison of biomarker mRNA analysis and histopathology of 185 lymph nodes from patients with colon cancer representing stages I to IV, and an investigation of the importance of lymph node tissue volume for tumor cell detection. SETTINGS This is a collaborative study between a high-volume central hospital and a preclinical university institution. PATIENTS Fifty-seven patients who had undergone tumor resection for colon cancer were included. MAIN OUTCOME MEASURES The primary outcomes measured were mRNA copies per 18S rRNA copy of CEACAM5, KLK6, SLC35D3, POSTN, and MUC2 by multiplex assay and metastases/micrometastases detected by histopathology. RESULTS The number of tumor cell-positive lymph nodes was 1.33-fold higher based on CEACAM5 mRNA levels compared with histopathological examination. Increasing the tissue volume analyzed for CEACAM5 levels from an 80-µm section to half a lymph node increased the number of positive nodes from 34 of 107 to 80 of 107 (p < 0.0001). Similarly, the number of positive nodes for the aggressiveness marker KLK6 increased from 9 of 107 to 24 of 107. LIMITATIONS Only a limited number of individual lymph nodes per patient was available for analysis. CONCLUSIONS mRNA analysis of CEACAM5, KLK6, and SLC35D3 improves the detection of tumor cells in lymph nodes from patients surgically treated for colon cancer, and, together with POSTN and MUC2, it further allows characterization of the tumor cells with respect to aggressiveness and the tumor cell environment. See Video Abstract at http://links.lww.com/DCR/B650. EL ANLISIS DE ARNM DE CEACAM, KLK, SLCD, POSTN Y MUC MEJORA LA DETECCIN Y PERMITE LA CARACTERIZACIN DE CLULAS TUMORALES EN LOS GANGLIOS LINFTICOS DE PACIENTES CON CNCER DE COLON ANTECEDENTES:Las metástasis en los ganglios linfáticos son el factor de riesgo pronóstico más importante de recurrencia en pacientes con cáncer de colon que se han sometido a cirugía curativa. El método de rutina para detectar células tumorales diseminadas en los ganglios linfáticos es el examen microscópico de una o algunas secciones de tejido teñidas con hematoxilina-eosina por un patólogo capacitado. Sin embargo, este método es insensible principalmente porque se examina menos del 1% del volumen de los ganglios linfáticos, lo que conduce a una clasificación errónea.OBJETIVO:Investigar si el análisis de un grupo seleccionado de ARNm de biomarcadores mejora la detección y caracterización de metástasis / micrometástasis en los ganglios linfáticos en comparación con el método de rutina.DISEÑO:Una comparación en paralelo del análisis de ARNm de biomarcadores y la histopatología de 185 ganglios linfáticos de pacientes con cáncer de colon que representan las etapas I-IV, e investigación de la importancia del volumen de tejido de los ganglios linfáticos para la detección de células tumorales.ENTORNO CLINICO:Estudio colaborativo entre un hospital central de alto volumen y una institución universitaria preclínica.PACIENTES:Cincuenta y siete pacientes que han sido sometidos a resección tumoral por cáncer de colon.PRINCIPALES MEDIDAS DE VALORACION:copias de ARNm / copia de ARNr 18S de CEACAM5, KLK6, SLC35D3, POSTN y MUC2 mediante análisis múltiple y metástasis / micrometástasis detectadas por histopatología.RESULTADOS:El número de ganglios linfáticos con células tumorales positivas fue 1,33 veces mayor según los niveles de ARNm de CEACAM5 en comparación con el examen histopatológico. El aumento del volumen de tejido analizado para los niveles de CEACAM5 de una sección de 80 µm a la mitad de un ganglio linfático aumentó el número de ganglios positivos de 34/107 a 80/107 (p <0,0001). De manera similar, el número de nodos positivos para el marcador de agresividad KLK6 aumentó de 9/107 a 24/107.LIMITACIONES:Solo un número limitado de ganglios linfáticos individuales / paciente estuvo disponible para el análisis.CONCLUSIONES:El análisis de ARNm de CEACAM5, KLK6 y SLC35D3 mejora la detección de células tumorales en los ganglios linfáticos de pacientes con cáncer de colon tratados quirúrgicamente y, junto con POSTN y MUC2, permite además la caracterización de las células tumorales con respecto a la agresividad y el entorno celular tumoral. Consulte Video Resumen en http://links.lww.com/DCR/B650.
Collapse
|
18
|
Yu S, Balasubramanian I, Laubitz D, Tong K, Bandyopadhyay S, Lin X, Flores J, Singh R, Liu Y, Macazana C, Zhao Y, Béguet-Crespel F, Patil K, Midura-Kiela MT, Wang D, Yap GS, Ferraris RP, Wei Z, Bonder EM, Häggblom MM, Zhang L, Douard V, Verzi MP, Cadwell K, Kiela PR, Gao N. Paneth Cell-Derived Lysozyme Defines the Composition of Mucolytic Microbiota and the Inflammatory Tone of the Intestine. Immunity 2021; 53:398-416.e8. [PMID: 32814028 DOI: 10.1016/j.immuni.2020.07.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 03/26/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023]
Abstract
Paneth cells are the primary source of C-type lysozyme, a β-1,4-N-acetylmuramoylhydrolase that enzymatically processes bacterial cell walls. Paneth cells are normally present in human cecum and ascending colon, but are rarely found in descending colon and rectum; Paneth cell metaplasia in this region and aberrant lysozyme production are hallmarks of inflammatory bowel disease (IBD) pathology. Here, we examined the impact of aberrant lysozyme production in colonic inflammation. Targeted disruption of Paneth cell lysozyme (Lyz1) protected mice from experimental colitis. Lyz1-deficiency diminished intestinal immune responses to bacterial molecular patterns and resulted in the expansion of lysozyme-sensitive mucolytic bacteria, including Ruminococcus gnavus, a Crohn's disease-associated pathobiont. Ectopic lysozyme production in colonic epithelium suppressed lysozyme-sensitive bacteria and exacerbated colitis. Transfer of R. gnavus into Lyz1-/- hosts elicited a type 2 immune response, causing epithelial reprograming and enhanced anti-colitogenic capacity. In contrast, in lysozyme-intact hosts, processed R. gnavus drove pro-inflammatory responses. Thus, Paneth cell lysozyme balances intestinal anti- and pro-inflammatory responses, with implications for IBD.
Collapse
Affiliation(s)
- Shiyan Yu
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | | | - Daniel Laubitz
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Kevin Tong
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | | | - Xiang Lin
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Juan Flores
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Rajbir Singh
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Yue Liu
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Carlos Macazana
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Yanlin Zhao
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Fabienne Béguet-Crespel
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Karuna Patil
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | | | - Daniel Wang
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - George S Yap
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Lanjing Zhang
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA; Department of Pathology, Princeton Medical Center, Plainsboro, NJ, USA
| | - Veronique Douard
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Ken Cadwell
- Department of Microbiology and Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Pawel R Kiela
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA; Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
19
|
Bruellman R, Llorente C. A Perspective Of Intestinal Immune-Microbiome Interactions In Alcohol-Associated Liver Disease. Int J Biol Sci 2021; 17:307-327. [PMID: 33390852 PMCID: PMC7757023 DOI: 10.7150/ijbs.53589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Uncovering the intricacies of the gut microbiome and how it interacts with the host immune system has opened up pathways in the search for the treatment of disease conditions. Alcohol-associated liver disease is a major cause of death worldwide. Research has shed light on the breakdown of the protective gut barriers, translocation of gut microbes to the liver and inflammatory immune response to microbes all contributing to alcohol-associated liver disease. This knowledge has opened up avenues for alternative therapies to alleviate alcohol-associated liver disease based on the interaction of the commensal gut microbiome as a key player in the regulation of the immune response. This review describes the relevance of the intestinal immune system, the gut microbiota, and specialized and non-specialized intestinal cells in the regulation of intestinal homeostasis. It also reflects how these components are altered during alcohol-associated liver disease and discusses new approaches for potential future therapies in alcohol-associated liver disease.
Collapse
Affiliation(s)
- Ryan Bruellman
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Bidirectional regulation of i-type lysozyme on cutaneous wound healing. Biomed Pharmacother 2020; 131:110700. [PMID: 33152906 DOI: 10.1016/j.biopha.2020.110700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE This study aimed to assess the effect and mechanism of i-type lysozyme on cutaneous wound healing animal model and Multiple cell models both in vivo and in vitro. METHODS Therefore, to evaluate its regenerative efficacy on wound healing process, we daily applied i-type lysozyme on murine full-thickness excisional wounds. After sacrifice on indicated days, skin tissues around surgical defects were harvested and assessed for re-epithelialization, granulation tissue formation, neovascularization and remodeling. To elucidate the underlying mechanisms, i-type lysozyme was analyzed for its tissue regenerative potency on the proliferation, invasion, migration and tube formation against keratinocytes, fibroblasts and endothelial cells. Antioxidant and antimicrobial experiments were also conducted to elucidate protective ability of i-type lysozyme to wound bed. RESULTS It displayed excellent bi-directional regulation in wound repair, with significant acceleration of epidermal and dermal regeneration as well as the efficient attenuation of excessive collagen deposition and fibrosis in the surgical lesion. I-type lysozyme treatment augmented the proliferation and migration of HaCaT, NIH 3T3 and HUVECs, enhanced the invasion of HaCaT and HUVECs as well as accelerated tube formation of HUVECs. Additionally, it significantly recovered the proliferation of H2O2-damaged cells, whereas represented no microbicidal effect under effective concentration of wound healing. CONCLUSION Our findings demonstrate the bi-directional regulation of i-type lysozyme in wound healing process through promoting tissue regeneration while hampering scar formation, implying that it is a promising therapeutic agent for wound repair.
Collapse
|
21
|
Olsson L, Lindmark G, Hammarström ML, Hammarström S, Sitohy B. Evaluating macrophage migration inhibitory factor 1 expression as a prognostic biomarker in colon cancer. Tumour Biol 2020; 42:1010428320924524. [PMID: 32515296 DOI: 10.1177/1010428320924524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Several studies indicate that macrophage migration inhibitory factor 1 plays a role for tumor progression in colon cancer. We investigated whether determination of migration inhibitory factor 1 mRNA expression levels in lymph nodes of colon cancer patients could be used as a prognostic marker. METHODS Expression levels of migration inhibitory factor 1 and carcinoembryonic antigen mRNAs were assessed in primary tumors and regional lymph nodes of 123 colon cancer patients (stages I-IV), and in colon cancer- and immune cell lines using quantitative reverse transcriptase-polymerase chain reaction. Expression of migration inhibitory factor 1 protein was investigated by two-color immunohistochemistry and immunomorphometry. RESULTS Migration inhibitory factor 1 mRNA was expressed at 60 times higher levels in primary colon cancer tumors compared to normal colonic tissue (medians 8.2 and 0.2 mRNA copies/18S rRNA unit; p < .0001). A highly significant difference in mRNA expression levels was found between hematoxylin-eosin positive lymph nodes and hematoxylin-eosin negative lymph nodes (p < .0001). Migration inhibitory factor 1 and carcinoembryonic antigen proteins were simultaneously expressed in many colon cancer-tumor cells. Kaplan-Meier survival model and hazard ratio analysis, using a cutoff level at 2.19 mRNA copies/18S rRNA unit, revealed that patients with lymph nodes expressing high levels of migration inhibitory factor 1 mRNA had a 3.5-fold (p = .04) higher risk for recurrence, associated with a small, but significant, difference in mean survival time (7 months, p = .03) at 12 years of follow-up. CONCLUSION Although migration inhibitory factor 1 mRNA expression levels were related to severity of disease and lymph node analysis revealed that colon cancer patients with high levels had a shorter survival time after surgery than those with low levels, the difference was small and probably not useful in clinical practice.
Collapse
Affiliation(s)
- Lina Olsson
- Department of Clinical Microbiology, Immunology, Umeå University, Umeå, Sweden
| | | | | | - Sten Hammarström
- Department of Clinical Microbiology, Immunology, Umeå University, Umeå, Sweden
| | - Basel Sitohy
- Department of Clinical Microbiology, Immunology, Umeå University, Umeå, Sweden.,Division of Oncology, Department of Radiation Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
22
|
Abstract
Polyphenols are naturally occurring compounds in plants and they are the most abundant antioxidants in the human diet. Due to their considerable structural diversity, this largely influences their bioavailability. Since a large proportion of polyphenols remains unabsorbed along the gastrointestinal tract, they may accumulate in the large intestine, where most of them are extensively metabolized by the intestinal microbiota. The formation of bioactive polyphenol-derived metabolites may also benefit the health status of the subjects, although the mechanisms have not been delineated. This review aims to highlight the impact of polyphenols on gut health and the modes of action could be through modulation of intestinal barrier function, innate and adaptive immune response, signaling pathways, as well as the ability to modify gut microbiota composition. The review will conclude by presenting future perspective and challenges of polyphenols application in food products to be used for preventing or treating diseases.
Collapse
Affiliation(s)
- Murphy L Y Wan
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Vanessa Anna Co
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
23
|
James SD, Hawkins AT, Um JW, Ballard BR, Smoot DT, M’Koma AE. The MYTHS of De novo Crohn's Disease After Restorative Proctocolectomy with Ileal Pouch-anal Anastomosis for Ulcerative Colitis. JAPANESE JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY 2020; 3:1166. [PMID: 37584007 PMCID: PMC10427206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Background 1.1.Inflammatory Bowel Disease (IBD) are the manifestation of overzealous dys-regulated immune response in the intestinal tract, directed primarily against the indigenous microbes combined with defective functioning of anti-inflammatory pathways. Finding a trustable lead to predicting de novo Crohn's Disease (CD) prior to performing "pouch surgery", Restorative Proctocolectomy (RPC) with Ileal Pouch-Anal Anastomosis (IPAA) for UC and/or Indeterminate Colitis (IC) is clinically important and remains debatable. De novo CD is a subsequent long-term postoperative complication in IBD patients with Ulcerative Colitis (UC) undergoing IPAA. Herewith we discuss this understanding in laboratory-based basic science research, with its molecular application as a possible corner stone tool for clinical progress and success in the IBD Clinic. Crypt Paneth cell (PCs) secreted enteroendocrine alpha-defensin 5 (DEFA5)" if developed properly is likely to solve diagnostic and prognostic difficulty in IBD Clinics. DEFA5 has shown the ability to differentiate the predominant subtypes of colonic IBD (CC vs. UC) at first endoscopy biopsy, avoiding diagnosis delay prior to colectomy. In addition, DEFA5 accurately circumvents indeterminate colitis (IC) patients into accurate IBD subtype (UC or CC). Further, DEFA5 can be used in selecting CC patients that may have positive outcomes after IPAA surgery [1]. Furthermore, likewise, DEFA5 can predict UC patients likely to have positive or poor outcome, e.g. those patients that are likely to transform/ convert and adhere to de novo Crohn's after IPAA can be picked up in endoscopy biopsy before surgery. Aim 1.2.To assessed comprehensive state-of-the-art understanding domains on the de novo Crohn's disease subsequent to IPAA surgery for ulcerative colitis. Methods 1.3.A literature search based on preferred reporting items for over-review and meta-analysis protocols (PRISMA-P) was performed. A comprehensive current search of PubMed, MEDLINE, CINAHL, Embase, Google® search engine and Cochrane Database of collected reviews was performed from January 1990 through December 2018. The search consists of retrospective studies and case reports of reporting postoperative de novo CD incidence and adverse events. Secondary and hand/manual searches of reference lists, other studies cross-indexed by authors, reviews, commentaries, books and meeting abstracts were also performed. Studies were included only if the diagnosis of de novo CD was established clinically and histologically based on inflammation of afferent limb(s) or perianal disease. The search excluded non-English language and non-human studies as well as editorials. Results 1.4.Published data on de novo CD developing after RPC with IPAA are still limited. A total of three hundred and sixty-five (#365) patients in 13 publications reported de novo CD after a median follow-up of 66 (range: 3-236) months. All patients were diagnosed with clinically active pouch CD during follow-up surveillance after IPAA for UC or IC. A de novo CD diagnosis depended on either inflammation in the mucosa involving the small intestine proximal to the ileal pouch any time after IPAA surgery and/or when perianal complications developed after closure of a temporary diverting loop ileostomy. Successful management is facilitated by co-operation within a multidisciplinary team of gastroenterologists and colorectal surgeons and closely involving the patient in therapeutic decisions. Awareness of symptoms leads to timely consultation, diagnosis, treatment and restoration of intestinal continuity. Conclusion 1.5.The nature history and risk of de novo CD after IPAA for UC remains debatable. Chronic pouchitis and/or pouch failure often precedes a diagnosis of de novo CD. A successful management is facilitated by a triad cooperation between gastroenterologists, colorectal surgeons and the patient.
Collapse
Affiliation(s)
- SD James
- Department of Pathology, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States
- Department of Pathology, Microbiology, and Immunology, Tennessee Valley Health Systems VA, Medical Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - AT Hawkins
- Division of General Surgery, Section of Colon and Rectal Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - JW Um
- Department of Surgery, Korea University College of Medicine, Seoul, South Korea
| | - BR Ballard
- Department of Pathology, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States
| | - DT Smoot
- Department of Medicine, Meharry Medical College School of Medicine, Nashville General Hospital, Nashville, Tennessee, United States
| | - AE M’Koma
- Division of General Surgery, Section of Colon and Rectal Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
- Department of Surgery and Surgical Sciences, Meharry Medical College School of Medicine, Nashville, Tennessee, United States
- The American Society of Colon and Rectal Surgeons (ASCRS), Arlington Heights, IL 60005, United States
- The American Gastroenterological Association (AGA), Bethesda, MD 20814, United States
| |
Collapse
|
24
|
Zeng L, Tan J, Xue M, Liu L, Wang M, Liang L, Deng J, Chen W, Chen Y. An engineering probiotic producing defensin-5 ameliorating dextran sodium sulfate-induced mice colitis via Inhibiting NF-kB pathway. J Transl Med 2020; 18:107. [PMID: 32122364 PMCID: PMC7053090 DOI: 10.1186/s12967-020-02272-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background Human defensin-5 (HD-5) is a key antimicrobial peptide which plays an important role in host immune defense, while the short half-life greatly limits its clinical application. The purpose of this study was to investigate the effects of an engineering probiotic producing HD-5 on intestinal barrier and explore its underlying mechanism Methods We constructed the pN8148-SHD-5 vector, and transfected this plasmid into Lactococcus lactis (L. lactis) to create the recombinant NZ9000SHD-5 strain, which continuously produces mature HD-5. NZ9000SHD-5 was administrated appropriately in a dextran sodium sulfate (DSS)-induced colitis model. Alterations in the wounded intestine were analyzed by hematoxylin–eosin staining. The changes of intestinal permeability were detected by FITC-dextran permeability test, the tight junction (TJ) proteins ZO-1 and occludin and cytokines were analyzed by western blotting or enzyme linked immunosorbent assay. In Caco-2 cell monolayers, the permeability were analyzed by transepithelial electrical resistance, and the TJ proteins were detected by western blotting and immunofluorescence. In addition, NF-κB signaling pathway was investigated to further analyze the molecular mechanism of NZ9000SHD-5 treatment on inducing intestinal protection in vitro. Results We found oral administration with NZ9000SHD-5 significantly reduced colonic glandular structure destruction and inflammatory cell infiltration, downregulated expression of several inflammation-related molecules and preserved epithelial barrier integrity. The same protective effects were observed in in vitro experiments, and pretreatment of macrophages with NZ9000SHD-5 culture supernatants prior to LPS application significantly reduced the expression of phosphorylated nuclear transcription factor-kappa B (NF-κB) p65 and its inhibitor IκBα. Conclusions These results indicate the NZ9000SHD-5 can alleviate DSS-induced mucosal damage by suppressing NF-κB signaling pathway, and NZ9000SHD-5 may be a novel therapeutic means for ulcerative colitis.
Collapse
Affiliation(s)
- Lishan Zeng
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jiasheng Tan
- Department of Gastroenterology, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, People's Republic of China
| | - Meng Xue
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Le Liu
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Mingming Wang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Liping Liang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jun Deng
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
25
|
Grupp A, Kimmel M, Fritz P, Voggenreiter B, Stöltzing H, Kuhlmann U, Stange EF, Mettang T, Fellermann K, Alscher DM. The Expression Patterns of Peritoneal Defensins. Perit Dial Int 2020. [DOI: 10.1177/089686080702700611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Local defense mechanisms are important for the integrity of the peritoneum, but few details are known about the expression patterns of antimicrobial proteins such as human defensin in normal and damaged peritoneum. Methods Part A: The expression of different defensins in normal ( n = 12), inflamed ( n = 5), and metastatic peritoneum ( n = 4) and in cultured human peritoneal mesothelial cells was analyzed using mRNA and immunohistochemistry. Part B: Using immunohistochemistry the expression of different defensins was analyzed in different subgroups: healthy controls ( n = 25), patients with chronic appendicitis ( n = 25) or acute appendicitis ( n = 10), and end-stage renal disease patients ( n = 25, with 15 on peritoneal dialysis). Results Part A: Human neutrophil peptides (HNP) 1 and 3 and human β-defensins (HBD) 1 to 3 mRNA were detected in peritoneal specimens. In addition, HNP1,3, HBD1, HBD2, and HBD3 proteins were detected using immunohistochemistry. Part B: HBD1 showed a constitutive expression in mesothelium, while HBD2 and HNP1,3 were associated with inflammation. Decreased expressions of HNP1,3 were observed in end-stage renal disease patients and in patients on peritoneal dialysis. Conclusions For the first time, the expression patterns of defensins in normal and damaged peritoneum have been described. The reduced expression of some defensins in end-stage renal disease is of potential clinical interest against the background of the frequent infective complications seen in peritoneal dialysis.
Collapse
Affiliation(s)
- Alexander Grupp
- Division of General Internal Medicine and Nephrology, Germany
- Division of Gastroenterology, Hepatology and Endocrinology, Department of Internal Medicine, Wiesbaden, Germany
| | - Martin Kimmel
- Division of General Internal Medicine and Nephrology, Germany
| | - Peter Fritz
- Division of Pathology, Department of Diagnostic Medicine, Wiesbaden, Germany
| | - Bernd Voggenreiter
- Division of General Surgery, Department of Surgery, Robert-Bosch Krankenhaus, Stuttgart
| | - Hartmut Stöltzing
- Division of General Surgery, Department of Surgery, Robert-Bosch Krankenhaus, Stuttgart
| | - Ulrich Kuhlmann
- Division of General Internal Medicine and Nephrology, Germany
| | - Eduard F. Stange
- Division of Gastroenterology, Hepatology and Endocrinology, Department of Internal Medicine, Wiesbaden, Germany
| | - Thomas Mettang
- Fachbereich Nephrologie, Deutsche Klinik für Diagnostik, Wiesbaden, Germany
| | - Klaus Fellermann
- Division of Gastroenterology, Hepatology and Endocrinology, Department of Internal Medicine, Wiesbaden, Germany
| | | |
Collapse
|
26
|
Olsson L, Hammarström ML, Israelsson A, Lindmark G, Hammarström S. Allocating colorectal cancer patients to different risk categories by using a five-biomarker mRNA combination in lymph node analysis. PLoS One 2020; 15:e0229007. [PMID: 32049988 PMCID: PMC7015415 DOI: 10.1371/journal.pone.0229007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background and aims Curative surgery saves ≈50% of all patients with colorectal cancer (CRC) while remaining patients have synchronous or will develop metachronous metastases. Presently, the single most important prognostic factor is histopathological detection of disseminated tumor cells in regional lymph nodes. However, the routine method has several limitations. The aim was to identify biomarker mRNAs that could be combined in a formula that would allow better prediction of patients' survival after surgery. Methods Screening for biomarker mRNAs overexpressed in CRC was performed by genome-wide hybridization bead array, with verification by qRT-PCR. Specific qRT-PCR assays with copy standards were developed for 5 selected genes and mRNA expression levels determined in lymph nodes from 174 CRC patients (517 nodes) and 24 control patients (118 nodes). Prognostic value of biomarker mRNAs was estimated. A cut-off was set using univariate Cox regression analysis and used for calculation of differences between patient groups in disease-free survival 12 years after surgery (Kaplan-Meier survival model) and risk for recurrent disease (Cox's regression analysis). A formula was constructed for evaluation of the prognostic value of the biomarkers in combination. Results Two new biomarkers, SLC35D3 and POSTN with prognostic value were identified. SLC35D3 was expressed in the epithelium derived tumor cells and POSTN in fibroblasts. Combined with CEACAM5, KLK6 and MUC2 they could be used to identify risk groups. A formula was constructed using CEACAM5 as denominator for KLK6, SLC35D3 and MUC2 and 18S rRNA as denominator for POSTN. The formula yielded 5 categories (-1, 0, 1, 2, 3). Categories (-1 and 0) had good prognosis, categories (1 and 2) relatively poor prognosis and category (3) very poor prognosis. Conclusion Lymph node analysis using 5 selected biomarker mRNAs and 18S rRNA in combination allowed allocation of CRC patients to different risk categories with respect to recurrent disease.
Collapse
Affiliation(s)
- Lina Olsson
- Department of Clinical Microbiology, Section of Infection and Immunology, Umeå University, Umeå, Sweden
| | - Marie-Louise Hammarström
- Department of Clinical Microbiology, Section of Infection and Immunology, Umeå University, Umeå, Sweden
| | - Anne Israelsson
- Department of Clinical Microbiology, Section of Infection and Immunology, Umeå University, Umeå, Sweden
| | - Gudrun Lindmark
- Department of Clinical Sciences, Lund University, Helsingborg, Sweden
| | - Sten Hammarström
- Department of Clinical Microbiology, Section of Infection and Immunology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
27
|
Soderholm AT, Pedicord VA. Intestinal epithelial cells: at the interface of the microbiota and mucosal immunity. Immunology 2019; 158:267-280. [PMID: 31509239 PMCID: PMC6856932 DOI: 10.1111/imm.13117] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
The intestinal epithelium forms a barrier between the microbiota and the rest of the body. In addition, beyond acting as a physical barrier, the function of intestinal epithelial cells (IECs) in sensing and responding to microbial signals is increasingly appreciated and likely has numerous implications for the vast network of immune cells within and below the intestinal epithelium. IECs also respond to factors produced by immune cells, and these can regulate IEC barrier function, proliferation and differentiation, as well as influence the composition of the microbiota. The mechanisms involved in IEC-microbe-immune interactions, however, are not fully characterized. In this review, we explore the ability of IECs to direct intestinal homeostasis by orchestrating communication between intestinal microbes and mucosal innate and adaptive immune cells during physiological and inflammatory conditions. We focus primarily on the most recent findings and call attention to the numerous remaining unknowns regarding the complex crosstalk between IECs, the microbiota and intestinal immune cells.
Collapse
Affiliation(s)
- Amelia T. Soderholm
- Cambridge Institute of Therapeutic Immunology & Infectious DiseaseUniversity of CambridgeCambridgeUK
| | - Virginia A. Pedicord
- Cambridge Institute of Therapeutic Immunology & Infectious DiseaseUniversity of CambridgeCambridgeUK
| |
Collapse
|
28
|
Srivastava M, Chandra A, Agarwal J, Rahul R, Nigam J, Parmar D, Satyam LK. Antibacterial spectrum of human omentum and differential expression of beta defensins. Indian J Gastroenterol 2019; 38:303-309. [PMID: 31643029 DOI: 10.1007/s12664-019-00981-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/23/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Human β defensins (hBD1 and hBD2) are cationic, cysteine-rich peptides and form an integral part of the mammalian innate immune system. hBD1 is constitutively expressed in epithelial cells, whereas hBD2 increases in response to bacterial infection. Human omentum is known for its anti-inflammatory properties and also possesses an antibacterial activity of its own. We hypothesized that antimicrobial peptides, β defensins, may govern host defense mechanism in the microbe-rich environment of the peritoneal cavity. Therefore, we analyzed the expression of hBD1 and hBD2 in omentum tissue in vivo and also studied the antibacterial activity of omentum against common pathogens. METHODOLOGY Omentum tissues were obtained from 30 patients (15 cases and 15 controls). Real-time polymerase chain reaction (PCR) was used to evaluate the mRNA expression of hBD1 and hBD2. Protein quantification was done using Western blotting technique. Antibacterial susceptibility was performed to check the antibacterial activity of omentum. RESULT Significantly higher expression of hBD2 was observed in cases compared to controls at both the transcriptional and translational levels. In comparison with an array of antibiotics, activated omentum also showed antibacterial property even at lower concentration of its extract. CONCLUSION Omentum directly responds to bacterial infection, which may be due to differential expression of hBD1 and hBD2 in human omental tissue. These peptides (hBD1 and hBD2) may be an ideal candidate for novel antibiotic class with a broad-spectrum activity.
Collapse
Affiliation(s)
- Meenu Srivastava
- Department of Surgical Gastroenterology, King George's Medical University, Lucknow, 226 003, India
| | - Abhijit Chandra
- Department of Surgical Gastroenterology, King George's Medical University, Lucknow, 226 003, India.
| | - Jyotsna Agarwal
- Department of Microbiology, King George's Medical University, Lucknow, 226 003, India
| | - Rahul Rahul
- Department of Surgical Gastroenterology, King George's Medical University, Lucknow, 226 003, India
| | - Jaya Nigam
- Department of Surgical Gastroenterology, King George's Medical University, Lucknow, 226 003, India
| | - Devendra Parmar
- Developmental Toxicology Division, Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Leena Khare Satyam
- Cell and Molecular Biology Department, Aurigene Discovery Technologies Limited, Bangalore, 560 100, India
| |
Collapse
|
29
|
Ali H, AbdelMageed M, Olsson L, Israelsson A, Lindmark G, Hammarström ML, Hammarström S, Sitohy B. Utility of G protein-coupled receptor 35 expression for predicting outcome in colon cancer. Tumour Biol 2019; 41:1010428319858885. [PMID: 31250711 DOI: 10.1177/1010428319858885] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The utility of mRNA and protein determinations of G protein-coupled receptor 35, that is, GPR35a (GPR35 V1) and GPR35b (GPR35 V2/3), as indicators of outcome for colon cancer patients after curative surgery was investigated. Expression levels of V1 and V2/3 GPR35, carcinoembryonic antigen and CXCL17 mRNAs were assessed in primary tumours and regional lymph nodes of 121 colon cancer patients (stage I-IV), colon cancer cell lines and control colon epithelial cells using real-time quantitative reverse transcriptase-polymerase chain reaction. Expression of G protein-coupled receptor 35 was investigated by two-colour immunohistochemistry and immunomorphometry. GPR35 V2/3 mRNA, but not V1 mRNA, was expressed in colon cancer cell lines, primary colon tumours and control colon epithelial cells. Haematoxylin and eosin positive (H&E(+)), but not H&E(-), lymph nodes expressed high levels of GPR35 V2/3 mRNA (P<0.0001). GPR35b and carcinoembryonic antigen proteins were simultaneously expressed in many colon cancer tumour cells. Kaplan-Meier and hazard ratio analysis revealed that patients with lymph nodes expressing high levels of GPR35 V2/3 mRNA and, in particular, in the group of patients with lymph nodes also expressing carcinoembryonic antigen mRNA, had a short disease-free survival time, 67 months versus 122 months at 12-year follow-up (difference: 55 months, P = 0.001; hazard ratio: 3.6, P = 0.002). In conclusion, high level expression of G protein-coupled receptor 35 V2/3 mRNA in regional lymph nodes of colon cancer patients is a sign of poor prognosis.
Collapse
Affiliation(s)
- Haytham Ali
- 1 Division of Infection and Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,2 Division of Oncology, Department of Radiation Sciences, Umeå University, Umeå, Sweden.,3 Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Manar AbdelMageed
- 1 Division of Infection and Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,2 Division of Oncology, Department of Radiation Sciences, Umeå University, Umeå, Sweden.,3 Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Lina Olsson
- 1 Division of Infection and Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Anne Israelsson
- 1 Division of Infection and Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Gudrun Lindmark
- 4 Department of Clinical Sciences, Lund University, Helsingborg, Sweden
| | - Marie-Louise Hammarström
- 1 Division of Infection and Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Sten Hammarström
- 1 Division of Infection and Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Basel Sitohy
- 2 Division of Oncology, Department of Radiation Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
30
|
Duodenal expression of antimicrobial peptides in dogs with idiopathic inflammatory bowel disease and intestinal lymphoma. Vet J 2019; 249:47-52. [PMID: 31239164 DOI: 10.1016/j.tvjl.2019.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022]
Abstract
Although antimicrobial peptides (AMPs) play an integral role in the regulation of intestinal microbiota and homeostasis, their expression in canine gastrointestinal diseases, including idiopathic inflammatory bowel disease (IBD) and intestinal lymphoma, remains unknown. The objective of this study was to investigate the intestinal expression of AMPs in dogs with IBD or intestinal lymphoma. IBD was diagnosed in 44 dogs, small cell intestinal lymphoma in 25 dogs, and large cell intestinal lymphoma in 19 dogs. Twenty healthy beagles were used as normal controls. Duodenal mRNA expression of six representative AMPs - lactoferrin, lysozyme, cathelicidin, secretory leukocyte peptidase inhibitor (SLPI), bactericidal/permeability increasing protein (BPI), and canine beta defensin (CBD103) - was quantified by real-time reverse transcription polymerase chain reaction. The relative expression of BPI, lactoferrin, and SLPI was significantly higher in dogs with IBD and intestinal lymphomas than in healthy controls. Interestingly, the expression patterns of AMPs differed between dogs with IBD and those with intestinal lymphomas, especially small cell lymphoma. Increased expression of BPI differentiated IBD from dogs with small cell intestinal lymphoma, with a sensitivity of 93.2%, a specificity of 100%, and an area under the curve of 0.955. These results suggest that the expression patterns of AMP aid in the diagnosis of canine IBD and intestinal lymphoma, although it remains uncertain whether the altered AMP expression is the cause or effect of mucosal inflammation.
Collapse
|
31
|
Vibrio cholerae derived outer membrane vesicles modulate the inflammatory response of human intestinal epithelial cells by inducing microRNA-146a. Sci Rep 2019; 9:7212. [PMID: 31076615 PMCID: PMC6510749 DOI: 10.1038/s41598-019-43691-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 04/23/2019] [Indexed: 01/15/2023] Open
Abstract
The small intestinal epithelium of Vibrio cholerae infected patients expresses the immunomodulatory microRNAs miR-146a and miR-155 at acute stage of disease. V. cholerae release outer membrane vesicles (OMVs) that serve as vehicles for translocation of virulence factors including V. cholerae cytolysin (VCC). The aim was to investigate whether OMVs, with and/or without VCC-cargo could be responsible for induction of microRNAs in intestinal epithelial cells and thereby contribute to immunomodulation. Polarized tight monolayers of T84 cells were challenged with OMVs of wildtype and a VCC deletion mutant of the non-O1/non-O139 (NOVC) V. cholerae strain V:5/04 and with soluble VCC. OMVs, with and without VCC-cargo, caused significantly increased levels of miR-146a. Increase was seen already after 2 hours challenge with OMVs and persisted after 12 hours. Challenge with soluble VCC caused significant increases in interleukin-8 (IL-8), tumour necrosis factor-α (TNF-α), CCL20, IL-1β, and IRAK2 mRNA levels while challenge with OMVs did not cause increases in expression levels of any of these mRNAs. These results suggest that V. cholerae bacteria release OMVs that induce miR-146a in order to pave the way for colonization by reducing the strength of an epithelial innate immune defence reaction and also preventing inflammation in the mucosa that factors like VCC can evoke.
Collapse
|
32
|
Song Y, Gyarmati P. Bacterial translocation in acute lymphocytic leukemia. PLoS One 2019; 14:e0214526. [PMID: 30934014 PMCID: PMC6443231 DOI: 10.1371/journal.pone.0214526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
Bloodstream infection (BSI) is the major cause of mortality in acute lymphocytic leukemia (ALL). Causative pathogens in BSI originate from the gut microbiota due to an increase in intestinal permeability, a process known as bacterial translocation (BT). The gut microbiota in physiological conditions is controlled by a large number of immune cells as part of the gut-associated lymphoid tissue (GALT).The aim of the current study was to investigate the mechanism of bacterial translocation in leukemia by identifying and characterizing alterations in the GALT in leukemic mouse model. Our studies revealed a severe impairment of the GALT characterized by a loss of lymphatic cells in ALL, which eventually led to BSI. We identified differentially expressed genes in the intraepithelium and the lamina propria, which may contribute to BT and to the impairment of lymphocyte migration.
Collapse
Affiliation(s)
- Yajing Song
- University of Illinois College of Medicine Peoria, Peoria, Illinois, United States of America
| | - Peter Gyarmati
- University of Illinois College of Medicine Peoria, Peoria, Illinois, United States of America
- * E-mail:
| |
Collapse
|
33
|
Hu X, Deng J, Yu T, Chen S, Ge Y, Zhou Z, Guo Y, Ying H, Zhai Q, Chen Y, Yuan F, Niu Y, Shu W, Chen H, Ma C, Liu Z, Guo F. ATF4 Deficiency Promotes Intestinal Inflammation in Mice by Reducing Uptake of Glutamine and Expression of Antimicrobial Peptides. Gastroenterology 2019; 156:1098-1111. [PMID: 30452920 DOI: 10.1053/j.gastro.2018.11.033] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Activating transcription factor 4 (ATF4) regulates genes involved in the inflammatory response, amino acid metabolism, autophagy, and endoplasmic reticulum stress. We investigated whether its activity is altered in patients with inflammatory bowel diseases (IBDs) and mice with enterocolitis. METHODS We obtained biopsy samples during endoscopy from inflamed and/or uninflamed regions of the colon from 21 patients with active Crohn's disease (CD), 22 patients with active ulcerative colitis (UC), and 38 control individuals without IBD and of the ileum from 19 patients with active CD and 8 individuals without IBD in China. Mice with disruption of Atf4 specifically in intestinal epithelial cells (Atf4ΔIEC mice) and Atf4-floxed mice (controls) were given dextran sodium sulfate (DSS) to induce colitis. Some mice were given injections of recombinant defensin α1 (DEFA1) and supplementation of l-alanyl-glutamine or glutamine in drinking water. Human and mouse ileal and colon tissues were analyzed by quantitative real-time polymerase chain reaction, immunoblots, and immunohistochemistry. Serum and intestinal epithelial cell (IEC) amino acids were measured by high-performance liquid chromatography-tandem mass spectrometry. Levels of ATF4 were knocked down in IEC-18 cells with small interfering RNAs. Microbiomes were analyzed in ileal feces from mice by using 16S ribosomal DNA sequencing. RESULTS Levels of ATF4 were significantly decreased in inflamed intestinal mucosa from patients with active CD or active UC compared with those from uninflamed regions or intestinal mucosa from control individuals. ATF4 was also decreased in colonic epithelia from mice with colitis vs mice without colitis. Atf4ΔIEC mice developed spontaneous enterocolitis and colitis of greater severity than control mice after administration of DSS. Atf4ΔIEC mice had decreased serum levels of glutamine and reduced levels of antimicrobial peptides, such as Defa1, Defa4, Defa5, Camp, and Lyz1, in ileal Paneth cells. Atf4ΔIEC mice had alterations in ileal microbiomes compared with control mice; these changes were reversed by administration of glutamine. Injections of DEFA1 reduced the severity of spontaneous enteritis and DSS-induced colitis in Atf4ΔIEC mice. We found that expression of solute carrier family 1 member 5 (SLC1A5), a glutamine transporter, was directly regulated by ATF4 in cell lines. Overexpression of SLC1A5 in IEC-18 or primary IEC cells increased glutamine uptake and expression of antimicrobial peptides. Knockdown of ATF4 in IEC-18 cells increased expression of inflammatory cytokines, whereas overexpression of SLC1A5 in the knockdown cells reduced cytokine expression. Levels of SLC1A5 were decreased in inflamed intestinal mucosa of patients with CD and UC and correlated with levels of ATF4. CONCLUSIONS Levels of ATF4 are decreased in inflamed intestinal mucosa from patients with active CD or UC. In mice, ATF4 deficiency reduces glutamine uptake by intestinal epithelial cells and expression of antimicrobial peptides by decreasing transcription of Slc1a5. ATF4 might therefore be a target for the treatment of IBD.
Collapse
Affiliation(s)
- Xiaoming Hu
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiali Deng
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tianming Yu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Shanghai Chen
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yadong Ge
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ziheng Zhou
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yajie Guo
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao Ying
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Zhai
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feixiang Yuan
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuguo Niu
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weigang Shu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Huimin Chen
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Caiyun Ma
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| | - Feifan Guo
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
34
|
Grizotte-Lake M, Zhong G, Duncan K, Kirkwood J, Iyer N, Smolenski I, Isoherranen N, Vaishnava S. Commensals Suppress Intestinal Epithelial Cell Retinoic Acid Synthesis to Regulate Interleukin-22 Activity and Prevent Microbial Dysbiosis. Immunity 2018; 49:1103-1115.e6. [PMID: 30566883 PMCID: PMC6319961 DOI: 10.1016/j.immuni.2018.11.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/13/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022]
Abstract
Retinoic acid (RA), a vitamin A metabolite, regulates transcriptional programs that drive protective or pathogenic immune responses in the intestine, in a manner dependent on RA concentration. Vitamin A is obtained from diet and is metabolized by intestinal epithelial cells (IECs), which operate in intimate association with microbes and immune cells. Here we found that commensal bacteria belonging to class Clostridia modulate RA concentration in the gut by suppressing the expression of retinol dehydrogenase 7 (Rdh7) in IECs. Rdh7 expression and associated RA amounts were lower in the intestinal tissue of conventional mice, as compared to germ-free mice. Deletion of Rdh7 in IECs diminished RA signaling in immune cells, reduced the IL-22-dependent antimicrobial response, and enhanced resistance to colonization by Salmonella Typhimurium. Our findings define a regulatory circuit wherein bacterial regulation of IEC-intrinsic RA synthesis protects microbial communities in the gut from excessive immune activity, achieving a balance that prevents colonization by enteric pathogens.
Collapse
Affiliation(s)
- Mayara Grizotte-Lake
- Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Guo Zhong
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Kellyanne Duncan
- Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Jay Kirkwood
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Namrata Iyer
- Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Irina Smolenski
- Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Shipra Vaishnava
- Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
35
|
Papada E, Gioxari A, Amerikanou C, Forbes A, Tzavara C, Smyrnioudis I, Kaliora AC. Regulation of faecal biomarkers in inflammatory bowel disease patients treated with oral mastiha (Pistacia lentiscus
) supplement: A double-blind and placebo-controlled randomised trial. Phytother Res 2018; 33:360-369. [DOI: 10.1002/ptr.6229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Efstathia Papada
- Department of Dietetics and Nutritional Science, School of Health Science and Education; Harokopio University; Athens Greece
| | - Aristea Gioxari
- Department of Dietetics and Nutritional Science, School of Health Science and Education; Harokopio University; Athens Greece
| | - Charalampia Amerikanou
- Department of Dietetics and Nutritional Science, School of Health Science and Education; Harokopio University; Athens Greece
| | - Alastair Forbes
- Norwich Medical School; University of East Anglia; Norwich UK
| | - Chara Tzavara
- Department of Dietetics and Nutritional Science, School of Health Science and Education; Harokopio University; Athens Greece
| | | | - Andriana C. Kaliora
- Department of Dietetics and Nutritional Science, School of Health Science and Education; Harokopio University; Athens Greece
| |
Collapse
|
36
|
Human Defensin-5 Blocks Ethanol and Colitis-Induced Dysbiosis, Tight Junction Disruption and Inflammation in Mouse Intestine. Sci Rep 2018; 8:16241. [PMID: 30389960 PMCID: PMC6214960 DOI: 10.1038/s41598-018-34263-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
Alcohol consumption has been shown to cause dysbiosis, but the mechanism involved in it is unknown. Recurrent colitis is known to induce expression of α-defensins in the colon, but the effect of alcohol consumption on it is not known. We investigated the effect of ethanol on α-defensin expression in the small intestine and colitis-induced expression in colon in mice. Furthermore, we evaluated the effect of human defensin-5 (HD5) on ethanol and colitis-induced gut barrier dysfunction and mucosal damage. Recurrent colitis was induced by feeding dextran sulfate sodium (DSS), 3 cycles of 5-days each with 15 days intervals, followed by 30-days remission. Ethanol was fed during the intervals and recovery in a liquid diet with or without HD5. Expression of α-defensins, tight junction (TJ) integrity and cytokine/chemokine expression were analyzed. Chronic ethanol feeding reduced α-defensin expression in the small intestine and colitis-induced defensin expression in the colon. HD5 attenuated the growth of enterotoxigenic Bacteriodes fragilis and E. coli, but had no effect on non-toxigenic Bacteriodes fragilis or probiotics, the Lactobacilli. Ethanol and colitis elevated Enterobacteriaceae, Firmicutes and Firmicutes to Bacteriodetes ratio in colonic mucosa. HD5 feeding attenuated ethanol and colitis-induced dysbiosis, disruption of intestinal epithelial TJ, mucosal inflammation, expression of pro-inflammatory cytokines and chemokines in the small intestine and colon, and endotoxemia. These results demonstrate that ethanol suppresses intestinal α-defensin expression, leading to dysbiosis, barrier dysfunction, inflammation and endotoxemia. HD5 feeding attenuates intestinal injury caused by ethanol and colitis, indicating that defensin expression is a potential target for treatment of alcoholic tissue injury and colitis.
Collapse
|
37
|
Rashad Y, Olsson L, Israelsson A, Öberg Å, Lindmark G, Hammarström ML, Hammarström S, Sitohy B. Lymph node CXCL17 messenger RNA: A new prognostic biomarker for colon cancer. Tumour Biol 2018; 40:1010428318799251. [PMID: 30198422 DOI: 10.1177/1010428318799251] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lymph node metastasis is the most important prognostic characteristic of colorectal cancer. Carcinoembryonic antigen messenger RNA was shown to detect tumor cells that have disseminated to lymph nodes of colorectal cancer patients and to be at least as good as the hematoxylin and eosin method to predict survival in colorectal cancer patients. CXCL17 was recently shown to be ectopically expressed in colon cancer tumors. Therefore, CXCL17 may serve as prognostic marker alone or in combination with carcinoembryonic antigen. CXCL17 and carcinoembryonic antigen messenger RNA levels were determined using quantitative reverse transcription polymerase chain reaction with RNA copy standard in 389 lymph nodes of 120 colon cancer patients (stages I-IV) and 67 lymph nodes of 12 control patients with inflammatory bowel disease as well as in 68 primary tumors and 30 normal colon tissue samples. Lymph nodes of colon cancer patients were analyzed for CXCL17 and carcinoembryonic antigen protein expression by immunohistochemistry. CXCL17 messenger RNA was expressed in primary tumors at high levels, while it was barely detected in normal colon tissue ( p < 0.0001). Similarly, CXCL17 messenger RNA levels were significantly higher in hematoxylin- and eosin-positive (hematoxylin and eosin (+)) lymph nodes compared to hematoxylin- and eosin-negative nodes ( p < 0.0001). CXCL17 messenger RNA levels were investigated in lymph nodes grouped according to carcinoembryonic antigen messenger RNA levels: low (-), intermediate (int), and high (+). CXCL17 messenger RNA levels were higher in the carcinoembryonic antigen (int) and carcinoembryonic antigen (+) groups compared to the carcinoembryonic antigen (-) group ( p = 0.03 and p < 0.0001, respectively). In lymph nodes of stage III and IV patients, CXCL17 messenger RNA levels correlated with carcinoembryonic antigen messenger RNA levels ( p < 0.0001, r = 0.56 and p = 0.0002, r = 0.66, respectively). Staining of consecutive lymph node sections for CXCL17 and carcinoembryonic antigen demonstrated that the same cells expressed both proteins. Altogether, these results indicate that CXCL17 in lymph nodes is expressed by tumor cells. Patients were grouped according to the CXCL17 messenger RNA levels in the highest lymph node with low levels (-) and high levels (+). CXCL17(+) colon cancer patients showed 2.8-3.6 fold increased risk for recurrence ( p = 0.03) and decreased mean disease-free survival time of 8 months compared to CXCL17(-) colon cancer patients ( p = 0.03). CXCL17(+) carcinoembryonic antigen (int) colon cancer patients showed increased risk for recurrence by 8.3 fold ( p = 0.04) and decreased mean disease-free survival time of 46 months compared to CXCL17(-) carcinoembryonic antigen (int) colon cancer patient at follow-up after 12 years ( p = 0.02). The presence of tumor cells expressing CXCL17 in regional lymph nodes is a sign of poor prognosis. Analysis of CXCL17 messenger RNA is particularly useful to detect less differentiated colon cancer tumors expressing relatively low carcinoembryonic antigen messenger RNA levels. Thus, CXCL17 messenger RNA in combination with carcinoembryonic antigen messenger RNA may be used as a complementary tool to the hematoxylin and eosin method for detection of poorly differentiated, aggressive tumors.
Collapse
Affiliation(s)
- Yomna Rashad
- 1 Division of Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,2 Division of Oncology, Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Lina Olsson
- 1 Division of Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Anne Israelsson
- 1 Division of Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Åke Öberg
- 3 Division of Surgery, Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Gudrun Lindmark
- 4 Department of Clinical Sciences, Lund University, Helsingborg, Sweden
| | | | - Sten Hammarström
- 1 Division of Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Basel Sitohy
- 2 Division of Oncology, Department of Radiation Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
38
|
Stebe-Frick S, Ostaff MJ, Stange EF, Malek NP, Wehkamp J. Histone deacetylase-mediated regulation of the antimicrobial peptide hBD2 differs in intestinal cell lines and cultured tissue. Sci Rep 2018; 8:12886. [PMID: 30150730 PMCID: PMC6110836 DOI: 10.1038/s41598-018-31125-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/08/2018] [Indexed: 01/13/2023] Open
Abstract
Histone deacetylase inhibition (HDACi) has been suggested as a promising approach to bolster TLR-mediated induction of antimicrobial peptides such as human β-defensin 2 (hBD2). In inflammatory bowel disease (IBD), Crohn’s disease (CD) patients display an attenuated expression of hBD2 as compared to ulcerative colitis (UC). Here, we aimed to study if combining HDACi with the therapeutic E. coli Nissle 1917 (EcN), a strong hBD2 inducer, might be a feasible strategy to further modify protective immune responses. Monolayer epithelial cell lines versus cultured human biopsies from healthy controls and CD and UC patients showed diverse effects. In mono-cell systems, we observed a strong NF-kB-dependent enhancement of TLR- but also IL1β-mediated hBD2 induction after HDACi. In contrast, multicellular colonic biopsy culture showed the opposite result and HDACi was associated with an abolished TLR-mediated hBD2 induction in all tested patient groups. Of note, CD patients showed an attenuated induction of hBD2 by E. coli Nissle as compared to UC. We conclude that the role of HDACs in hBD2 regulation is context-dependent and likely modified by different cell types. Differential induction in different IBD entities suggests different clinical response patterns based on still unknown hBD2-associated mechanisms.
Collapse
Affiliation(s)
- Sabrina Stebe-Frick
- Department of Hepatology, Gastroenterology and Infectiology, University Hospital, 72076, Tübingen, Germany
| | - Maureen J Ostaff
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, 70376, Stuttgart, Germany.,Scientific Affairs - Philips Image guided therapy devices, Colorado Springs, Colorado, USA
| | - Eduard F Stange
- Department of Hepatology, Gastroenterology and Infectiology, University Hospital, 72076, Tübingen, Germany
| | - Nisar P Malek
- Department of Hepatology, Gastroenterology and Infectiology, University Hospital, 72076, Tübingen, Germany
| | - Jan Wehkamp
- Department of Hepatology, Gastroenterology and Infectiology, University Hospital, 72076, Tübingen, Germany.
| |
Collapse
|
39
|
Dias Bastos PA, Lara Santos L, Pinheiro Vitorino RM. How are the expression patterns of gut antimicrobial peptides modulated by human gastrointestinal diseases? A bridge between infectious, inflammatory, and malignant diseases. J Pept Sci 2018. [PMID: 29542263 DOI: 10.1002/psc.3071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The human gut barrier is the tissue exposed to the highest load of microorganisms, harbouring 100 trillion bacteria. In addition, the gut's renewal rate outruns that of any other human tissue. Antimicrobial peptides (AMPs) are highly optimized defense molecules in the intestinal barrier optimized to maintain gastrointestinal homeostasis. Alterations in AMPs activity can lead to or result from human gastrointestinal diseases. In this review, unique, conserved, or otherwise regular alterations in the expression patterns of human AMPs across gastrointestinal inflammatory and infectious diseases were analyzed for pattern elucidation. Human gastrointestinal diseases are associated with alterations in gut AMPs' expression patterns in a peptide-specific, disease-specific, and pathogen-specific way, modulating human gastrointestinal functioning. Across diseases, there is a (i) marked reduction in otherwise constitutively expressed AMPs, leading to increased disease susceptibility, and a (ii) significant increase in the expression of inducible AMPs, leading to tissue damage and disease severity. Infections and inflammatory conditions are associated with altered gene expression in the gut, whose patterns may favour cellular metaplasia, mucosal dysfunction, and disease states. Altered expression of AMPs can thus thrive disease severity and evolution since its early stages. Nevertheless, the modulation of AMP expression patterns unveils promising therapeutic targets.
Collapse
Affiliation(s)
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group - Research Center, Portuguese Oncology Institute - Porto (IPO-Porto), Porto, Portugal.,Department of Surgical Oncology, Portuguese Oncology Institute - Porto (IPO-Porto), Porto, Portugal
| | - Rui Miguel Pinheiro Vitorino
- iBiMED, Institute for Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
40
|
Human phagocytic cell response to histamine derived from potential probiotic strains of Lactobacillus reuteri. Immunobiology 2018; 223:618-626. [PMID: 30037587 DOI: 10.1016/j.imbio.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/18/2018] [Accepted: 07/05/2018] [Indexed: 11/22/2022]
Abstract
Histamine derived from lactobacilli isolates is considered to be a potential immunomodulator able to interact with the host immune system. We tested the effect of pure histamine (0.413 mM) together with the effect of cell-culture supernatants (CCS) containing different concentration of histamine produced by two of Lactobacillus reuteri isolates on the activities of antioxidant enzyme, as well as on the phagocytic activity of human leucocytes (HL). Phagocytic activity represents the non-specific immune response of HL homogenate, in vitro. Analysed histamine-producers were represented by a goatling isolate named L. reuteri KO5 and a lamb isolate named L. reuteri E and histamine production was determined using HPLC method connected with UV detection. Concretely, the samples contained the mixture of isolated HL and the addition of lactobacilli CCS at three different final concentrations of histamine ∼ 0.1, 1.8 and 5.4 mM. It was found that pure histamine (0.413 mM) did not significantly influence the oxidant-antioxidant balance in HL demonstrated by unchanged degree of HL lipid peroxidation. However, at the same time, the final activity of catalase and superoxide dismutase were significantly changed (p ≤ 0.001). Moreover, the phagocytic index (p ≤ 0.01), lysozyme (p ≤ 0.05) and peroxidase activity (p ≤ 0.001), and production of IL-1β significantly decreased. CCS containing different concentration of produced histamine were also able to modulate the host non-specific immune response together with the enzymatic activity of SOD and catalase too. However, our findings indicated that the impact of lactobacilli histamine is strictly strain-dependent and concentration dependent. Moreover, it seems that histamine is not the only one lactobacilli metabolite, which may play an important role in overall immunomodulatory and antioxidant potential of tested lactobacilli.
Collapse
|
41
|
Sun X, Xiu F, Pan B, Li Y, Haskins JT, Shen W, Li J. Antimicrobial peptide expression in swine granulosa cells in response to lipopolysaccharide. Theriogenology 2018; 119:80-90. [PMID: 29982140 DOI: 10.1016/j.theriogenology.2018.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 12/19/2022]
Abstract
Antimicrobial peptides (AMP) are host defense peptides present in all species examined. The objective of the current study was to characterize the expression of a group of antimicrobial peptides in ovarian cells, and to investigate their expression response to pathogen ligands. It was found that while PG1 transcript was not detected in the ovary, the expression of BD2 is the highest in small follicle derived granulosa cells (SGC), and its expression decreases during follicular development to large follicle stage (LGC; p < 0.05). The expression of BD2 in cumulus cells also decreased from GV to MII stage of oocyte maturation. ANG4 expression increased in granulosa cells during follicular development from SGC to LGC stage (p < 0.05), although no significant difference was observed in cumulus cells from different stages of oocyte maturation. We further examined AMP expression in follicle cells treated with different toll-like receptor (TLR) ligands which mimic pathogen exposure in the ovary. Of the four TLR ligands examined, lipopolysaccharide (LPS) exposure resulted in a 11.5 fold increase of BD2 expression, and a significant decrease of LYZ in LGC. A similar response pattern in BD2 and LYZ expression was also observed in SGC. These responses of AMP expression to LPS are associated with increased TLR4 signaling pathway component in mRNA and protein level, such as MyD88 and NFkB, and pro-inflammatory cytokines/chemokines, such as IL-6, TNFα and IL-8 (p < 0.05). Our data suggest that AMPs may play a role in innate defense as well as other physiological functions during ovarian follicular development and oocyte maturation.
Collapse
Affiliation(s)
- Xiaofeng Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China; Department of Animal BioSciences, University of Guelph, Guelph, Ontario, Canada
| | - Fangming Xiu
- Department of Animal BioSciences, University of Guelph, Guelph, Ontario, Canada; Translational Medicine, The SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Bo Pan
- Department of Animal BioSciences, University of Guelph, Guelph, Ontario, Canada
| | - Yapeng Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - James T Haskins
- Department of Animal BioSciences, University of Guelph, Guelph, Ontario, Canada
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Julang Li
- Department of Animal BioSciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
42
|
Endospores and other lysis-resistant bacteria comprise a widely shared core community within the human microbiota. ISME JOURNAL 2018; 12:2403-2416. [PMID: 29899513 DOI: 10.1038/s41396-018-0192-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/21/2022]
Abstract
Endospore-formers in the human microbiota are well adapted for host-to-host transmission, and an emerging consensus points to their role in determining health and disease states in the gut. The human gut, more than any other environment, encourages the maintenance of endospore formation, with recent culture-based work suggesting that over 50% of genera in the microbiome carry genes attributed to this trait. However, there has been limited work on the ecological role of endospores and other stress-resistant cellular states in the human gut. In fact, there is no data to indicate whether organisms with the genetic potential to form endospores actually form endospores in situ and how sporulation varies across individuals and over time. Here we applied a culture-independent protocol to enrich for endospores and other stress-resistant cells in human feces to identify variation in these states across people and within an individual over time. We see that cells with resistant states are more likely than those without to be shared among multiple individuals, which suggests that these resistant states are particularly adapted for cross-host dissemination. Furthermore, we use untargeted fecal metabolomics in 24 individuals and within a person over time to show that these organisms respond to shared environmental signals, and in particular, dietary fatty acids, that likely mediate colonization of recently disturbed human guts.
Collapse
|
43
|
Rubio CA, Langner C, Schmidt PT. Partial to complete abrogation of the subepithelial macrophage barrier against the gut microbiota in patients with ulcerative colitis and Crohn's colitis. Histopathology 2017; 72:580-587. [PMID: 29023984 DOI: 10.1111/his.13417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/08/2017] [Indexed: 02/06/2023]
Abstract
AIMS The integrity of the band of indigenous macrophages in the subepithelial layer of the lamina propria (SLP) is crucial in preventing the commensal gut microbiota from attacking the host. The breakdown of the SLP macrophage barrier results in microbiota inflow and improper immune responses; this might lead to inflammatory bowel disease (IBD). During inflammation, the SLP macrophage barrier is reinforced by inflammation-elicited macrophages (IEMs), which are derived from blood-circulating monocytes. The aim was to explore the characteristics of the SLP macrophage band in a cohort of biopsies without inflammation, in patients with ulcerative colitis in remission (UCre), and in patients with right-sided Crohn's colitis (RCC). METHODS AND RESULTS Endoscopic biopsies were taken from endoscopically normal descending colon in 247 patients; 80 with IBD (27 UCre and 53 RCC), and 167 without IBD [90 had colonic diarrhoea, 63 were enrolled in a colorectal cancer (CRC) surveillance programme, seven had microscopic colitis in remission, and seven had miscellaneous colonic ailments]. Sections showed no inflammatory changes; they were immunostained with CD68. Among patients with UCre and RCC, the SLP band of CD68+ macrophages was fragmented or minute in 59% (47/80) and negative in 9% (7/80). In contrast, only 31% (51/167) of the biopsies from control patients had a fragmented/minute SLP band of CD68+ macrophages, and none had a negative SLP band of CD68+ macrophages (IBD versus controls, P < 0.05). CONCLUSIONS The finding that the SLP macrophage barrier was fragmented to totally abrogated in UCre and RCC patients suggests a longlasting defect in the SLP CD68+ macrophage barrier in these patients. The lack of ongoing inflammation in colonic biopsies should rule out the participation of bone marrow-derived IEMs in the abrogation of the SLP macrophage barrier reported here.
Collapse
Affiliation(s)
- Carlos A Rubio
- Department of Pathology, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Cord Langner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Peter T Schmidt
- Department of Medicine, Karolinska Institute, Centre for Digestive Diseases, University Hospital, Stockholm, Sweden
| |
Collapse
|
44
|
Dotti I, Mora-Buch R, Ferrer-Picón E, Planell N, Jung P, Masamunt MC, Leal RF, Martín de Carpi J, Llach J, Ordás I, Batlle E, Panés J, Salas A. Alterations in the epithelial stem cell compartment could contribute to permanent changes in the mucosa of patients with ulcerative colitis. Gut 2017; 66:2069-2079. [PMID: 27803115 PMCID: PMC5749340 DOI: 10.1136/gutjnl-2016-312609] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/12/2016] [Accepted: 09/18/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE UC is a chronic inflammatory disease of the colonic mucosa. Growing evidence supports a role for epithelial cell defects in driving pathology. Moreover, long-lasting changes in the epithelial barrier have been reported in quiescent UC. Our aim was to investigate whether epithelial cell defects could originate from changes in the epithelial compartment imprinted by the disease. DESIGN Epithelial organoid cultures (EpOCs) were expanded ex vivo from the intestinal crypts of non-IBD controls and patients with UC. EpOCs were induced to differentiate (d-EpOCs), and the total RNA was extracted for microarray and quantitative real-time PCR (qPCR) analyses. Whole intestinal samples were used to determine mRNA expression by qPCR, or protein localisation by immunostaining. RESULTS EpOCs from patients with UC maintained self-renewal potential and the capability to give rise to differentiated epithelial cell lineages comparable with control EpOCs. Nonetheless, a group of genes was differentially regulated in the EpOCs and d-EpOCs of patients with UC, including genes associated with antimicrobial defence (ie, LYZ, PLA2G2A), with secretory (ie, ZG16, CLCA1) and absorptive (ie, AQP8, MUC12) functions, and with a gastric phenotype (ie, ANXA10, CLDN18 and LYZ). A high rate of concordance was found in the expression profiles of the organoid cultures and whole colonic tissues from patients with UC. CONCLUSIONS Permanent changes in the colonic epithelium of patients with UC could be promoted by alterations imprinted in the stem cell compartment. These changes may contribute to perpetuation of the disease.
Collapse
Affiliation(s)
- Isabella Dotti
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - Rut Mora-Buch
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - Elena Ferrer-Picón
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - Núria Planell
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain,Bioinformatics Platform, CIBERehd, Barcelona, Spain
| | - Peter Jung
- Oncology Program, Institute for Research in Biomedicine (IRB), Barcelona, Spain,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - M Carme Masamunt
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - Raquel Franco Leal
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain,IBD Research Laboratory, Surgery Department, Universidade Estadual de Campinas, Campinas, Sao Paulo, Brazil
| | - Javier Martín de Carpi
- Department of Gastroenterology, Hepatology and Pediatric Nutrition, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Josep Llach
- Endoscopy Unit, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - Ingrid Ordás
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - Eduard Batlle
- Oncology Program, Institute for Research in Biomedicine (IRB), Barcelona, Spain,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Julián Panés
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - Azucena Salas
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| |
Collapse
|
45
|
Holmberg FE, Pedersen J, Jørgensen P, Soendergaard C, Jensen KB, Nielsen OH. Intestinal barrier integrity and inflammatory bowel disease: Stem cell‐based approaches to regenerate the barrier. J Tissue Eng Regen Med 2017. [DOI: 10.1002/term.2506] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fredrik E.O. Holmberg
- Department of Gastroenterology, Medical Section, Herlev HospitalUniversity of Copenhagen Herlev Denmark
| | - Jannie Pedersen
- Department of Gastroenterology, Medical Section, Herlev HospitalUniversity of Copenhagen Herlev Denmark
| | - Peter Jørgensen
- Department of Gastroenterology, Medical Section, Herlev HospitalUniversity of Copenhagen Herlev Denmark
| | - Christoffer Soendergaard
- Department of Gastroenterology, Medical Section, Herlev HospitalUniversity of Copenhagen Herlev Denmark
| | - Kim B. Jensen
- Biotech Research and Innovation Centre (BRIC)University of Copenhagen Copenhagen Denmark
- The Danish Stem Cell Center (Danstem)University of Copenhagen, Faculty of Health and Medical Sciences Copenhagen Denmark
| | - Ole H. Nielsen
- Department of Gastroenterology, Medical Section, Herlev HospitalUniversity of Copenhagen Herlev Denmark
| |
Collapse
|
46
|
Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells. PLoS One 2017; 12:e0185025. [PMID: 28934294 PMCID: PMC5608296 DOI: 10.1371/journal.pone.0185025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/04/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND & AIMS Celiac disease is a chronic inflammatory disease of the small intestine mucosa due to permanent intolerance to dietary gluten. The aim was to elucidate the role of small intestinal epithelial cells in the immunopathology of celiac disease in particular the influence of celiac disease-associated bacteria. METHODS Duodenal biopsies were collected from children with active celiac disease, treated celiac disease, and clinical controls. Intestinal epithelial cells were purified and analyzed for gene expression changes at the mRNA and protein levels. Two in vitro models for human intestinal epithelium, small intestinal enteroids and polarized tight monolayers, were utilized to assess how interferon-γ, interleukin-17A, celiac disease-associated bacteria and gluten influence intestinal epithelial cells. RESULTS More than 25 defense-related genes, including IRF1, SPINK4, ITLN1, OAS2, CIITA, HLA-DMB, HLA-DOB, PSMB9, TAP1, BTN3A1, and CX3CL1, were significantly upregulated in intestinal epithelial cells at active celiac disease. Of these genes, 70% were upregulated by interferon-γ via the IRF1 pathway. Most interestingly, IRF1 was also upregulated by celiac disease-associated bacteria. The NLRP6/8 inflammasome yielding CASP1 and biologically active interleukin-18, which induces interferon-γ in intraepithelial lymphocytes, was expressed in intestinal epithelial cells. CONCLUSION A key factor in the epithelial reaction in celiac disease appears to be over-expression of IRF1 that could be inherent and/or due to presence of undesirable microbes that act directly on IRF1. Dual activation of IRF1 and IRF1-regulated genes, both directly and via the interleukin-18 dependent inflammasome would drastically enhance the inflammatory response and lead to the pathological situation seen in active celiac disease.
Collapse
|
47
|
Xia X, Cheng L, Zhang S, Wang L, Hu J. The role of natural antimicrobial peptides during infection and chronic inflammation. Antonie van Leeuwenhoek 2017; 111:5-26. [PMID: 28856473 DOI: 10.1007/s10482-017-0929-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/15/2017] [Indexed: 01/12/2023]
Abstract
Natural antimicrobial peptides (AMPs), a family of small polypeptides that are produced by constitutive or inducible expression in organisms, are integral components of the host innate immune system. In addition to their broad-spectrum antibacterial activity, natural AMPs also have many biological activities against fungi, viruses and parasites. Natural AMPs exert multiple immunomodulatory roles that may predominate under physiological conditions where they lose their microbicidal properties in serum and tissue environments. Increased drug resistance among microorganisms is occurring far more quickly than the discovery of new antibiotics. Natural AMPs have shown promise as 'next generation antibiotics' due to their broad-spectrum curative effects, low toxicity, the fact that they are not residual in animals, and the low rates of resistance exhibited by many pathogens. Many types of synthetic AMPs are currently being tested in clinical trials for the prevention and treatment of various diseases such as chemotherapy-associated infections, diabetic foot ulcers, catheter-related infections, and other conditions. Here, we provide an overview of the types and functions of natural AMPs and their role in combating microorganisms and different infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, People's Republic of China
| | - Likun Cheng
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, 256600, People's Republic of China
| | - Shouping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, People's Republic of China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, People's Republic of China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, People's Republic of China.
| |
Collapse
|
48
|
Cyclic Peptides as Novel Therapeutic Microbicides: Engineering of Human Defensin Mimetics. Molecules 2017; 22:molecules22071217. [PMID: 28726740 PMCID: PMC6152268 DOI: 10.3390/molecules22071217] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 11/16/2022] Open
Abstract
Cyclic peptides are receiving significant attention thanks to their antimicrobial activity and high serum stability, which is useful to develop and design novel antimicrobial agents. Antimicrobial peptides appear to be key components of innate defences against bacteria, viruses, and fungi. Among the others, defensins possess a strong microbicidial activity. Defensins are cationic and amphipathic peptides with six cysteine residues connected by three disulfide bonds found in plants, insects, and mammals; they are divided in three families: α-, β-, and θ-defensins. α-Defensins are contained in the primary granules of human neutrophils; β-defensins are expressed in human epithelia; and θ-defensins are pseudo-cyclic defensins not found in humans, but in rhesus macaques. The structural diversities among the three families are reflected in a different antimicrobial action as well as in serum stability. The engineering of these peptides is an exciting opportunity to obtain more functional antimicrobial molecules highlighting their potential as therapeutic agents. The present review reports the most recent advances in the field of cyclic peptides with a specific regard to defensin analogs.
Collapse
|
49
|
Induction of immunomodulatory miR-146a and miR-155 in small intestinal epithelium of Vibrio cholerae infected patients at acute stage of cholera. PLoS One 2017; 12:e0173817. [PMID: 28319200 PMCID: PMC5358779 DOI: 10.1371/journal.pone.0173817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/27/2017] [Indexed: 12/30/2022] Open
Abstract
The potential immunomodulatory role of microRNAs in small intestine of patients with acute watery diarrhea caused by Vibrio cholerae O1 or enterotoxigenic Escherichia coli (ETEC) infection was investigated. Duodenal biopsies were obtained from study-participants at the acute (day 2) and convalescent (day 21) stages of disease, and from healthy individuals. Levels of miR-146a, miR-155 and miR-375 and target gene (IRAK1, TRAF6, CARD10) and 11 cytokine mRNAs were determined by qRT-PCR. The cellular source of microRNAs in biopsies was analyzed by in situ hybridization. The ability of V. cholerae bacteria and their secreted products to cause changes in microRNA- and mRNA levels in polarized tight monolayers of intestinal epithelial cells was investigated. miR-146a and miR-155 were expressed at significantly elevated levels at acute stage of V. cholerae infection and declined to normal at convalescent stage (P<0.009 versus controls; P = 0.03 versus convalescent stage, pairwise). Both microRNAs were mainly expressed in the epithelium. Only marginal down-regulation of target genes IRAK1 and CARD10 was seen and a weak cytokine-profile was identified in the acute infected mucosa. No elevation of microRNA levels was seen in ETEC infection. Challenge of tight monolayers with the wild type V. cholerae O1 strain C6706 and clinical isolates from two study-participants, caused significant increase in miR-155 and miR-146a by the strain C6706 (P<0.01). One clinical isolate caused reduction in IRAK1 levels (P<0.05) and none of the strains induced inflammatory cytokines. In contrast, secreted factors from these strains caused markedly increased levels of IL-8, IL-1β, and CARD10 (P<0.001), without inducing microRNA expression. Thus, miR-146a and miR-155 are expressed in the duodenal epithelium at the acute stage of cholera. The inducer is probably the V. cholerae bacterium. By inducing microRNAs the bacterium can limit the innate immune response of the host, including inflammation evoked by its own secreted factors, thereby decreasing the risk of being eliminated.
Collapse
|
50
|
Beatty JK, Akierman SV, Motta JP, Muise S, Workentine ML, Harrison JJ, Bhargava A, Beck PL, Rioux KP, McKnight GW, Wallace JL, Buret AG. Giardia duodenalis induces pathogenic dysbiosis of human intestinal microbiota biofilms. Int J Parasitol 2017; 47:311-326. [PMID: 28237889 DOI: 10.1016/j.ijpara.2016.11.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/12/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023]
Abstract
Giardia duodenalis is a prevalent cause of acute diarrheal disease worldwide. However, recent outbreaks in Italy and Norway have revealed a link between giardiasis and the subsequent development of chronic post-infectious irritable bowel syndrome. While the mechanisms underlying the causation of post-infectious irritable bowel syndrome remain obscure, recent findings suggest that alterations in gut microbiota communities are linked to the pathophysiology of irritable bowel syndrome. In the present study, we use a laboratory biofilm system to culture and enrich mucosal microbiota from human intestinal biopsies. Subsequently, we show that co-culture with Giardia induces disturbances in biofilm species composition and biofilm structure resulting in microbiota communities that are intrinsically dysbiotic - even after the clearance of Giardia. These microbiota abnormalities were mediated in part by secretory-excretory Giardia cysteine proteases. Using in vitro cell culture and germ-free murine infection models, we show that Giardia-induced disruptions of microbiota promote bacterial invasion, resulting in epithelial apoptosis, tight junctional disruption, and bacterial translocation across an intestinal epithelial barrier. Additionally, these dysbiotic microbiota communities resulted in increased activation of the Toll-like receptor 4 signalling pathway, and overproduction of the pro-inflammatory cytokine IL-1beta in humanized germ-free mice. Previous studies that have sought explanations and risk factors for the development of post-infectious irritable bowel syndrome have focused on features of enteropathogens and attributes of the infected host. We propose that polymicrobial interactions involving Giardia and gut microbiota may cause persistent dysbiosis, offering a new interpretation of the reasons why those afflicted with giardiasis are predisposed to gastrointestinal disorders post-infection.
Collapse
Affiliation(s)
- Jennifer K Beatty
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Sarah V Akierman
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Jean-Paul Motta
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 4N1, Canada; Department of Physiology & Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Stacy Muise
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Matthew L Workentine
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Joe J Harrison
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Amol Bhargava
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Paul L Beck
- Department of Medicine, Division of Gastroenterology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Kevin P Rioux
- Department of Medicine, Division of Gastroenterology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Gordon Webb McKnight
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - John L Wallace
- Department of Physiology & Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Andre G Buret
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 4N1, Canada; Department of Physiology & Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|