1
|
Xie Y, Mi X, Xing Y, Dai Z, Pu Q. Past, present, and future of exosomes research in cancer: A bibliometric and visualization analysis. Hum Vaccin Immunother 2025; 21:2488551. [PMID: 40207548 PMCID: PMC11988232 DOI: 10.1080/21645515.2025.2488551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
Cancer seriously threatens the lives and health of people worldwide, and exosomes seem to play an important role in managing cancer effectively, which has attracted extensive attention from researchers in recent years. This study aimed to scientifically visualize exosomes research in cancer (ERC) through bibliometric analysis, reviewing the past, summarizing the present, and predicting the future, with a view to providing valuable insights for scholars and policy makers. Researches search and data collection from Web of Science Core Collection and clinical trial.gov. Calculations and visualizations were performed using Microsoft Excel, VOSviewer, Bibliometrix R-package, and CiteSpace. As of December 1, 2024, and March 8, 2025, we identified 8,001 ERC-related publications and 107 ERC-related clinical trials, with an increasing trend in annual publications. Our findings supported that China, Nanjing Medical University, and International Journal of Molecular Sciences were the most productive countries, institutions, and journals, respectively. Whiteside, Theresa L. had the most publications, while Théry, C was the most co-cited scholar. In addition, Cancer Research was the most co-cited journal. Spatial and temporal distribution of clinical trials was the same as for publications. High-frequency keywords were "extracellular vesicle," "microRNA" and "biomarker." Additional, "surface functionalization," "plant," "machine learning," "nanomaterials," "promotes metastasis," "engineered exosomes," and "macrophage-derived exosomes" were promising research topics. Our study comprehensively and visually summarized the structure, hotspots, and evolutionary trends of ERC. It would inspire subsequent studies from a macroscopic perspective and provide a basis for rational allocation of resources and identification of collaborations among researchers.
Collapse
Affiliation(s)
- Yafei Xie
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xingqi Mi
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yikai Xing
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhangyi Dai
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Pu
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Wang P, Li G, Sun X, Zhang J, Shi L, Zhou X, Wang G, Chen W. miR-182-5p facilitates colorectal cancer progression through manipulating neurocalcin delta mediated Wnt/β-catenin signalling. Eur J Med Res 2025; 30:352. [PMID: 40312722 PMCID: PMC12046800 DOI: 10.1186/s40001-025-02625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/22/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC), a complex and multifactorial disease, has been associated with elevated expression of microRNA miR-182-5p, although its precise regulatory role in CRC progression remains unclear. This study aims to identify potential therapeutic targets to improve clinical outcomes and to decipher the intricate role of miR-182-5p in the pathobiology of CRC. METHODS We conducted comprehensive bioinformatics analyses using GEO databases to investigate differences in miRNA expression between CRC and normal tissues, with a particular focus on miR-182-5p. Its expression levels in CRC cells and tumor tissues were quantified by quantitative real-time PCR (qRT-PCR). The expression of neurocalcin delta (NCALD) and proteins related to Wnt/β-catenin signalling was evaluated by qRT-PCR and Western blotting. Pathological changes in tumor-bearing mice as well as the proliferation, invasion, and migration of CRC cells, were assessed. Tumor cell proliferation and apoptosis were examined using Ki-67 immunohistochemistry and TUNEL staining, respectively. A dual luciferase reporter assay explored the regulatory interaction between miR-182-5p and NCALD. RESULTS Our findings reveal significantly elevated miR-182-5p levels in CRC tissues and cell lines, positively correlated with tumor invasion depth, differentiation degree, clinical stage, and lymph node metastasis. miR-182-5p appears to accelerate CRC progression in both cell lines and mouse models by downregulating NCALD, thereby enhancing Wnt/β-catenin signalling. This study identifies miR-182-5p as a pivotal enhancer of CRC progression, modulating Wnt/β-catenin signalling via NCALD regulation. CONCLUSIONS The findings position the miR-182-5p/NCALD axis as promising targets for CRC therapy, offering new avenues for treatment strategies. TRIAL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Department of Gastroenterology, Affiliated Qidong Hospital of Nantong University, Qidong, 226200, Jiangsu, China
| | - Gang Li
- Institute of Special Environmental Medicine, Nantong University, Chongchuan District, 9 Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Xianglin Sun
- Institute of Special Environmental Medicine, Nantong University, Chongchuan District, 9 Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Jie Zhang
- Department of Gastroenterology, Affiliated Qidong Hospital of Nantong University, Qidong, 226200, Jiangsu, China
| | - Leijian Shi
- Department of Gastroenterology, Affiliated Qidong Hospital of Nantong University, Qidong, 226200, Jiangsu, China
| | - Xiaoyu Zhou
- Department of Gastroenterology, Affiliated Qidong Hospital of Nantong University, Qidong, 226200, Jiangsu, China
| | - Guohua Wang
- Institute of Special Environmental Medicine, Nantong University, Chongchuan District, 9 Seyuan Road, Nantong, 226019, Jiangsu, China.
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
3
|
Zhang H, Wu B, Zhou T, Fang L. Prognostic value of extracellular vesicles in colorectal cancer: a systematic review and meta-analysis. Clin Transl Oncol 2025:10.1007/s12094-025-03915-z. [PMID: 40205153 DOI: 10.1007/s12094-025-03915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVE Extracellular vesicles (EVs) are prognostic factors in colorectal cancer (CRC). This study aims to evaluate the prognostic value of EVs CRC. METHODS Clinical studies that directly investigated the association between EVs in different kinds of body fluids of CRC patients and patient prognosis were included by searching the PubMed, Web of Science, ClinicalTrials, and CENTRAL databases. The associations between single biomarkers, molecular panels, and EVs count with overall survival (OS), disease-free survival (DFS), and recurrence-free survival (RFS) were analyzed. Heterogeneity was assessed using the I2 statistic, with a random-effects model applied when I2 > 30% and a fixed-effects model when I2 ≤ 30%. RESULTS A total of 56 studies involving 5,985 patients were included. All included studies detected EVs in blood. Univariate analysis revealed an association between EVs single-biomarkers and OS (pHR = 2.07, 95% CI: 1.73-2.73) and DFS (pHR = 2.20, 95% CI: 1.46-2.79). Additionally, univariate analysis revealed an association between molecular-panels in EVs and OS (pHR = 3.67, 95% CI: 2.51-5.36) and RFS (pHR = 3.97, 95% CI: 1.57-10.08). Moreover, an association was observed between a EVs count and OS (pHR = 1.87, 95% CI: 1.40-2.49). On the basis of the results of the meta-regression and subgroup analyses, the subgroups of EVs and the disease stage of CRC patients are key factors contributing to the heterogeneity in the associations between EVs single-biomarkers and OS. CONCLUSION This study provides compelling evidence that EVs from blood hold prognostic value in CRC.
Collapse
Affiliation(s)
- Haodong Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, China
| | - Bohan Wu
- Westa College, Southwest University, Beibei, Chongqing, China
| | - Tingting Zhou
- Westa College, Southwest University, Beibei, Chongqing, China
| | - Liaoqiong Fang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, China.
- National Engineering Research Center of Ultrasound Medicine, Chongqing, China.
| |
Collapse
|
4
|
Barjasteh AH, Jaseb Mazhar AleKassar R, Al-Asady AM, Latifi H, Avan A, Khazaei M, Ryzhikov M, Hassanian SM. Therapeutic Potentials of MiRNA for Colorectal Cancer Liver Metastasis Treatment: A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2025; 50:202-219. [PMID: 40255223 PMCID: PMC12008659 DOI: 10.30476/ijms.2024.102910.3622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/01/2024] [Accepted: 11/26/2024] [Indexed: 04/22/2025]
Abstract
Colorectal cancer (CRC) ranks among the most prevalent cancers worldwide and is the fourth leading cause of cancer-related deaths. Metastasis poses a significant obstacle in CRC treatment, as distant metastasis, particularly to the liver, remains the primary cause of mortality. Colorectal liver metastasis (CRLM) occurs frequently due to the liver's direct vascular connection to the colorectal region via the portal vein. Standard treatment approaches for CRLM are limited; only a few patients qualify for surgical intervention, resulting in a persistently low survival rate. Additionally, resistance to chemotherapy is common, emphasizing the need for more effective targeted therapies. Emerging evidence highlights the pivotal role of microRNAs (miRNAs) in modulating critical pathways associated with CRLM, including tumor invasion, epithelial-mesenchymal transition, and angiogenesis. MiRNAs exhibit dual functions as tumor suppressors and oncogenes by targeting multiple genes, thus playing a complex role in both the initiation and progression of metastasis. The regulatory mechanisms of miRNAs could help to identify novel biomarkers for early diagnosis and prognosis of CRLM, as well as promising therapeutic targets to overcome chemoresistance. Despite numerous studies on miRNA involvement in CRC metastasis, dedicated reviews focusing on miRNAs and CRLM remain scarce. This review aims to approach targeted therapies by examining the current understanding of miRNA involvement in CRLM and exploring their potential as diagnostic, prognostic, and therapeutic agents. Through an integrative approach, we aim to provide insights that could transform CRLM management and improve patient outcomes.
Collapse
Affiliation(s)
- Amir Hossein Barjasteh
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rawa Jaseb Mazhar AleKassar
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdulridha Mohammed Al-Asady
- Department of Medical Sciences, Faculty of Nursing, Warith Al-Anbiyaa University, Iraq
- Department of Medical Sciences, Faculty of Dentistry, University of Kerbala, Iraq
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Latifi
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Li T, Li T, Liang Y, Yuan Y, Liu Y, Yao Y, Lei X. Colorectal cancer cells-derived exosomal miR-188-3p promotes liver metastasis by creating a pre-metastatic niche via activation of hepatic stellate cells. J Transl Med 2025; 23:369. [PMID: 40134019 PMCID: PMC11938777 DOI: 10.1186/s12967-025-06334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/01/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND/AIM Metastasis is the leading cause of mortality for colorectal cancer (CRC). Cancer-derived exosomes are widely recognized as the primary catalysts behind the development of pre-metastasis niche (PMN) in distal sites. However, the exact mechanism behind this process in CRC remains elusive. This study aimed to investigate the function and mechanisms underlying the role of exosomal miR-188-3p in activating hepatic stellate cells (HSCs) to develop the PMN and promote liver metastasis. METHODS We extracted exosomes from CRC cells using ultracentrifugation. Exosomes were identified using transmission electron microscopy, nanoparticle tracking analysis, and Western blot. Exosome uptake was assessed using fluorescence tracing, exosome PKH67 staining, and real-time quantitative PCR. The effects of CRC cell-derived exosomes on HSCs migration were evaluated using Transwell migration and wound healing assays. Key differentially expressed miRNAs were screened from the GEO database, and bioinformatics prediction along with dual-luciferase reporter assays were used to identify downstream target genes of miR-188-3p. Downstream related proteins of the target genes were detected by Western blot. In vivo, the distribution of exosomes and activation of HSCs in the liver were explored by tail vein injection of exosomes into nude mice. Further, the impact of exosomal miR-188-3p on liver metastasis was investigated using a spleen injection liver metastasis model. Finally, the expression levels of miR-188-3p in exosomes from CRC patient plasma were determined by real-time quantitative PCR, and the relationship between the expression of miR-188-3p in plasma exosomes and CRC prognosis was analyzed. RESULTS The expression level of miR-188-3p within plasma exosomes demonstrated a statistically significant increase in CRC with liver metastasis compared to those without liver metastases. We also demonstrated the transferability of miR-188-3p from CRC cells to HSCs cells via the exosomes. Exosomal miR-188-3p plays a pivotal role in orchestrating the establishment of PMN through targeting PHLPP2 to activate HSCs before tumor metastasis. Exosomal miR-188-3p was found to actively foster in vivo metastasis of CRC. Additionally, plasma exosomal miR-188-3p potentially serves as a viable blood-based biomarker for CRLM. CONCLUSION Exosomal miR-188-3p derived from CRC cells can promote liver metastasis by activating HSCs to form a PMN through targeting PHLPP2 to activate the AKT/mTOR pathway. These results offer a new perspective on the mechanisms driving CRLM.
Collapse
Affiliation(s)
- Tao Li
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Taiyuan Li
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yahang Liang
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yuli Yuan
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yang Liu
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yao Yao
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiong Lei
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
6
|
Farzam OR, Eslami S, Jafarizadeh A, Alamdari SG, Dabbaghipour R, Nobari SA, Baradaran B. The significance of exosomal non-coding RNAs (ncRNAs) in the metastasis of colorectal cancer and development of therapy resistance. Gene 2025; 937:149141. [PMID: 39643147 DOI: 10.1016/j.gene.2024.149141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Colorectal cancer (CRC) represents a common type of carcinoma with significant mortality rates globally. A primary factor contributing to the unfavorable treatment outcomes and reduced survival rates in CRC patients is the occurrence of metastasis. Various intricate molecular mechanisms are implicated in the metastatic process, leading to mortality among individuals with CRC. In the realm of intercellular communication, exosomes, which are a form of extracellular vesicle (EV), play an essential role. These vesicles act as conduits for information exchange between cells and originate from multiple sources. By fostering a microenvironment conducive to CRC progression, exosomes and EVs significantly influence the advancement of the disease. They contain a diverse array of molecules, including messenger RNAs (mRNAs), non-coding RNAs (ncRNAs), proteins, lipids, and transcription factors. Notably, ncRNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are prominently featured within exosomes. These ncRNAs have the capacity to regulate various critical molecules or signaling pathways, particularly those associated with tumor metastasis, thereby playing a crucial role in tumorigenesis. Their presence indicates a substantial potential to affect vital aspects of tumor progression, including proliferation, metastasis, and resistance to treatment. This research aims to categorize exosomal ncRNAs and examine their functions in colorectal cancer. Furthermore, it investigates the clinical applicability of novel biomarkers and therapeutic strategies in CRC. Abbreviations: ncRNAs, non-coding RNAs; CRC, Colorectal cancer; EV, extracellular vesicle; mRNAs, messenger RNAs; miRNAs, microRNAs; lncRNAs, long non-coding RNAs; circRNAs, circular RNAs; HOTTIP, HOXA transcript at the distal tip; NSCLC, non-small cell lung cancer; 5-FU, 5-fluorouracil; OX, Oxaliplatin; PDCD4, programmed cell death factor 4; Tregs, regulatory T cells; EMT, epithelial-mesenchymal transition; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; USP2, ubiquitin carboxyl-terminal hydrolase 2; TNM, tumor node metastasis; TAMs, tumor-associated macrophages; RASA1, RAS p21 protein activator 1; PDCD4, programmed cell death 4; ZBTB2, zinc finger and BTB domain containing 2; SOCS1, suppressor of cytokine signaling 1; TUBB3, β-III tubulin; MSCs, mesenchymal stem cells.
Collapse
Affiliation(s)
- Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahand Eslami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jafarizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-based Medicine, Iranian EBM Center: A Joana-affiliated Group, Tabriz University of Medicine Science, Tabriz, Iran
| | - Sania Ghobadi Alamdari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Reza Dabbaghipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Alizadeh Nobari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Frey Y, Lungu C, Olayioye MA. Regulation and functions of the DLC family of RhoGAP proteins: Implications for development and cancer. Cell Signal 2025; 125:111505. [PMID: 39549821 DOI: 10.1016/j.cellsig.2024.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
The DLC (Deleted in Liver Cancer) family of RhoGAP (Rho GTPase-activating) proteins has been extensively studied since the identification of the first family member nearly 30 years ago. Rho GTPase signaling is essential for various cellular processes, including cytoskeletal dynamics, cell migration, and proliferation. Members of the DLC family are key regulators of this signaling pathway, with well-established roles in development and carcinogenesis. Here, we provide a comprehensive review of research into DLC regulation and cellular functions over the last three decades. In particular, we summarize control mechanisms of DLC gene expression at both the transcriptional and post-transcriptional level. Additionally, recent advances in understanding the post-translational regulation of DLC proteins that allow for tuning of protein activity and localization are highlighted. This detailed overview will serve as resource for future studies aimed at further elucidating the complex regulatory mechanisms of DLC family proteins and exploring their potential as targets for therapeutic applications.
Collapse
Affiliation(s)
- Yannick Frey
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; Medical University of Innsbruck, Institute of Pathophysiology, Innsbruck, Austria
| | - Cristiana Lungu
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Monilola A Olayioye
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany.
| |
Collapse
|
8
|
Wang Q, Zhao C, Du Q, Cao Z, Pan J. Non-coding RNA in infantile hemangioma. Pediatr Res 2024; 96:1594-1602. [PMID: 38750296 DOI: 10.1038/s41390-024-03250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 01/29/2025]
Abstract
Infantile hemangioma (IH) is the most common benign vascular tumor of infancy, but its pathogenesis has not been fully discovered. From the cellular perspective, CD133+ stem cells orchestrate the proliferation and development of IH. Regarding molecular mechanisms, hypoxia inducible factor-1α, renin-angiotensin system, and vascular endothelial growth factor are current study hotspots, while non-coding RNAs (ncRNAs) might be essential factors participating in this network. Therefore, this article reviewed published studies concerning the roles of ncRNAs in IH and listed noted miRNAs, lncRNAs, and circRNAs. Other ncRNAs, such as snRNAs, snoRNAs, and tsRNAs, though have not been examined in IH, are mentioned as well to discuss their potential functions. Due to the continuous development of sequencing technologies and computational pipelines for ncRNAs annotation, relevant studies will provide evidence to gradually enhance acknowledgments of ncRNAs' role in IH. The pathogenesis of IH might be revealed and the treatment protocol would be optimized in the future. IMPACT: Non-coding RNAs (ncRNAs) play critical roles in infantile hemangioma. This article thoroughly reviewed all ncRNAs (miRNAs, lncRNAs, and circRNAs) mentioned in previous studies regarding the pathogenesis of infantile hemangioma. Other ncRNAs are promising subjects for further investigation. This review introduced the emerging ncRNAs that need to be explored in IH.
Collapse
Affiliation(s)
- Qizhang Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengzhi Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianxin Du
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhiwei Cao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Chakraborty N, Dimitrov G, Kanan S, Lawrence A, Moyler C, Gautam A, Fatanmi OO, Wise SY, Carpenter AD, Hammamieh R, Singh VK. Cross-species conserved miRNA as biomarker of radiation injury over a wide dose range using nonhuman primate model. PLoS One 2024; 19:e0311379. [PMID: 39570918 PMCID: PMC11581275 DOI: 10.1371/journal.pone.0311379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/18/2024] [Indexed: 11/24/2024] Open
Abstract
Multiple accidents in nuclear power plants and the growing concerns about the misuse of radiation exposure in warfare have called for the rapid determination of absorbed radiation doses (RDs). The latest findings about circulating microRNA (miRNAs) using several animal models revealed considerable promises, although translating this knowledge to clinics remains a major challenge. To address this issue, we randomly divided 36 nonhuman primates (NHPs) into six groups and exposed these groups to six different radiation doses ranging from 6.0-8.5 Gy in increments of 0.5 Gy. Serum samples were collected pre-irradiation as well as three post-irradiation timepoints, namely 1, 2 and 6 days post-total body irradiation (TBI). Generated from a deep sequencing platform, the miRNA reads were multi-variate analyzed to find the differentially expressed putative biomarkers that were linked to RDs, time since irradiation (TSI) and sex. To increase these biomarkers' translational potential, we aligned the NHP-miRNAs' sequences and their functional responses to humans following an in-silico routine. Those miRNAs, which were sequentially and functionally conserved between NHPs and humans, were down selected for further analysis. A linear regression model identified miRNA markers that were consistently regulated with increasing RD but independent TSI. Likewise, a set of potential TSI-markers were identified that consistently shifted with increasing TSI, but independent of RD. Additional molecular analysis found a considerable gender bias in the low-ranges of doses when the risk to radiation-induced fatality was low. Bionetworks linked to cell quantity and cell invasion were significantly altered between the survivors and decedents. Using these biomarkers, an assay could be developed to retrospectively determine the RD and TSI with high translational potential. Ultimately, this knowledge can lead to precise and personalized medicine.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - George Dimitrov
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Vysnova, Inc., Landover, MD, United States of America
| | - Swapna Kanan
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Vysnova, Inc., Landover, MD, United States of America
| | - Alexander Lawrence
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Oak Ridge Institute for Science and Education (ORISE), MD, United States of America
| | - Candance Moyler
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Vysnova, Inc., Landover, MD, United States of America
| | - Aarti Gautam
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Alana D. Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| |
Collapse
|
10
|
Chen J, Yin Q, Xu S, Tan X, Liang Y, Chen C, Li L, Zhang T, Shen T. IFN-treated macrophage-derived exosomes prevents HBV-HCC migration and invasion via regulating miR-106b-3p/PCGF3/PI3K/AKT signaling axis. Front Cell Infect Microbiol 2024; 14:1421195. [PMID: 39529637 PMCID: PMC11551115 DOI: 10.3389/fcimb.2024.1421195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Studies revealed that exosomes from IFN-α-treated liver non-parenchymal cells (IFN-exo) mediate antiviral activity. MiR-106b-3p has been shown to play a paradoxical role in disease progressing from different studies. However, its specific role in HBV-related hepatocellular carcinoma (HBV-HCC) and the underlying mechanism remains unclear. METHOD Huh7 cells transient transfected with plasmids of HBV-C2 and B3 were co-cultured with IFN-exo. Cell supernatants were collected to detect miR-106b-3p, HBsAg, HBeAg and HBV DNA levels. Cell proliferation, apoptosis, migration and invasion were analyzed. The putative targets of miR-106b-3p were identified by a dual-luciferase reporter system. The expression of PCGF3, migratory proteins(MMP2/9), and the PI3K/AKT signaling pathway-related proteins were assessed by western blot. The expression of PCGF3 mRNA was quantitative analyzed by using 52 pairs of paraffin-embedded tissues from HCC patients. siRNAs-PCGF3 were used to knocked-down PCGF3 expression. RESULTS The expression of miR-106b-3p was significantly higher in THP-1 cells and supernatants treated with IFN-exo than those untreated. Significantly increased expression of miR-106b-3p and decreased expression of HBsAg and HBV DNA were observed in Huh7-C2/B3 cells treated with IFN-exo. In addition, miR-106b-3p was directly target to PCGF3. Scratch healing assay and transwell assay showed that either IFN-exo or miRNA-106-3p over-expression, or siRNAs-PCGF3 inhibited migration and invasion of Huh7-C2/B3 cells, and subsequently resulted in suppression of p-AKT/AKT and p-PI3K/PI3K. Notably, the expression level of PCGF3 was significantly lower in HBeAg (+)-HCC tumor tissues than HBeAg (-)-HCC tumor. CONCLUSION IFN-α-induced macrophage-derived miR-106b-3p inhibits HBV replication, HBV- Huh7 cells migration and invasion via regulating PCGF3/PI3K/AKT signaling axis. miR-106b-3p and PCGF3 were potential biomarkers in the prevention and treatment of HBV-HCC.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pulmonary and Critical Care Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi Yin
- Medical School, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Shiheng Xu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaoqing Tan
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yu Liang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Chaohui Chen
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Li Li
- Department of Pulmonary and Critical Care Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Infectious Diseases and Hepatic Disease, Yunnan Province Innovation Team of Intestinal Microecology Related Disease Research and Technological Transformation, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Tao Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Tao Shen
- Department of Pulmonary and Critical Care Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of Infectious Diseases and Hepatic Disease, Yunnan Province Innovation Team of Intestinal Microecology Related Disease Research and Technological Transformation, The First People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
11
|
Liang Y, Li J, Li T, Li M, Liao H, Liu Y, Yao Y, Yang L, Lei X. Colorectal cancer cells with high metastatic potential drive metastasis by transmitting exosomal miR-20a-3p through modulating NF1/MAPK pathway. Carcinogenesis 2024; 45:773-785. [PMID: 38829328 DOI: 10.1093/carcin/bgae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/18/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024] Open
Abstract
Cancer cells exhibit heterogeneous metastatic potential, and high metastatic (HM) subclones can enhance the metastatic potential of low metastatic subclones by transmitting some factors. Exosomal miRNAs play a pivotal role in the crosstalk of heterogeneous metastatic subclones. This study discovered that miR-20a-3p was upregulated in colorectal adenocarcinoma (CRA), correlated with metastasis, and potentially served as a prognostic indicator for CRA. miR-20a-3p could promote the proliferation, migration, and invasion of CRA cells. Interestingly, HM CRA cells could promote malignant phenotypes of low metastatic CRA cells by transmitting exosomal miR-20a-3p. Mechanically, miR-20a-3p could inhibit neurofibromin 1(NF1), thereby activate the rat sarcoma viral oncogene (RAS)-mediated mitogen-activated protein kinases (MAPK) signaling pathway to drive the metastasis of CRA. In summary, our study provided evidence that colorectal cancer cells with HM potential drive metastasis by transmitting exosomal miR-20a-3p through modulating the NF1/MAPK pathway.
Collapse
Affiliation(s)
- Yahang Liang
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Junyu Li
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Tao Li
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Mingming Li
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Hualin Liao
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yang Liu
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yao Yao
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lingling Yang
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xiong Lei
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
12
|
He X, Ren E, Dong L, Yuan P, Zhu J, Liu D, Wang J. Contribution of PKS+ Escherichia coli to colon carcinogenesis through the inhibition of exosomal miR-885-5p. Heliyon 2024; 10:e37346. [PMID: 39315148 PMCID: PMC11417213 DOI: 10.1016/j.heliyon.2024.e37346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Objectives About 90 % of all colorectal cancer (CRC) fatalities are caused by the metastatic spread of primary tumors, which is closely correlated with patient survival and spreads by circulating tumor cells (CTCs). The epithelial-mesenchymal transition (EMT) that characterizes CTCs is associated with a poor prognosis. Organotropic metastasis is dictated by the transmission of miRNAs by cancer-derived exosomes. The purpose of this research is to examine PKS + E's function. Coli in CRC metastases and exosomal miR-885-5p suppression. Methods A cohort of 100 patients (50 CRC, 50 healthy) underwent colonoscopy screenings from February 2018 to August 2021. Exosomes were isolated using ultracentrifugation, and exosomal miRNA was analyzed using sequencing and qPCR. Results Among the patients, 40 tested positive for E. coli (12 CRC, 23 healthy). Serotyping revealed that 68.57 % harbored the PKS gene. Exosomal miR-885-5p levels were significantly altered in CRC patients with PKS + E. coli. Intriguingly, our findings indicate that exosomes derived from EMT-CRC cells did not affect miR-885-5p synthesis in HUVECs. Moreover, we observed that the levels of miR-885-5p in both exosomes and the total CRC-conditioned medium were comparable upon isolation of exosomes from CRC cells. What's more, an increased expression of miR-558-5p within the tumors, and the group that received exosome treatment, as well as the EMT-HCT116 group, exhibited a higher occurrence of distant metastasis. Conclusion PKS + E. By inhibiting exosomal miR-885-5p, coli is linked to CRC metastases, offering a possible target for therapeutic intervention.
Collapse
Affiliation(s)
- Xiaoming He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Enbo Ren
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Lujia Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pengfei Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jiaxin Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Dechun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jianguang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
13
|
Yimin E, Lu C, Zhu K, Li W, Sun J, Ji P, Meng M, Liu Z, Yu C. Function and mechanism of exosomes derived from different cells as communication mediators in colorectal cancer metastasis. iScience 2024; 27:109350. [PMID: 38500820 PMCID: PMC10945197 DOI: 10.1016/j.isci.2024.109350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer-related mortality, with metastasis being the primary determinant of poor prognosis in patients. Investigating the molecular mechanisms underlying CRC metastasis is currently a prominent and challenging area of research. Exosomes, as crucial intercellular communication mediators, facilitate the transfer of metabolic and genetic information from cells of origin to recipient cells. Their roles in mediating information exchange between CRC cells and immune cells, fibroblasts, and other cell types are pivotal in reshaping the tumor microenvironment, regulating key biological processes such as invasion, migration, and formation of pre-metastatic niche. This article comprehensively examines the communication function and mechanism of exosomes derived from different cells in cancer metastasis, while also presenting an outlook on current research advancements and future application prospects. The aim is to offer a distinctive perspective that contributes to accurate diagnosis and rational treatment strategies for CRC.
Collapse
Affiliation(s)
- Yimin E
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Chen Lu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing 211112, Jiangsu, China
| | - Kuixuan Zhu
- Department of Radiotherapy, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650100, Yunan, China
| | - Wenyuan Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Jing Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Pengcheng Ji
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing 211112, Jiangsu, China
| | - Minjie Meng
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Chunzhao Yu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing 211112, Jiangsu, China
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| |
Collapse
|
14
|
Zhong D, Wang Z, Ye Z, Wang Y, Cai X. Cancer-derived exosomes as novel biomarkers in metastatic gastrointestinal cancer. Mol Cancer 2024; 23:67. [PMID: 38561768 PMCID: PMC10983767 DOI: 10.1186/s12943-024-01948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 04/04/2024] Open
Abstract
Gastrointestinal cancer (GIC) is the most prevalent and highly metastatic malignant tumor and has a significant impact on mortality rates. Nevertheless, the swift advancement of contemporary technology has not seamlessly aligned with the evolution of detection methodologies, resulting in a deficit of innovative and efficient clinical assays for GIC. Given that exosomes are preferentially released by a myriad of cellular entities, predominantly originating from neoplastic cells, this confers exosomes with a composition enriched in cancer-specific constituents. Furthermore, exosomes exhibit ubiquitous presence across diverse biological fluids, endowing them with the inherent advantages of non-invasiveness, real-time monitoring, and tumor specificity. The unparalleled advantages inherent in exosomes render them as an ideal liquid biopsy biomarker for early diagnosis, prognosticating the potential development of GIC metastasis.In this review, we summarized the latest research progress and possible potential targets on cancer-derived exosomes (CDEs) in GIC with an emphasis on the mechanisms of exosome promoting cancer metastasis, highlighting the potential roles of CDEs as the biomarker and treatment in metastatic GIC.
Collapse
Affiliation(s)
- Danyang Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ziyuan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, 310016, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, 310016, China.
| |
Collapse
|
15
|
Zhang Y, Huo M, Li W, Zhang H, Liu Q, Jiang J, Fu Y, Huang C. Exosomes in tumor-stroma crosstalk: Shaping the immune microenvironment in colorectal cancer. FASEB J 2024; 38:e23548. [PMID: 38491832 DOI: 10.1096/fj.202302297r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
Colorectal cancer (CRC) is a multifaceted disease characterized by a complex interaction between tumor cells and the surrounding microenvironment. Within this intricate landscape, exosomes have emerged as pivotal players in the tumor-stroma crosstalk, influencing the immune microenvironment of CRC. These nano-sized vesicles, secreted by both tumoral and stromal cells, serve as molecular transporters, delivering a heterogeneous mix of biomolecules such as RNAs, proteins, and lipids. In the CRC context, exosomes exert dual roles: they promote tumor growth, metastasis, and immune escape by altering immune cell functions and activating oncogenic signaling pathways and offer potential as biomarkers for early CRC detection and treatment targets. This review delves into the multifunctional roles of exosomes in the CRC immune microenvironment, highlighting their potential implications for future therapeutic strategies and clinical outcomes.
Collapse
Affiliation(s)
- Yawei Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingyu Huo
- Department of Gastrointestinal Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wenchao Li
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyu Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qi Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianwu Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Changjun Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Yu X, Bu C, Yang X, Jiang W, He X, Sun R, Guo H, Shang L, Ou C. Exosomal non-coding RNAs in colorectal cancer metastasis. Clin Chim Acta 2024; 556:117849. [PMID: 38417779 DOI: 10.1016/j.cca.2024.117849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Colorectal cancer (CRC) is a type of gastrointestinal cancer with high morbidity and mortality rates, and is often accompanied by distant metastases. Metastasis is a major cause of shortened survival time and poor treatment outcomes for patients with CRC. However, the molecular mechanisms underlying the metastasis of CRC remain unclear. Exosomes are a class of small extracellular vesicles that originate from almost all human cells and can transmit biological information (e.g., nucleic acids, lipids, proteins, and metabolites) from secretory cells to target recipient cells. Recent studies have revealed that non-coding RNAs (ncRNAs) can be released by exosomes into the tumour microenvironment or specific tissues, and play a pivotal role in tumorigenesis by regulating a series of key molecules or signalling pathways, particularly those involved in tumour metastasis. Exosomal ncRNAs have potential as novel therapeutic targets for CRC metastasis, and can also be used as liquid biopsy biomarkers because of their specificity and sensitivity. Therefore, further investigations into the biological function and clinical value of exosomal ncRNAs will be of great value for the prevention, early diagnosis, and treatment of CRC metastasis.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chiwen Bu
- Department of General Surgery, People's Hospital of Guanyun County, Lianyungang 222200, Jiangsu, China
| | - Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wenying Jiang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ru Sun
- Department of Blood Transfusion, Affiliated Hospital of North Sichuan Medical College, Xichang 637000, Sichuan, China
| | - Hongbin Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Li Shang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
17
|
Yang L, Yang Z, Liu Z, Qi N, Tao L. Diagnostic value of plasma-derived exosomal miR-223 for epithelial ovarian cancer. BMC Womens Health 2024; 24:150. [PMID: 38431592 PMCID: PMC10908149 DOI: 10.1186/s12905-024-02976-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVES To evaluate the diagnostic value of plasma exosomal miR-223 and its combination with CA125 for the diagnosis of early-stage epithelial ovarian cancer (EOC). PATIENTS AND METHODS Exosomes derived from the plasma of 78 EOC patients, 40 patients with epithelial benign ovarian tumors, and 52 healthy participants were isolated using the ultracentrifugation method and identified by transmission electron microscopy (TEM) and western blot. RESULTS The expression of exosomal miR-223 was significantly upregulated in the plasma of EOC patients compared to that in healthy subjects and patients with benign diseases. The combination of exosomal miR-223 and CA125 from plasma had an equivalent area under the ROC curve (AUC) to CA125 alone for discriminating between EOC and non-EOC cases, including healthy subjects and benign ovarian tumors. However, the AUC value of the combination was 0.944 (95% CI: 0.899-0.990) for differentially diagnosing early-stage EOC from healthy subjects, slightly higher than that of CA125 alone (0.928, 95% CI: 0.875-0.981), with a sensitivity and specificity of 0.9784 and 0.885, respectively. CONCLUSION Our data suggest that plasma exosomal miR-223 can be used as a complement to CA125 to increase the diagnostic power for differentiating early-stage EOC from healthy subjects.
Collapse
Affiliation(s)
- Li Yang
- Department of Obstetrics and Gynecology, Tangshan Workers' Hospital, Tangshan, China
| | - Zhihong Yang
- Department of Basic Medicine, Tangshan Vocational and Technical College, 120 Xinhua West Road, Lubei District, Tangshan, Hebei Province, 063000, China.
| | - Zhihui Liu
- Department of Obstetrics and Gynecology, Tangshan Workers' Hospital, Tangshan, China
| | - Na Qi
- Department of Obstetrics and Gynecology, Tangshan Workers' Hospital, Tangshan, China
| | - Lili Tao
- Department of Obstetrics and Gynecology, Tangshan Workers' Hospital, Tangshan, China
| |
Collapse
|
18
|
Ahluwalia P, Ballur K, Leeman T, Vashisht A, Singh H, Omar N, Mondal AK, Vaibhav K, Baban B, Kolhe R. Incorporating Novel Technologies in Precision Oncology for Colorectal Cancer: Advancing Personalized Medicine. Cancers (Basel) 2024; 16:480. [PMID: 38339232 PMCID: PMC10854941 DOI: 10.3390/cancers16030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 02/12/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most heterogeneous and deadly diseases, with a global incidence of 1.5 million cases per year. Genomics has revolutionized the clinical management of CRC by enabling comprehensive molecular profiling of cancer. However, a deeper understanding of the molecular factors is needed to identify new prognostic and predictive markers that can assist in designing more effective therapeutic regimens for the improved management of CRC. Recent breakthroughs in single-cell analysis have identified new cell subtypes that play a critical role in tumor progression and could serve as potential therapeutic targets. Spatial analysis of the transcriptome and proteome holds the key to unlocking pathogenic cellular interactions, while liquid biopsy profiling of molecular variables from serum holds great potential for monitoring therapy resistance. Furthermore, gene expression signatures from various pathways have emerged as promising prognostic indicators in colorectal cancer and have the potential to enhance the development of equitable medicine. The advancement of these technologies for identifying new markers, particularly in the domain of predictive and personalized medicine, has the potential to improve the management of patients with CRC. Further investigations utilizing similar methods could uncover molecular subtypes specific to emerging therapies, potentially strengthening the development of personalized medicine for CRC patients.
Collapse
Affiliation(s)
- Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (P.A.); (K.B.); (T.L.); (A.V.); (H.S.); (N.O.); (A.K.M.)
| | - Kalyani Ballur
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (P.A.); (K.B.); (T.L.); (A.V.); (H.S.); (N.O.); (A.K.M.)
| | - Tiffanie Leeman
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (P.A.); (K.B.); (T.L.); (A.V.); (H.S.); (N.O.); (A.K.M.)
| | - Ashutosh Vashisht
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (P.A.); (K.B.); (T.L.); (A.V.); (H.S.); (N.O.); (A.K.M.)
| | - Harmanpreet Singh
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (P.A.); (K.B.); (T.L.); (A.V.); (H.S.); (N.O.); (A.K.M.)
| | - Nivin Omar
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (P.A.); (K.B.); (T.L.); (A.V.); (H.S.); (N.O.); (A.K.M.)
| | - Ashis K. Mondal
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (P.A.); (K.B.); (T.L.); (A.V.); (H.S.); (N.O.); (A.K.M.)
| | - Kumar Vaibhav
- Department of Neurosurgery, Augusta University, Augusta, GA 30912, USA;
| | - Babak Baban
- Departments of Neurology and Surgery, Augusta University, Augusta, GA 30912, USA;
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (P.A.); (K.B.); (T.L.); (A.V.); (H.S.); (N.O.); (A.K.M.)
| |
Collapse
|
19
|
冯 唐, 杨 欣, 王 琦, 刘 肖. [Hepatocellular Carcinoma-Derived Exosomes: Key Players in Intercellular Communication Within the Tumor Microenvironment]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:6-12. [PMID: 38322525 PMCID: PMC10839483 DOI: 10.12182/20240160203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 02/08/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths in the world. Due to the insidious onset and rapid progression and a lack of effective treatments, the prognosis of patients with HCC is extremely poor, with the average 5-year survival rate being less than 10%. The tumor microenvironment (TME), the internal environment in which HCC develops, can regulate the oncogenesis, development, invasion, and metastasis of HCC. During the process of cancer progression, HCC cells can regulate the biological behaviors of tumor cells, cancer-associated fibroblasts, cancer-associated immune cells, and other cells in the TME by releasing exosomes containing specific signals, thereby promoting cancer progression. However, the exact molecular mechanisms and the roles of exosomes in the specific cellular regulation of these processes are not fully understood. Herein, we summarized the TME components of HCC, the sources and the biological traits of exosomes in the TME, and the impact of mechanical factors on exosomes. In addition, special attention was given to the discussion of the effects of HCC-exosomes on different types of cells in the microenvironment. There are still many difficulties to be overcome before exosomes can be applied as carriers in clinical cancer treatment. First of all, the homogeneity of exosomes is difficult to ensure. Secondly, exosomes are mainly administered through subcutaneous injection. Although this method is simple and easy to implement, the absorption efficiency is not ideal. Thirdly, exosome extraction methods are limited in number and inefficient, making it difficult to prepare exosomes in large quantities. It is important to ensure that exosomes are used in sufficient quantities to trigger an effective tumor immune response, especially for exosome-mediated tumor immunotherapy. With the improvement in identification, isolation, and purification technology, exosomes are expected to be successfully used in the clinical diagnosis of early-stage HCC and the clinical treatment of liver cancer.
Collapse
Affiliation(s)
- 唐 冯
- 四川大学华西基础医学与法医学院 生物医学工程研究室 (成都 610041)Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 欣蕊 杨
- 四川大学华西基础医学与法医学院 生物医学工程研究室 (成都 610041)Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 琦为 王
- 四川大学华西基础医学与法医学院 生物医学工程研究室 (成都 610041)Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 肖珩 刘
- 四川大学华西基础医学与法医学院 生物医学工程研究室 (成都 610041)Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Bakhashab S, O’Neill J, Barber R, Arden C, Weaver JU. Upregulation of Anti-Angiogenic miR-106b-3p Correlates Negatively with IGF-1 and Vascular Health Parameters in a Model of Subclinical Cardiovascular Disease: Study with Metformin Therapy. Biomedicines 2024; 12:171. [PMID: 38255276 PMCID: PMC10813602 DOI: 10.3390/biomedicines12010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Well-controlled type 1 diabetes mellitus (T1DM) is regarded as a model of subclinical cardiovascular disease (CVD), characterized by inflammation and adverse vascular health. However, the underlying mechanisms are not fully understood. We investigated insulin-like growth factor-1 (IGF-1) and IGF-binding protein-3 (IGFBP-3) levels, their correlation to miR-106b-3p expression in a subclinical CVD model, and the cardioprotective effect of metformin. A total of 20 controls and 29 well-controlled T1DM subjects were studied. Plasma IGF-1, IGFBP-3 levels, and miR-106b-3p expression in colony-forming unit-Hills were analyzed and compared with vascular markers. miR-106b-3p was upregulated in T1DM (p < 0.05) and negatively correlated with pro-angiogenic markers CD34+/100-lymphocytes (p < 0.05) and IGF-1 (p < 0.05). IGF-1 was downregulated in T1DM (p < 0.01), which was associated with increased inflammatory markers TNF-α, CRP, and IL-10 and reduced CD34+/100-lymphocytes. IGFBP-3 had no significant results. Metformin had no effect on IGF-1 but significantly reduced miR-106b-3p (p < 0.0001). An Ingenuity Pathway analysis predicted miR-106b-3p to inhibit PDGFA, PIK3CG, GDNF, and ADAMTS13, which activated CVD. Metformin was predicted to be cardioprotective by inhibiting miR-106b-3p. In conclusion: Subclinical CVD is characterized by a cardio-adverse profile of low IGF-1 and upregulated miR-106b-3p. We demonstrated that the cardioprotective effect of metformin may be via downregulation of upregulated miR-106b-3p and its effect on downstream targets.
Collapse
Affiliation(s)
- Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, P.O. Box 80218, Jeddah 21589, Saudi Arabia;
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (J.O.); (R.B.)
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Josie O’Neill
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (J.O.); (R.B.)
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Rosie Barber
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (J.O.); (R.B.)
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Catherine Arden
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Jolanta U. Weaver
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (J.O.); (R.B.)
- Department of Diabetes, Queen Elizabeth Hospital, Newcastle upon Tyne NE9 6SH, UK
- Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
21
|
Hussen BM, Abdullah ST, Abdullah SR, Younis YM, Hidayat HJ, Rasul MF, Mohamadtahr S. Exosomal non-coding RNAs: Blueprint in colorectal cancer metastasis and therapeutic targets. Noncoding RNA Res 2023; 8:615-632. [PMID: 37767111 PMCID: PMC10520679 DOI: 10.1016/j.ncrna.2023.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is ranked as the world's third-most prevalent cancer, and metastatic CRC considerably increases cancer-related fatalities globally. A number of complex mechanisms that are strictly controlled at the molecular level are involved in metastasis, which is the primary reason for death in people with CRC. Recently, it has become clear that exosomes, which are small extracellular vesicles released by non-tumorous and tumorigenic cells, play a critical role as communication mediators among tumor microenvironment (TME). To facilitate communication between the TME and cancer cells, non-coding RNAs (ncRNAs) play a crucial role and are recognized as potent regulators of gene expression and cellular processes, such as metastasis and drug resistance. NcRNAs are now recognized as potent regulators of gene expression and many hallmarks of cancer, including metastasis. Exosomal ncRNAs, like miRNAs, circRNAs, and lncRNAs, have been demonstrated to influence a number of cellular mechanisms that contribute to CRC metastasis. However, the molecular mechanisms that link exosomal ncRNAs with CRC metastasis are not well understood. This review highlights the essential roles that exosomal ncRNAs play in the progression of CRC metastatic disease and explores the therapeutic choices that are open to patients who have CRC metastases. However, exosomal ncRNA treatment strategy development is still in its early phases; consequently, additional investigation is required to improve delivery methods and find novel therapeutic targets as well as confirm the effectiveness and safety of these therapies in preclinical and clinical contexts.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Yousif Mohammed Younis
- Department of Nursing, College of Nursing, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Sayran Mohamadtahr
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| |
Collapse
|
22
|
Mohammed OA. From strings to signals: Unraveling the impact of miRNAs on diagnosis, and progression of colorectal cancer. Pathol Res Pract 2023; 251:154857. [PMID: 37804545 DOI: 10.1016/j.prp.2023.154857] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
Colorectal cancer (CRC) stands as the third most prevalent ailment globally and represents the primary cause of mortality associated with cancer. Significant advancements have been made in the clinical management of patients with CRC, encompassing the development of more streamlined methodologies and a diverse array of biomarkers utilized for prognostic, diagnostic, and predictive objectives. MicroRNAs (miRNAs, miRs) play a key role in the development of CRC by modulating the expression of their target genes, which govern a number of metabolic and cellular processes. They are related to malignant traits such as enhanced invasive and proliferative capacity, evasion of apoptosis, cell cycle aberration, and promotion of angiogenesis through dysregulation in their function. This review's objectives were to examine miRNA biogenesis, provide an updated list of oncogenic and tumor suppressor miRNAs, and discuss the likely causes of miRNA dysregulation in CRC. Additionally, we discuss the diagnostic and predictive functions of miRNAs in CRC and summarize their biological significance and clinical potential.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| |
Collapse
|
23
|
He K, Wang Z, Luo M, Li B, Ding N, Li L, He B, Wang H, Cao J, Huang C, Yang J, Chen HN. Metastasis organotropism in colorectal cancer: advancing toward innovative therapies. J Transl Med 2023; 21:612. [PMID: 37689664 PMCID: PMC10493031 DOI: 10.1186/s12967-023-04460-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/19/2023] [Indexed: 09/11/2023] Open
Abstract
Distant metastasis remains a leading cause of mortality among patients with colorectal cancer (CRC). Organotropism, referring to the propensity of metastasis to target specific organs, is a well-documented phenomenon in CRC, with the liver, lungs, and peritoneum being preferred sites. Prior to establishing premetastatic niches within host organs, CRC cells secrete substances that promote metastatic organotropism. Given the pivotal role of organotropism in CRC metastasis, a comprehensive understanding of its molecular underpinnings is crucial for biomarker-based diagnosis, innovative treatment development, and ultimately, improved patient outcomes. In this review, we focus on metabolic reprogramming, tumor-derived exosomes, the immune system, and cancer cell-organ interactions to outline the molecular mechanisms of CRC organotropic metastasis. Furthermore, we consider the prospect of targeting metastatic organotropism for CRC therapy.
Collapse
Affiliation(s)
- Kai He
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Ning Ding
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Li
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Han Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiangjun Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jun Yang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Hai-Ning Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
24
|
Dou Q, Wang J, Yang Y, Zhuo W. Roles of exosome-derived non-coding RNA in tumor micro-environment and its clinical application. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:429-438. [PMID: 37643977 PMCID: PMC10495245 DOI: 10.3724/zdxbyxb-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Tumor-derived exosomes play an important role in the tumor micro-environment. The exosome-derived non-coding RNAs are transmitted in the tumor microenvironment in three ways, communication between tumor cells, normal cells affecting tumor cells, and tumor cells affecting normal cells. Through these three ways, exosomal non-coding RNAs are involved in the regulation of tumor progression, affecting tumor angiogenesis, tumor invasiveness, drug resistance, stemness, tumor metabolic repro-gramming and immune escape, resulting in dual roles in promoting or inhibiting tumor development. Exosomes have a membranous structure and their contents are resistant to degradation by extracellular proteases and remain highly stable in body fluids, thus exosome-derived non-coding RNAs are expected to serve as diagnostic and prognostic indicators for a variety of cancers. In addition, exosomes can be used to deliver non-coding RNAs for targeted therapy, or to knock down or modify tumor-promoting non-coding RNAs for tumor therapy. This article reviews the function and communication mechanism of exosomal non-coding RNAs in the tumor microenvironment, including their pathways of action, effects, potential values for tumor biomarkers and treatment targets. This article also points out the issues that need to be further studied in order to promote the progress of extracellular non-coding RNAs in cancer research and their application in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Qinyi Dou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Center for Medical Research and Innovation in Digestive System Tumors of the Ministry of Education, Hangzhou 310020, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Jiazheng Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Center for Medical Research and Innovation in Digestive System Tumors of the Ministry of Education, Hangzhou 310020, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Yingshuo Yang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Center for Medical Research and Innovation in Digestive System Tumors of the Ministry of Education, Hangzhou 310020, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Wei Zhuo
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Center for Medical Research and Innovation in Digestive System Tumors of the Ministry of Education, Hangzhou 310020, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| |
Collapse
|
25
|
Wang X, Xia J, Yang L, Dai J, He L. Recent progress in exosome research: isolation, characterization and clinical applications. Cancer Gene Ther 2023; 30:1051-1065. [PMID: 37106070 DOI: 10.1038/s41417-023-00617-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Exosomes, a kind of nano-vesicles released by various cell types, carry a variety of "cargos" including proteins, RNAs, DNAs and lipids. There is substantial evidence that exosomes are involved in intercellular communication by exchanging "cargos" among cells and play important roles in cancer development. Because of the different expressions of "cargos" carried by exosomes in biological fluids under physiological and pathological conditions, exosomes have the potential as a minimally invasive method of liquid biopsy for cancer diagnosis and prognosis. In addition, due to their good biocompatibility, safety, biodistribution and low immunogenicity, exosomes also have potential applications in the development of promising cancer treatment methods. In this review, we summarize the recent progress in the isolation and characterization techniques of exosomes. Moreover, we review the biological functions of exosomes in regulating tumor metastasis, drug resistance and immune regulation during cancer development and outline the applications of exosomes in cancer therapy.
Collapse
Affiliation(s)
- Xi Wang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jingyi Xia
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Yang
- Department of Pharmacy, The people's hospital of jianyang city, Jianyang, 641400, China
| | - Jingying Dai
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Lin He
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
26
|
Hu X, Lu Y, Zhou J, Wang L, Zhang M, Mao Y, Chen Z. Progress of regulatory RNA in small extracellular vesicles in colorectal cancer. Front Cell Dev Biol 2023; 11:1225965. [PMID: 37519298 PMCID: PMC10382209 DOI: 10.3389/fcell.2023.1225965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common malignant tumor of the gastrointestinal tract with the second highest mortality rate and the third highest incidence rate. Early diagnosis and treatment are important measures to reduce CRC mortality. Small extracellular vesicles (sEVs) have emerged as key mediators that facilitate communication between tumor cells and various other cells, playing a significant role in the growth, invasion, and metastasis of cancer cells. Regulatory RNAs have been identified as potential biomarkers for early diagnosis and prognosis of CRC, serving as crucial factors in promoting CRC cell proliferation, invasion and metastasis, angiogenesis, drug resistance, and immune cell differentiation. This review provides a comprehensive summary of the vital role of sEVs as biomarkers in CRC diagnosis and their potential application in CRC treatment, highlighting their importance as a promising avenue for further research and clinical translation.
Collapse
Affiliation(s)
- Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiajun Zhou
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
27
|
Aseervatham J. Dynamic Role of Exosome microRNAs in Cancer Cell Signaling and Their Emerging Role as Noninvasive Biomarkers. BIOLOGY 2023; 12:biology12050710. [PMID: 37237523 DOI: 10.3390/biology12050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Exosomes are extracellular vesicles that originate from endosomes and are released by all cells irrespective of their origin or type. They play an important role in cell communication and can act in an autocrine, endocrine, or paracrine fashion. They are 40-150 nm in diameter and have a similar composition to the cell of origin. An exosome released by a particular cell is unique since it carries information about the state of the cell in pathological conditions such as cancer. miRNAs carried by cancer-derived exosomes play a multifaceted role by taking part in cell proliferation, invasion, metastasis, epithelial-mesenchymal transition, angiogenesis, apoptosis, and immune evasion. Depending on the type of miRNA that it carries as its cargo, it can render cells chemo- or radiosensitive or resistant and can also act as a tumor suppressor. Since the composition of exosomes is affected by the cellular state, stress, and changes in the environment, they can be used as diagnostic or prognostic biomarkers. Their unique ability to cross biological barriers makes them an excellent choice as vehicles for drug delivery. Because of their easy availability and stability, they can be used to replace cancer biopsies, which are invasive and expensive. Exosomes can also be used to follow the progression of diseases and monitor treatment strategies. A better understanding of the roles and functions of exosomal miRNA can be used to develop noninvasive, innovative, and novel treatments for cancer.
Collapse
Affiliation(s)
- Jaya Aseervatham
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
28
|
Xiong L, Wei Y, Jia Q, Chen J, Chen T, Yuan J, Pi C, Liu H, Tang J, Yin S, Zuo Y, Zhang X, Liu F, Yang H, Zhao L. The application of extracellular vesicles in colorectal cancer metastasis and drug resistance: recent advances and trends. J Nanobiotechnology 2023; 21:143. [PMID: 37120534 PMCID: PMC10148416 DOI: 10.1186/s12951-023-01888-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/06/2023] [Indexed: 05/01/2023] Open
Abstract
Colorectal cancer (CRC) has high incidence and mortality rates and is one of the most common cancers of the digestive tract worldwide. Metastasis and drug resistance are the main causes of cancer treatment failure. Studies have recently suggested extracellular vesicles (EVs) as a novel mechanism for intercellular communication. They are vesicular particles, which are secreted and released into biological fluids, such as blood, urine, milk, etc., by a variety of cells and carry numerous biologically active molecules, including proteins, nucleic acids, lipids, metabolites, etc. EVs play a crucial part in the metastasis and drug resistance of CRC by delivering cargo to recipient cells and modulating their behavior. An in-depth exploration of EVs might facilitate a comprehensive understanding of the biological behavior of CRC metastasis and drug resistance, which might provide a basis for developing therapeutic strategies. Therefore, considering the specific biological properties of EVs, researchers have attempted to explore their potential as next-generation delivery systems. On the other hand, EVs have also been demonstrated as biomarkers for the prediction, diagnosis, and presumed prognosis of CRC. This review focuses on the role of EVs in regulating the metastasis and chemoresistance of CRC. Moreover, the clinical applications of EVs are also discussed.
Collapse
Affiliation(s)
- Linjin Xiong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Qiang Jia
- Ethics Committee Office, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiyuan Yuan
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
| | - Huiyang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jia Tang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suyu Yin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Ying Zuo
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, People's Republic of China
| | - Furong Liu
- Department of Oncology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, China.
| | - Hongru Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Ling Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
29
|
Cheng J, Zhang K, Qu C, Peng J, Yang L. Non-Coding RNAs Derived from Extracellular Vesicles Promote Pre-Metastatic Niche Formation and Tumor Distant Metastasis. Cancers (Basel) 2023; 15:cancers15072158. [PMID: 37046819 PMCID: PMC10093357 DOI: 10.3390/cancers15072158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Metastasis is a critical stage of tumor progression, a crucial challenge of clinical therapy, and a major cause of tumor patient death. Numerous studies have confirmed that distant tumor metastasis is dependent on the formation of pre-metastatic niche (PMN). Recent studies have shown that extracellular vesicles (EVs) play an important role in PMN formation. The non-coding RNAs (ncRNAs) derived from EVs mediate PMN formation and tumor-distant metastasis by promoting an inflammatory environment, inhibiting anti-tumor immune response, inducing angiogenesis and permeability, and by microenvironmental reprogramming. Given the stability and high abundance of ncRNAs carried by EVs in body fluids, they have great potential for application in tumor diagnosis as well as targeted interventions. This review focuses on the mechanism of ncRNAs derived from EVs promoting tumor PMN formation and distant metastasis to provide a theoretical reference for strategies to control tumor metastasis.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| | - Kun Zhang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Chunhui Qu
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410078, China
- Department of Pathology, Xiangya Changde Hospital, Changde 415000, China
| | - Lifang Yang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| |
Collapse
|
30
|
Mezher M, Abdallah S, Ashekyan O, Shoukari AA, Choubassy H, Kurdi A, Temraz S, Nasr R. Insights on the Biomarker Potential of Exosomal Non-Coding RNAs in Colorectal Cancer: An In Silico Characterization of Related Exosomal lncRNA/circRNA–miRNA–Target Axis. Cells 2023; 12:cells12071081. [PMID: 37048155 PMCID: PMC10093117 DOI: 10.3390/cells12071081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer types, ranking third after lung and breast cancers. As such, it demands special attention for better characterization, which may eventually result in the development of early detection strategies and preventive measures. Currently, components of bodily fluids, which may reflect various disease states, are being increasingly researched for their biomarker potential. One of these components is the circulating extracellular vesicles, namely, exosomes, which are demonstrated to carry various cargo. Of importance, the non-coding RNA cargo of circulating exosomes, especially long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and micro RNAs (miRNAs), may potentially serve as significant diagnostic and prognostic/predictive biomarkers. In this review, we present existing evidence on the diagnostic and prognostic/predictive biomarker value of exosomal non-coding RNAs in CRC. In addition, taking advantage of the miRNA sponging functionality of lncRNAs and circRNAs, we demonstrate an experimentally validated CRC exosomal non-coding RNA-regulated target gene axis benefiting from published miRNA sponging studies in CRC. Hence, we present a set of target genes and pathways downstream of the lncRNA/circRNA–miRNA–target axis along with associated significant Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, which may collectively serve to better characterize CRC and shed light on the significance of exosomal non-coding RNAs in CRC diagnosis and prognosis/prediction.
Collapse
Affiliation(s)
- Maria Mezher
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Samira Abdallah
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ohanes Ashekyan
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ayman Al Shoukari
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Hayat Choubassy
- Faculty of Sciences, Lebanese University, Beirut P.O. Box 6573, Lebanon
| | - Abdallah Kurdi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Sally Temraz
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
31
|
Kotelevets L, Chastre E. Extracellular Vesicles in Colorectal Cancer: From Tumor Growth and Metastasis to Biomarkers and Nanomedications. Cancers (Basel) 2023; 15:1107. [PMID: 36831450 PMCID: PMC9953945 DOI: 10.3390/cancers15041107] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Colorectal cancer (CRC) is a leading public health concern due to its incidence and high mortality rates, highlighting the requirement of an early diagnosis. Evaluation of circulating extracellular vesicles (EVs) might constitute a noninvasive and reliable approach for CRC detection and for patient follow-up because EVs display the molecular features of the cells they originate. EVs are released by almost all cell types and are mainly categorized as exosomes originating from exocytosis of intraluminal vesicles from multivesicular bodies, ectosomes resulting from outward budding of the plasma membrane and apoptotic bodies' ensuing cell shrinkage. These vesicles play a critical role in intercellular communications during physiological and pathological processes. They facilitate CRC progression and premetastatic niche formation, and they enable transfer of chemotherapy resistance to sensitive cells through the local or remote delivery of their lipid, nucleic acid and protein content. On another note, their stability in the bloodstream, their permeation in tissues and their sheltering of packaged material make engineered EVs suitable vectors for efficient delivery of tracers and therapeutic agents for tumor imaging or treatment. Here, we focus on the physiopathological role of EVs in CRCs, their value in the diagnosis and prognosis and ongoing investigations into therapeutic approaches.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Eric Chastre
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| |
Collapse
|
32
|
Doghish AS, Ismail A, El-Mahdy HA, Elkhawaga SY, Elsakka EGE, Mady EA, Elrebehy MA, Khalil MAF, El-Husseiny HM. miRNAs insights into rheumatoid arthritis: Favorable and detrimental aspects of key performers. Life Sci 2023; 314:121321. [PMID: 36574943 DOI: 10.1016/j.lfs.2022.121321] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) is a severe autoimmune inflammation that mostly affects the joints. It's a multifactorial disease. Its clinical picture depends on genetic and epigenetic factors such as miRNAs. The miRNAs are small noncoding molecules that are able to negatively or positively modulate their target gene expression. In RA, miRNAs are linked to its pathogenesis. They disrupt immunity balance by controlling granulocytes, triggering the release of several proinflammatory cytokines such as interleukin-6 and tumor necrosis factor-α, finally leading to synovium hyperplasia and inflammation. Besides, they also may trigger activation of some pathways as nuclear factor kappa-β disrupts the balance between osteoclast and osteoblast activity, leading to increased bone destruction. Moreover, miRNAs are also applied with efficiency in RA diagnosis and prognosis. Besides the significant association between miRNAs and RA response to treatment, they are also applied as a choice for treatment based on their effects on the immune system and inflammatory cytokines. Hence, the review aims to present an updated overview of miRNAs, their biogenesis, implications in RA pathogenesis, and finally, the role of miRNAs in RA treatment.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Eman A Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukfh, Elqaliobiya 13736, Egypt; Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A F Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| |
Collapse
|
33
|
Shi L, Kan J, Zhuo L, Wang S, Chen S, Zhang B, Ke B. Bioinformatics identification of miR-514b-5p promotes NSCLC progression and induces PI3K/AKT and p38 pathways by targeting small glutamine-rich tetratricopeptide repeat-containing protein beta. FEBS J 2023; 290:1134-1150. [PMID: 36180981 DOI: 10.1111/febs.16639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/05/2022] [Accepted: 09/28/2022] [Indexed: 02/17/2023]
Abstract
Lung cancer is the most aggressive cancer with the highest mortality and incidence rates worldwide. MicroRNAs have been identified as potential targets for non-small cell lung cancer (NSCLC) treatment. However, the modulatory role of miR-514b-5p in NSCLC progression is little known. In the present study, miRNA expression datasets for NSCLC were downloaded from the Cancer Genome Atlas and Gene Ontology Omnibus databases. Gene expression was assessed using a quantitative real-time PCR, and western blot analysis and immunohistochemical staining was used to determine protein expression. Gain and loss of function experiments were performed to investigate the impact of miR-514b-5p and small glutamine-rich tetratricopeptide repeat-containing protein beta (SGTB) on cell proliferation and apoptosis. RNA immunoprecipitation and dual-luciferase assays were performed to analyse the target gene of miR-514b-5p. The biological roles of miR-514b-5p were lastly evaluated using nude mouse tumorigenicity assays in vivo. We found that miR-514b-5p was dramatically increased in NSCLC tissues and higher miR-514b-5p expression was associated with poorer overall survival in NSCLC patients. Furthermore, overexpression of miR-514b-5p promoted NSCLC cell growth and suppressed apoptosis by inducing the activation of the phosphatidylinositol-3-kinase (PI3K)/AKT and p38 signalling pathways. Mechanistically, dual-luciferase and the RNA immunoprecipitation results highlighted that SGTB was a target gene of miR-514b-5p. Moreover, overexpression of SGTB reduced cell division and promoted apoptosis in vitro through blocking the PI3K/AKT and p38 signalling pathways. Our findings indicated that miR-514b-5p contributes to carcinoma progression in NSCLC via the PI3K/AKT and p38 signalling pathways by targeting SGTB and this could be a promising diagnostic and therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Lin Shi
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jun Kan
- Department of VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin Zhuo
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Siyun Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shaobing Chen
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Bei Zhang
- Department of VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bin Ke
- Department of VIP Region, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
34
|
Cao Y, Xu P, Shen Y, Wu W, Chen M, Wang F, Zhu Y, Yan F, Gu W, Lin Y. Exosomes and cancer immunotherapy: A review of recent cancer research. Front Oncol 2023; 12:1118101. [PMID: 36727049 PMCID: PMC9885269 DOI: 10.3389/fonc.2022.1118101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
As phospholipid extracellular vesicles (EVs) secreted by various cells, exosomes contain non-coding RNA (ncRNA), mRNA, DNA fragments, lipids, and proteins, which are essential for intercellular communication. Several types of cells can secrete exosomes that contribute to cancer initiation and progression. Cancer cells and the immune microenvironment interact and restrict each other. Tumor-derived exosomes (TDEs) have become essential players in this balance because they carry information from the original cancer cells and express complexes of MHC class I/II epitopes and costimulatory molecules. In the present study, we aimed to identify potential targets for exosome therapy by examining the specific expression and mechanism of exosomes derived from cancer cells. We introduced TDEs and explored their role in different tumor immune microenvironment (TIME), with a particular emphasis on gastrointestinal cancers, before briefly describing the therapeutic strategies of exosomes in cancer immune-related therapy.
Collapse
Affiliation(s)
- Yue Cao
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Peng Xu
- Department of Hematology, Soochow Hopes Hematology Hospital, Suzhou, Jiangsu, China
| | - Yangling Shen
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Wei Wu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Min Chen
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Fei Wang
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yuandong Zhu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Feng Yan
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Weiying Gu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China,*Correspondence: Yan Lin, ; Weiying Gu,
| | - Yan Lin
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China,*Correspondence: Yan Lin, ; Weiying Gu,
| |
Collapse
|
35
|
Xiao Z, Feng X, Zhou Y, Li P, Luo J, Zhang W, Zhou J, Zhao J, Wang D, Wang Y, Tian Z, Zhao X. Exosomal miR-10527-5p Inhibits Migration, Invasion, Lymphangiogenesis and Lymphatic Metastasis by Affecting Wnt/β-Catenin Signaling via Rab10 in Esophageal Squamous Cell Carcinoma. Int J Nanomedicine 2023; 18:95-114. [PMID: 36636641 PMCID: PMC9831078 DOI: 10.2147/ijn.s391173] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/24/2022] [Indexed: 01/07/2023] Open
Abstract
Background Cancer cell-derived exosomal microRNAs (miRNAs) play critical role in orchestrating intercellular communication between tumor cells and tumor microenvironmental factors, including lymphatic endothelial cells (LECs). Nevertheless, the functions and underlying mechanisms of exosomal miRNAs in lymphatic metastasis and lymphangiogenesis in esophageal squamous cell carcinoma (ESCC) remain unclear. Methods Small RNA sequencing, Gene Expression Omnibus (GEO) analysis and qRT‒PCR were performed to identify the candidate exosomal miRNAs involved in ESCC metastasis. Receiver operating characteristic curve analysis was conducted to evaluate the diagnostic potential of exosomal miR-10527-5p in predicting lymph node metastasis (LNM) status. An in vitro coculture system was used to investigate the effects of exosomal miR-10527-5p on ESCC cells and human LECs (HLECs), followed by a popliteal LNM assay in vivo. The relationship between miR-10527-5p and Rab10 was identified by dual-luciferase reporter, fluorescence in situ hybridization and qRT‒PCR assays. Then, a series of rescue assays were performed to further investigate whether Rab10 is involved in exosomal miR-10527-5p mediated ESCC metastasis. Results MiR-10527-5p was found to be notably reduced in both the plasma exosomes and tumor tissues of ESCC patients with LNM, and plasma exosomal miR-10527-5p had a high sensitivity and specificity for discrimination of LNM status. Moreover, exosome-shuttled miR-10527-5p suppressed the migration, invasion and epithelial-to-mesenchymal transition (EMT) of ESCC cells as well as the migration and tube formation of HLECs via Wnt/β-catenin signaling in vitro and in vivo. Further investigation revealed that Rab10 was a direct target of miR-10527-5p, and re-expression of Rab10 neutralized the inhibitory effects of exosomal miR-10527-5p. Conclusion Our study demonstrated that exosomal miR-10527-5p had a strong capability to predict preoperative LNM status and anti-lymphangiogenic effect. Exosomal miR-10527-5p inhibited lymphangiogenesis and lymphatic metastasis of ESCC in a vascular endothelial growth factor-C (VEGF-C)-independent manner, showing potential as a therapeutic target for ESCC patients.
Collapse
Affiliation(s)
- Zhaohua Xiao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Xumei Feng
- Health Management Center, The Second Hospital of Shandong University, Jinan, People’s Republic of China
| | - Yongjia Zhou
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Peiwei Li
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, People’s Republic of China
| | - Junwen Luo
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Wenhao Zhang
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Jie Zhou
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Jiangfeng Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China
| | - Dong Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Yongjie Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Zhongxian Tian
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China,Key Laboratory of Chest Cancer, Shandong University, The Second Hospital of Shandong University, Jinan, People’s Republic of China,Correspondence: Zhongxian Tian; Xiaogang Zhao, Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China, Tel +86-17660082365; +86-053185875009, Email ;
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, 250033, People’s Republic of China,Key Laboratory of Chest Cancer, Shandong University, The Second Hospital of Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
36
|
Zhang W, Jiang Z, Tang D. The value of exosome-derived noncoding RNAs in colorectal cancer proliferation, metastasis, and clinical applications. Clin Transl Oncol 2022; 24:2305-2318. [PMID: 35921060 DOI: 10.1007/s12094-022-02908-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/23/2022] [Indexed: 11/26/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world today, and its incidence and mortality rates are increasing every year. The ease of proliferation and metastasis of CRC has long been an important reason for its high mortality rate. Exosomes serve as key mediators that mediate communication between tumor cells and various other cells. Non-coding RNAs (ncRNAs) have been shown to play a key role in apoptosis, immunosuppression and proliferation metastasis in cancer. ncRNAs are loaded on exosomes and initiate the onset of metastasis by promoting epithelial-mesenchymal transition (EMT) at the primary site of the tumor. Meanwhile, exosome-derived ncRNAs construct a pre-metastatic niche (PMN) for CRC metastasis by forming an inflammatory microenvironment in distant organs, immunosuppression, and promoting angiogenesis and remodeling of the extracellular matrix. Here, we summarize the specific mechanisms associated with exosome-derived ncRNAs promoting local invasion and metastasis in CRC. Finally, we focus on their value for clinical application in future CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
37
|
Tenchov R, Sasso JM, Wang X, Liaw WS, Chen CA, Zhou QA. Exosomes─Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS NANO 2022; 16:17802-17846. [PMID: 36354238 PMCID: PMC9706680 DOI: 10.1021/acsnano.2c08774] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/21/2022] [Indexed: 05/03/2023]
Abstract
Exosomes are a subgroup of nanosized extracellular vesicles enclosed by a lipid bilayer membrane and secreted by most eukaryotic cells. They represent a route of intercellular communication and participate in a wide variety of physiological and pathological processes. The biological roles of exosomes rely on their bioactive cargos, including proteins, nucleic acids, and lipids, which are delivered to target cells. Their distinctive properties─innate stability, low immunogenicity, biocompatibility, and good biomembrane penetration capacity─allow them to function as superior natural nanocarriers for efficient drug delivery. Another notably favorable clinical application of exosomes is in diagnostics. They hold various biomolecules from host cells, which are indicative of pathophysiological conditions; therefore, they are considered vital for biomarker discovery in clinical diagnostics. Here, we use data from the CAS Content Collection and provide a landscape overview of the current state and delineate trends in research advancement on exosome applications in therapeutics and diagnostics across time, geography, composition, cargo loading, and development pipelines. We discuss exosome composition and pathway, from their biogenesis and secretion from host cells to recipient cell uptake. We assess methods for exosome isolation and purification, their clinical applications in therapy and diagnostics, their development pipelines, the exploration goals of the companies, the assortment of diseases they aim to treat, development stages of their research, and publication trends. We hope this review will be useful for understanding the current knowledge in the field of medical applications of exosomes, in an effort to further solve the remaining challenges in fulfilling their potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Janet M. Sasso
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Xinmei Wang
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Wen-Shing Liaw
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Chun-An Chen
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| |
Collapse
|
38
|
Jiang Q, Tan XP, Zhang CH, Li ZY, Li D, Xu Y, Liu YX, Wang L, Ma Z. Non-Coding RNAs of Extracellular Vesicles: Key Players in Organ-Specific Metastasis and Clinical Implications. Cancers (Basel) 2022; 14:cancers14225693. [PMID: 36428785 PMCID: PMC9688215 DOI: 10.3390/cancers14225693] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous membrane-encapsulated vesicles released by most cells. They act as multifunctional regulators of intercellular communication by delivering bioactive molecules, including non-coding RNAs (ncRNAs). Metastasis is a major cause of cancer-related death. Most cancer cells disseminate and colonize a specific target organ via EVs, a process known as "organ-specific metastasis". Mounting evidence has shown that EVs are enriched with ncRNAs, and various EV-ncRNAs derived from tumor cells influence organ-specific metastasis via different mechanisms. Due to the tissue-specific expression of EV-ncRNAs, they could be used as potential biomarkers and therapeutic targets for the treatment of tumor metastasis in various types of cancer. In this review, we have discussed the underlying mechanisms of EV-delivered ncRNAs in the most common organ-specific metastases of liver, bone, lung, brain, and lymph nodes. Moreover, we summarize the potential clinical applications of EV-ncRNAs in organ-specific metastasis to fill the gap between benches and bedsides.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China
- Department of Cardiovascular Medicine, Honghu Hospital of Traditional Chinese Medicine, Honghu 433200, China
| | - Xiao-Ping Tan
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China
| | - Cai-Hua Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Zhi-Yuan Li
- Department of Cardiovascular Medicine, Honghu Hospital of Traditional Chinese Medicine, Honghu 433200, China
| | - Du Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Yan Xu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Yu Xuan Liu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore
- Correspondence: (Z.M.); (L.W.)
| | - Zhaowu Ma
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
- Correspondence: (Z.M.); (L.W.)
| |
Collapse
|
39
|
Amelimojarad M, AmeliMojarad M, Nazemalhosseini-Mojarad E. Exosomal noncoding RNAs in colorectal cancer: An overview of functions, challenges, opportunities, and clinical applications. Pathol Res Pract 2022; 238:154133. [PMID: 36152568 DOI: 10.1016/j.prp.2022.154133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022]
Abstract
Colorectal cancer (CRC) is the third most threatening malignancy worldwide. Colorectal tumors transfer information with their tumor microenvironment (TME) and communicate together which can be detected through exosome transmission. Exosomes are important regulators made by different types of cells in all body fluids containing RNA, DNA, metabolites, and proteins. Recently, Exosome-derived noncoding RNAs (ncRNAs) applications have gained great consideration based on their potential role in the different pathological processes. Therefore, in this review, we summarized the recent discoveries on exosomal ncRNAs function in CRC initiation and development, and drug resistance to provide a novel insight into exosomal ncRNAs' clinical application and their potential to be biomarkers for CRC patients.
Collapse
Affiliation(s)
- Melika Amelimojarad
- Gastrointestinal (GI) cancer Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mandana AmeliMojarad
- Gastrointestinal (GI) cancer Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ehsan Nazemalhosseini-Mojarad
- Gastrointestinal (GI) cancer Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Wang D, Zhang W, Zhang C, Wang L, Chen H, Xu J. Exosomal non-coding RNAs have a significant effect on tumor metastasis. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:16-35. [PMID: 35784014 PMCID: PMC9207556 DOI: 10.1016/j.omtn.2022.05.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
Exosomes are produced by the majority of eukaryotic cells and are capable of transporting a variety of substances, including non-coding RNAs, between cells. Metastasis is a significant cause of death from cancer. Numerous studies have established an important role for exosomal non-coding RNAs in tumor metastasis. Exosomal non-coding RNAs from a variety of cells have been shown to affect tumor metastasis via several mechanisms. Exosomes transmit non-coding RNAs between tumor cells, fibroblasts, endothelial cells, and immune cells within the tumor microenvironment. Exosomal non-coding RNAs also have an effect on epithelial-mesenchymal transition, angiogenesis, and lymphangiogenesis. Exosomes derived from tumor cells have the ability to transport non-coding RNAs to distant organs, thereby facilitating the formation of the metastatic niche. Due to their role in tumor metastasis, exosomal non-coding RNAs have the potential to serve as diagnostic or prognostic markers as well as therapeutic targets for tumors. The purpose of this paper is to review and discuss the mechanisms of exosomal non-coding RNAs, their role in tumor metastasis, and their clinical utility, aiming to establish new directions for tumor metastasis, diagnosis, and treatment research.
Collapse
Affiliation(s)
- Di Wang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Wei Zhang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Chunxi Zhang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Liwei Wang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Heng Chen
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Nanshan District, Shenzhen 518060, P.R. China
| | - Jianbin Xu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
41
|
Saghazadeh A, Rezaei N. MicroRNA expression profiles of peripheral blood and mononuclear cells in myasthenia gravis: A systematic review. Int Immunopharmacol 2022; 112:109205. [PMID: 36087508 DOI: 10.1016/j.intimp.2022.109205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/21/2022] [Accepted: 08/26/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Studies have described the role of microRNAs (miRNAs) in thymic function, along with directly observing the altered expression of miRNAs in thymuses of myasthenia gravis (MG) patients; so, miRNAs became a core component in the pathophysiology of MG. However, because the miRNA analysis results are contradictory, the identification of MG-related miRNAs is daunting. OBJECTIVE We did a systematic review of studies analyzing the miRNA expression profile of peripheral blood and mononuclear cells for patients with MG. METHODS We ran a database search in PubMed, Scopus, and Web of Science on August 17, 2021. Original articles that analyzed miRNA profiles in peripheral blood (serum, plasma, and whole blood) and peripheral blood mononuclear cells (PBMCs) for patients with MG in comparison with a non-MG or healthy control (HC) group were eligible. The quality of studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). RESULTS 26 studies were included. The quality of studies was fair (median score, 5). Among 226 different miRNAs that were deregulated in at least one study (range, 1-87), ten miRNAs were significantly deregulated in three or more studies. Five miRNAs (50%) showed the same deregulation: miR-106b-3p and miR-21-5p were consistently upregulated, and miR-20b, miR-15b, and miR-16 were consistently downregulated. Also, there were five miRNAs that were mostly upregulated, miR-150-5p, miR-146a, miR-30e-5p, and miR-338-3p, or downregulated, miR-324-3p, across studies. CONCLUSION These miRNAs contribute to different pathways, importantly neural apoptosis and autophagy, inflammation, T regulatory cell development, and T helper cell balance. Prior to being used for diagnostic and therapeutic purposes, it is required to pursue molecular mechanisms these consistently and mostly dysregulated miRNAs specifically use in the context of MG.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
42
|
Bano A, Vats R, Yadav P, Bhardwaj R. Exosomics in oral cancer diagnosis, prognosis, and therapeutics - An emergent and imperative non-invasive natural nanoparticle-based approach. Crit Rev Oncol Hematol 2022; 178:103799. [PMID: 36031170 DOI: 10.1016/j.critrevonc.2022.103799] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022] Open
Abstract
Exosomes- the natural nanoparticles belonging to heterogeneous vesicles are released via nearly all sorts of cells, including tumour cells, to oprate intercellular communication. Selective packaging of exosomes amid nucleic acids, phospholipids, and proteins makes them ideal for intercellular communications occurring among different cells. The existence of exosomes has been validated in various biofluids, including saliva. Being non-invasive and in direct contact with oral malignant cells, saliva establishes itself as a preeminent source of early cancer biomarkers. In context, the role and providence of both recipient and donor secreting cells are persuaded through exosomal cargo.Several studies have emphasized the influence of exosomal contents in different stages of cancer development, reconciling interactions between tumour cells and their surrounding niche. More explicitly, a transformation of exosomal contents such as nucleic acids, lipids, and proteins can endorse tumour progression and help ascertain a secluded pre-metastatic niche crammed with substances that errand cancer cell proliferation,angiogenesis, metastasis, and drug resistance. The blooming field of exosomes has directed the evolution of high-end isolation and characterization techniques along with the development of an entirely new field- exosomics that comprises complete analysis of exosomal cargo in various physiological conditions, including oral cancer. Researchers have discovered multiple pathways involved in exosome biogenesis to understand numerous events associated with cancer progression. Tissue-specific packaging of exosomes makes them a novel source of prognostic and diagnostic biomarkers and potential therapeutic targets. The extent of the current review confers the contemporary perception of the versatile task of exosomes, especially salivary exosomes, as potential biomarkers in the progression and diagnosis as well as therapeutics of oral cancers and their potential employment in clinical applications.
Collapse
Affiliation(s)
- Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Pooja Yadav
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
43
|
Sarhadi VK, Armengol G. Molecular Biomarkers in Cancer. Biomolecules 2022; 12:1021. [PMID: 35892331 PMCID: PMC9331210 DOI: 10.3390/biom12081021] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Molecular cancer biomarkers are any measurable molecular indicator of risk of cancer, occurrence of cancer, or patient outcome. They may include germline or somatic genetic variants, epigenetic signatures, transcriptional changes, and proteomic signatures. These indicators are based on biomolecules, such as nucleic acids and proteins, that can be detected in samples obtained from tissues through tumor biopsy or, more easily and non-invasively, from blood (or serum or plasma), saliva, buccal swabs, stool, urine, etc. Detection technologies have advanced tremendously over the last decades, including techniques such as next-generation sequencing, nanotechnology, or methods to study circulating tumor DNA/RNA or exosomes. Clinical applications of biomarkers are extensive. They can be used as tools for cancer risk assessment, screening and early detection of cancer, accurate diagnosis, patient prognosis, prediction of response to therapy, and cancer surveillance and monitoring response. Therefore, they can help to optimize making decisions in clinical practice. Moreover, precision oncology is needed for newly developed targeted therapies, as they are functional only in patients with specific cancer genetic mutations, and biomarkers are the tools used for the identification of these subsets of patients. Improvement in the field of cancer biomarkers is, however, needed to overcome the scientific challenge of developing new biomarkers with greater sensitivity, specificity, and positive predictive value.
Collapse
Affiliation(s)
- Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland;
| | - Gemma Armengol
- Department of Animal Biology, Plant Biology, and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|
44
|
Yang P, Song F, Yang X, Yan X, Huang X, Qiu Z, Wen Z, Liang C, Xin X, Lei Z, Zhang K, Yang J, Liu H, Wang H, Xiang S, Li L, Zhang B, Wang H. Exosomal MicroRNAs Signature Acts as Efficient Biomarker for Non-Invasive Diagnosis of Gallbladder Carcinoma. iScience 2022; 25:104816. [PMID: 36043050 PMCID: PMC9420508 DOI: 10.1016/j.isci.2022.104816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023] Open
Abstract
Through a three-step study that relies on biomarker discovery, training, and validation, we identified a set of five exosomal microRNAs (miRNAs) that can be used to evaluate the risk of gallbladder carcinoma (GBC), including miR-552-3p, miR-581, miR-4433a-3p, miR-496, and miR-203b-3p. When validated in 102 GBC patients and 112 chronic cholecystitis patients from multiple medical centers, the AUC of this combinatorial biomarker was 0.905, with a sensitivity of 81.37% and a specificity of 86.61%. The performance of this biomarker is superior to that of the standard biomarkers CA199 and CEA and is suited for GBC early diagnosis. The multi-clinicopathological features and prognosis of GBC patients were significantly associated with this biomarker. After building a miRNA-target gene regulation network, cell functions and signaling pathways regulated by these five miRNAs were examined. This biomarker signature can be used in the development of a noninvasive tool for GBC diagnosis, screening and prognosis prediction.
A five exosomal miRNAs-set is identified to diagnose GBC through a three-step study The efficacy of this noninvasive biomarker is superior to that of conventional ones This biomarker is correlated with multiple GBC clinical features and the prognosis The functions and signal pathways that this biomarker may affect were estimated
Collapse
|
45
|
He J, Xi N, Han Z, Luo W, Shen J, Wang S, Li J, Guo Z, Cheng H. The Role of Liquid Biopsy Analytes in Diagnosis, Treatment and Prognosis of Colorectal Cancer. Front Endocrinol (Lausanne) 2022; 13:875442. [PMID: 35846270 PMCID: PMC9279561 DOI: 10.3389/fendo.2022.875442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract worldwide and is a serious threat to human life and health. CRC occurs and develops in a multi-step, multi-stage, and multi-gene process, in which abnormal gene expression plays an important role. CRC is currently diagnosed via endoscopy combined with tissue biopsy. Compared with tissue biopsy, liquid biopsy technology has received increasingly more attention and applications in the field of molecular detection due to its non-invasive, safe, comprehensive, and real-time dynamic nature. This review article discusses the application and limitations of current liquid biopsy analytes in the diagnosis, treatment, and prognosis of CRC, as well as directions for their future development.
Collapse
Affiliation(s)
- JinHua He
- Central Laboratory of Panyu Central Hospital, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - NaiTe Xi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - ZePing Han
- Central Laboratory of Panyu Central Hospital, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - WenFeng Luo
- Central Laboratory of Panyu Central Hospital, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jian Shen
- Central Laboratory of Panyu Central Hospital, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - ShengBo Wang
- Department of Gastroenterology, Central Hospital of Panyu District, Guangzhou, China
| | - JianHao Li
- Institute of Cardiovascular Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - ZhongHui Guo
- Central Laboratory of Panyu Central Hospital, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - HanWei Cheng
- Central Laboratory of Panyu Central Hospital, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
46
|
Huang Y, Kanada M, Ye J, Deng Y, He Q, Lei Z, Chen Y, Li Y, Qin P, Zhang J, Wei J. Exosome-mediated remodeling of the tumor microenvironment: From local to distant intercellular communication. Cancer Lett 2022; 543:215796. [PMID: 35728740 DOI: 10.1016/j.canlet.2022.215796] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles (EVs) are membrane-enveloped nanoscale particles that carry various bioactive signaling molecules secreted by cells. Their biological roles depend on the original cell type from which they are derived and their inclusions. Exosomes, a class of EVs, are released by almost all eukaryotic cell types, including tumor cells. Tumor cell-derived exosomes mediate signal transduction between tumor cells and surrounding non-tumor cells. This intercellular communication actively contributes to the remodeling of the tumor microenvironment (TME) to enable tumor growth, invasion, and metastasis. This review summarizes the latest progress in the exploration of exosome-mediated cell-cell communication implicated in TME remodeling and underlying mechanisms. We focus on the role of cell-cell interactions mediated by tumor cell-derived exosomes in promoting invasion and metastasis, and their potential as a therapeutic intervention target against distant metastasis. We also discuss the clinical translational significance of tumor-derived exosomes for early diagnosis, efficacy and progression evaluations.
Collapse
Affiliation(s)
- Yujuan Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Masamitsu Kanada
- Department of Pharmacology & Toxicology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, 48824, USA
| | - Jiaxiang Ye
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Yayan Deng
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Qian He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Zhengyang Lei
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Yong Chen
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Yongqiang Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Jinyan Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China.
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, China.
| |
Collapse
|
47
|
Chen X, Jia M, Ji J, Zhao Z, Zhao Y. Exosome-Derived Non-Coding RNAs in the Tumor Microenvironment of Colorectal Cancer: Possible Functions, Mechanisms and Clinical Applications. Front Oncol 2022; 12:887532. [PMID: 35646623 PMCID: PMC9133322 DOI: 10.3389/fonc.2022.887532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death and the third most prevalent malignancy. Colorectal tumors exchange information with the surrounding environment and influence each other, which collectively constitutes the tumor microenvironment (TME) of CRC. Many studies have shown that exosome-derived non-coding RNAs (ncRNAs) play important roles in various pathophysiological processes by regulating the TME of CRC. This review summarizes recent findings on the fundamental roles of exosomal ncRNAs in angiogenesis, vascular permeability, tumor immunity, tumor metabolism and drug resistance. Certainly, the in-depth understanding of exosomal ncRNAs will provide comprehensive insights into the clinical application of these molecules against CRC.
Collapse
Affiliation(s)
- Xian Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Mengmeng Jia
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Ji
- School of Public Health, Qingdao University, Qingdao, China
| | - Zhiying Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
48
|
Yang M, Sun M, Zhang H. The Interaction Between Epigenetic Changes, EMT, and Exosomes in Predicting Metastasis of Colorectal Cancers (CRC). Front Oncol 2022; 12:879848. [PMID: 35712512 PMCID: PMC9197117 DOI: 10.3389/fonc.2022.879848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Worldwide, colorectal cancer (CRC) ranks as the third most common malignancy, and the second most deadly with nearly one million attributable deaths in 2020. Metastatic disease is present in nearly 25% of newly diagnosed CRC, and despite advances in chemotherapy, less than 20% will remain alive at 5 years. Epigenetic change plays a key role in the epithelial-to-mesenchymal transition (EMT), which is a crucial phenotype for metastasis and mainly includes DNA methylation, non-coding RNAs (ncRNAs), and N6-methyladenosine (m6A) RNA, seemingly valuable biomarkers in CRCs. For ncRNAs, there exists a “molecular sponge effect” between long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs). The detection of exosomes is a novel method in CRC monitoring, especially for predicting metastasis. There is a close relationship between exosomes and EMT in CRCs. This review summarizes the close relationship between epigenetic changes and EMT in CRCs and emphasizes the crucial function of exosomes in regulating the EMT process.
Collapse
|
49
|
Zhou H, Liu Z, Wang Y, Wen X, Amador EH, Yuan L, Ran X, Xiong L, Ran Y, Chen W, Wen Y. Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduct Target Ther 2022; 7:70. [PMID: 35246503 PMCID: PMC8897452 DOI: 10.1038/s41392-022-00922-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring malignancy tumors with a high morbidity additionally, CRC patients may develop liver metastasis, which is the major cause of death. Despite significant advances in diagnostic and therapeutic techniques, the survival rate of colorectal liver metastasis (CRLM) patients remains very low. CRLM, as a complex cascade reaction process involving multiple factors and procedures, has complex and diverse molecular mechanisms. In this review, we summarize the mechanisms/pathophysiology, diagnosis, treatment of CRLM. We also focus on an overview of the recent advances in understanding the molecular basis of CRLM with a special emphasis on tumor microenvironment and promise of newer targeted therapies for CRLM, further improving the prognosis of CRLM patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Zhongtao Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Yongxiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xiaoyong Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Eric H Amador
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA
| | - Liqin Yuan
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Chen
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA.
- Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK.
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| |
Collapse
|
50
|
Datta B, Paul D, Dey T, Pal S, Rakshit T. Importance of Extracellular Vesicle Derived RNAs as
Critical Colorectal Cancer Biomarkers. ACS BIO & MED CHEM AU 2022; 2:222-235. [PMID: 37101571 PMCID: PMC10114864 DOI: 10.1021/acsbiomedchemau.1c00043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
![]()
Colorectal cancer
typically begins from a nonmalignant polyp formation
in the large intestine that, over time, develops into colorectal cancer.
The growth of benign polyps can be checked if detected in the early
stages of the disease. Doctors usually recommend colonoscopy to average
and high-risk individuals for colorectal cancer screening. Elevated
carcinoembryonic antigen (CEA) is a broadly used biomarker for colorectal
cancer. The genetic and epigenetic alteration of genes such as p53,
BRAF, APC, and PIK3CA is also correlated with colorectal cancer in
various clinical studies. In general, tissue biopsy is most frequently
used for colorectal cancer diagnosis, but the whole tumor heterogeneity
cannot be accessed by this technique. Furthermore, such a highly invasive
technique is not suitable for repeated testing. Recently, extracellular
vesicles (EVs), lipid bilayer enclosed sacs secreted from colorectal
cancer cells, are emerging as a diagnostic tool for colon cancer detection.
The major advantages of using EVs for colon cancer diagnosis are (i)
EVs can be isolated in a noninvasive manner from the body fluid and
(ii) EV incorporated cargoes (mostly RNAs) reveal various aspects
of colorectal cancer. EV-RNAs are also implicated in tumor invasion
and influence the immune system for the further spread of tumors.
However, due to the lack of standardized EV detection strategies,
diagnostic applicability is limited. Herein, we review the recent
literature on the pathobiological dependence of colorectal cancer
on EV-RNAs. Further, we present the advantages of identification and
characterization of EV-RNAs to explore the connection between differential
expression of extracellular vesicle incorporated RNAs and colorectal
cancer. How this approach may potentially translate into point of
care colorectal cancer diagnostics is also discussed.
Collapse
Affiliation(s)
- Brateen Datta
- School
of Medical Science and Technology, IIT Kharagpur, West Bengal 721302, India
- Department
of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake City, Kolkata 700106, India
| | - Debashish Paul
- Department
of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake City, Kolkata 700106, India
- Department
of Chemistry, Shiv Nadar University, Delhi-NCR, Uttar Pradesh 201314, India
| | - Tina Dey
- Department
of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake City, Kolkata 700106, India
| | - Suchetan Pal
- Department
of Chemistry, IIT Bhilai, Chhattisgarh 492015, India
| | - Tatini Rakshit
- Department
of Chemistry, Shiv Nadar University, Delhi-NCR, Uttar Pradesh 201314, India
| |
Collapse
|