1
|
Jenkins LM, Horst B, Lancaster CL, Mythreye K. Dually modified transmembrane proteoglycans in development and disease. Cytokine Growth Factor Rev 2017; 39:124-136. [PMID: 29291930 DOI: 10.1016/j.cytogfr.2017.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Aberrant cell signaling in response to secreted growth factors has been linked to the development of multiple diseases, including cancer. As such, understanding mechanisms that control growth factor availability and receptor-growth factor interaction is vital. Dually modified transmembrane proteoglycans (DMTPs), which are classified as cell surface macromolecules composed of a core protein decorated with covalently linked heparan sulfated (HS) and/or chondroitin sulfated (CS) glycosaminoglycan (GAG) chains, provide one type of regulatory mechanism. Specifically, DMTPs betaglycan and syndecan-1 (SDC1) play crucial roles in modulating key cell signaling pathways, such as Wnt, transforming growth factor-β and fibroblast growth factor signaling, to affect epithelial cell biology and cancer progression. This review outlines current and potential functions for betaglycan and SDC1, with an emphasis on comparing individual roles for HS and CS modified DMTPs. We highlight the mutual dependence of DMTPs' GAG chains and core proteins and provide comprehensive knowledge on how these DMTPs, through regulation of ligand availability and receptor internalization, control cell signaling pathways involved in development and disease.
Collapse
Affiliation(s)
- Laura M Jenkins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Ben Horst
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Carly L Lancaster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA; Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
2
|
Salmi M, Karikoski M, Elima K, Rantakari P, Jalkanen S. CD44 binds to macrophage mannose receptor on lymphatic endothelium and supports lymphocyte migration via afferent lymphatics. Circ Res 2013; 112:1577-82. [PMID: 23603511 DOI: 10.1161/circresaha.111.300476] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RATIONALE Macrophage mannose receptor (MRC) is one of the few molecules known to be involved in lymphocyte trafficking via the lymphatic vessels. In endothelial cells of efferent lymphatics, it binds L-selectin on lymphocytes. In afferent lymphatics, MRC mediates trafficking of both normal and malignant L-selectin-negative cells to the draining lymph nodes. OBJECTIVE This work was designed to search for additional lymphocyte ligands of MRC to elucidate how lymphocytes migrate into the draining lymph nodes. METHODS AND RESULTS Using immunoprecipitation and binding studies with natural and recombinant proteins, we show that MRC and CD44 can interact with each other. Fine mapping revealed that the cysteine-rich domain of MRC binds to the chondroitin sulfate side chains of CD44. In vivo homing experiments with MRC- and CD44-deficient mice verified that MRC and CD44 function as a receptor-ligand pair in supporting lymphocyte migration via the afferent lymphatics into the draining lymph nodes. CONCLUSIONS These data identify a new counter-receptor for MRC and reveal CD44 as a new molecule involved in the poorly understood process of lymphocyte transit via the lymphatic vasculature.
Collapse
Affiliation(s)
- Marko Salmi
- MediCity Research Laboratory, University of Turku, FIN-20520 Turku, Finland
| | | | | | | | | |
Collapse
|
3
|
Beeson JG, Andrews KT, Boyle M, Duffy MF, Choong EK, Byrne TJ, Chesson JM, Lawson AM, Chai W. Structural Basis for Binding of Plasmodium falciparum Erythrocyte Membrane Protein 1 to Chondroitin Sulfate and Placental Tissue and the Influence of Protein Polymorphisms on Binding Specificity. J Biol Chem 2007; 282:22426-36. [PMID: 17562715 DOI: 10.1074/jbc.m700231200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chondroitin sulfate (CS) A is a key receptor for adhesion of Plasmodium falciparum-infected erythrocytes (IEs) in the placenta and can also mediate adhesion to microvascular endothelial cells. IEs that adhere to CSA express var2csa-type genes, which encode specific variants of the IE surface antigen P. falciparum erythrocyte membrane protein 1 (PfEMP1). We report direct binding of native PfEMP1, isolated from IEs and encoded by var2csa, to immobilized CSA. Binding of PfEMP1 was dependent on 4-O-sulfated disaccharides and glucuronic acid rather than iduronic acid, consistent with the specificity of intact IEs. Using immobilized CS oligosaccharides as neoglycolipid probes, the minimum chain length for direct binding of PfEMP1 was eight monosaccharide units. Similarly for IE adhesion to placental tissue there was a requirement for 4-O-sulfated GalNAc and glucuronic acid mixed with non-sulfated disaccharides; 6-O-sulfation interfered with the interaction between placental CSA and IEs. The minimum chain length for maximal inhibition of adhesion was 10 monosaccharide residues. Partially 4-O-sulfated CS oligosaccharides (45-55% sulfation) were highly effective inhibitors of placental adhesion (IC(50), 0.15 microg/ml) and may have potential for therapeutic development. We used defined P. falciparum isolates expressing different variants of var2csa in adhesion assays and found that there were isolate-specific differences in the preferred structural motifs for adhesion to CSA that correlated with polymorphisms in PfEMP1 encoded by var2csa-type genes. This may influence sites of IE sequestration or parasite virulence. These findings have significant implications for understanding the pathogenesis and biology of malaria, particularly during pregnancy, and the development of targeted interventions.
Collapse
Affiliation(s)
- James G Beeson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Pratt T, Conway CD, Tian NMML, Price DJ, Mason JO. Heparan sulphation patterns generated by specific heparan sulfotransferase enzymes direct distinct aspects of retinal axon guidance at the optic chiasm. J Neurosci 2006; 26:6911-23. [PMID: 16807321 PMCID: PMC6673919 DOI: 10.1523/jneurosci.0505-06.2006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinal ganglion cell (RGC) axons from each eye execute a series of maneuvers as they converge on the ventral surface of the brain at the optic chiasm for sorting into the optic tracts. Heparan sulfate proteoglycans (HSPGs) are extracellular glycoproteins involved in cell-surface interactions. HSPGs exhibit massive structural diversity, conferred partly by extensive post-translational modification including differential sulfation. Here we examine the roles of HSPG sulfation in RGC axon guidance at the chiasm. We identified different axon navigation phenotypes in two heparan sulfate sulfotransferase (Hst) mutant embryos, Hs2st-/- and Hs6st1-/-, each lacking an enzyme that catalyzes a particular HSPG modification. Hs2st-/- embryos display axon disorganization at the chiasm. Hs6st1-/- embryos exhibit prolific inter-retinal innervation. We show that RGCs express Hs2st and Hs6st1 and that navigation errors made by their axons coincide with regions of high Hs2st and/or Hs6st1 expression at the chiasm. Slit proteins are expressed at particular locations in the retina and around the chiasm and are normally deployed to prevent axons entering inappropriate territories. We show that Hs2st and/or Hs6st1 expression coincides with Slit expression domains at locations where RGC axons make navigation errors in Hs2st-/- and Hs6st1-/- mutants and that Hs6st1-/- RGC axons are less sensitive to Slit2 repulsion than their wild-type counterparts in vitro. We suggest that (1) Hs2st and Hs6st1 are each deployed to generate distinct patterns of heparan sulfation on RGCs and at the optic chiasm and (2) this differential sulfation directs retinal axons through the chiasm, at least in part by modulating the response of the navigating growth cone to Slit proteins.
Collapse
Affiliation(s)
- Thomas Pratt
- Genes and Development Group, Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| | | | | | | | | |
Collapse
|
5
|
Leung KM, Taylor JSH, Chan SO. Enzymatic removal of chondroitin sulphates abolishes the age-related axon order in the optic tract of mouse embryos. Eur J Neurosci 2003; 17:1755-67. [PMID: 12752774 DOI: 10.1046/j.1460-9568.2003.02605.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retinal axons undergo an age-related reorganization at the junction of the chiasm and the optic tract. We have investigated the effects of removal of chondroitin sulphate on this order change in mouse embryos aged embryonic day 14, when most axons are growing in the optic tract. Enzymatic removal of chondroitin sulphate but not keratan sulphate in brain slice preparations of the retinofugal pathway abolished the accumulation of phalloidin-positive growth cones in the subpial region of the optic tract. The loss of chronotopicity was further demonstrated by anterograde filling of single retinal axons, which showed a dispersion of growth cones from subpial to the whole depth of the tract. The enzyme treatment neither produced detectable changes in growth cone morphology and growth dynamic of retinal neurites nor affected the radial glial processes in the tract, indicating a specific effect of removal of chondroitin sulphate from the pathway to the axon order in the tract. Although chondroitin sulphate was also found at the midline of the chiasm, growth cone distribution across the depth of fibre layer at the midline was not affected by the enzyme treatment. These results suggest a mechanism in which retinal axons undergo changes in response to chondroitin sulphate at the chiasm-tract junction, but not at the midline, that produce a chronotopic fibre rearrangement in the mouse retinofugal pathway.
Collapse
Affiliation(s)
- Kim-Mei Leung
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | |
Collapse
|
6
|
Sun K, Jin BQ, Feng Q, Zhu Y, Yang K, Liu XS, Dong BQ. Identification of CD226 ligand on colo205 cell surface. World J Gastroenterol 2002; 8:108-13. [PMID: 11833083 PMCID: PMC4656598 DOI: 10.3748/wjg.v8.i1.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To confirm the existence of CD226 ligand and its distribution, which is a novel molecule that was cloned in 1996.
METHODS: The mRNA was extracted from TPA activated Jurkat cells and used as a template for reverse-transcription. After PCR amplification, the fragment including CD226 extracellular region and the splice donor sequence “ACTTACCTGT” was obtained and cloned into fusion expression vector pIG. The recombinant vector pCD226/Ig was transfected in COS-7 cells by DEAE-Dextran method, the secreting fusion protein was identified by Sandwich ELISA, and was purified by anti-CD226 affinity chromatography. This fusion protein was used as a probe in the investigation of CD226 ligand by immunohistochemistry. Existence of CD226 ligand was further identified by adhesion experiment.
RESULTS: Expression of a secreting fusion protein was identified by sandwich ELISA, indicating that both CD226 extracellular domain and IgGFc domain could be recognized respectively by anti-CD226 and anti-hIgFc mAb. About 130 μg CD226/Ig fusion protein could be obtained from 100 mL COS-7 culture supernatants by anti-CD226 affinity chromatography purification. SDS-PAGE showed that this fusion protein has a molecular mass of 83 ku. It was confirmed by immunohistochemistry that CD226 ligand expressed on the Colo205 cells, but not on Jurkat cell, U937 cell and mixed lymphocyte culture cells. In adhesive assay, resting Jurkat cells did not have significant adhesion to Colo205 cells. In contrast, activated Jurkat cells could bind to colon carcinoma Colo205 cells and this adhesive reaction could be blocked by CD226/Ig fusion protein or anti-CD226 mAb. Immunochemical experiment showed that Colo205 cells could be specifically stained by CD226/Ig, indicating that CD226 ligand exists on the surface of Colo205 cells.
CONCLUSION: Existence of CD226 ligand on the surface of Colo205 cells was identified by immunohistochemistry and adhesion blocking experiment. In addition, the secreting CD226/Ig fusion protein prepared in this study will be a potential tool for further investigation of CD226 ligand.
Collapse
Affiliation(s)
- Kai Sun
- Department of Hepatobiliary Surgery, Xijing Hospital, Xi'an 710032, Shaanxi province, China.
| | | | | | | | | | | | | |
Collapse
|
7
|
Chung KY, Leung KM, Lin L, Chan SO. Heparan sulfate proteoglycan expression in the optic chiasm of mouse embryos. J Comp Neurol 2001; 436:236-47. [PMID: 11438927 DOI: 10.1002/cne.1245] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous studies have demonstrated that heparan sulfate (HS) proteoglycans (PGs) regulate neurite outgrowth through binding to a variety of cell surface molecules, extracellular matrix proteins, and growth factors. The present study investigated the possible involvement of HS-PGs in retinal axon growth by examining its expression in the retinofugal pathway of mouse embryos by using a monoclonal antibody against the HS epitope. Immunoreactive HS was first detected in all regions of the retina at embryonic day (E) 11. The staining was gradually lost in the central regions and restricted to the retinal periphery at later developmental stages (E12--E16). Prominent staining for HS was consistently found in the retinal fiber layer and at the optic disk, indicating a possible supportive role of HS-PGs in axon growth in the retina. At the ventral diencephalon, immunostaining for HS was first detected at E12, before arrival of any retinal axons. The staining matched closely the neurons that are immunopositive for the stage-specific embryonic antigen 1 (SSEA-1). At E13 to E16, when axons are actively exploring their paths across the chiasm, immunoreactivity for HS was particularly intense at the midline. This characteristic expression pattern suggests a role for HS-PGs in defining the path of early axons in the chiasm and in regulating development of axon divergence at the midline. Furthermore, HS immunoreactivity is substantially reduced at regions flanking both sides of the midline, which coincides spatially to the position of actin-rich growth cones from subpial surface to the deep regions of the optic axon layer at the chiasm. Moreover, at the threshold of the optic tract, immunoreactive HS was localized to deep parts of the fiber layer. These findings indicate that changes in age-related fiber order in the optic chiasm and optic tract of mouse embryos are possibly regulated by a spatially restricted expression of HS-PGs.
Collapse
Affiliation(s)
- K Y Chung
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
| | | | | | | |
Collapse
|
8
|
Leteux C, Chai W, Loveless RW, Yuen CT, Uhlin-Hansen L, Combarnous Y, Jankovic M, Maric SC, Misulovin Z, Nussenzweig MC, Feizi T. The cysteine-rich domain of the macrophage mannose receptor is a multispecific lectin that recognizes chondroitin sulfates A and B and sulfated oligosaccharides of blood group Lewis(a) and Lewis(x) types in addition to the sulfated N-glycans of lutropin. J Exp Med 2000; 191:1117-26. [PMID: 10748230 PMCID: PMC2193175 DOI: 10.1084/jem.191.7.1117] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The mannose receptor (MR) is an endocytic protein on macrophages and dendritic cells, as well as on hepatic endothelial, kidney mesangial, tracheal smooth muscle, and retinal pigment epithelial cells. The extracellular portion contains two types of carbohydrate-recognition domain (CRD): eight membrane-proximal C-type CRDs and a membrane-distal cysteine-rich domain (Cys-MR). The former bind mannose-, N-acetylglucosamine-, and fucose-terminating oligosaccharides, and may be important in innate immunity towards microbial pathogens, and in antigen trapping for processing and presentation in adaptive immunity. Cys-MR binds to the sulfated carbohydrate chains of pituitary hormones and may have a role in hormonal clearance. A second feature of Cys-MR is binding to macrophages in marginal zones of the spleen, and to B cell areas in germinal centers which may help direct MR-bearing cells toward germinal centers during the immune response. Here we describe two novel classes of carbohydrate ligand for Cys-MR: chondroitin-4 sulfate chains of the type found on proteoglycans produced by cells of the immune system, and sulfated blood group chains. We further demonstrate that Cys-MR interacts with cells in the spleen via the binding site for sulfated carbohydrates. Our data suggest that the three classes of sulfated carbohydrate ligands may variously regulate the trafficking and function of MR-bearing cells.
Collapse
Affiliation(s)
- C Leteux
- The Glycosciences Laboratory, Imperial College School of Medicine, Northwick Park Hospital, Harrow HA1 3UJ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The CD44 proteins form a ubiquitously expressed family of cell surface adhesion molecules involved in cell-cell and cell-matrix interactions. The multiple protein isoforms are encoded by a single gene by alternative splicing and are further modified by a range of post-translational modifications. CD44 proteins are single chain molecules comprising an N-terminal extracellular domain, a membrane proximal region, a transmembrane domain, and a cytoplasmic tail. The CD44 gene has only been detected in higher organisms and the amino acid sequence of most of the molecule is highly conserved between mammalian species. The principal ligand of CD44 is hyaluronic acid, an integral component of the extracellular matrix. Other CD44 ligands include osteopontin, serglycin, collagens, fibronectin, and laminin. The major physiological role of CD44 is to maintain organ and tissue structure via cell-cell and cell-matrix adhesion, but certain variant isoforms can also mediate lymphocyte activation and homing, and the presentation of chemical factors and hormones. Increased interest has been directed at the characterisation of this molecule since it was observed that expression of multiple CD44 isoforms is greatly upregulated in neoplasia. CD44, particularly its variants, may be useful as a diagnostic or prognostic marker of malignancy and, in at least some human cancers, it may be a potential target for cancer therapy. This review describes the structure of the CD44 gene and discusses some of its roles in physiological and pathological processes.
Collapse
Affiliation(s)
- S Goodison
- UCSD Cancer Center, University of California, La Jolla 92093-0658, USA
| | | | | |
Collapse
|
10
|
Piepkorn M, Hovingh P, Bennett KL, Linker A. Heparan sulfate composition of alternatively spliced CD44 fusion proteins. Biochem Biophys Res Commun 1999; 257:839-42. [PMID: 10208870 DOI: 10.1006/bbrc.1999.0553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prior analyses of recombinant CD44 fusion proteins have indicated that combinatorial splicing of variant exons exerts distal effects on chondroitin sulfate content and structure, which may regulate the biological properties of the respective CD44 isoforms. The consequences of splicing of variant exons V4-7 on the heparan sulfate moieties were therefore examined, utilizing recombinant chimeras containing exons V3 and V8-10, engineered with or without exons V4-7 and expressed as Ig fusion proteins in COS cells. Splicing of exons V4-7, though they contain no consensus motifs for glycosaminoglycan assembly, resulted in markedly increased polymer sulfation levels of the heparan sulfates. The sulfate groups of both the CD44 V3-10 and V3,8-10 isoforms occurred as di- and tri-sulfated dissacharide units and were restricted to one N-sulfated block domain within the polymers. Compared to native human keratinocyte CD44, the recombinant heparan sulfates were relatively low in sulfate content. Our data indicate that variant exon V4-7 splicing exerts distal effects on the composition of this glycosaminoglycan. These effects may regulate those functions that are mediated through the heparan sulfate moieties, such as the binding of growth factors.
Collapse
Affiliation(s)
- M Piepkorn
- Departments of Medicine (Dermatology) and Pathology, University of Washington School of Medicine, Seattle, Washington, USA.
| | | | | | | |
Collapse
|
11
|
Greenfield B, Wang WC, Marquardt H, Piepkorn M, Wolff EA, Aruffo A, Bennett KL. Characterization of the heparan sulfate and chondroitin sulfate assembly sites in CD44. J Biol Chem 1999; 274:2511-7. [PMID: 9891022 DOI: 10.1074/jbc.274.4.2511] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isoforms of CD44 are differentially modified by the glycosaminoglycans (GAGs) chondroitin sulfate (CS), heparan sulfate (HS), and keratan sulfate. GAG assembly occurs at serines followed by glycines (SG), but not all SG are utilized. Seven SG motifs are distributed in five CD44 exons, and in this paper we identify the HS and CS assembly sites that are utilized in CD44. Not all the CD44 SG sites are modified. The SGSG motif in CD44 exon V3 is the only HS assembly site; this site is also modified with CS. HS and CS attachment at that site was eliminated by mutation of the serines in the V3 motif to alanine (AGAG). Exon E5 is the only other CD44 exon that supports GAG assembly and is modified with CS. Using a number of recombinant CD44 protein fragments we show herein that the eight amino acids located downstream of the SGSG site in V3 are responsible for the specific addition of HS to this site. If the eight amino acids located downstream from the first SG site in CD44 exon E5 are exchanged with those located downstream of the SGSG site in exon V3, the SG site in E5 becomes modified with HS and CS. Likewise if the eight amino acids found downstream from the first SG in E5 are placed downstream from the SGSG in V3, this site is modified with CS but not HS. We also show that these sequences cannot direct the modification of CD44 with HS from a distance. Constructs containing CD44 exon V3 in which the SGSG motif was mutated to AGAG were not modified with HS even though they contained other SG motifs. Thus, a number of sequence and structural requirements that dictate GAG synthesis on CD44 have been identified.
Collapse
Affiliation(s)
- B Greenfield
- Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Wolff EA, Greenfield B, Taub DD, Murphy WJ, Bennett KL, Aruffo A. Generation of artificial proteoglycans containing glycosaminoglycan-modified CD44. Demonstration of the interaction between rantes and chondroitin sulfate. J Biol Chem 1999; 274:2518-24. [PMID: 9891023 DOI: 10.1074/jbc.274.4.2518] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All CD44 isoforms are modified with chondroitin sulfate (CS), while only those containing variably spliced exon V3 are modified with both CS and heparan sulfate (HS). The CS is added to a serine-glycine (SG) site in CD44 exon E5, while HS and CS are added to the SGSG site in exon V3. Site-directed mutagenesis and other molecular biology techniques were used to determine the minimal motifs responsible for the addition of CS and HS to CD44 (see accompanying paper (Greenfield, B., Wang, W.-C., Marquardt, H., Piepkorn, M., Wolff, E. A., Aruffo, A., and Bennett, K. L. (1999) J. Biol. Chem. 274, 2511-2517)). We have used this information to generate artificial proteoglycans containing the extracellular domain of the cell adhesion protein lymphocyte function-associated antigen-3 (LFA-3) (CD58) and CD44 motifs modified with CS or a combination of CS and HS. Analysis of the CD44-modified LFA-3 protein showed that it retains the ability to engage and trigger the function of its natural ligand CD2, resulting in T cell activation. In addition, the glycosaminoglycan-modified artificial proteoglycan is capable of binding the chemokine RANTES (regulated upon activation, normally T cell expressed and secreted) and delivering it to human T cells, resulting in enhanced T cell activation. These data demonstrate that artificial proteoglycans can be engineered with functional domains that have enhanced activity by codelivering glycosaminoglycan-binding molecules. The artificial proteoglycans were also used as a model system to explore the glycosaminoglycan binding properties of basic-fibroblast growth factor and the chemokine RANTES. While basic-fibroblast growth factor was shown to bind HS alone, this model revealed that RANTES binds not only HS, as has been demonstrated in the past, but also CS. Thus, artificial proteoglycans can be used for studying the glycosaminoglycan binding patterns of growth factors and chemokines and provide a means to manipulate the levels, types, and activity of glycosaminoglycan-binding proteins in vitro and in vivo.
Collapse
Affiliation(s)
- E A Wolff
- Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543, USA.
| | | | | | | | | | | |
Collapse
|