1
|
Mahmod AI, Govindaraju K, Lokanathan Y, Said NABM, Ibrahim B. Exploring the Potential of Stem Cells in Modulating Gut Microbiota and Managing Hypertension. Stem Cells Dev 2025; 34:99-116. [PMID: 39836384 DOI: 10.1089/scd.2024.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Hypertension, commonly known as high blood pressure, is a significant health issue that increases the risk of cardiovascular diseases, stroke, and renal failure. This condition broadly encompasses both primary and secondary forms. Despite extensive research, the underlying mechanisms of systemic arterial hypertension-particularly primary hypertension, which has no identifiable cause and is affected by genetic and lifestyle agents-remain complex and not fully understood. Recent studies indicate that an imbalance in gut microbiota, referred to as dysbiosis, may promote hypertension, affecting blood pressure regulation through metabolites such as short-chain fatty acids and trimethylamine N-oxide. Current antihypertensive medications face limitations, including resistance and adherence issues, highlighting the need for novel therapeutic approaches. Stem cell therapy, an emerging field in regenerative medicine, shows promise in addressing these challenges. Stem cells, with mesenchymal stem cells being a prime example, have regenerative, anti-inflammatory, and immunomodulatory properties. Emerging research indicates that stem cells can modulate gut microbiota, reduce inflammation, and improve vascular health, potentially aiding in blood pressure management. Research has shown the positive impact of stem cells on gut microbiota in various disorders, suggesting their potential therapeutic role in treating hypertension. This review synthesizes the recent studies on the complex interactions between gut microbiota, stem cells, and systemic arterial hypertension. By offering a thorough analysis of the current literature, it highlights key insights, uncovers critical gaps, and identifies emerging trends that will inform and guide future investigations in this rapidly advancing field.
Collapse
Affiliation(s)
- Asma Ismail Mahmod
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Kayatri Govindaraju
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nur Akmarina B M Said
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Baharudin Ibrahim
- Department of Clinical Pharmacy and Pharmacy Practices, Faculty of Pharmacy, University Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Ma Y, Yang H, Wang X, Huang Y, Li Y, Pan G. Bile acids as signaling molecules in inflammatory bowel disease: Implications for treatment strategies. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118968. [PMID: 39427739 DOI: 10.1016/j.jep.2024.118968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) is a globally increasing disease. Despite continuous efforts, the clinical application of treatment drugs has not achieved satisfactory success and faces limitations such as adverse drug reactions. Numerous investigations have found that the pathogenesis of IBD is connected with disturbances in bile acid circulation and metabolism. Traditional Chinese medicine targeting bile acids (BAs) has shown significant therapeutic effects and advantages in treating inflammatory bowel disease. AIM OF THIS REVIEW IThis article reviews the role of bile acids and their receptors in IBD, as well as research progress on IBD therapeutic drugs based on bile acids. It explores bile acid metabolism and its interaction with the intestinal microbiota, summarizes clinical drugs for treating IBD including single herbal medicine, traditional herbal prescriptions, and analyzes the mechanisms of action in treating IBD. MATERIALS AND METHODS IThe electronic databases such as PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI) have been utilized to retrieve relevant literature up to January 2024, using keywords "bile acid", "bile acid receptor", "inflammatory bowel disease", "intestinal microbiota" and "targeted drugs". RESULTS IImbalance in bile acid levels can lead to intestinal inflammation, while IBD can disrupt the balance of microbes, result in alterations in the bile acid pool's composition and amount. This change can damage of intestinal mucosa healing ability. Bile acids are vital for keeping the gut barrier function intact, regulating gene expression, managing metabolic equilibrium, and influencing the properties and roles of the gut's microbial community. Consequently, focusing on bile acids could offer a potential treatment strategy for IBD. CONCLUSION IIBD can induce intestinal homeostasis imbalance and changes in BA pool, leading to fluctuations in levels of relevant metabolic enzymes, transporters, and nuclear receptors. Therefore, by regulating the balance of BA and key signaling molecules of bile acids, we can treat IBD. Traditional Chinese medicine has great potential and promising prospects in treating IBD. We should focus on the characteristics and advantages of Chinese medicine, promote the development and clinical application of innovative Chinese medicine, and ultimately make Chinese medicine targeting bile acids the mainstream treatment for IBD.
Collapse
Affiliation(s)
- Yueyue Ma
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Haoze Yang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China
| | - Yuhong Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China.
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China.
| |
Collapse
|
3
|
Bai SH, Chandnani A, Cao S. Bile Acids in Inflammatory Bowel Disease: From Pathophysiology to Treatment. Biomedicines 2024; 12:2910. [PMID: 39767816 PMCID: PMC11673883 DOI: 10.3390/biomedicines12122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition that affects about 7 million people worldwide, and new therapies are needed. Understanding the complex roles that bile acids (BAs) play in IBD may lead to the development of novel IBD treatments independent of direct immunosuppression. This review discusses the latest discoveries in the roles BAs play in IBD pathogenesis and explores how these discoveries offer promising new therapeutic targets to treat IBD and improve patient outcomes. Several therapies discussed include specific BA receptor (BAR) agonists, dietary therapies, supplements, probiotics, and mesenchymal stem cell therapies that have all been shown to decrease IBD disease activity.
Collapse
Affiliation(s)
| | | | - Siyan Cao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.H.B.); (A.C.)
| |
Collapse
|
4
|
Hu X, Wang C, Xiao Y, Jiang P, Huang D, Li LC, Qi Z. Time-series metabolomic analysis revealed altered metabolism of cynomolgus monkeys after injecting exosomes. J Nanobiotechnology 2024; 22:732. [PMID: 39587650 PMCID: PMC11590309 DOI: 10.1186/s12951-024-02976-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Recent years, exosomes have been increasing used to treat diseases, but there is little research on how exosomes affect the metabolism of the body after entering. Therefore, in this study, we discussed the changes of metabolic spectrum and determined the differentially expressed metabolites in the serum of cynomolgus monkeys after injecting exosomes. Six cynomolgus monkeys were divided into control group and exosomes group. After intravenous injection of exosomes, the peripheral blood serum of cynomolgus monkeys was collected at baseline, day 1, day 7 and day 14 respectively. An ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry-based non-targeted metabolomics platform was used to detect the metabolites. The metabolic spectra of two groups of cynomolgus monkeys were identified and compared, and the time series changes of metabolites in exosomes were described. RESULTS The results showed that there was significant difference in metabolic spectrum between the two groups. 45, 114, 49, 39 differentially expressed metabolites were identified in baseline, day 1, day 7, and day 14, respectively. 6-hydroxydopamine, a metabolite related to the regulation of nerve function, was also found. Tryptophan metabolism, choline metabolism in cancer, porphyrin and chlorophyll metabolism were involved in day 1. Sphingolipid metabolism and histidine metabolism were involved in day 7. Three pathways, including choline metabolism, sphingolipid metabolism and biotin metabolism in cancer were involved in day 14. Through time series analysis, it was found that the level of propionylcarnitine and biliverdin increased on day 1 after inoculation with exosomes, while the level of hippuric acid decreased. These changes of immune-related metabolites suggested that exosomes might participate in the immunoregulation reaction after entering the body of cynomolgus monkeys. CONCLUSIONS In our current study, we found that exosomes injected intravenously affect the changes of metabolites and metabolic pathways in cynomolgus monkeys. Intravenous injection of exosomes may affect the metabolite 6-hydroxydopamine, sphingolipid metabolic pathway, and choline metabolic in cancer pathway, which is of some significance for the treatment of Parkinson's disease. In addition, exosomes may also affect the immune-related metabolites in vivo, such as propionylcarnitine, biliverdin, hippuric acid metabolites, as well as tryptophan metabolism pathway, sphingolipid metabolism pathway involved in immune regulation, which is of great significance for the future study of immune-regulatory mechanisms of exosomes.
Collapse
Affiliation(s)
- Xinmei Hu
- Medical College of Guangxi University, Nanning, 530004, China
| | - Cancan Wang
- Medical College of Guangxi University, Nanning, 530004, China
| | - Yu Xiao
- Medical College of Guangxi University, Nanning, 530004, China
| | - Peng Jiang
- Medical College of Guangxi University, Nanning, 530004, China
| | | | - Liang-Cheng Li
- School of pharmaceutical sciences, Xiamen University, NO.4221-115, Rm355, Xiang'an district, Xiang'an, Xiamen, 361102, Fujian, China.
| | - Zhongquan Qi
- Medical College of Guangxi University, Nanning, 530004, China.
- Fujian Provincial Human Sperm Bank, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
5
|
Song Y, Shi M, Wang Y. Deciphering the role of host-gut microbiota crosstalk via diverse sources of extracellular vesicles in colorectal cancer. Mol Med 2024; 30:200. [PMID: 39501131 PMCID: PMC11536884 DOI: 10.1186/s10020-024-00976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/26/2024] [Indexed: 11/09/2024] Open
Abstract
Colorectal cancer is the most common type of cancer in the digestive system and poses a major threat to human health. The gut microbiota has been found to be a key factor influencing the development of colorectal cancer. Extracellular vesicles are important mediators of intercellular communication. Not only do they regulate life activities within the same individual, but they have also been found in recent years to be important mediators of communication between different species, such as the gut microbiota and the host. Their preventive, diagnostic, and therapeutic value in colorectal cancer is being explored. The aim of this review is to provide insights into the complex interactions between host and gut microbiota, particularly those mediated through extracellular vesicles, and how these interactions affect colorectal cancer development. In addition, the potential of extracellular vesicles from various body fluids as biomarkers was evaluated. Finally, we discuss the potential, challenges, and future research directions of extracellular vesicles in their application to colorectal cancer. Overall, extracellular vesicles have great potential for application in medical processes related to colorectal cancer, but their isolation and characterization techniques, intercellular communication mechanisms, and the effectiveness of their clinical application require further research and exploration.
Collapse
Affiliation(s)
- Yun Song
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China
| | - Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China.
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China.
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China.
| |
Collapse
|
6
|
Wu Q, Kan J, Fu C, Liu X, Cui Z, Wang S, Le Y, Li Z, Liu Q, Zhang Y, Du J. Insights into the unique roles of extracellular vesicles for gut health modulation: Mechanisms, challenges, and perspectives. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100301. [PMID: 39525958 PMCID: PMC11550031 DOI: 10.1016/j.crmicr.2024.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Extracellular vesicles (EVs), which play significant regulatory roles in maintaining homeostasis and influencing immune responses, significantly impact gut microbiota composition and function, affecting overall gut health. Despite considerable progress, there are still knowledge gaps regarding the mechanisms by which EVs, including plant-derived EVs (PDEVs), animal-derived EVs (ADEVs), and microbiota-derived EVs (MDEVs), modulate gut health. This review delves into the roles and mechanisms of EVs from diverse sources in regulating gut health, focusing on their contributions to maintaining epithelial barrier integrity, facilitating tissue healing, eliciting immune responses, controlling pathogens, and shaping microbiota. We emphasize open challenges and future perspectives for harnessing EVs in the modulation of gut health to gain a deeper understanding of their roles and impact. Importantly, a comprehensive research framework is presented to steer future investigations into the roles and implications of EVs on gut health, facilitating a more profound comprehension of this emerging field.
Collapse
Affiliation(s)
- Qiming Wu
- Nutrilite Health Institute, Shanghai 200031, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai 200031, China
| | - Caili Fu
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Xin Liu
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Zhengying Cui
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Sixu Wang
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Yi Le
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Zhanming Li
- Department of Food Quality and Safety, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qin Liu
- Centre for Chinese Medicine Drug Development Limited, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai 200031, China
| |
Collapse
|
7
|
Li YJ, Yu ZY, Zhang D, Zhang FR, Zhang DM, Chen M. Extracellular vesicles for the treatment of ulcerative colitis: A systematic review and meta-analysis of animal studies. Heliyon 2024; 10:e36890. [PMID: 39281542 PMCID: PMC11400994 DOI: 10.1016/j.heliyon.2024.e36890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Background Extracellular vesicles (EVs) are being considered as a potential therapeutic option for ulcerative colitis (UC), and numerous preclinical studies have been conducted on the use of EVs for UC. Methods A systematic review was conducted to compare the therapeutic effects of mammalian EVs and placebo on UC in animal models, along with a meta-analysis comparing naïve (unmodified) EVs and placebo. The search was performed in four databases (PubMed, Web of Science, Scopus, and EMBASE) up to September 13th, 2023. The primary outcomes included disease activity index (DAI), colonic mucosal damage index (CMDI), and adverse effects (PROSPERO ID: CRD42023458039). Results A total of 69 studies were included based on pre-determined criteria, involving 1271 animals. Of these studies, 51 measured DAI scores, with 98 % reporting that EVs could reduce DAI scores. Additionally, 5 studies reported CMDI and all showed that EVs could significantly reduce CMDI. However, only 3 studies assessed adverse effects and none reported any significant adverse effects. The meta-analysis of these studies (40 studies involving 1065 animals) revealed that naïve EVs could significantly decrease the DAI score (SMD = -3.00; 95 % CI: -3.52 to -2.48) and CMDI (SMD = -2.10; 95 % CI: -2.85 to -1.35). Conclusion The results indicate that mammalian EVs have demonstrated therapeutic benefits in animal models of UC; however, the safety profile of EVs remains inadequate which highlights the need for further research on safety outcomes.
Collapse
Affiliation(s)
- Yu-Jing Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Ze-Yu Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Di Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Fu-Rong Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Dong-Mei Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, No.5 Haiyuncang Road, Dongcheng District, Beijing, 101121, China
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
8
|
Zeng B, Li Y, Khan N, Su A, Yang Y, Mi P, Jiang B, Liang Y, Duan L. Yin-Yang: two sides of extracellular vesicles in inflammatory diseases. J Nanobiotechnology 2024; 22:514. [PMID: 39192300 PMCID: PMC11351009 DOI: 10.1186/s12951-024-02779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
The concept of Yin-Yang, originating in ancient Chinese philosophy, symbolizes two opposing but complementary forces or principles found in all aspects of life. This concept can be quite fitting in the context of extracellular vehicles (EVs) and inflammatory diseases. Over the past decades, numerous studies have revealed that EVs can exhibit dual sides, acting as both pro- and anti-inflammatory agents, akin to the concept of Yin-Yang theory (i.e., two sides of a coin). This has enabled EVs to serve as potential indicators of pathogenesis or be manipulated for therapeutic purposes by influencing immune and inflammatory pathways. This review delves into the recent advances in understanding the Yin-Yang sides of EVs and their regulation in specific inflammatory diseases. We shed light on the current prospects of engineering EVs for treating inflammatory conditions. The Yin-Yang principle of EVs bestows upon them great potential as, therapeutic, and preventive agents for inflammatory diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 53020, Guangxi, China
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Aiyuan Su
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Yicheng Yang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA
| | - Peng Mi
- Department of Radiology, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bin Jiang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA.
| | - Yujie Liang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| | - Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
9
|
Liao HX, Mao X, Wang L, Wang N, Ocansey DKW, Wang B, Mao F. The role of mesenchymal stem cells in attenuating inflammatory bowel disease through ubiquitination. Front Immunol 2024; 15:1423069. [PMID: 39185411 PMCID: PMC11341407 DOI: 10.3389/fimmu.2024.1423069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Inflammatory bowel disease (IBD), a condition of the digestive tract and one of the autoimmune diseases, is becoming a disease of significant global public health concern and substantial clinical burden. Various signaling pathways have been documented to modulate IBD, but the exact activation and regulatory mechanisms have not been fully clarified; thus, a need for constant exploration of the molecules and pathways that play key roles in the development of IBD. In recent years, several protein post-translational modification pathways, such as ubiquitination, phosphorylation, methylation, acetylation, and glycolysis, have been implicated in IBD. An aberrant ubiquitination in IBD is often associated with dysregulated immune responses and inflammation. Mesenchymal stem cells (MSCs) play a crucial role in regulating ubiquitination modifications through the ubiquitin-proteasome system, a cellular machinery responsible for protein degradation. Specifically, MSCs have been shown to influence the ubiquitination of key signaling molecules involved in inflammatory pathways. This paper reviews the recent research progress in MSC-regulated ubiquitination in IBD, highlighting their therapeutic potential in treating IBD and offering a promising avenue for developing targeted interventions to modulate the immune system and alleviate inflammatory conditions.
Collapse
Affiliation(s)
- Hong Xi Liao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| | - Xiaojun Mao
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, China
| | - Lan Wang
- Department of Laboratory Medicine, Danyang Blood Station, Zhenjiang, Jiangsu, China
| | - Naijian Wang
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| |
Collapse
|
10
|
Cheng Z, Yang L, Chu H. The role of gut microbiota, exosomes, and their interaction in the pathogenesis of ALD. J Adv Res 2024:S2090-1232(24)00268-6. [PMID: 38969094 DOI: 10.1016/j.jare.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND The liver disorders caused by alcohol abuse are termed alcoholic-related liver disease (ALD), including alcoholic steatosis, alcoholic steatohepatitis, alcoholic hepatitis, and alcoholic cirrhosis, posing a significant threat to human health. Currently, ALD pathogenesis has not been completely clarified, which is likely to be related to the direct damage caused by alcohol and its metabolic products, oxidative stress, gut dysbiosis, and exosomes. AIMS The existing studies suggest that both the gut microbiota and exosomes contribute to the development of ALD. Moreover, there exists an interaction between the gut microbiota and exosomes. We discuss whether this interaction plays a role in the pathogenesis of ALD and whether it can be a potential therapeutic target for ALD treatment. KEY SCIENTIFIC CONCEPTS OF REVIEW Chronic alcohol intake alters the diversity and composition of gut microbiota, which greatly contributes to ALD's progression. Some approaches targeting the gut microbiota, including probiotics, fecal microbiota transplantation, and phage therapy, have been confirmed to effectively ameliorate ALD in many animal experiments and/or several clinical trials. In ALD, the levels of exosomes and the expression profile of microRNA have also changed, which affects the pathogenesis of ALD. Moreover, there is an interplay between exosomes and the gut microbiota, which also putatively acts as a pathogenic factor of ALD.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
11
|
Yi B, Pan J, Yang Z, Zhu Z, Sun Y, Guo T, Zhao Z. Mesenchymal stem cell-derived exosomes promote tissue repair injury in rats with liver trauma by regulating gut microbiota and metabolism. Mol Cell Probes 2024; 75:101958. [PMID: 38518900 DOI: 10.1016/j.mcp.2024.101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
OBJECTIVE The effects of mesenchymal stem cells (MSCs) and MSC-derived exosomes (MSC-exos) on serum metabolites and intestinal microbiota in rats after liver trauma were discussed. METHODS Adult Wistar Albino rats were assigned into control, model (liver trauma), MSCs, and MSC-exos groups (n = 6). The study examined changes in the inflammatory environment in liver tissues were analyzed by histological examination and analysis of macrophage phenotypes. Alterations in serum metabolites were determined by untargeted metabonomics, and gut microbiota composition was characterized by 16S rDNA sequencing. Correlations between specific gut microbiota, metabolites, and inflammatory response were calculated using Spearman correlation analysis. RESULTS Rats with liver trauma after MSCs and MSC-exos treatment exhibited attenuated inflammatory infiltration and necrosis in liver tissues. MSCs and MSC-exos treatment reduced the proportion of M1 macrophages, accompanied by a decrease in inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α) levels. Furthermore, MSCs and MSC-exos treatment expanded the proportion of M2 macrophages, accompanied by an increase in arginase-1 (Arg-1) and interleukin-10 (IL-10) levels. The beneficial effects of MSC-exo treatment on rats with liver trauma were superior to those of MSC treatment. The composition and abundance of the gut microbiota and metabolites were altered in pathological rats, whereas MSC and MSC-exo intervention partially restored specific gut microbiota and metabolite alterations. At the phylum level, alterations in Bacteroidota, Proteobacteria, and Verrucomicrobiota were observed after MSC and MSC-exo intervention. At the genus level, Intestinimonas, Alistipes, Aerococcus, Faecalibaculum, and Lachnospiraceae_ND3007_group were the main differential microbiota. 6-Methylnicotinamide, N-Methylnicotinamide, Glutathione, oxidized, ISOBUTYRATE, ASCORBATE, EICOSAPENTAENOATE, GLYCEROL 3-PHOSPHATE, and Ascorbate radical were selected as important differential metabolites. There was a clear correlation between Ascorbate, Intestinimonas/Faecalibaculum and inflammatory cytokines. CONCLUSION MSC-exos promoted the repair of tissue damage in rats with liver trauma by regulating serum metabolites and intestinal microbiota, providing new insights into how MSC-exos reduced inflammation in rats with liver trauma.
Collapse
Affiliation(s)
- Bo Yi
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Juan Pan
- Department of Ultrasound, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Zhaoming Yang
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Zemin Zhu
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yongkang Sun
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Tao Guo
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Zhijian Zhao
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China.
| |
Collapse
|
12
|
Qiao Y, Tang X, Liu Z, Ocansey DKW, Zhou M, Shang A, Mao F. Therapeutic Prospects of Mesenchymal Stem Cell and Their Derived Exosomes in the Regulation of the Gut Microbiota in Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2024; 17:607. [PMID: 38794176 PMCID: PMC11124012 DOI: 10.3390/ph17050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have shown great potential in the treatment of several inflammatory diseases due to their immunomodulatory ability, which is mediated by exosomes secreted by MSCs (MSC-Exs). The incidence of inflammatory bowel disease (IBD) is increasing globally, but there is currently no long-term effective treatment. As an emerging therapy, MSC-Exs have proven to be effective in alleviating IBD experimentally, and the specific mechanism continues to be explored. The gut microbiota plays an important role in the occurrence and development of IBD, and MSCs and MSC-Exs can effectively regulate gut microbiota in animal models of IBD, but the mechanism involved and whether the outcome can relieve the characteristic dysbiosis necessary to alleviate IBD still needs to be studied. This review provides current evidence on the effective modulation of the gut microbiota by MSC-Exs, offering a basis for further research on the pathogenic mechanism of IBD and MSC-Ex treatments through the improvement of gut microbiota.
Collapse
Affiliation(s)
- Yaru Qiao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, China;
| | - Xiaohua Tang
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, China;
| | - Ziyue Liu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast CC0959347, Ghana
| | - Mengjiao Zhou
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
| | - Anquan Shang
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, China;
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, China;
| |
Collapse
|
13
|
Zhou Z, Li Y, Wu S, Liu T, Jiang J. Host-microbiota interactions in collagen-induced arthritis rats treated with human umbilical cord mesenchymal stem cell exosome and ginsenoside Rh2. Biomed Pharmacother 2024; 174:116515. [PMID: 38569276 DOI: 10.1016/j.biopha.2024.116515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Mesenchymal stem cell exosome (MSCs-exo) is a class of products secreted by mesenchymal stem cells (MSCs) that contain various biologically active substances. MSCs-exo is a promising alternative to MSCs due to their lower immunogenicity and lack of ethical constraints. Ginsenoside Rh2 (Rh2) is a hydrolyzed component of the primary active substance of ginsenosides. Rh2 has a variety of pharmacological functions, including anti-inflammatory, anti-tumor, and antioxidant. Studies have demonstrated that gut microbiota and metabolites are critical in developing rheumatoid arthritis (RA). In this study, we constructed a collagen-induced arthritis (CIA) model in rats. We used MSCs-exo combined with Rh2 to treat CIA rats. To observe the effect of MSCs-exo combined with Rh2 on joint inflammation, rat feces were collected for 16 rRNA amplicon sequencing and untargeted metabolomics analysis. The results showed that the arthritis index score and joint swelling of CIA rats treated with MSCs-exo in combination with Rh2 were significantly lower than those of the model and MSCs-exo alone groups. MSCs-exo and Rh2 significantly ameliorated the disturbed gut microbiota in CIA rats. The regulation of Candidatus_Saccharibacteria and Clostridium_XlVb regulation may be the most critical. Rh2 enhanced the therapeutic effect of MSCs-exo compared with the MSCs-exo -alone group. Furthermore, significant changes in gut metabolites were observed in the CIA rat group, and these differentially altered metabolites may act as messengers for host-microbiota interactions. These differential metabolites were enriched into relevant critical metabolic pathways, revealing possible pathways for host-microbiota interactions.
Collapse
Affiliation(s)
- Zhongsheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuhui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China; Yibin Jilin University Research Institute, Jilin University, Yibin, Sichuan, China.
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
14
|
Zhu Q, Li MX, Yu MC, Ma QW, Huang MJ, Lu CW, Chen CB, Chung WH, Chang CJ. Altered microbiome of serum exosomes in patients with acute and chronic cholecystitis. BMC Microbiol 2024; 24:133. [PMID: 38643067 PMCID: PMC11031981 DOI: 10.1186/s12866-024-03269-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/20/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND This study aimed to investigate the differences in the microbiota composition of serum exosomes from patients with acute and chronic cholecystitis. METHOD Exosomes were isolated from the serum of cholecystitis patients through centrifugation and identified and characterized using transmission electron microscopy and nano-flow cytometry. Microbiota analysis was performed using 16S rRNA sequencing. RESULTS Compared to patients with chronic cholecystitis, those with acute cholecystitis exhibited lower richness and diversity. Beta diversity analysis revealed significant differences in the microbiota composition between patients with acute and chronic cholecystitis. The relative abundance of Proteobacteria was significantly higher in exosomes from patients with acute cholecystitis, whereas Actinobacteria, Bacteroidetes, and Firmicutes were significantly more abundant in exosomes from patients with chronic cholecystitis. Furthermore, functional predictions of microbial communities using Tax4Fun analysis revealed significant differences in metabolic pathways such as amino acid metabolism, carbohydrate metabolism, and membrane transport between the two patient groups. CONCLUSIONS This study confirmed the differences in the microbiota composition within serum exosomes of patients with acute and chronic cholecystitis. Serum exosomes could serve as diagnostic indicators for distinguishing acute and chronic cholecystitis.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Surgery, Xiamen Chang Gung Hospital Hua Qiao University, Fujian, China
| | - Min-Xian Li
- Department of Surgery, Xiamen Chang Gung Hospital Hua Qiao University, Fujian, China
| | - Ming-Chin Yu
- Department of Surgery, Xiamen Chang Gung Hospital Hua Qiao University, Fujian, China
| | - Qi-Wen Ma
- School of Medicine and Medical Research Center, Xiamen Chang Gung Hospital Hua Qiao University, Fujian, China
| | - Ming-Jie Huang
- School of Medicine and Medical Research Center, Xiamen Chang Gung Hospital Hua Qiao University, Fujian, China
| | - Chun-Wei Lu
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Bing Chen
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Fujian, China
| | - Wen-Hung Chung
- School of Medicine and Medical Research Center, Xiamen Chang Gung Hospital Hua Qiao University, Fujian, China
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Fujian, China
| | - Chih-Jung Chang
- School of Medicine and Medical Research Center, Xiamen Chang Gung Hospital Hua Qiao University, Fujian, China.
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Linkou, Taiwan.
| |
Collapse
|
15
|
Li X, Ji LJ, Feng KD, Huang H, Liang MR, Cheng SJ, Meng XD. Emerging role of exosomes in ulcerative colitis: Targeting NOD-like receptor family pyrin domain containing 3 inflammasome. World J Gastroenterol 2024; 30:527-541. [PMID: 38463022 PMCID: PMC10921143 DOI: 10.3748/wjg.v30.i6.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/21/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic recurrent inflammatory bowel disease. Despite ongoing advances in our understanding of UC, its pathogenesis is yet unelucidated, underscoring the urgent need for novel treatment strategies for patients with UC. Exosomes are nanoscale membrane particles that mediate intercellular communication by carrying various bioactive molecules, such as proteins, RNAs, DNA, and metabolites. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a cytosolic tripartite protein complex whose activation induces the maturation and secretion of proinflammatory cytokines interleukin-1β (IL-1β) and IL-18, triggering the inflammatory response to a pathogenic agent or injury. Growing evidence suggests that exosomes are new modulators of the NLRP3 inflammasome, with vital roles in the pathological process of UC. Here, recent evidence is reviewed on the role of exosomes and NLRP3 inflammasome in UC. First, the dual role of exosomes on NLRP3 inflammasome and the effect of NLRP3 inflammasome on exosome secretion are summarized. Finally, an outlook on the directions of exosome-NLRP3 inflammasome crosstalk research in the context of UC is proposed and areas of further research on this topic are highlighted.
Collapse
Affiliation(s)
- Xin Li
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, China
| | - Li-Jiang Ji
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Kai-Di Feng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hua Huang
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Mei-Rou Liang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shi-Jin Cheng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiu-Dong Meng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
16
|
Kim SH, Keum B, Kwak S, Byun J, Shin JM, Kim TH. Therapeutic Applications of Extracellular Vesicles in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:745. [PMID: 38255819 PMCID: PMC10815267 DOI: 10.3390/ijms25020745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The treatment landscape for inflammatory bowel disease (IBD) has undergone substantial advancements with the introduction of biologics. However, a considerable number of patients either show an immediate lack of response or lose responsiveness over time, necessitating the development of innovative and effective treatment approaches. Extracellular vesicles (EVs) are small lipid bilayer-enclosed structures that facilitate cell-to-cell molecular transfer and are integral to the pathogenesis of IBD. They play pivotal roles in maintaining the integrity of the intestinal epithelial barrier and the expulsion of cellular metabolites. The potential use of EVs as drug carriers or therapeutic agents has opened up a plethora of clinical applications. This review investigates the creation and content of EVs, their role in IBD development, and advances in their isolation and analytical techniques. Furthermore, the therapeutic promise they hold for IBD is explored, along with the latest research on their roles as IBD drug delivery systems.
Collapse
Affiliation(s)
- Sang Hyun Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (S.H.K.)
| | - Bora Keum
- Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (S.H.K.)
| | - Sooun Kwak
- Department of Otorhinolaryngology—Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Junhyoung Byun
- Department of Otorhinolaryngology—Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jae Min Shin
- Department of Otorhinolaryngology—Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology—Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
17
|
Liu A, Li C, Wang C, Liang X, Zhang X. Impact of Mesenchymal Stem Cells on the Gut Microbiota and Microbiota Associated Functions in Inflammatory Bowel Disease: A Systematic Review of Preclinical Evidence on Animal Models. Curr Stem Cell Res Ther 2024; 19:981-992. [PMID: 37817517 DOI: 10.2174/011574888x250413230920051715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/25/2023] [Accepted: 08/11/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a global health problem in which gut microbiota dysbiosis plays a pivotal pathogenic role. Mesenchymal stem cells (MSCs) therapy has shown promising application prospects for its powerful immune regulation and tissue repair ability. Recent experimental data suggest that MSCs also regulate the composition of gut microbiota. The current review analyzed, for the first time, the research data linking MSCs and gut microbiota modulation in IBD models aiming at assessing the role of gut microbiota in MSCs repair of IBD. METHODS A comprehensive and structured literature search was performed up to January 2023 on the PubMed, Web of Science, and Scopus databases. The quality and risk of bias assessment followed the PRISMA guidelines and SYRCLE's tool. RESULTS A total of nine pre-clinical studies on animal models were included. Although the dose and route of MSCs applied were quite heterogeneous, results showed that MSCs displayed protective effects on intestinal inflammation, including mice general assessment, immunoregulation, and intestinal barrier integrity. Meanwhile, studies showed positive effects on the composition of gut flora with MSCs administration, which had been characterized by restoration of Firmicutes/ Bacteroides balance and reduction of Proteobacteria. The beneficial bacteria Akkermansia, Bifidobacterium, and Lactobacillus were also distinctly enriched, and the pathogenic bacteria Escherichia-Shigella was conversely decreased. The alpha and beta diversity were also regulated to resemble those of healthy mice. Microbial metabolic functions, such as biosynthesis of secondary bile acid and sphingolipid metabolism, and some biological behaviors related to cell regeneration were also up-regulated, while cancer function and poorly characterized cellular function were down-regulated. CONCLUSION Current data support the remodeling effect on gut microbiota with MSC administration, which provides a potential therapeutic mechanism for MSCs in the treatment of IBD. Additional studies in humans and animal models are warranted to further confirm the role of gut microflora in MSCs repairing IBD.
Collapse
Affiliation(s)
- Airu Liu
- Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Chenyang Li
- Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Chen Wang
- Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Xiaonan Liang
- Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Xiaolan Zhang
- Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang City, China
| |
Collapse
|
18
|
Tang D, Liu M, Gao S, Sun H, Peng Y, Li Y, Wang Y, Wang X, Chen H. Thermally engineered MSC-derived extracellular vesicles ameliorate colitis in mice by restoring the imbalanced Th17/Treg cell ratio. Int Immunopharmacol 2023; 125:111077. [PMID: 38149575 DOI: 10.1016/j.intimp.2023.111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 12/28/2023]
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have garnered extensive interest for their immunomodulatory properties in immune-mediated inflammatory diseases. However, the development of EVs as clinical drugs often faces challenges such as low production yield and suboptimal therapeutic efficacy. In this study, we discovered that thermally engineering was able to enhance the yield of MSC-EVs. Moreover, the PD-L1 expression of EVs released from the thermal engineering MSCs was found to be upregulated significantly, and these EVs ameliorated the symptoms and pathological damages in murine dextran sulfate sodium (DSS)-induced colitis model. The therapeutic effect on DSS-induced colitis was mediated through the regulation of the Th17/Treg cell balance, demonstrating the immunomodulatory properties of the thermally engineering MSC-EVs. Overall, our findings suggest that thermal engineering can be utilized as a promising strategy for enhancing EV production and may provide a potential therapeutic approach for clinical treatment of colitis.
Collapse
Affiliation(s)
- Deqian Tang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Manqing Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Shenghan Gao
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Haipeng Sun
- Department of Prosthodontics and Implantology, Shenzhen University Affiliated Shenzhen Stomatology Hospital, Shenzhen 518000, Guangdong Province, China
| | - Yingying Peng
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Yi Li
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Yan Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Xiaoxiao Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Department of Prosthodontics and Implantology, Shenzhen University Affiliated Shenzhen Stomatology Hospital, Shenzhen 518000, Guangdong Province, China; Department of Stomatology, Shenzhen Qianhai Taikang Hospital, No.3099, Menghai Avenue, Nanshan District, Shenzhen 518000, China.
| | - Huan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China.
| |
Collapse
|
19
|
Almeqdadi M, Gordon FD. Farnesoid X Receptor Agonists: A Promising Therapeutic Strategy for Gastrointestinal Diseases. GASTRO HEP ADVANCES 2023; 3:344-352. [PMID: 39131134 PMCID: PMC11308038 DOI: 10.1016/j.gastha.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/22/2023] [Indexed: 08/13/2024]
Abstract
Farnesoid X receptor (FXR) agonists have emerged as a promising therapeutic strategy for the management of various gastrointestinal (GI) diseases, including primary biliary cholangitis, nonalcoholic fatty liver disease, inflammatory bowel disease, alcohol-related liver disease, and primary sclerosing cholangitis. In this review, we discuss the mechanisms of action of FXR agonists, including their metabolic and immunomodulatory effects, and provide an overview of the clinical evidence supporting their use in the treatment of GI diseases. We also highlight the safety, adverse effects, and potential drug interactions associated with FXR agonists. While these agents have demonstrated efficacy in improving liver function, reducing hepatic steatosis, and improving histological endpoints in primary biliary cholangitis and nonalcoholic fatty liver disease, further research is needed to determine their long-term safety and effectiveness in other GI diseases, such as inflammatory bowel disease, alcohol-related liver disease, and primary sclerosing cholangitis. Additionally, the development of next-generation FXR agonists with improved potency and reduced side effects could further enhance their therapeutic potential.
Collapse
Affiliation(s)
- Mohammad Almeqdadi
- Division of Transplantation and Hepatobiliary Diseases, Lahey Hospital & Medical Center, Burlington, Massachusetts
| | - Fredric D. Gordon
- Abdominal Transplant Institute, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
20
|
Xu X, Ocansey DKW, Pei B, Zhang Y, Wang N, Wang Z, Mao F. Resveratrol alleviates DSS-induced IBD in mice by regulating the intestinal microbiota-macrophage-arginine metabolism axis. Eur J Med Res 2023; 28:319. [PMID: 37660064 PMCID: PMC10474707 DOI: 10.1186/s40001-023-01257-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/31/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a global disease with a growing public health concern and is associated with a complex interplay of factors, including the microbiota and immune system. Resveratrol, a natural anti-inflammatory and antioxidant agent, is known to relieve IBD but the mechanism involved is largely unexplored. METHODS This study examines the modulatory effect of resveratrol on intestinal immunity, microbiota, metabolites, and related functions and pathways in the BALB/c mice model of IBD. Mouse RAW264.7 macrophage cell line was used to further explore the involvement of the macrophage-arginine metabolism axis. The treatment outcome was assessed through qRT-PCR, western blot, immunofluorescence, immunohistochemistry, and fecal 16S rDNA sequencing and UHPLC/Q-TOF-MS. RESULTS Results showed that resveratrol treatment significantly reduced disease activity index (DAI), retained mice weight, repaired colon and spleen tissues, upregulated IL-10 and the tight junction proteins Occludin and Claudin 1, and decreased pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. Resveratrol reduced the number of dysregulated metabolites and improved the gut microbial community structure and diversity, including reversing changes in the phyla Bacteroidetes, Proteobacteria, and Firmicutes, increasing 'beneficial' genera, and decreasing potential pathogens such as Lachnoclostridium, Acinobacter, and Serratia. Arginine-proline metabolism was significantly different between the colitis-treated and untreated groups. In the colon mucosa and RAW264.7 macrophage, resveratrol regulated arginine metabolism towards colon protection by increasing Arg1 and Slc6a8 and decreasing iNOS. CONCLUSION This uncovers a previously unknown mechanism of resveratrol treatment in IBD and provides the microbiota-macrophage-arginine metabolism axis as a potential therapeutic target for intestinal inflammation.
Collapse
Affiliation(s)
- Xinwei Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Bing Pei
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, People's Republic of China
| | - Yaqin Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Naijian Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Zengxu Wang
- Zhenjiang Hospital of Chinese Traditional And Western Medicine, 18 Tuanshan Road, Runzhou District, Zhenjiang, 212000, Jiangsu, People's Republic of China.
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Wei Z, Hang S, Wiredu Ocansey DK, Zhang Z, Wang B, Zhang X, Mao F. Human umbilical cord mesenchymal stem cells derived exosome shuttling mir-129-5p attenuates inflammatory bowel disease by inhibiting ferroptosis. J Nanobiotechnology 2023; 21:188. [PMID: 37303049 DOI: 10.1186/s12951-023-01951-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Ferroptosis, a unique form of non-apoptotic cell death, is dependent on iron and lipoperoxidation, and has been shown to be associated with the pathogenesis of inflammatory bowel disease (IBD). Human umbilical cord mesenchymal stem cell-derived exosomes (hucMSC-Ex) are involved in cell survival, immune conditioning, and damage repair. However, the relationship between hucMSC-Ex, IBD, and ferroptosis is unknown. This paper explores the role of hucMSC-Ex in the repair of IBD through the regulation of the ferroptosis signaling pathway. RESULTS In this study, we used small RNA sequencing to find that miR-129-5p was highly expressed in hucMSC-Ex, and by predicting its targeting to ACSL4, we verified the effect of miR-129-5p on mice IBD in vitro and human colonic epithelial cells (HCoEpiC) in vivo. We found that miR-129-5p reduces ferroptosis in intestinal epithelial cells by targeting ACSL4 to repair IBD, which provides new strategies for the prevention and treatment of IBD. CONCLUSION In conclusion, our results demonstrate that hucMSC-Ex relieves IBD by targeting ACSL4 with miR-129-5p to inhibit lipid peroxidation (LPO) and ferroptosis, reducing intestinal inflammation and repairing damages. Mechanism of hucMSC-Ex inhibiting ferroptosis in intestinal epithelial cells. System Xc- mediates the transport of extracellular cystine into the cell, which gets reduced to cysteine to participate in GSH-mediated metabolism. GPX4 strongly inhibits ferroptosis by helping scavenge reactive oxygen species. The depletion of GSH correlates with decreased GPX4, and the imbalance of the antioxidant system leads to the formation of toxic phospholipid hydroperoxide, which promotes the occurrence of ferroptosis with the participation of irons. HucMSC-Ex has the ability to relieve GSH and GPX4 depletion and repair the intracellular antioxidant system. Ferric ions enter the cytosol through DMT1 and participate in lipid peroxidation. HucMSC-Ex can reduce the expression of DMT1 and alleviate this process. HucMSC-Ex-derived miR-129-5p targets ACSL4 and reduces the expression of ACSL4, an enzyme that mediates the conversion of PUFAs into phospholipids in intestinal epithelial cells, and is a positive regulator of lipid peroxidation. ABBREVIATIONS GSH, glutathione; GPX4, glutathione peroxidase 4; GSSG, oxidized glutathione; DMT1, divalent metal transporter 1; ACSL4, acyl-CoA synthetase long-chain family member 4; PUFAs, polyunsaturated fatty acids; ALOXs, lipoxygenases; CoA, coenzyme A; PL, phospholipid; PLOOH, hydroperoxides, LOH, phospholipid alcohols; LPO, lipid peroxidation.
Collapse
Affiliation(s)
- Zhiping Wei
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, P.R. China
| | - Sanhua Hang
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, 212300, P.R. China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, P.R. China
| | - Zhaoyang Zhang
- Clinical Lab, Taicang Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu, 215400, P.R. China
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, P.R. China
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, P.R. China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, P.R. China.
| |
Collapse
|
22
|
Chen L, Ou Q, Kou X. Extracellular vesicles and their indispensable roles in pathogenesis and treatment of inflammatory bowel disease: A comprehensive review. Life Sci 2023; 327:121830. [PMID: 37286163 DOI: 10.1016/j.lfs.2023.121830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Inflammatory bowel disease (IBD) is a global disease with rising incidence worldwide, and its debilitating symptoms and dissatisfactory therapies have brought heavy burdens for patients. Extracellular vesicles (EVs), a heterogeneous population of lipid bilayer membranes containing abundant bioactive molecules, have been indicated to play important roles in the pathogenesis and treatment of many diseases. However, to our knowledge, comprehensive reviews summarizing the various roles of diverse source-derived EVs in the pathogenesis and treatment of IBD are still lacking. This review, not only summarizes the EV characteristics, but also focuses on the multiple roles of diverse EVs in IBD pathogenesis and their treatment potential. In addition, hoping to push forward the research frontiers, we point out several challenges that the researchers are faced, about EVs in current IBD research and future therapeutic applications. We also put forward our prospects on future exploration regarding EVs in IBD treatment, including developing IBD vaccines and paying more attention on apoptotic vesicles. This review is aimed to enrich the knowledge on the indispensable roles of EVs in IBD pathogenesis and treatment, providing ideas and reference for future therapeutic strategy for IBD treatment.
Collapse
Affiliation(s)
- Linling Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China
| | - Qianmin Ou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China; Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510055, China.
| |
Collapse
|
23
|
Yang Q, Qin B, Hou W, Qin H, Yin F. Pathogenesis and therapy of radiation enteritis with gut microbiota. Front Pharmacol 2023; 14:1116558. [PMID: 37063268 PMCID: PMC10102376 DOI: 10.3389/fphar.2023.1116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
Radiotherapy is widely used in clinic due to its good effect for cancer treatment. But radiotherapy of malignant tumors in the abdomen and pelvis is easy to cause radiation enteritis complications. Gastrointestinal tract contains numerous microbes, most of which are mutualistic relationship with the host. Abdominal radiation results in gut microbiota dysbiosis. Microbial therapy can directly target gut microbiota to reverse microbiota dysbiosis, hence relieving intestinal inflammation. In this review, we mainly summarized pathogenesis and novel therapy of the radiation-induced intestinal injury with gut microbiota dysbiosis and envision the opportunities and challenges of radiation enteritis therapy.
Collapse
Affiliation(s)
- Qilin Yang
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- School of Clinical Medicine of Nanjing Medical University, Nanjing, China
| | - Bingzhi Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Weiliang Hou
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Huanlong Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Fang Yin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| |
Collapse
|
24
|
Saadh MJ, Mikhailova MV, Rasoolzadegan S, Falaki M, Akhavanfar R, Gonzáles JLA, Rigi A, Kiasari BA. Therapeutic potential of mesenchymal stem/stromal cells (MSCs)-based cell therapy for inflammatory bowel diseases (IBD) therapy. Eur J Med Res 2023; 28:47. [PMID: 36707899 PMCID: PMC9881387 DOI: 10.1186/s40001-023-01008-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Recently, mesenchymal stem/stromal cells (MSCs) therapy has become an emerging therapeutic modality for the treatment of inflammatory bowel disease (IBD), given their immunoregulatory and pro-survival attributes. MSCs alleviate dysregulated inflammatory responses through the secretion of a myriad of anti-inflammatory mediators, such as interleukin 10 (IL-10), transforming growth factor-β (TGFβ), prostaglandin E2 (PGE2), tumor necrosis factor-stimulated gene-6 (TSG-6), etc. Indeed, MSC treatment of IBD is largely carried out through local microcirculation construction, colonization and repair, and immunomodulation, thus alleviating diseases severity. The clinical therapeutic efficacy relies on to the marked secretion of various secretory molecules from viable MSCs via paracrine mechanisms that are required for gut immuno-microbiota regulation and the proliferation and differentiation of surrounding cells like intestinal epithelial cells (IECs) and intestinal stem cells (ISCs). For example, MSCs can induce IECs proliferation and upregulate the expression of tight junction (TJs)-associated protein, ensuring intestinal barrier integrity. Concerning the encouraging results derived from animal studies, various clinical trials are conducted or ongoing to address the safety and efficacy of MSCs administration in IBD patients. Although the safety and short-term efficacy of MSCs administration have been evinced, the long-term efficacy of MSCs transplantation has not yet been verified. Herein, we have emphasized the illumination of the therapeutic capacity of MSCs therapy, including naïve MSCs, preconditioned MSCs, and also MSCs-derived exosomes, to alleviate IBD severity in experimental models. Also, a brief overview of published clinical trials in IBD patients has been delivered.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Department of Basic Sciences, Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Maria V Mikhailova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Soheil Rasoolzadegan
- Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Falaki
- Department of Internal Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amir Rigi
- Department of Nursing, Young Researchers and Elite Club, Zahedan Branch, Azad University, Zahedan, Iran.
| | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran.
| |
Collapse
|
25
|
Zhang Q, Deng P, Chen S, Xu H, Zhang Y, Chen H, Zhang J, Sun H. Electroacupuncture and human iPSC-derived small extracellular vesicles regulate the gut microbiota in ischemic stroke via the brain-gut axis. Front Immunol 2023; 14:1107559. [PMID: 36742316 PMCID: PMC9895941 DOI: 10.3389/fimmu.2023.1107559] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Electroacupuncture (EA) and induced pluripotent stem cell (iPSC)-derived small extracellular vesicles (iPSC-EVs) have substantial beneficial effects on ischemic stroke. However, the detailed mechanisms remain unclear. Here, we explored the mechanisms underlying the regulation of EA and iPSC-EVs in the microbiome-gut-brain axis (MGBA) after ischemic stroke. Ischemic stroke mice (C57BL/6) were subjected to middle cerebral artery occlusion (MCAO) or Sham surgery. EA and iPSC-EVs treatments significantly improved neurological function and neuronal and intestinal tract injury, downregulated the levels of IL-17 expression and upregulated IL-10 levels in brain and colon tissue after cerebral ischemia-reperfusion. EA and iPSC-EVs treatments also modulated the microbiota composition and diversity as well as the differential distribution of species in the intestines of the mice after cerebral ischemia-reperfusion. Our results demonstrated that EA and iPSC-EVs treatments regulated intestinal immunity through MGBA regulation of intestinal microbes, reducing brain and colon damage following cerebral ischemia and positively impacting the outcomes of ischemic stroke. Our findings provide new insights into the application of EA combined with iPSC-EVs as a treatment for ischemic stroke.
Collapse
Affiliation(s)
- Qiongqiong Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Peiying Deng
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Suhui Chen
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Xu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yamin Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Chen
- CAMS Key Laboratory for T-Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China,Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China,Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Jianmin Zhang
- CAMS Key Laboratory for T-Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China,Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China,Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China,Guidon Pharmaceutics, Inc., Beijing, China,*Correspondence: Jianmin Zhang, ; Hua Sun,
| | - Hua Sun
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Jianmin Zhang, ; Hua Sun,
| |
Collapse
|