1
|
Salehi M, Rashidinejad A. Multifaceted roles of plant-derived bioactive polysaccharides: A review of their biological functions, delivery, bioavailability, and applications within the food and pharmaceutical sectors. Int J Biol Macromol 2025; 290:138855. [PMID: 39701227 DOI: 10.1016/j.ijbiomac.2024.138855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Plant-derived bioactive polysaccharides (PDBPs), versatile polymers originating from various botanical sources, exhibit a spectrum of biological functionalities crucial for human health. This review delves into the multifaceted roles of these bioactive compounds, elucidating their immune-boosting properties, antioxidant prowess, anti-inflammatory capabilities, and contributions to gut health. Amidst their pivotal roles, the efficiency of PDBPs delivery and bioavailability in the human system stands as a central determinant of their efficacy and utilization. This review paper extensively and systematically examines the diverse biological activities, such as immunomodulatory effects, delivery mechanisms like microencapsulation, and promising applications of PDBPs within the realms of both food (functional foods and nutraceuticals) and pharmaceutical (antimicrobial agents and anti-inflammatory drugs) sectors. Additionally, it offers a comprehensive overview of the classification, sources, and structural diversity of these polysaccharides, highlighting various identification techniques and rheological considerations. Moreover, the review addresses critical safety and regulatory concerns alongside global legislation about plant bioactive polysaccharides, envisaging a broader landscape for their utilization. Through this synthesis, we aim to underscore the holistic significance of PDBPs and their potential to revolutionize nutritional and therapeutic paradigms.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Food Sciences, Khazar Institute of Higher Education, Mahmoud Abad, Iran
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| |
Collapse
|
2
|
Li H, Fan L, Yang S, Tan P, Lei W, Yang H, Gao Z. Lactobacillus acidophilus 6074 Fermented Jujube Juice Ameliorated DSS-induced Colitis via Repairing Intestinal Barrier, Modulating Inflammatory Factors, and Gut Microbiota. Mol Nutr Food Res 2024:e202400568. [PMID: 39676427 DOI: 10.1002/mnfr.202400568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Lactobacillus acidophilus L. acidophilus Lactobacillus, Bifidobacterium, and Akkermansia, This study aimed to explore the ameliorative effects and underlying mechanisms of oral administration Lactobacillus acidophilus 6074 fermented jujube juice (LAFJ) on dextran sulfate sodium (DSS)-induced colitis in mice. In this study, jujube juice was used as a substrate and fermented by L. acidophilus 6074 to investigate its effects on gut microbiota, intestinal barrier function, oxidative stress, inflammatory factors, and short-chain fatty acids (SCFAs) in mice with colitis and to reveal its potential mechanism for alleviating colitis. The results demonstrated that fermentation caused significant changes in the nutrients and nonnutrients of jujube juice, mainly in organic acids (malic acid, lactic acid, citric acid, and succinic acid) and free amino acids (Thr, Met, Ser, Ile, and Lys). High-dose LAFJ (20 mL/kg/day) significantly reduced the disease activity index (DAI), improved histopathological morphology, and increased colon length in colitis mice. LAFJ alleviated colon damage and preserved the integrity of the colonic mucosal barrier by promoting the expression of colonic tight junction proteins occludin, claudin-1, and zonula occluden-1 (ZO-1). Furthermore, LAFJ inhibited the production of proinflammatory factors and attenuated oxidative stress. Gut microbiota of mice revealed that LAFJ increased beneficial bacteria such as Lactobacillus, Bifidobacterium, and Akkermansia, promoted the production of SCFAs, and inhibited the growth of harmful microorganisms. Overall, LAFJ could reshape and restore gut microbiota imbalance caused by intestinal inflammation and alleviate the development of colitis, which may become a novel dietary intervention.
Collapse
Affiliation(s)
- Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lingjia Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Siqi Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Pei Tan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Wenzhi Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haihua Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
3
|
Salamone FL, Molonia MS, Muscarà C, Saija A, Cimino F, Speciale A. In Vitro Protective Effects of a Standardized Extract of Opuntia ficus-indica (L.) Mill. Cladodes and Olea europaea L. Leaves Against Indomethacin-Induced Intestinal Epithelial Cell Injury. Antioxidants (Basel) 2024; 13:1507. [PMID: 39765835 PMCID: PMC11673993 DOI: 10.3390/antiox13121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) can induce serious adverse effects in gastrointestinal (GI) mucosa, increasing intestinal permeability and leading to mitochondrial dysfunction, oxidative stress, apoptosis and inflammation. As proton pump inhibitors are effective in protecting against NSAID-induced gastropathy but not NSAID-induced enteropathy, current research is focused on natural products as protective substances for therapy and prevention of intestinal injury. Herein, through the use of an in vitro model based on intestinal epithelial cell (Caco-2) damage caused by indomethacin (INDO), we examined the protective activity of a commercially available standardized extract (OFI+OE) from Opuntia ficus-indica (L.) Mill. cladodes and Olea europaea L. leaves. Pre-treatment with OFI+OE prevented INDO-induced intestinal epithelial barrier damage, as demonstrated by TEER measurement, fluorescein permeability, and tight junction protein expression. The extract showed positive effects against INDO-induced oxidative stress and correlated activation of apoptosis, decreasing pro-apoptotic markers BAX and Caspase-3 and increasing anti-apoptotic factor Bcl-2. Moreover, the extract inhibited the NF-κB pathway and pro-inflammatory cascade. In conclusion, these data support the use of OFI+OE extract as a natural strategy for therapy and prevention of intestinal mucosal damage, demonstrating its beneficial effects against INDO-induced intestinal damage, through modulation of oxidative, apoptotic, and inflammatory pathways.
Collapse
|
4
|
Liu MH, Jin HX, Song Z, Wang JY, Gao DJ. Phytochemical, pharmacological, pharmacokinetic and toxicological characteristics of Ziziphi Spinosae Semen: a review. Front Pharmacol 2024; 15:1504009. [PMID: 39679366 PMCID: PMC11639084 DOI: 10.3389/fphar.2024.1504009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Ziziphi Spinosae Semen (ZSS) is the seeds of Ziziphus jujuba Mill. var. Spinosa (Bunge) Hu ex H. F. Chou, which has the effects of nourishing heart and liver, tranquilizing heart and tranquilizing mind. With the development of research on the metabolites of ZSS, more than 160 metabolites have been isolated from ZSS, including saponins, alkaloids, flavonoids, fatty acids, volatile oils, polysaccharides and proteins. The active metabolites of ZSS have regulatory effects on the nervous system, cardiovascular system, hematopoietic system, immune system and substance metabolism, and have various pharmacological effects such as anti-oxidation, anti-aging and anti-cancer. Although many traditional uses of ZSS have been clarified, the relationship between its structure and function remains to be further studied. This article provides a review of the metabolites, pharmacological activity, pharmacokinetics and toxicology of ZSS, and explores the future research prospects and existing problems of ZSS, so as to provide reference for further research and establishment of quality control standards of ZSS.
Collapse
Affiliation(s)
- Mei-Hua Liu
- Research Center of Emotional Diseases, Shenyang Anning Hospital, Shenyang, China
- Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang Anning Hospital, Shenyang, China
| | - Hong-Xin Jin
- China Medical University the 4th People’s Hospital of Shen Yang, Shenyang, China
| | - Zhen Song
- Research Center of Emotional Diseases, Shenyang Anning Hospital, Shenyang, China
- Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang Anning Hospital, Shenyang, China
| | - Jing-Yi Wang
- Research Center of Emotional Diseases, Shenyang Anning Hospital, Shenyang, China
- Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang Anning Hospital, Shenyang, China
| | - De-Jiang Gao
- Research Center of Emotional Diseases, Shenyang Anning Hospital, Shenyang, China
- Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Shenyang Anning Hospital, Shenyang, China
| |
Collapse
|
5
|
Chen J, Gao Y, Zhang Y, Wang M. Research progress in the treatment of inflammatory bowel disease with natural polysaccharides and related structure-activity relationships. Food Funct 2024; 15:5680-5702. [PMID: 38738935 DOI: 10.1039/d3fo04919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Inflammatory bowel disease (IBD) comprises a group of highly prevalent and chronic inflammatory intestinal tract diseases caused by multiple factors. Despite extensive research into the causes of the disease, IBD's pathogenic mechanisms remain unclear. Moreover, side effects of current IBD therapies restrict their long-term clinical use. In contrast, natural polysaccharides exert beneficial anti-IBD effects and offer advantages over current anti-IBD drugs, including enhanced safety and straightforward isolation from abundant and reliable sources, and thus may serve as components of functional foods and health products for use in IBD prevention and treatment. However, few reviews have explored natural polysaccharides with anti-IBD activities or the relationship between polysaccharide conformation and anti-IBD biological activity. Therefore, this review aims to summarize anti-IBD activities and potential clinical applications of polysaccharides isolated from plant, animal, microorganismal, and algal sources, while also exploring the relationship between polysaccharide conformation and anti-IBD bioactivity for the first time. Furthermore, potential mechanisms underlying polysaccharide anti-IBD effects are summarized, including intestinal microbiota modulation, intestinal inflammation alleviation, and intestinal barrier protection from IBD-induced damage. Ultimately, this review provides a theoretical foundation and valuable insights to guide the development of natural polysaccharide-containing functional foods and nutraceuticals for use as dietary IBD therapies.
Collapse
Affiliation(s)
- Jiaqi Chen
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanqiu Zhang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
6
|
Wang Q, Wang F, Zhou Y, Li X, Xu S, Jin Q, Li W. Bacillus amyloliquefaciens SC06 Relieving Intestinal Inflammation by Modulating Intestinal Stem Cells Proliferation and Differentiation via AhR/STAT3 Pathway in LPS-Challenged Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6096-6109. [PMID: 38484112 DOI: 10.1021/acs.jafc.3c05956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Bacillus amyloliquefaciens is a well-accepted probiotic, with many benefits for both humans and animals. The ability of intestinal stem cells (ISCs) to develop into several intestinal epithelial cell types helps accelerate intestinal epithelial regeneration. Limited knowledge exists on how bacteria regulated ISCs proliferation and regeneration. Our study investigated the effects of Bacillus amyloliquefaciens supplementation on ISC proliferation and regeneration and intestinal mucosal barrier functions in piglets exposed to lipopolysaccharide (LPS). Eighteen piglets (male, 21 days old) were randomly split into 3 clusters: CON cluster, LPS cluster, and SC06+LPS cluster. On day 21, 100 μg/kg body weight of LPS was intraperitoneally administered to the SC06+LPS and LPS groups. We found SC06 supplementation maintained the intestinal barrier integrity, enhanced intestinal antioxidant capacity, reduced generation of inflammatory response, and suppressed enterocyte apoptosis against the deleterious effects triggered by LPS. In addition, our research indicated that the SC06 supplementation not only improved the ISC regeneration, but also resulted in upregulation of aryl hydrocarbon receptor (AhR) in LPS-challenge piglets. Further studies showed that SC06 also induced ISC differentiation toward goblet cells and inhibited their differentiation to intestinal absorptive cells and enterocytes. The coculture system of SC06 and ileum organoids revealed that SC06 increased the growth of ISCs and repaired LPS-induced organoid damage through activating the AhR/STAT3 signaling pathway. These findings showed that SC06, possibly through the AhR/STAT3 pathway, accelerated ISC proliferation and promoted epithelial barrier healing, providing a potential clinical treatment for IBD. Our research demonstrated that SC06 is effective in preventing intestinal epithelial damage after pathological injury, restoring intestinal homeostasis, and maintaining intestinal epithelial regeneration.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
7
|
Ruan W, Liu J, Zhang S, Huang Y, Zhang Y, Wang Z. Sour Jujube ( Ziziphus jujuba var. spinosa): A Bibliometric Review of Its Bioactive Profile, Health Benefits and Trends in Food and Medicine Applications. Foods 2024; 13:636. [PMID: 38472749 DOI: 10.3390/foods13050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Research on the comprehensive utilization of sour jujube and its beneficial properties to human health has attracted extensive attention. This study aims to conduct a bibliometric analysis of the bioactive profile of sour jujube and future trends in applications. The research advancements within this field from 2000 to 2023 were addressed using the Web of Science database and VOSviewer. Among the 322 results, the most frequent keywords of bioactivity are flavonoids, antioxidants, saponins, insomnia, polyphenols, terpenoids and anti-inflammatory; the most studied parts of sour jujube are seeds, fruits and leaves; the published articles with high citations mainly focus on identification, biological effects and different parts distribution of bioactive compounds. The bioactivity of various parts of sour jujube was reviewed considering their application potential. The seeds, rich in flavonoids, saponins and alkaloids, exhibit strong effects on central nervous system diseases and have been well-developed in pharmacology, healthcare products and functional foods. The pulp has antioxidant properties and is used to develop added-value foods (e.g., juice, vinegar, wine). The leaves can be used to make tea and flowers are good sources of honey; their extracts are rich sources of flavonoids and saponins, which show promising medicinal effects. The branches, roots and bark have healing properties in traditional folk medicine. Overall, this study provides a reference for future applications of sour jujube in food and medicine fields.
Collapse
Affiliation(s)
- Wei Ruan
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Yuhua District, Shijiazhuang 050018, China
| | - Junli Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, 598 Heping West Road, Xinhua District, Shijiazhuang 050031, China
| | - Shixiong Zhang
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Yuhua District, Shijiazhuang 050018, China
| | - Yuqing Huang
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Yuhua District, Shijiazhuang 050018, China
| | - Yuting Zhang
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Yuhua District, Shijiazhuang 050018, China
| | - Zhixin Wang
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Yuhua District, Shijiazhuang 050018, China
| |
Collapse
|
8
|
Yan W, Luo J, Yu Z, Xu B. A critical review on intestinal mucosal barrier protection effects of dietary polysaccharides. Food Funct 2024; 15:481-492. [PMID: 38197139 DOI: 10.1039/d3fo03412g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Studies have shown that dietary polysaccharides, which are widely present in natural foods, have an important impact on the intestinal mucosal barrier. Dietary polysaccharides can maintain the intestinal barrier function through multiple mechanisms. The intestinal barrier is composed of mechanical, chemical, immune, and biological barriers, and dietary polysaccharides, as a bioactive component, can promote and regulate these four barriers. Dietary polysaccharides can enhance the expression of tight junction proteins and mucins such as occludin-1 and zonula occludens-1 (ZO-1) between intestinal epithelial cells, inhibit inflammatory response and oxidative stress, increase the growth of beneficial bacteria, produce beneficial metabolites such as short chain fatty acids (SCFAs), and promote the proliferation and metabolism of immune cells. Given the critical role of the intestinal mucosal system in health and disease, the protective effects of dietary polysaccharides may be potentially valuable for the prevention and treatment of gut-related diseases. Therefore, it is of great significance to further study the mechanism and application prospects of the intestinal mucosal barrier derived from plant, animal, fungal and bacterial sources.
Collapse
Affiliation(s)
- Weiqi Yan
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, China.
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jinhai Luo
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, China.
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhiling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, China.
| |
Collapse
|
9
|
Cheng F, Qiao Z, Liang G, Li J, Qiao Y, Yun S, Cao J, Cheng Y, Chang M, Feng C. Polysaccharide from Sparassis latifolia alleviates intestinal barrier dysfunction in mice exposed to lead. Int J Biol Macromol 2023; 253:127615. [PMID: 37879574 DOI: 10.1016/j.ijbiomac.2023.127615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/27/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Exposure to lead can have harmful effects on the intestines and gut microbiota, leading to toxicity. This study aimed to explore the protective role of Sparassis latifolia polysaccharide (SLP) in safeguarding the intestinal barrier of Kunming mice exposed to lead. The findings indicated that SLP effectively alleviates intestinal lesions, increases the density of cupped cells in the intestine, and reduces inflammation in both serum and the small intestine. Furthermore, SLP maintains the expression of key genes such as ZO-1, Occludin, Claudin-1, Lyz, Ang4, and ZO-2, as well as proteins like claudin-1 and Occludin-1. Furthermore, SLP positively impacts the diversity and richness of microorganisms in the mouse gut microbiota at both the genus and gate levels. It also increases the levels of short-chain fatty acids (SCFAs), including acetic acid, butyric acid, and propionic acid, to varying degrees. In summary, SLP plays a role in alleviating the impaired small intestinal barrier in lead-exposed mice by modulating the intestinal flora, which is consistent with reduced lead absorption. This modulation enhances the integrity of the intestinal barrier, suppresses inflammation, and facilitates the excretion of lead.
Collapse
Affiliation(s)
- Feier Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zening Qiao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Guodong Liang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jiaxin Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yaoyao Qiao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
10
|
Yuan Y, Wang F, Liu X, Shuai B, Fan H. The Role of AMPK Signaling in Ulcerative Colitis. Drug Des Devel Ther 2023; 17:3855-3875. [PMID: 38170149 PMCID: PMC10759424 DOI: 10.2147/dddt.s442154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease characterized by inflammation and ulcer formation of the intestinal mucosa. Due to its high recurrence rate, prolonged course, limited curative options, and significant impact on patients' quality of life, along with a notable potential for malignant transformation, UC is designated as a refractory global health challenge by the World Health Organization (WHO). The elucidation of the pathogenesis and therapeutic strategies for UC requires further in-depth investigation. AMP-activated protein kinase (AMPK) serves as a central regulator of cellular energy metabolic homeostasis. Emerging evidence indicates that interventions involving traditional Chinese medicine (TCM) components, as well as other pharmacological measures, exert beneficial effects on the intestinal mucosal inflammation and epithelial barrier dysfunction in UC by modulating AMPK signaling, thereby influencing biological processes such as cellular autophagy, apoptosis, inflammatory responses, macrophage polarization, and NLRP3 inflammasome-mediated pyroptosis. The role of AMPK in UC is of significant importance. This manuscript provides a comprehensive overview of the mechanisms through which AMPK is involved in UC, as well as a compilation of pharmacological agents capable of activating the AMPK signaling pathway within the context of UC. The primary objective is to facilitate a deeper comprehension of the pivotal role of AMPK in UC among researchers and clinical practitioners, thereby advancing the identification of novel therapeutic targets for interventions in UC.
Collapse
Affiliation(s)
- Yuyi Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Fang Wang
- Department of Rehabilitation Medicine, Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Jingshan, Hubei, 431800, People’s Republic of China
| | - Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Bo Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| |
Collapse
|
11
|
Choi NR, Kwon MJ, Choi WG, Kim SC, Park JW, Nam JH, Kim BJ. The traditional herbal medicines mixture, Banhasasim-tang, relieves the symptoms of irritable bowel syndrome via modulation of TRPA1, NaV1.5 and NaV1.7 channels. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116499. [PMID: 37059250 DOI: 10.1016/j.jep.2023.116499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The cause of irritable bowel syndrome (IBS), a functional gastrointestinal (GI) disorder, remains unclear. Banhasasim-tang (BHSST), a traditional herbal medicines mixture, mainly used to treat GI-related diseases, may have a potential in IBS treatment. IBS is characterized by abdominal pain as the main clinical symptom, which seriously affects the quality of life. AIM OF THE STUDY We conducted a study to evaluate the effectiveness of BHSST and its mechanisms of action in treating IBS. MATERIALS AND METHODS We evaluated the efficacy of BHSST in a zymosan-induced diarrhea-predominant animal model of IBS. Electrophysiological methods were used to confirm modulation of transient receptor potential (TRP) and voltage-gated Na+ (NaV) ion channels, which are associated mechanisms of action. RESULTS Oral administration of BHSST decreased colon length, increased stool scores, and increased colon weight. Weight loss was also minimized without affecting food intake. In mice administered with BHSST, the mucosal thickness was suppressed, making it similar to that of normal mice, and the degree of tumor necrosis factor-α was severely reduced. These effects were similar to those of the anti-inflammatory drug-sulfasalazine-and antidepressant-amitriptyline. Moreover, pain-related behaviors were substantially reduced. Additionally, BHSST inhibited TRPA1, NaV1.5, and NaV1.7 ion channels associated with IBS-mediated visceral hypersensitivity. CONCLUSIONS In summary, the findings suggest that BHSST has potential beneficial effects on IBS and diarrhea through the modulation of ion channels.
Collapse
Affiliation(s)
- Na Ri Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| | - Min Ji Kwon
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| | - Woo-Gyun Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| | - Sang Chan Kim
- College of Oriental Medicine Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Jae-Woo Park
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Kyungju, 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang, 10326, Republic of Korea.
| | - Byung Joo Kim
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
12
|
Han X, Zhou Q, Gao Z, Lin X, Zhou K, Cheng X, Chitrakar B, Chen H, Zhao W. In vitro digestion and fecal fermentation behaviors of polysaccharides from Ziziphus Jujuba cv. Pozao and its interaction with human gut microbiota. Food Res Int 2022; 162:112022. [DOI: 10.1016/j.foodres.2022.112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022]
|
13
|
Yu W, Liang Z, Li Q, Liu Y, Liu X, Jiang L, Liu C, Zhang Y, Kang C, Yan J. The pharmacological validation of the Xiao-Jian-Zhong formula against ulcerative colitis by network pharmacology integrated with metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115647. [PMID: 35987415 DOI: 10.1016/j.jep.2022.115647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) is pathologically characterized by an immune response accommodative insufficiency and dysbiosis accompanied by persistent epithelial barrier dysfunction, and is divided into ulcerative colitis (UC) and Crohn's disease (CD). Its progression increases the susceptibility to colitis-associated cancer (CAC), as well as other complications. The Xiao-Jian-Zhong (XJZ) formula has a historical application in the clinic to combat gastrointestinal disorders. AIM OF THE STUDY The investigation aimed to explore the molecular and cellular mechanisms of XJZ. MATERIALS AND METHODS Dextran sodium sulfate (DSS) was diluted in drinking water and given to mice for a week to establish murine models of experimental colitis, and the XJZ solution was administered for two weeks. Network pharmacology analysis and weighted gene co-expression network analysis (WGCNA) were utilized to predict the therapeutic role of XJZ against UC and CAC. 16S rRNA sequencing and untargeted metabolomics were conducted utilizing murine feces to examine the changes in the microbiome profile. Biochemical experiments were conducted to confirm the predicted functions. RESULTS XJZ treatment markedly attenuated DSS-induced experimental colitis progression, and the targets were enriched in inflammation, infection, and tumorigenesis, predicted by network pharmacology analysis. Based on The Cancer Genome Atlas (TCGA) database, the XJZ-targets were related to the survival probability in patients with colorectal cancer, underlying a potential therapeutic value in cancer intervention. Moreover, the XJZ therapy successfully rescued the decreased richness and diversity of microbiota, suppressed the potentially pathogenic phenotype of the gut microorganisms, and reversed the declined linoleic acid metabolism and increased cytochrome P450 activity in murine colitis models. Our in-vitro experiments confirmed that the XJZ treatment suppressed Caspase1-dependent pyroptosis and increased peroxisome proliferators-activated receptor-γ(PPAR-γ) expression in the colon, facilitated the alternative activation of macrophages (Mφs), inhibited tumor necrosis factor-α (TNFα)-induced reactive oxygen species (ROS) level in intestinal organoids (IOs), thereby favoring the mucosal healing. CONCLUSION The XJZ formula is efficacious for colitis by a prompt resolution of inflammation and dysbiosis, and by re-establishing a microbiome profile that favors re-epithelization, and prevents carcinogenesis.
Collapse
Affiliation(s)
- Wei Yu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Zhenghao Liang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Qi Li
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Yanzhi Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Xincheng Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Lu Jiang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Chen Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Yijia Zhang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Cai Kang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Jing Yan
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| |
Collapse
|
14
|
Zhou N, Long H, Yu L, Xia X, Zhu Z, Liu X. Selenium-containing polysaccharide from Spirulina platensis alleviates Cd-induced toxicity in mice by inhibiting liver inflammation mediated by gut microbiota. Front Nutr 2022; 9:950062. [PMID: 36407546 PMCID: PMC9669715 DOI: 10.3389/fnut.2022.950062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/28/2022] [Indexed: 10/24/2023] Open
Abstract
Selenium-containing polysaccharide from Spirulina platensis (Se-SPP) has been demonstrated to help in inhibiting cadmium-induced injury in mice, but the underlying mechanism has not been determined. This study aimed to investigate the beneficial effects of Se-SPP on alleviating Cd-induced toxicity in mice by targeting liver inflammatory and gut microbiota. Se-SPP supplementation for 28 days in Cd-induced toxic mice significantly mitigated liver pathological damage and inflammation, which was correlated to the upregulation of antioxidant enzyme activity. Furthermore, Se-SPP effectively restored Cd-induced disruption of the intestinal barrier compared to model group, as indicated by the depletion of Muribaculaceae and the enrichment of Ruminococcaceae. Spearman's correlation analysis revealed that the Se-SPP-altered microbes were highly correlated with inflammation-related indexes in Cd-induced toxic mice. Noteworthily, the modulation of Se-SPP on the Ruminococcaceae population contributed to the improvement of Cd-induced inflammation-related diseases by downregulating the tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) in the liver. These findings suggested that Se-SPP may act as prebiotics for ameliorating Cd-induced toxicity in mice by inhibiting liver inflammation mediated by gut microbiota, and target-specific microbiota of Cd-induced inflammation-related diseases deserve further attention.
Collapse
Affiliation(s)
- Ning Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Hairong Long
- Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Lian Yu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Xianghua Xia
- Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
15
|
Protective Effect of Dietary Polysaccharides from Yellow Passion Fruit Peel on DSS-Induced Colitis in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6298662. [PMID: 36285298 PMCID: PMC9588357 DOI: 10.1155/2022/6298662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/17/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
Inflammatory bowel disease (IBD) is a complex inflammatory disorder characterized by chronic and spontaneously relapsing inflammation of the gastrointestinal tract. IBD includes two idiopathic disorders: Crohn’s disease (CD) and ulcerative colitis (UC). In particular, UC causes inflammation and ulceration of the colon and rectum. There is no cure for UC. The pharmacological treatment is aimed at controlling and/or reducing the inflammatory process and promoting disease remission. The present study investigated the possible protective effects of soluble dietary fiber (SDF) isolated from yellow passion fruit peel in the dextran sulfate sodium- (DSS-) induced colitis model in mice, induced by 5% of DSS. The animals were treated with SDF (10, 30, or 100 mg/kg (po)), and the disease activity index was monitored. Colon tissues were collected, measured, and prepared for oxidative stress, inflammation, and histology analysis. SDF improved body weight loss, colon length, and disease activity index and prevented colonic oxidative stress by regulating GSH levels and SOD activity. Furthermore, SDF reduced colonic MPO activity, TNF-α, and IL-1β levels and increased IL-10 and IL-6 levels. As observed by histological analysis, SDF treatment preserved the colonic tissue, the mucus barrier, and reduced inflammatory cell infiltration. Although this is a preliminary study, taken together, our data indicate that SDF may improve the course of DSS-UC. More studies are needed to explore and understand how SDF promotes this protection.
Collapse
|
16
|
A Potential Role of Plant/Macrofungi/Algae-Derived Non-Starch Polysaccharide in Colitis Curing: Review of Possible Mechanisms of Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196467. [PMID: 36235004 PMCID: PMC9573148 DOI: 10.3390/molecules27196467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
Multiple in vitro and in vivo model investigations have suggested a broad spectrum of potential mechanisms by which plant/macrofungi-derived non-starch polysaccharides may play a role in the treatment of inflammatory bowel disease (IBD). This article reviews the in vivo and in vitro evidence of different plant-derived polysaccharides for IBD therapy. Their underlying mechanisms, particularly the molecular mechanisms associated with protective effects in the treatment and prevention of IDB, have been well summarized, including anti-inflammatory, epithelial barrier repair, and the regulation of intestinal flora. Emerging studies have observed the potent role of probiotics in IBD, particularly its ability to modulate gut microbiota, a well-known key factor for IBD. In summary, plant/macrofungi-derived polysaccharides have the potential to be a promising agent for the adjuvant treatment and prevention of IBD and will contribute to the design of well-designed clinical intervention trials that will ultimately improve the therapy of IBD.
Collapse
|
17
|
Derakhshan AR, Saeidinejat S, Khadem-Rezaiyan M, Asnaashari AMH, Mirsadraee M, Salari R, Jabbari-Azad F, Jalali S, Jalali S. The Effect of Glasthma Syrup in Asthma: a study protocol for a triple-blind randomized controlled trial. J Pharmacopuncture 2022; 25:233-241. [PMID: 36186097 PMCID: PMC9510144 DOI: 10.3831/kpi.2022.25.3.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/04/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives Asthma is a chronic disease, and the demand for herbal medicines in this field has increased in recent years. The new findings highlight the role of the gut-lung axis in the pathophysiology of asthma. Hence, this study will evaluate the safety and efficacy of Glasthma syrup, an herbal formula based on Persian medicine, in improving asthma and regulating intestinal permeability. The formula consists of five herbal ingredients that have anti-inflammatory effects on the respiratory tract, also known as gut tonics. Methods The study will be conducted as a placebo-controlled, triple-blind, randomized trial. It will consist of a 4-week intervention followed by a 4-week follow-up period. The target sample size is 20 patients with moderate asthma aged 18 to 60 years. Eligible participants will be randomly assigned to either the experimental group or the control group in equal numbers. Patients in the experimental group will take Glasthma syrup (7.5 mL, twice a day), while patients in the control group will take a matching placebo. Both groups will receive a 4-week combination of a long-acting beta2 agonist and a leukotriene modulator as standard of care. Inhaled corticosteroids can be used as rescue medication as needed. Results The primary outcomes are asthma symptom scale, lung function, and intestinal permeability. Secondary outcomes include quality of life, symptom recurrence rates, and blood tests. A safety assessment will also be conducted during the trial. Conclusion In this trial, the effects of Glasthma syrup in patients with moderate asthma will be examined. The study will also assess the effects of the formulation on the gut-lung axis by simultaneously monitoring the gut permeability index, asthma symptoms, and lung function.
Collapse
Affiliation(s)
- Ali Reza Derakhshan
- School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahin Saeidinejat
- Social Determinants of Health Research Center, Health School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khadem-Rezaiyan
- Department of Community Medicine and Public Health, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Majid Mirsadraee
- Department of Internal Medicine, Faculty of Medicine, Islamic Azad University-Mashhad Branch, Mashhad, Iran
| | - Roshanak Salari
- School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farahzad Jabbari-Azad
- Department of Immunology and Allergy, Head of Allergy Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Jalali
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shabnam Jalali
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Polysaccharides from Garlic Protect against Liver Injury in DSS-Induced Inflammatory Bowel Disease of Mice via Suppressing Pyroptosis and Oxidative Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2042163. [PMID: 36017235 PMCID: PMC9398839 DOI: 10.1155/2022/2042163] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Inflammatory bowel disease (IBD), a widespread intestinal disease threatening human health, is commonly accompanied by secondary liver injury (SLI). Pyroptosis and oxidative stress act as an important role underlying the pathophysiology of SLI, during which a large number of proinflammatory cytokines and oxidative intermediates can be produced, thereby causing the liver severely damaged. Suppression of pyroptosis and oxidative damage can be considered one of the critical strategies for SLI therapy. Garlic, a natural food with eatable and medicinal functions, is widely used in people's daily life. There is no study about the alleviation of garlic against IBD accompanied with SLI. This study is aimed at investigating the efficacy of the polysaccharides from garlic (PSG) in treating IBD and SLI, as well as its pharmacological mechanism. The results showed that PSG significantly alleviated dextran sulfate sodium-induced IBD determined by evaluating the bodyweight loss, disease activity index, colon length, and colonic pathological examination of mice. PSG significantly reduced the colonic inflammation by reversing the levels of myeloperoxidase, diamine oxidase activity, iNOS, and COX2 and strengthened the intestinal barrier by increasing the expressions of ZO1, occludin, and MUC2 of IBD mice. Furthermore, PSG strongly alleviated SLI determined by assessing the liver morphological change, liver index, levels of ALT and AST, and liver pathological change of mice. Mechanically, PSG reduced the high levels of LPS, IL-1β, IL18, NLRP3, gasdermin D, caspase 1, ASC, TLR4, MyD88, NF-κB, phospho-NF-κB, while it increased IL-10 in the livers of mice, indicating that PSG alleviated SLI by suppressing inflammation and pyroptosis. Additionally, PSG significantly inhibited the oxidative damage in the liver tissues of SLI mice by reducing the levels of ROS, MDA, Keap-1, 8-OHDG, and phospho-H2AX and increasing the levels of GPX4, SOD2, HO1, NQO1, and Nrf2. These findings suggested that the garlic polysaccharides could be used to treat IBD accompanied with SLI in humans.
Collapse
|
19
|
Hua Y, Xu XX, Guo S, Xie H, Yan H, Ma XF, Niu Y, Duan JA. Wild Jujube ( Ziziphus jujuba var. spinosa): A Review of Its Phytonutrients, Health Benefits, Metabolism, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7871-7886. [PMID: 35731918 DOI: 10.1021/acs.jafc.2c01905] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wild jujube, Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou, as a food and health supplement worldwide, has rich nutritional value. It contains nutrients such as nucleosides, amino acids, polysaccharides, and fatty oils. The fruits, seeds, and leaves of wild jujube can all be used for food, medicine, or health care purposes. Among these, the fruits play many roles, such as antioxidant, antibacterial, and anti-inflammatory functions, and can be used as a natural nutritional supplement to prevent aging. Simultaneously, the mature seed of wild jujube exhibits beneficial effects on central nervous system diseases and is often used for the treatment of insomnia and as a functional food for improving sleep quality and enhancing learning and memory. This review presents an overview of research progress relevant to the phytonutrients, biological functions, metabolism of bioactive compounds, and applications of wild jujube and aims to provide a scientific reference for the development and utilization of this plant.
Collapse
Affiliation(s)
- Yue Hua
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xiao-Xue Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Sheng Guo
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hong Xie
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hui Yan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xin-Fei Ma
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
20
|
Wang YJ, Li QM, Zha XQ, Luo JP. Intervention and potential mechanism of non-starch polysaccharides from natural resources on ulcerative colitis: A review. Int J Biol Macromol 2022; 210:545-564. [PMID: 35513106 DOI: 10.1016/j.ijbiomac.2022.04.208] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown etiology that affects the colon and rectum. It has evolved into a global burden due to the high incidence in developed countries and the highly-increased incidence in developing countries. Non-starch polysaccharides (NSPs) from natural resources, as a type of functional carbohydrates, have a significant therapeutic effect on UC because of their good anti-inflammatory and immunomodulatory activities. Based on the etiology and pathogenesis of UC, this review summarizes the intervention effects and mechanisms of NSPs in the prevention and treatment of UC. The results showed that NSPs can improve UC by protecting the intestinal mucosal barrier, regulating the immune response of the intestinal mucosa, and remodeling the intestinal flora and metabolites. These contents provide theoretical basis for the application of polysaccharides in the prevention and treatment of UC.
Collapse
Affiliation(s)
- Yu-Jing Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
21
|
Wang W, Gu W, He C, Zhang T, Shen Y, Pu Y. Bioactive components of Banxia Xiexin Decoction for the treatment of gastrointestinal diseases based on flavor-oriented analysis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115085. [PMID: 35150814 DOI: 10.1016/j.jep.2022.115085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin Decoction (BXD) was first recorded in a Chinese medical classic, Treatise on Febrile Diseases and Miscellaneous Diseases, which was written in the Eastern Han dynasty of China. This ancient prescription consists of seven kinds of Chinese herbal medicine, namely, Pinellia ternata, Rhizoma Coptidis, Radix scutellariae, Rhizoma Zingiberis, Ginseng, Jujube, and Radix Glycyrrhizaepreparata. In clinic practice, its original application in China mainly has focused on the treatment of chronic gastritis for several hundred years. BXD is also effective in treating other gastrointestinal diseases (GIDs) in modern medical application. Despite available literature support and clinical experience, the treatment mechanisms or their relationships with the bioactive compounds in BXD responsible for its pharmacological actions, still need further explorations in more diversified channels. According to the analysis based on the five-flavor theory of TCM, BXD is traditionally viewed as the most representative prescription for pungent-dispersion, bitter-purgation and sweet-tonification. Consequently, based on the flavor-oriented analysis, the compositive herbs in BXD can be divided into three flavor groups, namely, the pungent, bitter, and sweet groups, each of which has specific active ingredients that are possibly relevant to GID treatment. AIM OF THE REVIEW This paper summarized recent literatures on BXD and its bioactive components used in GID treatment, and provided the pharmacological or chemical basis for the further exploration of the ancient prescription and the relative components. METHOD ology: Relevant literature was collected from various electronic databases such as Pubmed, Web of Science, and China National Knowledge Infrastructure (CNKI). Citations were based on peer-reviewed articles published in English or Chinese during the last decade. RESULTS Multiple components were found in the pungent, bitter, and sweet groups in BXD. The corresponding bioactive components include gingerol, shogaol, stigmasterol, and β-sitosterol in the pungent group; berberine, palmatine, coptisine, baicalein, and baicalin in the bitter group; and ginsenosides, polysaccharides, liquiritin, and glycyrrhetinic acid in the sweet group. These components have been found directly or indirectly responsible for the remarkable effects of BXD on GID. CONCLUSION This review provided some valuable reference to further clarify BXD treatment for GID and their possible material basis, based on the perspective of the flavor-oriented analysis.
Collapse
Affiliation(s)
- Weiwei Wang
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weiliang Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chao He
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yao Shen
- Shanghai Center of Biomedicine Development, Shanghai, 201203, China.
| | - Yiqiong Pu
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
22
|
Dietary polysaccharides from guavira pomace, a co-product from the fruit pulp industry, display therapeutic application in gut disorders. Food Res Int 2022; 156:111291. [DOI: 10.1016/j.foodres.2022.111291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
|
23
|
Huo J, Wu Z, Sun W, Wang Z, Wu J, Huang M, Wang B, Sun B. Protective Effects of Natural Polysaccharides on Intestinal Barrier Injury: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:711-735. [PMID: 35078319 DOI: 10.1021/acs.jafc.1c05966] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their minimal side effects and effective protection from oxidative stress, inflammation, and malignant growth, natural polysaccharides (NPs) are a potential adjuvant therapy for several diseases caused by intestinal barrier injury (IBI). More studies are accumulating on the protective effects of NPs with respect to IBI, but the underlying mechanisms remain unclear. Thus, this review aims to represent current studies that investigate the protective effects of NPs on IBI by directly maintaining intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression) and indirectly regulating intestinal immunity and microbiota. Furthermore, the mechanisms underlying IBI development are briefly introduced, and the structure-activity relationships of polysaccharides with intestinal barrier protection effects are discussed. Potential developments and challenges associated with NPs exhibiting protective effects against IBI have also been highlighted to guide the application of NPs in the treatment of intestinal diseases caused by IBI.
Collapse
Affiliation(s)
- Jiaying Huo
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Ziyan Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Bowen Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| |
Collapse
|
24
|
Yuan D, Li C, Huang Q, Fu X, Dong H. Current advances in the anti-inflammatory effects and mechanisms of natural polysaccharides. Crit Rev Food Sci Nutr 2022; 63:5890-5910. [PMID: 35021901 DOI: 10.1080/10408398.2022.2025535] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic, multifactorial and inflammatory disease occurring in the colon tract. Bioactive polysaccharides from natural resources have attracted extensive attention due to their safety, accessibility and good bioactivities. In recent years, a variety of natural bioactive polysaccharides have been proven to possess anti-inflammatory effects on treating acute colitis. The objective of this review was to give an up-to-date review on the anti-inflammatory effects and mechanisms of natural polysaccharides on acute colitis. The anti-inflammatory effects of natural polysaccharides on acute colitis concerning clinical symptoms amelioration, colon tissue repairment, anti-oxidative stress alleviation, anti-inflammation, immune regulation, and gut microbiota modulation were comprehensively summarized. In addition, inducible murine models for assessing the anti-inflammatory effects of natural polysaccharides on acute colitis were also concluded. This review will offer the comprehensive understanding of anti-inflammatory mechanisms of natural polysaccharides in acute colitis, and render theoretical basis for the development and application of natural polysaccharides in drug and functional food.
Collapse
Affiliation(s)
- Dan Yuan
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chao Li
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
25
|
Li J, Huang G. Extraction, purification, separation, structure, derivatization and activities of polysaccharide from Chinese date. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Jujube polysaccharides mitigated anemia in rats with chronic kidney disease: Regulation of short chain fatty acids release and erythropoietin production. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
27
|
Le Phan TH, Park SY, Jung HJ, Kim MW, Cho E, Shim KS, Shin E, Yoon JH, Maeng HJ, Kang JH, Oh SH. The Role of Processed Aloe vera Gel in Intestinal Tight Junction: An In Vivo and In Vitro Study. Int J Mol Sci 2021; 22:ijms22126515. [PMID: 34204534 PMCID: PMC8235210 DOI: 10.3390/ijms22126515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
Leaky gut is a condition of increased paracellular permeability of the intestine due to compromised tight junction barriers. In recent years, this affliction has drawn the attention of scientists from different fields, as a myriad of studies prosecuted it to be the silent culprit of various immune diseases. Due to various controversies surrounding its culpability in the clinic, approaches to leaky gut are restricted in maintaining a healthy lifestyle, avoiding irritating factors, and practicing alternative medicine, including the consumption of supplements. In the current study, we investigate the tight junction-modulating effects of processed Aloe vera gel (PAG), comprising 5–400-kD polysaccharides as the main components. Our results show that oral treatment of 143 mg/kg PAG daily for 10 days improves the age-related leaky gut condition in old mice, by reducing their individual urinal lactulose/mannitol (L/M) ratio. In concordance with in vivo experiments, PAG treatment at dose 400 μg/mL accelerated the polarization process of Caco-2 monolayers. The underlying mechanism was attributed to enhancement in the expression of intestinal tight junction-associated scaffold protein zonula occludens (ZO)-1 at the translation level. This was induced by activation of the MAPK/ERK signaling pathway, which inhibits the translation repressor 4E-BP1. In conclusion, we propose that consuming PAG as a complementary food has the potential to benefit high-risk patients.
Collapse
Affiliation(s)
- Thu Han Le Phan
- College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.H.L.P.); (H.J.J.); (J.-H.Y.); (H.-J.M.)
| | - Se Yong Park
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.Y.P.); (M.W.K.)
| | - Hyun Jin Jung
- College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.H.L.P.); (H.J.J.); (J.-H.Y.); (H.-J.M.)
| | - Min Woo Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.Y.P.); (M.W.K.)
| | - Eunae Cho
- Univera Co., Ltd., Seoul 04782, Korea; (E.C.); (K.-S.S.); (E.S.)
| | - Kyu-Suk Shim
- Univera Co., Ltd., Seoul 04782, Korea; (E.C.); (K.-S.S.); (E.S.)
| | - Eunju Shin
- Univera Co., Ltd., Seoul 04782, Korea; (E.C.); (K.-S.S.); (E.S.)
| | - Jin-Ha Yoon
- College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.H.L.P.); (H.J.J.); (J.-H.Y.); (H.-J.M.)
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.H.L.P.); (H.J.J.); (J.-H.Y.); (H.-J.M.)
| | - Ju-Hee Kang
- College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.H.L.P.); (H.J.J.); (J.-H.Y.); (H.-J.M.)
- Correspondence: (J.-H.K.); (S.H.O.); Tel./Fax: +82-32-820-4929 (S.H.O.)
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.H.L.P.); (H.J.J.); (J.-H.Y.); (H.-J.M.)
- Correspondence: (J.-H.K.); (S.H.O.); Tel./Fax: +82-32-820-4929 (S.H.O.)
| |
Collapse
|
28
|
Wang F, Sun X, Dong J, Cui R, Liu X, Li X, Wang H, He T, Zheng P, Wang R. A primary study of breeding system of Ziziphus jujuba var. spinosa. Sci Rep 2021; 11:10318. [PMID: 33990668 PMCID: PMC8121906 DOI: 10.1038/s41598-021-89696-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/26/2021] [Indexed: 11/28/2022] Open
Abstract
Ziziphus jujuba var. spinosa has been used as a windbreak and for soil conservation and water retention. Previous studies focused on pharmacological effects and extraction of chemical components in this species, and very few explored the breeding system. The present study combined the analysis of floral morphology, behavior of flower visitors, and artificial pollination to reveal reproductive characteristics of the species. Its flowers are characterized by dichogamy, herkogamy, and stamen movement, which are evolutionary adaptations to its breeding system. There were more than 40 species of visiting insects, mainly Hymenoptera and Diptera, and the characteristics of dichogamous and herkogamous flower adapted to the visiting insects. The breeding system is outcrossing, partially self-compatible, and demand for pollinators. The fruit setting rate after natural pollination was 2%. Geitonogamy and xenogamy did not significantly increase the fruit setting rate, indicating that the low fruit setting rate was not due to pollen limitation by likely caused by resource limitation or fruit consumption. The fruit setting rate of zero in emasculated and in naturally and hand self-pollinated individuals suggested the absence of apomixis and spontaneous self-pollination. The above results can be utilized in studies on evolution and cultivation of Z. jujuba var. spinosa.
Collapse
Affiliation(s)
- Feng Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Xiaohan Sun
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Jibin Dong
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Rong Cui
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Xiao Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Xiangxiang Li
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Tongli He
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Peiming Zheng
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China.
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China.
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China.
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| |
Collapse
|
29
|
Zong X, Cheng Y, Xiao X, Fu J, Wang F, Lu Z, Wang Y, Jin M. Protective effects of sulfated polysaccharide from Enterobacter cloacae Z0206 against DSS-induced intestinal injury via DNA methylation. Int J Biol Macromol 2021; 183:861-869. [PMID: 33940061 DOI: 10.1016/j.ijbiomac.2021.04.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
We previously obtained and characterized a novel sulfated derivative of the exopolysaccharides from Enterobacter cloacae Z0206 (SEPS). This study aimed at investigating the effects and mechanism of SEPS against dextran sulfate sodium (DSS) induced intestinal injury. The results showed that SEPS increased the proliferation and survival of intestinal epithelial cells during DSS stimulation. Furthermore, SEPS maintained the barrier function and inflammatory response via JAK2 and MAPK signaling to protect against DSS-induced intestinal injury. Mechanistically, SEPS elevated the DNA methylation in the promoter region to negatively regulate the JAK2 and MAPKs expression. Thus, the current study shows the potential effects and mechanism of SEPS on DSS-induced intestinal epithelial cell injury.
Collapse
Affiliation(s)
- Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Yuanzhi Cheng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Xiao Xiao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Fengqin Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China.
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China.
| |
Collapse
|
30
|
Li C, Wu G, Zhao H, Dong N, Wu B, Chen Y, Lu Q. Natural-Derived Polysaccharides From Plants, Mushrooms, and Seaweeds for the Treatment of Inflammatory Bowel Disease. Front Pharmacol 2021; 12:651813. [PMID: 33981232 PMCID: PMC8108135 DOI: 10.3389/fphar.2021.651813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease impairing the gastrointestinal tract, and its incidence and prevalence have been increasing over time worldwide. IBD greatly reduces peoples' quality of life and results in several life-threatening complications, including polyp, toxic colonic dilatation, intestinal perforation, gastrointestinal bleeding, and cancerization. The current therapies for IBD mainly include drugs for noncritical patients and operation for critical patients. However, continuous use of these drugs causes serious side effects and increased drug resistance, and the demand of effective and affordable drugs with minimal side effects for IBD sufferers is urgent. Natural-derived polysaccharides are becoming a research hotspot for their therapeutic effects on IBD. This study focuses on the research progress of various natural polysaccharides from plants, seaweeds, and mushrooms for the treatment of IBD during recent 20 years. Regulation of oxidative stress, inflammatory status, gut microbiota, and immune system and protection of the intestinal epithelial barrier function are the underlying mechanisms for the natural-derived polysaccharides to treat IBD. The excellent efficacy and safety of polysaccharides make them promising candidates for IBD therapy.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Guosong Wu
- Pharmacy Department, Baiyun Branch of Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Hualang Zhao
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Na Dong
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Bowen Wu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Yujia Chen
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| |
Collapse
|
31
|
Zhou HC, Guo CA, Yu WW, Yan XY, Long JP, Liu ZC, Liang XQ, Liu HB. Zizyphus jujuba cv. Muzao polysaccharides enhance intestinal barrier function and improve the survival of septic mice. J Food Biochem 2021; 45:e13722. [PMID: 33855723 DOI: 10.1111/jfbc.13722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to examine the role of Zizyphus jujuba cv. Muzao polysaccharides (ZJPs) in protecting intestinal barrier function and the survival of septic mice. The sepsis mouse model was generated through cecal ligation and puncture (CLP) to observe the effect of ZJPs on the function of the intestinal barrier in the context of sepsis. We observed the clinical symptoms and survival time of the mice and evaluated serum inflammatory cytokines, intestinal pathological changes and intestinal permeability. Moreover, tight junction (TJ) proteins and apoptosis-associated proteins in intestinal tissue were examined. Finally, TLR4/NF-κB pathway-related proteins were measured in all groups. The results showed that pretreatment with ZJPs improved clinical and histological scores and reduced intestinal barrier permeability, and the levels of proinflammatory factors were decreased. Pretreatment with ZJPs also upregulated the levels of TJ proteins and downregulated the expression of proapoptotic proteins. Moreover, the activation of TLR4/NF-κB signaling was partly inhibited in septic mice by ZJPs pretreatment. The current study provides evidence that ZJPs have the potential to protect intestinal barrier function and improve the survival of septic mice via the attenuation of TLR4/NF-κB inflammatory signaling. PRACTICAL APPLICATIONS: This study reports the potential protective effect of ZJPs against cecal ligation and puncture (CLP)-induced sepsis. Our data reveal that CLP induced damage to the gut mucosal barrier, inflammation, and apoptosis in intestinal tissues. However, pretreatment with ZJPs improved clinical and histological scores, reduced intestinal barrier permeability, and decreased the levels of proinflammatory factors in mice. Pretreatment with ZJPs also upregulated the levels of TJ proteins and downregulated the expression of proapoptotic proteins. Moreover, the activation of TLR4/NF-κB signaling was partly inhibited in septic mice after ZJPs pretreatment. These findings provide evidence that pretreatment with ZJPs has the potential to attenuate CLP-induced gut damage in mice by restraining inflammation and apoptosis via the attenuation of NF-κB signaling. It provides a basis for further study of ZJPs in sepsis.
Collapse
Affiliation(s)
- Hai-Cun Zhou
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Chang-An Guo
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Wen-Wen Yu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Xin-Yan Yan
- Department of General Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, P.R. China
| | - Jian-Ping Long
- Department of General Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, P.R. China
| | - Zhi-Chang Liu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Xiao-Qin Liang
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,Pathology Department, Gansu Province People Hospital, Lanzhou, P.R. China
| | - Hong-Bin Liu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,Clinical Medical College, Northwest Minzu University, Lanzhou, P.R. China
| |
Collapse
|
32
|
Wu D, Ye X, Linhardt RJ, Liu X, Zhu K, Yu C, Ding T, Liu D, He Q, Chen S. Dietary pectic substances enhance gut health by its polycomponent: A review. Compr Rev Food Sci Food Saf 2021; 20:2015-2039. [PMID: 33594822 DOI: 10.1111/1541-4337.12723] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Pectic substances, one of the cell wall polysaccharides, exist widespread in vegetables and fruits. A surge of recent research has revealed that pectic substances can inhibit gut inflammation and relieve inflammatory bowel disease symptoms. However, physiological functions of pectins are strongly structure dependent. Pectic substances are essentially heteropolysaccharides composed of homogalacturonan and rhamnogalacturonan backbones substituted by various neutral sugar sidechains. Subtle changes in the architecture of pectic substances may remarkably influence the nutritional function of gut microbiota and the host homeostasis of immune system. In this context, developing a structure-function understanding of how pectic substances have an impact on an inflammatory bowel is of primary importance for diet therapy and new drugs. Therefore, the present review has summarized the polycomponent nature of pectic substances, the activities of different pectic polymers, the effects of molecular characteristics and the underlying mechanisms of pectic substances. The immunomodulated property of pectic substances depends on not only the chemical composition but also the physical structure characteristics, such as molecular weight (Mw ) and chain conformation. The potential mechanisms by which pectic substances exert their protective effects are mainly reversing the disordered gut microbiota, regulating immune cells, enhancing barrier function, and inhibiting pathogen adhesion. The manipulation of pectic substances on gut health is sophisticated, and the link between structural specificity of pectins and selective regulation needs further exploration.
Collapse
Affiliation(s)
- Dongmei Wu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Xuwei Liu
- UMR408, Sécurité et Qualité des Produits d'Origine Végétale (SQPOV), INRAE, Avignon, France
| | - Kai Zhu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Chengxiao Yu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Tian Ding
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shiguo Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Liang H, Cheng R, Wang J, Xie H, Li R, Shimizu K, Zhang C. Mogrol, an aglycone of mogrosides, attenuates ulcerative colitis by promoting AMPK activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153427. [PMID: 33296813 DOI: 10.1016/j.phymed.2020.153427] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/03/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a non-specific chronic inflammatory disease. The incidence of UC in China has been increasing in recent years. Mogrol is an aglycone of mogrosides. Studies have shown that mogrosides have anti-oxygenation, anti-inflammatory, and laxative effects as well as other biological activities. PURPOSE To investigate the beneficial effects of mogrol on UC and identify its underlying mechanisms. STUDY DESIGN We used the dextran sodium sulphate (DSS)-induced UC model in mice, TNF-α-damaged NCM460 colonic epithelial cells, macrophage cells THP-M stimulated with lipopolysaccharide (LPS) / adenosine triphosphate (ATP) and compound C (an AMPK inhibitor) to confirm the key role of AMPK (AMP-activated protein kinase) activation. METHODS Histological evaluation, immunohistochemical staining, Western blot analysis, immunofluorescence assay and quantitative real time-PCR were used in the study. RESULTS Oral administration of mogrol (5 mg/kg/daily) in vivo significantly attenuated pathological colonic damage, inhibited inflammatory infiltration and improved the abnormal expression of NLRP3 inflammasome in colonic mucosa via the AMPK and NF-κB signaling pathways. In vitro, mogrol protected against intestinal epithelial barrier dysfunction by activating AMPK in TNF-α-treated NCM460 cells and inhibited the production of inflammatory mediator in LPS-stimulated THP-M cells. Furthermore, mogrol's effects were reversed by compound C intervention in DSS-induced UC model. CONCLUSION Mogrol exerts protective effects in experimental UC and inhibits production of inflammatory mediators through activation of AMPK-mediated signaling pathways.
Collapse
Affiliation(s)
- Han Liang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China; Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Rui Cheng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiaoyang Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Haifeng Xie
- Research and Development Department, Chengdu Biopurify Phytochemicals Ltd., Chengdu, China
| | - Renshi Li
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China.
| | - Kuniyoshi Shimizu
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China; Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Chaofeng Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China; Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
34
|
Zhang Y, Xie Q, You L, Cheung PCK, Zhao Z. Behavior of Non-Digestible Polysaccharides in Gastrointestinal Tract: A Mechanistic Review of its Anti-Obesity Effect. EFOOD 2021. [DOI: 10.2991/efood.k.210310.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
35
|
Polysaccharide from Gracilaria Lemaneiformis prevents colitis in Balb/c mice via enhancing intestinal barrier function and attenuating intestinal inflammation. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106048] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Zheng B, Ying M, Xie J, Chen Y, Wang Y, Ding X, Hong J, Liao W, Yu Q. A Ganoderma atrum polysaccharide alleviated DSS-induced ulcerative colitis by protecting the apoptosis/autophagy-regulated physical barrier and the DC-related immune barrier. Food Funct 2020; 11:10690-10699. [PMID: 33220673 DOI: 10.1039/d0fo02260h] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polysaccharides are one of the main active substances in Ganoderma atrum (G. atrum). The purpose of this study was to explore the protective effect of a G. atrum polysaccharide (PSG-1) on DSS-induced colitis and the underlying mechanism. The results showed that PSG-1 could maintain the integrity of the intestinal structure by promoting the expression of goblet cells and levels of tight junction proteins in the colon of DSS-induced colitis mice. Furthermore, PSG-1 relieved the inhibition of Bcl-2 and the overexpression of caspase-3 and caspase-9 caused by DSS. Simultaneously, PSG-1 restored the expression of Atg5, Atg7 and beclin-1 and inhibited the p-akt and p-mTOR levels, suggesting that PSG-1 promoted autophagy via the Akt/mTOR pathway. Moreover, PSG-1 inhibited the content of DCs in the colon and modulated the expression of IL-10 in DCs. In conclusion, PSG-1 alleviated DSS-induced ulcerative colitis by protecting the apoptosis/autophagy-regulated physical barrier and the DC-related immune barrier.
Collapse
Affiliation(s)
- Bing Zheng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ge Y, Ahmed S, Yao W, You L, Zheng J, Hileuskaya K. Regulation effects of indigestible dietary polysaccharides on intestinal microflora: An overview. J Food Biochem 2020; 45:e13564. [PMID: 33219555 DOI: 10.1111/jfbc.13564] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/20/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
The human intestinal contains rich and diverse microbiota that utilizes a variety of polysaccharides. The intestinal microflora extends the metabolic functions of the body, obtaining energy from indigestible dietary polysaccharides. It is not only a highly competitive environment but also a comprehensive collaboration for these polysaccharides, as the microbiota work to maximize the energy harvested from them through the intestine. Indigestible dietary polysaccharides help to manage colon health and host health by affecting the gut microbial population. These polysaccharides also influence the metabolic activity of the intestinal microbiota by stimulating the formation of SCFAs. Most of these metabolic activities affect host physiology because the epithelium absorbs secondary metabolites and end products or transports them to the liver, where they could exert other beneficial effects. This article reviews the carbohydrates existing in the human intestine, the regulating actions of indigestible polysaccharides on intestinal microflora, and the molecular basis of the degradation process of these polysaccharides. PRACTICAL APPLICATIONS: Large deals of researches have shown that indigestible polysaccharides possess an outstanding regulation effect on the intestinal microflora, which indicates that indigestible polysaccharides have the potential to be used as prebiotics in the functional food and pharmaceutical industries. However, it is not clear how gut microbiota metabolizes these dietary polysaccharides, and how the resulting gut metabolites may further affect the intestinal microflora population and metabolism. This paper reviews the indigestible dietary polysaccharides existing in the human intestine, the regulation of polysaccharides on gut microbiota, and the molecular basis of the degradation process of these polysaccharides. This review helps to better understand the relationship between indigestible dietary polysaccharides and intestinal microflora, which will provide powerful evidence for the potential use of these polysaccharides as functional foods.
Collapse
Affiliation(s)
- Yazhong Ge
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Infinitus (China) Company Ltd, Guangzhou, China
| | - Shahid Ahmed
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Jianxian Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
38
|
Wu H, Xie S, Miao J, Li Y, Wang Z, Wang M, Yu Q. Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa. Gut Microbes 2020; 11:997-1014. [PMID: 32138622 PMCID: PMC7524370 DOI: 10.1080/19490976.2020.1734423] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Little is known about the regulatory effect of microbiota on the proliferation and regeneration of ISCs. Here, we found that L. reuteri stimulated the proliferation of intestinal epithelia by increasing the expression of R-spondins and thus activating the Wnt/β-catenin pathway. The proliferation-stimulating effect of Lactobacillus on repair is further enhanced under TNF -induced intestinal mucosal damage, and the number of Lgr5+ cells is maintained. Moreover, compared to the effects of C. rodentium on the induction of intestinal inflammation and crypt hyperplasia in mice, L. reuteri protected the intestinal mucosal barrier integrity by moderately modulating the Wnt/β-catenin signaling pathway to avoid overactivation. L. reuteri had the ability to maintain the number of Lgr5+ cells and stimulate intestinal epithelial proliferation to repair epithelial damage and reduce proinflammatory cytokine secretion in the intestine and the LPS concentration in serum. Moreover, activation of the Wnt/β-catenin pathway also induced differentiation toward Paneth cells and increased antimicrobial peptide expression to inhibit C. rodentium colonization. The protective effect of Lactobacillus against C. rodentium infection disappeared upon application of the Wnt antagonist Wnt-C59 in both mice and intestinal organoids. This study demonstrates that Lactobacillus is effective at maintaining intestinal epithelial regeneration and homeostasis as well as at repairing intestinal damage after pathological injury and is thus a promising alternative therapeutic method for intestinal inflammation.
Collapse
Affiliation(s)
- Haiqin Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Shuang Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Zhihua Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Minjuan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Qinghua Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China,CONTACT Qinghua Yu MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu210095, PR China
| |
Collapse
|
39
|
Parisio C, Lucarini E, Micheli L, Toti A, Khatib M, Mulinacci N, Calosi L, Bani D, Di Cesare Mannelli L, Ghelardini C. Pomegranate Mesocarp against Colitis-Induced Visceral Pain in Rats: Effects of a Decoction and Its Fractions. Int J Mol Sci 2020; 21:E4304. [PMID: 32560291 PMCID: PMC7353021 DOI: 10.3390/ijms21124304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
The management of chronic visceral pain related to Inflammatory Bowel Diseases or Irritable Bowel Syndrome is still a clinical problem and new therapeutic strategies continue to be investigated. In the present study, the efficacy of a pomegranate decoction and of its polysaccharide and ellagitannin components in preventing the development of colitis-induced abdominal pain in rats was evaluated. After colitis induction by 2,4-dinitrobenzenesulfonic acid (DNBS), the pomegranate decoction (300 mg kg-1), polysaccharides (300 mg kg-1), and ellagitannins (45 mg kg-1) were orally administered for 14 days. Repeated treatment with decoction reduced visceral hypersensitivity in the colitic animals both at 7 and 14 days. Similar efficacy was shown by polysaccharides, but with lower potency. Ellagitannins administered at dose equivalent to decoction content showed higher efficacy in reducing the development of visceral pain. Macroscopic and microscopic evaluations performed on the colon 14 days after the damage showed that all three preparations reduced the overall amount of mast cells, the number of degranulated mast cells, and the density of collagen fibers in the mucosal stroma. Although ellagitannins seem to be responsible for most of the beneficial effects of pomegranate on DNBS-induced colitis, the polysaccharides support and enhance its effect. Therefore, pomegranate mesocarp preparations could represent a complementary approach to conventional therapies for promoting abdominal pain relief.
Collapse
Affiliation(s)
- Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Mohamad Khatib
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmaceutical and Nutraceutical Division, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (M.K.); (N.M.)
| | - Nadia Mulinacci
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmaceutical and Nutraceutical Division, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (M.K.); (N.M.)
| | - Laura Calosi
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (L.C.); (D.B.)
| | - Daniele Bani
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (L.C.); (D.B.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| |
Collapse
|
40
|
Han X, Bai B, Zhou Q, Niu J, Yuan J, Zhang H, Jia J, Zhao W, Chen H. Dietary supplementation with polysaccharides from Ziziphus Jujuba cv. Pozao intervenes in immune response via regulating peripheral immunity and intestinal barrier function in cyclophosphamide-induced mice. Food Funct 2020; 11:5992-6006. [PMID: 32697211 DOI: 10.1039/d0fo00008f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ziziphus Jujuba cv. Pozao has been consumed as a traditional fruit with regional characteristics in China for a long time; however, fewer studies on polysaccharides from Ziziphus Jujuba cv. Pozao (JP) have been documented. This study aimed to evaluate the effect of oral administration of JP on cyclophosphamide-induced ICR mice for 28 days. The results showed that oral administration of JP could significantly improve the lymphocyte proliferation in the spleen and decrease the proportion of CD3+ and CD4+ and the ratio of CD4+/CD8+ in cyclophosphamide-induced mice in a dose-dependent manner. JP treatment also increased the levels of IL-2, IL-4, IL-10, IFN-γ, and TNF-α in serum and the intestine, and the improvement effects were proportional to the dose of JP. Similarly, JP significantly increased the levels of IgA and SIgA, as well as the expressions of Claudin-1 and Occludin in the intestine. Particularly, the expressions of Claudin-1 and Occludin were the best in the M-JP group. Furthermore, JP positively regulated the gut microbiota as indicated by the enriched microbiota diversity. At the phylum level, the relative abundance of Firmicutes was significantly decreased by JP, while that of Bacteroidetes was increased by JP treatment. More importantly, the ratio of Firmicutes/Bacteroidetes was significantly increased. And a high dose of JP is the most effective. At the genus level, the abundances of the Bacteroidales-S24-7-group, Lachnospiraceae, Alloprevotella, Alistipes and Bacteroides were increased by JP treatment. These results provided evidence for the regulating effect of JP on the peripheral immunity and intestinal barrier function in cyclophosphamide-induced hypoimmune mice.
Collapse
Affiliation(s)
- Xue Han
- Department of Nutritional and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Polysaccharides that contain many sugar monomers include starch and non-starch polysaccharides (NSPs) together with resistant starch (RS). Dietary polysaccharides are well known to have a wide range of biological benefits for bowel health. Gut microbiota and their fermentative products, short chain fatty acids (SCFA), which have recently been highlighted as metabolic regulators, are thought to mediate the function of dietary complex carbohydrates and bowel health. We discuss the influence of various polysaccharides on human bowel health and the mechanisms underlying these effects. We also describe their biological effects on intestinal health and the mechanisms underlying their activity; the polysaccharides were divided into three categories: dietary, microbial, and host-derived polysaccharides. Physiological impacts of non-starch polysaccharides (NSPs) and resistant starch (RS), both of which pass through the small intestine nearly intact and can be fermented by gut microbiota in the large intestine, are similar to each other. They exert a wide range of beneficial effects including anti-inflammation, gut epithelial barrier protection, and immune modulation through both microbiota-dependent and -independent mechanisms. Bacterial polysaccharides usually found in the cell wall generally act as immune modulators, and host-derived polysaccharides not only protect host cells from pathogenic microbial neighbors but also affect overall intestinal health via interactions with gut microbes. Considering these observations, further studies on polysaccharides will be important for bowel health.
Collapse
Affiliation(s)
- Moon Ho Do
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| | - Ye Seul Seo
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| | - Ho-Young Park
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| |
Collapse
|
42
|
Ji X, Hou C, Gao Y, Xue Y, Yan Y, Guo X. Metagenomic analysis of gut microbiota modulatory effects of jujube (Ziziphus jujuba Mill.) polysaccharides in a colorectal cancer mouse model. Food Funct 2020; 11:163-173. [DOI: 10.1039/c9fo02171j] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accumulating evidence has reported that the gut microbiota could play important roles in the occurrence and progression of colorectal cancer.
Collapse
Affiliation(s)
- Xiaolong Ji
- School of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P.R. China
| | - Chunyan Hou
- School of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P.R. China
| | - Yonggang Gao
- Basic Medical College
- Hebei University of Chinese Medicine
- Shijiazhuang 050200
- PR China
| | - Yuqiang Xue
- Basic Medical College
- Hebei University of Chinese Medicine
- Shijiazhuang 050200
- PR China
| | - Yizhe Yan
- School of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P.R. China
| | - Xudan Guo
- Basic Medical College
- Hebei University of Chinese Medicine
- Shijiazhuang 050200
- PR China
| |
Collapse
|
43
|
Vargas-Robles H, Castro-Ochoa KF, Citalán-Madrid AF, Schnoor M. Beneficial effects of nutritional supplements on intestinal epithelial barrier functions in experimental colitis models in vivo. World J Gastroenterol 2019; 25:4181-4198. [PMID: 31435172 PMCID: PMC6700707 DOI: 10.3748/wjg.v25.i30.4181] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/12/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
Acute and chronic colitis affect a huge proportion of the population world-wide. The etiology of colitis cases can be manifold, and diet can significantly affect onset and outcome of colitis. While many forms of acute colitis are easily treatable, chronic forms of colitis such as ulcerative colitis and Crohn's disease (summarized as inflammatory bowel diseases) are multifactorial with poorly understood pathogenesis. Inflammatory bowel diseases are characterized by exacerbated immune responses causing epithelial dysfunction and bacterial translocation. There is no cure and therapies aim at reducing inflammation and restoring intestinal barrier function. Unfortunately, most drugs can have severe side effects. Changes in diet and inclusion of nutritional supplements have been extensively studied in cell culture and animal models, and some supplements have shown promising results in clinical studies. Most of these nutritional supplements including vitamins, fatty acids and phytochemicals reduce oxidative stress and inflammation and have shown beneficial effects during experimental colitis in rodents induced by dextran sulphate sodium or 2,4,6-trinitrobenzene sulfonic acid, which remain the gold standard in pre-clinical colitis research. Here, we summarize the mechanisms through which such nutritional supplements contribute to epithelial barrier stabilization.
Collapse
Affiliation(s)
- Hilda Vargas-Robles
- Department for Molecular Biomedicine, Cinvestav-IPN, Mexico City 07360, Mexico
| | | | | | - Michael Schnoor
- Department for Molecular Biomedicine, Cinvestav-IPN, Mexico City 07360, Mexico
| |
Collapse
|
44
|
Liu J, Yu L, Mo N, Lan H, Zhang Y, Liu X, Wu Q. Supercritical Fluid Extract of Angelica sinensis and Zingiber officinale Roscoe Ameliorates TNBS-Induced Colitis in Rats. Int J Mol Sci 2019; 20:E3816. [PMID: 31387229 PMCID: PMC6696010 DOI: 10.3390/ijms20153816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a worldwide healthcare problem calling for the development of new therapeutic drugs. Angelica sinensis and Zingiber officinale Roscoe are two common dietetic Chinese herbs, which are traditionally used for complementary treatment of gastrointestinal disorders. As bioactive constituents, volatile and pungent substances of these two herbs could be effectively extracted together by supercritical fluid extraction. In this study, the supercritical fluid extract of Angelica sinensis and Zingiber officinale Roscoe (AZ-SFE) was obtained by an optimized extraction process and it was chemically characterized. The anti-inflammatory effect and underlying mechanism of AZ-SFE were evaluated in a lipopolysaccharide (LPS)-induced RAW264.7 cell model and a 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rat model. AZ-SFE notably inhibited the production of NO in LPS-stimulated macrophages, and it inhibited the proliferation of Concanavalin A (Con A)-induced splenocytes with suppression of the Th1 immune response. In vivo, the study demonstrated that AZ-SFE significantly alleviated disease activity, colonic shortening, macroscopic damage and histological injury of TNBS-treated rats with reduction of oxidative stress, suppression of inflammatory cytokines, and modulation of hepcidin and serum iron. These findings suggested that AZ-SFE may be a promising supplement for current IBD therapy.
Collapse
Affiliation(s)
- Jia Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ling Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nuolan Mo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hai Lan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qing Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
45
|
Japanese grape (Hovenia dulcis) polysaccharides: New insight into extraction, characterization, rheological properties, and bioactivities. Int J Biol Macromol 2019; 134:631-644. [DOI: 10.1016/j.ijbiomac.2019.05.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 11/16/2022]
|
46
|
Ji X, Hou C, Zhang X, Han L, Yin S, Peng Q, Wang M. Microbiome-metabolomic analysis of the impact of Zizyphus jujuba cv. Muzao polysaccharides consumption on colorectal cancer mice fecal microbiota and metabolites. Int J Biol Macromol 2019; 131:1067-1076. [DOI: 10.1016/j.ijbiomac.2019.03.175] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/03/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022]
|
47
|
Liu L, Dong W, Wang S, Zhang Y, Liu T, Xie R, Wang B, Cao H. Deoxycholic acid disrupts the intestinal mucosal barrier and promotes intestinal tumorigenesis. Food Funct 2019; 9:5588-5597. [PMID: 30339173 DOI: 10.1039/c8fo01143e] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-fat diet, which leads to an increased level of deoxycholic acid (DCA) in the intestine, is a major environmental factor in the development of colorectal cancer (CRC). However, evidence relating to bile acids and intestinal tumorigenesis remains unclear. In this study, we investigated the effects of DCA on the intestinal mucosal barrier and its impact on the development of CRC. Here we showed that DCA disrupted cell monolayer integrity and increased proinflammatory cytokine production in intestinal cancer and precancerous cell lines (Caco-2 and IMCE). Apcmin/+ mice receiving DCA increased the number and size of intestinal adenomas and promoted the adenoma-adenocarcinoma sequence. Importantly, DCA induced the activation of the NLRP3 inflammasome, increased the production of inflammatory cytokines, and led to intestinal low grade inflammation. A reduction of tight junction protein zonula occludens 1 (ZO-1) and the number of intestinal cells including goblet cells and Paneth cells was also observed after DCA treatment. Moreover, DCA significantly reduced the level of secretory immunoglobulin A (sIgA), and promoted the polarization of M2 macrophages in the intestine of Apcmin/+ mice. In conclusion, these data suggested that DCA induced intestinal low grade inflammation and disrupted the mucosal physical and functional barriers, aggravating intestinal tumorigenesis.
Collapse
Affiliation(s)
- Li Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, 300052, Tianjin, China.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu X, Yu X, Xu X, Zhang X, Zhang X. The protective effects of Poria cocos-derived polysaccharide CMP33 against IBD in mice and its molecular mechanism. Food Funct 2019; 9:5936-5949. [PMID: 30378628 DOI: 10.1039/c8fo01604f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study, the protective effects of a carboxymethyl polysaccharide CMP33 from Poria cocos against inflammatory bowel disease (IBD) were investigated using TNBS-induced colitis in mice. The results showed that CMP33 markedly ameliorated the severity of colitis, including a 2-fold decrease in the mortality rate, a 50% decrease in disease activity index, and a 36%-44% decrease in macro- or microscopic histopathological score, compared with TNBS administration. Moreover, CMP33 decreased the levels of pro-inflammatory cytokines and increased the levels of anti-inflammatory cytokines in the colon tissue and serum of colitic mice. Using iTRAQ-coupled- nano-HPLC-MS/MS-based proteomics, the protein profiles after TNBS, high- or low-dose CMP33 and salazosulfapyridine (SASP) treatments were compared and many differentially expressed proteins were identified. Among them, 7 proteins (Hmgcs2, Fabp2, Hp, B4galnt2, B3gnt6, Sap and Ca1) were proposed to be the common targeting protein group (TPG) of CMP33 and drug SASP. Particularly, some targeting proteins were CMP33-dose-specific: high-dose-specific TPG (Mtco3, Gal-6, Mptx, S100 g and Hpx) and low-dose-specific TPG (Zg16, Hexb, Insl5, Cept1, Hspb6 and Ifi27l2b), suggesting the complex acting mechanism of CMP33. GC-TOF-MS-based metabolomics revealed that oleic acid and dihydrotestosterone could be the common targets of CMP33 and SASP. By integrative analysis of proteomics and metabolomics, key protein-metabolite pathways (PMP) were identified, PMP for high-dose: 2-hydroxybutyric acid - (GPT, GGH) - glutathione - ALB - testosterone - TTR - dihydrotestosterone; PMP for low-dose: (PYY, FABP2, HMGCS2) - oleic acid - TTR - dihydrotestosterone. In total, these results demonstrated the protective effects of CMP33 against IBD in mice through the potential TPG and PMP.
Collapse
Affiliation(s)
- Xiaofei Liu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, PR China.
| | | | | | | | | |
Collapse
|
49
|
Hossen I, Hua W, Ting L, Mehmood A, Jingyi S, Duoxia X, Yanping C, Hongqing W, Zhipeng G, Kaiqi Z, Fang Y, Junsong X. Phytochemicals and inflammatory bowel disease: a review. Crit Rev Food Sci Nutr 2019; 60:1321-1345. [PMID: 30729797 DOI: 10.1080/10408398.2019.1570913] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gastrointestinal tract is the second largest organ in the body that mainly functions in nutrients and minerals intake through the intestinal barrier. Intestinal permeability maintains the circulation of minerals and nutrients from digested foods. Life and all the metabolic processes depend either directly or indirectly on proper functioning of GI tract. Compromised intestinal permeability and related disorders are common among all the patients with inflammatory bowel disease (IBD), which is a collective term of inflammatory diseases including Crohn's disease and ulcerative colitis. Many synthetic drugs are currently in use to treat IBD such as 5-aminosalicylic acid corticosteroids. However, they all have some drawbacks as long-term use result in many complications. These problems encourage us to look out for alternative medicine. Numerous in vitro and in vivo experiments showed that the plant-derived secondary metabolites including phenolic compounds, glucosinolates, alkaloids, terpenoids, oligosaccharides, and quinones could reduce permeability, ameliorate-related dysfunctions with promising results. In addition, many of them could modulate enzymatic activity, suppress the inflammatory transcriptional factors, ease oxidative stress, and reduce pro-inflammatory cytokines secretion. In this review, we summarized the phytochemicals, which were proven potent in treating increased intestinal permeability and related complication along with their mechanism of action.
Collapse
Affiliation(s)
- Imam Hossen
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Wu Hua
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Luo Ting
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Arshad Mehmood
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Song Jingyi
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Xu Duoxia
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Cao Yanping
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Wu Hongqing
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Gao Zhipeng
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Zhang Kaiqi
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Yang Fang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Xiao Junsong
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| |
Collapse
|
50
|
Tang C, Ding R, Sun J, Liu J, Kan J, Jin C. The impacts of natural polysaccharides on intestinal microbiota and immune responses – a review. Food Funct 2019; 10:2290-2312. [DOI: 10.1039/c8fo01946k] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper presents a comprehensive review of the impacts of natural polysaccharides on gut microbiota and immune responses as well as their interactions.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Ruoxi Ding
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Jian Sun
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area
| | - Jun Liu
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Juan Kan
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Changhai Jin
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| |
Collapse
|