1
|
Sadri M, Shafaghat Z, Roozbehani M, Hoseinzadeh A, Mohammadi F, Arab FL, Minaeian S, Fard SR, Faraji F. Effects of Probiotics on Liver Diseases: Current In Vitro and In Vivo Studies. Probiotics Antimicrob Proteins 2025; 17:1688-1710. [PMID: 39739162 DOI: 10.1007/s12602-024-10431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/02/2025]
Abstract
Various types of liver or hepatic diseases cause the death of about 2 million people worldwide every year, of which 1 million die from the complications of cirrhosis and another million from hepatocellular carcinoma and viral hepatitis. Currently, the second most common solid organ transplant is the liver, and the current rate represents less than 10% of global transplant requests. Hence, finding new approaches to treat and prevent liver diseases is essential. In liver diseases, the interaction between the liver, gut, and immune system is crucial, and probiotics positively affect the human microbiota. Probiotics are a non-toxic and biosafe alternative to synthetic chemical compounds. Health promotion by lowering cholesterol levels, stimulating host immunity, the natural gut microbiota, and other functions are some of the activities of probiotics, and their metabolites, including bacteriocins, can exert antimicrobial effects against a broad range of pathogenic bacteria. The present review discusses the available data on the results of preclinical and clinical studies on the effects of probiotic administration on different types of liver diseases.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Akram Hoseinzadeh
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Mohammadi
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Soheil Rahmani Fard
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Boulos M, Mousa RS, Jeries N, Simaan E, Alam K, Bulus B, Assy N. Hidden in the Fat: Unpacking the Metabolic Tango Between Metabolic Dysfunction-Associated Steatotic Liver Disease and Metabolic Syndrome. Int J Mol Sci 2025; 26:3448. [PMID: 40244398 PMCID: PMC11989262 DOI: 10.3390/ijms26073448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic syndrome (MetS) and metabolic dysfunction-associated steatotic liver disease (MASLD) are closely related, with rapidly increasing prevalence globally, driving significant public health concerns. Both conditions share common pathophysiological mechanisms such as insulin resistance (IR), adipose tissue dysfunction, oxidative stress, and gut microbiota dysbiosis, which contribute to their co-occurrence and progression. While the clinical implications of this overlap, including increased cardiovascular, renal, and hepatic risk, are well recognized, current diagnostic and therapeutic approaches remain insufficient due to the clinical and individuals' heterogeneity and complexity of these diseases. This review aims to provide an in-depth exploration of the molecular mechanisms linking MetS and MASLD, identify critical gaps in our understanding, and highlight existing challenges in early detection and treatment. Despite advancements in biomarkers and therapeutic interventions, the need for a comprehensive, integrated approach remains. The review also discusses emerging therapies targeting specific pathways, the potential of precision medicine, and the growing role of artificial intelligence in enhancing research and clinical management. Future research is urgently needed to combine multi-omics data, precision medicine, and novel biomarkers to better understand the complex interactions between MetS and MASLD. Collaborative, multidisciplinary efforts are essential to develop more effective diagnostic tools and therapies to address these diseases on a global scale.
Collapse
Affiliation(s)
- Mariana Boulos
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Rabia S. Mousa
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nizar Jeries
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Elias Simaan
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Klode Alam
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Bulus Bulus
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nimer Assy
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
3
|
Noor S, Ali S, Summer M, Riaz A, Nazakat L, Aqsa. Therapeutic Role of Probiotics Against Environmental-Induced Hepatotoxicity: Mechanisms, Clinical Perspectives, Limitations, and Future. Probiotics Antimicrob Proteins 2025; 17:516-540. [PMID: 39316257 DOI: 10.1007/s12602-024-10365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Hepatotoxicity is one of the biggest health challenges, particularly in the context of liver diseases, often aggravated by gut microbiota dysbiosis. The gut-liver axis has been regarded as a key idea in liver health. It indicates that changes in gut flora caused by various hepatotoxicants, including alcoholism, acetaminophen, carbon tetrachloride, and thioacetamide, can affect the balance of the gut's microflora, which may lead to increased dysbiosis and intestinal permeability. As a result, bacterial endotoxins would eventually enter the bloodstream and liver, causing hepatotoxicity and inducing inflammatory reactions. Many treatments, including liver transplantation and modern drugs, can be used to address these issues. However, because of the many side effects of these approaches, scientists and medical experts are still hoping for a therapeutic approach with fewer side effects and more positive results. Thus, probiotics have become well-known as an adjunctive strategy for managing, preventing, or reducing hepatotoxicity in treating liver injury. By altering the gut microbiota, probiotics offer a secure, non-invasive, and economical way to improve liver health in the treatment of hepatotoxicity. Through various mechanisms such as regulation of gut microbiota, reduction of pathogenic overgrowth, suppression of inflammatory mediators, modification of hepatic lipid metabolism, improvement in the performance of the epithelial barrier of the gut, antioxidative effects, and modulation of mucosal immunity, probiotics play their role in the treatment and prevention of hepatotoxicity. This review highlights the mechanistic effects of probiotics in environmental toxicants-induced hepatotoxicity and current findings on this therapeutic approach's experimental and clinical trials.
Collapse
Affiliation(s)
- Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
4
|
Shu JZ, Huang YH, He XH, Liu FY, Liang QQ, Yong XT, Xie YF. Gut microbiota differences, metabolite changes, and disease intervention during metabolic - dysfunction - related fatty liver progression. World J Hepatol 2025; 17:103854. [PMID: 40177201 PMCID: PMC11959672 DOI: 10.4254/wjh.v17.i3.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 02/12/2025] [Indexed: 03/26/2025] Open
Abstract
In the current era, metabolic dysfunction-associated steatotic liver disease (MASLD) has gradually developed into a major type of chronic liver disease that is widespread globally. Numerous studies have shown that the gut microbiota plays a crucial and indispensable role in the progression of MASLD. Currently, the gut microbiota has become one of the important entry points for the research of this disease. Therefore, the aim of this review is to elaborate on the further associations between the gut microbiota and MASLD, including the changes and differences in the microbiota between the healthy liver and the diseased liver. Meanwhile, considering that metabolic dysfunction-associated fatty liver and metabolic dysfunction-associated steatohepatitis are abnormal pathological states in the development of the disease and that the liver exhibits different degrees of fibrosis (such as mild fibrosis and severe fibrosis) during the disease progression, we also conduct a comparison of the microbiota in these states and use them as markers of disease progression. It reveals the changes in the production and action mechanisms of short-chain fatty acids and bile acids brought about by changes in the gut microbiota, and the impact of lipopolysaccharide from Gram-negative bacteria on the disease. In addition, the regulation of the gut microbiota in disease and the production and inhibition of related disease factors by the use of probiotics (including new-generation probiotics) will be explored, which will help to monitor the disease progression of patients with different gut microbiota compositions in the future and carry out personalized targeted therapies for the gut microbiota. This will achieve important progress in preventing and combating this disease.
Collapse
Affiliation(s)
- Jian-Zhong Shu
- Department of Encephalopathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400015, China
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- College of Integrated Traditional Chinese and Western Medicine, Chongqing University of Traditional Chinese Medicine, Chongqing 402760, China
| | - Yu-Han Huang
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xiao-Hong He
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Feng-Ying Liu
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Qian-Qian Liang
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xue-Tong Yong
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yong-Fang Xie
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| |
Collapse
|
5
|
Liang Z, Chen S, Zhang X, Li J, Guo W, Ni L, Lv X. The Protective Effect of Limosilactobacillus fermentum FZU501 Against Alcohol-Induced Liver Injury in Mice via Gut Microbiota-Liver Axis. Foods 2025; 14:1054. [PMID: 40232069 PMCID: PMC11942275 DOI: 10.3390/foods14061054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
As a probiotic strain isolated from Hongqu rice wine (a traditional Chinese fermented food), Limosilactobacillus fermentum FZU501 (designated as Lf) demonstrates exceptional gastric acid and bile salt tolerance, showing potential application as a functional food. The aim of this study was to investigate the protective effect of dietary Lf intervention on alcohol-induced liver injury (ALI) in mice. The results demonstrated that oral administration of Lf effectively ameliorated alcohol-induced lipid metabolism disorders by reducing the serum levels of TC, TG and LDL-C and increasing the serum levels of HDL-C. In addition, oral administration of Lf effectively prevented alcohol-induced liver damage by increasing the hepatic activities of antioxidant enzymes (CAT, SOD, GSH-Px) and alcohol-metabolizing enzymes (ADH and ALDH). Interestingly, 16S amplicon sequencing showed that oral administration of Lf increased the number of Prevotella, Lachnospiraceae_NK4A136_group and Lactobacillus, but decreased the proportion of Faecalibaculum, Adlercreutzia and Alistipes in the intestines of mice that consumed excessive alcohol, which was highly associated with improved liver function. As revealed by liver untargeted metabolomics studies, oral Lf clearly changed liver metabolic profiles, with the signature biomarkers mainly involving purine metabolism, taurine metabolism, tryptophan, alanine, aspartic acid and glutamate metabolism, etc. Additionally, Lf intervention regulated liver gene transcription in over-drinking mice for cholesterol metabolism, bile acid metabolism, fatty acid β-oxidation, alcohol metabolism and oxidative stress. Taken together, the above research results provide solid scientific support for the biological activity of Lf in ameliorating alcohol-induced liver metabolism disorder and intestinal microbiota imbalance.
Collapse
Affiliation(s)
- Zihua Liang
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Z.L.); (S.C.); (X.Z.); (J.L.); (W.G.); (L.N.)
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Shiyun Chen
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Z.L.); (S.C.); (X.Z.); (J.L.); (W.G.); (L.N.)
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Xiangchen Zhang
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Z.L.); (S.C.); (X.Z.); (J.L.); (W.G.); (L.N.)
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Jiayi Li
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Z.L.); (S.C.); (X.Z.); (J.L.); (W.G.); (L.N.)
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Weiling Guo
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Z.L.); (S.C.); (X.Z.); (J.L.); (W.G.); (L.N.)
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Z.L.); (S.C.); (X.Z.); (J.L.); (W.G.); (L.N.)
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Z.L.); (S.C.); (X.Z.); (J.L.); (W.G.); (L.N.)
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| |
Collapse
|
6
|
Pekand M, Gholami M, Abednatanzi H, Ghazalian F. Probiotic intervention and exercise mitigate inflammation and histopathological alterations in the liver of wistar rats on a high-fat diet. Mol Biol Rep 2025; 52:215. [PMID: 39923222 DOI: 10.1007/s11033-025-10320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Controlling intestinal risk factors by consuming probiotics and modifying lifestyle with exercise modulates dietary damage. The aim of the present study was to investigate the effect of 6 weeks of aerobic exercise training and probiotic consumption on the expression of inflammatory genes and histopathological changes in the liver of rats with a high-fat diet model. METHODS AND RESULTS In this study, 40 male Wistar rats were divided into 5 groups: healthy control, high-fat diet (HFD), HFD with exercise (HFD + Exe), HFD with probiotic consumption (HFD + Prob), and HFD + Exe + Prob. Animals in the HFD group were first exposed to a special diet and after confirming liver tissue damage, they entered the main protocol. Animals in the exercise group performed aerobic exercise on a rodent treadmill for 6 weeks, 5 days a week. Animals in the probiotic group also received Lactobacillus bifidus by oral gavage after exercise. Finally, intestinal and liver tissue were removed and examined for histological and cellular examination. Based on the results, HFD caused tissue damage and fat infiltration in both intestinal and liver tissue. Also, inflammatory factors (IL-6 and IL-1β genes) in the liver tissue of this group increased significantly compared to the control group (p < 0.05). In contrast, probiotic intervention and aerobic exercise caused a significant decrease in IL-6 and IL-1β genes compared to the HFD group (p < 0.05). CONCLUSION The use of probiotic Lactobacillus bifidus along with exercise can neutralize inflammatory damage caused by a high-fat diet in liver tissue. However, further studies are needed in this field.
Collapse
Affiliation(s)
- Mahsa Pekand
- Department of Physical Education and Sport Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mandana Gholami
- Department of Physical Education and Sport Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Hossein Abednatanzi
- Department of Physical Education and Sport Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshad Ghazalian
- Department of Physical Education and Sport Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Geng W, Liao W, Cao X, Yang Y. Therapeutic Targets and Approaches to Manage Inflammation of NAFLD. Biomedicines 2025; 13:393. [PMID: 40002806 PMCID: PMC11853636 DOI: 10.3390/biomedicines13020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its advanced form, non-alcoholic steatohepatitis (NASH), are the leading causes of chronic liver disease globally. They are driven by complex mechanisms where inflammation plays a pivotal role in disease progression. Current therapies, including lifestyle changes and pharmacological agents, are limited in efficacy, particularly in addressing the advanced stages of the disease. Emerging approaches targeting inflammation, metabolic dysfunction, and fibrosis offer promising new directions, though challenges such as treatment complexity and heterogeneity persist. This review concludes the main therapeutic targets and approaches to manage inflammation currently and emphasizes the critical need for future drug development and combination therapy for NAFLD/NASH management.
Collapse
Affiliation(s)
- Wanying Geng
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Wanying Liao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Xinyuan Cao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Yingyun Yang
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| |
Collapse
|
8
|
Mignini I, Galasso L, Piccirilli G, Calvez V, Termite F, Esposto G, Borriello R, Miele L, Ainora ME, Gasbarrini A, Zocco MA. Interplay of Oxidative Stress, Gut Microbiota, and Nicotine in Metabolic-Associated Steatotic Liver Disease (MASLD). Antioxidants (Basel) 2024; 13:1532. [PMID: 39765860 PMCID: PMC11727446 DOI: 10.3390/antiox13121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
Oxidative stress has been described as one of the main drivers of intracellular damage and metabolic disorders leading to metabolic syndrome, a major health problem worldwide. In particular, free radicals alter lipid metabolism and promote lipid accumulation in the liver, existing in the hepatic facet of metabolic syndrome, the metabolic dysfunction-associated steatotic liver disease (MASLD). Recent literature has highlighted how nicotine, especially if associated with a high-fat diet, exerts a negative effect on the induction and progression of MASLD by upregulating inflammation and increasing oxidative stress, abdominal fat lipolysis, and hepatic lipogenesis. Moreover, considerable evidence shows the central role of intestinal dysbiosis in the pathogenesis of MASLD and the impact of nicotine-induced oxidative stress on the gut microbiome. This results in an intricate network in which oxidative stress stands at the intersection point between gut microbiome, nicotine, and MASLD. The aim of this review is to delve into the molecular mechanisms linking tobacco smoking and MASLD, focusing on nicotine-induced microbiota modifications and their impact on MASLD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (L.G.); (G.P.); (V.C.); (F.T.); (G.E.); (R.B.); (L.M.); (M.E.A.); (A.G.)
| |
Collapse
|
9
|
PU Y, ZHANG X, ZHANG J, XIE D, WANG H, CHEN H, MA Y, PENG N, LI R, YE H. Correlation between differences in the intestinal flora structure and Chinese medicine evidence in patients with Wilson disease-related liver fibrosis analyzed via high-throughput sequencing technology. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 44:146-159. [PMID: 40171394 PMCID: PMC11957762 DOI: 10.12938/bmfh.2024-081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/23/2024] [Indexed: 04/03/2025]
Abstract
To observe the composition and abundance of the intestinal flora in patients with Wilson disease (WD)-related liver fibrosis and analyze the correlation between the composition of intestinal flora of patients and the evolution of evidence from Chinese medicine, we selected 237 patients with WD-related liver fibrosis and 30 healthy volunteers from the Brain Disease Center of Anhui Provincial Hospital of Chinese Medicine. The patients with WD-related liver fibrosis were divided into 5 groups according to traditional Chinese medicine (TCM) evidence (dampness-heat syndrome, group A; intermingled phlegm and blood stasis syndrome, group B; liver wind stirring up internally syndrome, group C; yin deficiency of the liver and kidney syndrome, group D; and yang deficiency of the spleen and kidney syndrome, group E) and a group healthy volunteers (group F), which served as the control. Stool samples were obtained from the patients in the 6 groups. The 16S rRNA sequencing technique was used to analyze the intestinal flora of the different TCM evidence groups of WD patients and the healthy control group and subjected to a statistical analysis. The intestinal flora abundance was significantly lower in patients with WD-related liver fibrosis than in healthy controls, and the decrease in strain content was more significant in patients with deficiency evidence in groups D and E. In terms of the structure of the phylum-level flora, the Firmicutes phylum was still the dominant phylum, but the contents of the evidence-type groups all decreased, with the most obvious decreases in groups D and E. The results for the Actinobacteria phylum were similar, whereas the opposite was true for the Proteobacteria phylum. The section-level and genus-level results corresponded to the gate level. The intestinal flora of the WD-related liver fibrosis patients and healthy controls differed in terms of abundance and intestinal flora structure, and there were also differences between different Chinese medicine certificates.
Collapse
Affiliation(s)
- Yue PU
- The First Affiliated Hospital of Anhui University of Chinese
Medicine, Hefei, Anhui, China
| | - Xinxiang ZHANG
- Lu’an People’s Hospital of Anhui Province, Lu’an, Anhui,
China
| | - Juan ZHANG
- The First Affiliated Hospital of Anhui University of Chinese
Medicine, Hefei, Anhui, China
| | - Daojun XIE
- The First Affiliated Hospital of Anhui University of Chinese
Medicine, Hefei, Anhui, China
| | - Han WANG
- The First Affiliated Hospital of Anhui University of Chinese
Medicine, Hefei, Anhui, China
| | - Hong CHEN
- The First Affiliated Hospital of Anhui University of Chinese
Medicine, Hefei, Anhui, China
| | - Ying MA
- The First Affiliated Hospital of Anhui University of Chinese
Medicine, Hefei, Anhui, China
| | - Nian PENG
- The First Affiliated Hospital of Anhui University of Chinese
Medicine, Hefei, Anhui, China
| | - Rui LI
- The First Affiliated Hospital of Anhui University of Chinese
Medicine, Hefei, Anhui, China
| | - Hao YE
- The First Affiliated Hospital of Anhui University of Chinese
Medicine, Hefei, Anhui, China
| |
Collapse
|
10
|
Olotu T, Ferrell JM. Lactobacillus sp. for the Attenuation of Metabolic Dysfunction-Associated Steatotic Liver Disease in Mice. Microorganisms 2024; 12:2488. [PMID: 39770690 PMCID: PMC11728176 DOI: 10.3390/microorganisms12122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 01/05/2025] Open
Abstract
Probiotics are studied for their therapeutic potential in the treatment of several diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). Part of the significant progress made in understanding the pathogenesis of steatosis has come from identifying the complex interplay between the gut microbiome and liver function. Recently, probiotics have shown beneficial effects for the treatment and prevention of steatosis and MASLD in rodent models and in clinical trials. Numerous studies have demonstrated the promising potential of lactic acid bacteria, especially the genus Lactobacillus. Lactobacillus is a prominent bile acid hydrolase bacterium that is involved in the biotransformation of bile acids. This genus' modulation of the gut microbiota also contributes to overall gut health; it controls gut microbial overgrowth, shapes the intestinal bile acid pool, and alleviates inflammation. This narrative review offers a comprehensive summary of the potential of Lactobacillus in the gut-liver axis to attenuate steatosis and MASLD. It also highlights the roles of Lactobacillus in hepatic lipid metabolism, insulin resistance, inflammation and fibrosis, and bile acid synthesis in attenuating MASLD.
Collapse
Affiliation(s)
- Titilayo Olotu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
11
|
Qayyum N, Ismael M, Haoyue H, Guo H, Lü X. Dietary supplementation of probiotic Lactobacillus modulates metabolic dysfunction-associated steatotic liver disease and intestinal barrier integrity in obesity-induced mice. J Food Sci 2024; 89:10113-10133. [PMID: 39455245 DOI: 10.1111/1750-3841.17439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024]
Abstract
The impact of Lacticaseibacillus paracasei NWAFU334 and Limosilactobacillus fermentum NWAFU0035 on the amelioration of liver function, oxidative stress reduction, and lipid metabolism modulation in mice subjected to an obesity-inducing high-fat diet (HFD) model was investigated. L. paracasei NWAFU334 and L. fermentum NWAFU0035 supplementations over 12 weeks have been shown to have numerous beneficial effects in mice with induced obesity. These effects comprise the restoration of liver function and the reduction of oxidative stress within the liver. Furthermore, the supplementation led to a decreased content of fat accumulation in the liver, mitigation of the expression of inflammatory cytokines in the liver and colon, and a decrease in the expression levels of tight-junction proteins, for example, claudin-1, PPARγ, occludin, and ZO-1. Additionally, a notable improvement in the colonic expression proteins, including IL-6, TNF-α, IL-1β, Muc-2, Muc-3, Zo-1, claudin-1, and occludin. These proposed strains considerably decreased proinflammatory cytokines and influenced the regulation of lipid metabolism in the liver. These findings indicate that the potential mechanisms, primarily the impact of L. paracasei NWAFU334 and L. fermentum NWAFU0035 on obesity-induced liver function in mice, involve two regulated pathways: downregulation of lipogenesis and upregulation of gene expression related to fatty acid oxidation and lipolysis. In other words, these probiotic bacterial strains might be beneficial in reducing fat production and increasing fat breakdown in the liver. They may serve as effective therapeutic supplements for alleviating abnormalities induced by an HFD.
Collapse
Affiliation(s)
- Nageena Qayyum
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xianyang, China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety, and Health Shaanxi, Shaanxi, China
- School of Public Health, Guangdong Medical University, Dongguan, China
| | | | - Han Haoyue
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xianyang, China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety, and Health Shaanxi, Shaanxi, China
| | - Honghui Guo
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xianyang, China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety, and Health Shaanxi, Shaanxi, China
| |
Collapse
|
12
|
Maher S, Rajapakse J, El-Omar E, Zekry A. Role of the Gut Microbiome in Metabolic Dysfunction-Associated Steatotic Liver Disease. Semin Liver Dis 2024; 44:457-473. [PMID: 39389571 DOI: 10.1055/a-2438-4383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD)-previously described as nonalcoholic fatty liver disease-continues to rise globally. Despite this, therapeutic measures for MASLD remain limited. Recently, there has been a growing interest in the gut microbiome's role in the pathogenesis of MASLD. Understanding this relationship may allow for the administration of therapeutics that target the gut microbiome and/or its metabolic function to alleviate MASLD development or progression. This review will discuss the interplay between the gut microbiome's structure and function in relation to the development of MASLD, assess the diagnostic yield of gut microbiome-based signatures as a noninvasive tool to identify MASLD severity, and examine current and emerging therapies targeting the gut microbiome-liver axis.
Collapse
Affiliation(s)
- Salim Maher
- Department of Gastroenterology and Hepatology, St George Hospital, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical Campuses
| | - Jayashi Rajapakse
- School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical Campuses
| | - Emad El-Omar
- Department of Gastroenterology and Hepatology, St George Hospital, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical Campuses
| | - Amany Zekry
- Department of Gastroenterology and Hepatology, St George Hospital, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical Campuses
| |
Collapse
|
13
|
Galley JD, King MK, Rajasekera TA, Batabyal A, Woodke ST, Gur TL. Gestational administration of Bifidobacterium dentium results in intergenerational modulation of inflammatory, metabolic, and social behavior. Brain Behav Immun 2024; 122:44-57. [PMID: 39128569 DOI: 10.1016/j.bbi.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
Prenatal stress (PNS) profoundly impacts maternal and offspring health, with enduring effects including microbiome alterations, neuroinflammation, and behavioral disturbances such as reductions in social behavior. Converging lines of evidence from preclinical and clinical studies suggest that PNS disrupts tryptophan (Trp) metabolic pathways and reduces gut Bifidobacteria, a known beneficial bacterial genus that metabolizes Trp. Specifically, previous work from our lab demonstrated that human prenatal mood disorders in mothers are associated with reduced Bifidobacterium dentium in infants at 13 months. Given that Bifidobacterium has been positively associated with neurodevelopmental and other health benefits and is depleted by PNS, we hypothesized that supplementing PNS-exposed pregnant dams with B. dentium would ameliorate PNS-induced health deficits. We measured inflammatory outputs, Trp metabolite levels and enzymatic gene expression in dams and fetal offspring, and social behavior in adult offspring. We determined that B. dentium reduced maternal systemic inflammation and fetal offspring neuroinflammation, while modulating tryptophan metabolism and increasing kynurenic acid and indole-3-propionic acid intergenerationally. Additional health benefits were demonstrated by the abrogation of PNS-induced reductions in litter weight. Finally, offspring of the B. dentium cohort demonstrated increased sociability in males primarily and increased social novelty primarily in females. Together these data illustrate that B. dentium can orchestrate interrelated host immune, metabolic and behavioral outcomes during and after gestation for both dam and offspring and may be a candidate for prevention of the negative sequelae of stress.
Collapse
Affiliation(s)
- Jeffrey D Galley
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mackenzie K King
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Therese A Rajasekera
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Anandi Batabyal
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Tamar L Gur
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
14
|
Sun J, Jin X, Li Y. Current strategies for nonalcoholic fatty liver disease treatment (Review). Int J Mol Med 2024; 54:88. [PMID: 39129305 PMCID: PMC11335354 DOI: 10.3892/ijmm.2024.5412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common chronic hepatic disease, has become a leading health problem worldwide. The present review summarized the methods and mechanisms to treat NAFLD, including the Mediterranean diet, physical activity and exercise, bariatric surgery and specific therapeutic agents, including statins, peroxisome proliferator‑activated receptor agonists, cenicriviroc and farnesoid X receptor agonists. Biologically active substances, such as peptides, alkaloids, polyphenolic compounds, silymarin, antibiotics, fatty acids, vitamins, probiotics, synbiotics and lamiaceae have also demonstrated actions that combat NAFLD. Considering their different mechanisms of action, combining some of them may prove an efficacious treatment for NAFLD. In this light, the present review describes recent progress and future prospects in treating NAFLD.
Collapse
Affiliation(s)
- Jing Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Xiuli Jin
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Yiling Li
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| |
Collapse
|
15
|
Dang J, Cai T, Tuo Y, Peng S, Wang J, Gu A, Li J, Ding L, Du S, Wang L. Corn Peptides Alleviate Nonalcoholic Fatty Liver Fibrosis in Mice by Inhibiting NLRP3 Inflammasome Activation and Regulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19378-19394. [PMID: 39166383 DOI: 10.1021/acs.jafc.4c04232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
This study aimed to investigate the effects of corn gluten-derived soluble epoxide hydrolase (sEH) inhibitory peptides on nonalcoholic fatty liver fibrosis induced by a high-fat diet and carbon tetrachloride in mice. Mice treated with corn peptides at doses of 500 or 1000 mg/kg/d for 4 weeks exhibited reduced sEH activity in serum and liver, enhanced lipid metabolism, and decreased lipid accumulation and oxidative stress. Corn peptides effectively downregulated the mRNA levels of Pro-IL-1β, Pro-IL-18, NOD-like receptor protein 3 (NLRP3), ASC, Pro-caspase-1, Caspase-1, and GSDMD in the liver. This hepatoprotective effect of corn peptides by inhibiting NLRP3 inflammasome activation was further validated in H2O2-induced HepG2 cells. Moreover, corn peptides restored the composition of the gut microbiota and promoted short-chain fatty acid production. This study provides evidence that corn-derived sEH inhibitory peptides have hepatoprotective activity against nonalcoholic fatty liver fibrosis by suppressing NLRP3 inflammasome activation and modulating gut microbiota.
Collapse
Affiliation(s)
- Jiamin Dang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Ting Cai
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Yuanrong Tuo
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Siwang Peng
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Jing Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Aiying Gu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Jialu Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Long Ding
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Shuangkui Du
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
- Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Liying Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
- Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, Xianyang, Shaanxi Province 712100, People's Republic of China
| |
Collapse
|
16
|
Alencar RM, Martínez JG, Machado VN, Alzate JF, Ortiz-Ojeda CP, Matias RR, Benzaquem DC, Santos MCF, Assunção EN, Lira EC, Astolfi-Filho S, Hrbek T, Farias IP, Fantin C. Preliminary profile of the gut microbiota from amerindians in the Brazilian amazon experiencing a process of transition to urbanization. Braz J Microbiol 2024; 55:2345-2354. [PMID: 38913252 PMCID: PMC11405645 DOI: 10.1007/s42770-024-01413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
The Yanomami are one of the oldest indigenous tribes in the Amazon and are direct descendants of the first people to colonize South America 12,000 years ago. They are located on the border between Venezuela and Brazil, with the Venezuelan side remaining uncontacted. While they maintain a hunter-gatherer society, they are currently experiencing contact with urbanized populations in Brazil. The human gut microbiota of traditional communities has become the subject of recent studies due to the Westernization of their diet and the introduction of antibiotics and other chemicals, which have affected microbial diversity in indigenous populations, thereby threatening their existence. In this study, we preliminarily characterized the diversity of the gut microbiota of the Yanomami, a hunter-gatherer society from the Amazon, experiencing contact with urbanized populations. Similarly, we compared their diversity with the population in Manaus, Amazonas. A metabarcoding approach of the 16 S rRNA gene was carried out on fecal samples. Differences were found between the two populations, particularly regarding the abundance of genera (e.g., Prevotella and Bacteroides) and the higher values of the phyla Bacteroidetes over Firmicutes, which were significant only in the Yanomami. Some bacteria were found exclusively in the Yanomami (Treponema and Succinivibrio). However, diversity was statistically equal between them. In conclusion, the composition of the Yanomami gut microbiota still maintains the profile characteristic of a community with a traditional lifestyle. However, our results suggest an underlying Westernization process of the Yanomami microbiota when compared with that of Manaus, which must be carefully monitored by authorities, as the loss of diversity can be a sign of growing danger to the health of the Yanomami.
Collapse
Affiliation(s)
- Rodrigo M Alencar
- Programa de Pós-graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas, Manaus, Brazil
| | - José G Martínez
- Programa de Pós-graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas, Manaus, Brazil.
- Grupo de investigación Biociencias, Facultad de Ciencias de la Salud, Institución Universitaria Colegio Mayor de Antioquia, Medellín, Colombia.
| | - Valéria N Machado
- Programa de Pós-graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas, Manaus, Brazil
- Laboratório de Evolução e Genética Animal, Universidade Federal do Amazonas, Manaus, Brazil
| | - Juan F Alzate
- National Center for Genomic Sequencing, School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Cinthya P Ortiz-Ojeda
- Programa de Pós-graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas, Manaus, Brazil
- Universidad Tecnológica del Perú, Lima, Peru
| | - Rosiane R Matias
- Programa de Pós-graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Denise C Benzaquem
- Programa de Pós-graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Maria C F Santos
- Programa de Pós-graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Enedina N Assunção
- Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Brazil
| | - Evelyn C Lira
- Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Brazil
| | | | - Tomas Hrbek
- Laboratório de Evolução e Genética Animal, Universidade Federal do Amazonas, Manaus, Brazil
- Department of Biology, Trinity University, San Antonio, USA
| | - Izeni P Farias
- Laboratório de Evolução e Genética Animal, Universidade Federal do Amazonas, Manaus, Brazil
| | - Cleiton Fantin
- Programa de Pós-graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas, Manaus, Brazil
| |
Collapse
|
17
|
Xiao N, Zhang X, Xi Y, Li Z, Wei Y, Shen J, Wang L, Qin D, Xie Z, Li Z. Study on the effects of intestinal flora on gouty arthritis. Front Cell Infect Microbiol 2024; 14:1341953. [PMID: 39176260 PMCID: PMC11339034 DOI: 10.3389/fcimb.2024.1341953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Gouty arthritis (GA), a metabolic and immunologic disease, primarily affects joints. Dysbiosis of intestinal flora is an important cause of GA. The metabolic disorders of intestinal flora leading to GA and immune disorders might play an important role in patients with hyperuricemia and established GA. However, the exact mechanisms, through which the dysbiosis of intestinal flora causes the development of GA, are not fully understood yet. Moreover, several therapies commonly used to treat GA might alter the intestinal flora, suggesting that modulation of the intestinal flora might help prevent or treat GA. Therefore, a better understanding of the changes in the intestinal flora of GA patients might facilitate the discovery of new diagnostic and therapeutic approaches. The current review article discusses the effects of intestinal flora dysbiosis on the pathogenesis of GA and the cross-regulatory effects between gut flora and drugs for treating GA. This article also highlights the modulatory effects of gut flora by traditional Chinese medicine (TCM) to lower uric acid levels and relieve joint pain as well as provides a summary and outlook, which might help guide future research efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dongdong Qin
- Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaofu Li
- Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
18
|
Shiraishi C, Kato H, Ogura T, Iwamoto T. An investigation of broad-spectrum antibiotic-induced liver injury based on the FDA Adverse Event Reporting System and retrospective observational study. Sci Rep 2024; 14:18221. [PMID: 39107511 PMCID: PMC11303562 DOI: 10.1038/s41598-024-69279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Tazobactam/piperacillin and meropenem are commonly used as an empiric treatment in patients with severe bacterial infections. However, few studies have investigated the cause of tazobactam/piperacillin- or meropenem-induced liver injury in them. Our objective was to evaluate the association between tazobactam/piperacillin or meropenem and liver injury in the intensive care unit patients. We evaluated the expression profiles of antibiotics-induced liver injury using the US Food and Drug Administration Adverse Event Reporting System (FAERS) database. Further, in the retrospective observational study, data of patients who initiated tazobactam/piperacillin or meropenem in the intensive care unit were extracted. In FAERS database, male, age, the fourth-generation cephalosporin, carbapenem, β-lactam and β-lactamase inhibitor combination, and complication of sepsis were associated with liver injury (p < 0.001). In the retrospective observational study, multivariate logistic regression analyses indicated that the risk factors for liver injury included male (p = 0.046), administration period ≥ 7 days (p < 0.001), and alanine aminotransferase (p = 0.031). Not only administration period but also sex and alanine aminotransferase should be considered when clinicians conduct the monitoring of liver function in the patients receiving tazobactam/piperacillin or meropenem.
Collapse
Affiliation(s)
- Chihiro Shiraishi
- Department of Pharmacy, Mie University Hospital, Tsu, 514-8507, Japan
- Division of Clinical Medical Science, Department of Clinical Pharmaceutics, Mie University Graduate School of Medicine, Tsu, 514-8507, Japan
| | - Hideo Kato
- Department of Pharmacy, Mie University Hospital, Tsu, 514-8507, Japan.
- Division of Clinical Medical Science, Department of Clinical Pharmaceutics, Mie University Graduate School of Medicine, Tsu, 514-8507, Japan.
| | - Toru Ogura
- Clinical Research Support Center, Mie University Hospital, Tsu, 514-8507, Japan
| | - Takuya Iwamoto
- Department of Pharmacy, Mie University Hospital, Tsu, 514-8507, Japan
- Division of Clinical Medical Science, Department of Clinical Pharmaceutics, Mie University Graduate School of Medicine, Tsu, 514-8507, Japan
| |
Collapse
|
19
|
Alam N, Jia L, Cheng A, Ren H, Fu Y, Ding X, Haq IU, Liu E. Global research trends on gut microbiota and metabolic dysfunction-associated steatohepatitis: Insights from bibliometric and scientometric analysis. Front Pharmacol 2024; 15:1390483. [PMID: 39070791 PMCID: PMC11273336 DOI: 10.3389/fphar.2024.1390483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Background Metabolic dysfunction-associated steatohepatitis (MASH) is an inflammatory subtype of metabolic dysfunction-associated steatotic liver disease (MASLD) has recently been proposed as a replacement term for NAFLD, a common, multifactorial and poorly understood liver disease whose incidence is increasing worldwide. In recent years, there has been increasing scientific interest in exploring the relationship between gut microbiota and MASH. To learn more about the gut microbiota in MASH, this study aims to provide a comprehensive analysis of the knowledge structure and research hotspots from a bibliometric perspective. Methods We searched the Web of Science Core Collection for articles and reviews that covered the connections between gut microbiota and MASH over the last decade. The Online Analysis Platforms, VOSviewer, CiteSpace, the R tool "bibliometrix" were used to analyzed existing publications trends and hotspots. Results A total of 4,069 documents related to the interaction between gut microbiota and MASH were retrieved from 2014 to 2023. The number of annual publications increased significantly over the last decade, particularly in the United States and China. The University of California-San Diego was the most productive institution, while researcher Rohit Loomba published the most papers in the field. Younossi ZM was ranked as the first co-cited author and largest contributor of highly cited articles in the field. Gastroenterology and hepatology were the most common specialty category. The most cited journal in the last decade was Hepatology. The Keyword Bursts analysis highlighted the importance of studying the association between gut microbiota and MASH, as well as related factors such as metabolic syndrome, insulin resistance, endotoxemia and overgrowth of gut bacteria. Keyword clusters with co-citation were used to illustrate important topics including intestinal permeability, insulin sensitivity and liver immunology. The most common keywords include insulin resistance, obesity, dysbiosis, inflammation and oxidative stress, which are current hotspots. Conclusion Our analysis highlights key aspects of this field and emphasizes multiorgan crosstalk in MASLD/MASH pathogenesis. In particular, the central role of the gut-liver axis and the significant influence of gut microbiota dysbiosis on disease progression are highlighted. Furthermore, our results highlight the transformative potential of microbiota-specific therapies and cover the way for innovative healthcare and pharmaceutical strategies.
Collapse
Affiliation(s)
- Naqash Alam
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Linying Jia
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Ao Cheng
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Honghao Ren
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Yu Fu
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Xinhua Ding
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Ihtisham Ul Haq
- Department of Neurobiology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Enqi Liu
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
20
|
Kanmani P, Villena J, Lim SK, Song EJ, Nam YD, Kim H. Immunobiotic Bacteria Attenuate Hepatic Fibrosis through the Modulation of Gut Microbiota and the Activation of Aryl-Hydrocarbon Receptors Pathway in Non-Alcoholic Steatohepatitis Mice. Mol Nutr Food Res 2024; 68:e2400227. [PMID: 39031898 DOI: 10.1002/mnfr.202400227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Indexed: 07/22/2024]
Abstract
SCOPE Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease worldwide that can progress to liver fibrosis (LF). Probiotics have beneficial roles in reducing intestinal inflammation and gut-associated diseases, but their effects and mechanisms beyond the gut in attenuating the progression of LF are remained unclear. METHODS AND RESULTS In a mouse model of NASH/LF induced by a methionine-choline deficient (MCD) diet, immunobiotics are administered to investigate their therapeutic effects. Results show that the MCD diet leads to liver inflammation, steatosis, and fibrosis, which are alleviated by immunobiotics. Immunobiotics reduces serum endotoxin and inflammatory markers while increasing regulatory cytokines and liver weight. They also suppress Th17 cells, known for producing inflammatory cytokines. Furthermore, immunobiotics mitigate collagen deposition and fibrogenic signaling in the liver, while restoring gut-barrier integrity and microbiota composition. Additionally, immunobiotics enhance the activation of the aryl hydrocarbon receptor (AhR) pathway in both colonic and liver tissues. CONCLUSIONS Overall, these results demonstrate a novel insight into the mechanisms through which immunobiotic administration improves the gut health which in turn increases the AhR pathway and inhibits HSCs activation and fibrosis progression beyond the gut in the liver tissue of NASH/LF mice.
Collapse
Affiliation(s)
- Paulraj Kanmani
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea
- Department of Anesthesiology, University of Illinois, Chicago, IL, 60612, USA
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, 4000, Argentina
| | - Soo-Kyoung Lim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea
| | - Eun-Ji Song
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun 245, Wanju-gun, 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju, 55365, Republic of Korea
| | - Young-Do Nam
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun 245, Wanju-gun, 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju, 55365, Republic of Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea
| |
Collapse
|
21
|
Wang P, Sun J, Zhao W, Wang D, Ma Y, Zhao Y, Wang Y, Zhao X. Tomato Pectin Ameliorated Hepatic Steatosis in High-Fat-Diet Mice by Modulating Gut Microbiota and Bile Acid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38856079 DOI: 10.1021/acs.jafc.4c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a worldwide public health issue. Changes in the gut microbiota structure and composition are closely related to host pathophysiology processes. Pectin is associated with several beneficial health effects. In the present study, we aimed at investigating the effect of tomato pectin (TP) on hepatic steatosis and exploring the underlying mechanisms by focusing on the regulation of the gut microbiota-bile acid axis. Our results showed that TP attenuated high-fat diet (HFD)-induced liver steatosis and inflammation. TP administration increased the diversity of gut microbiota, enhancing the abundance of beneficial bacteria and suppressing the abundance of harmful or conditional pathogenic bacteria. Further antibiotic-caused microbiome depletion confirmed that the anti-NAFLD activities of TP were dependent on the regulation of gut microbiota. Besides, TP intervention affected feces bile acid metabolism and caused significant changes in functional conjugated bile acids, which in turn inhibited the ileum FXR/FGF15 signaling, leading to stimulation of the hepatic bile acid (BA) production. Furthermore, TP treatment accelerated BA excretion, promoted BA transportation, inhibited BA reabsorption, and facilitated cholesterol efflux to relieve HFD-induced hyperlipidemia. These findings provide a potential dietary intervention strategy for TP against NAFLD via modulation of cross-talk between BAs and gut bacteria.
Collapse
Affiliation(s)
- Pan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Jing Sun
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Wenting Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Dan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yue Ma
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yuanyuan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yubin Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
22
|
Reshef N, Gophna U, Reshef L, Konikoff F, Gabay G, Zornitzki T, Knobler H, Maor Y. Prebiotic Treatment in Patients with Nonalcoholic Fatty Liver Disease (NAFLD)-A Randomized Pilot Trial. Nutrients 2024; 16:1571. [PMID: 38892505 PMCID: PMC11174003 DOI: 10.3390/nu16111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Several studies show that gut microbiotas in patients with nonalcoholic fatty liver disease (NAFLD) differ from those in a healthy population, suggesting that this alteration plays a role in NAFLD pathogenesis. We investigated whether prebiotic administration affects liver fat content and/or liver-related and metabolic parameters. Patients with NAFLD and metabolic syndrome (age: 50 ± 11; 79% men) were randomized to receive either 16 g/day of prebiotic (ITFs-inulin-type fructans) (n = 8) or placebo (maltodextrin) (n = 11) for 12 weeks. Patients were instructed to maintain a stable weight throughout the study. Liver fat content (measured by H1MRS), fecal microbiota, and metabolic, inflammatory, and liver parameters were determined before and after intervention. Fecal samples from patients who received the prebiotic had an increased content of Bifidobacterium (p = 0.025), which was not observed with the placebo. However, the baseline and end-of-study liver fat contents did not change significantly in the prebiotic and placebo groups, neither did the liver function tests' metabolic and inflammatory mediators, including fibroblast growth factor-19 and lipopolysaccharide-binding protein. Body weight remained stable in both groups. These findings suggest that prebiotic treatment without weight reduction is insufficient to improve NAFLD.
Collapse
Affiliation(s)
- Naama Reshef
- Institute of Diabetes and Metabolism-Kaplan Medical Center, Rehovot 7661041, Israel; (T.Z.); (H.K.)
- School of Nutritional Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Jerusalem 9112102, Israel
| | - Uri Gophna
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv 6423906, Israel; (U.G.); (L.R.)
| | - Leah Reshef
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv 6423906, Israel; (U.G.); (L.R.)
| | - Fred Konikoff
- Institute of Gastroenterology and Hepatology-Meir Medical Center, Kefar Sava 4428164, Israel; (F.K.)
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6423906, Israel
| | - Gila Gabay
- Institute of Gastroenterology and Hepatology-Meir Medical Center, Kefar Sava 4428164, Israel; (F.K.)
| | - Taiba Zornitzki
- Institute of Diabetes and Metabolism-Kaplan Medical Center, Rehovot 7661041, Israel; (T.Z.); (H.K.)
- Hadassah School of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
| | - Hilla Knobler
- Institute of Diabetes and Metabolism-Kaplan Medical Center, Rehovot 7661041, Israel; (T.Z.); (H.K.)
- Hadassah School of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
| | - Yaakov Maor
- Hadassah School of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
- Institute of Gastroenterology and Hepatology-Kaplan Medical Center, Rehovot 7661043, Israel
| |
Collapse
|
23
|
Wang Q, Liu Y, Gao L, Zhang L, Wang J. Study on the Protective Effect and Mechanism of Umbilicaria esculenta Polysaccharide in DSS-Induced Mice Colitis and Secondary Liver Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10923-10935. [PMID: 38691832 DOI: 10.1021/acs.jafc.4c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
This study aimed to explore the ameliorative effects and potential mechanisms of Huangshan Umbilicaria esculenta polysaccharide (UEP) in dextran sulfate sodium-induced acute ulcerative colitis (UC) and UC secondary liver injury (SLI). Results showed that UEP could ameliorate both colon and liver pathologic injuries, upregulate mouse intestinal tight junction proteins (TJs) and MUC2 expression, and reduce LPS exposure, thereby attenuating the effects of the gut-liver axis. Importantly, UEP significantly downregulated the secretion levels of TNF-α, IL-1β, and IL-6 through inhibition of the NF-κB pathway and activated the Nrf2 signaling pathway to increase the expression levels of SOD and GSH-Px. In vitro, UEP inhibited the LPS-induced phosphorylation of NF-κB P65 and promoted nuclear translocation of Nrf2 in RAW264.7 cells. These results revealed that UEP ameliorated UC and SLI through NF-κB and Nrf2-mediated inflammation and oxidative stress. The study first investigated the anticolitis effect of UEP, suggesting its potential for the treatment of colitis and colitis-associated liver disease.
Collapse
Affiliation(s)
- Qilong Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Li Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Lei Zhang
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230061, China
| | - Junhui Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| |
Collapse
|
24
|
Wu H, Li S, Chen L, Xia Y, Tan X. Intake of the different types of dairy products, genetic predisposition, and the risks of nonalcoholic fatty liver disease and cirrhosis: a prospective cohort study. Food Funct 2024; 15:5050-5062. [PMID: 38656457 DOI: 10.1039/d3fo04602h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background: The association of dairy product consumption with nonalcoholic fatty liver disease (NAFLD) and cirrhosis remains controversial. This study aimed to prospectively investigate the associations between the consumption of the different types of dairy products, genetic predisposition, and the risks of NAFLD and cirrhosis. Methods: This cohort study included 190 145 participants from the UK Biobank Study. The consumption of the different types of dairy products was assessed based on the Oxford WebQ at baseline and defined as the sum of milk, yogurt, and cheese. NAFLD and cirrhosis were evaluated using hospital inpatient records and death data in the UK Biobank. The weighted genetic risk score (GRS) for NAFLD and cirrhosis was constructed using 5 and 6 single-nucleotide variants (SNVs), respectively. Cox proportional hazards regression models were utilized to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between genetic factors and different types of dairy products with the incidence of NAFLD and cirrhosis. Results: During a median follow-up of 11.6 years, 1512 NAFLD and 556 cirrhosis cases were ascertained. After adjusting for several potential confounders, the HRs (95% CIs) (Q4 vs. Q1) of NAFLD were 0.86 (0.74, 0.995) for total dairy products, 0.96 (0.84, 1.09) for high-fat dairy products, 0.78 (0.67, 0.92) for low-fat dairy products, 0.86 (0.74, 0.99) for unfermented dairy products, and 0.79 (0.68, 0.91) for fermented dairy products. The multivariable-adjusted HRs (95% CIs) (Q4 vs. Q1) of cirrhosis were 0.75 (0.59, 0.96) for total dairy products, 0.97 (0.78, 1.19) for high-fat dairy products, 0.67 (0.51, 0.89) for low-fat dairy products, 0.75 (0.59, 0.96) for unfermented dairy products, and 0.71 (0.56, 0.90) for fermented dairy products. The associations of high-fat dairy products and fermented dairy products with NAFLD and cirrhosis were found to be nonlinear (P for nonlinear <0.05). No interaction was observed between dairy product consumption and NAFLD or cirrhosis genetic susceptibility. Conclusions: Higher consumption of dairy products, except for high-fat dairy, was correlated with lower risks of NAFLD and cirrhosis, regardless of their differences in genetic susceptibility.
Collapse
Affiliation(s)
- Hanzhang Wu
- Department of Big Data in Health Science, Zhejiang University School of Public Health and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Shiwen Li
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xia
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao Tan
- Department of Big Data in Health Science, Zhejiang University School of Public Health and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Dicks LMT. Gut Bacteria Provide Genetic and Molecular Reporter Systems to Identify Specific Diseases. Int J Mol Sci 2024; 25:4431. [PMID: 38674014 PMCID: PMC11050607 DOI: 10.3390/ijms25084431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
With genetic information gained from next-generation sequencing (NGS) and genome-wide association studies (GWAS), it is now possible to select for genes that encode reporter molecules that may be used to detect abnormalities such as alcohol-related liver disease (ARLD), cancer, cognitive impairment, multiple sclerosis (MS), diabesity, and ischemic stroke (IS). This, however, requires a thorough understanding of the gut-brain axis (GBA), the effect diets have on the selection of gut microbiota, conditions that influence the expression of microbial genes, and human physiology. Bacterial metabolites such as short-chain fatty acids (SCFAs) play a major role in gut homeostasis, maintain intestinal epithelial cells (IECs), and regulate the immune system, neurological, and endocrine functions. Changes in butyrate levels may serve as an early warning of colon cancer. Other cancer-reporting molecules are colibactin, a genotoxin produced by polyketide synthetase-positive Escherichia coli strains, and spermine oxidase (SMO). Increased butyrate levels are also associated with inflammation and impaired cognition. Dysbiosis may lead to increased production of oxidized low-density lipoproteins (OX-LDLs), known to restrict blood vessels and cause hypertension. Sudden changes in SCFA levels may also serve as a warning of IS. Early signs of ARLD may be detected by an increase in regenerating islet-derived 3 gamma (REG3G), which is associated with changes in the secretion of mucin-2 (Muc2). Pro-inflammatory molecules such as cytokines, interferons, and TNF may serve as early reporters of MS. Other examples of microbial enzymes and metabolites that may be used as reporters in the early detection of life-threatening diseases are reviewed.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
26
|
Wang K, Lai W, Min T, Wei J, Bai Y, Cao H, Guo J, Su Z. The Effect of Enteric-Derived Lipopolysaccharides on Obesity. Int J Mol Sci 2024; 25:4305. [PMID: 38673890 PMCID: PMC11050189 DOI: 10.3390/ijms25084305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Endotoxin is a general term for toxic substances in Gram-negative bacteria, whose damaging effects are mainly derived from the lipopolysaccharides (LPS) in the cell walls of Gram-negative bacteria, and is a strong pyrogen. Obesity is a chronic, low-grade inflammatory condition, and LPS are thought to trigger and exacerbate it. The gut flora is the largest source of LPS in the body, and it is increasingly believed that altered intestinal microorganisms can play an essential role in the pathology of different diseases. Today, the complex axis linking gut flora to inflammatory states and adiposity has not been well elucidated. This review summarises the evidence for an interconnection between LPS, obesity, and gut flora, further expanding our understanding of LPS as a mediator of low-grade inflammatory disease and contributing to lessening the effects of obesity and related metabolic disorders. As well as providing targets associated with LPS, obesity, and gut flora, it is hoped that interventions that combine targets with gut flora address the individual differences in gut flora treatment.
Collapse
Affiliation(s)
- Kai Wang
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiwen Lai
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianqi Min
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jintao Wei
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China;
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
27
|
Song Y, Guo W, Wang J, Liu S, Li Z, Li Y. Probiotic consumption and hepatic steatosis: results from the NHANES 2011-2016 and Mendelian randomization study. Front Nutr 2024; 11:1334935. [PMID: 38650641 PMCID: PMC11033389 DOI: 10.3389/fnut.2024.1334935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Background Recent research showed that probiotics treatment may reduce insulin resistance, regulate lipid metabolism, raise liver enzyme levels, and ameliorate inflammation in individuals with metabolic associated fatty liver disease (MAFLD). However, the possible effects of probiotic use on the progression of hepatic steatosis (HS) have not been identified. The purpose of this study was to investigate this in a large population database. Methods The cross-sectional research was conducted among adults with complete data on probiotic yogurt consumption and HS in the 2011-2016 National Health and Nutrition Examination Survey (NHANES). Probiotic yogurt consumption was assessed using a dietary supplement questionnaire, while HS was evaluated with HS index (HSI). To explore their relationship, weighted univariate regression analysis, subgroup analysis, and interaction analysis were conducted. To evaluate the causal association between yogurt consumption and NAFLD, mendelian randomization analysis (MR) were performed. A restricted cubic spline (RCS) was used to analyze the relationship curve between the leves of yogurt consumption and hepatic steatosis. Results A total of 7,891 participants were included in the study represented 146.7 million non-institutionalized residents of the United States, of whom 4,322 (54.77%) were diagnosed with HS. Multivariable logistic regression showed probiotic yogurt consumption had significantly inverse relationship for HS (OR = 0.84, 95% CI: 0.72-0.97, p = 0.02) after adjusting for all covariates. Once more, the independent relationship between probiotic yogurt consumption and HS was verified by subgroup analysis and interaction analysis. The MR analysis results indicate that there is no causal relationship between yogurt consumption and NAFLD. The RCS model demonstrated a robust J-shaped link between yogurt consumption and HS, revealing a significant decrease in risk within the lower range of yogurt consumption, which attained the lowest risk close to 0.4 cup. Conclusion According to the NHANES data, the consumption of probiotics and yogurt has a beneficial effect on HS, whereas the MR results indicated it was not related to NAFLD. The RCS analysis indicates a J-shaped relationship between yogurt consumption and HS, which may account for the inconsistency in the results. Based on these findings, we recommend that adults take half a cup of yogurt daily.
Collapse
Affiliation(s)
- Yancheng Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wencong Guo
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
- Laboratory of Nephrology & Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Junke Wang
- Department of Cardiology, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
| | - Shuguang Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhaopeng Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Xiao N, Xie Z, He Z, Xu Y, Zhen S, Wei Y, Zhang X, Shen J, Wang J, Tian Y, Zuo J, Peng J, Li Z. Pathogenesis of gout: Exploring more therapeutic target. Int J Rheum Dis 2024; 27:e15147. [PMID: 38644732 DOI: 10.1111/1756-185x.15147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/23/2024]
Abstract
Gout is a chronic metabolic and immune disease, and its specific pathogenesis is still unclear. When the serum uric acid exceeds its saturation in the blood or tissue fluid, it is converted to monosodium urate crystals, which lead to acute arthritis of varying degrees, urinary stones, or irreversible peripheral joint damage, and in severe cases, impairment of vital organ function. Gout flare is a clinically significant state of acute inflammation in gout. The current treatment is mostly anti-inflammatory analgesics, which have numerous side effects with limited treatment methods. Gout pathogenesis involves many aspects. Therefore, exploring gout pathogenesis from multiple perspectives is conducive to identifying more therapeutic targets and providing safer and more effective alternative treatment options for patients with gout flare. Thus, this article is of great significance for further exploring the pathogenesis of gout. The author summarizes the pathogenesis of gout from four aspects: signaling pathways, inflammatory factors, intestinal flora, and programmed cell death, focusing on exploring more new therapeutic targets.
Collapse
Affiliation(s)
- Niqin Xiao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhiyan He
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yundong Xu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Shuyu Zhen
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyu Zhang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiayan Shen
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jian Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yadan Tian
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinlian Zuo
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiangyun Peng
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zhaofu Li
- Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
29
|
Xu Y, Wang Y, Zhao Q, Chen B, Wang N, Zhang T, Jiang Y, Wu Y, He N, Zhao G, Liu X. Dairy products intake and prevalence, incidence, and recovery of non-alcoholic fatty liver disease in Chinese population. Hepatol Int 2024; 18:529-539. [PMID: 38409495 DOI: 10.1007/s12072-024-10638-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a growing public health concern. Modifiable factors such as diet and lifestyle are of research interest in preventing or reversing the disease. The relationship between dairy products and NAFLD remains unclear. METHODS In this cohort study, 36,122 participants aged 20-74 were enrolled by multi-stage, stratified, randomized cluster sampling from 2016 to 2017. A total of 25,085 participants finished at least one follow-up visit from 2019 to 2023. Dairy intake was collected by food frequency questionnaire at baseline. NAFLD was defined as fatty liver diagnosed by ultrasonography with excessive alcohol drink excluded. Logistic regression and Cox proportional hazard models were used to analyze the association between dairy intake and NAFLD. RESULTS A total of 34,040 participants were included in the baseline analysis. The prevalence of NAFLD was inversely associated with dairy intake (OR>7vs 0 servings/week = 0.91, 95% CI 0.84-0.98; ORper serving/day increase = 0.95, 95% CI 0.92-0.99). 20,460 participants entered the follow-up analysis. Among 12,204 without NAFLD at baseline, 4,470 developed NAFLD after a median time of 4.3 years. The incidence of NAFLD was inversely associated with dairy intake (HR>7 vs 0 servings/week = 0.89, 95% CI 0.81-0.98; HRper serving/day increase = 0.94, 95% CI 0.89-0.99). Among 8256 with NAFLD at baseline, 3,885 recovered after 4.2-year follow-up. Total dairy intake did not show significant associations with recovery of NAFLD, and the HRs (95% CI) were 0.96 (0.87-1.06) for > 7 servings/week and 0.98 (0.93-1.03) for per serving/day increase. CONCLUSION Dairy product intake of more than one serving per day was associated with a lower prevalence and incidence of NAFLD in Chinese population. However, total dairy intake did not show significant association in NAFLD reversal.
Collapse
Affiliation(s)
- Yurou Xu
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Youyi Wang
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Qi Zhao
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Bo Chen
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Na Wang
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Tiejun Zhang
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yonggen Jiang
- Songjiang District Center for Disease Control and Prevention, Shanghai, 201600, China
| | - Yiling Wu
- Songjiang District Center for Disease Control and Prevention, Shanghai, 201600, China
| | - Na He
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Genming Zhao
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xing Liu
- The Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
30
|
Teng Q, Lv H, Peng L, Ren Z, Chen J, Ma L, Wei H, Wan C. Lactiplantibacillus plantarum ZDY2013 Inhibits the Development of Non-Alcoholic Fatty Liver Disease by Regulating the Intestinal Microbiota and Modulating the PI3K/Akt Pathway. Nutrients 2024; 16:958. [PMID: 38612992 PMCID: PMC11013082 DOI: 10.3390/nu16070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic hepatic condition whose impact on human health is increasingly significant. The imbalance of the gut microbiome, linked to insulin resistance, heightened intestinal permeability, and pro-inflammatory reactions, may be the linchpin in the development of NAFLD. In our research, the impact of Lactiplantibacillus plantarum ZDY2013 administration for 12 weeks on gut microbiota dysbiosis induced by a high-fat, high-fructose, high-cholesterol (FHHC) diet in male C57BL/6n mice was investigated. Research results presented that the intervention of L. plantarum ZDY2013 in mice fed with the FHHC diet could restore their liver function and regulate oxidative stress. Compared to mice in the model group, the intervention of L. plantarum ZDY2013 significantly regulated the gut microbiota, inhibited the LPS/NF-κB pathway, and led to a lower level of colonic inflammation in the mice administered with L. plantarum ZDY2013. It also improved insulin resistance to regulate the PI3K/Akt pathway and lipid metabolism, thereby resulting in reduced fat accumulation in the liver. The above results suggest that the intervention of L. plantarum ZDY2013 can hinder the progression of diet-induced NAFLD by reducing inflammation to regulate the PI3K/Akt pathway and regulating gut microbiota disturbance.
Collapse
Affiliation(s)
- Qiang Teng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Huihui Lv
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Lingling Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Zhongyue Ren
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiahui Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Lixue Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Hua Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Cuixiang Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
31
|
Janota B, Szymanek B. The Influence of Diet and Its Components on the Development and Prevention of Hepatocellular Carcinoma (HCC). Cancers (Basel) 2024; 16:1030. [PMID: 38473387 DOI: 10.3390/cancers16051030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is diagnosed annually in nearly a million people worldwide, with approximately half of them being diagnosed at an advanced stage of the disease. Non-infectious risk factors for the development of HCC include an unbalanced lifestyle, including poor dietary choices characterized by a low intake of antioxidants, such as vitamins E and C, selenium, and polyphenols, as well as an excessive consumption of energy and harmful substances. Repeated bad dietary choices that contribute to an unbalanced lifestyle lead to the accumulation of fatty substances in the liver and to it entering an inflammatory state, which, without intervention, results in cirrhosis, the main cause of HCC. This review of the English language literature aims to present the food components that, when included in the daily diet, reduce the risk of developing HCC, as well as identifying foods that may have a carcinogenic effect on liver cells.
Collapse
Affiliation(s)
- Barbara Janota
- Department of Basic Medical Sciences, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | | |
Collapse
|
32
|
Simonyan RM, Feschyan SM, Madoyan RA, Simonyan GM, Sargsyan HH, Babayan MA, Yekmalyan HH, Melkonyan MM, Simonyan MA, Manukyan AL. Superoxide-producing associates from gastrointestinal bacteria: stimulation of its growth by exogenous superoxide-producing complex from raspberries. Free Radic Res 2024; 58:145-155. [PMID: 38426488 DOI: 10.1080/10715762.2024.2325940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Aerobic organisms including the gut microbiota have an essential antioxidant status, as a result of which these bacteria protect organisms from various pathologies and diseases. The goal of the given investigation is (1) the isolation and purification of the isoforms of endogenous О2--producing associate from gastrointestinal bacteria (Lactobacillus rhamnosus, Lactobacillus acidophilus, Bifidobacterium bifidum); (2) determination of the effective concentrations of exogenous О2- produced by a complex of NADPH-containing protein component and Fe(III) (NPC-Fe(III)) from raspberries on the growth of the gastrointestinal bacteria in a nutrient medium in vitro. Ion-exchange chromatography on cellulose DE-52 and gel filtration on Sephadex G-100 at the pH of 9.5 was used to isolate and purify the NLP-Nox isoforms. Specific maximal optical absorption spectra of the Nox isoforms were observed in a weakly opalescent aqueous solution of the NLP-Nox isoforms. The specific contents of these NLP-Nox isoforms, as well as their composition, the stationary concentration of produced О2-, and the mechanism of О2- production were determined. The stimulating effect on the growth of these gastrointestinal bacteria in the nutrient medium of MRS broth and MRS agar in vitro under the influence of О2-, as a product of a new thermostable and acid-stable complex NPC-Fe(III) was determined. The NPC-Fe(III) complex, from raspberries was determined as well. Thus, for the first time, the isolation and purification of О2-- producing thermostable NADPH-containing lipoprotein-NADPH oxidase (NLP-Nox) associate from gastrointestinal bacteria membranes (continuously producing О2- under the aerobic conditions), and the stimulation of these bacteria growth by О2- formed by the complex from raspberries were demonstrated.
Collapse
Affiliation(s)
- Ruzan M Simonyan
- H. Buniatyan Institute of Biochemistry NAS RA, Laboratory of "Metabolism of Reactive Oxygen", Yerevan, Armenia
| | - Sona M Feschyan
- Department of Biology, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Roza A Madoyan
- H.Buniatyan Institute of Biochemistry NAS RA, Laboratory of "Analytical Chromatography and mass spectral research", Yerevan, Armenia
| | - Gegham M Simonyan
- H. Buniatyan Institute of Biochemistry NAS RA, Laboratory of "Metabolism of Reactive Oxygen", Yerevan, Armenia
| | - Hasmik H Sargsyan
- H.Buniatyan Institute of Biochemistry NAS RA, Laboratory of "Analytical Chromatography and mass spectral research", Yerevan, Armenia
| | - Madlena A Babayan
- H. Buniatyan Institute of Biochemistry NAS RA, Laboratory of "Metabolism of Reactive Oxygen", Yerevan, Armenia
| | - Hasmik H Yekmalyan
- H. Buniatyan Institute of Biochemistry NAS RA, Laboratory of "Metabolism of Reactive Oxygen", Yerevan, Armenia
| | - Magdalina M Melkonyan
- Department of Medical Chemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Maxim A Simonyan
- H. Buniatyan Institute of Biochemistry NAS RA, Laboratory of "Metabolism of Reactive Oxygen", Yerevan, Armenia
| | - Ashkhen L Manukyan
- Department of Medical Chemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| |
Collapse
|
33
|
Cai T, Song X, Xu X, Dong L, Liang S, Xin M, Huang Y, Zhu L, Li T, Wang X, Fang Y, Xu Z, Wang C, Wang M, Li J, Zheng Y, Sun W, Li L. Effects of plant natural products on metabolic-associated fatty liver disease and the underlying mechanisms: a narrative review with a focus on the modulation of the gut microbiota. Front Cell Infect Microbiol 2024; 14:1323261. [PMID: 38444539 PMCID: PMC10912229 DOI: 10.3389/fcimb.2024.1323261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease characterized by the excessive accumulation of fat in hepatocytes. However, due to the complex pathogenesis of MAFLD, there are no officially approved drugs for treatment. Therefore, there is an urgent need to find safe and effective anti-MAFLD drugs. Recently, the relationship between the gut microbiota and MAFLD has been widely recognized, and treating MAFLD by regulating the gut microbiota may be a new therapeutic strategy. Natural products, especially plant natural products, have attracted much attention in the treatment of MAFLD due to their multiple targets and pathways and few side effects. Moreover, the structure and function of the gut microbiota can be influenced by exposure to plant natural products. However, the effects of plant natural products on MAFLD through targeting of the gut microbiota and the underlying mechanisms are poorly understood. Based on the above information and to address the potential therapeutic role of plant natural products in MAFLD, we systematically summarize the effects and mechanisms of action of plant natural products in the prevention and treatment of MAFLD through targeting of the gut microbiota. This narrative review provides feasible ideas for further exploration of safer and more effective natural drugs for the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Linghui Zhu
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueke Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
34
|
Almasri F, Collotta D, Aimaretti E, Sus N, Aragno M, Dal Bello F, Eva C, Mastrocola R, Landberg R, Frank J, Collino M. Dietary Intake of Fructooligosaccharides Protects against Metabolic Derangements Evoked by Chronic Exposure to Fructose or Galactose in Rats. Mol Nutr Food Res 2024; 68:e2300476. [PMID: 38158337 DOI: 10.1002/mnfr.202300476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/30/2023] [Indexed: 01/03/2024]
Abstract
SCOPE Diets rich in fat and sugars evoke chronic low-grade inflammation, leading to metabolic derangements. This study investigates the impact of fructose and galactose, two commonly consumed simple sugars, on exacerbation of the harmful effects caused by high fat intake. Additionally, the potential efficacy of fructooligosaccharides (FOS), a fermentable dietary fiber, in counteracting these effects is examined. METHODS AND RESULTS Male Sprague-Dawley rats (six/group) are fed 8 weeks as follows: control 5% fat diet (CNT), 20% fat diet (FAT), FAT+10% FOS diet (FAT+FOS), FAT+25% galactose diet (FAT+GAL), FAT+GAL+10% FOS diet (FAT+GAL+FOS), FAT+25% fructose diet (FAT+FRU), FAT+FRU+10% FOS diet (FAT+FRU+FOS). The dietary manipulations tested do not affect body weight gain, blood glucose, or markers of systemic inflammation whereas significant increases in plasma concentrations of triacylglycerols, cholesterol, aspartate aminotransferase, and alanine aminotrasferase are detected in both FAT+FRU and FAT+GAL compared to CNT. In the liver and skeletal muscle, both sugars induce significant accumulation of lipids and advanced glycation end-products (AGEs). FOS supplementation prevents these impairments. CONCLUSION This study extends the understanding of the deleterious effects of a chronic intake of simple sugars and demonstrates the beneficial role of the prebiotic FOS in dampening the sugar-induced metabolic impairments by prevention of lipid and AGEs accumulation.
Collapse
Affiliation(s)
- Fidèle Almasri
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstr. 28, 70599, Stuttgart, Germany
| | - Debora Collotta
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Corso Raffaello 30, Torino, 10125, Piemonte, Italy
| | - Eleonora Aimaretti
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin, 10125, Piemonte, Italy
| | - Nadine Sus
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstr. 28, 70599, Stuttgart, Germany
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin, 10125, Piemonte, Italy
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Torino, 10126, Piemonte, Italy
| | - Carola Eva
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Corso Raffaello 30, Torino, 10125, Piemonte, Italy
| | - Raffaella Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin, 10125, Piemonte, Italy
| | - Rikard Landberg
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstr. 28, 70599, Stuttgart, Germany
| | - Massimo Collino
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Corso Raffaello 30, Torino, 10125, Piemonte, Italy
| |
Collapse
|
35
|
Min BH, Devi S, Kwon GH, Gupta H, Jeong JJ, Sharma SP, Won SM, Oh KK, Yoon SJ, Park HJ, Eom JA, Jeong MK, Hyun JY, Stalin N, Park TS, Choi J, Lee DY, Han SH, Kim DJ, Suk KT. Gut microbiota-derived indole compounds attenuate metabolic dysfunction-associated steatotic liver disease by improving fat metabolism and inflammation. Gut Microbes 2024; 16:2307568. [PMID: 38299316 PMCID: PMC10841017 DOI: 10.1080/19490976.2024.2307568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease, and its prevalence has increased worldwide in recent years. Additionally, there is a close relationship between MASLD and gut microbiota-derived metabolites. However, the mechanisms of MASLD and its metabolites are still unclear. We demonstrated decreased indole-3-propionic acid (IPA) and indole-3-acetic acid (IAA) in the feces of patients with hepatic steatosis compared to healthy controls. Here, IPA and IAA administration ameliorated hepatic steatosis and inflammation in an animal model of WD-induced MASLD by suppressing the NF-κB signaling pathway through a reduction in endotoxin levels and inactivation of macrophages. Bifidobacterium bifidum metabolizes tryptophan to produce IAA, and B. bifidum effectively prevents hepatic steatosis and inflammation through the production of IAA. Our study demonstrates that IPA and IAA derived from the gut microbiota have novel preventive or therapeutic potential for MASLD treatment.
Collapse
Affiliation(s)
- Byeong Hyun Min
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Shivani Devi
- Department of Life Science, Gachon University, Sungnam, Republic of Korea
| | - Goo Hyun Kwon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Ju Jeong
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Satya Priya Sharma
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Hee Jin Park
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Jung A Eom
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Min Kyo Jeong
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ji Ye Hyun
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Nattan Stalin
- Department of Life Science, Gachon University, Sungnam, Republic of Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Sungnam, Republic of Korea
| | - Jieun Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
36
|
Saracila M, Untea AE, Varzaru I, Panaite TD, Vlaicu PA. Comparative Effects on Using Bilberry Leaves in Broiler Diet Reared under Thermoneutral Conditions vs. Heat Stress on Performance, Health Status and Gut Microbiota. Life (Basel) 2023; 14:39. [PMID: 38255654 PMCID: PMC10821394 DOI: 10.3390/life14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
The study aims to investigate the impact of dietary bilberry leaves on the performance, health status, and gut microbiota of broilers reared in both thermoneutral conditions and under heat stress. Sixty Cobb 500 broiler chicks were divided into two groups (C-TN, BL-TN) and reared in thermoneutral conditions for the first trial. For the second trial, two other groups (C-HS and BL-HS) were reared in heat stress (32 °C), with 30 chickens in each group. The experimental diets were supplemented with 1% bilberry leaves compared to the control diets. The broilers fed a diet with bilberry leaves had lower levels of cholesterol compared to the control birds. At the end of the experiment, six broilers per group were slaughtered, and intestinal contents were collected for bacteriological analyses. The results revealed that bilberry leaves increased body weight and average daily feed intake in the BL-TN group compared to the C-HS group. However, the broilers fed a bilberry leaves diet and reared in heat stress had a significantly lower average daily feed intake and average daily weight gain than the C-TN group. Additionally, the number of staphylococci colonies decreased significantly in the group fed with a BL-supplemented diet and reared in TN compared to C-TN, while lactobacilli increased significantly in BL-TN compared to C-TN. In summary, bilberry leaves can be used as a natural supplement in a broiler's diet to regulate serum cholesterol in heat stress and maintain the health of intestinal microflora in thermoneutral conditions.
Collapse
Affiliation(s)
- Mihaela Saracila
- Food and Feed Quality Department, National Research and Development Institute for Biology and Animal Nutrition, 077015 Balotesti, Romania; (A.E.U.); (I.V.); (P.A.V.)
| | - Arabela Elena Untea
- Food and Feed Quality Department, National Research and Development Institute for Biology and Animal Nutrition, 077015 Balotesti, Romania; (A.E.U.); (I.V.); (P.A.V.)
| | - Iulia Varzaru
- Food and Feed Quality Department, National Research and Development Institute for Biology and Animal Nutrition, 077015 Balotesti, Romania; (A.E.U.); (I.V.); (P.A.V.)
| | - Tatiana Dumitra Panaite
- Nutrition Physiology Department, National Research and Development Institute for Biology and Animal Nutrition, 077015 Balotesti, Romania;
| | - Petru Alexandru Vlaicu
- Food and Feed Quality Department, National Research and Development Institute for Biology and Animal Nutrition, 077015 Balotesti, Romania; (A.E.U.); (I.V.); (P.A.V.)
| |
Collapse
|
37
|
Han C, Li Z, Liu R, Zhao Z, Wang Y, Zuo X, Zhang Y, Geng Z, Huang H, Pan X, Li W. Lonicerae flos polysaccharides improve nonalcoholic fatty liver disease by activating the adenosine 5'-monophosphate-activated protein kinase pathway and reshaping gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7721-7738. [PMID: 37439182 DOI: 10.1002/jsfa.12854] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common cause of liver cirrhosis and cancer. Lonicerae flos polysaccharides (LPs) have been shown to be effective in treating metabolic diseases; however, the therapeutic effects and underlying molecular mechanisms of LPs in NAFLD remain unclear. PURPOSE The objective of this study was to investigate the morphological characterization of Lonicerae flos polysaccharides (LPs) and the mechanism of LPs in relieving NAFLD. METHODS The morphology of LPs was observed using atomic force microscopy (AFM), X-ray diffraction (XRD), thermal weight (TG), and thermal weight derivative (DTG); NAFLD mice were treated with LPs at the same time as they were induced with a Western diet, and then the indexes related to glycolipid metabolism, fibrosis, inflammation, and autophagy in the serum and liver of the mice were detected. RESULTS The atomic force microscope analysis results indicated that the LPs displayed sugar-chain aggregates, exhibited an amorphous structure, and were relatively stable in thermal cracking at 150 °C. It was also found that LPs exerted therapeutic effects in NAFLD. The LPs prevented high-fat and -cholesterol diet-induced NAFLD progression by regulating glucose metabolism dysregulation, insulin resistance, lipid accumulation, inflammation, fibrosis, and autophagy. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) inhibitor compound C abrogated LP-induced hepatoprotection in mice with NAFLD. The LPs further treated NAFLD by reshaping the structure of the gut microbiota, in which Desulfovibrio bacteria plays a key roles. CONCLUSION Lonicerae flos polysaccharides exert protective effects against NAFLD in mice by improving the structure of the intestinal flora and activating the AMPK signaling pathway. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zongshuo Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ruiying Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xuli Zuo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yushi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Geng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Houyu Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuzhen Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Weidong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
38
|
Fa P, Ke BG, Dupre A, Tsung A, Zhang H. The implication of neutrophil extracellular traps in nonalcoholic fatty liver disease. Front Immunol 2023; 14:1292679. [PMID: 38022519 PMCID: PMC10652891 DOI: 10.3389/fimmu.2023.1292679] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an expanding worldwide health concern, and the underlying mechanisms contributing to its progression still need further exploration. Neutrophil extracellular traps (NETs) are intricate formations comprised of nuclear constituents and diverse antimicrobial granules that are released into the extracellular milieu by activated neutrophils upon various triggers, which play a pivotal part in the onset and advancement of NAFLD. NETs actively participate in the genesis of NAFLD by fostering oxidative stress and inflammation, ultimately resulting in hepatic fat accumulation and the escalation of liver injury. Recent insights into the interaction with other hepatic immune populations and mediators, such as macrophages and T regulatory cells, have revealed several important mechanisms that can trigger further liver injury. In conclusion, the formation of NETs emerged as an important factor in the development of NAFLD, offering a promising target for innovative therapeutic approaches against this debilitating condition. This comprehensive review seeks to compile existing studies exploring the involvement of NETs in the genesis of NAFLD and their influence on the immune response throughout the progression of NAFLD.
Collapse
Affiliation(s)
- Pengyan Fa
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Benjamin G. Ke
- School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Abigail Dupre
- School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
39
|
Odenwald MA, Lin H, Lehmann C, Dylla NP, Cole CG, Mostad JD, Pappas TE, Ramaswamy R, Moran A, Hutchison AL, Stutz MR, Dela Cruz M, Adler E, Boissiere J, Khalid M, Cantoral J, Haro F, Oliveira RA, Waligurski E, Cotter TG, Light SH, Beavis KG, Sundararajan A, Sidebottom AM, Reddy KG, Paul S, Pillai A, Te HS, Rinella ME, Charlton MR, Pamer EG, Aronsohn AI. Bifidobacteria metabolize lactulose to optimize gut metabolites and prevent systemic infection in patients with liver disease. Nat Microbiol 2023; 8:2033-2049. [PMID: 37845315 PMCID: PMC11059310 DOI: 10.1038/s41564-023-01493-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023]
Abstract
Progression of chronic liver disease is precipitated by hepatocyte loss, inflammation and fibrosis. This process results in the loss of critical hepatic functions, increasing morbidity and the risk of infection. Medical interventions that treat complications of hepatic failure, including antibiotic administration for systemic infections and lactulose treatment for hepatic encephalopathy, can impact gut microbiome composition and metabolite production. Here, using shotgun metagenomic sequencing and targeted metabolomic analyses on 847 faecal samples from 262 patients with acute or chronic liver disease, we demonstrate that patients hospitalized for liver disease have reduced microbiome diversity and a paucity of bioactive metabolites, including short-chain fatty acids and bile acid derivatives, that impact immune defences and epithelial barrier integrity. We find that patients treated with the orally administered but non-absorbable disaccharide lactulose have increased densities of intestinal bifidobacteria and reduced incidence of systemic infections and mortality. Bifidobacteria metabolize lactulose, produce high concentrations of acetate and acidify the gut lumen in humans and mice, which, in combination, can reduce the growth of antibiotic-resistant bacteria such as vancomycin-resistant Enterococcus faecium in vitro. Our studies suggest that lactulose and bifidobacteria serve as a synbiotic to reduce rates of infection in patients with severe liver disease.
Collapse
Affiliation(s)
- Matthew A Odenwald
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA.
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Christopher Lehmann
- Department of Medicine, Section of Infectious Diseases and Global Health, University of Chicago, Chicago, IL, USA
| | - Nicholas P Dylla
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Cody G Cole
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Jake D Mostad
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Téa E Pappas
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | | | - Angelica Moran
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Alan L Hutchison
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Matthew R Stutz
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cook County Health, Chicago, IL, USA
| | - Mark Dela Cruz
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Emerald Adler
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Jaye Boissiere
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Maryam Khalid
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Jackelyn Cantoral
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Fidel Haro
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Rita A Oliveira
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Emily Waligurski
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Thomas G Cotter
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, TX, USA
| | - Samuel H Light
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | | | | | | | - K Gautham Reddy
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Sonali Paul
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Anjana Pillai
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Helen S Te
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Mary E Rinella
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Michael R Charlton
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA.
- Department of Medicine, Section of Infectious Diseases and Global Health, University of Chicago, Chicago, IL, USA.
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
| | - Andrew I Aronsohn
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| |
Collapse
|
40
|
Zhao J, Zhao F, Yuan J, Liu H, Wang Y. Gut microbiota metabolites, redox status, and the related regulatory effects of probiotics. Heliyon 2023; 9:e21431. [PMID: 38027795 PMCID: PMC10643359 DOI: 10.1016/j.heliyon.2023.e21431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Oxidative stress is a state of imbalance between oxidation and antioxidation. It is caused by excess levels of free radicals and leads to the damage of DNA, proteins, and lipids. The crucial role of gut microbiota in regulating oxidative stress has been widely demonstrated. Studies have suggested that the redox regulatory effects of gut microbiota are related to gut microbiota metabolites, including fatty acids, lipopolysaccharides, tryptophan metabolites, trimethylamine-N-oxide and polyphenolic metabolites. In recent years, the potential benefits of probiotics have been gaining increasing scientific interest owing to their ability to modulate gut microbiota and oxidative stress. In this review, we summarise the adverse health effects of oxidative stress and discuss the role of the gut microbiota and its metabolites in redox regulation. Based on the influence of gut microbiota metabolites, the roles of probiotics in preventing oxidative stress are highlighted.
Collapse
Affiliation(s)
| | | | - Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| |
Collapse
|
41
|
Mijangos-Trejo A, Nuño-Lambarri N, Barbero-Becerra V, Uribe-Esquivel M, Vidal-Cevallos P, Chávez-Tapia N. Prebiotics and Probiotics: Therapeutic Tools for Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:14918. [PMID: 37834367 PMCID: PMC10573697 DOI: 10.3390/ijms241914918] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023] Open
Abstract
Alterations in the gut-liver axis and changes in the gut microbiome are among the risk factors for the pathogenesis of non-alcoholic fatty liver disease (NAFLD). These patients show increased bacterial overgrowth in the small intestine and impaired intestinal permeability. Therefore, therapeutic options such as probiotics or prebiotics have been investigated to modulate intestinal microbiota composition to improve NAFLD. Most in vivo and in vitro probiotic studies have focused on reducing hepatic fat accumulation. The beneficial effects of probiotics on NAFLD have been demonstrated in animal models, and the most widely used microorganisms are those of the Lactobacillus and Bifidobacterium genera. In animal models, probiotics help restore the intestinal microbiota and improve the integrity of the intestinal barrier. This narrative review summarizes published evidence and the likely benefits of probiotics and prebiotics as a therapeutic option for patients with NAFLD.
Collapse
|
42
|
Alam S, Liaqat I, Al-Arifa N, Zia T, Munawar M, Muzamil A. Obesity theranostics using nanoemulsions of probiotics and local herbs. Saudi J Biol Sci 2023; 30:103790. [PMID: 37680978 PMCID: PMC10480777 DOI: 10.1016/j.sjbs.2023.103790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
Obesity is a polygenic disorder which has become a global epidemic in recent years. Aim of the present study was to assess the theranostic potential of probiotics (Lactobacillus bulgaricus, Bifidobacterium) and local herbs (fenugreek seeds, aloe vera) on the body weight, biochemical (liver and kidney functions) and histology of some internal organs (liver, kidney, ovary, small intestine) in obese rats. In present study, nanoemulsions of probiotics and local herbs were formulated by high energy method and characterized by FTIR and UV analysis. One hundred and sixty (1 6 0) female wistar rats were divided into sixteen groups. A high-fat diet was given to induce obesity in them. Obese rats were treated with different doses of probiotics, local herbs and their combination. Weekly body weight was monitored. Rats were dissected after fifteen weeks; blood and organs were harvested for biochemical analysis and histology. Results demonstrated a protective effect of nanoemulsion of probiotics and local herbs on the central vein, glomerulus, villi and normal ovulatory function of obese rats. Rats treated with a combination of probiotics and local herbs (fenugreek seeds, aloe vera) exhibited improved levels of bilirubin (4 mg/dl to15 mg/dl), AST from (110 U/L to 18 U/L) and ALT from (52 U/L to 10U/L). Similar renoprotective effects were recorded on the overall renal function tests (RFT). A combination of probiotics and local herbs in post treatment rats improved urea (63 mg/dl to 22 mg/dl) and creatinine (0.2 mg/dl to 0.8 mg/dl) levels. It was therefore evident that a combination of probiotics and local herbs has the potential to reverse the effects of obesity on the biochemical parameters and histological architecture of liver, kidney, small intestine and ovary. The overall results indicated that probiotics have positive effects of their own, but when combined with local herbs, they produced highly effective results in obese rats and therefore can be used as a complementary option in obese individuals.
Collapse
Affiliation(s)
- Saman Alam
- Physiology and Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Irfana Liaqat
- Physiology and Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Najiya Al-Arifa
- Immunology Laboratory, Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Threem Zia
- Physiology and Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Mohsin Munawar
- Physiology and Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Ayesha Muzamil
- Applied Entomology and Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
43
|
Zhao W, Chen Y, Tian Y, Wang Y, Du J, Ye X, Lu L, Sun C. Dietary supplementation with Dendrobium officinale leaves improves growth, antioxidant status, immune function, and gut health in broilers. Front Microbiol 2023; 14:1255894. [PMID: 37789853 PMCID: PMC10544969 DOI: 10.3389/fmicb.2023.1255894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Background The Dendrobium officinale leaves (DOL) is an underutilized by-product with a large biomass, which have been shown to exhibit immunomodulatory and antioxidant functions. The purpose of this research was to investigate the effects of DOL on broiler growth performance, antioxidant status, immune function, and gut health. Methods One hundred and ninety-two 1-day-old chicks were selected and divided into 4 groups at random, 6 replicates for each group and 8 in each. Chicks were given a basal diet supplemented with different amounts of DOL: 0% (control group, NC), 1% (LD), 5% (MD), or 10% (HD). During the feeding trial (70 days), broiler body weight, feed intake, and residual feeding were recorded. On d 70, 12 broilers from each group were sampled for serum antioxidant and immune indexes measurement, intestinal morphological analysis, as well as 16S rRNA sequencing of cecal contents and short-chain fatty acid (SCFA) determination. Results In comparison to the NC group, the LD group had greater final body weight and average daily gain, and a lower feed conversion ratio (p < 0.05, d 1 to 70). However, in MD group, no significant change of growth performance occurred (p > 0.05). Furthermore, DOL supplementation significantly improved the levels of serum total antioxidant capacity, glutathione peroxidase, superoxide dismutase, and catalase, but reduced the level of malondialdehyde (p < 0.05). Higher serum immunoglobulin A (IgA) content and lower cytokine interleukin-2 (IL-2) and IL-6 contents were observed in DOL-fed broilers than in control chickens (p <0.05). Compared to the NC group, duodenal villus height (VH) and villus height-to-crypt depth (VH:CD) ratio were considerably higher in three DOL supplementation groups (p < 0.05). Further, 16S rRNA sequencing analysis revealed that DOL increased the diversity and the relative abundance of cecal bacteria, particularly helpful microbes like Faecalibacterium, Lactobacillus, and Oscillospira, which improved the production of SCFA in cecal content. According to Spearman correlation analysis, the increased butyric acid and acetic acid concentrations were positively related to serum antioxidant enzyme activities (T-AOC and GSH-Px) and immunoglobulin M (IgM) level (p < 0.05). Conclusion Overall, the current study demonstrated that supplementing the dies with DOL in appropriate doses could enhance growth performance, antioxidant capacity, and immune response, as well as gut health by promoting intestinal integrity and modulating the cecal microbiota in broilers. Our research may serve as a preliminary foundation for the future development and application of DOL as feed additive in broiler chicken diets.
Collapse
Affiliation(s)
- Wanqiu Zhao
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| | - Yunzhu Wang
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Jianke Du
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Xuan Ye
- Zhejiang Xianju Breeding Chicken Farm, Xianju, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| | - Chongbo Sun
- Institute of Horticulture, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| |
Collapse
|
44
|
Yang K, Song M. New Insights into the Pathogenesis of Metabolic-Associated Fatty Liver Disease (MAFLD): Gut-Liver-Heart Crosstalk. Nutrients 2023; 15:3970. [PMID: 37764755 PMCID: PMC10534946 DOI: 10.3390/nu15183970] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolism-associated fatty liver disease (MAFLD) is a multifaceted disease that involves complex interactions between various organs, including the gut and heart. It is defined by hepatic lipid accumulation and is related to metabolic dysfunction, obesity, and diabetes. Understanding the intricate interplay of the gut-liver-heart crosstalk is crucial for unraveling the complexities of MAFLD and developing effective treatment and prevention strategies. The gut-liver crosstalk participates in the regulation of the metabolic and inflammatory processes through host-microbiome interactions. Gut microbiota have been associated with the development and progression of MAFLD, and its dysbiosis contributes to insulin resistance, inflammation, and oxidative stress. Metabolites derived from the gut microbiota enter the systemic circulation and influence both the liver and heart, resulting in the gut-liver-heart axis playing an important role in MAFLD. Furthermore, growing evidence suggests that insulin resistance, endothelial dysfunction, and systemic inflammation in MAFLD may contribute to an increased risk of cardiovascular disease (CVD). Additionally, the dysregulation of lipid metabolism in MAFLD may also lead to cardiac dysfunction and heart failure. Overall, the crosstalk between the liver and heart involves a complex interplay of molecular pathways that contribute to the development of CVD in patients with MAFLD. This review emphasizes the current understanding of the gut-liver-heart crosstalk as a foundation for optimizing patient outcomes with MAFLD.
Collapse
Affiliation(s)
| | - Myeongjun Song
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
45
|
Yang X, Li D, Zhang M, Feng Y, Jin X, Liu D, Guo Y, Hu Y. Ginkgo biloba extract alleviates fatty liver hemorrhagic syndrome in laying hens via reshaping gut microbiota. J Anim Sci Biotechnol 2023; 14:97. [PMID: 37533076 PMCID: PMC10399048 DOI: 10.1186/s40104-023-00900-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/31/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Ginkgo biloba extract (GBE) is evidenced to be effective in the prevention and alleviation of metabolic disorders, including obesity, diabetes and fatty liver disease. However, the role of GBE in alleviating fatty liver hemorrhagic syndrome (FLHS) in laying hens and the underlying mechanisms remain to be elucidated. Here, we investigated the effects of GBE on relieving FLHS with an emphasis on the modulatory role of GBE in chicken gut microbiota. RESULTS The results showed that GBE treatment ameliorated biochemical blood indicators in high-fat diet (HFD)-induced FLHS laying hen model by decreasing the levels of TG, TC, ALT and ALP. The lipid accumulation and pathological score of liver were also relieved after GBE treatment. Moreover, GBE treatment enhanced the antioxidant activity of liver and serum by increasing GSH, SOD, T-AOC, GSH-PX and reducing MDA, and downregulated the expression of genes related to lipid synthesis (FAS, LXRα, GPAT1, PPARγ and ChREBP1) and inflammatory cytokines (TNF-α, IL-6, TLR4 and NF-κB) in the liver. Microbial profiling analysis revealed that GBE treatment reshaped the HFD-perturbed gut microbiota, particularly elevated the abundance of Megasphaera in the cecum. Meanwhile, targeted metabolomic analysis of SCFAs revealed that GBE treatment significantly promoted the production of total SCFAs, acetate and propionate, which were positively correlated with the GBE-enriched gut microbiota. Finally, we confirmed that the GBE-altered gut microbiota was sufficient to alleviate FLHS by fecal microbiota transplantation (FMT). CONCLUSIONS We provided evidence that GBE alleviated FLHS in HFD-induced laying hens through reshaping the composition of gut microbiota. Our findings shed light on mechanism underlying the anti-FLHS efficacy of GBE and lay foundations for future use of GBE as additive to prevent and control FLHS in laying hen industry.
Collapse
Affiliation(s)
- Xinyue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Depeng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Meihong Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
46
|
Hamamah S, Amin A, Al-Kassir AL, Chuang J, Covasa M. Dietary Fat Modulation of Gut Microbiota and Impact on Regulatory Pathways Controlling Food Intake. Nutrients 2023; 15:3365. [PMID: 37571301 PMCID: PMC10421457 DOI: 10.3390/nu15153365] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Obesity is a multifactorial disease that continues to increase in prevalence worldwide. Emerging evidence has shown that the development of obesity may be influenced by taxonomic shifts in gut microbiota in response to the consumption of dietary fats. Further, these alterations in gut microbiota have been shown to promote important changes in satiation signals including gut hormones (leptin, ghrelin, GLP-1, peptide YY and CCK) and orexigenic and anorexigenic neuropeptides (AgRP, NPY, POMC, CART) that influence hyperphagia and therefore obesity. In this review, we highlight mechanisms by which gut microbiota can influence these satiation signals both locally in the gastrointestinal tract and via microbiota-gut-brain communication. Then, we describe the effects of dietary interventions and associated changes in gut microbiota on satiety signals through microbiota-dependent mechanisms. Lastly, we present microbiota optimizing therapies including prebiotics, probiotics, synbiotics and weight loss surgery that can help restore beneficial gut microbiota by enhancing satiety signals to reduce hyperphagia and subsequent obesity. Overall, a better understanding of the mechanisms by which dietary fats induce taxonomical shifts in gut microbiota and their impact on satiation signaling pathways will help develop more targeted therapeutic interventions in delaying the onset of obesity and in furthering its treatment.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
| | - Arman Amin
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
| | - Abdul Latif Al-Kassir
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
| | - Judith Chuang
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
| | - Mihai Covasa
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
47
|
Guo GJ, Yao F, Lu WP, Xu HM. Gut microbiome and metabolic-associated fatty liver disease: Current status and potential applications. World J Hepatol 2023; 15:867-882. [PMID: 37547030 PMCID: PMC10401411 DOI: 10.4254/wjh.v15.i7.867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/11/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is one of the most common chronic liver diseases worldwide. In recent years, the occurrence rate of MAFLD has been on the rise, mainly due to lifestyle changes, high-calorie diets, and imbalanced dietary structures, thereby posing a threat to human health and creating heavy social and economic burdens. With the development of 16S sequencing and integrated multi-omics analysis, the role of the gut microbiota (GM) and its metabolites in MAFLD has been further recognized. The GM plays a role in digestion, energy metabolism, vitamin synthesis, the prevention of pathogenic bacteria colonisation, and immunoregulation. The gut-liver axis is one of the vital links between the GM and the liver. Toxic substances in the intestine can enter the liver through the portal vascular system when the intestinal barrier is severely damaged. The liver also influences the GM in various ways, such as bile acid circulation. The gut-liver axis is essential in maintaining the body's normal physiological state and plays a role in the onset and prognosis of many diseases, including MAFLD. This article reviews the status of the GM and MAFLD and summarizes the GM characteristics in MAFLD. The relationship between the GM and MAFLD is discussed in terms of bile acid circulation, energy metabolism, micronutrients, and signalling pathways. Current MAFLD treatments targeting the GM are also listed.
Collapse
Affiliation(s)
- Gong-Jing Guo
- Gastroenterology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, Guangdong Province, China
| | - Fei Yao
- Department of Science and Education, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, Guangdong Province, China
| | - Wei-Peng Lu
- The First Clinical School, Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China.
| |
Collapse
|
48
|
Egea MB, de Oliveira Filho JG, Lemes AC. Investigating the Efficacy of Saccharomyces boulardii in Metabolic Syndrome Treatment: A Narrative Review of What Is Known So Far. Int J Mol Sci 2023; 24:12015. [PMID: 37569390 PMCID: PMC10418856 DOI: 10.3390/ijms241512015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Metabolic syndrome (MetS) is characterized by complex metabolic changes involving a cluster of co-occurring conditions, such as abdominal obesity, high blood pressure, high fasting plasma glucose, high serum triglycerides, and high LDL cholesterol levels or low HDL cholesterol levels. The incidence and risk factors of MetS occurrence increase every year. It is estimated that MetS affects approximately 30% of the population of some countries. Therefore, novel strategies are being studied to reduce the negative impact of having an unbalanced diet and a lack of physical activity. One of these strategies is the administration of probiotic microorganisms, such as the yeast Saccharomyces boulardii, which has been associated with several beneficial health effects (including modulation of the intestinal microbiota and improvement of the inflammatory, antioxidant, antibacterial, antitumor, and anti-inflammatory profiles). Thus, the objective of this study was to review the risk factors of MetS occurrence and the beneficial effects of S. boulardii ingestion in the treatment of MetS. Here, we critically evaluate the treatment necessary to promote these benefits. Using the pre-established inclusion criteria, eight studies were reviewed, including five animal and three human studies. The results reported the regulation of the lipid profile, modulation of the intestinal microbiota and gene expression, and a decrease in mass gain as positive results when S. boulardii was administered. Although more experiments are needed to validate these results, especially using human models, there is a trend toward improvement in MetS and a reduction in its risk factors with the administration of S. boulardii.
Collapse
Affiliation(s)
- Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde 75901-970, Brazil
| | | | - Ailton Cesar Lemes
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil;
| |
Collapse
|
49
|
Torraville SE, Flynn CM, Kendall TL, Yuan Q. Life Experience Matters: Enrichment and Stress Can Influence the Likelihood of Developing Alzheimer's Disease via Gut Microbiome. Biomedicines 2023; 11:1884. [PMID: 37509523 PMCID: PMC10377385 DOI: 10.3390/biomedicines11071884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease, characterized by the presence of β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) formed from abnormally phosphorylated tau proteins (ptau). To date, there is no cure for AD. Earlier therapeutic efforts have focused on the clinical stages of AD. Despite paramount efforts and costs, pharmaceutical interventions including antibody therapies targeting Aβ have largely failed. This highlights the need to alternate treatment strategies and a shift of focus to early pre-clinical stages. Approximately 25-40% of AD cases can be attributed to environmental factors including chronic stress. Gut dysbiosis has been associated with stress and the pathogenesis of AD and can increase both Aβ and NFTs in animal models of the disease. Both stress and enrichment have been shown to alter AD progression and gut health. Targeting stress-induced gut dysbiosis through probiotic supplementation could provide a promising intervention to delay disease progression. In this review, we discuss the effects of stress, enrichment, and gut dysbiosis in AD models and the promising evidence from probiotic intervention studies.
Collapse
Affiliation(s)
- Sarah E Torraville
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Cassandra M Flynn
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Tori L Kendall
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
50
|
Kaufmann B, Seyfried N, Hartmann D, Hartmann P. Probiotics, prebiotics, and synbiotics in nonalcoholic fatty liver disease and alcohol-associated liver disease. Am J Physiol Gastrointest Liver Physiol 2023; 325:G42-G61. [PMID: 37129252 PMCID: PMC10312326 DOI: 10.1152/ajpgi.00017.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
The use of probiotics, prebiotics, and synbiotics has become an important therapy in numerous gastrointestinal diseases in recent years. Modifying the gut microbiota, this therapeutic approach helps to restore a healthy microbiome. Nonalcoholic fatty liver disease and alcohol-associated liver disease are among the leading causes of chronic liver disease worldwide. A disrupted intestinal barrier, microbial translocation, and an altered gut microbiome metabolism, or metabolome, are crucial in the pathogenesis of these chronic liver diseases. As pro-, pre-, and synbiotics modulate these targets, they were identified as possible new treatment options for liver disease. In this review, we highlight the current findings on clinical and mechanistic effects of this therapeutic approach in nonalcoholic fatty liver disease and alcohol-associated liver disease.
Collapse
Affiliation(s)
- Benedikt Kaufmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Nick Seyfried
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniel Hartmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Phillipp Hartmann
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States
| |
Collapse
|