1
|
Siragusa G, Tomasello L, Giordano C, Pizzolanti G. Survivin (BIRC5): Implications in cancer therapy. Life Sci 2024; 350:122788. [PMID: 38848940 DOI: 10.1016/j.lfs.2024.122788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/13/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Inhibitors of Apoptosis proteins (IAPs) were discovered through experiments aimed at rescuing apoptosis in insects. Classically associated with the inhibition of apoptosis, the IAP member Survivin also regulates cell cycle progression and is an essential component of the Chromosomal Passenger Complex (CPC), responsible for chromosomal segregation. Although undetectable in most adult tissues, Survivin is expressed in Adult Stem Cells (ASCs) and plays a crucial role in their maintenance. Survivin is overexpressed in most cancers, contributing to their clonal expansion. As a result, it has been proposed as a possible anticancer target for nearly two decades. In this discussion, we will explore the rationale behind Survivin as a therapeutic target, focusing on common cancer types such as carcinomas, sarcomas, and leukemias. We will delve into the modulation of Survivin by cancer pro-survival cell signaling, the association between SNPs and tumorigenesis, and its regulation by miRNAs. Finally, we will compare cell growth, clonogenic capacity, and apoptosis, along with different strategies for Survivin inhibition, including gene expression and protein activity modulation.
Collapse
Affiliation(s)
- Giuseppe Siragusa
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Italy
| | - Laura Tomasello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Italy
| | - Carla Giordano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Italy
| | - Giuseppe Pizzolanti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Italy; Advanced Technologies Network Center (ATEN Center), University of Palermo, Italy.
| |
Collapse
|
2
|
Steitz AM, Schröder C, Knuth I, Keber CU, Sommerfeld L, Finkernagel F, Jansen JM, Wagner U, Müller-Brüsselbach S, Worzfeld T, Huber M, Beutgen VM, Graumann J, Pogge von Strandmann E, Müller R, Reinartz S. TRAIL-dependent apoptosis of peritoneal mesothelial cells by NK cells promotes ovarian cancer invasion. iScience 2023; 26:108401. [PMID: 38047087 PMCID: PMC10692662 DOI: 10.1016/j.isci.2023.108401] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
A crucial requirement for metastasis formation in ovarian high-grade serous carcinoma (HGSC) is the disruption of the protective peritoneal mesothelium. Using co-culture systems of primary human cells, we discovered that tumor-associated NK cells induce TRAIL-dependent apoptosis in mesothelial cells via death receptors DR4 and DR5 upon encounter with activated T cells. Upregulation of TRAIL expression in NK cells concomitant with enhanced cytotoxicity toward mesothelial cells was driven predominantly by T-cell-derived TNFα, as shown by affinity proteomics-based analysis of the T cell secretome in conjunction with functional studies. Consistent with these findings, we detected apoptotic mesothelial cells in the peritoneal fluid of HGSC patients. In contrast to mesothelial cells, HGSC cells express negligible levels of both DR4 and DR5 and are TRAIL resistant, indicating cell-type-selective killing by NK cells. Our data point to a cooperative action of T and NK in breaching the mesothelial barrier in HGSC patients.
Collapse
Affiliation(s)
- Anna Mary Steitz
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Clarissa Schröder
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Isabel Knuth
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Corinna U. Keber
- Institute for Pathology, Philipps University, 35043 Marburg, Germany
| | - Leah Sommerfeld
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Florian Finkernagel
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Julia M. Jansen
- Clinic for Gynecology, Gynecological Oncology, Gynecological Endocrinology, University Hospital (UKGM), 35043 Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology, Gynecological Endocrinology, University Hospital (UKGM), 35043 Marburg, Germany
| | - Sabine Müller-Brüsselbach
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), Philipps University, 35043 Marburg, Germany
| | - Magdalena Huber
- Institute of Systems Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Vanessa M. Beutgen
- Institute of Translational Proteomics, Philipps University, 35043 Marburg, Germany
- Core Facility Translational Proteomics, Philipps University, 35043 Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics, Philipps University, 35043 Marburg, Germany
- Core Facility Translational Proteomics, Philipps University, 35043 Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Clinic for Hematology, Oncology and Immunology, Philipps University, 35043 Marburg, Germany
| | - Rolf Müller
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Silke Reinartz
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| |
Collapse
|
3
|
Fotie J, Matherne CM, Wroblewski JE. Silicon switch: Carbon-silicon Bioisosteric replacement as a strategy to modulate the selectivity, physicochemical, and drug-like properties in anticancer pharmacophores. Chem Biol Drug Des 2023; 102:235-254. [PMID: 37029092 DOI: 10.1111/cbdd.14239] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023]
Abstract
Bioisosterism is one of the leading strategies in medicinal chemistry for the design and modification of drugs, consisting in replacing an atom or a substituent with a different atom or a group with similar chemical properties and an inherent biocompatibility. The objective of such an exercise is to produce a diversity of molecules with similar behavior while enhancing the desire biological and pharmacological properties, without inducing significant changes to the chemical framework. In drug discovery and development, the optimization of the absorption, distribution, metabolism, elimination, and toxicity (ADMETox) profile is of paramount importance. Silicon appears to be the right choice as a carbon isostere because they possess very similar intrinsic properties. However, the replacement of a carbon by a silicon atom in pharmaceuticals has proven to result in improved efficacy and selectivity, while enhancing physicochemical properties and bioavailability. The current review discusses how silicon has been strategically introduced to modulate drug-like properties of anticancer agents, from a molecular design strategy, biological activity, computational modeling, and structure-activity relationships perspectives.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - Caitlyn M Matherne
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - Jordan E Wroblewski
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| |
Collapse
|
4
|
Liu L, Liang D, Zheng Q, Zhao M, Lv R, Tang J, Chen N. Berbamine dihydrochloride suppresses the progression of colorectal cancer via RTKs/Akt axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116025. [PMID: 36496042 DOI: 10.1016/j.jep.2022.116025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberis amurensis Rupr. is used to treat cancer as a traditional herbal medicine. Berbamine (BBM) is a natural bisbenzylisoquinoline alkaloid extracted from Berberis amurensis which possesses multiple pharmacological activity including anticancer. AIM OF THE STUDY To investigate the influence of BBM on the progression of colorectal cancer (CRC) and further explore the underlying mechanism of BBM based on the RTKs/Akt signaling pathway. MATERIALS AND METHODS In vitro, cell viability and colony formation were conducted to detect BBM inhibitory of CRC cell lines. Transwell was detected the ability of migration and invasion by BBM. Apoptosis detection assay, cell cycle assay and the measurement of ROS were detected to confirm the inductive effect of cell apoptosis. RT-qPCR and Western blot to clarify the specific mechanism of anticancer. Finally, we conducted HE staining, Ki67, Tunnel and immunochemistry were confirmed the anti-colorectal cancer activity of BBM from vivo study. RESULTS We found that BBM could inhibit CRC cell lines growth. Moreover, BBM presented an inhibitory effect the ability of migration and invasion in CRC cells. Furthermore, the occurrence of apoptosis was involved in the anti-colorectal cancer role of BBM. BBM also triggered ROS accumulation in CRC cells that might be a key factor for the inductive effect of BBM in cell apoptosis. Cell cycle assay revealed that BBM induced the arrest of G1-S phase and increased the p21 levels but decreased CyclinE1, CyclinE2, CDK6, CyclinD1. RT-qPCR manifested that the down-regulation effect of BBM on AKT1, EGFR, PDGFRα and FGFR4 genes. The results also showed that BBM could decreased the expression levels of phosphor-AKT, PDGFRα, PDGFRβ, EGFR, FGFR3 and FGFR4 which belong to RTKs family. Consistently, BBM remarkably suppressed tumor xenograft growth in nude mice. CONCLUSION Taken together, all the results as presented above suggest that BBM as a novel multitargeted receptor tyrosine kinase inhibitor plays a crucial role in the inhibitory effect of CRC and may be a promising therapeutic agent for the CRC in clinic.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dan Liang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qiao Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Maoyuan Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - RuiTing Lv
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Rastogi S, Aldosary S, Saeedan AS, Ansari MN, Singh M, Kaithwas G. NF-κB mediated regulation of tumor cell proliferation in hypoxic microenvironment. Front Pharmacol 2023; 14:1108915. [PMID: 36891273 PMCID: PMC9986608 DOI: 10.3389/fphar.2023.1108915] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Hypoxia is caused by a cancer-promoting milieu characterized by persistent inflammation. NF-κB and HIF-1α are critical participants in this transition. Tumor development and maintenance are aided by NF-κB, while cellular proliferation and adaptability to angiogenic signals are aided by HIF-1α. Prolyl hydroxylase-2 (PHD-2) has been hypothesized to be the key oxygen-dependent regulator of HIF-1α and NF-transcriptional B's activity. Without low oxygen levels, HIF-1α is degraded by the proteasome in a process dependent on oxygen and 2-oxoglutarate. As opposed to the normal NF-κB activation route, where NF-κB is deactivated by PHD-2-mediated hydroxylation of IKK, this method actually activates NF-κB. HIF-1α is protected from degradation by proteasomes in hypoxic cells, where it then activates transcription factors involved in cellular metastasis and angiogenesis. The Pasteur phenomenon causes lactate to build up inside the hypoxic cells. As part of a process known as lactate shuttle, MCT-1 and MCT-4 cells help deliver lactate from the blood to neighboring, non-hypoxic tumour cells. Non-hypoxic tumour cells use lactate, which is converted to pyruvate, as fuel for oxidative phosphorylation. OXOPHOS cancer cells are characterized by a metabolic switch from glucose-facilitated oxidative phosphorylation to lactate-facilitated oxidative phosphorylation. Although PHD-2 was found in OXOPHOS cells. There is no clear explanation for the presence of NF-kappa B activity. The accumulation of the competitive inhibitor of 2-oxo-glutarate, pyruvate, in non-hypoxic tumour cells is well established. So, we conclude that PHD-2 is inactive in non-hypoxic tumour cells due to pyruvate-mediated competitive suppression of 2-oxo-glutarate. This results in canonical activation of NF-κB. In non-hypoxic tumour cells, 2-oxoglutarate serves as a limiting factor, rendering PHD-2 inactive. However, FIH prevents HIF-1α from engaging in its transcriptional actions. Using the existing scientific literature, we conclude in this study that NF-κB is the major regulator of tumour cell growth and proliferation via pyruvate-mediated competitive inhibition of PHD-2.
Collapse
Affiliation(s)
- Shubham Rastogi
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sara Aldosary
- Department of Pharmaceutical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Chung JY, Park JE, Kim YJ, Lee SJ, Yu WJ, Kim JM. Styrene Cytotoxicity in Testicular Leydig Cells In Vitro. Dev Reprod 2022; 26:99-105. [PMID: 36285149 PMCID: PMC9578320 DOI: 10.12717/dr.2022.26.3.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
Styrene is the precursor of polystyrene. Human exposure to styrene could occur in occupational and residential settings and via food intake. Styrene is metabolized to styrene-7,8-oxide by cytochrome P450 enzyme. In the present study, we investigated the cytotoxicity mediated by styrene and styrene-7,8-oxide in TM3 testicular Leydig cells in vitro. We first monitored the nuclear fragmentation in Leydig cells after exposure to styrene or styrene-7,8-oxide. Hoechst 33258 cell staining showed that styrene exposure in TM3 Leydig cells did not exhibit nuclear fragmentation at any concentration. In contrast, nuclear fragmentation was seen in styrene-7,8-oxide-exposed cells. These results indicate that cytotoxicity-mediated cell death in Leydig cells is more susceptible to styrene-7,8-oxide than to styrene. Following styrene treatment, procaspase-3 and XIAP protein levels did not show significant changes, and cleaved (active) forms of caspase-3 were not detected. Consistent with the western blot results, the active forms of caspase-3 and XIAP proteins were not prominently altered in the cytoplasm of cells treated with styrene. In contrast to styrene, styrene-7,8-oxide induced cell death in an apoptotic fashion, as seen in caspase-3 activation and increased the expression of XIAP proteins. Taken together, the results obtained in this study demonstrate a fundamental idea that Leydig cells are capable of protecting themselves from cytotoxicity-mediated apoptosis as a result of styrene exposure in vitro. It remains unclear whether the steroid-producing function, i.e., steroidogenesis, of Leydig cells is also unaffected by exposure to styrene. Therefore, further studies are needed to elucidate the endocrine disrupting potential of styrene in Leydig cells.
Collapse
Affiliation(s)
- Jin-Yong Chung
- Department of Anatomy and Cell Biology,
College of Medicine, Dong-A University, Busan
49201, Korea
| | - Ji-Eun Park
- Department of Anatomy and Cell Biology,
College of Medicine, Dong-A University, Busan
49201, Korea
| | - Yoon-Jae Kim
- Department of Anatomy and Cell Biology,
College of Medicine, Dong-A University, Busan
49201, Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology
Research Group, Korea Institute of Toxicology,
Daejeon 34114, Korea
| | - Wook-Joon Yu
- Developmental and Reproductive Toxicology
Research Group, Korea Institute of Toxicology,
Daejeon 34114, Korea
| | - Jong-Min Kim
- Department of Anatomy and Cell Biology,
College of Medicine, Dong-A University, Busan
49201, Korea,Corresponding author Jong-Min
Kim, Department of Anatomy and Cell Biology, College of Medicine, Dong-A
University, Busan 49201, Korea. Tel: +82-51-240-2792, E-mail:
| |
Collapse
|
7
|
Dashti A, Shokrzadeh M, Karami M, Habibi E. Phytochemical identification, acute and subchronic oral toxicity assessments of hydroalcoholic extract of Acroptilon repens in BALB/c mice: A toxicological and mechanistic study. Heliyon 2022; 8:e08940. [PMID: 35198790 PMCID: PMC8850729 DOI: 10.1016/j.heliyon.2022.e08940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/04/2021] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Acroptilon repens (L.) DC, commonly known as Rhaponticum repens, is a popular traditional phytomedicine. The current study was conducted to evaluate the acute and subchronic toxicity of the hydroalcoholic extract of this herb with regard to its terpenoid contents in a BALB/c mice model and to investigate the toxicity of this medicinal herb. Identification of extract components of the plant was done using gas chromatography (GC)-mass spectrometry. In order to establish the acute toxicity model, a single dose of 2000 mg/kg of the extract was given orally to male mice and in the subchronic toxicity study, the extract was consecutively administered at doses 250, 500, and 1000 mg/kg for 28 days. After 28 and 42 days, signs of toxicity and mortality were observed. Organ weight changes and the toxicity-associated parameters such as biochemical indicators, oxidative stress indices, mitochondrial parameters, apoptosis-associated gene expression levels, and pro-inflammatory cytokines were evaluated along with the histopathological examination. GC analysis showed that the terpenoids are the major components of the extract. The LD50 value (2 g/kg) was obtained in the acute toxicity assay; the subchronic administration caused a significant elevation in the serum biomarkers as well as in the levels of lipid peroxidation, protein carbonyl, and ROS. Besides, significant reductions in the superoxide dismutase and catalase activities were observed. This toxic effect was further confirmed by histological studies, cytokine assay, and gene expression assays. Following the treatment discontinuation, the abnormalities in the values of biochemical parameters and histopathological changes returned to normal. These findings demonstrate that the subchronic administration of the hydroalcoholic extract of A. repens can reversibly cause toxicity by inducing oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ayat Dashti
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Karami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Emran Habibi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Yang T, Guo R, Ofengeim D, Hwang JY, Zukin RS, Chen J, Zhang F. Molecular and Cellular Mechanisms of Ischemia-Induced Neuronal Death. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Bou-Rouphael J, Durand BC. T-Cell Factors as Transcriptional Inhibitors: Activities and Regulations in Vertebrate Head Development. Front Cell Dev Biol 2021; 9:784998. [PMID: 34901027 PMCID: PMC8651982 DOI: 10.3389/fcell.2021.784998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Since its first discovery in the late 90s, Wnt canonical signaling has been demonstrated to affect a large variety of neural developmental processes, including, but not limited to, embryonic axis formation, neural proliferation, fate determination, and maintenance of neural stem cells. For decades, studies have focused on the mechanisms controlling the activity of β-catenin, the sole mediator of Wnt transcriptional response. More recently, the spotlight of research is directed towards the last cascade component, the T-cell factor (TCF)/Lymphoid-Enhancer binding Factor (LEF), and more specifically, the TCF/LEF-mediated switch from transcriptional activation to repression, which in both embryonic blastomeres and mouse embryonic stem cells pushes the balance from pluri/multipotency towards differentiation. It has been long known that Groucho/Transducin-Like Enhancer of split (Gro/TLE) is the main co-repressor partner of TCF/LEF. More recently, other TCF/LEF-interacting partners have been identified, including the pro-neural BarH-Like 2 (BARHL2), which belongs to the evolutionary highly conserved family of homeodomain-containing transcription factors. This review describes the activities and regulatory modes of TCF/LEF as transcriptional repressors, with a specific focus on the functions of Barhl2 in vertebrate brain development. Specific attention is given to the transcriptional events leading to formation of the Organizer, as well as the roles and regulations of Wnt/β-catenin pathway in growth of the caudal forebrain. We present TCF/LEF activities in both embryonic and neural stem cells and discuss how alterations of this pathway could lead to tumors.
Collapse
Affiliation(s)
| | - Béatrice C. Durand
- Sorbonne Université, CNRS UMR7622, IBPS Developmental Biology Laboratory, Campus Pierre et Marie Curie, Paris, France
| |
Collapse
|
10
|
Dhani S, Zhao Y, Zhivotovsky B. A long way to go: caspase inhibitors in clinical use. Cell Death Dis 2021; 12:949. [PMID: 34654807 PMCID: PMC8519909 DOI: 10.1038/s41419-021-04240-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022]
Abstract
Caspases are an evolutionary conserved family of cysteine-dependent proteases that are involved in many vital cellular processes including apoptosis, proliferation, differentiation and inflammatory response. Dysregulation of caspase-mediated apoptosis and inflammation has been linked to the pathogenesis of various diseases such as inflammatory diseases, neurological disorders, metabolic diseases, and cancer. Multiple caspase inhibitors have been designed and synthesized as a potential therapeutic tool for the treatment of cell death-related pathologies. However, only a few have progressed to clinical trials because of the consistent challenges faced amongst the different types of caspase inhibitors used for the treatment of the various pathologies, namely an inadequate efficacy, poor target specificity, or adverse side effects. Importantly, a large proportion of this failure lies in the lack of understanding various caspase functions. To overcome the current challenges, further studies on understanding caspase function in a disease model is a fundamental requirement to effectively develop their inhibitors as a treatment for the different pathologies. Therefore, the present review focuses on the descriptive properties and characteristics of caspase inhibitors known to date, and their therapeutic application in animal and clinical studies. In addition, a brief discussion on the achievements, and current challenges faced, are presented in support to providing more perspectives for further development of successful therapeutic caspase inhibitors for various diseases.
Collapse
Affiliation(s)
- Shanel Dhani
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Yun Zhao
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
11
|
James R, Chaytow H, Ledahawsky LM, Gillingwater TH. Revisiting the role of mitochondria in spinal muscular atrophy. Cell Mol Life Sci 2021; 78:4785-4804. [PMID: 33821292 PMCID: PMC8195803 DOI: 10.1007/s00018-021-03819-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease of variable clinical severity that is caused by mutations in the survival motor neuron 1 (SMN1) gene. Despite its name, SMN is a ubiquitous protein that functions within and outside the nervous system and has multiple cellular roles in transcription, translation, and proteostatic mechanisms. Encouragingly, several SMN-directed therapies have recently reached the clinic, albeit this has highlighted the increasing need to develop combinatorial therapies for SMA to achieve full clinical efficacy. As a subcellular site of dysfunction in SMA, mitochondria represents a relevant target for a combinatorial therapy. Accordingly, we will discuss our current understanding of mitochondrial dysfunction in SMA, highlighting mitochondrial-based pathways that offer further mechanistic insights into the involvement of mitochondria in SMA. This may ultimately facilitate translational development of targeted mitochondrial therapies for SMA. Due to clinical and mechanistic overlaps, such strategies may also benefit other motor neuron diseases and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Rachel James
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Helena Chaytow
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Leire M Ledahawsky
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
12
|
Martínez D, Moncada-Kopp C, Paschke K, Navarro JM, Vargas-Chacoff L. Warming and freshening activate the transcription of genes involved in the cellular stress response in Harpagifer antarcticus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:533-546. [PMID: 33523350 DOI: 10.1007/s10695-021-00931-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Thermal and saline variations of the Southern Ocean are important signs of climate change which can alter the physiological responses of stenotic species residing at high latitudes. Our study aimed to evaluate the cellular stress response (CSR) of Harpagifer antarcticus subjected to increased ambient temperature and decreased salinity. The fish were distributed in different thermal (2, 5, 8, 11, and 14 °C) and saline (23, 28, and 33 psu) combinations for 10 days. We used qPCR analysis to evaluate the transcription of genes involved in the thermal shock response (HSP70, HSC70, HSP90, and GRP78), ubiquitination (E2, E3, ubiquitin, and CHIP), 26S proteasome complex (PSMA2, PSMB7, and PSMC1), and apoptosis (SMAC/Diablo and BAX) in the liver and gill. The expression profiles were tissue-specific and mainly dependent on temperature rather than salinity in the gill; meanwhile, in the liver, both conditions modulated the expression of these genes. Transcription of markers involved in the heat shock response was much higher in the liver than in the gill and was higher when salinity decreased and the temperature increased. Similarly, the genes involved in the ubiquitination pathway, 26S complex of the proteasome, and the apoptotic pathway showed the same pattern, being mainly induced in the liver rather than in the gill. This is the first study to show that this Antarctic fish can induce the cellular stress response in their tissues when subjected to these thermal/saline combinations.
Collapse
Affiliation(s)
- Danixa Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
| | - Catalina Moncada-Kopp
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación de Altas Latitudes (FONDAP IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Kurt Paschke
- Centro FONDAP de Investigación de Altas Latitudes (FONDAP IDEAL), Universidad Austral de Chile, Valdivia, Chile
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación de Altas Latitudes (FONDAP IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
- Centro FONDAP de Investigación de Altas Latitudes (FONDAP IDEAL), Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
13
|
Dashti A, Shokrzadeh M, Karami M, Habibi E. Phytochemical Identification, Acute and Subchronic Oral Toxicity Assessments of Hydroalcoholic Extract of <i>Acroptilon repens</i> in BALB/c Mice: A Toxicological and Mechanistic Study. SSRN ELECTRONIC JOURNAL 2021. [DOI: 10.2139/ssrn.3929849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
14
|
Guo M, Chen K, Lv Z, Shao Y, Zhang W, Zhao X, Li C. Bcl-2 mediates coelomocytes apoptosis by suppressing cytochrome c release in Vibrio splendidus challenged Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103533. [PMID: 31669879 DOI: 10.1016/j.dci.2019.103533] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/17/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Apoptosis is an evolutionarily conserved immune response and plays a fundamental role in many physiological processes. In this study, the important apoptosis regulator of Bcl-2 homolog from economic marine animal Apostichopus japonicus (AjBcl-2) was cloned and its roles in V. splendidus infection explored. The AjBcl-2 gene contains 3263 nucleotides, with a 5' UTR of 519 bp, an ORF of 660 bp encoding 219 aa sequences, and a 3' UTR of 2084 bp. The AjBcl-2 protein shared a conserved Bcl domain and three Bcl-2 homology domains by SMART program. In healthy sea cucumbers, AjBcl-2 mRNA was expressed in all examined tissues with the peak expression in coelomocytes. The mRNA and protein levels of AjBcl-2 in coelomocytes were depressed at 12 h and 24 h, and induced at 48 h post V. splendidus challenge. In the same conditions, coelomocytes apoptosis rates were significantly increased at 24 h and decreased at 48 h. Moreover, siRNA-mediated AjBcl-2 knockdown significantly increased the coelomocytes apoptosis rates, which could be partially recovered by recombinant AjBcl-2 administration. Furthermore, there was an increase in the AjCyt c protein expression coupled with the downregulation expression of AjBcl-2 post AjBcl-2 silencing. Our results suggested that AjBcl-2 suppressed apoptosis by preventing the AjCyt c release in coelomocytes, and thus mediating V. splendidus infection in sea cucumbers.
Collapse
Affiliation(s)
- Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Kaiyu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Zhimeng Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Weiwei Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Xuelin Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
15
|
Martínez D, Vargas-Lagos C, Saravia J, Oyarzún R, Loncoman C, Pontigo JP, Vargas-Chacoff L. Cellular stress responses of Eleginops maclovinus fish injected with Piscirickettsia salmonis and submitted to thermal stress. Cell Stress Chaperones 2020; 25:93-104. [PMID: 31834618 PMCID: PMC6985426 DOI: 10.1007/s12192-019-01051-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Fluctuations in ambient temperature along with the presence of pathogenic microorganisms can induce important cellular changes that alter the homeostasis of ectothermic fish. The aim of this study was to evaluate how sudden or gradual changes in environmental temperature together with the administration of Piscirickettsia salmonis modulate the transcription of genes involved in cellular stress response in the liver of Eleginops maclovinus. Fish were subjected to the following experimental conditions in duplicate: C- 12 °C: Injection only with culture medium, C+ 12 °C: Injection with P. salmonis, AM 18 °C: Injection only with culture medium under acclimation at 18 °C, AB 18 °C: Injection with P. salmonis under acclimation at 18 °C, SM 18 °C: Injection only with culture medium and thermal shock at 18 °C and SB 18 °C: Injection with P. salmonis and thermal shock at 18 °C and sampling at 4-, 8-, 12-, 16- and 20-day post injection (dpi). The genes implied in the heat shock response (HSP70, HSC70, HSP90, and GRP78), apoptosis pathway (BAX and SMAC/Diablo), ubiquitination (E2, E3, ubiquitin, and CHIP), and 26 proteasome complex (PSMB7, PSMC1, and PSMA2) showed expression profiles dependent on time and type of injection applied. All the genes greatly increased their expression levels at day 16 and showed moderate increases at day 20, except for PSMA2 which showed a higher increase between 4- and 12-day post challenges. Our results suggest that the changes observed at the final days of the experiment are due to temperature more than P. salmonis.
Collapse
Affiliation(s)
- D Martínez
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile.
- Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile.
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla, 567, Valdivia, Chile.
| | - C Vargas-Lagos
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla, 567, Valdivia, Chile
- Escuela de Graduados, Programa de Magister en Microbiología, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - J Saravia
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla, 567, Valdivia, Chile
| | - R Oyarzún
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla, 567, Valdivia, Chile
| | - C Loncoman
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
| | - J P Pontigo
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
| | - L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile.
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla, 567, Valdivia, Chile.
| |
Collapse
|
16
|
Qu C, Sun J, Xu Q, Lv X, Yang W, Wang F, Wang Y, Yi Q, Jia Z, Wang L, Song L. An inhibitor of apoptosis protein (EsIAP1) from Chinese mitten crab Eriocheir sinensis regulates apoptosis through inhibiting the activity of EsCaspase-3/7-1. Sci Rep 2019; 9:20421. [PMID: 31892728 PMCID: PMC6938513 DOI: 10.1038/s41598-019-56971-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/19/2019] [Indexed: 01/13/2023] Open
Abstract
Inhibitor of apoptosis proteins (IAPs) maintain the balance between cell proliferation and cell death by inhibiting caspase activities and mediating immune responses. In the present study, a homolog of IAP (designated as EsIAP1) was identified from Chinese mitten crab Eriocheir sinensis. EsIAP1 consisted of 451 amino acids containing two baculoviral IAP repeat (BIR) domains with the conserved Cx2 Cx6 Wx3 Dx5 Hx6 C motifs. EsIAP1 mRNA was expressed in various tissues and its expression level in hemocytes increased significantly (p < 0.01) at 12–48 h after lipopolysaccharide stimulation. In the hemocytes, EsIAP1 protein was mainly distributed in the cytoplasm. The hydrolytic activity of recombinant EsCaspase-3/7-1 against the substrate Ac-DEVD-pNA decreased after incubation with rEsIAP1. Moreover, rEsIAP1 could directly combine with rEsCaspase-3/7-1 in vitro. After EsIAP1 was interfered by dsRNA, the mRNA expression and the hydrolytic activity of EsCaspase-3/7-1 increased significantly, which was 2.26-fold (p < 0.05) and 1.71-fold (p < 0.05) compared to that in the dsGFP group, respectively. These results collectively demonstrated that EsIAP1 might play an important role in apoptosis pathway by regulating the activity of EsCaspase-3/7-1 in E. sinensis.
Collapse
Affiliation(s)
- Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Qingsong Xu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaojing Lv
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.,Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Wen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Feifei Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Ying Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhihao Jia
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.,Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China. .,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China. .,Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China. .,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
17
|
Zhang F, Chen D, Yang W, Duan S, Chen Y. Combined effects of XAF1 and TRAIL on the apoptosis of lung adenocarcinoma cells. Exp Ther Med 2019; 17:4663-4669. [PMID: 31086598 DOI: 10.3892/etm.2019.7491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 04/10/2017] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate the effects and mechanisms of X-linked inhibitor of apoptosis protein (XIAP)-associated factor 1 (XAF1) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on the apoptosis of A549 lung adenocarcinoma cell lines. Recombinant lentiviral vector of Ad5/F35-XAF1 and controlled lentiviral vector of Ad5/F35-Null were transfected into A549 cells at same multiplicity of infection (MOI), respectively. Based on whether recombinant human TRAIL (rhTRAIL) was added or not, cells were divided into different groups as follows: XAF1 group, XAF1 + TRAIL group, XAF1-Null group, and XAF1-Null + TRAIL group. Following culturing for 48 h, the mRNA and protein expression levels of related genes were determined by reverse transcription-quantitative polymerase chain reaction and western blotting analyses, respectively. Cell proliferationand cell apoptosis were detected by MTT assay and Annexin V-FITC/PI double staining, respectively. Xenograft mice models were established with A549 lung adenocarcinoma cells and treated with recombinant virus Ad5/F35-XAF1 and controlled virus Ad5/F35-Null for immunohistochemical analysis. Expression levels of XAFl at the mRNA and protein levels were significantly higher in the XAF1 group and XAF1 + TRAIL groups when compared with the levels in the other groups (P<0.05). Cleavage of apoptosis-associated proteins, poly ADP-ribose polymerase and caspase-3, was noted in the XAF1 + TRAIL group, whereas they were not detected in other groups. Apoptosis rates of A549 cells in the XAF1, Null + TRAIL and XAFl + TRAIL groups were significantly higher than those in the NOR and Null groups (P<0.05). Apoptotic rates were highest in the XAF1 + TRAIL group. In conclusion, these findings suggest that combined use of XAF1 and TRAIL may synergistically induce the apoptosis of A549 lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Fuquan Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Donglai Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Wentao Yang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Shanzhou Duan
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yongbing Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
18
|
Lukosiute-Urboniene A, Jasukaitiene A, Silkuniene G, Barauskas V, Gulbinas A, Dambrauskas Z. Human antigen R mediated post-transcriptional regulation of inhibitors of apoptosis proteins in pancreatic cancer. World J Gastroenterol 2019; 25:205-219. [PMID: 30670910 PMCID: PMC6337016 DOI: 10.3748/wjg.v25.i2.205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/06/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the association of human antigen R (HuR) and inhibitors of apoptosis proteins (IAP1, IAP2) and prognosis in pancreatic cancer. METHODS Protein and mRNA expression levels of IAP1, IAP2 and HuR in pancreatic ductal adenocarcinoma (PDAC) were compared with normal pancreatic tissue. The correlations among IAP1/IAP2 and HuR as well as their respective correlations with clinicopathological parameters were analyzed. The Kaplan-Meier method and log-rank tests were used for survival analysis. Immunoprecipitation assay was performed to demonstrate HuR binding to IAP1, IAP2 mRNA. PANC1 cells were transfected with either anti-HuR siRNA or control siRNA for 72 h and quantitative reverse transcription polymerase chain reaction (RT-PCR), western blot analysis was carried out. RESULTS RT-PCR analysis revealed that HuR, IAP1, IAP2 mRNA expression were accordingly 3.3-fold, 5.5-fold and 8.4 higher in the PDAC when compared to normal pancreas (P < 0.05). Expression of IAP1 was positively strongly correlated with HuR expression (P < 0.05, r = 0.783). Western blot analysis confirmed RT-PCR results. High IAP1 expression, tumor resection status, T stage, lymph-node metastases, tumor differentiation grade, perineural and lymphatic invasion were identified as significant factors for shorter survival in PDAC patients (P < 0.05). Immunohistological analysis showed that HuR was mainly expressed in the ductal cancer cell's nucleus and less so in cytoplasm. RNA immunoprecipitation analysis confirmed IAP1 and IAP2 post-transcriptional regulation by HuR protein. Following siHuR transfection, IAP1 mRNA and protein levels were decreased, however IAP2 expression levels were increased. CONCLUSION HuR mediated overexpression of IAP1 significantly correlates with poor outcomes and early progression of pancreatic cancer. Further studies are needed to assess the underlying mechanisms.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Baculoviral IAP Repeat-Containing 3 Protein/genetics
- Baculoviral IAP Repeat-Containing 3 Protein/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- ELAV-Like Protein 1/genetics
- ELAV-Like Protein 1/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Inhibitor of Apoptosis Proteins/genetics
- Inhibitor of Apoptosis Proteins/metabolism
- Kaplan-Meier Estimate
- Lymphatic Metastasis
- Male
- Middle Aged
- Neoplasm Grading
- Pancreas/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Prognosis
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Ausra Lukosiute-Urboniene
- Institute for Digestive System Research, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
- Department of Pediatric Surgery, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
| | - Aldona Jasukaitiene
- Institute for Digestive System Research, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
| | - Giedre Silkuniene
- Institute for Digestive System Research, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
| | - Vidmantas Barauskas
- Department of Pediatric Surgery, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
| | - Antanas Gulbinas
- Institute for Digestive System Research, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
| | - Zilvinas Dambrauskas
- Institute for Digestive System Research, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas 50161, Lithuania
| |
Collapse
|
19
|
Messeha SS, Zarmouh NO, Mendonca P, Alwagdani H, Kolta MG, Soliman KFA. The inhibitory effects of plumbagin on the NF-қB pathway and CCL2 release in racially different triple-negative breast cancer cells. PLoS One 2018; 13:e0201116. [PMID: 30059519 PMCID: PMC6066199 DOI: 10.1371/journal.pone.0201116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022] Open
Abstract
Breast cancer (BC) is the second leading cause of death among women in the US, and its subtype triple-negative BC (TNBC) is the most aggressive BC with poor prognosis. In the current study, we investigated the anticancer effects of the natural product plumbagin (PL) on racially different TNBC cells. The PL effects were examined in two TNBC cell lines: MDA-MB-231 (MM-231) and MDA-MB-468 (MM-468), representing Caucasian Americans and African Americans, respectively. The results obtained indicate that PL inhibited cell viability and cell proliferation and induced apoptosis in both cell lines. Notably, MM-468 cells were 5-fold more sensitive to PL than MM-231 cells were. Testing PL and Taxol® showed the superiority of PL over Taxol® as an antiproliferative agent in MM-468 cells. PL treatment resulted in an approximately 20-fold increase in caspase-3 activity with 3 μM PL in MM-468 cells compared with an approximately 3-fold activity increase in MM-231 cells with 8 μM PL. Moreover, the results indicate a higher sensitivity to PL in MM-468 cells than in MM-231 cells. The results also show that PL downregulated CCL2 cytokine expression in MM-468 cells by 30% compared to a 90% downregulation in MM-231 cells. The ELISA results confirmed the array data (35% vs. 75% downregulation in MM-468 and MM-231 cells, respectively). Moreover, PL significantly downregulated IL-6 and GM-CSF in the MM-231 cells. Indeed, PL repressed many NF-қB-regulated genes involved in the regulation of apoptosis, proliferation, invasion, and metastasis. The compound significantly downregulated the same genes (BIRC3, CCL2, TLR2, and TNF) in both types of cells. However, PL impacted five more genes in MM-231 cells, including BCL2A1, ICAM1, IKBKE, IL1β, and LTA. In conclusion, the data obtained in this study indicate that the quinone compound PL could be a novel cancer treatment for TNBC in African American women.
Collapse
Affiliation(s)
- Samia S. Messeha
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, Florida, United States of America
| | - Najla O. Zarmouh
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, Florida, United States of America
| | - Patricia Mendonca
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, Florida, United States of America
| | - Hayfaa Alwagdani
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, Florida, United States of America
| | - Malak G. Kolta
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, Florida, United States of America
| | - Karam F. A. Soliman
- College of Pharmacy and Pharmaceutical Science, Florida A & M University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
20
|
Chen SM, Lin TK, Tseng YY, Tu CH, Lui TN, Huang SF, Hsieh LL, Li YY. Targeting inhibitors of apoptosis proteins suppresses medulloblastoma cell proliferation via G2/M phase arrest and attenuated neddylation of p21. Cancer Med 2018; 7:3988-4003. [PMID: 29984917 PMCID: PMC6089189 DOI: 10.1002/cam4.1658] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/19/2018] [Accepted: 06/14/2018] [Indexed: 12/26/2022] Open
Abstract
Medulloblastoma (MB) is the most common type of malignant childhood brain tumor. We previously showed that inhibitors of apoptosis proteins (IAP) small‐molecule inhibitors (LCL161 or LBW242) combined with chemotherapy have synergistic antiproliferative effects on MB cells. The synergistic antitumor effects of combination treatments happen through induction of autophagy and caspase‐3/7‐activated apoptosis. Here, we investigated the effects of IAP inhibitors or silencing IAP on cell cycle regulation. We discovered that treatment with IAP inhibitors or their combination with conventional chemotherapy (vincristine or cisplatin), as well as RNAi knockdown of cIAP1/2 or XIAP arrested MB cells in the G2/M phase through downregulation of cyclin B1‐CDK1 and cyclin A‐CDK1/2. Among these three IAPs, only silencing cIAP1 expression enhanced p21 dependent‐G2/M phase accumulation. IAP inhibitors reduced cIAP1 expression and increased p21 expression in time course experiments. Furthermore, cIAP1 can govern p21 proteasomal degradation via neddylation in lieu of ubiquitination. Inhibition of IAPs significantly abrogated cIAP1‐mediated p21 degradation. We also observed an inverse correlation between nuclear cIAP1 and nuclear p21 expressions in MB tumor tissues. These findings provide new mechanistic evidence of the influence of IAP inhibitors on MB cell proliferation through disruption of the cell cycle.
Collapse
Affiliation(s)
- Shu-Mei Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Kang Lin
- Department of Neurosurgery, School of Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yuan-Yun Tseng
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chiao-Hui Tu
- Department of Neurosurgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tai-Ngar Lui
- Department of Neurosurgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shiang-Fu Huang
- Department of Public Health, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ling-Ling Hsieh
- Department of Public Health, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Ying Li
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
21
|
Rijal D, Ariana A, Wight A, Kim K, Alturki NA, Aamir Z, Ametepe ES, Korneluk RG, Tiedje C, Menon MB, Gaestel M, McComb S, Sad S. Differentiated macrophages acquire a pro-inflammatory and cell death-resistant phenotype due to increasing XIAP and p38-mediated inhibition of RipK1. J Biol Chem 2018; 293:11913-11927. [PMID: 29899110 DOI: 10.1074/jbc.ra118.003614] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Monocytes differentiate into macrophages, which deactivate invading pathogens. Macrophages can be resistant to cell death mechanisms in some situations, and the mechanisms involved are not clear. Here, using mouse immune cells, we investigated whether the differentiation of macrophages affects their susceptibility to cell death by the ripoptosome/necrosome pathways. We show that treatment of macrophages with a mimetic of second mitochondrial activator of caspases (SMAC) resulted in ripoptosome-driven cell death that specifically depended on tumor necrosis factor α (TNFα) expression and the receptor-interacting serine/threonine protein kinase 1 (RipK1)-RipK3-caspase-8 interaction in activated and cycling macrophages. Differentiation of macrophages increased the expression of pro-inflammatory cytokines but reduced RipK1-dependent cell death and the RipK3-caspase-8 interaction. The expression of the anti-apoptotic mediators, X-linked inhibitor of apoptosis protein (XIAP) and caspase-like apoptosis regulatory protein (cFLIPL), also increased in differentiated macrophages, which inhibited caspase activation. The resistance to cell death was abrogated in XIAP-deficient macrophages. However, even in the presence of increased XIAP expression, inhibition of the mitogen-activated protein kinase (MAPK) p38 and MAPK-activated protein kinase 2 (MK2) made differentiated macrophages susceptible to cell death. These results suggest that the p38/MK2 pathway overrides apoptosis inhibition by XIAP and that acquisition of resistance to cell death by increased expression of XIAP and cFLIPL may allow inflammatory macrophages to participate in pathogen control for a longer duration.
Collapse
Affiliation(s)
- Dikchha Rijal
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Ardeshir Ariana
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Andrew Wight
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Kwangsin Kim
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Norah A Alturki
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Zoya Aamir
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Emmanuelle S Ametepe
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Robert G Korneluk
- the Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 5B2, Canada
| | - Christopher Tiedje
- the Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany.,the Department of Cellular and Molecular Medicine, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Manoj B Menon
- the Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Matthias Gaestel
- the Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Scott McComb
- the Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa K1A 0R6, Ontario, Canada, and
| | - Subash Sad
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada, .,the uOttawa Centre for Infection, Immunity, and Inflammation, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
22
|
Soliman B, Salem A, Ghazy M, Abu-Shahba N, El Hefnawi M. Bioinformatics functional analysis of let-7a, miR-34a, and miR-199a/b reveals novel insights into immune system pathways and cancer hallmarks for hepatocellular carcinoma. Tumour Biol 2018; 40:1010428318773675. [PMID: 29775159 DOI: 10.1177/1010428318773675] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Let-7a, miR-34a, and miR-199 a/b have gained a great attention as master regulators for cellular processes. In particular, these three micro-RNAs act as potential onco-suppressors for hepatocellular carcinoma. Bioinformatics can reveal the functionality of these micro-RNAs through target prediction and functional annotation analysis. In the current study, in silico analysis using innovative servers (miRror Suite, DAVID, miRGator V3.0, GeneTrail) has demonstrated the combinatorial and the individual target genes of these micro-RNAs and further explored their roles in hepatocellular carcinoma progression. There were 87 common target messenger RNAs (p ≤ 0.05) that were predicted to be regulated by the three micro-RNAs using miRror 2.0 target prediction tool. In addition, the functional enrichment analysis of these targets that was performed by DAVID functional annotation and REACTOME tools revealed two major immune-related pathways, eight hepatocellular carcinoma hallmarks-linked pathways, and two pathways that mediate interconnected processes between immune system and hepatocellular carcinoma hallmarks. Moreover, protein-protein interaction network for the predicted common targets was obtained by using STRING database. The individual analysis of target genes and pathways for the three micro-RNAs of interest using miRGator V3.0 and GeneTrail servers revealed some novel predicted target oncogenes such as SOX4, which we validated experimentally, in addition to some regulated pathways of immune system and hepatocarcinogenesis such as insulin signaling pathway and adipocytokine signaling pathway. In general, our results demonstrate that let-7a, miR-34a, and miR-199 a/b have novel interactions in different immune system pathways and major hepatocellular carcinoma hallmarks. Thus, our findings shed more light on the roles of these miRNAs as cancer silencers.
Collapse
Affiliation(s)
- Bangly Soliman
- 1 Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.,2 Informatics and Systems Department, Biomedical Informatics and Chemo-Informatics Group, Centre of Excellence for Advanced Sciences (CEAS), Division of Engineering Research, National Research Centre, Cairo, Egypt
| | - Ahmed Salem
- 1 Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed Ghazy
- 1 Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nourhan Abu-Shahba
- 3 Stem Cells Research Group, Medical Centre of Excellence, Medical Molecular Genetics Department, National Research Centre, Cairo, Egypt
| | - Mahmoud El Hefnawi
- 2 Informatics and Systems Department, Biomedical Informatics and Chemo-Informatics Group, Centre of Excellence for Advanced Sciences (CEAS), Division of Engineering Research, National Research Centre, Cairo, Egypt.,4 Centre for Informatics, Nile University, Sheikh Zayed City, Egypt
| |
Collapse
|
23
|
Ahn DS, Lee HJ, Hwang J, Han H, Kim B, Shim B, Kim SH. Lambertianic Acid Sensitizes Non-Small Cell Lung Cancers to TRAIL-Induced Apoptosis via Inhibition of XIAP/NF-κB and Activation of Caspases and Death Receptor 4. Int J Mol Sci 2018; 19:ijms19051476. [PMID: 29772677 PMCID: PMC5983579 DOI: 10.3390/ijms19051476] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/26/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
Lambertianic acid (LA) is a biologically active compound from the leaves of Pinus koraiensis. In the present study, apoptotic mechanisms of LA plus TNF-related apoptosis-inducing ligand (TRAIL) were elucidated in non-small cell lung cancer cells (NSCLCs). Cytotoxicity assay, flow cytometry, immunoprecipitation, and Western blotting were performed. Here, combined treatment of LA and TRAIL increased cytotoxicity, sub-G1 population, cleaved poly (ADP-ribose) polymerase (PARP), and caspase3/8/9 in A549 and H1299 cells compared to LA or TRAIL alone. Furthermore, combined treatment of LA and TRAIL significantly decreased antiapoptotic proteins such as B-cell lymphoma 2 (Bcl-2), Fas-like inhibitor protein (FLIP), and X-linked inhibitor of apoptosis protein (XIAP), and enhanced the activation of proapoptotic proteins Bid compared to LA or TRAIL alone. In addition, combined treatment of LA and TRAIL upregulated the expression of Death receptor 4 (DR4) and downregulated phosphorylation of nuclear factor κ-light-chain-enhancer of activated B cells (p-NF-κB), inhibitory protein of kB family (p-IκB), and FLIP in A549 and H1299 cells along with disrupted binding of XIAP with caspase3 or NF-κB. Overall, these findings suggest that lambertianic acid enhances TRAIL-induced apoptosis via inhibition of XIAP/NF-κB in TRAIL resistant NSCLCs.
Collapse
Affiliation(s)
- Deok Soo Ahn
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Hyo Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Jisung Hwang
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Hyukgyu Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - BumSang Shim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
24
|
Hiramatsu T, Yoshizawa J, Miyaguni K, Sugihara T, Harada A, Kaji S, Uchida G, Kanamori D, Baba Y, Ashizuka S, Ohki T. Thalidomide potentiates etoposide-induced apoptosis in murine neuroblastoma through suppression of NF-κB activation. Pediatr Surg Int 2018; 34:443-450. [PMID: 29423589 DOI: 10.1007/s00383-018-4234-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/25/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Treatment for high-risk neuroblastoma is still challenging. The purpose of the present study was to determine whether thalidomide suppresses etoposide-induced NF-κB activation and thus potentiates apoptosis in murine neuroblastoma. METHODS A murine neuroblastoma cell line, C1300, and A/J mice were used in this study. We evaluated NF-κB activation after using etoposide with or without thalidomide by quantitative analysis of NF-κB by ELISA and by Western blot analysis of IκB phosphorylation in vitro and in vivo. Induction of apoptosis was evaluated by Western blot analysis of the apoptotic signals caspase-3, 8, and 9 in vitro and by TUNEL assays in vivo. We also evaluated the efficacy of the combination of etoposide and thalidomide by assessing tumor growth and mouse survival in vivo. RESULTS Etoposide activated NF-κB in C1300 cells. This activation was suppressed by thalidomide and IκB was re-upregulated. The apoptotic signals were enhanced by the combination of thalidomide and etoposide compared with etoposide alone in vitro, which was consistent with TUNEL assays. The combination of etoposide and thalidomide also slowed tumor growth and mouse survival. CONCLUSION Thalidomide potentiates etoposide-induced apoptosis in murine neuroblastoma by suppressing NF-κB.
Collapse
Affiliation(s)
- Tomomasa Hiramatsu
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Jyoji Yoshizawa
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Kazuaki Miyaguni
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Tetsuro Sugihara
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Atsushi Harada
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Sayuri Kaji
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Goki Uchida
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Daisuke Kanamori
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yuji Baba
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Shuichi Ashizuka
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takao Ohki
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
25
|
Leiphrakpam PD, Brattain MG, Black JD, Wang J. TGFβ and IGF1R signaling activates protein kinase A through differential regulation of ezrin phosphorylation in colon cancer cells. J Biol Chem 2018; 293:8242-8254. [PMID: 29599290 DOI: 10.1074/jbc.ra117.001299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/14/2018] [Indexed: 01/30/2023] Open
Abstract
Aberrant cell survival plays a critical role in cancer progression and metastasis. We have previously shown that ezrin, a cAMP-dependent protein kinase A-anchoring protein (AKAP), is up-regulated in colorectal cancer (CRC) liver metastasis. Phosphorylation of ezrin at Thr-567 activates ezrin and plays an important role in CRC cell survival associated with XIAP and survivin up-regulation. In this study, we demonstrate that in FET and GEO colon cancer cells, knockdown of ezrin expression or inhibition of ezrin phosphorylation at Thr-567 increases apoptosis through protein kinase A (PKA) activation in a cAMP-independent manner. Transforming growth factor (TGF) β signaling inhibits ezrin phosphorylation in a Smad3-dependent and Smad2-independent manner and regulates pro-apoptotic function through ezrin-mediated PKA activation. On the other hand, ezrin phosphorylation at Thr-567 by insulin-like growth factor 1 receptor (IGF1R) signaling leads to cAMP-dependent PKA activation and enhances cell survival. Further studies indicate that phosphorylated ezrin forms a complex with PKA RII, and dephosphorylated ezrin dissociates from the complex and facilitates the association of PKA RII with AKAP149, both of which activate PKA yet lead to either cell survival or apoptosis. Thus, our studies reveal a novel mechanism of differential PKA activation mediated by TGFβ and IGF1R signaling through regulation of ezrin phosphorylation in CRC, resulting in different cell fates. This is of significance because TGFβ and IGF1R signaling pathways are well-characterized tumor suppressor and oncogenic pathways, respectively, with important roles in CRC tumorigenesis and metastasis. Our studies indicate that they cross-talk and antagonize each other's function through regulation of ezrin activation. Therefore, ezrin may be a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Premila D Leiphrakpam
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Michael G Brattain
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198; Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198; Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jing Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198; Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198; Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198.
| |
Collapse
|
26
|
Bagrezaei F, Hassanshahi G, Mahmoodi M, Khanamani Falahati-Pour S, Mirzaei MR. Expression of Inhibitor of Apoptosis Gene Family Members in
Bladder Cancer Tissues and the 5637 Tumor Cell Line. Asian Pac J Cancer Prev 2018; 19:529-532. [PMID: 29480996 PMCID: PMC5980945 DOI: 10.22034/apjcp.2018.19.2.529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Apoptosis is suppressed in cancer tissues and tumor cell lines because anti-apoptosis genes are overexpressed.
The inhibitor of apoptosis proteins (IAP) gene family contributes to control of apoptosis. The expression
profile of eight genes of the IAP family in biopsies from patients with a history of bladder cancer and normal bladder
tissues, as well as a bladder tumor cell line (5637), was assessed in the present study. Methods: Cancer tissue samples
were obtained at surgery and the 5637 tumor cell line was cultured in RPMI1640 medium. Beyond tumor margins
were selected as normal tissue. Expressional profile of interested genes was obtained by using specific primers and the
real-time PCR method. Results: The results showed that expression of seven of the studied genes was up-regulated in
cancer tissues and the cell line whereas BIRC4 (XIAP) was down-regulated in both. Conclusions: The results showed
that these genes were expressed to a greater extent in cancer tissue and cancer cells than in normal tissues. The data
suggested that over-expression of anti-apoptotic genes such as IAP family members, can trigger cells to escape from
apoptosis.
Collapse
Affiliation(s)
- Fahmideh Bagrezaei
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
mirzaeemr@ gmail.com
| | | | | | | | | |
Collapse
|
27
|
Mutation-Independent Gene Therapies for Rod-Cone Dystrophies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:75-81. [DOI: 10.1007/978-3-319-75402-4_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
28
|
Ramesh R, Reddy DS. Quest for Novel Chemical Entities through Incorporation of Silicon in Drug Scaffolds. J Med Chem 2017; 61:3779-3798. [DOI: 10.1021/acs.jmedchem.7b00718] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Remya Ramesh
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110 025, India
| | - D. Srinivasa Reddy
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110 025, India
| |
Collapse
|
29
|
Curti V, Di Lorenzo A, Dacrema M, Xiao J, Nabavi SM, Daglia M. In vitro polyphenol effects on apoptosis: An update of literature data. Semin Cancer Biol 2017; 46:119-131. [PMID: 28830771 DOI: 10.1016/j.semcancer.2017.08.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/07/2017] [Accepted: 08/09/2017] [Indexed: 02/08/2023]
Abstract
Polyphenols are secondary plant metabolites which have been studied extensively for their health-promoting properties, and which could also exert pharmacological activities ranging from anti-inflammatory effects, to cytotoxic activity against cancer cells. The main mechanism for programmed cell death is represented by apoptosis, and its dysregulation is involved in the etiopathology of cancer. As such, substances able to induce apoptosis in cancer cells could be used as new anticancer agents. The aim of this paper is to review literature data on the apoptotic effects of polyphenols and the molecular mechanisms through which they induce these effects in cancer cells. In addition, a brief summary of the new delivery forms used to increase the bioavailability, and clinical impact of polyphenols is provided. The studies reported show that many polyphenol rich plant extracts, originating from food and herbal medicine, as well as isolated polyphenols administered individually or in combination, can regulate cell apoptosis primarily through intrinsic and extrinsic mechanisms of action in in vitro conditions. Due to these promising results, the use of polyphenols in the treatment of cancer should therefore be deeply investigated. In particular, because of the low number of clinical trials, further studies are required to evaluate the anticancer activity of polyphenols in in vivo conditions.
Collapse
Affiliation(s)
- Valeria Curti
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; KOLINPHARMA S.p.A., Lainate, Corso Europa 5, 20020 Lainate, Italy
| | - Arianna Di Lorenzo
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; KOLINPHARMA S.p.A., Lainate, Corso Europa 5, 20020 Lainate, Italy
| | - Marco Dacrema
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Sayed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, PO Box 19395 5487, Iran.
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
30
|
Death of adrenocortical cells during murine acute T. cruzi infection is not associated with TNF-R1 signaling but mostly with the type II pathway of Fas-mediated apoptosis. Brain Behav Immun 2017; 65:284-295. [PMID: 28666938 DOI: 10.1016/j.bbi.2017.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 01/28/2023] Open
Abstract
Earlier studies from our laboratory demonstrated that acute experimental Trypanosoma cruzi infection promotes an intense inflammation along with a sepsis-like dysregulated adrenal response characterized by normal levels of ACTH with raised glucocorticoid secretion. Inflammation was also known to result in adrenal cell apoptosis, which in turn may influence HPA axis uncoupling. To explore factors and pathways which may be involved in the apoptosis of adrenal cells, together with its impact on the functionality of the gland, we carried out a series of studies in mice lacking death receptors, such as TNF-R1 (C57BL/6-Tnfrsf1a tm1Imx or TNF-R1-/-) or Fas ligand (C57BL/6 Fas-deficient lpr mice), undergoing acute T. cruzi infection. Here we demonstrate that the late hypercorticosterolism seen in C57BL/6 mice during acute T. cruzi infection coexists with and hyperplasia and hypertrophy of zona fasciculata, paralleled by increased number of apoptotic cells. Apoptosis seems to be mediated mainly by the type II pathway of Fas-mediated apoptosis, which engages the mitochondrial pathway of apoptosis triggering the cytochrome c release to increase caspase-3 activation. Fas-induced apoptosis of adrenocortical cells is also related with an exacerbated production of intra-adrenal cytokines that probably maintain the late supply of adrenal hormones during host response. Present results shed light on the molecular mechanisms dealing with these phenomena which are crucial not only for the development of interventions attempting to avoid adrenal dysfunction, but also for its wide occurrence in other infectious-based critical illnesses.
Collapse
|
31
|
Li Z, Han C, Feng J. Relationship of the expression levels of XIAP and p53 genes in hepatocellular carcinoma and the prognosis of patients. Oncol Lett 2017; 14:4037-4042. [PMID: 28959363 PMCID: PMC5607648 DOI: 10.3892/ol.2017.6681] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/19/2017] [Indexed: 01/23/2023] Open
Abstract
In this study, we measured mRNA and protein expression levels of X-linked inhibitor of apoptosis protein (XIAP) and p53 in hepatocellular carcinoma (HCC) and analyzed their relationships to clinicopathological parameters and the prognosis of the patients. Samples were obtained from tumors and tumor-adjacent normal tissues from 70 patients with HCC who were hospitalized in Weifang People's Hospital from January 2009 to December 2011. Quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC) were used to detect the mRNA and protein expression levels, respectively. The clinical data of patients who were followed for 5 years from the day of the tumor-resection surgery were collected in detailed clinical histories. Statistical analyses were used to find relationships between the XIAP and p53 levels and the clinical variables and 5-year survival of patients. Our qPCR results showed that the mRNA expression levels of XIAP and p53 in HCC tumors were significantly higher than those in tumor-adjacent normal tissues. At the same time, IHC results showed that the positive expression rates of XIAP and p53 in HCC in tumors were 81.4% (57/70) and 72.9% (51/70), respectively and their high expression was related to invasion, metastasis and tumor staging. The overall 5-year survival rate of the patients was 15.7% (11/70). Single factor survival analysis showed that both XIAP and p53 were influencing factors of the overall survival rate of patients with HCC (P<0.01). In conclusion, high expression levels of XIAP and p53 are closely related to clinicopathological parameters of patients with HCC, especially related to invasion, metastasis and tumor staging. XIAP and p53 levels can be used as reference values to guide the treatment of HCC and estimate the prognosis.
Collapse
Affiliation(s)
- Zhiqin Li
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Chunfang Han
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Jing Feng
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
32
|
Finlay D, Teriete P, Vamos M, Cosford NDP, Vuori K. Inducing death in tumor cells: roles of the inhibitor of apoptosis proteins. F1000Res 2017; 6:587. [PMID: 28529715 PMCID: PMC5414821 DOI: 10.12688/f1000research.10625.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
The heterogeneous group of diseases collectively termed cancer results not just from aberrant cellular proliferation but also from a lack of accompanying homeostatic cell death. Indeed, cancer cells regularly acquire resistance to programmed cell death, or apoptosis, which not only supports cancer progression but also leads to resistance to therapeutic agents. Thus, various approaches have been undertaken in order to induce apoptosis in tumor cells for therapeutic purposes. Here, we will focus our discussion on agents that directly affect the apoptotic machinery itself rather than on drugs that induce apoptosis in tumor cells indirectly, such as by DNA damage or kinase dependency inhibition. As the roles of the Bcl-2 family have been extensively studied and reviewed recently, we will focus in this review specifically on the inhibitor of apoptosis protein (IAP) family. IAPs are a disparate group of proteins that all contain a baculovirus IAP repeat domain, which is important for the inhibition of apoptosis in some, but not all, family members. We describe each of the family members with respect to their structural and functional similarities and differences and their respective roles in cancer. Finally, we also review the current state of IAPs as targets for anti-cancer therapeutics and discuss the current clinical state of IAP antagonists.
Collapse
Affiliation(s)
- Darren Finlay
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter Teriete
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Mitchell Vamos
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nicholas D P Cosford
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kristiina Vuori
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
33
|
Attaran-Bandarabadi F, Abhari BA, Neishabouri SH, Davoodi J. Integrity of XIAP is essential for effective activity recovery of apoptosome and its downstream caspases by Smac/Diablo. Int J Biol Macromol 2017; 101:283-289. [PMID: 28322955 DOI: 10.1016/j.ijbiomac.2017.03.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 01/20/2023]
Abstract
Contribution of individual BIR domains to Smac antagonism is investigated. Ammonium citrate was used to activate caspase-9 and pro-caspase-9 (D315, D330/A). However, the presence of citrate resulted in autoproteolysis of pro-caspase-9 and its inhibition by XIAP BIR3, which was not observed for apoptosome activated pro-caspase-9 indicating abnormal behavior of pro-caspase-9 in kosmotropic citrate salt. Thus, we used Apaf-1(residues 1-591) to activate caspase-9 through the formation of mini-apoptosome instead. Inhibition of apoptosome by XIAP BIR-1-2-3 was observed to be similar to that of BIR3 indicating that the cleavage of XIAP does not affect its potency. However, BIR1-2-3 was more prone to Smac antagonism due to simultaneous interaction of two BIR domains from XIAP with two N-terminal binding sites of Smac. Therefore, despite the role in caspase-9 activation, Apaf-1 does not influence caspase-9 inhibition by XIAP. In addition, caspase-3, -7 and -9 activity recovery by Smac protein and peptide were more efficient for BIR1-2-3 than for BIR1-2. Consequently, it can be proposed that the presence of multiple BIR domains for XIAP among different species along with dimeric nature of Smac are evolutionary designed to strengthen the antagonistic activity of Smac culminating in efficient induction of cell death.
Collapse
Affiliation(s)
| | | | | | - Jamshid Davoodi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
34
|
Mitsuuchi Y, Benetatos CA, Deng Y, Haimowitz T, Beck SC, Arnone MR, Kapoor GS, Seipel ME, Chunduru SK, McKinlay MA, Begley CG, Condon SM. Bivalent IAP antagonists, but not monovalent IAP antagonists, inhibit TNF-mediated NF- κB signaling by degrading TRAF2-associated cIAP1 in cancer cells. Cell Death Discov 2017; 3:16046. [PMID: 28149532 PMCID: PMC5238498 DOI: 10.1038/cddiscovery.2016.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/15/2016] [Indexed: 01/05/2023] Open
Abstract
The inhibitor of apoptosis (IAP) proteins have pivotal roles in cell proliferation and differentiation, and antagonizing IAPs in certain cancer cell lines results in induction of cell death. A variety of IAP antagonist compounds targeting the baculovirus IAP protein repeat 3 (BIR3) domain of cIAP1have advanced into clinical trials. Here we sought to compare and contrast the biochemical activities of selected monovalent and bivalent IAP antagonists with the intent of identifying functional differences between these two classes of IAP antagonist drug candidates. The anti-cellular IAP1 (cIAP1) and pro-apoptotic activities of monovalent IAP antagonists were increased by using a single covalent bond to combine the monovalent moieties at the P4 position. In addition, regardless of drug concentration, treatment with monovalent compounds resulted in consistently higher levels of residual cIAP1 compared with that seen following bivalent compound treatment. We found that the remaining residual cIAP1 following monovalent compound treatment was predominantly tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2)-associated cIAP1. As a consequence, bivalent compounds were more effective at inhibiting TNF-induced activation of p65/NF-κB compared with monovalent compounds. Moreover, extension of the linker chain at the P4 position of bivalent compounds resulted in a decreased ability to degrade TRAF2-associated cIAP1 in a manner similar to monovalent compounds. This result implied that specific bivalent IAP antagonists but not monovalent compounds were capable of inducing formation of a cIAP1 E3 ubiquitin ligase complex with the capacity to effectively degrade TRAF2-associated cIAP1. These results further suggested that only certain bivalent IAP antagonists are preferred for the targeting of TNF-dependent signaling for the treatment of cancer or infectious diseases.
Collapse
Affiliation(s)
- Y Mitsuuchi
- TetraLogic Pharmaceuticals Corporation , 343 Phoenixville Pike, Malvern, PA 19355, USA
| | - C A Benetatos
- TetraLogic Pharmaceuticals Corporation , 343 Phoenixville Pike, Malvern, PA 19355, USA
| | - Y Deng
- TetraLogic Pharmaceuticals Corporation , 343 Phoenixville Pike, Malvern, PA 19355, USA
| | - T Haimowitz
- TetraLogic Pharmaceuticals Corporation , 343 Phoenixville Pike, Malvern, PA 19355, USA
| | - S C Beck
- TetraLogic Pharmaceuticals Corporation , 343 Phoenixville Pike, Malvern, PA 19355, USA
| | - M R Arnone
- TetraLogic Pharmaceuticals Corporation , 343 Phoenixville Pike, Malvern, PA 19355, USA
| | - G S Kapoor
- TetraLogic Pharmaceuticals Corporation , 343 Phoenixville Pike, Malvern, PA 19355, USA
| | - M E Seipel
- TetraLogic Pharmaceuticals Corporation , 343 Phoenixville Pike, Malvern, PA 19355, USA
| | - S K Chunduru
- TetraLogic Pharmaceuticals Corporation , 343 Phoenixville Pike, Malvern, PA 19355, USA
| | - M A McKinlay
- TetraLogic Pharmaceuticals Corporation , 343 Phoenixville Pike, Malvern, PA 19355, USA
| | - C G Begley
- TetraLogic Pharmaceuticals Corporation , 343 Phoenixville Pike, Malvern, PA 19355, USA
| | - S M Condon
- TetraLogic Pharmaceuticals Corporation , 343 Phoenixville Pike, Malvern, PA 19355, USA
| |
Collapse
|
35
|
Yuan Z, Liu S, Yao J, Zeng Q, Tan S, Liu Z. Expression of Bcl-2 genes in channel catfish after bacterial infection and hypoxia stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:79-90. [PMID: 27353474 DOI: 10.1016/j.dci.2016.06.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 05/22/2023]
Abstract
Bcl-2 proteins are of vital importance in regulation of apoptosis, and are involved in a number of biological processes such as carcinogenesis and immune responses. Bcl-2 genes have been well studied in mammals, while they are not well investigated in teleost fish including channel catfish, the major aquaculture species in the United States. In this study, we identified 34 bcl-2 genes from the channel catfish genome, and verified their identities by conducting phylogenetic and syntenic analyses. The expression profiles of the bcl-2 genes in response to bacterial infections (Edwardsiella ictaluri and Flavobacterium columnare) and hypoxia stress were determined by performing meta-analysis using the existing RNA-Seq datasets. Differential expressions of bcl-2 genes were observed after bacterial infections and hypoxia treatment, including 22 bcl-2 genes after E. ictaluri infection, 22 bcl-2 genes after F. columnare infection, and 19 bcl-2 genes after hypoxia stress. Overall, the expression of the pro-apoptotic bcl-2 genes were repressed after bacterial infection and hypoxia stress, indicating that bcl-2 genes are potentially involved in the stress response by reducing cell apoptosis. Some bcl-2 genes, such as bcl2b, mcl1a, bmf1, and bnip3, showed different expression pattern during the E. ictaluri and F. columnare infection, suggesting the difference in the pathogenicity of diseases. This work presented the first systematic identification and annotation of bcl-2 genes in catfish, providing essential genomic resources for further immune and physiological studies.
Collapse
Affiliation(s)
- Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
36
|
Guidolin D, Tortorella C, Marcoli M, Maura G, Agnati LF. Neuroglobin, a Factor Playing for Nerve Cell Survival. Int J Mol Sci 2016; 17:ijms17111817. [PMID: 27809238 PMCID: PMC5133818 DOI: 10.3390/ijms17111817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022] Open
Abstract
Cell death represents the final outcome of several pathological conditions of the central nervous system and available evidence suggests that in both acute injuries and neurodegenerative diseases it is often associated with mitochondrial dysfunction. Thus, the possibility to prevent mitochondrial events involved in cell death might represent efficient tools to limit neuronal damage. In recent years, increased attention has been paid to the endogenous protein neuroglobin, since accumulating evidence showed that its high expression was associated with preserved mitochondrial function and to an increased survival of nerve cells in vitro and in vivo in a variety of experimental models of cell insult. The biological and structural features of neuroglobin and the mitochondria-related mechanisms of neuroglobin-induced neuroprotection will be here briefly discussed. In this respect, the inhibition of the intrinsic pathway of apoptosis emerges as a key neuroprotective effect induced by the protein. These findings could open the possibility to develop efficient neuroglobin-mediated therapeutic strategies aimed at minimizing the neuronal cell death occurring in impacting neurological pathologies like stroke and neurodegenerative diseases.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, Padova 35122, Italy.
| | - Cinzia Tortorella
- Department of Neuroscience, University of Padova, Padova 35122, Italy.
| | - Manuela Marcoli
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genova 16126, Italy.
| | - Guido Maura
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genova 16126, Italy.
| | - Luigi F Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy.
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
37
|
Xu XM, Zhang ML, Zhang Y, Zhao L. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins. Oncol Lett 2016; 12:3779-3784. [PMID: 27895730 PMCID: PMC5104166 DOI: 10.3892/ol.2016.5170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/09/2016] [Indexed: 12/21/2022] Open
Abstract
In the present study, we investigated the effects and mechanisms of Osthole on the apoptosis of non-small cell lung cancer (NSCLC) cells and its synergistic effect with Embelin. Our results revealed that treatment with both Osthole and Embelin inhibited cell proliferation. Notably, combination treatment of Osthole and Embelin inhibited cell proliferation more significantly compared with monotherapy. In addition, morphological analysis and Annexin V/propidium iodide analysis revealed that the combination of Osthole and Embelin enhanced their effect on cell apoptosis. We further examined the effect of Osthole on the expression of inhibitor of apoptosis protein (IAP) family proteins. That treatment of A549 lung cancer cells with various concentrations of Osthole was observed to decrease the protein expression of X-chromosome-encoded IAP, c-IAP1, c-IAP2 and Survivin, and increase Smac expression in a dose-dependent manner. Furthermore, it was noted that Osthole or Embelin alone increased the expression of BAX, caspase-3, caspase-9, cleaved caspase-3 and cleaved caspase-9, and decreased Bcl-2 levels following treatment. Osthole and Embelin combination treatment had a synergistic effect on the regulation of these proteins. In conclusion, our study demonstrated that Osthole inhibited proliferation and induced the apoptosis of lung cancer cells via IAP family proteins in a dose-dependent manner. Osthole enhances the antitumor effect of Embelin, indicating that combination of Osthole and Embelin has potential clinical significance in the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiao-Man Xu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Man-Li Zhang
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yi Zhang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Li Zhao
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
38
|
Tolcher AW, Bendell JC, Papadopoulos KP, Burris HA, Patnaik A, Fairbrother WJ, Wong H, Budha N, Darbonne WC, Peale F, Mamounas M, Royer-Joo S, Yu R, Portera CC, Infante JR. A Phase I Dose-Escalation Study Evaluating the Safety Tolerability and Pharmacokinetics of CUDC-427, a Potent, Oral, Monovalent IAP Antagonist, in Patients with Refractory Solid Tumors. Clin Cancer Res 2016; 22:4567-73. [DOI: 10.1158/1078-0432.ccr-16-0308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/28/2016] [Indexed: 11/16/2022]
Abstract
Abstract
Purpose: To determine the dose-limiting toxicities (DLT), adverse events (AE), pharmacokinetics, and preliminary evidence of antitumor activity of CUDC-427 (formerly GDC-0917), a selective antagonist of inhibitor of apoptosis (IAP) proteins.
Experimental Design: Patients with advanced solid malignancies were treated with escalating doses of CUDC-427 orally on a daily 14-day on/7-day off schedule in 21-day cycles using a modified continuous reassessment method design. Blood samples were assayed to determine the pharmacokinetic properties, pharmacodynamic alterations of cellular IAP levels in peripheral blood mononuclear cells (PBMC), and monocyte chemoattractant protein-1 (MCP-1) levels.
Results: Forty-two patients received 119 cycles of CUDC-427. Overall, the most common treatment-related toxicities were fatigue, nausea, vomiting, and rash. One DLT (grade 3 fatigue) occurred in a patient at 450 mg dose level during cycle 1, and 5 patients experienced AEs related to CUDC-427 that led to discontinuation and included grade 3 pruritus, and fatigue, and grade 2 drug hypersensitivity, pneumonitis, rash, and QT prolongation. The maximum planned dose of 600 mg orally daily for 2 weeks was reached, which allometrically scaled to exceed the IC90 in preclinical xenograft studies. Significant decreases in cIAP-1 levels in PBMCs were observed in all patients 6 hours after initial dosing. Responses included durable complete responses in one patient with ovarian cancer and one patient with MALT lymphoma.
Conclusions: CUDC-427 can be administered safely at doses up to 600 mg daily for 14 days every 3 weeks. The absence of severe toxicities, inhibition of cIAP-1 in PBMC, and antitumor activity warrant further studies. Clin Cancer Res; 22(18); 4567–73. ©2016 AACR.
Collapse
Affiliation(s)
- Anthony W. Tolcher
- 1South Texas Accelerated Research Therapeutics, START Center for Cancer Care, San Antonio, Texas
| | | | - Kyriakos P. Papadopoulos
- 1South Texas Accelerated Research Therapeutics, START Center for Cancer Care, San Antonio, Texas
| | | | - Amita Patnaik
- 1South Texas Accelerated Research Therapeutics, START Center for Cancer Care, San Antonio, Texas
| | | | - Harvey Wong
- 3Genentech Inc., South San Francisco, California
| | | | | | | | | | | | - Ron Yu
- 3Genentech Inc., South San Francisco, California
| | | | | |
Collapse
|
39
|
Trela M, Nelson PN, Rylance PB. The role of molecular mimicry and other factors in the association of Human Endogenous Retroviruses and autoimmunity. APMIS 2016; 124:88-104. [PMID: 26818264 DOI: 10.1111/apm.12487] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/26/2015] [Indexed: 02/02/2023]
Abstract
Human Endogenous Retroviruses (HERVs) have been implicated in autoimmune and other diseases. Molecular mimicry has been postulated as a potential mechanism of autoimmunity. Exogenous viruses have also been reported to be associated with the same diseases, as have genetic and environmental factors. If molecular mimicry were to be shown to be an initiating mechanism of some autoimmune diseases, then therapeutic options of blocking antibodies and peptides might be of benefit in halting diseases at the outset. Bioinformatic and molecular modelling techniques have been employed to investigate molecular mimicry and the evidence for the association of HERVs and autoimmunity is reviewed. The most convincing evidence for molecular mimicry is in rheumatoid arthritis, where HERV K-10 shares amino acid sequences with IgG1Fc, a target for rheumatoid factor. Systemic lupus erythematosus is an example of a condition associated with several autoantibodies, and several endogenous and exogenous viruses have been reported to be associated with the disease. The lack of a clear link between one virus and this condition, and the spectrum of clinical manifestations, suggests that genetic, environmental and the inflammatory response to a virus or viruses might also be major factors in the pathogenesis of lupus and other autoimmune conditions. Where there are strong associations between a virus and an autoimmune condition, such as in hepatitis C and cryoglobulinaemia, the use of bioinformatics and molecular modelling can also be utilized to help to understand the role of molecular mimicry in how HERVs might trigger disease.
Collapse
Affiliation(s)
- Malgorzata Trela
- Immunology Research Group, Research Institute in Healthcare Sciences, University of Wolverhampton, Wolverhampton, UK
| | - Paul N Nelson
- Immunology Research Group, Research Institute in Healthcare Sciences, University of Wolverhampton, Wolverhampton, UK
| | - Paul B Rylance
- Royal Wolverhampton NHS Trust, New Cross Hospital, Wolverhampton, UK
| |
Collapse
|
40
|
Pessina S, Cantini G, Kapetis D, Cazzato E, Di Ianni N, Finocchiaro G, Pellegatta S. The multidrug-resistance transporter Abcc3 protects NK cells from chemotherapy in a murine model of malignant glioma. Oncoimmunology 2016; 5:e1108513. [PMID: 27467914 PMCID: PMC4910710 DOI: 10.1080/2162402x.2015.1108513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/08/2015] [Accepted: 10/10/2015] [Indexed: 10/24/2022] Open
Abstract
Abcc3, a member of the ATP-binding cassette transporter superfamily, plays a role in multidrug resistance. Here, we found that Abcc3 is highly expressed in blood-derived NK cells but not in CD8(+) T cells. In GL261 glioma-bearing mice treated with the alkylating agent temozolomide (TMZ) for 5 d, an early increased frequency of NK cells was observed. We also found that Abcc3 is strongly upregulated and functionally active in NK cells from mice treated with TMZ compared to controls. We demonstrate that Abcc3 is critical for NK cell survival during TMZ administration; more importantly, Akt, involved in lymphocyte survival, is phosphorylated only in NK cells expressing Abcc3. The resistance of NK cells to chemotherapy was accompanied by increased migration and homing in the brain at early time points. Cytotoxicity, evaluated by IFNγ production and specific lytic activity against GL261 cells, increased peripherally in the later phases, after conclusion of TMZ treatment. Intra-tumor increase of the NK effector subset as well as in IFNγ, granzymes and perforin-1 expression, were found early and persisted over time, correlating with a profound modulation on glioma microenvironment induced by TMZ. Our findings reveal an important involvement of Abcc3 in NK cell resistance to chemotherapy and have important clinical implications for patients treated with chemo-immunotherapy.
Collapse
Affiliation(s)
| | | | - Dimos Kapetis
- Unit of Bioinformatics, Fondazione I.R.C.C.S. Istituto Neurologico C Besta, Milan, Italy
| | | | | | | | | |
Collapse
|
41
|
He S, Miao X, Wu Y, Zhu X, Miao X, Yin H, He Y, Li C, Liu Y, Lu X, Chen Y, Wang Y, Xu X. Upregulation of nuclear transporter, Kpnβ1, contributes to accelerated cell proliferation- and cell adhesion-mediated drug resistance (CAM-DR) in diffuse large B-cell lymphoma. J Cancer Res Clin Oncol 2016; 142:561-72. [PMID: 26498772 DOI: 10.1007/s00432-015-2057-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 10/13/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND The Karyopherin proteins are involved in the shuttling of cargo proteins, and certain RNAs, across the nuclear pore complex into and out of the cell nucleus. Karyopherin β1 (Kpnβ1) is a member of the Karyopherin β superfamily of nuclear transport proteins. In addition to the nuclear import function, Kpnβ1 is associated with the occurrence of tumors. This study investigated the expression and biologic function of Kpnβ1 in diffuse large B-cell lymphoma (DLBCL). METHODS The prognostic value of Kpnβ1 expression was evaluated using immunohistochemical staining. The role of Kpnβ1 on cell proliferation- and cell adhesion-mediated drug resistance (CAM-DR) was also determined. RESULTS We demonstrated that Kpnβ1 mRNA and protein expression levels were significantly higher in DLBCL B-cells and DLBCL cell lines than in normal CD19 purified B-cells. Immunohistochemical analysis suggested that the expression of Kpnβ1 was correlated with Ki-67 (P < 0.001). Kaplan-Meier curve showed that high expression of Kpnβ1 was significantly associated with shorter overall survival. In addition, Kpnβ1 was associated with the proliferation of DLBCL cells. Importantly, we found that Kpnβ1 could interact with p65 and promote CAM-DR via accelerating NF-κB activation in DLBCL. CONCLUSIONS Patients with tumors highly expressing Kpnβ1 have poorer overall survivals. Kpnβ1 interacts with p65 and enhances CAM-DR.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cell Adhesion/genetics
- Cell Line, Tumor
- Cell Proliferation/genetics
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Up-Regulation
- beta Karyopherins/genetics
- beta Karyopherins/metabolism
Collapse
Affiliation(s)
- Song He
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Xiaobing Miao
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Yaxun Wu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Xinghua Zhu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Xianjing Miao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Haibing Yin
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Yunhua He
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Chunsun Li
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Yushan Liu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Xiaoyun Lu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Yali Chen
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Yuchan Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China.
| | - Xiaohong Xu
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China.
| |
Collapse
|
42
|
Dykstra NS, Hyde L, MacKenzie A, Mack DR. Lactobacillus plantarum 299v Prevents Caspase-Dependent Apoptosis In Vitro. Probiotics Antimicrob Proteins 2016; 3:21-6. [PMID: 26781496 DOI: 10.1007/s12602-011-9066-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Selective microbes used as probiotics can enhance epithelial cell protection. We have previously shown that a Lactobacillus plantarum strain 299v (Lp299v) has the ability to induce mucin genes. In the current study, we utilized a cytokine model of inflammation in cell culture to study the modulation of apoptosis by this probiotic. HT-29 cells were pre-incubated with the Lp299v or L. plantarum strain adh- (Lpadh-), a non-adherent derivative of Lp299v. Cells were challenged with a mixture of cytokines (TNF-α, IFN-γ, and IL-1a) to imitate conditions of inflammation. To assess for cell death, we evaluated TUNEL, multi-caspase, and caspase-3 and caspase-7 activity assays. There was a marked decrease in apoptosis as measured by TUNEL(+) cells in samples pre-treated with Lp299v (18.7 ± 4.1%, p < 0.01) and Lpadh- (16.6 ± 3.2%, p < 0.05) prior to cytokine exposure when compared to cells (43.6 ± 6.2%) exposed to the cytokine mixture. Lp299v pre-incubation with HT-29 cells reduced caspase(+) cells in the multi-caspase activity assay (3.6 ± 0.6%, p < 0.05) compared to cells exposed to cytokines (68.9 ± 5.1%) whereas Lpadh- did not (46.8 ± 17.5%, p > 0.05). Similarly, caspase-3, caspase-7 activity was also reduced by Lp299v. Selected probiotics may confer an exogenous protective effect at the mucosal-luminal interface for intestinal epithelial cells via alteration of caspase-dependent apoptotic pathways.
Collapse
Affiliation(s)
- Natalie S Dykstra
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Lucie Hyde
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Alexander MacKenzie
- Department of Pediatrics, University of Ottawa, Ottawa, Canada.,Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - David R Mack
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada. .,Department of Pediatrics, University of Ottawa, Ottawa, Canada. .,Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
| |
Collapse
|
43
|
El-Khattouti A, Selimovic D, Hannig M, Taylor EB, Abd Elmageed ZY, Hassan SY, Haikel Y, Kandil E, Leverkus M, Brodell RT, Megahed M, Hassan M. Imiquimod-induced apoptosis of melanoma cells is mediated by ER stress-dependent Noxa induction and enhanced by NF-κB inhibition. J Cell Mol Med 2015; 20:266-86. [PMID: 26578344 PMCID: PMC4727561 DOI: 10.1111/jcmm.12718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/15/2015] [Indexed: 12/21/2022] Open
Abstract
Melanoma is characterized by dysregulated intracellular signalling pathways including an impairment of the cell death machinery, ultimately resulting in melanoma resistance, survival and progression. This explains the tumour's extraordinary resistance to the standard treatment. Imiquimod is a topical immune response modifier (imidazoquinoline) with both antiviral and antitumour activities. The mechanism by which imiquimod triggers the apoptosis of melanoma cells has now been carefully elucidated. Imiquimod‐induced apoptosis is associated with the activation of apoptosis signalling regulating kinase1/c‐Jun‐N‐terminal kinase/p38 pathways and the induction of endoplasmic stress characterized by the activation of the protein kinase RNA‐like endoplasmic reticulum kinase signalling pathway, increase in intracellular Ca2+ release, degradation of calpain and subsequent cleavage of caspase‐4. Moreover, imiquimod triggers the activation of NF‐κB and the expression of the inhibitor of apoptosis proteins (IAPs) such as, X‐linked IAP (XIAP) together with the accumulation of reactive oxygen species (ROS). Also, imiquimod triggers mitochondrial dysregulation characterized by the loss of mitochondrial membrane potential (Δψm), the increase in cytochrome c release, and cleavage of caspase‐9, caspase‐3 and poly(ADP‐ribose) polymerase (PARP). Inhibitors of specific pathways, permit the elucidation of possible mechanisms of imiquimod‐induced apoptosis. They demonstrate that inhibition of NF‐kB by the inhibitor of nuclear factor kappa‐B kinase (IKK) inhibitor Bay 11‐782 or knockdown of XIAP induces melanoma apoptosis in cells exposed to imiquimod. These findings support the use of either IKK inhibitors or IAP antagonists as adjuvant therapies to improve the effectiveness topical imiquimod in the treatment of melanoma.
Collapse
Affiliation(s)
| | - Denis Selimovic
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital of Saarland, Homburg/Saar, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital of Saarland, Homburg/Saar, Germany
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Sofie Y Hassan
- Clinic of Dermatology, University Hospital of Aachen, Aachen, Germany
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, Strasbourg, France.,Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - Emad Kandil
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Martin Leverkus
- Clinic of Dermatology, University Hospital of Aachen, Aachen, Germany
| | - Robert T Brodell
- Department of Dermatology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, Aachen, Germany
| | - Mohamed Hassan
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA.,Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital of Saarland, Homburg/Saar, Germany.,Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, Strasbourg, France.,Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
44
|
Chen YJ, Wu H, Shen XZ. The ubiquitin-proteasome system and its potential application in hepatocellular carcinoma therapy. Cancer Lett 2015; 379:245-52. [PMID: 26193663 DOI: 10.1016/j.canlet.2015.06.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 02/07/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a complicated tightly controlled system in charge of degrading 80-90% of proteins, and is central to regulating cellular function and keeping protein homeostasis. Therefore, the components of UPS attract considerable attention as potential targets for hepatocellular carcinoma (HCC) therapy. The clinical success of bortezomib in multiple myeloma and mantle cell lymphoma patients has set the precedent for therapeutically targeting this pathway. This review will provide an overview of the UPS in HCC and the current status of therapeutic strategies.
Collapse
Affiliation(s)
- Yan-Jie Chen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Hao Wu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China.
| |
Collapse
|
45
|
Shen Y, Qin J, Bu P. Pathways involved in interleukin-1β-mediated murine cardiomyocyte apoptosis. Tex Heart Inst J 2015; 42:109-16. [PMID: 25873819 DOI: 10.14503/thij-14-4254] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accumulating evidence suggests that interleukin-1 (IL-1) signaling plays an essential role in the pathogenesis of heart failure by inducing cardiomyocyte apoptosis, but the mechanisms of this process are poorly defined. We further explored these molecular pathways. We isolated cardiomyocytes from neonatal mice and then cultured and stimulated them with murine IL-1β in vitro. Cell apoptotic ratios were measured by means of flow cytometry. Expression of effector molecules was analyzed by means of enzyme-linked immunosorbent assay, Western blotting, and real-time quantitative polymerase chain reaction. The results showed that IL-1β induced murine cardiomyocyte apoptosis through a release of cytochrome c into cytoplasm and through caspase 3 activation. Simultaneously, IL-1β signaling promoted expression of endonuclease G and high-temperature requirement protein A2 messenger RNA. Survivin and X-linked inhibitors of apoptosis protein (IAP), members of the IAP family, were inhibited on the messenger RNA level during IL-1β-mediated cardiomyocyte apoptosis. We found that IL-1β signaling during cardiomyocyte apoptosis in vitro induced the activation of caspase-dependent and caspase-independent pathways, and inhibited IAPs. Understanding the molecular mechanisms involved in IL-1β-mediated cardiomyocyte apoptosis might assist in the design of therapeutic approaches to protect cardiomyocyte function and prevent heart failure.
Collapse
|
46
|
Ayarpadikannan S, Lee HE, Han K, Kim HS. Transposable element-driven transcript diversification and its relevance to genetic disorders. Gene 2015; 558:187-94. [PMID: 25617522 DOI: 10.1016/j.gene.2015.01.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 12/14/2022]
Abstract
The human genome project and subsequent gene annotation projects have shown that the human genome contains 22,000-25,000 functional genes. Therefore, it is believed that the diversity of protein repertoire is achieved by the alternative splicing (AS) mechanism. Transposable elements (TEs) are mobile in nature and can therefore alter their position in the genome. The insertion of TEs into a new gene region can result in AS of a particular transcript through various mechanisms, including intron retention, and alternative donor or acceptor splice sites. TE-derived AS is thought to have played a part in primate evolution and in hominid radiation. However, TE-derived AS or genetic instability may sometimes result in genetic disorders. For the past two decades, numerous studies have been performed on TEs and their role in genomes. Accumulating evidence shows that the term 'junk DNA', previously used for TEs is a misnomer. Recent research has indicated that TEs may have clinical potential. However, to explore the feasibility of using TEs in clinical practice, additional studies are required. This review summarizes the available literature on TE-derived AS, alternative promoter, and alternative polyadenylation. The review covers the effects of TEs on coding genes and their clinical implications, and provides our perspectives and directions for future research.
Collapse
Affiliation(s)
- Selvam Ayarpadikannan
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Hee-Eun Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Kyudong Han
- Department of Nanobiomedical Science, WCU Research Center, Dankook University, Cheonan 330-714, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
47
|
Shintani M, Sangawa A, Yamao N, Kamoshida S. Smac/DIABLO expression in human gastrointestinal carcinoma: Association with clinicopathological parameters and survivin expression. Oncol Lett 2014; 8:2581-2586. [PMID: 25364431 PMCID: PMC4214500 DOI: 10.3892/ol.2014.2598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 09/08/2014] [Indexed: 12/31/2022] Open
Abstract
Lack of apoptosis is a key factor in carcinogenesis and tumor progression. Survivin is a member of the inhibitor of apoptosis protein (IAP) family. Second mitochondria-derived activator of caspases/direct inhibitor of apoptosis-binding protein with low pI (Smac/DIABLO) is an antagonist of IAPs. Recently, Smac/DIABLO was identified as a potent therapeutic target. However, the clinical significance of Smac/DIABLO in gastrointestinal carcinomas remains unclear. In the present study, Smac/DIABLO expression was analyzed by immunohistochemistry in 72 gastric adenocarcinomas and 78 colorectal adenocarcinomas. The expression of Smac/DIABLO was significantly higher in colorectal carcinoma than in gastric carcinoma. Additionally, a correlation was found between the expression of Smac/DIABLO and nuclear survivin in well- to moderately-differentiated colorectal adenocarcinomas (r=0.245; P<0.01). Based on these results, it was hypothesized that gastric and colorectal carcinomas differ in the level of Smac/DIABLO expression. Our previous studies revealed that the expression of cleaved caspase-9 was significantly lower in colorectal carcinoma than in gastric carcinoma (P<0.0001). Conversely, the expression levels of microtubule-associated protein 1 light chain 3 (LC3), an autophagy marker, and survivin were significantly higher in colon cancer than in gastric cancer (P<0.0001 and P<0.01, respectively). Taken together, these results indicate that not only LC3 and survivin expression, but also Smac/DIABLO expression, are significantly higher in colorectal carcinoma than in gastric carcinoma. We hypothesize that the analysis of Smac/DIABLO, survivin and LC3 expression in colorectal carcinoma is likely to aid cancer therapy due to the involvement of these markers in apoptosis and/or autophagy.
Collapse
Affiliation(s)
- Michiko Shintani
- Laboratory of Pathology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Hyogo 654-0142, Japan
| | - Akiko Sangawa
- Laboratory of Pathology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Hyogo 654-0142, Japan ; Department of Diagnostic Pathology, Osaka Red Cross Hospital, Osaka 543-8555, Japan
| | - Naoki Yamao
- Department of Clinical Laboratory, Kuma Hospital, Kobe, Hyogo 650-0011, Japan
| | - Shingo Kamoshida
- Laboratory of Pathology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Hyogo 654-0142, Japan
| |
Collapse
|
48
|
Tian A, Wilson GS, Lie S, Wu G, Hu Z, Hebbard L, Duan W, George J, Qiao L. Synergistic effects of IAP inhibitor LCL161 and paclitaxel on hepatocellular carcinoma cells. Cancer Lett 2014; 351:232-241. [PMID: 24976294 DOI: 10.1016/j.canlet.2014.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/15/2014] [Accepted: 06/09/2014] [Indexed: 02/06/2023]
Abstract
Inhibitor of Apoptosis Proteins (IAPs) are key regulators of apoptosis in hepatocellular carcinoma (HCC) and their expression is negatively correlated with patient survival. LCL161 is a small molecule inhibitor of IAPs that has potent antitumour activity in a range of solid tumours. In HCC, response to LCL161 therapy has shown to be mediated by Bcl-2 expression. In this study, we aim to determine whether LCL161 has any therapeutic potential in HCC. Protein expression was determined by Western blot. Cell proliferation was determined by Cell Proliferation ELISA and BrdU colorimetric assays. Apoptosis was determined by Annexin V assay. Cell cycle analysis was performed by staining cells with propidium iodide and analysed in a FACScan. Automated Cell Counter and phase contrast microscopy were used to determine the cell viability. We have found that LCL161 targets (cIAP1, cIAP2 and XIAP) were up-regulated in HCC tumours. Both high Bcl-2 expressing HuH7 cells and low Bcl-2 expressing SNU423 cells showed strong resistance to LCL161 therapy with significant effects on both apoptosis and cell viability only evident at LCL161 concentrations of ⩾100μM. At these doses there was significant inhibition of IAP targets, however there was also significant inhibition of off-target proteins including pERK and pJNK suggesting apoptosis caused by drug toxicity. However, when used in combination with paclitaxel in HuH7 and SNU423 cells, LCL161 had significant antiproliferative effects at doses as low as 2μM and this was independent of Bcl-2 expression. Thus, LCL161 may be a useful agent in combination with paclitaxel to treat liver tumours.
Collapse
Affiliation(s)
- Aiping Tian
- First Clinical Medical School and the Department of Gastroenterology and Hepatology of the First Hospital of Lanzhou University, Lanzhou 730000, China
| | - George S Wilson
- Storr Liver Unit, University of Sydney, Westmead Millennium Institute, Westmead, NSW 2145, Australia
| | - Stefanus Lie
- Storr Liver Unit, University of Sydney, Westmead Millennium Institute, Westmead, NSW 2145, Australia
| | - Guang Wu
- Storr Liver Unit, University of Sydney, Westmead Millennium Institute, Westmead, NSW 2145, Australia
| | - Zenan Hu
- First Clinical Medical School and the Department of Gastroenterology and Hepatology of the First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lionel Hebbard
- Storr Liver Unit, University of Sydney, Westmead Millennium Institute, Westmead, NSW 2145, Australia
| | - Wei Duan
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, VIC 3217, Australia
| | - Jacob George
- Storr Liver Unit, University of Sydney, Westmead Millennium Institute, Westmead, NSW 2145, Australia
| | - Liang Qiao
- Storr Liver Unit, University of Sydney, Westmead Millennium Institute, Westmead, NSW 2145, Australia.
| |
Collapse
|
49
|
Xiu P, Xu Z, Liu F, Li Z, Li T, Zou F, Sun X, Li J. Downregulating sCLU enhances the sensitivity of hepatocellular carcinoma cells to gemcitabine by activating the intrinsic apoptosis pathway. Dig Dis Sci 2014; 59:1798-1809. [PMID: 24671452 DOI: 10.1007/s10620-014-3111-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 03/10/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE The purpose of this study was to investigate whether the therapeutic activity of gemcitabine (GCB) in hepatocellular carcinoma (HCC) could be increased by the down-regulation of secretory clusterin (sCLU), a glycoprotein that is considered to play a cytoprotective role in the resistance to chemotherapy. METHODS The expression of sCLU was detected in HCC tumor tissues and cell lines. A cell viability and apoptosis assay were performed in parental HCC cells or the same cells transfected with sCLU shRNA and treated with or without GCB. The potential downstream pathways were investigated using the Human Apoptosis RT(2) Profiler™ PCR Array. RESULTS The expression levels of sCLU in HCC tissues were significantly higher than in adjacent non-tumor liver tissues and were associated with the histological grade and transarterial chemoembolization. sCLU overexpression was also found in three HCC cell lines and hepatocytes. The depletion of sCLU synergistically increased GCB sensitivity in Bel7402 and SMMC7721 cells and induced cell apoptosis. Based on the PCR array analysis, sCLU depletion also resulted in the up-regulation of BNIP1, GADD45A, TNFRSF10A, and TRADD and down-regulation of AKT1 in Bel7402 and SMMC7721 cells compared with the parental controls. These results were further supported by a Western blot analysis, which showed increased GADD45a protein expression and the decreased expression of phosphorylated AKT. GADD45a overexpression also increased the sensitivity to GCB in the Bel7402 and SMMC7721 cells. CONCLUSION Targeting sCLU may be a useful method to enhance the cytotoxic effect of GCB in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Peng Xiu
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan, 250014, China,
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang F, Wang L, Zhao Y, Li Y, Ping G, Xiao S, Chen K, Zhu W, Gong P, Yang J, Wu C. A novel small-molecule activator of procaspase-3 induces apoptosis in cancer cells and reduces tumor growth in human breast, liver and gallbladder cancer xenografts. Mol Oncol 2014; 8:1640-52. [PMID: 25053517 DOI: 10.1016/j.molonc.2014.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/02/2014] [Accepted: 06/25/2014] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Procaspase-3, a proenzyme of apoptotic executioner caspase-3, is overexpressed in numerous tumors. We aimed to characterize a novel procaspase-3 activator, WF-210, which may have potential as an anticancer drug. EXPERIMENTAL DESIGN The procaspase-3 activating ability, antitumor efficacy, mechanisms of action, and toxicity profiles of WF-210 were investigated in vitro and in vivo, using normal cells, cancer cells, and mouse xenograft models. The role of procaspase-3 in WF-210-induced apoptosis was explored by manipulating procaspase-3 expression in cultured cells. RESULTS WF-210 activated procaspase-3 with an EC50 of 0.95 μM, less than half that of its mother compound PAC-1 (2.08 μM). The mechanism involved the chelation of inhibitory zinc ions, subsequently resulting in an auto-activation of procaspase-3. WF-210 was more cytotoxic than PAC-1 to human cancer cells, but less cytotoxic to normal cells. Cancer cells with high procaspase-3 expression, like HL-60 and U-937, were particularly sensitive. WF-210-induced the apoptosis of HL-60 and U-937 cells by activating procaspases and promoting proteasome-dependent degradation of XIAP and Survivin. The level of WF-210-induced apoptosis in cultured cells was related to the level of procaspase-3 expression. Finally, WF-210 was superior to PAC-1 in retarding the in vivo growth of breast, liver and gallbladder xenograft tumors which overexpress procaspase-3, and induced no substantial weight loss or neurotoxicity. WF-210 and PAC-1 had no effect on the growth of MCF-7 xenograft tumors, which do not express procaspase-3. CONCLUSION We identified WF-210 as a potent small-molecule activator of procaspase-3. The favorable antitumor activity and acceptable toxicity profile of WF-210 provide a strong rationale for its clinical evaluation in the treatment of tumors with high procaspase-3 expression.
Collapse
Affiliation(s)
- Fangyang Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Yanfang Zhao
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Yi Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Guanfang Ping
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Shu Xiao
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Kang Chen
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Wufu Zhu
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Ping Gong
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China.
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China.
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China.
| |
Collapse
|