1
|
Want MY, Bashir Z, Najar RA. T Cell Based Immunotherapy for Cancer: Approaches and Strategies. Vaccines (Basel) 2023; 11:vaccines11040835. [PMID: 37112747 PMCID: PMC10142387 DOI: 10.3390/vaccines11040835] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
T cells are critical in destroying cancer cells by recognizing antigens presented by MHC molecules on cancer cells or antigen-presenting cells. Identifying and targeting cancer-specific or overexpressed self-antigens is essential for redirecting T cells against tumors, leading to tumor regression. This is achieved through the identification of mutated or overexpressed self-proteins in cancer cells, which guide the recognition of cancer cells by T-cell receptors. There are two main approaches to T cell-based immunotherapy: HLA-restricted and HLA-non-restricted Immunotherapy. Significant progress has been made in T cell-based immunotherapy over the past decade, using naturally occurring or genetically engineered T cells to target cancer antigens in hematological malignancies and solid tumors. However, limited specificity, longevity, and toxicity have limited success rates. This review provides an overview of T cells as a therapeutic tool for cancer, highlighting the advantages and future strategies for developing effective T cell cancer immunotherapy. The challenges associated with identifying T cells and their corresponding antigens, such as their low frequency, are also discussed. The review further examines the current state of T cell-based immunotherapy and potential future strategies, such as the use of combination therapy and the optimization of T cell properties, to overcome current limitations and improve clinical outcomes.
Collapse
Affiliation(s)
- Muzamil Y Want
- Department of Immunology, Division of Translational Immuno-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Zeenat Bashir
- Department of Chemistry and Biochemistry, Canisius College, Buffalo, NY 14208, USA
| | - Rauf A Najar
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
2
|
Epithelial to Mesenchymal Transition as Mechanism of Progression of Pancreatic Cancer: From Mice to Men. Cancers (Basel) 2022; 14:cancers14235797. [PMID: 36497278 PMCID: PMC9735867 DOI: 10.3390/cancers14235797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Owed to its aggressive yet subtle nature, pancreatic cancer remains unnoticed till an advanced stage so that in most cases the diagnosis is made when the cancer has already spread to other organs with deadly efficiency. The progression from primary tumor to metastasis involves an intricate cascade of events comprising the pleiotropic process of epithelial to mesenchymal transition (EMT) facilitating cancer spread. The elucidation of this pivotal phenotypic change in cancer cell morphology, initially heretic, moved from basic studies dissecting the progression of pancreatic cancer in animal models to move towards human disease, although no clinical translation of the concept emerged yet. Despite this transition, a full-blown mesenchymal phenotype may not be accomplished; rather, the plasticity of the program and its dependency on heterotopic signals implies a series of fluctuating modifications of cancer cells encompassing mesenchymal and epithelial features. Despite the evidence supporting the activation of EMT and MET during cancer progression, our understanding of the relationship between tumor microenvironment and EMT is not yet mature for a clinical application. In this review, we attempt to resume the knowledge on EMT and pancreatic cancer, aiming to include the EMT among the hallmarks of cancer that could potentially modify our clinical thinking with the purpose of filling the gap between the results pursued in basic research by animal models and those achieved in translational research by surrogate biomarkers, as well as their application for prognostic and predictive purposes.
Collapse
|
3
|
[Preclinical study of T cell receptor specifically reactive with KRAS G12V mutation in the treatment of malignant tumors]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54. [PMID: 36241231 PMCID: PMC9568380 DOI: 10.19723/j.issn.1671-167x.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE KRAS gene is one of the most common mutations of proto-oncogenes in human tumors, G12V is one of the most common mutation types for KRAS. It's challenging to chemically acquire the targeted drug for this mutation. Recent studies reported that this mutation peptides can form a neoepitope for T cell recognition. Our study aims to clone the T cell receptor (TCR) which specifically recognizes the neoepitope for KRAS G12V mutation and constructs TCR engineered T cells (TCR-T), and to investigate if TCR-Ts have strong antitumor response ability. METHODS In this study, tumor infiltrating lymphocytes were obtained from one colorectal cancer patient carrying KRAS G12V mutation. Tumor-reactive TCR was obtained by single-cell RT-5' rapid-amplification of cDNA ends PCR analysis and introduced into peripheral blood lymphocytes to generate TCR-Ts. RESULTS We obtained a high-affinity TCR sequence that specifically recognized the HLA-A*11:01-restricted KRAS G12V8-16 epitope: KVA11-01. KVA11-01 TCR-T could significantly kill various tumor cells such as PANC-1, SW480 and HeLa (overexpressing HLA-A*11:01 and KRAS G12V), and secreting high levels of interferon-γ (IFN-γ). Non-specific killing experiments suggested KVA11-01 specifically recognized tumor cells expressing both mutant KRAS G12V and HLA-A*11:01. In vivo assay, tumor inhibition experiments demonstrated that infusion of approximately 1E7 KVA11-01 TCR-T could significantly inhibit the growth of subcuta-neously transplanted tumors of PANC-1 and HeLa (overexpressing HLA-A*11:01 and KRAS G12V) cells in nude mice. No destruction of the morphologies of the liver, spleen and brain were observed. We also found that KVA11-01 TCR-T could significantly infiltrate into tumor tissue and had a better homing ability. CONCLUSION KVA11-01 TCR-T cells can effectively target a variety of malignant tumor cells carrying KRAS G12V mutation through in vitro and in vivo assay. KVA11-01 TCR-T cells have excellent biological activity, high specificity of target antigen and homing ability into solid tumor tissue. KVA11-01 TCR-T is expected to be an effective treatment for patients with KRAS G12V mutant solid malignancies.
Collapse
|
4
|
Nishizawa N, Harada H, Kumamoto Y, Kaizu T, Katoh H, Tajima H, Ushiku H, Yokoi K, Igarashi K, Fujiyama Y, Okuwaki K, Iwai T, Watanabe M, Yamashita K. Diagnostic potential of hypermethylation of the cysteine dioxygenase 1 gene (CDO1) promoter DNA in pancreatic cancer. Cancer Sci 2019; 110:2846-2855. [PMID: 31325200 PMCID: PMC6726695 DOI: 10.1111/cas.14134] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
DNA markers for pancreatic ductal adenocarcinoma (PDAC) are urgently needed for detection of minimally invasive disease. The epigenetic relevance of the cysteine dioxygenase 1 gene (CDO1) has been never investigated in PDAC. Three studies, including cellular experiments, tissue validation, and pilot testing for pancreatic cytology, were carried out. Promoter DNA methylation value (MV) of CDO1 was quantified by quantitative methylation‐specific PCR. CDO1 expression was consistent with its promoter DNA methylation in 7 PDAC cell lines. In 160 retrospectively collected primary PDAC tumor tissues, MV was significantly higher compared to the corresponding noncancerous pancreas (area under the receiver operating characteristic curve [AUC] = 0.97, P < .0001), and CDO1 hypermethylation was highly specific to PDAC tumor tissues. CDO1 hypermethylation group (MV over 19) was significantly associated with diverse prognostic factors in PDAC. Surprisingly, it was significantly higher in prospectively collected PDAC cytology samples (n = 37), including both pancreatic juice (n = 12) and endoscopic ultrasound‐fine needle aspiration (EUS‐FNA) cytology (n = 25) compared to pancreatic benign diseases (AUC = 0.96, P < .0001). Detection of PDAC was confirmed by DNA testing in 35 of 37 patients (95% sensitivity); thus, it was more sensitive than cytology (33%) or EUS‐FNA cytology (88%). Promoter DNA methylation of CDO1 is extremely specific for PDAC tumors, and accumulates with PDAC tumor progression. It could be a definitive diagnostic marker of PDAC in pancreatic juice or EUS‐FNA cytology.
Collapse
Affiliation(s)
| | - Hiroki Harada
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Yusuke Kumamoto
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Takashi Kaizu
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Hiroshi Katoh
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Hiroshi Tajima
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Hideki Ushiku
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Keigo Yokoi
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Kazuharu Igarashi
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Yoshiki Fujiyama
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Kosuke Okuwaki
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tomohisa Iwai
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University Hospital, Sagamihara, Japan.,Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
5
|
Abstract
The use of immunotherapies for solid and hematologic malignancies has demonstrated durable antitumor effects. Use of checkpoint inhibitors allows for immunologic reactivation of the adaptive immune system against tumor-specific neoantigens and effective rejection. Recent developments in adoptive transfer of T cells has shown effective immune rejection of solid malignancies and durable regression. Adoptive cell transfer involves extraction of in vivo T lymphocytes, selection for or introduction of tumor reactive cells, in vitro expansion, and delivery of the T-cell product back to the patient. This article discusses the different approaches, challenges, and further directions of adoptive T-cell transfer in solid malignancies.
Collapse
|
6
|
Choi MH, Mejlænder-Andersen E, Manueldas S, El Jellas K, Steine SJ, Tjensvoll K, Sætran HA, Knappskog S, Hoem D, Nordgård O, Hovland R, Molven A. Mutation analysis by deep sequencing of pancreatic juice from patients with pancreatic ductal adenocarcinoma. BMC Cancer 2019; 19:11. [PMID: 30611220 PMCID: PMC6321709 DOI: 10.1186/s12885-018-5195-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023] Open
Abstract
Background Reliable methods are needed to identify patients with early-stage cancer or high-grade precancerous lesions in the pancreas. Analysis of pancreatic juice to detect somatic mutations could represent one such approach. Here we investigated the concordance between mutations found in the primary tumor and pancreatic juice from the same patient. Methods Amplicon-based targeted deep sequencing was performed on samples from 21 patients with pancreatic ductal adenocarcinoma (PDAC) who had undergone Whipple’s operation. Mutation profiles were determined in formalin-fixed sections of the primary tumor and in pancreatic juice sampled from the main pancreatic duct during surgery. Results Using a cut-off of 3% for variant allele frequency, KRAS mutations were detected in 20/21 primary tumors (95%) and in 15/21 (71%) juice samples. When also considering low-frequency variants, KRAS mutations were found in 20/21 juice samples. Most juice samples exhibited multiple KRAS variants not seen in the primary tumor, and only in 11 cases (52%) did the most abundant variant of the juice correspond to the KRAS mutation detected in the tumor. TP53 mutations were found in 16 tumors (76%) and six juice samples (29%). Among the positive juice samples, only one exhibited more than a single TP53 mutation. Detection of both KRAS and TP53 mutations was fully concordant in the primary tumor and juice sample in 7/21 cases (33%). Conclusions Pancreatic juice from PDAC patients is rich in KRAS mutations often not seen in the primary tumor and possibly reflecting precancerous lesions in other regions of the pancreas. The inclusion of TP53 mutation detection and additional markers must therefore be considered for fully exploiting the clinical potential of pancreatic juice samples in early cancer detection. Electronic supplementary material The online version of this article (10.1186/s12885-018-5195-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Man Hung Choi
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Eline Mejlænder-Andersen
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Sophia Manueldas
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Khadija El Jellas
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Solrun J Steine
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kjersti Tjensvoll
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Hege Aase Sætran
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Stian Knappskog
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Dag Hoem
- Department of Gastrointestinal Surgery, Haukeland University Hospital, Bergen, Norway
| | - Oddmund Nordgård
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Randi Hovland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway. .,Department of Pathology, Haukeland University Hospital, Bergen, Norway. .,KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
7
|
de Biase D, Visani M, Acquaviva G, Fornelli A, Masetti M, Fabbri C, Pession A, Tallini G. The Role of Next-Generation Sequencing in the Cytologic Diagnosis of Pancreatic Lesions. Arch Pathol Lab Med 2018; 142:458-464. [PMID: 29565213 DOI: 10.5858/arpa.2017-0215-ra] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT - Integration of the analysis of genetic markers with endoscopic ultrasound-guided fine-needle aspiration and cytologic evaluation has increased the accuracy of the preoperative diagnosis of pancreatic lesions. The application of high-throughput gene panel analysis using next-generation sequencing platforms is now offering a great opportunity for further improvements. OBJECTIVE - To review the application of next-generation sequencing to the preoperative diagnosis of pancreatic lesions. DATA SOURCES - For data acquisition, a PubMed search using the terms next-generation sequencing, pancreas, pancreatic lesions, pancreatic tumors, and EUS-FNA was performed covering the years 2000-2017. CONCLUSIONS - KRAS remains the gene most widely studied for preoperative single-gene tests. Next-generation sequencing reliably allows analysis of multiple gene markers starting from limited amounts of DNA. The study of multigene panels has become a very attractive option for the management and preoperative risk stratification of patients with pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Giovanni Tallini
- From the Department of Pharmacy and Biotechnology (Dipartimento di Farmacia e Biotecnologie)-Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna, Bologna, Italy (Dr de Biase and Ms Pession); the Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale)-Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna School of Medicine, Bologna, Italy (Drs Visani and Tallini and Ms Acquaviva); the Unit of Anatomic Pathology, Azienda USL-Maggiore Hospital, Bologna, Italy (Dr Fornelli); and the Units of Surgery (Dr Masetti) and Gastroenterology and Digestive Endoscopy (Dr Fabbri), Azienda USL Bologna Bellaria-Maggiore Hospitals, Bologna, Italy
| |
Collapse
|
8
|
Masetti M, Acquaviva G, Visani M, Tallini G, Fornelli A, Ragazzi M, Vasuri F, Grifoni D, Di Giacomo S, Fiorino S, Lombardi R, Tuminati D, Ravaioli M, Fabbri C, Bacchi-Reggiani ML, Pession A, Jovine E, de Biase D. Long-term survivors of pancreatic adenocarcinoma show low rates of genetic alterations in KRAS, TP53 and SMAD4. Cancer Biomark 2018; 21:323-334. [PMID: 29103024 DOI: 10.3233/cbm-170464] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pancreatic adenocarcinoma (PDAC) is one of the deadliest human malignancies. Although surgery is currently the only effective treatment for PDAC, most patients survive less than 20 months after tumor resection. OBJECTIVE The primary goal was to investigate alterations in KRAS, TP53, SMAD4 and CDKN2A/p16 in tumors from patients with exceptionally long survival after surgery. METHODS Tumors from 15 patients with PDAC that survived more than 55 months after surgery ("LS") were analyzed for KRAS, TP53, IDH1, NRAS and BRAF using next-generation sequencing. SMAD4 and CDKN2A/p16 was tested using immunohistochemistry. MGMT promoter methylation was investigated. RESULTS Tumors from "LS" have a lower prevalence of KRAS and TP53 mutations and had more frequently SMAD4 retained expression, if compared with that of patients died within 24 months from surgery. The survival of patients with wild-type KRAS and TP53 tumors was more than twice longer than that of patients bearing KRAS and TP53 mutations (90.2 vs. 41.1 months). Patients with KRAS wild-type tumors and that retained SMAD4 expression had a survival twice longer than cases with alterations in both genes (83.8 vs. 36.7 months). Eleven tumors (39.3%) showed MGMT methylation. CONCLUSIONS Our data indicate that absence of KRAS, TP53 and SMAD4 genetic alterations may identify a subset of pancreatic carcinomas with better outcome.
Collapse
Affiliation(s)
- Michele Masetti
- Surgery Unit, Azienda USL-Maggiore Hospital, Bologna, Italy
- Surgery Unit, Azienda USL-Maggiore Hospital, Bologna, Italy
| | - Giorgia Acquaviva
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale) - Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna School of Medicine, Bologna, Italy
- Surgery Unit, Azienda USL-Maggiore Hospital, Bologna, Italy
| | - Michela Visani
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale) - Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna School of Medicine, Bologna, Italy
| | - Giovanni Tallini
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale) - Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna School of Medicine, Bologna, Italy
| | - Adele Fornelli
- Anatomic Pathology Unit, Azienda USL-Maggiore Hospital, Bologna, Italy
| | - Moira Ragazzi
- Anatomic Pathology Unit, Arcispedale Santa Maria Nuova - IRCCS, Reggio Emilia, Italy
| | - Francesco Vasuri
- Anatomic Pathology Unit, "F. Addarii" Institute of Oncology and Transplantation Pathology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology (Dipartimento di Farmacia e Biotecnologie) - Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna, Bologna, Italy
| | - Simone Di Giacomo
- Department of Pharmacy and Biotechnology (Dipartimento di Farmacia e Biotecnologie) - Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna, Bologna, Italy
| | - Sirio Fiorino
- Internal Medicine Unit, Maggiore Hospital, Bologna, Italy
| | | | - David Tuminati
- Surgery Unit, Azienda USL-Maggiore Hospital, Bologna, Italy
| | - Matteo Ravaioli
- Department of General Surgery and Transplantation, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Carlo Fabbri
- Unit of Gastroenterology and Digestive Endoscopy, AUSL Bologna Bellaria-Maggiore Hospital, Bologna, Italy
| | - Maria Letizia Bacchi-Reggiani
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), Cardiology Unit, Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology (Dipartimento di Farmacia e Biotecnologie) - Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna, Bologna, Italy
| | - Elio Jovine
- Surgery Unit, Azienda USL-Maggiore Hospital, Bologna, Italy
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale) - Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna School of Medicine, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (Dipartimento di Farmacia e Biotecnologie) - Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna, Bologna, Italy
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale) - Molecular Diagnostic Unit, Azienda USL di Bologna, University of Bologna School of Medicine, Bologna, Italy
| |
Collapse
|
9
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a devastating 5-year overall survival of only approximately 7%. Although just 4% of all malignant diseases are accounted to PDAC, it will become the second leading cause of cancer-related deaths before 2030. Immunotherapy has proven to be a promising therapeutic option in various malignancies such as melanoma, non-small cell lung cancer (NSCLC), microsatellite instability-high gastrointestinal cancer, urinary tract cancer, kidney cancer, and others. In this review, we summarize recent findings about immunological aspects of PDAC with the focus on the proposed model of the "cancer immunity cycle". By this model, a deeper understanding of the underlying mechanism in achieving a T-cell response against cancer cells is provided. There is currently great interest in the field around designing novel immunotherapy combination studies for PDAC based on a sound understanding of the underlying immunobiology.
Collapse
|
10
|
Adamo P, Cowley CM, Neal CP, Mistry V, Page K, Dennison AR, Isherwood J, Hastings R, Luo J, Moore DA, Howard PJ, Miguel ML, Pritchard C, Manson M, Shaw JA. Profiling tumour heterogeneity through circulating tumour DNA in patients with pancreatic cancer. Oncotarget 2017; 8:87221-87233. [PMID: 29152076 PMCID: PMC5675628 DOI: 10.18632/oncotarget.20250] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/14/2017] [Indexed: 01/17/2023] Open
Abstract
The majority of pancreatic ductal adenocarcinomas (PDAC) are diagnosed late so that surgery is rarely curative. Earlier detection could significantly increase the likelihood of successful treatment and improve survival. The aim of the study was to provide proof of principle that point mutations in key cancer genes can be identified by sequencing circulating free DNA (cfDNA) and that this could be used to detect early PDACs and potentially, premalignant lesions, to help target early effective treatment. Targeted next generation sequencing (tNGS) analysis of mutation hotspots in 50 cancer genes was conducted in 26 patients with PDAC, 14 patients with chronic pancreatitis (CP) and 12 healthy controls with KRAS status validated by digital droplet PCR. A higher median level of total cfDNA was observed in patients with PDAC (585 ng/ml) compared to either patients with CP (300 ng/ml) or healthy controls (175 ng/ml). PDAC tissue showed wide mutational heterogeneity, whereas KRAS was the most commonly mutated gene in cfDNA of patients with PDAC and was significantly associated with a poor disease specific survival (p=0.018). This study demonstrates that tNGS of cfDNA is feasible to characterise the circulating genomic profile in PDAC and that driver mutations in KRAS have prognostic value but cannot currently be used to detect early emergence of disease. Importantly, monitoring total cfDNA levels may have utility in individuals "at risk" and warrants further investigation.
Collapse
Affiliation(s)
- Patricia Adamo
- Department of Cancer Studies, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Caroline M Cowley
- Department of Cancer Studies, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Christopher P Neal
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Vilas Mistry
- Department of Cancer Studies, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Karen Page
- Department of Cancer Studies, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Ashley R Dennison
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - John Isherwood
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Robert Hastings
- Cancer Research UK Leicester Centre, University of Leicester, Leicester, UK
| | - JinLi Luo
- Cancer Research UK Leicester Centre, University of Leicester, Leicester, UK
| | - David A Moore
- Department of Cancer Studies, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Pringle J Howard
- Department of Cancer Studies, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | | | - Catrin Pritchard
- Department of Cancer Studies, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Margaret Manson
- Department of Cancer Studies, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Jacqui A Shaw
- Department of Cancer Studies, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| |
Collapse
|
11
|
Witek MA, Aufforth RD, Wang H, Kamande JW, Jackson JM, Pullagurla SR, Hupert ML, Usary J, Wysham WZ, Hilliard D, Montgomery S, Bae-Jump V, Carey LA, Gehrig PA, Milowsky MI, Perou CM, Soper JT, Whang YE, Yeh JJ, Martin G, Soper SA. Discrete microfluidics for the isolation of circulating tumor cell subpopulations targeting fibroblast activation protein alpha and epithelial cell adhesion molecule. NPJ Precis Oncol 2017; 1. [PMID: 29657983 PMCID: PMC5871807 DOI: 10.1038/s41698-017-0028-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circulating tumor cells consist of phenotypically distinct subpopulations that originate from the tumor microenvironment. We report a circulating tumor cell dual selection assay that uses discrete microfluidics to select circulating tumor cell subpopulations from a single blood sample; circulating tumor cells expressing the established marker epithelial cell adhesion molecule and a new marker, fibroblast activation protein alpha, were evaluated. Both circulating tumor cell subpopulations were detected in metastatic ovarian, colorectal, prostate, breast, and pancreatic cancer patients and 90% of the isolated circulating tumor cells did not co-express both antigens. Clinical sensitivities of 100% showed substantial improvement compared to epithelial cell adhesion molecule selection alone. Owing to high purity (>80%) of the selected circulating tumor cells, molecular analysis of both circulating tumor cell subpopulations was carried out in bulk, including next generation sequencing, mutation analysis, and gene expression. Results suggested fibroblast activation protein alpha and epithelial cell adhesion molecule circulating tumor cells are distinct subpopulations and the use of these in concert can provide information needed to navigate through cancer disease management challenges.
Collapse
Affiliation(s)
- Małgorzata A Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA.,Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rachel D Aufforth
- Department of Surgery, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hong Wang
- Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joyce W Kamande
- Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua M Jackson
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA
| | - Swathi R Pullagurla
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047, USA
| | - Mateusz L Hupert
- Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599, USA.,BioFluidica, Inc., c/o Carolina Kick-Start, 321 Bondurant Hall, Chapel Hill NC27599, USA
| | - Jerry Usary
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Weiya Z Wysham
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC-Chapel Hill, NC 27599, USA
| | - Dawud Hilliard
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Animal Histopathology Core, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephanie Montgomery
- Animal Histopathology Core, The University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Victoria Bae-Jump
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC-Chapel Hill, NC 27599, USA
| | - Lisa A Carey
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Medicine, Division of Hematology and Oncology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Paola A Gehrig
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC-Chapel Hill, NC 27599, USA
| | - Matthew I Milowsky
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - John T Soper
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UNC-Chapel Hill, NC 27599, USA
| | - Young E Whang
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jen Jen Yeh
- Department of Surgery, The University of North Carolina, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Pharmacology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Steven A Soper
- BioEngineering Program, The University of Kansas, Lawrence, KS 66047, USA.,Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66047, USA.,Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
12
|
Brychta N, Krahn T, von Ahsen O. Detection of KRAS Mutations in Circulating Tumor DNA by Digital PCR in Early Stages of Pancreatic Cancer. Clin Chem 2016; 62:1482-1491. [PMID: 27591291 DOI: 10.1373/clinchem.2016.257469] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/26/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Since surgical removal remains the only cure for pancreatic cancer, early detection is of utmost importance. Circulating biomarkers have potential as diagnostic tool for pancreatic cancer, which typically causes clinical symptoms only in advanced stage. Because of their high prevalence in pancreatic cancer, KRAS proto-oncogene, GTPase [KRAS (previous name: Kirsten rat sarcoma viral oncogene homolog)] mutations may be used to identify tumor-derived circulating plasma DNA. Here we tested the diagnostic sensitivity of chip based digital PCR for the detection of KRAS mutations in circulating tumor DNA (ctDNA) in early stage pancreatic cancer. METHODS We analyzed matched plasma (2 mL) and tumor samples from 50 patients with pancreatic cancer. Early stages (I and II) were predominant (41/50) in this cohort. DNA was extracted from tumor and plasma samples and tested for the common codon 12 mutations G12D, G12V, and G12C by chip-based digital PCR. RESULTS We identified KRAS mutations in 72% of the tumors. 44% of the tumors were positive for G12D, 20% for G12V, and 10% for G12C. One tumor was positive for G12D and G12V. Analysis of the mutations in matched plasma samples revealed detection rates of 36% for G12D, 50% for G12V, and 0% for G12C. The detection appeared to be correlated with total number of tumor cells in the primary tumor. No KRAS mutations were detected in 20 samples of healthy control plasma. CONCLUSIONS Our results support further evaluation of tumor specific mutations as early diagnostic biomarkers using plasma samples as liquid biopsy.
Collapse
Affiliation(s)
- Nora Brychta
- Bayer Pharma AG, Biomarker Research, Berlin, Germany
| | - Thomas Krahn
- Bayer Pharma AG, Biomarker Research, Berlin, Germany
| | | |
Collapse
|
13
|
Quah SY, Tan MS, Teh YH, Stanslas J. Pharmacological modulation of oncogenic Ras by natural products and their derivatives: Renewed hope in the discovery of novel anti-Ras drugs. Pharmacol Ther 2016; 162:35-57. [PMID: 27016467 DOI: 10.1016/j.pharmthera.2016.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Oncogenic rat sarcoma (Ras) is linked to the most fatal cancers such as those of the pancreas, colon, and lung. Decades of research to discover an efficacious drug that can block oncogenic Ras signaling have yielded disappointing results; thus, Ras was considered "undruggable" until recently. Inhibitors that directly target Ras by binding to previously undiscovered pockets have been recently identified. Some of these molecules are either isolated from natural products or derived from natural compounds. In this review, we described the potential of these compounds and other inhibitors of Ras signaling in drugging Ras. We highlighted the modes of action of these compounds in suppressing signaling pathways activated by oncogenic Ras, such as mitogen-activated protein kinase (MAPK) signaling and the phosphoinositide-3-kinase (PI3K) pathways. The anti-Ras strategy of these compounds can be categorized into four main types: inhibition of Ras-effector interaction, interference of Ras membrane association, prevention of Ras-guanosine triphosphate (GTP) formation, and downregulation of Ras proteins. Another promising strategy that must be validated experimentally is enhancement of the intrinsic Ras-guanosine triphosphatase (GTPase) activity by small chemical entities. Among the inhibitors of Ras signaling that were reported thus far, salirasib and TLN-4601 have been tested for their clinical efficacy. Although both compounds passed phase I trials, they failed in their respective phase II trials. Therefore, new compounds of natural origin with relevant clinical activity against Ras-driven malignancies are urgently needed. Apart from salirasib and TLN-4601, some other compounds with a proven inhibitory effect on Ras signaling include derivatives of salirasib, sulindac, polyamine, andrographolide, lipstatin, levoglucosenone, rasfonin, and quercetin.
Collapse
Affiliation(s)
- Shun Ying Quah
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Michelle Siying Tan
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yuan Han Teh
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
14
|
Vorvis C, Koutsioumpa M, Iliopoulos D. Developments in miRNA gene signaling pathways in pancreatic cancer. Future Oncol 2016; 12:1135-50. [PMID: 26984178 DOI: 10.2217/fon-2015-0050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is a devastating malignancy that ranks as the fourth leading cause of cancer-related deaths worldwide. Dismal prognosis is mainly attributable to limited knowledge of the molecular pathogenesis of the disease. miRNAs have been found to be deregulated in pancreatic cancer, affecting several steps of initiation and aggressiveness of the disease by regulating important signaling pathways, such as the KRAS and Notch pathways. Moreover, the effect of miRNAs on regulating cell cycle events and expression of transcription factors has gained a lot of attention. Recent studies have highlighted the application of miRNAs as biomarkers and therapeutic tools. The current review focuses on latest advances with respect to the roles of miRNAs in pancreatic ductal adenocarcinoma associated signaling pathways and miRNA-based therapeutics.
Collapse
Affiliation(s)
- Christina Vorvis
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Marina Koutsioumpa
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
15
|
Characterization of KRAS Mutation in Acinar and Langerhans Islet Cells of Patients With Pancreatic Ductal Adenocarcinoma. Pancreas 2016; 45:337-41. [PMID: 26474433 DOI: 10.1097/mpa.0000000000000478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES KRAS mutations are frequent in pancreatic ductal adenocarcinoma, chronic pancreatitis, and mucinous neoplasms. In animal studies, KRAS mutations in acinar and Langerhans islets are associated with pancreatic intraepithelial neoplasia. Clinically, KRAS mutation is sometimes requested on cytology/biopsy specimens and negative results are helpful to rule out pancreatic ductal adenocarcinoma. This study set out to further elucidate these issues. METHODS Surgical specimens with pancreatic ductal adenocarcinoma, premalignant lesions, and chronic pancreatitis were reviewed. Tissue microdissections on 53 such areas of 21 cases were performed followed by polymerase chain reaction and pyrosequencing. RESULTS KRAS codon 12 mutations were detected in 100% pancreatic ductal adenocarcinomas. No KRAS codon 12 and 13 mutations were detected in benign acinar and Langerhans islets that lie adjacent to or away from the tumor. Variable mutation frequencies were seen in premalignant lesions. CONCLUSIONS The results support such clinical practice that negative KRAS mutation helps rule out pancreatic ductal adenocarcinomas on small cytology/biopsy specimens. Negative KRAS mutations, however, cannot rule out pancreatic premalignant lesions. Additionally, the results that benign pancreas are negative for KRAS mutations complement the findings of other relevant study that KRAS mutation-associated premalignant lesions do not appear to arise from acinar cells or Langerhans islets.
Collapse
|
16
|
Wang QJ, Yu Z, Griffith K, Hanada KI, Restifo NP, Yang JC. Identification of T-cell Receptors Targeting KRAS-Mutated Human Tumors. Cancer Immunol Res 2015; 4:204-14. [PMID: 26701267 DOI: 10.1158/2326-6066.cir-15-0188] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/11/2015] [Indexed: 12/13/2022]
Abstract
KRAS is one of the most frequently mutated proto-oncogenes in human cancers. The dominant oncogenic mutations of KRAS are single amino acid substitutions at codon 12, in particular G12D and G12V present in 60% to 70% of pancreatic cancers and 20% to 30% of colorectal cancers. The consistency, frequency, and tumor specificity of these "neoantigens" make them attractive therapeutic targets. Recent data associate T cells that target mutated antigens with clinical immunotherapy responses in patients with metastatic melanoma, lung cancer, or cholangiocarcinoma. Using HLA-peptide prediction algorithms, we noted that HLA-A*11:01 could potentially present mutated KRAS variants. By immunizing HLA-A*11:01 transgenic mice, we generated murine T cells and subsequently isolated T-cell receptors (TCR) highly reactive to the mutated KRAS variants G12V and G12D. Peripheral blood lymphocytes (PBL) transduced with these TCRs could recognize multiple HLA-A*11:01(+) tumor lines bearing the appropriate KRAS mutations. In a xenograft model of large established tumor, adoptive transfer of these transduced PBLs reactive with an HLA-A*11:01, G12D-mutated pancreatic cell line could significantly reduce its growth in NSG mice (P = 0.002). The success of adoptive transfer of TCR-engineered T cells against melanoma and other cancers supports clinical trials with these T cells that recognize mutated KRAS in patients with a variety of common cancer types.
Collapse
Affiliation(s)
- Qiong J Wang
- Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| | - Zhiya Yu
- Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Kayla Griffith
- Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ken-ichi Hanada
- Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Nicholas P Restifo
- Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - James C Yang
- Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
17
|
Cai G, Bernstein J, Aslanian HR, Hui P, Chhieng D. Endoscopic ultrasound-guided fine-needle aspiration biopsy of autoimmune pancreatitis: diagnostic clues and pitfalls. J Am Soc Cytopathol 2015; 4:211-217. [PMID: 31051756 DOI: 10.1016/j.jasc.2015.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/10/2015] [Accepted: 01/13/2015] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Autoimmune pancreatitis (AIP) is an inflammatory process that has characteristic clinical, radiographic, and pathologic features but may mimic pancreatic malignancy. In this study, we reviewed our experience in the endoscopic ultrasound-guided fine-needle aspiration evaluation of pancreatic lesions in patients with AIP. MATERIALS AND METHODS We searched the cytopathology archives and identified a total of 6 cases that had endoscopic ultrasound-guided fine-needle aspiration evaluation and subsequent tissue biopsy or resection with a diagnosis of AIP. The clinical, cytologic, and histopathologic features were reviewed. RESULTS The original cytologic diagnoses included negative, atypical, and suspicious for malignancy in 2 cases each. On retrospective review, these cases were characterized cytologically by the presence of mixed epithelial cells, mixed lymphocytes, and plasma cells, as well as cellular stromal fragments. Cytologic atypia of epithelial cells was observed in 4 of 6 cases, including mild (3 cases) and moderate (1 case) atypia. KRAS mutation analysis was performed in 4 cases with an indeterminate cytology diagnosis, which was negative in all cases. CONCLUSIONS Our results demonstrate that the presence of trilineage epithelial, lymphoplasmacytic, and stromal elements may be suggestive but not definitive for a diagnosis of AIP. The role of KRAS mutation analysis in AIP remains inconclusive and may warrant further evaluation.
Collapse
Affiliation(s)
- Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.
| | - Jane Bernstein
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Harry R Aslanian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Pei Hui
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - David Chhieng
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
18
|
Introduction of the hybcell-based compact sequencing technology and comparison to state-of-the-art methodologies for KRAS mutation detection. Biotechniques 2015; 58:126-34. [DOI: 10.2144/000114264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/17/2014] [Indexed: 11/23/2022] Open
Abstract
The detection of KRAS mutations in codons 12 and 13 is critical for anti-EGFR therapy strategies; however, only those methodologies with high sensitivity, specificity, and accuracy as well as the best cost and turnaround balance are suitable for routine daily testing. Here we compared the performance of compact sequencing using the novel hybcell technology with 454 next-generation sequencing (454-NGS), Sanger sequencing, and pyrosequencing, using an evaluation panel of 35 specimens. A total of 32 mutations and 10 wild-type cases were reported using 454-NGS as the reference method. Specificity ranged from 100% for Sanger sequencing to 80% for pyrosequencing. Sanger sequencing and hybcell-based compact sequencing achieved a sensitivity of 96%, whereas pyrosequencing had a sensitivity of 88%. Accuracy was 97% for Sanger sequencing, 85% for pyrosequencing, and 94% for hybcell-based compact sequencing. Quantitative results were obtained for 454-NGS and hybcell-based compact sequencing data, resulting in a significant correlation (r = 0.914). Whereas pyrosequencing and Sanger sequencing were not able to detect multiple mutated cell clones within one tumor specimen, 454-NGS and the hybcell-based compact sequencing detected multiple mutations in two specimens. Our comparison shows that the hybcell-based compact sequencing is a valuable alternative to state-of-the-art methodologies used for detection of clinically relevant point mutations.
Collapse
|
19
|
Silencing the wild-type and mutant K-ras increases the resistance to 5-flurouracil in HCT-116 as a colorectal cancer cell line. Anticancer Drugs 2015; 26:187-96. [DOI: 10.1097/cad.0000000000000175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Schmukler E, Wolfson E, Haklai R, Elad-Sfadia G, Kloog Y, Pinkas-Kramarski R. Chloroquine synergizes with FTS to enhance cell growth inhibition and cell death. Oncotarget 2014; 5:173-84. [PMID: 24368422 PMCID: PMC3960199 DOI: 10.18632/oncotarget.1500] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The Ras family of small GTPases transmits extracellular signals that regulate cell growth, differentiation, motility and death. Ras signaling is constitutively active in a large number of human cancers. Ras can also regulate autophagy by affecting several signaling pathways including the mTOR pathway. Autophagy is a process that regulates the balance between protein synthesis and protein degradation. It is important for normal growth control, but may be defective in diseases. Previously, we have shown that Ras inhibition by FTS induces autophagy, which partially protects cancer cells and may limit the use of FTS as an anti-cancer drug. Since FTS is a non toxic drug we hypothesized that FTS and chloroquine (an autophagy inhibitor) will synergize in cell growth inhibition and cell death. Thus, in the present study, we explored the mechanism of each individual drug and their combined action. Our results demonstrate that in HCT-116 and in Panc-1 cells, FTS induces autophagy, which can be inhibited by chloroquine. Furthermore, the combined treatment synergistically decreased the number of viable cells. Interestingly, the combined treatment enhanced apoptotic cell death as indicated by increased sub-G1 cell population, increased Hoechst staining, activation of caspase 3, decrease in survivin expression and release of cytochrome c. Thus, chloroquine treatment may promote FTS-mediated inhibition of tumor cell growth and may stimulate apoptotic cell death.
Collapse
Affiliation(s)
- Eran Schmukler
- Department of Neurobiology. Tel-Aviv University, Ramat-Aviv, Israel
| | | | | | | | | | | |
Collapse
|
21
|
Chang X, Jiang Y, Li J, Chen J. Intraductal tubular adenomas (pyloric gland-type) of the pancreas: clinicopathologic features are similar to gastric-type intraductal papillary mucinous neoplasms and different from intraductal tubulopapillary neoplasms. Diagn Pathol 2014; 9:172. [PMID: 25245835 PMCID: PMC4180592 DOI: 10.1186/s13000-014-0172-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/23/2014] [Indexed: 11/17/2022] Open
Abstract
Background Intraductal tubular adenoma of the pancreas, pyloric gland type (ITA), is an infrequent intraductal benign lesion located in the main duct and large branch duct of the pancreas. The purpose of this report is to introduce seven new cases and to compare their clinicopathologic features and KRAS mutations to gastric-type intraductal papillary mucinous neoplasms (IPMNs) and intraductal tubulopapillary neoplasms (ITPNs). Methods Clinical findings, morphologic features, immunophenotypes and KRAS alterations were investigated in 7 patients with intraductal tubular adenomas, 16 patients with gastric-type intraductal papillary mucinous neoplasms and 6 patients with intraductal tubulopapillary neoplasms. Results There were more female patients in the ITA and gastric-type IPMN groups, whereas the opposite pattern was observed in the ITPN group. ITAs and gastric-type IPMNs were lined by columnar cells, similar to pyloric glands, with large extracellular deposits of mucin. ITPNs were polypoid and papillary mass located in the pancreatic ducts, which did not show large deposits of mucin. All ITAs and gastric-type IPMNs expressed MUC5AC strongly and diffusely, and 3/6 ITPNs expressed MUC5AC focally and weakly. KRAS mutations were identified in 4 ITAs (4/7, 57%), 9 IPMNs (9/16, 56%) and 2 ITPNs (2/6, 33%). Conclusion The intraductal tubular adenoma should not be considered a precursor lesion of intraductal tubulopapillary neoplasms. No adequate data established ITA should separate as a specific entity from IPMNs. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_172
Collapse
|
22
|
Sun Q, Phan J, Friberg AR, Camper DV, Olejniczak ET, Fesik SW. A method for the second-site screening of K-Ras in the presence of a covalently attached first-site ligand. JOURNAL OF BIOMOLECULAR NMR 2014; 60:11-14. [PMID: 25087006 PMCID: PMC4358732 DOI: 10.1007/s10858-014-9849-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/10/2014] [Indexed: 06/03/2023]
Abstract
K-Ras is a well-validated cancer target but is considered to be "undruggable" due to the lack of suitable binding pockets. We previously discovered small molecules that bind weakly to K-Ras but wanted to improve their binding affinities by identifying ligands that bind near our initial hits that we could link together. Here we describe an approach for identifying second site ligands that uses a cysteine residue to covalently attach a compound for tight binding to the first site pocket followed by a fragment screen for binding to a second site. This approach could be very useful for targeting Ras and other challenging drug targets.
Collapse
|
23
|
Weisberg E, Nonami A, Chen Z, Liu F, Zhang J, Sattler M, Nelson E, Cowens K, Christie AL, Mitsiades C, Wong KK, Liu Q, Gray N, Griffin JD. Identification of Wee1 as a novel therapeutic target for mutant RAS-driven acute leukemia and other malignancies. Leukemia 2014; 29:27-37. [PMID: 24791855 DOI: 10.1038/leu.2014.149] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/21/2014] [Accepted: 04/28/2014] [Indexed: 01/08/2023]
Abstract
Direct targeting of rat sarcoma (RAS), which is frequently mutated, has proven to be challenging, and inhibition of individual downstream RAS mediators has resulted in limited clinical efficacy. We designed a chemical screen to identify compounds capable of potentiating mammalian target of rapamycin (mTOR) inhibition in mutant RAS-positive leukemia, and identified a Wee1 inhibitor. Synergy was observed in both mutant neuroblastoma RAS viral oncogene homolog (NRAS)- and mutant kirsten RAS viral oncogene homolog (KRAS)-positive acute myelogenous leukemia (AML) cell lines and primary patient samples. The observed synergy enhanced dephosphorylation of AKT, 4E-binding protein 1 and s6 kinase, and correlated with increased apoptosis. The specificity of Wee1 as the target of MK-1775 was validated by Wee1 knockdown, as well as partial reversal of drug combination-induced apoptosis by a cyclin-dependent kinase 1 (CDK1) inhibitor. Importantly, we also extended our findings to other mutant RAS-expressing malignancies, including mutant NRAS-positive melanoma, and mutant KRAS-positive colorectal cancer, pancreatic cancer and lung cancer. We observed favorable responses with combined Wee1/mTOR inhibition in human cancer cell lines from multiple malignancies, and inhibition of tumor growth in in vivo models of mutant KRAS lung cancer and leukemia. The present study introduces for the first time Wee1 inhibition combined with mTOR inhibition as a novel therapeutic strategy for the selective treatment of mutant RAS-positive leukemia and other mutant RAS-expressing malignancies.
Collapse
Affiliation(s)
- Ellen Weisberg
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Atsushi Nonami
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhao Chen
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Feiyang Liu
- High Magnetic Field laboratory, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
| | - Jianming Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston Massachusetts, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Erik Nelson
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristen Cowens
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda L Christie
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Constantine Mitsiades
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Qingsong Liu
- High Magnetic Field laboratory, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
| | - Nathanael Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston Massachusetts, USA
| | - James D Griffin
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Visani M, de Biase D, Baccarini P, Fabbri C, Polifemo AM, Zanini N, Pession A, Tallini G. Multiple KRAS mutations in pancreatic adenocarcinoma: molecular features of neoplastic clones indicate the selection of divergent populations of tumor cells. Int J Surg Pathol 2013; 21:546-552. [PMID: 23426962 DOI: 10.1177/1066896912475073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
KRAS is one of the most common genes mutated in pancreatic adenocarcinoma. Multiple KRAS mutations may be detected within the same pancreatic adenocarcinoma, but it is usually unclear whether the different mutations represent biologically irrelevant molecular events or whether they indicate the coexistence of distinct sizable neoplastic clones within a given tumor. We identified a case of pancreatic adenocarcinoma with 5 different mutations in the KRAS gene and have been able to characterize the allelic distribution of the KRAS mutations and the size of the neoplastic clones using allele-specific locked nucleic acid polymerase chain reaction and next-generation sequencing (454 GS-Junior). The results indicate that the tumor is composed of 5 distinct cell populations: one is KRAS G12V mutated (~38% of neoplastic cells), the second is KRAS G12V in one allele and KRAS G12D in the other (~32%), the third is KRAS G12V in one allele and KRAS G12R in the other (~24%), and the fourth is KRAS G12V in one allele and KRAS G12C in the other (~6%). The fifth clone, representing a minority of neoplastic cells, has a KRAS Q61H mutation in addition to one of the above alterations. Microsatellite analysis identified mutation of the NR21 marker out of the 13 tested, indicating that the tumor has a defect in maintaining DNA integrity different from loss of conventional DNA mismatch repair. These results are consistent with the successive selection of divergent populations of tumor cells and underscore the relevance of nucleotide instability in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Michela Visani
- 1University of Bologna School of Medicine, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bournet B, Dufresne M, Selves J, Torrisani J, Cordelier P, Buscail L. OncogèneKraset cancer du pancréas. Med Sci (Paris) 2013; 29:991-7. [DOI: 10.1051/medsci/20132911015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
26
|
Immunohistochemical and molecular characterization of clear cell carcinoma of the lung. Hum Pathol 2013; 44:2467-74. [DOI: 10.1016/j.humpath.2013.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/04/2013] [Accepted: 06/12/2013] [Indexed: 01/08/2023]
|
27
|
Dietlein F, Eschner W. Inferring primary tumor sites from mutation spectra: a meta-analysis of histology-specific aberrations in cancer-derived cell lines. Hum Mol Genet 2013; 23:1527-37. [PMID: 24163242 DOI: 10.1093/hmg/ddt539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Next-generation sequencing technologies have led to profound characterization of mutation spectra for several cancer types. Hence, we sought to systematically compare genomic aberrations between primary tumors and cancer lines. For this, we compiled publically available sequencing data of 1651 genes across 905 cell lines. We used them to characterize 23 distinct primary tumor sites by a novel approach that is based on Bayesian spam-filtering techniques. Thereby, we confirmed the strong overall similarity of alterations between patient samples and cell culture. However, we also identified several suspicious mutations, which had not been associated with their cancer types before. Based on these characterizations, we developed the inferring cancer origins from mutation spectra (ICOMS) tool. On our cell line collection, the algorithm reached a prediction specificity rate of 79%, which strongly variegated between primary cancer sites. On an independent validation cohort of 431 primary tumor samples, we observed a similar accuracy of 71%. Additionally, we found that ICOMS could be employed to deduce further attributes from mutation spectra, including sub-histology and compound sensitivity. Thus, thorough classification of site-specific mutation spectra for cell lines may decipher further genome-phenotype associations in cancer.
Collapse
|
28
|
Sohal DPS, Mykulowycz K, Uehara T, Teitelbaum UR, Damjanov N, Giantonio BJ, Carberry M, Wissel P, Jacobs-Small M, O'Dwyer PJ, Sepulveda A, Sun W. A phase II trial of gemcitabine, irinotecan and panitumumab in advanced cholangiocarcinoma. Ann Oncol 2013; 24:3061-5. [PMID: 24146220 DOI: 10.1093/annonc/mdt416] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Current data suggest that chemotherapy combinations may be superior to single agents in biliary tract cancer. The epidermal growth factor receptor (EGFR) pathway appears to be associated with tumor stage, prognosis and response to therapy. This trial was designed to evaluate the tolerability and efficacy of the combination of panitumumab, a monoclonal anti-EGFR antibody, with gemcitabine and irinotecan. PATIENTS AND METHODS Patients with advanced (unresectable or metastatic) cholangiocarcinoma, ECOG PS 0-2, and adequate organ function were treated with panitumumab (9 mg/kg) on day 1, and gemcitabine (1000 mg/m(2)) and irinotecan (100 mg/m(2)) on days 1 and 8 of a 21-day cycle. The primary objective was to evaluate the 5-month progression-free survival (PFS). Secondary objectives included overall response rate (ORR) and overall survival (OS). Mutational analyses of EGFR, KRAS and BRAF were carried out when feasible. RESULTS Thirty-five patients received a median of 7 (0-30) cycles. The most common grade 3/4 toxic effects were neutropenia (10 patients, 29%), thrombocytopenia (10 patients, 29%), skin rash (13 patients, 37%) and dehydration (9 patients, 26%). Two patients had CR, 9 had partial response (PR), and 15 had SD for a disease-control rate of 74% (by RECIST) in 28 assessable patients. Two patients went on to have surgical resection. The 5-month PFS was 69%. The median PFS was 9.7 months and the median OS was 12.9 months. In 17 testable samples, no EGFR or BRAF mutations were identified; there were 7 KRAS mutations, with no difference in OS by KRAS status. CONCLUSIONS This study showed encouraging efficacy of this regimen with good tolerability. Further study in this area is warranted. Clinical Trials Number: The trial was registered with the National Cancer Institute (www.clinicaltrials.gov identifier NCT00948935).
Collapse
Affiliation(s)
- D P S Sohal
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kadera BE, Li L, Toste PA, Wu N, Adams C, Dawson DW, Donahue TR. MicroRNA-21 in pancreatic ductal adenocarcinoma tumor-associated fibroblasts promotes metastasis. PLoS One 2013; 8:e71978. [PMID: 23991015 PMCID: PMC3750050 DOI: 10.1371/journal.pone.0071978] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/07/2013] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is projected to rise to the second leading cause of U.S. cancer-related deaths by 2020. Novel therapeutic targets are desperately needed. MicroRNAs (miRs) are small noncoding RNAs that function by suppressing gene expression and are dysregulated in cancer. miR-21 is overexpressed in PDAC tumor cells (TC) and is associated with decreased survival, chemoresistance and invasion. Dysregulation of miR regulatory networks in PDAC tumor-associated fibroblasts (TAFs) have not been previously described. In this study, we show that miR-21 expression in TAFs promotes TC invasion. METHODS In-situ hybridization for miR-21 was performed on the 153 PDAC patient UCLA tissue microarray and 23 patient-matched lymph node metastases. Stromal and TC histoscores were correlated with clinicopathologic parameters by univariate and multivariate Cox regression. miR-21 positive cells were further characterized by immunofluorescence for mesenchymal/epithelial markers. For in vitro studies, TAFs were isolated from freshly resected human PDAC tumors by the outgrowth method. miR-21 was overexpressed/inhibited in fibroblasts and then co-cultured with GFP-MiaPaCa TCs to assess TC invasion in modified Boyden chambers. RESULTS miR-21 was upregulated in TAFs of 78% of tumors, and high miR-21 significantly correlated with decreased overall survival (P = 0.04). Stromal miR-21 expression was also significantly associated with lymph node invasion (P = 0.004), suggesting that it is driving TC spread. Co-immunofluorescence revealed that miR-21 colocalized with peritumoral fibroblasts expressing α-smooth muscle actin. Moreover, expression of miR-21 in primary TAFs correlated with miR-21 in TAFs from patient-matched LN metastases; evidence that PDAC tumor cells induce TAFs to express miR-21. miR-21 expression in TAFs and TCs promotes invasion of TCs and is inhibited with anti-miR-21. CONCLUSIONS miR-21 expression in PDAC TAFs is associated with decreased overall survival and promotes TC invasion. Anti-miR-21 may represent a novel therapeutic strategy for dual targeting of both tumor and stroma in PDAC.
Collapse
Affiliation(s)
- Brian E. Kadera
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Luyi Li
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Paul A. Toste
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Nanping Wu
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Curtis Adams
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - David W. Dawson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Timothy R. Donahue
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Institute for Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Nodin B, Zendehrokh N, Sundström M, Jirström K. Clinicopathological correlates and prognostic significance of KRAS mutation status in a pooled prospective cohort of epithelial ovarian cancer. Diagn Pathol 2013; 8:106. [PMID: 23800114 PMCID: PMC3722044 DOI: 10.1186/1746-1596-8-106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/12/2013] [Indexed: 01/09/2023] Open
Abstract
Background Activating KRAS mutations are common in ovarian carcinomas of low histological grade, less advanced clinical stage and mucinous histological subtype, and form part of the distinct molecular alterations associated with type I tumors in the dualistic model of ovarian carcinogenesis. Here, we investigated the occurrence, clinicopathological correlates and prognostic significance of specific KRAS mutations in tumours from 153 epithelial ovarian cancer (EOC) cases from a pooled, prospective cohort. Methods KRAS codon 12,13 and 61 mutations were analysed by pyrosequencing in tumours from 163 incident EOC cases in the Malmö Diet and Cancer Study and Malmö Preventive Project. Associations of mutational status with clinicopathological and molecular characteristics were assessed by Pearson Chi Square test. Ovarian cancer-specific survival (OCSS) according to mutational status was explored by Kaplan-Meier analysis and Cox proportional hazards modelling. KRAS-mutation status was also analysed in 28 concomitantly sampled benign-appearing fallopian tubes. Results Seventeen (11.1%) EOC cases harboured mutations in the KRAS gene, all but one in codon 12, and one in codon 13. No KRAS mutations were found in codon 61 and all examined fallopian tubes were KRAS wild-type. KRAS mutation was significantly associated with lower grade (p = 0.001), mucinous histological subtype (p = < 0.001) and progesterone receptor expression (p = 0.035). Kaplan-Meier analysis revealed a significantly improved OCSS for patients with KRAS-mutated compared to KRAS wild-type tumours (p = 0.015). These associations were confirmed in unadjusted Cox regression analysis (HR = 2.51; 95% CI 1.17-5.42) but did not remain significant after adjustment for age, grade and clinical stage. The beneficial prognostic impact of KRAS mutation was ony evident in tumours of low-intermediate differentiation grade (p = 0.023), and in a less advanced clinical stage (p = 0.014). Moreover, KRAS mutation was associated with a significantly improved OCSS in the subgroup of endometroid carcinomas (p = 0.012). Conclusions The results from this study confirm previously demonstrated associations of KRAS mutations with well-differentiated and mucinous ovarian carcinomas. Moreover, KRAS-mutated tumours had a significantly improved survival in unadjusted, but not adjusted, analysis. A finding that merits further study is the significant prognostic impact of KRAS mutation in endometroid carcinomas, potentially indicating that response to Ras/Raf/MEK/ERK-targeting therapies may differ by histological subtype. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1788330379100147
Collapse
Affiliation(s)
- Björn Nodin
- Department of Clinical Sciences, Division of Pathology, Lund University, Skåne University Hospital, Lund, Sweden.
| | | | | | | |
Collapse
|
31
|
Brotto K, Malisic E, Cavic M, Krivokuca A, Jankovic R. The usability of allele-specific PCR and reverse-hybridization assays for KRAS genotyping in Serbian colorectal cancer patients. Dig Dis Sci 2013; 58:998-1003. [PMID: 23108567 DOI: 10.1007/s10620-012-2469-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/16/2012] [Indexed: 12/09/2022]
Abstract
BACKGROUND Colorectal cancers (CRCs) with wild-type KRAS respond to EGFR-targeted antibody treatment. Analysis of the hotspot clustered mutations in codons 12 and 13 is compulsory before therapy and no standardized methodology for that purpose has been established so far. Since these mutations may have different biological effects and clinical outcome, reliable frequency and types of KRAS mutations need to be determined for individual therapy. AIMS The purpose of this study was to describe the KRAS mutation spectrum in a group of 481 Serbian mCRC patients and to compare the general performances of allele-specific PCR and reverse-hybridization assays. METHODS KRAS testing was performed with two diagnostic analyses, DxS TheraScreen K-RAS PCR Kit and KRAS StripAssay™. RESULTS KRAS mutations in codons 12 and 13 were present in 37.6 % of analyzed formalin-fixed paraffin-embedded (FFPE) DNA samples. The seven most frequent mutation types were observed with both assays: p.G12D 34.6 %, p.G12V 24.9 %, p.G12A 10.3 %, p.G12C 8.1 %, p.G12S 5.4 %, p.G12R 1.6 %, and p.G13D 15.1 %. Regarding double mutants, 0.8 % of them were present among all tested samples and 2.2 % among KRAS mutated ones. CONCLUSIONS Two screening approaches that were used in this study have been shown as suitable tests for detecting KRAS mutations in diagnostic settings. In addition, they appear to be good alternatives to methods presently in use. In our experience, both methods showed capacity to detect and identify double mutations which may be important for potential further subgrouping of CRC patients.
Collapse
Affiliation(s)
- Ksenija Brotto
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
32
|
Kovacevic Z, Chikhani S, Lui GYL, Sivagurunathan S, Richardson DR. The iron-regulated metastasis suppressor NDRG1 targets NEDD4L, PTEN, and SMAD4 and inhibits the PI3K and Ras signaling pathways. Antioxid Redox Signal 2013; 18:874-87. [PMID: 22462691 DOI: 10.1089/ars.2011.4273] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS The metastasis suppressor gene, N-myc downstream regulated gene-1 (NDRG1), is negatively correlated with tumor progression in multiple neoplasms, including pancreatic cancer. Moreover, NDRG1 is an iron-regulated gene that is markedly upregulated by cellular iron-depletion using novel antitumor agents such as the chelator, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), in pancreatic cancer cells. However, the exact function(s) of NDRG1 remain to be established and are important to elucidate. RESULTS In the current study, using gene-array analysis along with NDRG1 overexpression and silencing, we identified the molecular targets of NDRG1 in three pancreatic cancer cell lines. We demonstrate that NDRG1 upregulates neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) and GLI-similar-3 (GLIS3). Further studies examining the downstream effects of NEDD4L led to the discovery that NDRG1 affects the transforming growth factor-β (TGF-β) pathway, leading to the upregulation of two key tumor suppressor proteins, namely phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and mothers against decapentaplegic homolog-4 (SMAD4). Moreover, NDRG1 inhibited the phosphatidylinositol 3-kinase (PI3K) and Ras oncogenic pathways. INNOVATION This study provides significant insights into the mechanisms underlying the antitumor activity of NDRG1. For the first time, a role for NDRG1 is established in regulating the key signaling pathways involved in oncogenesis (TGF-β, PI3K, and Ras pathways). CONCLUSION The identified target genes of NDRG1 and their effect on the TGF-β signaling pathway reveal its molecular function in pancreatic cancer and a novel therapeutic avenue.
Collapse
Affiliation(s)
- Zaklina Kovacevic
- Department of Pathology, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | |
Collapse
|
33
|
Frequencies and prognostic role of KRAS and BRAF mutations in patients with localized pancreatic and ampullary adenocarcinomas. Pancreas 2012; 41:759-66. [PMID: 22699145 DOI: 10.1097/mpa.0b013e31823cd9df] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The frequencies and prognostic role of KRAS and BRAF mutations in patients operated on for pancreatic ductal adenocarcinomas (PDACs) and ampullary adenocarcinomas (A-ACs) are scantily studied. METHODS KRAS and BRAF mutations were analyzed in formalin-fixed, paraffin-embedded tumor samples from primarily chemotherapy-naive patients operated on with radical intentions for PDAC (n = 170) and A-AC (n = 107). RESULTS Eighty percent of PDAC patients had KRAS mutations (codon 12 mutations: 74%) and 67% with A-AC (codon 12 mutations: 54%). BRAF mutations were less common, 16% in PDAC and 12% in A-AC, and no V600E mutations were found. Fourteen percent with PDAC and 7% with A-AC had mutations in both KRAS and BRAF. Multivariate analysis, including KRAS status, stage, and American Society of Anesthesiologists physical status classification system score, demonstrated that KRAS mutations in patients with A-AC were associated with short recurrence-free survival (RFS) (hazard ratio, 2.45; 95% confidence interval, 1.19-5.06; P = 0.015) and overall survival (OS) (1.93, 95% 1.12-3.31; P = 0.018). KRAS mutations in patients with PDAC were not associated with RFS and OS. BRAF mutations were not associated with RFS and OS. CONCLUSIONS KRAS mutations frequencies were high in PDAC and A-AC. KRAS mutations were associated with poor prognosis in patients with A-AC, but not in patients with PDAC.
Collapse
|
34
|
Gomez-Pinillos A, Ferrari AC. mTOR Signaling Pathway and mTOR Inhibitors in Cancer Therapy. Hematol Oncol Clin North Am 2012; 26:483-505, vii. [DOI: 10.1016/j.hoc.2012.02.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Sun Q, Burke JP, Phan J, Burns MC, Olejniczak ET, Waterson AG, Lee T, Rossanese OW, Fesik SW. Discovery of Small Molecules that Bind to K-Ras and Inhibit Sos-Mediated Activation. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201358] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Sun Q, Burke JP, Phan J, Burns MC, Olejniczak ET, Waterson AG, Lee T, Rossanese OW, Fesik SW. Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew Chem Int Ed Engl 2012; 51:6140-3. [PMID: 22566140 DOI: 10.1002/anie.201201358] [Citation(s) in RCA: 387] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Indexed: 01/14/2023]
Affiliation(s)
- Qi Sun
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cai G, Mahooti S, Lipata FM, Chhieng D, Hui P. Diagnostic value of K-ras mutation analysis for pancreaticobiliary cytology specimens with indeterminate diagnosis. Cancer Cytopathol 2012; 120:313-8. [DOI: 10.1002/cncy.21188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 12/19/2011] [Accepted: 01/24/2012] [Indexed: 11/05/2022]
|
38
|
Iovanna J, Calvo EL, Dagorn JC, Dusetti N. Pancreatic Cancer Genetics. DIAGNOSTIC, PROGNOSTIC AND THERAPEUTIC VALUE OF GENE SIGNATURES 2012:51-79. [DOI: 10.1007/978-1-61779-358-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
Ioannou N, Dalgleish AG, Seddon AM, Mackintosh D, Guertler U, Solca F, Modjtahedi H. Anti-tumour activity of afatinib, an irreversible ErbB family blocker, in human pancreatic tumour cells. Br J Cancer 2011; 105:1554-62. [PMID: 21970876 PMCID: PMC3242519 DOI: 10.1038/bjc.2011.396] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The combination of the reversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) erlotinib with gemcitabine obtained FDA approval for treating patients with pancreatic cancer. However, duration of response is often limited and there is currently no reliable predictive marker. METHODS We determined the sensitivity of a panel of human pancreatic tumour cell lines to treatment with afatinib, erlotinib, monoclonal antibody (mAb) ICR62, and gemcitabine, using the Sulforhodamine B colorimetric assay. The effect of these agents on cell signalling and cell-cycle distribution was determined by western blot and flow cytometry, respectively. RESULTS At 200 nM, ICR62 had no effect on growth of these tumour cells with the exception of BxPC-3 cells. BxPC-3 cells were also sensitive to treatment with afatinib and erlotinib with respective IC(50) values of 11 and 1200 nM. Compared with erlotinib, afatinib was also more effective in inhibiting the growth of the other human pancreatic tumour cell lines and in blocking the EGF-induced phosphorylation of tyrosine, EGFR, MAPK, and AKT. When tested in BxPC-3 xenografts, afatinib induced significant delay in tumour growth. CONCLUSION The superiority of afatinib in this study encourages further investigation on the therapeutic potential of afatinib as a single agent or in combination with gemcitabine in pancreatic cancer.
Collapse
Affiliation(s)
- N Ioannou
- School of Life Sciences, Kingston University London, Kingston-upon-Thames, Surrey KT1 2EE, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
SMAD-4 Cooperates with TGF-β to Enhance PTEN Expression Upon The Inhibition of RAS/ERK Pathway in Gastric Carcinoma Cells*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Tsutsumi K, Sato N, Cui L, Mizumoto K, Sadakari Y, Fujita H, Ohuchida K, Ohtsuka T, Takahata S, Tanaka M. Expression of claudin-4 (CLDN4) mRNA in intraductal papillary mucinous neoplasms of the pancreas. Mod Pathol 2011; 24:533-41. [PMID: 21102412 DOI: 10.1038/modpathol.2010.218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Claudin-4, encoding a protein for tight junction formation and function, is highly overexpressed in pancreatic ductal adenocarcinoma and is also associated with invasive adenocarcinomas arising in intraductal papillary mucinous neoplasms of the pancreas. However, the expression pattern of claudin-4 during neoplastic progression of intraductal papillary mucinous neoplasms remains unknown. Using quantitative real-time reverse transcription-PCR, we analyzed claudin-4 mRNA in a panel of 14 pancreatic cancer cell lines and in formalin-fixed paraffin-embedded tissues from 80 patients with intraductal papillary mucinous neoplasms of different histological grades and papillary subtypes. Increased expression of claudin-4 was confirmed in all the pancreatic cancer cell lines tested as compared with normal ductal epithelial cells and fibroblast cultures. The claudin-4 expression was significantly higher in high-grade intraductal papillary mucinous neoplasms (borderline neoplasm and carcinoma) than in low-grade intraductal papillary mucinous neoplasms (adenoma) (P<0.0001). In addition, claudin-4 mRNA levels were significantly higher in intestinal-type intraductal papillary mucinous neoplasms than in non-intestinal-type intraductal papillary mucinous neoplasms based on papillary subclassification (P<0.0001). Our findings suggest that claudin-4 expression is associated with neoplastic progression of intraductal papillary mucinous neoplasms and, especially, with a distinct pathway to intestinal differentiation.
Collapse
Affiliation(s)
- Kosuke Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bayraktar S, Rocha-Lima CM. Advanced or Metastatic Pancreatic Cancer: Molecular Targeted Therapies. ACTA ACUST UNITED AC 2010; 77:606-19. [DOI: 10.1002/msj.20217] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Clinical relevance of KRAS in human cancers. J Biomed Biotechnol 2010; 2010:150960. [PMID: 20617134 PMCID: PMC2896632 DOI: 10.1155/2010/150960] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 02/22/2010] [Accepted: 03/09/2010] [Indexed: 12/18/2022] Open
Abstract
The KRAS gene (Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) is an oncogene that encodes a small GTPase transductor protein called KRAS. KRAS is involved in the regulation of cell division as a result of its ability to relay external signals to the cell nucleus. Activating mutations in the KRAS gene impair the ability of the KRAS protein to switch between active and inactive states, leading to cell transformation and increased resistance to chemotherapy and biological therapies targeting epidermal growth factor receptors. This review highlights some of the features of the KRAS gene and the KRAS protein and summarizes current knowledge of the mechanism of KRAS gene regulation. It also underlines the importance of activating mutations in the KRAS gene in relation to carcinogenesis and their importance as diagnostic biomarkers, providing clues regarding human cancer patients' prognosis and indicating potential therapeutic approaches.
Collapse
|
44
|
Shi C, Chandrasekaran A, Thuluvath PJ, Karikari C, Argani P, Goggins M, Maitra A, Eshleman JR. Ultrasensitive detection of KRAS2 mutations in bile and serum from patients with biliary tract carcinoma using LigAmp technology. J Mol Diagn 2009; 11:583-9. [PMID: 19815696 DOI: 10.2353/jmoldx.2009.090061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Patients with biliary tract carcinoma have a poor prognosis. Early detection efforts are urgently needed to ameliorate the dismal prognosis for these patients. Mutations of the KRAS2 gene are one of the most common genetic aberrations in this cancer. In this study, we used LigAmp, an ultrasensitive technology for detecting point mutations, to analyze KRAS2 mutations in patients with a variety of neoplastic and non-neoplastic pancreatobiliary diseases. DNA was isolated from 64 samples, including 44 bile samples and 20 serum samples. Oligonucleotides specific for KRAS2 G35A (GAT, G12D), G35T (GTT, G12V), and G34A (AGT, G12S) mutations were used. KRAS2 mutations were detected in 14 of 16 (87.5%) neoplastic bile samples and in 9 of 28 (32.1%) non-neoplastic bile samples. However, the mutation levels were significantly lower in the non-neoplastic bile (median = 0.4%) compared with those in the neoplastic bile (median = 5.1%). KRAS2 mutations were also detected in 9 of 11 (81.8%) serum samples from patients with biliary tract carcinoma, which was further confirmed by cloning BstN1-refractory PCR products and DNA sequencing. However, KRAS2 mutations were not present in the sera from eight patients with benign pancreatobiliary diseases. These data demonstrate that KRAS2 mutations are detectable in both bile and serum using LigAmp. This technology has the potential for early biliary tract carcinoma detection and possibly for residual disease monitoring post-therapy.
Collapse
Affiliation(s)
- Chanjuan Shi
- The Johns Hopkins Medical Institutions, The Sol Goldman Pancreatic Cancer Research Center. David Koch Cancer Research Building-II, Suite 341. 1550 Orleans St. Baltimore, MD 21231, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Genetic alterations in precancerous pancreatic lesions and their clinical implications. ACTA ACUST UNITED AC 2009; 33:1028-35, e1-9. [DOI: 10.1016/j.gcb.2009.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
46
|
Morphogenesis of pancreatic cancer: role of pancreatic intraepithelial neoplasia (PanINs). Langenbecks Arch Surg 2008; 393:561-70. [PMID: 18283486 DOI: 10.1007/s00423-008-0282-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 01/16/2008] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (i.e., pancreatic cancer) is an almost universally lethal disease. The identification of precursor lesions of pancreatic cancer provides an opportunity for early detection and potential therapeutic intervention before the development of invasive cancer. DISCUSSION It is now established that pancreatic cancers do not arise de novo but rather exhibit a sequential histological and genetic progression of precursor lesions culminating in frank, invasive neoplasia. Pancreatic intraepithelial neoplasia (PanIN) is the most common non-invasive precursor lesion of pancreatic cancer. The development of a consensus nomenclature scheme for PanINs has facilitated research into pancreatic cancer precursors and enabled standardization of results across institutions. CONCLUSION PanINs harbor many of the molecular alterations observed in invasive pancreatic cancer, confirming their status as true non-invasive precursor lesions. Recently developed genetically engineered mouse models of pancreatic cancer also demonstrate the stepwise PanIN progression model, underscoring the commonalities in pancreatic neoplasia between mouse and man.
Collapse
|
47
|
Chow JY, Quach KT, Cabrera BL, Cabral JA, Beck SE, Carethers JM. RAS/ERK modulates TGFbeta-regulated PTEN expression in human pancreatic adenocarcinoma cells. Carcinogenesis 2007; 28:2321-7. [PMID: 17638924 PMCID: PMC4151289 DOI: 10.1093/carcin/bgm159] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is rarely mutated in pancreatic cancers, but its regulation by transforming growth factor (TGF)-beta might mediate growth suppression and other oncogenic actions. Here, we examined the role of TGFbeta and the effects of oncogenic K-RAS/ERK upon PTEN expression in the absence of SMAD4. We utilized two SMAD4-null pancreatic cell lines, CAPAN-1 (K-RAS mutant) and BxPc-3 (WT-K-RAS), both of which express TGFbeta surface receptors. Cells were treated with TGFbeta1 and separated into cytosolic/nuclear fractions for western blotting with phospho-SMAD2, SMAD 2, 4 phospho-ATP-dependent tyrosine kinases (Akt), Akt and PTEN antibodies. PTEN mRNA levels were assessed by reverse transcriptase-polymerase chain reaction. The MEK1 inhibitor, PD98059, was used to block the downstream action of oncogenic K-RAS/ERK, as was a dominant-negative (DN) K-RAS construct. TGFbeta increased phospho-SMAD2 in both cytosolic and nuclear fractions. PD98059 treatment further increased phospho-SMAD2 in the nucleus of both pancreatic cell lines, and DN-K-RAS further improved SMAD translocation in K-RAS mutant CAPAN cells. TGFbeta treatment significantly suppressed PTEN protein levels concomitant with activation of Akt by 48 h through transcriptional reduction of PTEN mRNA that was evident by 6 h. TGFbeta-induced PTEN suppression was reversed by PD98059 and DN-K-RAS compared with treatments without TGFbeta. TGFbeta-induced PTEN expression was inversely related to cellular proliferation. Thus, oncogenic K-RAS/ERK in pancreatic adenocarcinoma facilitates TGFbeta-induced transcriptional down-regulation of the tumor suppressor PTEN in a SMAD4-independent manner and could constitute a signaling switch mechanism from growth suppression to growth promotion in pancreatic cancers.
Collapse
Affiliation(s)
- Jimmy Y.C. Chow
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, MC 0063, 9500 Gilman Drive, La Jolla, CA 92093-0063, USA
| | - Khai T. Quach
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, MC 0063, 9500 Gilman Drive, La Jolla, CA 92093-0063, USA
| | - Betty L. Cabrera
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, MC 0063, 9500 Gilman Drive, La Jolla, CA 92093-0063, USA
| | - Jennifer A. Cabral
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, MC 0063, 9500 Gilman Drive, La Jolla, CA 92093-0063, USA
| | - Stayce E. Beck
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, MC 0063, 9500 Gilman Drive, La Jolla, CA 92093-0063, USA
- Biomedical Sciences Program, University of California, San Diego, MC 0063, 9500 Gilman Drive, La Jolla, CA 92093-0063, USA
| | - John M. Carethers
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, MC 0063, 9500 Gilman Drive, La Jolla, CA 92093-0063, USA
- Rebecca and John Moores Comprehensive Cancer Center, University of California, San Diego, MC 0063, 9500 Gilman Drive, La Jolla, CA 92093-0063, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- To whom correspondence should be addressed. Tel: +858 534 3320; Fax: +858 534 3338;
| |
Collapse
|
48
|
Feldmann G, Beaty R, Hruban RH, Maitra A. Molecular genetics of pancreatic intraepithelial neoplasia. ACTA ACUST UNITED AC 2007; 14:224-32. [PMID: 17520196 PMCID: PMC2666331 DOI: 10.1007/s00534-006-1166-5] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 04/11/2006] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recent evidence suggests that noninvasive precursor lesions, classified as pancreatic intraepithelial neoplasia (PanIN), can progress to invasive pancreatic cancer. This review will discuss the major genetic alterations in PanIN lesions. METHODS A comprehensive review of the literature was performed in order to find studies on the molecular profile of human PanIN lesions. In addition, recent publications on genetically engineered mouse models of preinvasive neoplasia and pancreatic cancers were reviewed. RESULTS PanINs demonstrate abnormalities at the genomic (DNA), transcriptomic (RNA), and proteomic levels, and there is a progressive accumulation of molecular alterations that accompany the histological progression from low-grade PanIN-1A to high-grade PanIN-3 lesions. Molecular changes in PanINs can be classified as "early" (KRAS2 mutations, telomere shortening, p21(WAF1/CIP1) up-regulation, etc.), "intermediate" (cyclin D1 up-regulation, expression of proliferation antigens, etc.), or "late" (BRCA2 and TP53 mutations, DPC4/SMAD4/MADH4 inactivation, etc.). All the genetic changes observed in PanINs are also found in invasive ductal adenocarcinomas, where they usually occur at a higher frequency. Genetically engineered mice expressing mutant Kras in the pancreas, with or without additional genetic alterations, provide a unique in vivo platform to study the pancreatic cancer progression model. CONCLUSIONS Molecular studies have been instrumental in establishing that PanIN lesions are the noninvasive precursors for invasive ductal adenocarcinomas. The availability of molecular date provides the basis for designing rational early detection strategies and therapeutic intervention trials before pancreatic neoplasms invade, with the intention of alleviating the dismal prognosis associated with this disease.
Collapse
Affiliation(s)
- Georg Feldmann
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Ross Bldg 632, Johns Hopkins University School of Medicine, 720 Rutland Ave., Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
49
|
Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 2006; 20:1218-49. [PMID: 16702400 DOI: 10.1101/gad.1415606] [Citation(s) in RCA: 856] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the United States with a median survival of <6 mo and a dismal 5-yr survival rate of 3%-5%. The cancer's lethal nature stems from its propensity to rapidly disseminate to the lymphatic system and distant organs. This aggressive biology and resistance to conventional and targeted therapeutic agents leads to a typical clinical presentation of incurable disease at the time of diagnosis. The well-defined serial histopathologic picture and accompanying molecular profiles of PDAC and its precursor lesions have provided the framework for emerging basic and translational research. Recent advances include insights into the cancer's cellular origins, high-resolution genomic profiles pointing to potential new therapeutic targets, and refined mouse models reflecting both the genetics and histopathologic evolution of human PDAC. This confluence of developments offers the opportunity for accelerated discovery and the future promise of improved treatment.
Collapse
Affiliation(s)
- Aram F Hezel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
50
|
Bardales RH, Stelow EB, Mallery S, Lai R, Stanley MW. Review of endoscopic ultrasound-guided fine-needle aspiration cytology. Diagn Cytopathol 2006; 34:140-75. [PMID: 16511852 DOI: 10.1002/dc.20300] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review, based on the Hennepin County Medical Center experience and review of the literature, vastly covers the up-to-date role of endoscopic ultrasonography (EUS) and EUS-guided fine-needle aspiration (FNA) in evaluating tumorous lesions of the gastrointestinal tract and adjacent organs. Emphasis is given to the tumoral and nodal staging of esophageal, pulmonary, and pancreatic cancer. This review also discusses technical, pathological, and gastroenterologic aspects and the role of the pathologist and endosonographer in the evaluation of these lesions, as well as the corresponding FNA cytology and differential diagnosis.
Collapse
Affiliation(s)
- Ricardo H Bardales
- Department of Pathology, Hennepin County Medical Center, Minneapolis, Minnesota 55415, USA.
| | | | | | | | | |
Collapse
|