1
|
Imon RR, Aktar S, Morshed N, Nur SM, Mahtarin R, Rahman FA, Talukder MEK, Alam R, Karpiński TM, Ahammad F, Zamzami MA, Tan SC. Biological and clinical significance of the glypican-3 gene in human lung adenocarcinoma: An in silico analysis. Medicine (Baltimore) 2023; 102:e35347. [PMID: 37960765 PMCID: PMC10637541 DOI: 10.1097/md.0000000000035347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/01/2023] [Indexed: 11/15/2023] Open
Abstract
Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan, has long been found to be dysregulated in human lung adenocarcinomas (LUADs). Nevertheless, the function, mutational profile, epigenetic regulation, co-expression profile, and clinicopathological significance of the GPC3 gene in LUAD progression are not well understood. In this study, we analyzed cancer microarray datasets from publicly available databases using bioinformatics tools to elucidate the above parameters. We observed significant downregulation of GPC3 in LUAD tissues compared to their normal counterparts, and this downregulation was associated with shorter overall survival (OS) and relapse-free survival (RFS). Nevertheless, no significant differences in the methylation pattern of GPC3 were observed between LUAD and normal tissues, although lower promoter methylation was observed in male patients. GPC3 expression was also found to correlate significantly with infiltration of B cells, CD8+, CD4+, macrophages, neutrophils, and dendritic cells in LUAD. In addition, a total of 11 missense mutations were identified in LUAD patients, and ~1.4% to 2.2% of LUAD patients had copy number amplifications in GPC3. Seventeen genes, mainly involved in dopamine receptor-mediated signaling pathways, were frequently co-expressed with GPC3. We also found 11 TFs and 7 miRNAs interacting with GPC3 and contributing to disease progression. Finally, we identified 3 potential inhibitors of GPC3 in human LUAD, namely heparitin, gemcitabine and arbutin. In conclusion, GPC3 may play an important role in the development of LUAD and could serve as a promising biomarker in LUAD.
Collapse
Affiliation(s)
- Raihan Rahman Imon
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Sharmin Aktar
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Microbiology, Faculty of Biological Science, University of Dhaka, Dhaka, Bangladesh
| | - Niaz Morshed
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Pharmacy, Faculty of Biological Science, University of Dhaka, Dhaka, Bangladesh
| | - Suza Mohammad Nur
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rumana Mahtarin
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Farazi Abinash Rahman
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Enamul Kabir Talukder
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Rahat Alam
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego, Poland
| | - Foysal Ahammad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A. Zamzami
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Duckworth BC, Qin RZ, Groom JR. Spatial determinates of effector and memory CD8 + T cell fates. Immunol Rev 2021; 306:76-92. [PMID: 34882817 DOI: 10.1111/imr.13044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
The lymph node plays a critical role in mounting an adaptive immune response to infection, clearance of foreign pathogens, and cancer immunosurveillance. Within this complex structure, intranodal migration is vital for CD8+ T cell activation and differentiation. Combining tissue clearing and volumetric light sheet fluorescent microscopy of intact lymph nodes has allowed us to explore the spatial regulation of T cell fates. This has determined that short-lived effector (TSLEC ) are imprinted in peripheral lymph node interfollicular regions, due to CXCR3 migration. In contrast, stem-like memory cell (TSCM ) differentiation is determined in the T cell paracortex. Here, we detail the inflammatory and chemokine regulators of spatially restricted T cell differentiation, with a focus on how to promote TSCM . We propose a default pathway for TSCM differentiation due to CCR7-directed segregation of precursors away from the inflammatory effector niche. Although volumetric imaging has revealed the consequences of intranodal migration, we still lack knowledge of how this is orchestrated within a complex chemokine environment. Toward this goal, we highlight the potential of combining microfluidic chambers with pre-determined complexity and subcellular resolution microscopy.
Collapse
Affiliation(s)
- Brigette C Duckworth
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| | - Raymond Z Qin
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
3
|
Jot K, Urs AB, Kumar P. Does Loss of Immunohistochemical Expression of Glypican 3 in Oral Squamous Cell Carcinoma Play a Role in the Wnt/β-catenin Signaling Pathway? Appl Immunohistochem Mol Morphol 2021; 29:693-699. [PMID: 34091531 DOI: 10.1097/pai.0000000000000955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022]
Abstract
Glypican 3 (GPC3) is a cell membrane protein and plays a dual role, as a tumor suppressor and oncogene, depending on its structure. It is known to regulate the Wnt/β-catenin signaling pathway and affect cell growth and proliferation. β-catenin plays a major oncogenic role in progression of oral squamous cell carcinoma (OSCC); thus, this study aimed to explore the relationship between β-catenin and GPC3 in OSCC. Immunoexpression of GPC3 and β-catenin was evaluated semiquantitatively in tumor tissue (n=80) and normal oral mucosa tissue (n=20). For GPC3, the percentage of stained cells and the staining intensity were assessed. For β-catenin, the percentage of stained cells, localization, and intensity of staining were assessed at the tumor-invasive front. The Pearson correlation was used to determine the correlation between the GPC3 and β-catenin immunoreactivity. Significantly decreased expression of GPC3 (P=0.008) and a highly significant difference in the case of localization of β-catenin (P=0.0001) were observed in OSCC when compared with normal oral mucosa. Cytoplasmic expression with a shift of β-catenin expression to the nucleus was seen in OSCC in comparison with primarily membranous and membranous and cytoplasmic staining in normal mucosa. A significant difference was observed with respect to localization of stain, with β-catenin staining moving to the nuclear compartment with an increase in the tumor grade (P=0.011). No correlation was observed between β-catenin and GPC3 expression in OSCC cases. It is concluded that loss of expression of GPC3 in OSCC compared with normal oral mucosa indicates that it plays the role of a tumor suppressor gene in OSCC and its expression is therefore silenced in OSCC.
Collapse
Affiliation(s)
- Kiran Jot
- Department of Oral Pathology, Maulana Azad Institute of Dental Sciences, New Delhi, Delhi, India
| | | | | |
Collapse
|
4
|
Wu F, Wu B, Zhang X, Yang C, Zhou C, Ren S, Wang J, Yang Y, Wang G. Screening of MicroRNA Related to Irradiation Response and the Regulation Mechanism of miRNA-96-5p in Rectal Cancer Cells. Front Oncol 2021; 11:699475. [PMID: 34458143 PMCID: PMC8386172 DOI: 10.3389/fonc.2021.699475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
Neoadjuvant chemoradiotherapy has been widely used in the treatment of locally advanced rectal cancer due to the excellent advantages of irradiation in cancer therapy. Unfortunately, not every patient can benefit from this treatment, therefore, it is of great significance to explore biomarkers that can predict irradiation sensitivity. In this study, we screened microRNAs (miRNAs) which were positively correlated with irradiation resistance and found that miRNA-552 and miRNA-183 families were positively correlated with the irradiation resistance of rectal cancer, and found that high expression of miRNA-96-5p enhanced the irradiation resistance of rectal cancer cells through direct regulation of the GPC3 gene and abnormal activation of the canonical Wnt signal transduction pathway. Based on the radioreactivity results of patient-derived xenograft models, this is the first screening report for radio-resistant biomarkers in rectal cancer. Our results suggest that miRNA-96-5p expression is an important factor affecting the radiation response of colorectal cancer cells.
Collapse
Affiliation(s)
- Fengpeng Wu
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bingyue Wu
- Department of Oncology, Hebei Provincial People's Hospital, Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Xiaoxiao Zhang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Congrong Yang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chaoxi Zhou
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuguang Ren
- Laboratory Animal Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun Wang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yafan Yang
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Department of General Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Ning J, Jiang S, Li X, Wang Y, Deng X, Zhang Z, He L, Wang D, Jiang Y. GPC3 affects the prognosis of lung adenocarcinoma and lung squamous cell carcinoma. BMC Pulm Med 2021; 21:199. [PMID: 34112123 PMCID: PMC8194200 DOI: 10.1186/s12890-021-01549-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/30/2021] [Indexed: 12/25/2022] Open
Abstract
Background Glypican 3 (GPC3) is a heparin sulphate proteoglycan whose expression is associated with several malignancies. However, its expression in non-small-cell lung carcinoma (NSCLC) is limited and ambiguous. This study aimed to comprehensively evaluate the expression of GPC3 in NSCLC and develop a risk-score model for predicting the prognosis of NSCLC. Methods The gene expression profiles of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) were downloaded from the UCSC Xena database. Using the limma package, the differentially expressed genes (DEGs) between different comparison groups were analysed and the differential expression of GPC3 was calculated. A functional enrichment analysis was conducted for GPC3-associated genes using the DAVID tool. For the GPC3-associated genes shared by the four comparison groups, a protein–protein interaction network was built using the Cytoscape software. After conducting a survival analysis and a Cox regression analysis, the genes found to be significantly correlated with prognosis were selected to construct a risk-score model. Besides, the gene and protein levels of GPC3 were examined by quantitative reverse transcriptase-PCR (qRT-PCR) and immunohistochemistry (IHC) in LUSC tissues and paracancer tissues. Results The differential expression of GPC3 was significant (adjusted P < 0.05) in the NSCLC vs. normal, LUAD vs. normal, LUSC versus normal, and LUAD versus. LUSC comparison groups. GPC3 directly interacted with SERPINA1, MFI2, and FOXM1. Moreover, GPC3 expression was significantly correlated with pathologic N, pathologic T, gender, and tumour stage in LUAD samples. Finally, the risk-score model (involving MFI2, FOXM1, and GPC3) for LUAD and that (involving SERPINA1 and FOXM1) for LUSC were established separately. The qRT-PCR result showed that GPC3 expression was much higher in the LUSC tissues than that in the normal group. The IHC results further showed that GPC3 is highly expressed in LUSC tissues, but low in paracancer tissues. Conclusion The three-gene risk-score model for LUAD and the two-gene risk-score model for LUSC might be valuable in improving the prognosis of these carcinomas.
Collapse
Affiliation(s)
- Jing Ning
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Department of General Medicine (VIP Ward) and Department of Tumor Supportive and Palliative Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China
| | - Shenyi Jiang
- Department of General Practice, The First Hospital of China Medical University, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Xiaoxi Li
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China
| | - Yang Wang
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Xuhong Deng
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Zhiqiang Zhang
- The People's Hospital of Liaoning Province, No.33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, China
| | - Lijie He
- The People's Hospital of Liaoning Province, No.33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, China
| | - Daqing Wang
- The People's Hospital of Liaoning Province, No.33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, China.
| | - Youhong Jiang
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
6
|
Vandenhoeck J, van Meerbeeck JP, Fransen E, Raskin J, Van Camp G, Op de Beeck K, Lamote K. DNA Methylation as a Diagnostic Biomarker for Malignant Mesothelioma: A Systematic Review and Meta-Analysis. J Thorac Oncol 2021; 16:1461-1478. [PMID: 34082107 DOI: 10.1016/j.jtho.2021.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023]
Abstract
Malignant mesothelioma is an aggressive cancer type linked to asbestos exposure. Because of several intrinsic challenges, mesothelioma is often diagnosed in an advanced disease stage. Therefore, there is a need for diagnostic biomarkers that may contribute to early detection. Recently, the epigenome of tumors is being extensively investigated to identify biomarkers. This manuscript is a systematic review summarizing the state-of-the-art research investigating DNA methylation in mesothelioma. Four literature databases (PubMed, Scopus, Web of Science, MEDLINE) were systematically searched for studies investigating DNA methylation in mesothelioma up to October 16, 2020. A meta-analysis was performed per gene investigated in at least two independent studies. A total of 53 studies investigated DNA methylation of 97 genes in mesothelioma and are described in a qualitative overview. Furthermore, ten studies investigating 13 genes (APC, CDH1, CDKN2A, DAPK, ESR1, MGMT, miR-34b/c, PGR, RARβ, RASSF1, SFRP1, SFRP4, WIF1) were included in the quantitative meta-analysis. In this meta-analysis, the APC gene is significantly hypomethylated in mesothelioma, whereas CDH1, ESR1, miR-34b/c, PGR, RARβ, SFRP1, and WIF1 are significantly hypermethylated in mesothelioma. The three genes that are the most appropriate candidate biomarkers from this meta-analysis are APC, miR-34b/c, and WIF1. Nevertheless, both study number and study objects comprised in this meta-analysis are too low to draw final conclusions on their clinical applications. The elucidation of the genome-wide DNA methylation profile of mesothelioma is desirable in the future, using a standardized genome-wide methylation analysis approach. The most informative CpG sites from this signature could then form the basis of a panel of highly sensitive and specific biomarkers that can be used for the diagnosis of mesothelioma and even for the screening of an at high-risk population of asbestos-exposed individuals.
Collapse
Affiliation(s)
- Janah Vandenhoeck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium; Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Jan P van Meerbeeck
- Department of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium; Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Erik Fransen
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium; StatUa Centre for Statistics, University of Antwerp, Antwerp, Belgium
| | - Jo Raskin
- Department of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Guy Van Camp
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium; Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Ken Op de Beeck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium; Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium; Department of Pulmonology, Antwerp University Hospital, Edegem, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Rodakowska E, Walczak-Drzewiecka A, Borowiec M, Gorzkiewicz M, Grzesik J, Ratajewski M, Rozanski M, Dastych J, Ginalski K, Rychlewski L. Recombinant immunotoxin targeting GPC3 is cytotoxic to H446 small cell lung cancer cells. Oncol Lett 2021; 21:222. [PMID: 33613711 PMCID: PMC7859473 DOI: 10.3892/ol.2021.12483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Glypican-3 (GPC3) is a cell membrane glycoprotein that regulates cell growth and proliferation. Aberrant expression or distribution of GPC3 underlies developmental abnormalities and the development of solid tumours. The strongest evidence for the participation of GPC3 in carcinogenesis stems from studies on hepatocellular carcinoma and lung squamous cell carcinoma. To the best of our knowledge, the role of the GPC3 protein and its potential therapeutic application have never been studied in small cell lung carcinoma (SCLC), despite the known involvement of associated pathways and the high mortality caused by this disease. Therefore, the aim of the present study was to examine GPC3 targeting for SCLC immunotherapy. An immunotoxin carrying an anti-GPC3 antibody (hGC33) and Pseudomonas aeruginosa exotoxin A 38 (PE38) was generated. This hGC33-PE38 protein was overexpressed in E. coli and purified. ADP-ribosylation activity was tested in vitro against eukaryotic translation elongation factor 2. Cell internalisation ability was confirmed by confocal microscopy. Cytotoxicity was analysed by treating liver cancer (HepG2, SNU-398 and SNU-449) and lung cancer (NCI-H510A, NCI-H446, A549 and SK-MES1) cell lines with hGC33-PE38 and estimating viable cells number. A BrdU assay was employed to verify anti-proliferative activity of hGC33-PE38 on treated cells. Fluorescence-activated cell sorting was used for the detection of cell membrane-bound GPC3. The hGC33-PE38 immunotoxin displayed enzymatic activity comparable to native PE38. The protein was efficiently internalised by GPC3-positive cells. Moreover, hGC33-PE38 was cytotoxic to HepG2 cells but had no effect on known GPC3-negative cell lines. The H446 cells were sensitive to hGC33-PE38 (IC50, 70.6±4.6 ng/ml), whereas H510A cells were resistant. Cell surface-bound GPC3 was abundant on the membranes of H446 cells, but absent on H510A. Altogether, the present findings suggested that GPC3 could be considered as a potential therapeutic target for SCLC immunotherapy.
Collapse
Affiliation(s)
| | - Aurelia Walczak-Drzewiecka
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Marta Borowiec
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-89 Warsaw, Poland
| | - Michal Gorzkiewicz
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.,Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Joanna Grzesik
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-89 Warsaw, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Michal Rozanski
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Jaroslaw Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-89 Warsaw, Poland
| | | |
Collapse
|
8
|
Hussein NH, Amin NS, El Tayebi HM. GPI-AP: Unraveling a New Class of Malignancy Mediators and Potential Immunotherapy Targets. Front Oncol 2020; 10:537311. [PMID: 33344222 PMCID: PMC7746843 DOI: 10.3389/fonc.2020.537311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Abstract
With millions of cases diagnosed annually and high economic burden to cover expensive costs, cancer is one of the most difficult diseases to treat due to late diagnosis and severe adverse effects from conventional therapy. This creates an urgent need to find new targets for early diagnosis and therapy. Progress in research revealed the key steps of carcinogenesis. They are called cancer hallmarks. Zooming in, cancer hallmarks are characterized by ligands binding to their cognate receptor and so triggering signaling cascade within cell to make response for stimulus. Accordingly, understanding membrane topology is vital. In this review, we shall discuss one type of transmembrane proteins: Glycosylphosphatidylinositol-Anchored Proteins (GPI-APs), with specific emphasis on those involved in tumor cells by evading immune surveillance and future applications for diagnosis and immune targeted therapy.
Collapse
|
9
|
Tan Y, Sementino E, Cheung M, Peri S, Menges CW, Kukuyan AM, Zhang T, Khazak V, Fox LA, Ross EA, Ramanathan S, Jhanwar SC, Flores RM, Balachandran S, Testa JR. Somatic Epigenetic Silencing of RIPK3 Inactivates Necroptosis and Contributes to Chemoresistance in Malignant Mesothelioma. Clin Cancer Res 2020; 27:1200-1213. [PMID: 33203643 DOI: 10.1158/1078-0432.ccr-18-3683] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 09/29/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Receptor-interacting protein kinase 3 (RIPK3) phosphorylates effector molecule MLKL to trigger necroptosis. Although RIPK3 loss is seen in several human cancers, its role in malignant mesothelioma is unknown. This study aimed to determine whether RIPK3 functions as a potential tumor suppressor to limit development of malignant mesothelioma. EXPERIMENTAL DESIGN RIPK3 expression was examined in 66 malignant mesothelioma tumors and cell lines. Promoter methylation and DNMT1 siRNA studies were performed to assess the mode of RIPK3 silencing in RIPK3-deficient malignant mesothelioma cells. Restoration of RIPK3 expression in RIPK3-negative malignant mesothelioma cells, either by treatment with 5-aza-2'-deoxycytidine or lentiviral expression of cDNA, was performed to assess effects on cell viability, necrosis, and chemosensitization. RESULTS Loss of RIPK3 expression was observed in 42/66 (63%) primary malignant mesotheliomas and malignant mesothelioma cell lines, and RT-PCR analysis demonstrated that downregulation occurs at the transcriptional level, consistent with epigenetic silencing. RIPK3-negative malignant mesothelioma cells treated with 5-aza-2'-deoxycytidine resulted in reexpression of RIPK3 and chemosensitization. Ectopic expression of RIPK3 also resulted in chemosensitization and led to necroptosis, the latter demonstrated by phosphorylation of downstream target MLKL and confirmed by rescue experiments. Mining of RIPK3 expression and survival outcomes among patients with malignant mesothelioma available from The Cancer Genome Atlas repository revealed that promoter methylation of RIPK3 is associated with reduced RIPK3 expression and poor prognosis. CONCLUSIONS These data suggest that RIPK3 acts as a tumor suppressor in malignant mesothelioma by triggering necroptosis and that epigenetic silencing of RIPK3 by DNA methylation impairs necroptosis and contributes to chemoresistance and poor survival in this incurable disease.
Collapse
Affiliation(s)
- Yinfei Tan
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Genomics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Eleonora Sementino
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mitchell Cheung
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Suraj Peri
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Craig W Menges
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Ting Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Lauren A Fox
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Eric A Ross
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Suresh Ramanathan
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Suresh C Jhanwar
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Raja M Flores
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Joseph R Testa
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania. .,Genomics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Guereño M, Delgado Pastore M, Lugones AC, Cercato M, Todaro L, Urtreger A, Peters MG. Glypican-3 (GPC3) inhibits metastasis development promoting dormancy in breast cancer cells by p38 MAPK pathway activation. Eur J Cell Biol 2020; 99:151096. [DOI: 10.1016/j.ejcb.2020.151096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
|
11
|
Abstract
Glypicans are a family of heparan sulfate proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol anchor. Glypicans interact with multiple ligands, including morphogens, growth factors, chemokines, ligands, receptors, and components of the extracellular matrix through their heparan sulfate chains and core protein. Therefore, glypicans can function as coreceptors to regulate cell proliferation, cell motility, and morphogenesis. In addition, some glypicans are abnormally expressed in cancers, possibly involved in tumorigenesis, and have the potential to be cancer-specific biomarkers. Here, we provide a brief review focusing on the expression of glypicans in various cancers and their potential to be targets for cancer therapy.
Collapse
Affiliation(s)
- Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Madeline R Spetz
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
12
|
Intratumoral reciprocal expression of monocarboxylate transporter 4 and glypican-3 in hepatocellular carcinomas. BMC Res Notes 2019; 12:741. [PMID: 31706332 PMCID: PMC6842510 DOI: 10.1186/s13104-019-4778-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022] Open
Abstract
Objective We previously reported the identification of monocarboxylate transporter 4 (MCT4) and glypican-3 (GPC3) as prognostic factors for hepatocellular carcinoma (HCC), which are now considered significant poor prognostic factors for the disease. This study aimed to clarify the detailed interaction of these two factors in HCC to improve our understanding of aggressive HCC phenotypes. A total of 225 Japanese patients with HCC from our previous study were subjected to immunohistochemical analyses. Results The number of MCT4-positive (MCT4+) HCC cases was 47 (21%), and most MCT4+ HCC showed high GPC3 expression (94%, 44/47 cases). In 44 MCT4+/GPC3+ HCC cases, intratumoral heterogeneity of GPC3 or MCT4 expression was further evaluated. We observed reciprocal (inverse), synergistic, mixed reciprocal and synergistic, or irrelevant interaction of MCT4 and GPC3 expression in 29 (66%), 5 (11%), 1 (2%), and 9 cases (21%), respectively. The cases exhibiting reciprocal expression of both markers tended to have cirrhosis without a history of neoadjuvant therapy. In summary, although MCT4+ HCC cases are mostly GPC3+, intratumoral expression patterns of MCT4 and GPC3 are frequently reciprocal each other, suggesting that dual targeting of MCT4 and GPC3 may achieve a better antitumor effect for MCT4+ HCC cases.
Collapse
|
13
|
Quach ND, Kaur SP, Eggert MW, Ingram L, Ghosh D, Sheth S, Nagy T, Dawson MR, Arnold RD, Cummings BS. Paradoxical Role of Glypican-1 in Prostate Cancer Cell and Tumor Growth. Sci Rep 2019; 9:11478. [PMID: 31391540 PMCID: PMC6685992 DOI: 10.1038/s41598-019-47874-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Recent studies suggest that glypican-1 (GPC-1) is a biomarker for prostate cancer, but there are few studies elucidating the role of GPC-1 in prostate cancer progression. We observed high expression of GPC-1 in more aggressive prostate cancer cell lines such as PC-3 and DU-145. While inhibition of GPC-1 expression in PC-3 cells decreased cell growth and migration in vitro, it surprisingly increased cell proliferation and migration in DU-145 cells, suggesting that the role of GPC-1 is cell type-dependent. Further, GPC-1 inhibition increased PC-3 tumor size in NCr nude mice xenografts. We hypothesized that the discrepancy between the in vitro and in vivo data is mediated by stromal cells in the tumor microenvironment. Thus, we tested the effect of tumor conditioned media (TCM) on gene expression in human mesenchymal stem cells and fibroblasts. Treatment of stromal cells with TCM from PC-3 cells transfected with GPC-1 shRNA increased the expression of migration markers, endocrine/paracrine biomolecules, and extracellular matrix components. Additionally, the decreased cell growth in GPC-1 knockdown PC-3 cells was rescued by coculturing with stromal cells. These data demonstrate the paradoxical role that GPC-1 plays in prostate cancer cell growth by interacting with stromal cells and through ECM remodeling and endocrine/paracrine signaling.
Collapse
Affiliation(s)
- Nhat D Quach
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA.,Department of Molecular Pharmacology, Physiology, & Biotechnology, Brown University, Providence, RI, USA
| | - Sukhneeraj Pal Kaur
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Matthew W Eggert
- Department of Drug Discovery & Development, Auburn University, Auburn, AL, USA
| | - Lishann Ingram
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Deepraj Ghosh
- Department of Molecular Pharmacology, Physiology, & Biotechnology, Brown University, Providence, RI, USA
| | - Sheela Sheth
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Michelle R Dawson
- Department of Molecular Pharmacology, Physiology, & Biotechnology, Brown University, Providence, RI, USA.,Center for Biomedical Engineering, Brown University, Providence, RI, USA.,School of Engineering, Brown University, Providence, RI, USA
| | - Robert D Arnold
- Department of Drug Discovery & Development, Auburn University, Auburn, AL, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA
| | - Brian S Cummings
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA. .,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA.
| |
Collapse
|
14
|
Wang D, Gao Y, Zhang Y, Wang L, Chen G. Glypican-3 promotes cell proliferation and tumorigenesis through up-regulation of β-catenin expression in lung squamous cell carcinoma. Biosci Rep 2019; 39:BSR20181147. [PMID: 31160489 PMCID: PMC6591568 DOI: 10.1042/bsr20181147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 05/09/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022] Open
Abstract
As a cell surface proteoglycan anchored by glycosyl-phosphatidylinositol, Glypican-3 (GPC3) is reported to be highly expressed in hepatocellular carcinoma (HCC) and to promote cell proliferation and tumorigenesis through activating Wnt/β-catenin signalling. GPC3 is also overexpressed in lung squamous cell carcinoma (SCC), but its effects and mechanisms in the progression of lung SCC remain unknown. The present study aims to explore the role and molecular mechanism of GPC3 in the occurrence and development of lung SCC. Immunohistochemistry, Western blot (WB) and real-time PCR (RT-PCR) assays were used to determine the expression patterns of GPC3 in lung SCC tissues and cells. MTT, flow cytometry and in vivo xenotransplantation assays were used to evaluate the influence of GPC3 on the growth, apoptosis and tumorigenesis of lung SCC cells. The results showed that GPC3 expression levels in lung SCC tissues and cells were significantly elevated, and the high expression of GPC3 significantly promoted cell growth and tumorigenesis and repressed cell apoptosis, as well as increased β-catenin expression. Moreover, knockdown of β-catenin obviously weakened GPC3 role in the promotion of cell proliferation and tumorigenesis, as well as the inhibition of cell apoptosis. In conclusion, the present study demonstrates that up-regulation of GPC3 accelerates the progression of lung SCC in a β-catenin-dependent manner. Our study provides a theoretical basis for GPC3/β-catenin as a novel diagnostic marker and therapeutic target for lung SCC.
Collapse
Affiliation(s)
- Dongchang Wang
- Department of Respiration, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Yan Gao
- Department of General Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yu Zhang
- Department of Respiration, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Lifei Wang
- Department of Respiration, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Gang Chen
- Department of Respiration, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| |
Collapse
|
15
|
Role of glypicans in regulation of the tumor microenvironment and cancer progression. Biochem Pharmacol 2019; 168:108-118. [PMID: 31251939 DOI: 10.1016/j.bcp.2019.06.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/20/2019] [Indexed: 12/28/2022]
Abstract
Glypicans are evolutionary conserved, cell surface heparan sulfate (HS) proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol (GPI) anchor. Glypicans interact with a broad class of soluble and insoluble ligands, such as morphogens, growth factors, chemokines, receptors and components of the extracellular matrix (ECM). Such versatility comes from their ability to interact through both their HS chains and core protein. Glypicans are involved in cellular and tissue development, morphogenesis and cell motility. They exhibit differential expression in several cancers, acting as both tumor promoters and inhibitors in a cancer type-specific manner. They also influence tumor stroma by facilitating angiogenesis, ECM remodeling and alteration of immune cell functions. Glypicans have emerged as a new therapeutic moiety, whose functions can be exploited in the field of targeted therapies and precision medicine in cancer. This is demonstrated by the emergence of several anti-glypican antibody-based immunologics that have been recently developed and are being evaluated in clinical trials. This review will focus on glypican structure and function with an emphasis on their expression in various cancers. Discussion will also center on the potential of glypicans to be therapeutic targets for inhibition of cancer cell growth.
Collapse
|
16
|
Fernández D, Guereño M, Lago Huvelle MA, Cercato M, Peters MG. Signaling network involved in the GPC3-induced inhibition of breast cancer progression: role of canonical Wnt pathway. J Cancer Res Clin Oncol 2018; 144:2399-2418. [PMID: 30267212 DOI: 10.1007/s00432-018-2751-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE We have shown that GPC3 overexpression in breast cancer cells inhibits in vivo tumor progression, by acting as a metastatic suppressor. GPC3-overexpressing cells are less clonogenic, viable and motile, while their homotypic adhesion is increased. We have presented evidences indicating that GPC3 inhibits canonical Wnt and Akt pathways, while non-canonical Wnt and p38MAPK cascades are activated. In this study, we aimed to investigate whether GPC3-induced Wnt signaling inhibition modulates breast cancer cell properties as well as to describe the interactions among pathways modulated by GPC3. METHODS Fluorescence microscopy, qRT-PCR microarray, gene reporter assay and Western blotting were performed to determine gene expression levels, signaling pathway activities and molecule localization. Lithium was employed to activate canonical Wnt pathway and treated LM3-GPC3 cell viability, migration, cytoskeleton organization and homotypic adhesion were assessed using MTS, wound healing, phalloidin staining and suspension growth assays, respectively. RESULTS We provide new data demonstrating that GPC3 blocks-also at a transcriptional level-both autocrine and paracrine canonical Wnt activities, and that this inhibition is required for GPC3 to modulate migration and homotypic adhesion. Our results indicate that GPC3 is secreted into the extracellular media, suggesting that secreted GPC3 competes with Wnt factors or interacts with them and thus prevents Wnt binding to Fz receptors. We also describe the complex network of interactions among GPC3-modulated signaling pathways. CONCLUSION GPC3 is operating through an intricate molecular signaling network. From the balance of these interactions, the inhibition of breast metastatic spread induced by GPC3 emerges.
Collapse
Affiliation(s)
- Dolores Fernández
- Cell Biology Department, Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Av. San Martín 5481, C1417DTB, Buenos Aires, Argentina
| | - Macarena Guereño
- Cell Biology Department, Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Av. San Martín 5481, C1417DTB, Buenos Aires, Argentina
| | - María Amparo Lago Huvelle
- Cell Biology Department, Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Av. San Martín 5481, C1417DTB, Buenos Aires, Argentina
| | - Magalí Cercato
- Cell Biology Department, Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Av. San Martín 5481, C1417DTB, Buenos Aires, Argentina
| | - María Giselle Peters
- Cell Biology Department, Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Av. San Martín 5481, C1417DTB, Buenos Aires, Argentina.
- National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
17
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [PMID: 30204432 DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|
18
|
Glypican-1 immunohistochemistry is a novel marker to differentiate epithelioid mesothelioma from lung adenocarcinoma. Mod Pathol 2018; 31:809-815. [PMID: 29327712 DOI: 10.1038/modpathol.2017.190] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022]
Abstract
Histological morphology alone is not sufficient for the pathological diagnosis of malignant mesothelioma. Positive and negative immunohistochemical markers are necessary to differentiate it from lung adenocarcinoma. As calretinin and D2-40, the recognized positive markers of mesothelioma, are expressed in lung adenocarcinoma to some extent, novel markers with high specificity are desirable. In this study, we investigated the applicability of glypican-1 immunohistochemistry to differentiate epithelioid mesothelioma from lung adenocarcinoma. We investigated 82 cases of epithelioid mesothelioma and 97 cases of lung adenocarcinoma for glypican-1 expression by immunohistochemistry using a commercially available antibody. All 82 cases of epithelioid mesothelioma showed glypican-1 expression, most with diffuse and strong reactivity. In contrast, only three cases of lung adenocarcinoma showed focal glypican-1 expression. Glypican-1 expression showed 100 sensitivity, 97% specificity, and a 98% accuracy rate to differentiate epithelioid mesothelioma from lung adenocarcinoma. The sensitivity of glypican -1 immunohistochemistry is as high as that of calretinin and D2-40, and its specificity is far better than that of calretinin and D2-40. Therefore, we recommend including glypican -1 immunohistochemistry as a positive marker of epithelioid mesothelioma.
Collapse
|
19
|
Fei X, Zhang J, Zhao Y, Sun M, Zhao H, Li S. miR-96 promotes invasion and metastasis by targeting GPC3 in non-small cell lung cancer cells. Oncol Lett 2018; 15:9081-9086. [PMID: 29805640 PMCID: PMC5958666 DOI: 10.3892/ol.2018.8507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is a major cause of death worldwide, and non-small cell lung cancer (NSCLC) is the most common type of lung cancer. The aim of this study was to investigate whether miR-96 mediated the invasion and metastasis of NSCLC by targeting glypican-3 (GPC3). Reverse transcription-quantitative PCR (RT-qPCR) was employed to detect the level of miR-96 and GPC3 mRNA. We applied western blot analysis to measure the protein expression level of GPC3 gene. The luciferase reporter assay was employed to confirm that GPC3 was a target gene of miR-96. The Transwell assay was used to detect migration and invasion. The results revealed that miR-96 was upregulated in NSCLC tissues and lung cancer cells (A549 and H460) compared with corresponding paracancerous tissues and normal epidermic MRC-5 cells. Overexpression of miR-96 promoted invasion and migration in A549 cells. GPC3 was a direct target of miR-96 and regulated by miR-96. GPC3 could reverse partial fuction of miR-96 on proliferation. In conclusion, miR-96 was able to promote the migration and invasion of lung cancer cells by targeting GPC3 gene. The newly identified miR-96/GPC3 axis may provide a therapeutic method for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiubin Fei
- Department of Geriatrics, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Jingang Zhang
- Department of Bone Surgery, Jiamusi Central Hospital, Jiamusi, Heilongjiang 154003, P.R. China
| | - Yunwei Zhao
- Department of Respiratory Medicine, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Meijia Sun
- Department of Geriatrics, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Haifeng Zhao
- Department of Geriatrics, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Shuang Li
- Department of Respiratory Medicine, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| |
Collapse
|
20
|
Kaseb AO, Hassan M, Lacin S, Abdel-Wahab R, Amin HM, Shalaby A, Wolff RA, Yao J, Rashid A, Vennapusa B, Feng J, Ohtomo T. Evaluating clinical and prognostic implications of Glypican-3 in hepatocellular carcinoma. Oncotarget 2018; 7:69916-69926. [PMID: 27655712 PMCID: PMC5342524 DOI: 10.18632/oncotarget.12066] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly cancers worldwide. In patients with HCC, histopathogical differentiation is an important indicator of prognosis; however, because determination of HCC differentiation is difficult, the recently described immunohistochemical (IHC) marker glypican3 (GPC3) might assist in HCC prognostication.The goal of our study was to investigate GPC3's IHC staining pattern and define the relationship between its expression and patients' clinicopathologic features and overall survival. We retrieved clinical parameters from 101 pathologically diagnosed HCC patients' medical records and classified these patients into 4 clinical score categories (0–3) based on increasing GPC3 staining intensity and the percentage of stained tumor cells in their resection and biopsy specimens. Histopathological samples were well, moderately, and poorly differentiated in 33, 22, and 12 patients, respectively, and the GPC3 expression rate was 63%, 86%, and 92%,respectively. The median overall survival was 49.9 months (confidence interval (CI): 35.3–64.6 months) for clinical scores 0–1 and 30.7 months (CI: 19.4–41.9 months) for clinical scores 2–3. This difference was not statistically significant (P = .06) but showed a strong trend. In conclusion, a greater GPC3 expression is associated with a worse HCC prognosis and may be a promising prognostic marker.
Collapse
Affiliation(s)
- Ahmed Omar Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Manal Hassan
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sahin Lacin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Medical Oncology, Hacettepe University, Medical Faculty, Ankara, Turkey
| | - Reham Abdel-Wahab
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Clinical Oncology, Assiut University Hospital, Assiut, Egypt
| | - Hesham M Amin
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ahmed Shalaby
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Asif Rashid
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Janine Feng
- Ventana Medical Systems, Inc., Tucson, Arizona, USA
| | | |
Collapse
|
21
|
Leung AWY, Backstrom I, Bally MB. Sulfonation, an underexploited area: from skeletal development to infectious diseases and cancer. Oncotarget 2018; 7:55811-55827. [PMID: 27322429 PMCID: PMC5342455 DOI: 10.18632/oncotarget.10046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/06/2016] [Indexed: 12/12/2022] Open
Abstract
Sulfonation is one of the most abundant cellular reactions modifying a wide range of xenobiotics as well as endogenous molecules which regulate important biological processes including blood clotting, formation of connective tissues, and functionality of secreted proteins, hormones, and signaling molecules. Sulfonation is ubiquitous in all tissues and widespread in nature (plants, animals, and microorganisms). Although sulfoconjugates were discovered over a century ago when, in 1875, Baumann isolated phenyl sulfate in the urine of a patient given phenol as an antiseptic, the significance of sulfonation and its roles in human diseases have been underappreciated until recent years. Here, we provide a current overview of the significance of sulfonation reactions in a variety of biological functions and medical conditions (with emphasis on cancer). We also discuss research areas that warrant further attention if we are to fully understand how deficiencies in sulfonation could impact human health which, in turn, could help define treatments to effect improvements in health.
Collapse
Affiliation(s)
- Ada W. Y. Leung
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ian Backstrom
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Marcel B Bally
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.,Centre for Drug Research and Development, Vancouver, BC, Canada
| |
Collapse
|
22
|
Glypican-3 induces a mesenchymal to epithelial transition in human breast cancer cells. Oncotarget 2018; 7:60133-60154. [PMID: 27507057 PMCID: PMC5312374 DOI: 10.18632/oncotarget.11107] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 07/16/2016] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is the disease with the highest impact on global health, being metastasis the main cause of death. To metastasize, carcinoma cells must reactivate a latent program called epithelial-mesenchymal transition (EMT), through which epithelial cancer cells acquire mesenchymal-like traits.Glypican-3 (GPC3), a proteoglycan involved in the regulation of proliferation and survival, has been associated with cancer. In this study we observed that the expression of GPC3 is opposite to the invasive/metastatic ability of Hs578T, MDA-MB231, ZR-75-1 and MCF-7 human breast cancer cell lines. GPC3 silencing activated growth, cell death resistance, migration, and invasive/metastatic capacity of MCF-7 cancer cells, while GPC3 overexpression inhibited these properties in MDA-MB231 tumor cell line. Moreover, silencing of GPC3 deepened the MCF-7 breast cancer cells mesenchymal characteristics, decreasing the expression of the epithelial marker E-Cadherin. On the other side, GPC3 overexpression induced the mesenchymal-epithelial transition (MET) of MDA-MB231 breast cancer cells, which re-expressed E-Cadherin and reduced the expression of vimentin and N-Cadherin. While GPC3 inhibited the canonical Wnt/β-Catenin pathway in the breast cancer cells, this inhibition did not have effect on E-Cadherin expression. We demonstrated that the transcriptional repressor of E-Cadherin - ZEB1 - is upregulated in GPC3 silenced MCF-7 cells, while it is downregulated when GPC3 was overexpressed in MDA-MB231 cells. We presented experimental evidences showing that GPC3 induces the E-Cadherin re-expression in MDA-MB231 cells through the downregulation of ZEB1.Our data indicate that GPC3 is an important regulator of EMT in breast cancer, and a potential target for procedures against breast cancer metastasis.
Collapse
|
23
|
Theocharis AD, Karamanos NK. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. Matrix Biol 2017; 75-76:220-259. [PMID: 29128506 DOI: 10.1016/j.matbio.2017.10.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
24
|
Treatment of hepatocellular carcinoma with a GPC3-targeted bispecific T cell engager. Oncotarget 2017; 8:52866-52876. [PMID: 28881778 PMCID: PMC5581077 DOI: 10.18632/oncotarget.17905] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/04/2017] [Indexed: 12/23/2022] Open
Abstract
There are limited strategies for the treatment of hepatocellular carcinoma (HCC). In this study, we prepared a Bispecific T cell engager (BiTE) targeting Glypican 3 (GPC3) and CD3. The GPC3/CD3 BiTE was prepared by fusing the single-chain variable fragment (scFv) of the humanized anti-GPC3 antibody (9F2) with the scFv of the anti-CD3 antibody (OKT3). The in vitro and in vivo cytotoxic activities of the GPC3/CD3 BiTE were evaluated against various HCC cell lines. The GPC3/CD3 BiTE could efficiently mediate the T cell killing of GPC3-positive HCC in vitro, which was dependent on GPC3 expression on the surface of HCC cells. Moreover, our study indicates that, in the presence of the GPC3/CD3 BiTE, T cells could efficiently destroy GPC3-positive human HCC cells in vitro and in vivo. Additionally, our study further proved that GPC3 is not expressed in normal tissues. Thus, GPC3 may be a cancer-specific antigen. Collectively, these findings suggest that this anti-GPC3 BiTE might be a promising anti-tumor reagent for patients with GPC3-positive HCC.
Collapse
|
25
|
Montalbano M, Georgiadis J, Masterson AL, McGuire JT, Prajapati J, Shirafkan A, Rastellini C, Cicalese L. Biology and function of glypican-3 as a candidate for early cancerous transformation of hepatocytes in hepatocellular carcinoma (Review). Oncol Rep 2017; 37:1291-1300. [PMID: 28098909 DOI: 10.3892/or.2017.5387] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/12/2017] [Indexed: 12/17/2022] Open
Abstract
Glypican-3 (GPC-3), a transmembrane heparan sulfate proteoglycan (HSPG), has recently been investigated as a player in tissue-dependent cellular signaling, specifically as a regulator of growth. Noteworthy, the regulatory protein has been implicated in both stimulatory and inhibitory pathways involving cell growth. Initially, GPC-3 was thought to act as a cell cycle regulator, as a loss-of-function mutation in the gene caused a hyper-proliferative state known as Simpson-Golabi-Behmel (SGB) overgrowth syndrome. Additionally, certain cancer types have displayed a downregulation of GPC-3 expression. More recently, the protein has been evaluated as a useful marker for hepatocellular carcinoma (HCC) due to its increased expression in the liver during times of growth. In contrast, the GPC-3 marker is not detectable in normal adult liver. Immunotherapy that targets GPC-3 and its affiliated proteins is under investigation as these new biomarkers may hold potential for the detection and treatment of HCC and other diseases in which GPC-3 may be overexpressed. Studies have reported that an overexpression of GPC-3 in HCC predicts a poorer prognosis. This prognostic value further pushes the question regarding GPC-3's role in the regulation and progression of HCC. This review will summarize the current knowledge regarding the clinical aspects of GPC-3, while also synthesizing the current literature with the aim to better understand this molecule's biological interactions at a molecular level, not only in the liver, but in the rest of the body as well. Due to the existing gap in the literature surrounding GPC-3, we believe further investigation of function, structure and domains, cellular localization, and other subfields is warranted to evaluate the protein as a whole, as well as its part in the study of HCC.
Collapse
Affiliation(s)
- Mauro Montalbano
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jeremias Georgiadis
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashlyn L Masterson
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joshua T McGuire
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Janika Prajapati
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ali Shirafkan
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Cristiana Rastellini
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Luca Cicalese
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
26
|
Preda O, Nogales FF. Diagnostic Immunopathology of Germ Cell Tumors. PATHOLOGY AND BIOLOGY OF HUMAN GERM CELL TUMORS 2017:131-179. [DOI: 10.1007/978-3-662-53775-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Mossman BT. Cell Signaling and Epigenetic Mechanisms in Mesothelioma. ASBESTOS AND MESOTHELIOMA 2017. [DOI: 10.1007/978-3-319-53560-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Novel insights into Notum and glypicans regulation in colorectal cancer. Oncotarget 2016; 6:41237-57. [PMID: 26517809 PMCID: PMC4747403 DOI: 10.18632/oncotarget.5652] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/12/2015] [Indexed: 12/19/2022] Open
Abstract
The connection between colorectal cancer (CRC) and Wnt signaling pathway activation is well known, but full elucidation of the underlying regulation of the Wnt/β-catenin pathway and its biological functions in CRC pathogenesis is still needed. Here, the azoxymethane/dextran sulfate sodium salt (AOM/DSS) murine model has been used as an experimental platform able to mimic human sporadic CRC development with predictable timing. We performed genome-wide expression profiling of AOM/DSS-induced tumors and normal colon mucosa to identify potential novel CRC biomarkers. Remarkably, the enhanced expression of Notum, a conserved feedback antagonist of Wnt, was observed in tumors along with alterations in Glypican-1 and Glypican-3 levels. These findings were confirmed in a set of human CRC samples. Here, we provide the first demonstration of significant changes in Notum and glypicans gene expression during CRC development and present evidence to suggest them as potential new biomarkers of CRC pathogenesis.
Collapse
|
29
|
Baghy K, Tátrai P, Regős E, Kovalszky I. Proteoglycans in liver cancer. World J Gastroenterol 2016; 22:379-393. [PMID: 26755884 PMCID: PMC4698501 DOI: 10.3748/wjg.v22.i1.379] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/14/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
Proteoglycans are a group of molecules that contain at least one glycosaminoglycan chain, such as a heparan, dermatan, chondroitin, or keratan sulfate, covalently attached to the protein core. These molecules are categorized based on their structure, localization, and function, and can be found in the extracellular matrix, on the cell surface, and in the cytoplasm. Cell-surface heparan sulfate proteoglycans, such as syndecans, are the primary type present in healthy liver tissue. However, deterioration of the liver results in overproduction of other proteoglycan types. The purpose of this article is to provide a current summary of the most relevant data implicating proteoglycans in the development and progression of human and experimental liver cancer. A review of our work and other studies in the literature indicate that deterioration of liver function is accompanied by an increase in the amount of chondroitin sulfate proteoglycans. The alteration of proteoglycan composition interferes with the physiologic function of the liver on several levels. This article details and discusses the roles of syndecan-1, glypicans, agrin, perlecan, collagen XVIII/endostatin, endocan, serglycin, decorin, biglycan, asporin, fibromodulin, lumican, and versican in liver function. Specifically, glypicans, agrin, and versican play significant roles in the development of liver cancer. Conversely, the presence of decorin could potentially provide protective effects.
Collapse
|
30
|
Xiong XL, Qin H, Yan SQ, Zhou LS, Chen P, Zhao DC. Expression of glypican-3 is highly associated with pediatric hepatoblastoma: a systemic analysis. Asian Pac J Cancer Prev 2015; 16:1029-31. [PMID: 25735325 DOI: 10.7314/apjcp.2015.16.3.1029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Glypican-3 (GPC3) is reported to be an oncofetal protein that is a useful diagnostic immunomarker for hepatoblastoma. However, the results are not inclusive. This study systemically investigated the association between expression of GPC3 and pediatric hepatoblastoma. METHODS Clinical studies evaluating the association were identified using a predefined search strategy. GPC3 immunohistochemistry was applied in the pathological diagnosis of hepatoblastoma using the monoclonal antibodies with formalin-fixed and paraffin-embedded specimens. Positive predictive rates for the association between expression of GPC3 and pediatric hepatoblastoma were calculated. RESULTS Specimens from four clinical studies which including 134 patients with pediatric hepatoblastoma tested by GPC3 immunohistochemistry were considered eligible for inclusion. Systemic analysis showed that, in all patients, pooled positive predictive rate of the association between expression of GPC3 and pediatric hepatoblastoma was 95.5% (128/134). CONCLUSION This systemic analysis suggests that the expression of glypican-3 is highly associated with the diagnosis of pediatric hepatoblastoma.
Collapse
Affiliation(s)
- Xiao-Li Xiong
- Dept. of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China E-mail :
| | | | | | | | | | | |
Collapse
|
31
|
Farnedi A, Rossi S, Bertani N, Gulli M, Silini EM, Mucignat MT, Poli T, Sesenna E, Lanfranco D, Montebugnoli L, Leonardi E, Marchetti C, Cocchi R, Ambrosini-Spaltro A, Foschini MP, Perris R. Proteoglycan-based diversification of disease outcome in head and neck cancer patients identifies NG2/CSPG4 and syndecan-2 as unique relapse and overall survival predicting factors. BMC Cancer 2015; 15:352. [PMID: 25935541 PMCID: PMC4429505 DOI: 10.1186/s12885-015-1336-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/22/2015] [Indexed: 01/07/2023] Open
Abstract
Background Tumour relapse is recognized to be the prime fatal burden in patients affected by head and neck squamous cell carcinoma (HNSCC), but no discrete molecular trait has yet been identified to make reliable early predictions of tumour recurrence. Expression of cell surface proteoglycans (PGs) is frequently altered in carcinomas and several of them are gradually emerging as key prognostic factors. Methods A PG expression analysis at both mRNA and protein level, was pursued on primary lesions derived from 173 HNSCC patients from whom full clinical history and 2 years post-surgical follow-up was accessible. Gene and protein expression data were correlated with clinical traits and previously proposed tumour relapse markers to stratify high-risk patient subgroups. Results HNSCC lesions were indeed found to exhibit a widely aberrant PG expression pattern characterized by a variable expression of all PGs and a characteristic de novo transcription/translation of GPC2, GPC5 and NG2/CSPG4 respectively in 36%, 72% and 71% on 119 cases. Importantly, expression of NG2/CSPG4, on neoplastic cells and in the intralesional stroma (Hazard Ratio [HR], 6.76, p = 0.017) was strongly associated with loco-regional relapse, whereas stromal enrichment of SDC2 (HR, 7.652, p = 0.007) was independently tied to lymphnodal infiltration and disease-related death. Conversely, down-regulated SDC1 transcript (HR, 0.232, p = 0.013) uniquely correlated with formation of distant metastases. Altered expression of PGs significantly correlated with the above disease outcomes when either considered alone or in association with well-established predictors of poor prognosis (i.e. T classification, previous occurrence of precancerous lesions and lymphnodal metastasis). Combined alteration of all three PGs was found to be a reliable predictor of shorter survival. Conclusions An unprecedented PG-based prognostic portrait is unveiled that incisively diversifies disease course in HNSCC patients beyond the currently known clinical and molecular biomarkers. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1336-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Farnedi
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Silvia Rossi
- COMT - Centre for Molecular Translational Oncology & Department of Life Sciences, University of Parma, Parma, Italy.
| | - Nicoletta Bertani
- COMT - Centre for Molecular Translational Oncology & Department of Life Sciences, University of Parma, Parma, Italy.
| | - Mariolina Gulli
- Department of Life Sciences, Division of Genetics and Environmental Biotechnology, University of Parma, Parma, Italy.
| | - Enrico Maria Silini
- COMT - Centre for Molecular Translational Oncology & Department of Life Sciences, University of Parma, Parma, Italy. .,Department of Pathology and Laboratory Medicine, University of Parma, Parma, Italy.
| | - Maria Teresa Mucignat
- S.O.C. of Experimental Oncology 2, The National Tumour Institute Aviano - CRO-IRCCS, Aviano, Pordenone, Italy.
| | - Tito Poli
- Maxillofacial Surgery Section, Head and Neck Department, University of Parma, Parma, Italy.
| | - Enrico Sesenna
- Maxillofacial Surgery Section, Head and Neck Department, University of Parma, Parma, Italy.
| | - Davide Lanfranco
- Maxillofacial Surgery Section, Head and Neck Department, University of Parma, Parma, Italy.
| | - Lucio Montebugnoli
- Unit of Maxillo-Facial Surgery, Department of Oral Sciences, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Elisa Leonardi
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Claudio Marchetti
- Department of Biomedical and Neuromotor Sciences, Unit of Maxillo-Facial Surgery, University of Bologna, S. Orsola Hospital, Bologna, Italy.
| | - Renato Cocchi
- Unit of Maxillo-facial Surgery at Bellaria Hospital, Bologna, Italy. .,Unit of Maxillo-facial Surgery, "Casa Sollievo della Sofferenza", San Giovanni in Rotondo, Italy.
| | - Andrea Ambrosini-Spaltro
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Maria Pia Foschini
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Roberto Perris
- COMT - Centre for Molecular Translational Oncology & Department of Life Sciences, University of Parma, Parma, Italy. .,S.O.C. of Experimental Oncology 2, The National Tumour Institute Aviano - CRO-IRCCS, Aviano, Pordenone, Italy.
| |
Collapse
|
32
|
Theocharis AD, Skandalis SS, Neill T, Multhaupt HAB, Hubo M, Frey H, Gopal S, Gomes A, Afratis N, Lim HC, Couchman JR, Filmus J, Sanderson RD, Schaefer L, Iozzo RV, Karamanos NK. Insights into the key roles of proteoglycans in breast cancer biology and translational medicine. Biochim Biophys Acta Rev Cancer 2015; 1855:276-300. [PMID: 25829250 DOI: 10.1016/j.bbcan.2015.03.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/27/2015] [Accepted: 03/24/2015] [Indexed: 12/18/2022]
Abstract
Proteoglycans control numerous normal and pathological processes, among which are morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor development and growth, proteoglycan expression is markedly modified in the tumor microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor microenvironment suggests their potential as pharmacological targets in this type of cancer. It has been recently suggested that pharmacological treatment may target proteoglycan metabolism, their utilization as targets for immunotherapy or their direct use as therapeutic agents. The diversity inherent in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel key roles in breast cancer.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hinke A B Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Mario Hubo
- University of Frankfurt, Institute of Pharmacology and Toxicology, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Helena Frey
- University of Frankfurt, Institute of Pharmacology and Toxicology, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Sandeep Gopal
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Angélica Gomes
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Nikos Afratis
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Hooi Ching Lim
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Jorge Filmus
- Department of Biological Sciences, Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Canada
| | - Ralph D Sanderson
- University of Alabama at Birmingham, Department of Pathology, UAB Comprehensive Cancer Center, 1720 2nd Ave. S, WTI 602B, Birmingham, AL 35294, USA
| | - Liliana Schaefer
- University of Frankfurt, Institute of Pharmacology and Toxicology, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
33
|
Qi XH, Wu D, Cui HX, Ma N, Su J, Wang YT, Jiang YH. Silencing of the glypican-3 gene affects the biological behavior of human hepatocellular carcinoma cells. Mol Med Rep 2014; 10:3177-84. [PMID: 25270552 DOI: 10.3892/mmr.2014.2600] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 06/05/2014] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death in the world. The gene glypican-3 (GPC3) is reported to be a potential therapeutic target for HCC. In this study, we use RNA interference with lentiviral vectors to explore the effect of GPC3 silencing on the biological behavior of HCC cells and the potential role of the GPC3 protein in the activation of epithelial-mesenchymal transition (EMT), which relates to HCC cell invasion and migration. Our data suggest that GPC3 silencing leads to a decrease in HCC cell proliferation and to an increase in apoptosis. We demonstrated that GPC3 silencing regulates cell invasion and migration, most probably through the activation of the EMT cellular program. In conclusion, GPC3 is associated with the HCC cell biological behavior, while the relationship between GPC3 and EMT in tumorigenesis of HCC deserves future investigation.
Collapse
Affiliation(s)
- Xin-Hui Qi
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Di Wu
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hui-Xia Cui
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Nan Ma
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jia Su
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yu-Tong Wang
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - You-Hong Jiang
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
34
|
Valsechi MC, Oliveira ABB, Conceição ALG, Stuqui B, Candido NM, Provazzi PJS, de Araújo LF, Silva WA, Calmon MDF, Rahal P. GPC3 reduces cell proliferation in renal carcinoma cell lines. BMC Cancer 2014; 14:631. [PMID: 25168166 PMCID: PMC4161903 DOI: 10.1186/1471-2407-14-631] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 08/21/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Glypican 3 (GPC3) is a member of the family of glypican heparan sulfate proteoglycans (HSPGs). The GPC3 gene may play a role in controlling cell migration, negatively regulating cell growth and inducing apoptosis. GPC3 is downregulated in several cancers, which can result in uncontrolled cell growth and can also contribute to the malignant phenotype of some tumors. The purpose of this study was to analyze the mechanism of action of the GPC3 gene in clear cell renal cell carcinoma. METHODS Five clear cell renal cell carcinoma cell lines and carcinoma samples were used to analyze GPC3 mRNA expression (qRT-PCR). Then, representative cell lines, one primary renal carcinoma (786-O) and one metastatic renal carcinoma (ACHN), were chosen to carry out functional studies. We constructed a GPC3 expression vector and transfected the renal carcinoma cell lines, 786-O and ACHN. GPC3 overexpression was analyzed using qRT-PCR and immunocytochemistry. We evaluated cell proliferation using MTT and colony formation assays. Flow cytometry was used to evaluate apoptosis and perform cell cycle analyses. RESULTS We observed that GPC3 is downregulated in clear cell renal cell carcinoma samples and cell lines compared with normal renal samples. GPC3 mRNA expression and protein levels in 786-O and ACHN cell lines increased after transfection with the GPC3 expression construct, and the cell proliferation rate decreased in both cell lines following overexpression of GPC3. Further, apoptosis was not induced in the renal cell carcinoma cell lines overexpressing GPC3, and there was an increase in the cell population during the G1 phase in the cell cycle. CONCLUSION We suggest that the GPC3 gene reduces the rate of cell proliferation through cell cycle arrest during the G1 phase in renal cell carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Paula Rahal
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas - IBILCE/UNESP, Rua Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil.
| |
Collapse
|
35
|
Wang Y, Yang H, Xu H, Lu X, Sang X, Zhong S, Huang J, Mao Y. Golgi protein 73, not Glypican-3, may be a tumor marker complementary to α-Fetoprotein for hepatocellular carcinoma diagnosis. J Gastroenterol Hepatol 2014; 29:597-602. [PMID: 24236824 DOI: 10.1111/jgh.12461] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIM This study aimed to evaluate the effectiveness of serum Golgi protein 73 (GP73) and Glypican-3 (GPC-3) as tumor markers for diagnosis of hepatocellular carcinoma (HCC). METHODS A total of 257 subjects were enrolled and consisted of 61 healthy controls, 32 hepatitis B virus carriers, 80 cirrhosis patients, and 84 HCC patients. Diagnosis was performed based on established clinical procedure. Serum GP73, GPC-3, and α-fetoprotein were measured. Receiving operating characteristic (ROC) curves were plotted to determine the sensitivity and specificity of each serum marker and their combinations. RESULT Serum GP73 levels were significantly increased in HCC patients. No significant differences were observed between GP73 and α-fetoprotein (AFP) as markers for HCC diagnosis. However, GP73 was more sensitive than AFP in the diagnosis of small HCC. A combination of GP73 and AFP tests increased the sensitivity and specificity for HCC diagnosis. The area under the ROC curve (AUC) of combined test was 0.93 compared with 0.88 for GP73 and 0.90 for AFP alone. GPC-3 tests were negative in all 84 HCC patients. The AUC for GPC-3 is 0.43, indicating that serum GPC-3 was not an effective tumor marker for HCC diagnosis. CONCLUSION Serum GP73 is a potential tumor marker for HCC diagnosis, especially for differential diagnosis of small HCC and cirrhosis. The combination of GP73 and AFP is more sensitive than AFP alone. Serum GPC-3 does not appear to be an effective tumor marker for HCC diagnosis.
Collapse
Affiliation(s)
- Yichen Wang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Joo EJ, Weyers A, Li G, Gasimli L, Li L, Choi WJ, Lee KB, Linhardt RJ. Carbohydrate-containing molecules as potential biomarkers in colon cancer. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:231-41. [PMID: 24502776 DOI: 10.1089/omi.2013.0128] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycans play a critical role in physiological and pathological processes through interaction with a variety of ligands. Altered expression and dysregulation of these molecules can cause aberrant cellular function such as malignancy. Glycomics provide information of the structure and function of glycans, glycolipids, and glycoproteins such as proteoglycans, and may help to predict cancer development and progression as biomarkers. In this report, we compared the expression of proteoglycans, the content and structure of glycosaminoglycans and glycolipids between patient-matched normal and cancer tissues obtained from colon cancer patients. Tumor-related proteoglycans, glypican-3, and syndecan-1 showed downregulation in cancer tissues compared to normal tissues. In cancer tissue, the total amount of chondroitin sulfate (CS)/dermatan sulfate and heparan sulfate were lower and, interestingly, the level of disaccharide units of both 4S6S (CS-E) and 6S (CS-C) were higher compared to normal tissue. Also, overall lipids including glycolipids, a major glycomics target, were analyzed by hydrophilic interaction liquid chromatography mass spectrometry. Increase of lyso-phosphatidylcholine (phospholipid), sphingomyelin (sphigolipid), and four types of glycolipids (glucosylceramide, lactosylceramide, monosialic acid ganglioside, and globoside 4) in cancer tissue showed the possibility as potential biomarkers in colon cancer. While requiring the need for careful interpretation, this type of broad investigation gives us a better understanding of pathophysiological roles on glycosaminoglycans and glycolipids and might be a powerful tool for colon cancer diagnosis.
Collapse
Affiliation(s)
- Eun Ji Joo
- 1 Department of Chemical and Chemical Biology, Rensselaer Polytechnic Institute , Troy, New York
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lee HJ, Yeon JE, Suh SJ, Lee SJ, Yoon EL, Kang K, Yoo YJ, Kim JH, Seo YS, Yim HJ, Byun KS. Clinical utility of plasma glypican-3 and osteopontin as biomarkers of hepatocellular carcinoma. Gut Liver 2013; 8:177-85. [PMID: 24672660 PMCID: PMC3964269 DOI: 10.5009/gnl.2014.8.2.177] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/28/2013] [Accepted: 06/21/2013] [Indexed: 12/21/2022] Open
Abstract
Background/Aims α-Fetoprotein (AFP) is the biomarker most widely used to detect hepatocellular carcinoma (HCC), despite its suboptimal diagnostic accuracy. Glypican-3 (GPC3) and osteopontin (OPN) are secreted glycoproteins that are reportedly associated with tumorigenesis and metastasis. This study was conducted to evaluate the clinical utility of using plasma GPC3 and OPN as diagnostic biomarkers for HCC. Methods We measured the plasma levels of GPC3 and OPN in 120 HCC and 40 chronic liver disease (CLD) patients via an enzyme-linked immunosorbent assay. The diagnostic accuracy of each tumor marker was evaluated using receiver operating characteristic (ROC) curve analysis. Results The GPC3 levels in the HCC patients (75.8 ng/mL) were significantly higher (p=0.020) than the levels in patients with CLD (66.4 ng/mL). The area under the ROC curve (AUROC) values for GPC3 and OPN were 0.62 and 0.51, respectively. In subgroup analyses, including subgroups of HCC patients with low serum AFP and PIVKA II levels, the AUROC of GPC3 remained relatively high (0.66), and GPC3 showed a high sensitivity (62.1%) for detecting small HCC tumors. Conclusions The plasma levels of GPC3 and OPN demonstrated low diagnostic accuracy for HCC. However, GPC3 may have a complementary role in diagnosing HCC in patients with nondiagnostic levels of conventional tumor markers and with small-sized tumors.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Jong Eun Yeon
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sang Jun Suh
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sun Jae Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Eileen L Yoon
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Keunhee Kang
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Yang Jae Yoo
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ji Hoon Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Yeon Seok Seo
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hyung Joon Yim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kwan Soo Byun
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Gamage DG, Hendrickson TL. GPI Transamidase and GPI anchored proteins: Oncogenes and biomarkers for cancer. Crit Rev Biochem Mol Biol 2013; 48:446-64. [DOI: 10.3109/10409238.2013.831024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Yao S, Zhang J, Chen H, Sheng Y, Zhang X, Liu Z, Zhang C. Diagnostic value of immunohistochemical staining of GP73, GPC3, DCP, CD34, CD31, and reticulin staining in hepatocellular carcinoma. J Histochem Cytochem 2013; 61:639-48. [PMID: 23686365 DOI: 10.1369/0022155413492771] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It has been reported that Golgi protein-73 (GP73), glypican-3 (GPC3), and des-γ-carboxy prothrombin (DCP) could serve as serum markers for the early detection of hepatocellular carcinoma (HCC). This study aimed to evaluate a panel of immunostaining markers (including GP73, GPC3, DCP, CD34, and CD31) as well as reticulin staining to distinguish HCC from the mimickers. Our results revealed that CD34 immunostaining and reticulin staining were highly sensitive for the diagnosis of HCC. A special immunoreaction pattern of GP73--a diffuse coarse-block pattern in a perinuclear region or a concentrated cluster-like or cord-like pattern in a certain part of the cytoplasm--was observed in HCC cells, in contrast to the cytoplasmic fine-granular pattern in surrounding non-tumor cells and non-malignant nodules. This coarse-block pattern correlated significantly with less differentiated HCC. In comparison, GPC3 displayed a good advantage in diagnosing well-differentiated HCC. In our study, DCP and CD31 showed little diagnostic value for HCC as an immunostaining marker. When GP73, GPC3, and CD34 were combined, the specificity improved to 96.6%. Our findings demonstrate for the first time that the immunohistochemical panel of GP73, GPC3, and CD34 as well as reticulin staining is highly specific for the pathological diagnosis of HCC.
Collapse
Affiliation(s)
- Shuzhe Yao
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, PR China
| | | | | | | | | | | | | |
Collapse
|
40
|
Pan Z, Chen C, Long H, Lei C, Tang G, Li L, Feng J, Chen F. Overexpression of GPC3 inhibits hepatocellular carcinoma cell proliferation and invasion through induction of apoptosis. Mol Med Rep 2013; 7:969-74. [PMID: 23338845 DOI: 10.3892/mmr.2013.1279] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/08/2013] [Indexed: 11/05/2022] Open
Abstract
Glypican‑3 (GPC3) is a membrane heparan sulfate proteoglycan involved in cell proliferation, differentiation, adhesion, migration and the development of the majority of mesodermal tissues and organs. GPC3 has been found to be important for the occurrence and development of hepatocellular carcinoma (HCC). Therefore, it may be suitable for use as a novel molecular marker for the diagnosis of primary liver cancer. In the present study, the role of GPC3 in the occurrence and development of HCC was determined. GPC3 recombinant vector was transfected into two HCC cell lines, Huh7 and SK‑HEP‑1, to upregulate the expression of GPC3 and examine changes in the biological behavior of the cells. Results indicate that overexpression of GPC3 in Huh7 and SK‑HEP‑1 cells effectively inhibited cell proliferation and cell invasion through induction of apoptosis. However, cotreatment of the cells with insulin‑like growth factor 2 (IGF2) and fibroblast growth factor 2 (FGF2) was found by Annexin V‑PI flow cytometric analysis to significantly inhibit the apoptotic cell death induced by GPC3 overexpression. These observations indicate that GPC3 may act as a negative regulator of IGF2 and FGF2 pathways. Taken together, these results demonstrate that overexpression of GPC3 inhibits the occurrence and development of HCC.
Collapse
Affiliation(s)
- Zhijian Pan
- Second Department of General Surgery, Fifth Hospital of Wuhan, Hubei 430050, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Mounajjed T, Zhang L, Wu TT. Glypican-3 expression in gastrointestinal and pancreatic epithelial neoplasms. Hum Pathol 2012; 44:542-50. [PMID: 23079207 DOI: 10.1016/j.humpath.2012.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 12/20/2022]
Abstract
Glypican-3 (GPC3) is a plasma membrane-bound proteoglycan that can be overexpressed in certain malignancies but has been particularly linked to hepatocellular carcinoma (HCC). GPC3 is currently used as an immunohistochemical marker for HCC, but its expression in epithelial neoplasms of the gastrointestinal (GI) tract and pancreas, a common source of liver metastasis, has not been studied in detail. In this study, we examined GPC3 immunoreactivity in 98 neoplasms of the GI tract including 30 adenocarcinomas (ADCA), 29 squamous cell carcinomas (esophageal and anal), and 39 neuroendocrine carcinomas, and 60 neoplasms of the pancreas including 22 ADCA, 26 pancreatic neuroendocrine neoplasms, and 12 pancreatic acinar cell carcinomas. Two control groups of 32 HCCs and 16 intrahepatic cholangiocarcinomas were also stained with GPC3. Although most (7/12, 58.5%) acinar cell carcinomas were GPC3 positive, pancreatic ADCA and neuroendocrine neoplasms were GPC3 negative. In addition, 27.5%, (8/29) of squamous cell carcinomas, 20% (6/30) of ADCA, and 2.5% (1/39) of neuroendocrine carcinomas of the GI tract were immunoreactive for GPC3. HCC was positive for GPC3 in 75% (24/32) of cases but cholangiocarcinoma was negative. While significant correlation between GPC3 positivity and poor differentiation was observed in HCC only, GPC3 expression did not correlate with tumor size. In conclusion, 14% of GI tract and pancreatic carcinomas/neoplasms (particularly pancreatic acinar cell carcinoma) can express GPC3 by immunohistochemistry. As these tumors commonly metastasize to the liver, this offers a potential pitfall in differentiating between HCC and metastatic carcinoma when evaluating tumors involving the liver.
Collapse
Affiliation(s)
- Taofic Mounajjed
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
42
|
Shi Y, Moura U, Opitz I, Soltermann A, Rehrauer H, Thies S, Weder W, Stahel RA, Felley-Bosco E. Role of hedgehog signaling in malignant pleural mesothelioma. Clin Cancer Res 2012; 18:4646-56. [PMID: 22733539 DOI: 10.1158/1078-0432.ccr-12-0599] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of this study was to assess the activity of hedgehog signaling pathway in malignant pleural mesothelioma (MPM). EXPERIMENTAL DESIGN The expression of hedgehog signaling components was assessed by quantitative PCR and in situ hybridization in 45 clinical samples. Primary MPM cultures were developed in serum-free condition in 3% oxygen and were used to investigate the effects of smoothened (SMO) inhibitors or GLI1 silencing on cell growth and hedgehog signaling. In vivo effects of SMO antagonists were determined in an MPM xenograft growing in nude mice. RESULTS A significant increase in GLI1, sonic hedgehog, and human hedgehog interacting protein gene expression was observed in MPM tumors compared with nontumoral pleural tissue. SMO antagonists inhibited GLI1 expression and cell growth in sensitive primary cultures. This effect was mimicked by GLI1 silencing. Reduced survivin and YAP protein levels were also observed. Survivin protein levels were rescued by overexpression of GLI1 or constitutively active YAP1. Treatment of tumor-bearing mice with the SMO inhibitor HhAntag led to a significant inhibition of tumor growth in vivo accompanied by decreased Ki-67 and nuclear YAP immunostaining and a significant difference in selected gene expression profile in tumors. CONCLUSIONS An aberrant hedgehog signaling is present in MPM, and inhibition of hedgehog signaling decreases tumor growth indicating potential new therapeutic approach.
Collapse
Affiliation(s)
- Yandong Shi
- Laboratory of Molecular Oncology, Clinic and Policlinic of Oncology, Division of Thoracic Surgery, Institute of Surgical Pathology, University Hospital Zürich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Garusi E, Rossi S, Perris R. Antithetic roles of proteoglycans in cancer. Cell Mol Life Sci 2012; 69:553-79. [PMID: 21964924 PMCID: PMC11114698 DOI: 10.1007/s00018-011-0816-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/01/2011] [Accepted: 09/05/2011] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs), a family of complex post-translationally sculptured macromolecules, are fundamental regulators of most normal and aberrant cellular functions. The unparalleled structural-functional diversity of PGs endows them with the ability to serve as critical mediators of the tumor cells' interaction with the host microenvironment, while directly contributing to the organization and dynamic remodeling of this milieu. Despite their indisputable importance during embryonic development and in the adult organism, and their frequent dysregulation in tumor lesions, their precise involvement in tumorigenesis awaits a more decisive demonstration. Particularly challenging is to ascertain to what extent selected PGs may catalyze tumor progression and to what extent they may inhibit it, implying antithetic functions of individual PGs. Integrated efforts are needed to consolidate the routine use of PGs in the clinical monitoring of cancer patients and to broaden the exploitation of these macromolecules as therapeutic targets. Several PGs have the required attributes to be contemplated as effective antigens for immunotherapeutic approaches, while the tangible results obtained in recent clinical trials targeting the NG2/CSPG4 transmembrane PG urge further development of PG-based cancer treatment modalities.
Collapse
Affiliation(s)
- Elena Garusi
- COMT, Centre for Molecular and Translational Oncology, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
| | - Silvia Rossi
- COMT, Centre for Molecular and Translational Oncology, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
- Department of Genetic, Biology of Microorganism, Anthropology and Evolution, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
| | - Roberto Perris
- COMT, Centre for Molecular and Translational Oncology, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
- Department of Genetic, Biology of Microorganism, Anthropology and Evolution, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
- S.O.C. of Experimental Oncology 2, The National Cancer Institute Aviano, CRO-IRCCS, Via Franco Gallini, 2, 33081 Aviano, PN Italy
| |
Collapse
|
44
|
Wang H, Wen W. Biomarkers of Hepatocellular Carcinoma. PRIMARY LIVER CANCER 2012:79-154. [DOI: 10.1007/978-3-642-28702-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
45
|
Farrell WE, Azevedo MF, Batista DL, Smith A, Bourdeau I, Horvath A, Boguszewski M, Quezado M, Stratakis CA. Unique gene expression profile associated with an early-onset multiple endocrine neoplasia (MEN1)-associated pituitary adenoma. J Clin Endocrinol Metab 2011; 96:E1905-14. [PMID: 21917868 PMCID: PMC3205896 DOI: 10.1210/jc.2011-1127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONTEXT Multiple endocrine neoplasia type 1 (MEN1) is caused by mutations in the menin (MEN1) gene. The mechanism(s) by which MEN1 mutations lead to pituitary tumor formation remain(s) unknown. OBJECTIVE The aim of the study was to identify the pediatric MEN1-associated pituitary tumor transcriptome. PATIENTS AND METHODS A patient harboring a MEN1 mutation (c.525C>G; p.H139D) who presented with an early-onset mammosomatotroph pituitary adenoma was studied. Microarray analysis was performed in the tumor sample and compared with the profile observed in normal pituitaries and in a sporadic mammosomatotropinoma. Validation of the microarray results was performed using quantitative real-time PCR and immunohistochemical analysis for selected genes. RESULTS In the MEN1-associated pituitary adenoma, 59 and 24 genes were found to be significantly up- and down-regulated, respectively. The up-regulated genes included those involved in cell growth and maintenance, apoptosis, growth arrest, and tumorigenesis. Moreover, we observed decreased expression in genes neuroendocrine in nature and related to growth or apoptosis. Only 21 of the 59 genes differentially expressed in the MEN1-associated adenoma showed a similar expression profile to that seen in the sporadic mammosomatotropinoma; for some genes an opposite expression profile was observed. CONCLUSIONS We identified changes in the transcriptome that occur in pituitary GH- and PRL-producing cells after the loss of menin expression; some of the gene changes are necessary for tumor evolution, and others may be tertiary. Nevertheless, the rare overlap between the expression profiles of the MEN1 tumor vs. that of its sporadic counterpart suggests that these tumors evolve along different molecular pathways.
Collapse
Affiliation(s)
- William E Farrell
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Building 10, CRC, Room 1-3330, 10 Center Drive, MSC1103, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Allegretta M, Filmus J. Therapeutic potential of targeting glypican-3 in hepatocellular carcinoma. Anticancer Agents Med Chem 2011; 11:543-8. [PMID: 21554204 DOI: 10.2174/187152011796011109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 04/29/2011] [Indexed: 02/08/2023]
Abstract
Glypican-3 (GPC3) is a developmentally-regulated oncofetal protein that has been established as a clinically-relevant biomarker for early hepatocellular carcinoma (HCC). It is one of the first transcripts to appear during malignant hepatocyte transformation, and is expressed at the protein level in approximately half of high-grade dysplastic macronodules in cirrhotic liver. Several studies show it is expressed in most (75 to 100%) of HCCs confirmed by histopathology. The protein is anchored to the hepatocyte membrane by a glycosyl-phosphatidylinositol (GPI) anchor and shows consistent membrane immunostaining pattern, making it a viable target for immunotherapeutic approaches. Targeting GPC3 for therapeutic intervention is a promising approach for the clinical management of HCC and selected other tumors that express the marker.
Collapse
|
47
|
Nambotin SB, Wands JR, Kim M. Points of therapeutic intervention along the Wnt signaling pathway in hepatocellular carcinoma. Anticancer Agents Med Chem 2011; 11:549-59. [PMID: 21554202 DOI: 10.2174/187152011796011019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 04/29/2011] [Indexed: 12/29/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide. However, there is little known about targeted therapeutics for the treatment of this devastating tumor. Among the growth factor signaling cascades deregulated in HCC, evidences suggest that the WNT/Frizzled-mediated signaling pathway plays a key role in the hepatic carcinogenesis. Aberrant activation of the signaling in HCC is mostly due to deregulated expression of the Wnt/β-catenin signaling components. This leads to the activation of the β-catenin/TCF dependent target genes, which controls cell proliferation, cell cycle, apoptosis or motility. It has been shown that disruption of the Wnt/β-catenin signaling cascade displayed anti-cancer properties in HCC. Currently, no therapeutic molecules targeting the WNT pathway are available or under clinical evaluation for the treatment of HCC. This review will discuss the identified potential molecular targets related to the canonical WNT signaling pathway and their potential therapeutic usefulness.
Collapse
Affiliation(s)
- Sarah B Nambotin
- Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | |
Collapse
|
48
|
Lin Q, Xiong LW, Pan XF, Gen JF, Bao GL, Sha HF, Feng JX, Ji CY, Chen M. Expression of GPC3 protein and its significance in lung squamous cell carcinoma. Med Oncol 2011; 29:663-9. [PMID: 21556932 DOI: 10.1007/s12032-011-9973-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 04/29/2011] [Indexed: 01/05/2023]
Abstract
The purpose of this study was to investigate GPC3 gene expression in lung squamous cell carcinoma tissue and its correlation with clinical and tumor characteristics. Using RT-PCR, the presence of GPC3 gene expression was detected in cancer tissue and adjacent normal tissue in 66 cases of lung squamous cell carcinoma and positive rates were calculated. Using Western blot, changes in GPC3 protein expression were detected in lung squamous cell carcinoma and adjacent normal tissues. The percentage of tissue samples expressing GPC3 mRNA was significantly higher in lung squamous cell carcinoma than in adjacent normal tissue (P < 0.05). This percentage was also significantly higher for cases with lymph node metastasis than for those without lymph node metastasis (P < 0.05). Further, the percentage of samples expressing GPC3 mRNA was higher with lowering degrees of tumor differentiation (P < 0.05). Rates of GPC3 expression were, however, independent of patient gender, age, and tumor size (P > 0.05). The expression of GPC3 protein in lung squamous cell carcinoma was significantly higher than that in adjacent normal tissues (P < 0.05). The expression in cases with lymph node metastasis was significantly higher than in those without lymph node metastasis (P < 0.05), and GPC3 protein expression increased with lowering degrees of tumor differentiation (P < 0.05). Further investigation is warranted for the association of initiation, development, invasion, and metastasis of disease.
Collapse
Affiliation(s)
- Qiang Lin
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, No. 241, West Huaihai Rd, Shanghai 200030, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Iozzo RV, Sanderson RD. Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J Cell Mol Med 2011; 15:1013-31. [PMID: 21155971 PMCID: PMC3633488 DOI: 10.1111/j.1582-4934.2010.01236.x] [Citation(s) in RCA: 434] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/08/2010] [Indexed: 12/12/2022] Open
Abstract
Proteoglycans, key molecular effectors of cell surface and pericellular microenvironments, perform multiple functions in cancer and angiogenesis by virtue of their polyhedric nature and their ability to interact with both ligands and receptors that regulate neoplastic growth and neovascularization. Some proteoglycans such as perlecan, have pro- and anti-angiogenic activities, whereas other proteoglycans, such as syndecans and glypicans, can also directly affect cancer growth by modulating key signalling pathways. The bioactivity of these proteoglycans is further modulated by several classes of enzymes within the tumour microenvironment: (i) sheddases that cleave transmembrane or cell-associated syndecans and glypicans, (ii) various proteinases that cleave the protein core of pericellular proteoglycans and (iii) heparanases and endosulfatases which modify the structure and bioactivity of various heparan sulphate proteoglycans and their bound growth factors. In contrast, some of the small leucine-rich proteoglycans, such as decorin and lumican, act as tumour repressors by physically antagonizing receptor tyrosine kinases including the epidermal growth factor and the Met receptors or integrin receptors thereby evoking anti-survival and pro-apoptotic pathways. In this review we will critically assess the expanding repertoire of molecular interactions attributed to various proteoglycans and will discuss novel proteoglycan functions modulating cancer progression, invasion and metastasis and how these factors regulate the tumour microenvironment.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson UniversityPhiladelphia, PA, USA
| | - Ralph D Sanderson
- Department of Pathology, and the Comprehensive Cancer Center, University of Alabama at BirminghamBirmingham, AL, USA
| |
Collapse
|
50
|
Wang T, Wang FM, Gao YT, Zhu ZY, Guo HS, Yang B, Zhang CS, Zhang Q, Du Z. Significance of GPC3 expression in liver biopsy specimens for differential diagnosis of liver diseases. Shijie Huaren Xiaohua Zazhi 2011; 19:693-699. [DOI: 10.11569/wcjd.v19.i7.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the expression of glypican 3 (GPC3) in different liver diseases and to explore its significance in early diagnosis of hepatocellular carcinoma (HCC).
METHODS: The expression of GPC3 and α-fetoprotein (AFP) was detected by immunohistochemistry in 126 liver needle biopsy specimens from 13 patients with very early stage HCC, 44 patients with early stage HCC, 16 patients with dysplastic nodules, 29 patients with liver cirrhosis, and 24 patients with hepatitis, and in 57 resected HCC specimens from patients with intermediate and advanced HCC. Twenty-eight resected normal liver tissue specimens were used as controls.
RESULTS: The expression of GPC3 in HCC differed significantly from those in other liver diseases (all P < 0.01). Detection of GPC3 expression showed a higher diagnostic sensitivity (80.7%) and specificity (99.4%) than that of AFP (37.7% and 93.6%, respectively). GPC3 was expressed in 92.3% of very early stage HCC and in 72.7% of early stage of HCC. In contrast, AFP only appeared in 38.5% of very early stage HCC and in 34.1% of early stage HCC. The positive rates of GPC3 expression in very early and early stage HCC were significantly higher than those in dysplastic nodules (both P < 0.01). GPC3 and AFP expression was not detected in liver cirrhosis, hepatitis or normal liver tissue. In patients with small HCC, the positive rate of GPC3 expression was 78.6%, and combined detection of GPC3 and AFP had a sensitivity of 85.7%. In patients with small HCC who had an AFP of ≤20 μg/L, the positive rate of GPC3 expression was 70%. The recurrence rate after radical surgery in GPC3-positive patients was higher than that of GPC3-negative ones (P < 0.05).
CONCLUSION: GPC3 is highly expressed in HCC. Detection of GPC3 expression has a high sensitivity and specificity for diagnosis of very early and early stage HCC and therefore represents a potential diagnostic parameter for early HCC. Immunohistochemistry detection of GPC3 in liver needle biopsy specimens is an effective ancillary tool for early diagnosis of HCC. GPC3 expression is an independent prognostic factor for HCC recurrence after surgery.
Collapse
|