1
|
Yin T, Zhang T, Ma L. Immune-related hub genes and their role in psoriasis pathogenesis. Sci Rep 2025; 15:17765. [PMID: 40404829 PMCID: PMC12098866 DOI: 10.1038/s41598-025-02822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 05/16/2025] [Indexed: 05/24/2025] Open
Abstract
Psoriasis is a prevalent inflammatory skin disorder with immune-related mechanisms that remain incompletely understood. To elucidate the immune landscape of psoriasis, we analyzed expression profiles to identify 115 psoriasis susceptibility genes (PSGs) and subsequently pinpointing eight immune-related hub genes (IRHGs). A predictive model incorporating these IRHGs demonstrated promising prognostic potential for psoriasis. Additionally, extensive intercellular communication was observed among keratinocytes, dendritic cells, monocytes, and T cells. The cellular differentiation trajectory revealed a complex interplay among various cell types and states, highlighting genes such as CXCL8, CCL2, STAT3, and STAT1 emerging as closely associated with the cellular composition and functional status within the psoriatic immune microenvironment. The present study may shed light on the understanding of the immunopathological dynamics of psoriasis and the development of novel therapeutic strategies and biomarkers for this multifaceted skin disorder.
Collapse
Affiliation(s)
- Tingting Yin
- College of Life Science, Shihezi University, Shihezi City, Xinjiang, China
| | - Tingting Zhang
- College of Life Science, Shihezi University, Shihezi City, Xinjiang, China.
| | - Lei Ma
- College of Life Science, Shihezi University, Shihezi City, Xinjiang, China.
| |
Collapse
|
2
|
Feng W, Liu H, Liang CL, Huang H, Chen Y, Dai Z. Immunoregulatory effects of traditional Chinese medicine and its ingredients on psoriasis. Int Immunopharmacol 2025; 159:114896. [PMID: 40409104 DOI: 10.1016/j.intimp.2025.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/24/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025]
Abstract
Psoriasis is an immune-mediated inflammatory skin disease involving the activation and regulation of various immune cells. A proportion of psoriasis patients remain unresponsive to conventional therapies or targeted drugs, highlighting the urgent need for novel therapeutic strategies. In addition, although many conventional immunosuppressants are effective in the treatment of psoriasis, they may cause various side effects. Traditional Chinese Medicine (TCM) represents a potential drug candidate, with a rich history of traditional use and a vast array of pharmacological options. In particular, TCM may serve as an alternative or complementary therapy of psoriasis with potentially less side effects. In this review, we focus on immune cells, including dendritic cells, neutrophils, macrophages, myeloid-derived suppressor cells, Th17, regulatory T (Treg) cells, and γδ T cells. We provide an overview of the roles for these immune cells in the pathogenesis of psoriasis and regulatory effects of TCM and its ingredients on them. Additionally, we briefly summarize the clinical research involving treatment of psoriasis with TCM and discuss the existing challenges and limitations in this field.
Collapse
Affiliation(s)
- Wei Feng
- Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huazhen Liu
- Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chun-Ling Liang
- Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiding Huang
- Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuchao Chen
- Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhenhua Dai
- Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Varghese R, Emerson A, Vannier B, George Priya Doss C, Priyadharshini R, Efferth T, Ramamoorthy S. Substantial Effects of Carotenoids on Skin Health: A Mechanistic Perspective. Phytother Res 2025. [PMID: 40159662 DOI: 10.1002/ptr.8480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 04/02/2025]
Abstract
There has been an upsurge in the incidences of skin disorders and their mortalities owing to various environmental, hormonal, and epigenetic risk factors. Melanoma, atopic dermatitis, psoriasis, and photoaging and associated consequences are largely observed in the population globally. The social stigma, economic burden, and adverse effects from chronic medication endured by the patients emphasize the necessity of more effective natural therapeutics. Carotenoids are economically valuable tetraterpenoid pigments synthesized by plants and microorganisms, which play a paramount role in their overall growth and development. Extensive in vitro and in vivo investigations evidenced that phytopigments like carotenoids target multiple intracellular signaling pathways involving the mitogen-activated protein kinases, Janus kinase/signal transducers, and activators of transcription, apoptotic, and autophagy proteins to ameliorate melanoma. Besides, carotenoids curbed the activation and the release of immunoregulatory molecules such as cytokines and chemokines to abrogate skin immune disorders, photoaging, and associated consequences. Here, we provide a holistic discussion on the pathophysiology of prominent skin disorders and the ameliorating effects of carotenoids as evidenced in the in vitro, in vivo, and clinical interventions. We also advocate the requisite of formulating carotenoid medications after extensive clinical interventions and validation for mitigating various skin dysfunctions.
Collapse
Affiliation(s)
- Ressin Varghese
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Arnold Emerson
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Brigitte Vannier
- CoMeT Laboratory (UR 24344), Cell Communications and Microenvironment of Tumours, Université of Poitiers, Poitiers Cedex 9, France
| | - C George Priya Doss
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Chennareddy S, Rindler K, Meledathu S, Naidu MP, Alkon N, Ruggiero JR, Szmolyan L, Weninger W, Bauer WM, Griss J, Jonak C, Brunner PM. Single-cell RNA sequencing of chronic idiopathic erythroderma defines disease-specific markers. J Allergy Clin Immunol 2025; 155:892-908. [PMID: 39694280 DOI: 10.1016/j.jaci.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Chronic erythroderma is a potentially life-threatening condition that can be caused by various diseases, but approximately 30% of cases remain idiopathic, often with insufficient treatment options. OBJECTIVE We sought to establish a molecular disease map of chronic idiopathic erythroderma (CIE). METHODS We performed single-cell RNA sequencing combined with T-cell receptor sequencing of blood and skin from 5 patients with CIE and compared results with 8 cases of erythrodermic cutaneous T-cell lymphoma (eCTCL), 15 cases of moderate to severe atopic dermatitis, 10 cases of psoriasis, and 20 healthy control individuals. RESULTS In eCTCL, we found strong expansion of CD4+ malignant clones with a CCR7+SELL+ central memory phenotype. In contrast, CIE exhibited a pattern of low-level, but consistent, expansion of CD8A+KLRK1+ T-cell clones, both in blood and in skin. KLRK1 was also expressed by CCR10+FUT7+ skin-homing CIE blood T cells that had increased proliferation rates and were absent in all other conditions. While patients with CIE and eCTCL lacked the strong type 2 or type 17 immune skewing typically found in atopic dermatitis or psoriasis, respectively, they were characterized by upregulation of MHC II genes (HLA-DRB1, HLA-DRA, and CD74) in keratinocytes and fibroblasts, most likely in an IFN-γ-dependent fashion. Overall, we found the strongest upregulation of type 1 immune mediators in CIE samples, both in the expanded CD8A+ clones and in the tissue microenvironment. CONCLUSIONS Despite the notion that CIE might be a mere bundle of various yet uncharacterized disease processes, we found specific pathogenic signatures in these patients, which were different from other forms of erythroderma. These data might help to improve our pathogenic understanding of the blood and skin compartments of CIE, aiding in discovery of future treatment targets.
Collapse
Affiliation(s)
- Sumanth Chennareddy
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Shannon Meledathu
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Malini P Naidu
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - John R Ruggiero
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lisa Szmolyan
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
5
|
Pukhalskaya T, Finkelstein M, Miyake-Caballero DA, Tetzlaff MT, North JP, Cohen JN. Cytokine Profiling of Erythroderma Biopsies Reveals Types 2 and 17 Immune Activation Status. J Cutan Pathol 2025; 52:235-243. [PMID: 39665210 DOI: 10.1111/cup.14775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Erythroderma is a dermatologic condition characterized by widespread red and scaly skin. The causes include, but are not limited to, psoriasis, eczema, drug eruptions, pityriasis rubra pilaris (PRP), and cutaneous T-cell lymphoma. Most of these are typified by Type 2 (e.g., eczema) or Type 17 (e.g., psoriasis) immune activation. However, since the clinicopathologic features of erythroderma can be nonspecific, assays that determine the underlying immune activation status are desirable. METHODS IL-13 RNA in situ hybridization and IL-36 immunohistochemistry were performed on 30 specimens of erythroderma, to ascertain Type 2 and Type 17 immune signatures, respectively. RESULTS Specimens of erythrodermic psoriasis and PRP showed strong expression of IL-36 and less than one IL-13-positive cell per millimeter. Conversely, those of spongiotic dermatitis showed low expression of IL-36 and greater than one IL-13-positive cell per millimeter. Most specimens of spongiotic, psoriasiform dermatitis demonstrated low IL-36 expression and greater than one IL-13-positive cell per millimeter, but a subset showed high IL-36 expression and greater than one IL-13-positive cell per millimeter. CONCLUSIONS We developed a Type 2/17 immune signature classifier based on cytokine profiling, which showed that cases of erythroderma fall within distinct categories of immune activation. This categorization may have utility in guiding clinical decisions.
Collapse
Affiliation(s)
- Tatsiana Pukhalskaya
- Department of Dermatology and Pathology, University of California, California, USA
| | | | | | - Michael T Tetzlaff
- Department of Dermatology and Pathology, University of California, California, USA
| | - Jeffrey P North
- Department of Dermatology and Pathology, University of California, California, USA
| | - Jarish N Cohen
- Department of Dermatology and Pathology, University of California, California, USA
| |
Collapse
|
6
|
El-Kurjieh A, Al-Arab R, Hachem QA, Ibrahim JN, Kobeissy PH. ACSS2 and metabolic diseases: from lipid metabolism to therapeutic target. Lipids Health Dis 2025; 24:74. [PMID: 40001058 PMCID: PMC11853604 DOI: 10.1186/s12944-025-02491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Elevated incidence of metabolic disorders has been reported worldwide in the recent decade, highlighting the need for developing efficient therapies. These diseases result from a complex interplay of various factors that contribute to disease progression, complications, and resistance to current treatment options. Acetyl-CoA Synthetase Short Chain Family Member 2 (ACSS2) is a nucleo-cytosolic enzyme with both lipogenic and metabolic regulatory roles. Studies on ACSS2 have shown that it is involved in pathways commonly dysregulated in metabolic disorders, leading to fat deposition and disrupted cellular signaling. Although multiple studies have suggested a role of ACSS2 in the metabolic rewiring during tumorigenesis, few studies have examined its involvement in the pathophysiology of metabolic diseases. Recent evidence indicates that ACSS2 may contribute to the pathogenesis of various metabolic disorders making its examination of great interest and potentially aiding in the development of new therapeutic strategies. The objective of this review is to summarize the current understanding of ACSS2's role in metabolic disorders and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Alaa El-Kurjieh
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Reem Al-Arab
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Qamar Abou Hachem
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - José-Noel Ibrahim
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| | - Philippe Hussein Kobeissy
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon.
| |
Collapse
|
7
|
Li X, Wu Y, Chen S, Deng C, Cheng S, Yan Z, Qiu G. CD8 + T cells may mediate the effect of gut microbiota on psoriasis: evidence from two-step mendelian randomization and bayesian weighting. Arch Dermatol Res 2025; 317:370. [PMID: 39921729 DOI: 10.1007/s00403-025-03857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/04/2025] [Accepted: 01/18/2025] [Indexed: 02/10/2025]
Abstract
Emerging research indicates that gut microbiota and the associated immune responses are crucial in the development of chronic inflammatory skin diseases. This investigation employs Mendelian Randomization (MR) and Bayesian weighting to elucidate the causal links between gut microbiota, immune cells, and psoriasis, with a specific emphasis on CD8 + T cells. We leveraged summary statistics from genome-wide association studies (GWAS) related to gut microbiota, immune cells, and psoriasis. Single nucleotide polymorphisms (SNPs) were chosen as instrumental variables (IVs) to evaluate causal relationships through various MR methods, such as inverse variance weighted (IVW), MR Egger, weighted median, and simple mode. Additionally, Bayesian weighting was used to validate results and account for potential pleiotropy. The IVW analysis revealed significant associations between certain gut microbiota and psoriasis, notably identifying a protective link between Escherichia coli and psoriasis. Further MR analysis demonstrated that Escherichia coli had a causal relationship with CD8 + T cells. Increased levels of CD8 + T cells were associated with a higher risk of psoriasis. BWMR analysis confirmed these findings, showing that CD8 + T cells mediated 10.09% of the protective effect of Escherichia coli on psoriasis. This study underscores the significant role of Escherichia coli and CD8 + T cells in psoriasis, suggesting both protective and exacerbating effects. Understanding these microbiota-immune interactions can lead to the development of more effective, personalized treatments and preventative strategies, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Xiaojian Li
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yunbo Wu
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Dermatology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Shiyu Chen
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Chenwei Deng
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Shiping Cheng
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Dermatology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Zhangren Yan
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Dermatology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Guirong Qiu
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
- Dermatology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
8
|
Saran A, Nishizaki D, Lippman SM, Kato S, Kurzrock R. Interleukin-17: A pleiotropic cytokine implicated in inflammatory, infectious, and malignant disorders. Cytokine Growth Factor Rev 2025:S1359-6101(25)00002-4. [PMID: 39875232 DOI: 10.1016/j.cytogfr.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
IL-17A, referred to as IL-17, is the founding member of a family of pro-inflammatory cytokines, including IL-17B, IL-17C, IL-17D, IL-17E (or IL-25), and IL-17F, which act via receptors IL-17RA to IL-17RE, and elicit potent cellular responses that impact diverse diseases. IL-17's interactions with various cytokines include forming a heterodimer with IL-17F and being stimulated by IL-23's activation of Th17 cells, which can lead to inflammation and autoimmunity. IL-17 is implicated in infectious diseases and inflammatory disorders such as rheumatoid arthritis and psoriasis, promoting neutrophil recruitment and anti-bacterial immunity, but potentially exacerbating fungal and viral infections, revealing its dual role as protective and pathologic. IL-17 is also involved in various cancers, including breast, colon, cervical, prostate, and skin cancer, contributing to proliferation, immune invasion, and metastases, but also playing a protective role in certain instances. Four FDA-approved drugs-secukinumab (for ankylosing spondylitis, enthesitis-related arthritis, hidradenitis suppurativa, non-radiographic axial spondyloarthritis, plaque psoriasis, and psoriatic arthritis), ixekizumab (for ankylosing spondylitis, non-radiographic axial spondyloarthritis, plaque psoriasis, and psoriatic arthritis), brodalumab (for plaque psoriasis), and bimekizumab (for plaque psoriasis)-suppress the IL-17 pathway, with more in development, including netakimab, sonelokimab, izokibep, and CJM112. These agents and others are being studied across a spectrum of disorders. Understanding the complicated interplay between IL-17 and other immune mediators may yield new treatments for inflammatory/autoimmune conditions and malignancies.
Collapse
Affiliation(s)
| | - Daisuke Nishizaki
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA; Center for Personalized Cancer Therapy, University of California, San Diego, La Jolla, CA, USA; Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Scott M Lippman
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA; Center for Personalized Cancer Therapy, University of California, San Diego, La Jolla, CA, USA; Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Shumei Kato
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA; Center for Personalized Cancer Therapy, University of California, San Diego, La Jolla, CA, USA; Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Razelle Kurzrock
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA; WIN Consortium, Paris, France; University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
9
|
Mustață ML, Ionescu M, Radu L, Neagoe CD, Ahrițculesei RV, Cîmpeanu RC, Matei D, Amzolini AM, Predoi MC, Ianoși SL. The Role of Metabolic Syndrome in Psoriasis Treatment Response: A One-Year Comparative Analysis of PASI Progression. Diagnostics (Basel) 2024; 14:2887. [PMID: 39767248 PMCID: PMC11675552 DOI: 10.3390/diagnostics14242887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Psoriasis is a chronic dermatological condition with systemic implications, especially with metabolic syndrome (MS). This study evaluated the vicious cycle where obesity and MS exacerbate systemic inflammation that complicates the efficacy of psoriasis therapies by examining the PASI score over a one-year period. Patients were classified into two subgroups: those with psoriasis alone (PSO) and those with both psoriasis and metabolic syndrome (PSO-MS). METHODS A total of 150 patients, half of whom also concomitantly presented with metabolic syndrome, received biologic therapies comprising anti-IL-17, anti-IL-23, and anti-TNF-a, or methotrexate, with PASI scores assessed at baseline and at 3, 6, and 12 months. RESULTS All treatments showed significant reductions in PASI; however, patients with PSO showed more marked reductions in PASI score than those in the PSO-MS group. Anti-IL-17 treatments produced the greatest sustained long-term improvements, whereas anti-IL-23 produced prompt early improvements. Increases in BMI and leptin concentrations were associated with a modest rate of reduction in PASI score, underlining the impact of obesity and metabolic dysfunction on treatment efficacy. CONCLUSIONS This study highlights the importance of managing comorbidities such as MS in the treatment of psoriasis, as the interplay between systemic inflammation and metabolic health further complicates therapeutic outcomes.
Collapse
Affiliation(s)
- Maria-Lorena Mustață
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.-L.M.); (R.-V.A.); (R.-C.C.)
| | - Mihaela Ionescu
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Lucrețiu Radu
- Department of Hygiene, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Carmen-Daniela Neagoe
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Roxana-Viorela Ahrițculesei
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.-L.M.); (R.-V.A.); (R.-C.C.)
| | - Radu-Cristian Cîmpeanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.-L.M.); (R.-V.A.); (R.-C.C.)
| | - Daniela Matei
- Department of Physical and Rehabilitation Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Anca-Maria Amzolini
- Department of Internal Medicine, Medical Semiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Maria-Cristina Predoi
- Department of Morphology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Simona-Laura Ianoși
- Department of Dermatology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
10
|
Lee ST, Lee JY, Kim HE, Park JY, Choi JK. Limonin Exhibits Anti-Inflammatory Effects by Inhibiting mTORC1 and Mitochondrial Reactive Oxygen Species in Psoriatic-like Skin Inflammation. Antioxidants (Basel) 2024; 13:1541. [PMID: 39765869 PMCID: PMC11727202 DOI: 10.3390/antiox13121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025] Open
Abstract
Psoriasis is a chronic inflammatory skin disorder characterized by abnormal immune responses and keratinocyte hyperproliferation. Limonin, a bioactive compound found in citrus fruits, has anti-inflammatory properties in various models; however, its effects on psoriasis are not fully understood. We investigated the therapeutic potential of limonin in a 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced psoriasis mouse model. Mice were treated with TPA to induce psoriasis-like skin lesions, followed by intraperitoneal administration of limonin (200 or 400 μg/mouse) for six days. The results showed that limonin improved psoriasis-related symptoms in a psoriasis-like mouse model by suppressing the mRNA expression of pro-inflammatory cytokines and inflammation-related antimicrobial peptides and regulating the expansion of myeloid cells and T cells. Specifically, limonin reduced glucose uptake and oxidative phosphorylation to shift the metabolic program in the inflamed skin cells of psoriasis-like mice. Limonin activates AMPK and proteins related to mTOR inhibition, thereby suppressing the mTOR signaling pathway. It also inhibits mitochondrial mass and mitochondrial ROS production, thereby preventing the development of dysfunctional mitochondria in inflamed skin cells. Overall, limonin modulates key immune responses and metabolic pathways related to inflammation and mitochondrial health in psoriasis. Therefore, it is a promising natural candidate for the treatment of psoriasis and various inflammatory skin diseases.
Collapse
Affiliation(s)
- Seung Taek Lee
- Department of Immunology, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (S.T.L.); (J.Y.L.); (H.E.K.)
| | - Jong Yeong Lee
- Department of Immunology, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (S.T.L.); (J.Y.L.); (H.E.K.)
| | - Ha Eun Kim
- Department of Immunology, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (S.T.L.); (J.Y.L.); (H.E.K.)
| | - Jun-Young Park
- Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jin Kyeong Choi
- Department of Immunology, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (S.T.L.); (J.Y.L.); (H.E.K.)
- Biomedical Research Institute of Jeonbuk National University Hospital, Institute for Medical Sciences, Jeonbuk National University, Jeonju 54907, Republic of Korea
| |
Collapse
|
11
|
Sherri A, Mortada MM, Makowska J, Sokolowska M, Lewandowska-Polak A. Understanding the interplay between psoriatic arthritis and gout: "Psout". Rheumatol Int 2024; 44:2699-2709. [PMID: 39441397 PMCID: PMC11618146 DOI: 10.1007/s00296-024-05729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The interplay between Psoriatic arthritis and Gout is a current diagnostic challenge faced by many physicians and researchers. We aimed at reviewing the coexistence of gout and its features such as hyperuricemia and deposition of monosodium urate crystals in patients with psoriatic arthritis (PsA). We also focused on a brief presentation of the pathophysiology underneath the interplay between PsA and gout, and ultimately on recommendation of approaches for the differential diagnosis. The literature search for this narrative review was conducted using PubMed and Medline and after retrieving and screening the references, articles were selected according to the inclusion and exclusion criteria. Part of the assessed studies reported the coexistence of PsA and gout (Psout) and its association with several clinical outcomes among affected patients. Other studies stressed incidences of misdiagnosis of gout with PsA and vice versa. Additionally, the presence of hyperuricemia in PsA patients could interfere with the patient's characteristics and outcomes of their treatment. Further research on the assessment and clinical course of Psout is required to develop an official protocol for its diagnosis and treatment.
Collapse
Affiliation(s)
- Alaa Sherri
- Department of Rheumatology, Medical University of Lodz, Lodz, Poland.
- Department of Immune Metabolism, Swiss Institute of Asthma and Allergy Research (SIAF), Davos, Switzerland.
| | | | - Joanna Makowska
- Department of Rheumatology, Medical University of Lodz, Lodz, Poland
| | - Milena Sokolowska
- Department of Immune Metabolism, Swiss Institute of Asthma and Allergy Research (SIAF), Davos, Switzerland
| | | |
Collapse
|
12
|
Han L, Gan Y, Du J, Hu Y, Chen Y, Huang Q, Zhang Z, Yawalkar N, Yan K, Wang Z. Evaluation of β2-microglobulin in the condition and prognosis of psoriasis patients. J DERMATOL TREAT 2024; 35:2377665. [PMID: 39069294 DOI: 10.1080/09546634.2024.2377665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Numerous studies have linked the inflammatory pathway in psoriasis and metabolic disease, while no specific marker defined it. It is worth exploring the association of β2-microglobulin (β2M) in psoriasis severity and comorbidities. OBJECTIVES To investigate the correlation between blood β2M level and psoriasis severity, to explore the inflammatory factors influencing the occurrence of psoriasis comorbidities such as arthritis, diabetes, and hypertension. METHODS Ninety-seven psoriasis patients were analyzed in the cohort retrospective study during 12 weeks. RESULTS Significantly higher levels of blood β2M and ESR were observed in the group that patients' PASI ≥10 than in the group that PASI <10. Blood β2M level had strong significantly positive correlations with the PASI in Pearson's correlation analysis. In the model that systemic inflammatory factors to find psoriasis comorbidity risk factors, logistic regression analysis showed that blood β2M level was the significant risk factor associated with diabetes and hypertension. High-sensitivity C-reactive protein (hsCRP) was the significant risk factor associated with arthritis. CONCLUSIONS Patients with a severer psoriasis tended to have higher blood β2M levels and severer inflammatory state. In the systemic inflammation indexes, the level of blood β2M affected the risk of hypertension and diabetes, and hsCRP affected the risk of arthritis in patients with psoriasis.
Collapse
Affiliation(s)
- Ling Han
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Yixiao Gan
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Juan Du
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Yao Hu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanwen Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiong Huang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Zhenghua Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Nikhil Yawalkar
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kexiang Yan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, PR China
| | - Zhicheng Wang
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Jain H, Jain J, Dey D, Modi R, Alomari O, Ahmed M, Singh J, Odat RM, Ahmed R, Nashwan AJ. Subclinical Myocardial Dysfunction Assessment Using Speckle Tracking Echocardiography in Patients With Psoriasis: A Pilot Meta-Analysis. Clin Cardiol 2024; 47:e70047. [PMID: 39660694 PMCID: PMC11632626 DOI: 10.1002/clc.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 11/03/2024] [Indexed: 12/12/2024] Open
Abstract
INTRODUCTION Psoriasis is a systemic inflammatory disease associated with elevated cardiovascular risk due to inflammatory and oxidative stress. Two-dimensional speckle-tracking echocardiography (2D-STE) can detect both regional and global myocardial strain. Impairment of ventricular strain can assist in the early detection of myocardial dysfunction. Subclinical myocardial dysfunction in psoriasis has not yet been elucidated with inconsistent results. METHODS A systematic literature search of various databases was conducted to identify studies comparing global longitudinal strain (GLS) and global circumferential strain (GCS) between patients with psoriasis and healthy controls. Standardized mean differences (SMD) with 95% confidence intervals (CI) were pooled using the inverse-variance random-effects model in Review Manager Software Version 5.4.1. RESULTS Eleven studies with 879 participants (501 patients with psoriasis and 378 healthy controls) were included. Psoriasis was associated with a statistically significant reduction in GLS [SMD: -1.04; 95% CI: -1.45, -0.62; p < 0.00001] and GCS [SMD: -0.66; 95% CI: -1.27, -0.05; p = 0.03] compared to healthy controls. CONCLUSION This study demonstrated that patients with psoriasis are at an elevated risk of subclinical myocardial dysfunction, as shown by the reduced GLS and GCS. Early assessment of subclinical impairment in psoriasis will allow targeted intervention and may mitigate future adverse cardiovascular events. Prospective studies with larger sample sizes are warranted to validate these results.
Collapse
Affiliation(s)
- Hritvik Jain
- Department of Internal MedicineAll India Institute of Medical Sciences (AIIMS)JodhpurIndia
| | - Jyoti Jain
- Department of Internal MedicineAll India Institute of Medical Sciences (AIIMS)JodhpurIndia
| | - Debankur Dey
- Department of Internal MedicineMedical College and HospitalKolkataIndia
| | - Rishika Modi
- Department of Internal MedicineGovernment Medical CollegeNagpurIndia
| | - Omar Alomari
- Department of Internal MedicineHamidiye International Faculty of Medicine, University of Health SciencesIstanbulTurkey
| | - Mushood Ahmed
- Department of Internal MedicineRawalpindi Medical UniversityRawalpindiPakistan
| | - Jagjot Singh
- Department of Internal MedicineGovernment Medical CollegeAmritsarIndia
| | - Ramez M. Odat
- Department of Internal MedicineFaculty of Medicine, Jordan University of Science and TechnologyIrbidJordan
| | - Raheel Ahmed
- Department of CardiologyNational Heart and Lung Institute, Imperial College LondonLondonUK
| | - Abdulqadir J. Nashwan
- Department of Public HealthHamad Medical CorporationDohaQatar
- Department of Public HealthCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| |
Collapse
|
14
|
Renkhold L, Pereira MP, Loser K, Metze D, Baeumer D, Melzer N, Reinhardt M, Tsianakas A, Luger T, Mess C, Becker R, Hambüchen C, Agelopoulos K, Ständer S. Secukinumab Reduces Psoriasis-associated Pruritus and Regenerates the Cutaneous Nerve Architecture: Results from PSORITUS a Doubleblind, Placebo-controlled, Randomized Withdrawal Phase IIIb Study. Acta Derm Venereol 2024; 104:adv40737. [PMID: 39565228 PMCID: PMC11600607 DOI: 10.2340/actadv.v104.40737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
The occurrence of pruritus in psoriasis was previously underestimated but is a significant burden. Secukinumab (SEC), a monoclonal anti-interleukin-17A antibody, efficiently controls signs of psoriasis, but the effect on pruritus and cutaneous neuroanatomy remained unknown. The primary objective of this study (NCT02362789) was to evaluate the superiority of SEC treatment vs placebo on pruritus intensity (visual analogue scale; VAS). Furthermore, the treatment-dependent course of pruritus in association with absolute Psoriasis Area Severity Index (PASI) score, as well as cutaneous histopathology and neuroanatomy, was assessed. Open-label SEC 300 mg s.c. was administered regularly until week 16. Patients who reached a ≥ 98% PASI reduction (PASI ≥ 98) were randomized to receive either placebo or SEC up to week 32. Punch biopsies were collected from lesional psoriatic (baseline, weeks 16 and 32) and non-lesional (baseline) skin for histopathological and neuroanatomical analyses. VAS scores improved significantly after open-label SEC treatment but relapsed upon placebo (29.92 ± 33.8) compared with SEC (12.30 ± 22.6; p = 0.036). After SEC-dependent improvement in PASI, histopathology, marker expression and neuroanatomy, relapse was observed with treatment discontinuation in all parameters except neuroanatomy. SEC was superior to placebo by efficiently controlling reduced pruritus intensity, clinically normalizing skin lesions, and reversing histopathological abnormalities. The neuroanatomy recovered upon SEC and remained stable even after withdrawal.
Collapse
Affiliation(s)
- Lina Renkhold
- 1Department of Dermatology, University Hospital Münster, Münster, Germany; Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Manuel P Pereira
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Karin Loser
- Institute of Immunology, University of Oldenburg, Oldenburg, Germany
| | - Dieter Metze
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | | | | | | | | | - Thomas Luger
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Christian Mess
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ruth Becker
- 1Department of Dermatology, University Hospital Münster, Münster, Germany; Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Clara Hambüchen
- 1Department of Dermatology, University Hospital Münster, Münster, Germany; Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Konstantin Agelopoulos
- 1Department of Dermatology, University Hospital Münster, Münster, Germany; Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Sonja Ständer
- 1Department of Dermatology, University Hospital Münster, Münster, Germany; Center for Chronic Pruritus, University Hospital Münster, Münster, Germany.
| |
Collapse
|
15
|
Araki K, Maeda R. A Brief Chronicle of Antibody Research and Technological Advances. Antibodies (Basel) 2024; 13:90. [PMID: 39584990 PMCID: PMC11587137 DOI: 10.3390/antib13040090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
This review briefly traces the historical development of antibody research and related technologies. The path from early perceptions of immunity to the emergence of modern immunotherapy has been marked by pivotal discoveries and technological advances. Early insights into immunity led to the development of vaccination and serotherapy. The elucidation of antibody structure and function paved the way for monoclonal antibody technology and its application in diagnosis and therapy. Breakthroughs in genetic engineering have enabled the production of humanized antibodies and the advances in Fc engineering, thereby increasing therapeutic efficacy. The discovery of immune checkpoints and cytokines revolutionized the treatment of cancer and autoimmune diseases. The field continues to evolve rapidly with the advent of antibody-drug conjugates, bispecific antibodies, and CAR T-cell therapies. As we face global health challenges, antibody research remains at the forefront of medical innovation and offers promising solutions for the future.
Collapse
Affiliation(s)
- Kazutaka Araki
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (Operando-Oil), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan
| | - Ryota Maeda
- COGNANO Inc., 64-101 Kamitakano Higashiyama, Sakyo-ku, Kyoto 601-1255, Japan;
| |
Collapse
|
16
|
Daga N, Servaas NH, Kisand K, Moonen D, Arnold C, Reyes-Palomares A, Kaleviste E, Kingo K, Kuuse R, Ulst K, Steinmetz L, Peterson P, Nakic N, Zaugg JB. Integration of genetic and chromatin modification data pinpoints autoimmune-specific remodeling of enhancer landscape in CD4 + T cells. Cell Rep 2024; 43:114810. [PMID: 39388354 DOI: 10.1016/j.celrep.2024.114810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/16/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
CD4+ T cells play a crucial role in adaptive immune responses and have been implicated in the pathogenesis of autoimmune diseases (ADs). Despite numerous studies, the molecular mechanisms underlying T cell dysregulation in ADs remain incompletely understood. Here, we used chromatin immunoprecipitation (ChIP)-sequencing of active chromatin and transcriptomic data from CD4+ T cells of healthy donors and patients with systemic lupus erythematosus (SLE), psoriasis, juvenile idiopathic arthritis (JIA), and Graves' disease to investigate the role of enhancers in AD pathogenesis. By generating enhancer-based gene regulatory networks (eGRNs), we identified disease-specific dysregulated pathways and potential downstream target genes of enhancers harboring AD-associated single-nucleotide polymorphisms (SNPs), which we also validated using chromatin-capture (HiC) data and CRISPR interference (CRISPRi) in primary CD4+ T cells. Our results suggest that alterations in the regulatory landscapes of CD4+ T cells, including enhancers, contribute to the development of ADs and provide a basis for developing new therapeutic approaches.
Collapse
Affiliation(s)
- Neha Daga
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nila H Servaas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Dewi Moonen
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christian Arnold
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Armando Reyes-Palomares
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Epp Kaleviste
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Külli Kingo
- Department of Dermatology and Venerology, Faculty of Medicine, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia and Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Reet Kuuse
- Department of Internal Medicine, Tartu University Hospital, Tartu, Estonia
| | - Katrin Ulst
- Department of Internal Medicine, Tartu University Hospital, Tartu, Estonia
| | - Lars Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Nikolina Nakic
- Functional Genomics, Medicinal Science and Technology, GSK R&D, Stevenage, UK
| | - Judith B Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
17
|
Masuda-Kuroki K, Alimohammadi S, Lowry S, Di Nardo A. Sphingosine 1-phosphate receptor 2 in keratinocytes plays a key role in reducing inflammation in psoriasis. Front Immunol 2024; 15:1469829. [PMID: 39391307 PMCID: PMC11464331 DOI: 10.3389/fimmu.2024.1469829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Background Psoriasis is an inflammatory skin condition where immune cells play a significant role. The importance of the cross-talk between keratinocytes and immune cells in the pathogenesis of psoriasis has recently been reaffirmed. Recent studies have found that several S1PR functional antagonists, other than S1PR2, are effective in improving psoriasis. This study aims to investigate the role of S1PR2 in psoriasis, that has not been investigated before. Methods Spatial transcriptomics, RT-qPCR, and flow cytometry were used to map the immune cell landscape and its association with metabolic pathways in an imiquimod (IMQ)-induced psoriasis-like inflammation in S1pr2fl/fl K14-Cre mice that could not sense sphingosine-1-phosphate (S1P) in the epidermis through the S1PR2 receptor. Results Our analysis suggests that S1PR2 in keratinocytes plays a major role in psoriasis-like inflammation compared to other S1PRs. It acts as a down-regulator, inhibiting the recruitment of Th17 cells into the skin. In IMQ-induced psoriasis skin, both S1pr2-/- and S1pr2fl/fl K14-Cre mice showed higher expressions of proinflammatory cytokines such as TNF-α, IL-17A, and IL-1β together with higher expressions of MyD88/NF-κB pathway compared to the wild-type mice. Remarkably, in IMQ-treated mice, the deletion of S1pr2 in keratinocytes only resulted in a larger population of Th17 cells in skin-draining lymph nodes. Other S1PR modulators did not improve the worsening of psoriasis-like inflammation caused by S1PR2 deficiency in keratinocytes. Conclusion This study reaches two main conclusions: signals from keratinocytes play a central role in creating an immune environment that promotes the development of psoriasis, and stimulating S1PR2, instead of suppressing it, represents a potential therapeutic approach for psoriasis.
Collapse
Affiliation(s)
| | | | | | - Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
18
|
Blauvelt A, Langley RG, Branigan PJ, Liu X, Chen Y, DePrimo S, Ma K, Scott B, Campbell K, Muñoz-Elías EJ, Papp KA. Guselkumab Reduces Disease- and Mechanism-Related Biomarkers More Than Adalimumab in Patients with Psoriasis: A VOYAGE 1 Substudy. JID INNOVATIONS 2024; 4:100287. [PMID: 39114670 PMCID: PMC11305298 DOI: 10.1016/j.xjidi.2024.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 08/10/2024] Open
Abstract
Background Psoriasis is an immune-mediated inflammatory disease characterized by activation of IL-23-driven IL-17-producing T cell and other IL-23 receptor-positive IL-17-producing cell responses. Selective blockade of IL-23p19 with guselkumab was superior to blockade of TNF-α with adalimumab (ADA) in treating moderate-to-severe psoriasis. Objective: Pharmacodynamic responses of guselkumab versus ADA were compared in patients with psoriasis in VOYAGE 1. Design Inflammatory cytokine serum levels were assessed (n = 118), and lesional and nonlesional skin biopsies were collected (n = 38) in patient subsets at baseline and 4, 24, and 48 weeks after treatment to evaluate pharmacodynamic responses of guselkumab versus those of ADA. Results Guselkumab provided rapid reductions in serum IL-17A, IL-17F, and IL-22 levels by week 4 versus at baseline, which were maintained through weeks 24 and 48 (P < .001). The magnitude of reduction of IL-17A and IL-22 at week 48 and IL-17F at weeks 4, 24, and 48 were greater with guselkumab than with ADA (all P < .05). In the skin, guselkumab reduced the expression of IL-23/IL-17 pathway-associated and psoriasis-associated genes. Conclusion These data provide extensive characterization of pharmacodynamic anti-inflammatory responses to IL-23p19 and TNF-α inhibition in human blood and tissue over time with FDA-approved doses of guselkumab and ADA. Trial registration:ClinicalTrials.govClinicalTrials.gov (NCT02207231).
Collapse
Affiliation(s)
| | - Richard G. Langley
- Division of Dermatology, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Patrick J. Branigan
- Immunology, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Xuejun Liu
- Immunology, Janssen Research & Development, LLC, San Diego, California, USA
| | - Yanqing Chen
- Immunology, Janssen Research & Development, LLC, San Diego, California, USA
| | - Samuel DePrimo
- Immunology, Janssen Research & Development, LLC, San Diego, California, USA
| | - Keying Ma
- Immunology, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Brittney Scott
- Immunology, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Kim Campbell
- Immunology, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | | - Kim A. Papp
- K. Papp Alliance Clinical Trials and Probity Medical Research, Waterloo, ON, Canada
- University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Zhou Y, Gong J, Deng X, Shen L, Liu L. Novel insights: crosstalk with non-puerperal mastitis and immunity. Front Immunol 2024; 15:1431681. [PMID: 39148739 PMCID: PMC11324573 DOI: 10.3389/fimmu.2024.1431681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
The two primary types of non-puerperal mastitis (NPM) are granulomatous lobular mastitis (GLM) and plasma cell mastitis (PCM). Existing research indicates that immune inflammatory response is considered to be the core of the pathogenesis of GLM and PCM, and both innate and adaptive immune responses play an important role in the pathophysiology of PCM and GLM. However, the regulatory balance between various immune cells in these diseases is still unclear. Consequently, we present a comprehensive summary of the immune-related variables and recent advances in GLM and PCM.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jie Gong
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xianguang Deng
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lele Shen
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lifang Liu
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
20
|
Povoleri GAM, Ridley ML, Marrow RJ, Lalnunhlimi S, Ryan SE, Kelly A, Lavender P, Taams LS. Identification of a transcription factor network regulating anti-TNF mediated IL10 expression in human CD4+ T cells. DISCOVERY IMMUNOLOGY 2024; 3:kyae013. [PMID: 39290825 PMCID: PMC11407445 DOI: 10.1093/discim/kyae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024]
Abstract
CD4+ T cells are key players in immune-mediated inflammatory diseases (IMIDs) through the production of inflammatory mediators including tumour necrosis factor (TNF). Anti-TNF therapy has revolutionized the treatment of several IMIDs and we previously demonstrated that in vitro treatment of human CD4+ T cells with anti-TNF promotes anti-inflammatory IL-10 expression in multiple subpopulations of CD4+ T cells. Here we investigated the transcriptional mechanisms underlying the IL-10 induction by TNF-blockade in CD4+ T cells, isolated from PBMCs of healthy volunteers, stimulated in vitro for 3 days with anti-CD3/CD28 mAb in the absence or presence of anti-TNF. After culture, CD45RA+ cells were depleted before performing gene expression profiling and chromatin accessibility analysis. Gene expression analysis of CD45RA-CD4+ T cells showed a distinct anti-TNF specific gene signature of 183 genes (q-value < 0.05). Pathway enrichment analysis of differentially expressed genes revealed multiple pathways related to cytokine signalling and regulation of cytokine production; in particular, IL10 was the most upregulated gene by anti-TNF, while the proinflammatory cytokines and chemokines IFNG, IL9, IL22, and CXCL10 were significantly downregulated (q-value < 0.05). Transcription factor motif analysis at the differentially open chromatin regions, after anti-TNF treatment, revealed 58 transcription factor motifs enriched at the IL10 locus. We identified seven transcription factor candidates for the anti-TNF mediated regulation of IL-10, which were either differentially expressed or whose locus was differentially accessible upon anti-TNF treatment. Correlation analysis between the expression of these transcription factors and IL10 suggests a role for MAF, PRDM1, and/or EOMES in regulating IL10 expression in CD4+ T cells upon anti-TNF treatment.
Collapse
Affiliation(s)
- Giovanni A M Povoleri
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Michael L Ridley
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Rebecca J Marrow
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Sylvine Lalnunhlimi
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Sarah E Ryan
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Audrey Kelly
- King's Centre for Lung Health, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Paul Lavender
- King's Centre for Lung Health, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Leonie S Taams
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| |
Collapse
|
21
|
Lei L, Feng S. Immune interplay from circulation to local lesion in pemphigus pathogenesis. J Autoimmun 2024; 147:103261. [PMID: 38797047 DOI: 10.1016/j.jaut.2024.103261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Pemphigus, a potentially lethal autoimmune skin disease, is mediated by desmoglein-specific antibodies, manifesting cutaneous and mucosal blisters and erosions. The interaction between multiple immune counterparts contributes to the progress of pemphigus. Currently, the emergence of bioinformatic analysis enables investigators to gain a global picture of the pemphigus immune network, based on the exhaustive pedigree annotation of multiple subsets. T helper subsets dominate the landscape as mentioned previously, and innate immune cells have been involved as well. Of particular interests is which phenotype of T cells orchestrates the autoimmune process and chronic inflammation in a certain condition. In this review, the circulatory and peripheral immune cells and cytokine components constituting the immune microenvironment are separately discussed to provide a perspective on pemphigus pathogenesis, with particular reference to insights provided by the bioinformation technique.
Collapse
Affiliation(s)
- Li Lei
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - SuYing Feng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
22
|
Alsabbagh MM. Cytokines in psoriasis: From pathogenesis to targeted therapy. Hum Immunol 2024; 85:110814. [PMID: 38768527 DOI: 10.1016/j.humimm.2024.110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Psoriasis is a multifactorial disease that affects 0.84% of the global population and it can be associated with disabling comorbidities. As patients present with thick scaly lesions, psoriasis was long believed to be a disorder of keratinocytes. Psoriasis is now understood to be the outcome of the interaction between immunological and environmental factors in individuals with genetic predisposition. While it was initially thought to be solely mediated by cytokines of type-1 immunity, namely interferon-γ, interleukin-2, and interleukin-12 because it responds very well to cyclosporine, a reversible IL-2 inhibitor; the discovery of Th-17 cells advanced the understanding of the disease and helped the development of biological therapy. This article aims to provide a comprehensive review of the role of cytokines in psoriasis, highlighting areas of controversy and identifying the connection between cytokine imbalance and disease manifestations. It also presents the approved targeted treatments for psoriasis and those currently under investigation.
Collapse
Affiliation(s)
- Manahel Mahmood Alsabbagh
- Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders and Department of Molecular Medicine, Arabian Gulf University, Manama, Bahrain.
| |
Collapse
|
23
|
Ramos R, Swedlund B, Ganesan AK, Morsut L, Maini PK, Monuki ES, Lander AD, Chuong CM, Plikus MV. Parsing patterns: Emerging roles of tissue self-organization in health and disease. Cell 2024; 187:3165-3186. [PMID: 38906093 PMCID: PMC11299420 DOI: 10.1016/j.cell.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/22/2024] [Accepted: 05/08/2024] [Indexed: 06/23/2024]
Abstract
Patterned morphologies, such as segments, spirals, stripes, and spots, frequently emerge during embryogenesis through self-organized coordination between cells. Yet, complex patterns also emerge in adults, suggesting that the capacity for spontaneous self-organization is a ubiquitous property of biological tissues. We review current knowledge on the principles and mechanisms of self-organized patterning in embryonic tissues and explore how these principles and mechanisms apply to adult tissues that exhibit features of patterning. We discuss how and why spontaneous pattern generation is integral to homeostasis and healing of tissues, illustrating it with examples from regenerative biology. We examine how aberrant self-organization underlies diverse pathological states, including inflammatory skin disorders and tumors. Lastly, we posit that based on such blueprints, targeted engineering of pattern-driving molecular circuits can be leveraged for synthetic biology and the generation of organoids with intricate patterns.
Collapse
Affiliation(s)
- Raul Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Benjamin Swedlund
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anand K Ganesan
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA; Department of Dermatology, University of California, Irvine, Irvine, CA, USA
| | - Leonardo Morsut
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Philip K Maini
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Edwin S Monuki
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA; Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Arthur D Lander
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
24
|
Rasool M, Srikanth M, Rithvik A. 3,3'-Diindolylmethane inhibits Th17 cell differentiation via impairing IRF-7-mediated plasmacytoid dendritic cell activation in imiquimod-induced psoriasis mice. In Vitro Cell Dev Biol Anim 2024; 60:678-688. [PMID: 38602626 DOI: 10.1007/s11626-024-00901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
Psoriasis is a paradigmatic condition characterised by a heightened autoimmune response and chronic inflammation. However, the exact nature and the pathological causes behind it are still unknown. Growing evidence suggest dysregulated cytokine network as a result of over-activated T cells and plasmacytoid dendritic cells (pDCs) as the critical drivers in the development of psoriasis. In the present study, we aimed to investigate the therapeutic efficacy of 3,3'-diindolylmethane (DIM) on pDC activation and Th17 cell development in imiquimod (IMQ)-induced psoriasis mice. Our in vitro research investigated the IRF-7 signalling in pDCs that explained the reduced expression of the transcription factor IRF-7 responsible for pDC activation as a result of DIM treatment. Concurrently, DIM treatment decreased the release of Th17 cell polarising cytokines (IFN-α, IL-23, and IL-6) by pDCs which validated a reduction in differentiated pathogenic Th17 cell population and associated cytokine IL-17A in IMQ-induced psoriatic mice. Thus, our recent findings provide therapeutic evidence in targeting the early potential contributors for psoriasis treatment by preventing IRF-7-mediated pDC activation and Th17 cell development in IMQ-induced psoriasis mice.
Collapse
Affiliation(s)
- Mahaboobkhan Rasool
- SMV 240, Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India.
| | - Manupati Srikanth
- SMV 240, Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India
| | - Arulkumaran Rithvik
- SMV 240, Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India
| |
Collapse
|
25
|
Song J, Kim HK, Cho H, Yoon SJ, Lim J, Lee K, Hwang ES. TAZ deficiency exacerbates psoriatic pathogenesis by increasing the histamine-releasing factor. Cell Biosci 2024; 14:60. [PMID: 38734624 PMCID: PMC11088771 DOI: 10.1186/s13578-024-01246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Transcriptional coactivator with PDZ-biding motif (TAZ) is widely expressed in most tissues and interacts with several transcription factors to regulate cell proliferation, differentiation, and death, thereby influencing organ development and size control. However, very little is known about the function of TAZ in the immune system and its association with inflammatory skin diseases, so we investigated the role of TAZ in the pathogenesis of psoriasis. RESULTS Interestingly, TAZ was expressed in mast cells associated, particularly in lysosomes, and co-localized with histamine-releasing factor (HRF). TAZ deficiency promoted mast cell maturation and increased HRF expression and secretion by mast cells. The upregulation of HRF in TAZ deficiency was not due to increased transcription but to protein stabilization, and TAZ restoration into TAZ-deficient cells reduced HRF protein. Interestingly, imiquimod (IMQ)-induced psoriasis, in which HRF serves as a major pro-inflammatory factor, was more severe in TAZ KO mice than in WT control. HRF expression and secretion were increased by IMQ treatment and were more pronounced in TAZ KO mice treated with IMQ. CONCLUSIONS Thus, as HRF expression was stabilized in TAZ KO mice, psoriatic pathogenesis progressed more rapidly, indicating that TAZ plays an important role in preventing psoriasis by regulating HRF protein stability.
Collapse
Affiliation(s)
- Jiseo Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Hyunsoo Cho
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Suh Jin Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Jihae Lim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Kyunglim Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
26
|
Akadam-Teker AB, Akşan B. Association of IL-17F rs763780 polymorphism and risk of psoriasis in Turkish population: a case-control study. An Bras Dermatol 2024; 99:357-361. [PMID: 38331704 DOI: 10.1016/j.abd.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/18/2023] [Accepted: 06/18/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Psoriasis represents a chronic inflammatory phenotype shaped by genetic interactions, characterized by keratinocyte hyperproliferation and commonly affecting the skin and joints. Experimental and clinical studies suggest that the IL-17F gene locus plays a role as a central cytokine in the immunopathogenesis of psoriasis. OBJECTIVES Based on the central role of IL-17F in the pathogenesis of psoriasis, the authors thought that variations in this gene could affect the susceptibility and severity of this disease. Therefore, in this study, the authors aimed to analyze whether the IL-17F rs763780 variant has an effect on psoriasis pathogenesis in the Turkish population. METHOD In this case-control study, the study group consisted of 603 people (201 psoriasis patients (73 males/128 females)/402 controls (146 males/256 females) were genotyped in terms of IL-17F rs763780 polymorphism with TaqMan 5' Allelic Discrimination Test. RESULTS The genotype distributions of the IL-17F rs763780 polymorphism between patients and control groups were statistically different, and the TC (heterozygous genotype) and CC (homozygous mutant genotype) genotypes were more represented in the patients group than in the control group (24.9% vs. 10.2%; 2.0% vs. 0.2%, respectively). In addition, the variant C allele was higher in the patients group and this was statistically significant (p < 0.001), and the C allele carriage was associated with a 3.14-fold increased risk of psoriasis (95% CI 2.015‒24.921). STUDY LIMITATIONS The present study has some limitations. The first limitation is the relatively small sample size. The second limitation is that the authors could not measure IL-17F expression levels. However, the present study data draw attention to the importance of IL-17F which deserves to be studied in a larger sample group. CONCLUSION We report that IL-17F rs763780 TC and CC genotype and C allele are associated with an increased risk of psoriasis in the Turkish population.
Collapse
Affiliation(s)
| | - Burak Akşan
- Department of Skin Diseases, Giresun University, Faculty of Medicine, Giresun, Turkey
| |
Collapse
|
27
|
Ye JH, Chen YL, Ogg G. CD1a and skin T cells: a pathway for therapeutic intervention. Clin Exp Dermatol 2024; 49:450-458. [PMID: 38173286 PMCID: PMC11037390 DOI: 10.1093/ced/llad460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
The CD1 and MR1 protein families present lipid antigens and small molecules to T cells, complementing well-studied major histocompatibility complex-peptide mechanisms. The CD1a subtype is highly and continuously expressed within the skin, most notably on Langerhans cells, and has been demonstrated to present self and foreign lipids to T cells, highlighting its cutaneous sentinel role. Alteration of CD1a-dependent T-cell responses has recently been discovered to contribute to the pathogenesis of several inflammatory skin diseases. In this review, we overview the structure and role of CD1a and outline the current evidence implicating CD1a in the development of psoriasis, atopic dermatitis and allergic contact dermatitis.
Collapse
Affiliation(s)
- John H Ye
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yi-Ling Chen
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Graham Ogg
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Swaroop AK, Negi P, Kar A, Mariappan E, Natarajan J, Namboori P K K, Selvaraj J. Navigating IL-6: From molecular mechanisms to therapeutic breakthroughs. Cytokine Growth Factor Rev 2024; 76:48-76. [PMID: 38220583 DOI: 10.1016/j.cytogfr.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
This concise review navigates the intricate realm of Interleukin-6 (IL-6), an important member of the cytokine family. Beginning with an introduction to cytokines, this narrative review unfolds with the historical journey of IL-6, illuminating its evolving significance. A crucial section unravels the three distinct signaling modes employed by IL-6, providing a foundational understanding of its versatile interactions within cellular landscapes. Moving deeper, the review meticulously dissects IL-6's signaling mechanisms, unraveling the complexities of its pleiotropic effects in both physiological responses and pathological conditions. A significant focus is dedicated to the essential role IL-6 plays in inflammatory diseases, offering insights into its associations and implications for various health conditions. The review also takes a therapeutic turn by exploring the emergence of anti-IL-6 monoclonal inhibitors, marking a profound stride in treatment modalities. Diving into the molecular realm, the review explores small molecules as agents for IL-6 inhibition, providing a nuanced perspective on diverse intervention strategies. As the review embarks on the final chapters, it contemplates future aspects, offering glimpses into potential research trajectories and the evolving landscape of IL-6-related studies.
Collapse
Affiliation(s)
- Akey Krishna Swaroop
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Preeya Negi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Ayushi Kar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Esakkimuthukumar Mariappan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Jawahar Natarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Krishnan Namboori P K
- Amrita Molecular Modeling and Synthesis (AMMAS) Research lab, Amrita Vishwavidyapeetham, Amrita Nagar, Ettimadai, Coimbatore, Tamil Nadu, India
| | - Jubie Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India.
| |
Collapse
|
29
|
Wang Y, Zhao N, Meng Y, Chen J, Qi C, Hu X, Zhu H, Yang D, Zhang X, Ma H, Zhao J, Di T, Li P, Wang Y. Bcat2-Mediated Branched-Chain Amino Acid Catabolism Is Linked to the Aggravated Inflammation in Obese with Psoriasis Mice. Mol Nutr Food Res 2024; 68:e2300720. [PMID: 38581348 DOI: 10.1002/mnfr.202300720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Indexed: 04/08/2024]
Abstract
SCOPE The global prevalence of obesity has significantly increased, presenting a major health challenge. High-fat diet (HFD)-induced obesity is closely related to the disease severity of psoriasis, but the mechanism is not fully understood. METHODS AND RESULTS The study utilizes the HFD-induced obesity model along with an imiquimod (IMQ)-induced psoriasis-like mouse model (HFD-IMQ) to conduct transcriptomics and metabolomic analyses. HFD-induced obese mice exhibits more severe psoriasis-like lesions compared to normal diet (ND)-IMQ mice. The expression of genes of the IL-17 signaling pathway (IL-17A, IL-17F, S100A9, CCL20, CXCL1) is significantly upregulated, leading to an accumulation of T cells and neutrophils in the skin. Moreover, the study finds that there is an inhibition of the branched-chain amino acids (BCAAs) catabolism pathway, and the key gene branched-chain amino transferase 2 (Bcat2) is significantly downregulated, and the levels of leucine, isoleucine, and valine are elevated in the HFD-IMQ mice. Furthermore, the study finds that the peroxisome proliferator-activated receptor gamma (PPAR γ) is inhibited, while STAT3 activity is promoted in HFD-IMQ mice. CONCLUSION HFD-induced obesity significantly amplifies IL-17 signaling and exacerbates psoriasis, with a potential role played by Bcat2-mediated BCAAs metabolism. The study suggests that BCAA catabolism and PPAR γ-STAT3 exacerbate inflammation in psoriasis with obesity.
Collapse
Affiliation(s)
- Yazhuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Capital Medical University, Beijing, 100069, China
| | - Ning Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Capital Medical University, Beijing, 100069, China
| | - Yujiao Meng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| | - Jia Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cong Qi
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| | - Xueqing Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| | - Haoyue Zhu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Capital Medical University, Beijing, 100069, China
| | - Danyang Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Capital Medical University, Beijing, 100069, China
| | - Xiawei Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Capital Medical University, Beijing, 100069, China
| | - Huike Ma
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
- Capital Medical University, Beijing, 100069, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| | - Tingting Di
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| | - Yan Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional, Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, 100010, China
| |
Collapse
|
30
|
Song Q, Qi Z, Wang K, Wang N. Z-nucleic acid sensor ZBP1 in sterile inflammation. Clin Immunol 2024; 261:109938. [PMID: 38346464 DOI: 10.1016/j.clim.2024.109938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Z-DNA binding protein 1 (ZBP1), a cytosolic nucleic acid sensor for Z-form nucleic acids (Z-NA), can detect both exogenous and endogenous nucleic acids. Upon sensing of self Z-NA or exposure to diverse noxious stimuli, ZBP1 regulates inflammation by activating nuclear factor kappa B and interferon regulating factor 3 signaling pathways. In addition, ZBP1 promotes the assembly of ZBP1 PANoptosome, which initiates caspase 3-mediated apoptosis, mixed lineage kinase domain like pseudokinase (MLKL)-mediated necroptosis, and gasdermin D (GSDMD)-mediated pyroptosis (PANoptosis), leading to the release of various damage-associated molecular patterns. Thereby, ZBP1 is implicated in the development and progression of diverse sterile inflammatory diseases. This review outlines the expression, structure, and function of ZBP1, along with its dual roles in controlling inflammation and cell death to orchestrate innate immunity in sterile inflammation, especially autoimmune diseases, and cancers. ZBP1 has emerged as an attractive therapeutic target for various sterile inflammatory diseases.
Collapse
Affiliation(s)
- Qixiang Song
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Zehong Qi
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Kangkai Wang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China.
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China.
| |
Collapse
|
31
|
Yang J, Zhang S, Wu Q, Chen P, Dai Y, Long J, Wu Y, Lin Y. T cell-mediated skin-brain axis: Bridging the gap between psoriasis and psychiatric comorbidities. J Autoimmun 2024; 144:103176. [PMID: 38364575 DOI: 10.1016/j.jaut.2024.103176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Psoriasis, a chronic inflammatory skin condition, is often accompanied by psychiatric comorbidities such as anxiety, depression, suicidal ideation, and other mental disorders. Psychological disorders may also play a role in the development and progression of psoriasis. The intricate interplay between the skin diseases and the psychiatric comorbidities is mediated by the 'skin-brain axis'. Understanding the mechanisms underlying psoriasis and psychiatric comorbidities can help improve the efficacy of treatment by breaking the vicious cycle of diseases. T cells and related cytokines play a key role in the pathogenesis of psoriasis and psychiatric diseases, and are crucial components of the 'skin-brain axis'. Apart from damaging the blood-brain barrier (BBB) directly, T cells and secreted cytokines could interact with the hypothalamic-pituitary-adrenal axis (HPA axis) and the sympathetic nervous system (SNS) to exacerbate skin diseases or mental disorders. However, few reviews have systematically summarized the roles and mechanisms of T cells in the interaction between psoriasis and psychiatric comorbidities. In this review, we discussed several key T cells and their roles in the 'skin-brain axis', with a focus on the mechanisms underlying the interplay between psoriasis and mental commodities, to provide data that might help develop effective strategies for the treatment of both psoriasis and psychiatric comorbidities.
Collapse
Affiliation(s)
- Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qixuan Wu
- Mental Health Services, Blacktown Hospital, Blacktow, NSW, 2148, Australia
| | - Pu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yan Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yan Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
32
|
Sieminska I, Pieniawska M, Grzywa TM. The Immunology of Psoriasis-Current Concepts in Pathogenesis. Clin Rev Allergy Immunol 2024; 66:164-191. [PMID: 38642273 PMCID: PMC11193704 DOI: 10.1007/s12016-024-08991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Psoriasis is one of the most common inflammatory skin diseases with a chronic, relapsing-remitting course. The last decades of intense research uncovered a pathological network of interactions between immune cells and other types of cells in the pathogenesis of psoriasis. Emerging evidence indicates that dendritic cells, TH17 cells, and keratinocytes constitute a pathogenic triad in psoriasis. Dendritic cells produce TNF-α and IL-23 to promote T cell differentiation toward TH17 cells that produce key psoriatic cytokines IL-17, IFN-γ, and IL-22. Their activity results in skin inflammation and activation and hyperproliferation of keratinocytes. In addition, other cells and signaling pathways are implicated in the pathogenesis of psoriasis, including TH9 cells, TH22 cells, CD8+ cytotoxic cells, neutrophils, γδ T cells, and cytokines and chemokines secreted by them. New insights from high-throughput analysis of lesional skin identified novel signaling pathways and cell populations involved in the pathogenesis. These studies not only expanded our knowledge about the mechanisms of immune response and the pathogenesis of psoriasis but also resulted in a revolution in the clinical management of patients with psoriasis. Thus, understanding the mechanisms of immune response in psoriatic inflammation is crucial for further studies, the development of novel therapeutic strategies, and the clinical management of psoriasis patients. The aim of the review was to comprehensively present the dysregulation of immune response in psoriasis with an emphasis on recent findings. Here, we described the role of immune cells, including T cells, B cells, dendritic cells, neutrophils, monocytes, mast cells, and innate lymphoid cells (ILCs), as well as non-immune cells, including keratinocytes, fibroblasts, endothelial cells, and platelets in the initiation, development, and progression of psoriasis.
Collapse
Affiliation(s)
- Izabela Sieminska
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - Monika Pieniawska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Tomasz M Grzywa
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland.
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, USA.
| |
Collapse
|
33
|
Li J, Zhang J, Guo C, Lin P, Shen Q, Lin H, Zhang Y. Bibliometric analysis and description of research trends on T cells in psoriasis over the past two decades (2003-2022). Heliyon 2024; 10:e23542. [PMID: 38169994 PMCID: PMC10758876 DOI: 10.1016/j.heliyon.2023.e23542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Background It is now understood that T cells play a key role in the occurrence and development of psoriasis. Herein, a bibliometric analysis was conducted to summarize the content and trends of T cell-related research in psoriasis. Methods A bibliometric analysis was conducted on publications pertaining to T cells in psoriasis between 2003 and 2022 retrieved from the Web of Science Core Collection (WoSCC) database using tools such as CiteSpace, the Bibliometrix R package, and VOSviewer. Results The study included a total of 3595 articles authored by 14,188 individuals, including all coauthors in article bylines. The Laboratory for Investigative Dermatology at Rockefeller University, led by James G Krueger, has made significant contributions to this field through focusing on the pathogenesis of psoriasis and exploring the potential of using biological agents to treat psoriasis. Furthermore, targeted inhibitors have significantly impacted the treatment of psoriasis, with researchers focusing on small-molecule targeted drugs as a new area of research that could potentially replace biological agents. Conclusions Research has established the efficacy and long-term safety of targeted inhibition of T cell-related targets. Deucravacitinib, a psoriasis treatment drug targeting TYK2 as an allosteric inhibitor, has attracted significant attention and raised high expectations.
Collapse
Affiliation(s)
- Junchen Li
- Graduate school, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianfeng Zhang
- Graduate school, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenqi Guo
- Graduate school, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Lin
- Graduate school, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Shen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyue Lin
- Dermatology department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yu Zhang
- Dermatology department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
34
|
Kim HR, Lee SY, You GE, Park CW, Kim HO, Chung BY. Exosomes released by environmental pollutant-stimulated Keratinocytes/PBMCs can trigger psoriatic inflammation in recipient cells via the AhR signaling pathway. Front Mol Biosci 2024; 10:1324692. [PMID: 38288335 PMCID: PMC10822922 DOI: 10.3389/fmolb.2023.1324692] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/29/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction: Exosomes, pivotal in intercellular communication during skin disease pathogenesis, have garnered substantial attention. However, the impact of environmental pollutants, such as benzo[a]pyrene (BaP) and 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), on exosome release amid inflammatory skin diseases remains unexplored. This study addresses this gap by examining the influence of BaP and TCDD on exosome function, specifically focusing on immune-related pathway alterations in normal recipient keratinocytes and peripheral blood mononuclear cells (PBMCs). Methods: HaCaT cells were treated with exosomes from BaP- or TCDD-treated keratinocytes. Proinflammatory cytokines and chemokines, including TNF-α, IL-1β, IL-6, IL-8, CXCL1, and CXCL5, were assessed. The involvement of the p65NF-κB/p38MAPK/ERK signaling pathway in recipient keratinocytes was investigated. Aryl hydrocarbon receptor (AhR) silencing was employed to elucidate its role in mediating the proinflammatory response induced by exosomes from BaP- or TCDD-treated keratinocytes. Results and discussion: Treatment with exosomes from BaP- or TCDD-treated keratinocytes induced a significant increase in proinflammatory cytokines and chemokines in HaCaT cells. The upregulation implicated the p65NF-κB/p38MAPK/ERK signaling pathway. AhR silencing attenuated this response, suggesting a role for AhR in mediating this response. In PBMCs from healthy controls, exosomes from BaP-stimulated PBMCs of psoriatic patients led to increased expression of proinflammatory cytokines and modulation of Th1/Th17 cell distribution via AhR activation. These findings unveil a novel dimension in the interplay between environmental xenobiotic agents (BaP and TCDD) and exosomal functions. The study establishes their influence on psoriatic inflammatory responses, shedding light on the underlying mechanisms mediated through the AhR signaling pathway in recipient keratinocytes and PBMCs.
Collapse
Affiliation(s)
- Hye Ran Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Lee
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Ga Eun You
- Research and Development Institute, Biosolution, Seoul, Republic of Korea
| | - Chun Wook Park
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hye One Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Bo Young Chung
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
35
|
Arita K, Tao H, Crowe P, Thacher S, Otake S, Kobayashi K, Ebihara S, Okamoto Y, Katsuda Y, Yamaguchi T, Matsushita M. Pharmacological Properties of JTE-151; A Novel Orally Available RORγ Antagonist That Suppresses Th17 Cell-Related Responses in Vitro and in Vivo. Biol Pharm Bull 2024; 47:2050-2057. [PMID: 39675971 DOI: 10.1248/bpb.b24-00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Retinoid-related orphan receptor-γ (RORγ) is a nuclear receptor that plays important roles in the development and activation of T helper type-17 (Th17) cells. In this study, we characterized the pharmacological profile of JTE-151 ((4S)-6-[(2-chloro-4-methylphenyl)amino]-4-{4-cyclopropyl-5-[cis-3-(2,2-dimethylpropyl)cyclobutyl]isoxazol-3yl}-6-oxohexanoic acid), which is a novel RORγ antagonist identified by our group. JTE-151 dissociated co-activator peptide from the human RORγ-ligand binding domain (LBD) and recruited co-repressor peptide into human RORγ-LBD, and potently inhibited the transcriptional activity of RORγ of human, mouse and rat. JTE-151 also demonstrated high selectivity against other receptors in nuclear receptor family. JTE-151 suppressed the differentiation of mouse naïve CD4+ T cells into Th17 cells without affecting the differentiation of those cells into other CD4+ T cell subsets in vitro. In addition, JTE-151 inhibited the production of interleukin-17 (IL-17) but not interferon-γ (IFN-γ) and IL-4 from activated human helper T cells in vitro. Furthermore, treatment with JTE-151 suppressed the production of IL-17 in antigen-sensitized mice and ameliorated the severity of arthritis in mice with collagen-induced arthritis regardless of treatment start date. Based on these results, we reasoned that JTE-151 could serve as a novel therapeutic compound for various autoimmune diseases linked to Th17 cells, such as psoriasis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Kojo Arita
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | | | | | | | - Sho Otake
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | | | - Shin Ebihara
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | | | | | | | | |
Collapse
|
36
|
Gkalpakiotis S, Kojanová M, Fialová J, Cetkovská P, Vašků V, Vantuchová Y, Machovcová A, Gkalpakioti P, Hrdá P, Arenberger P. Management of Moderate to Severe Plaque Psoriasis with Brodalumab in Daily Practice: Real-World Evidence from the LIBERO Study in the Czech Republic. Dermatol Ther (Heidelb) 2024; 14:115-130. [PMID: 38032433 PMCID: PMC10828329 DOI: 10.1007/s13555-023-01066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION Psoriasis is a chronic, immune-mediated inflammatory skin disease. Despite the availability of several therapies, many patients affected by this disease remain untreated, do not have adequate response, or suffer from treatment-related toxic effects. It has been shown that the interleukin (IL)-17 pathway plays a key role in the immunopathogenesis of psoriasis. Brodalumab, the first human monoclonal IgG2 antibody that selectively binds to subunit A of the human IL-17 receptor, blocking interactions with a number of cytokines of the IL-17 family, has confirmed fast onset of action, high complete clearance rates, and sustained efficacy. Nevertheless, there is only a limited amount of published real-world evidence (RWE) data. METHODS This was an open-label, multicenter, real-world, prospective, non-interventional, non-controlled (single-arm) observational study (LIBERO-CZ) assessing the management of moderate to severe psoriasis with brodalumab in daily practice for up to 52 weeks of treatment. RESULTS Fifty-four patients (70.4% male, mean age 46.9 ± 13.4 years, weight 95.6 ± 22.7 kg, disease duration 18.6 ± 12.7 years) were enrolled and included in the final analysis. Forty-nine of the patients completed the study and five discontinued prematurely; 51.8% of all the enrolled patients were biologic-naïve. At baseline, 28% patients were classified as severe (psoriasis area severity index (PASI) ≥ 20). Overall, the mean PASI decreased by 15.6 from 16.1 (± 5.0) at baseline to 0.5 (± 1.2) at the last visit. The primary endpoint of an absolute PASI ≤ 3 at week 12 (as observed analysis) was achieved by 95.9% of patients. The static Physician's Global Assessment (sPGA) success (defined as clear = 0 and almost clear = 1) at week 52 was achieved by 92.1% of patients. PASI 75, PASI 90, and PASI 100 were achieved by 98.0%, 87.8%, and 75.5% of patients, respectively, after approximately 52 weeks of treatment. The study also recorded very positive results concerning patient-reported outcomes. CONCLUSIONS LIBERO-CZ confirms the fast onset and high clearance rates of brodalumab in real life in both biologic-naïve and biologic-experienced patients.
Collapse
Affiliation(s)
- Spyridon Gkalpakiotis
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic.
| | - Martina Kojanová
- Department of Dermatovenereology, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Jorga Fialová
- Department of Dermatovenereology, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Petra Cetkovská
- Department of Dermatovenereology, Faculty of Medicine and University Hospital, Charles University, Pilsen, Czech Republic
| | - Vladimír Vašků
- Department of Dermatovenereology, St. Anne's University Hospital, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Yvetta Vantuchová
- Department of Dermatology, Faculty of Medicine, University Hospital Ostrava, Ostrava, Czech Republic
| | - Alena Machovcová
- Department of Dermatovenereology, Motol University Hospital, Prague, Czech Republic
| | - Petra Gkalpakioti
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic
| | | | - Petr Arenberger
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic
- Sanatorium of Professor Arenberger, Prague, Czech Republic
| |
Collapse
|
37
|
Scheurer J, Sauer B, Focken J, Giampetraglia M, Jäger A, Schürch CM, Weigelin B, Schittek B. Histological and functional characterization of 3D human skin models mimicking the inflammatory skin diseases psoriasis and atopic dermatitis. Dis Model Mech 2024; 17:dmm050541. [PMID: 38251799 PMCID: PMC10846593 DOI: 10.1242/dmm.050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Three-dimensional (3D) human skin equivalents have emerged as valuable tools in skin research, replacing animal experimentation and precluding the need for patient biopsies. In this study, we advanced 3D skin equivalents to model the inflammatory skin diseases atopic dermatitis and psoriasis by cytokine stimulation, and were successful in integrating TH1 T cells into skin models to develop an immunocompetent 3D psoriasis model. We performed in-depth histological and functional characterization of 3D skin equivalents and validated them in terms of tissue architecture, pathological changes, expression of antimicrobial peptides and Staphylococcus aureus colonization using 3D reconstruction by multiphoton microscopy and phenotyping by highly multiplexed 'co-detection by indexing' (CODEX) microscopy. We show that our skin equivalents have a structural architecture with a well-developed dermis and epidermis, thus resembling human skin. In addition, the skin models of atopic dermatitis and psoriasis show several phenotypic features of inflammatory skin disease, including disturbed epidermal differentiation and alterations in the expression of epidermal barrier genes and antimicrobial peptides, and can be reliably used to test novel treatment strategies. Therefore, these 3D equivalents will be a valuable tool in experimental dermatological research.
Collapse
Affiliation(s)
- Jasmin Scheurer
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Birgit Sauer
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Jule Focken
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Martina Giampetraglia
- Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Annika Jäger
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72076 Tübingen, Germany
| | - Christian M. Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Bettina Weigelin
- Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Birgit Schittek
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
38
|
Wang Y, Tian Z, Huang S, Dang N. Tripterygium wilfordii Hook. F. and Its Extracts for Psoriasis: Efficacy and Mechanism. Drug Des Devel Ther 2023; 17:3767-3781. [PMID: 38144417 PMCID: PMC10749103 DOI: 10.2147/dddt.s439534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Psoriasis is an inflammatory autoimmune skin condition that is clinically marked by chronic erythema and scaling. The traditional Chinese herb Tripterygium wilfordii Hook. F. (TwHF) is commonly used in the treatment of immune-related skin illnesses, such as psoriasis. In clinical studies, PASI (Psoriasis Area and Severity Index) were dramatically decreased by TwHF and its extracts. Their benefits for psoriasis also include relief from psoriasis symptoms such as itching, dryness, overall lesion scores and quality of life. And the pathological mechanisms include anti-inflammation, immunomodulation and potentially signaling pathway modulations, which are achieved by modulating type-3 inflammatory cytokines including IL-22, IL-23, and IL-17 as well as immune cells like Th17 lymphocytes, γδT cells, and interfering with IFN-SOCS1, NF-κB and IL- 36α signaling pathways. TwHF and its extracts may cause various adverse drug reactions, such as gastrointestinal responses, aberrant hepatocytes, reproductive issues, and liver function impairment, but at adequate doses, they are regarded as an alternative therapy for the treatment of psoriasis. In this review, the effectiveness and mechanisms of TwHF and its extracts in psoriasis treatment are elucidated.
Collapse
Affiliation(s)
- Yingchao Wang
- Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Zhaochun Tian
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Shuhong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
39
|
Vasavda C, Wan G, Szeto MD, Marani M, Sutaria N, Rajeh A, Lu C, Lee KK, Nguyen NTT, Adawi W, Deng J, Parthasarathy V, Bordeaux ZA, Taylor MT, Alphonse MP, Kwatra MM, Kang S, Semenov YR, Gusev A, Kwatra SG. A Polygenic Risk Score for Predicting Racial and Genetic Susceptibility to Prurigo Nodularis. J Invest Dermatol 2023; 143:2416-2426.e1. [PMID: 37245863 PMCID: PMC11290854 DOI: 10.1016/j.jid.2023.04.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/30/2023]
Abstract
Prurigo nodularis (PN) is an understudied inflammatory skin disease characterized by pruritic, hyperkeratotic nodules. Identifying the genetic factors underlying PN could help to better understand its etiology and guide the development of therapies. In this study, we developed a polygenic risk score that predicts a diagnosis of PN (OR = 1.41, P = 1.6 × 10-5) in two independent and continentally distinct populations. We also performed GWASs, which uncovered genetic variants associated with PN, including one near PLCB4 (rs6039266: OR = 3.15, P = 4.8 × 10-8) and others near TXNRD1 (rs34217906: OR = 1.71, P = 6.4 × 10-7; rs7134193: OR = 1.57, P = 1.1 × 10-6). Finally, we discovered that Black patients have over a two-times greater genetic risk of developing PN (OR = 2.63, P = 7.8 × 10-4). Combining the polygenic risk score and self-reported race together was significantly predictive of PN (OR = 1.32, P = 4.7 × 10-3). Strikingly, this association was more significant with race than after adjusting for genetic ancestry. Because race is a sociocultural construct and not a genetically bound category, our findings suggest that genetics, environmental influence, and social determinants of health likely affect the development of PN and may contribute to clinically observed racial disparities.
Collapse
Affiliation(s)
- Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guihong Wan
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Mindy D Szeto
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melika Marani
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nishadh Sutaria
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ahmad Rajeh
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Chenyue Lu
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin K Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nga T T Nguyen
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Waleed Adawi
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Junwen Deng
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Varsha Parthasarathy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zachary A Bordeaux
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew T Taylor
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Martin P Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Madan M Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yevgeniy R Semenov
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexander Gusev
- Division of Genetics, Brigham & Women's Hospital, Boston, Massachusetts, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
40
|
Hayama K, Iwasaki R, Tian Y, Fujita H. Factors associated with generalized pustular psoriasis progression among patients with psoriasis vulgaris in Japan: Results from a claims database study. J Dermatol 2023; 50:1531-1538. [PMID: 37721393 DOI: 10.1111/1346-8138.16949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023]
Abstract
Of those patients diagnosed with generalized pustular psoriasis (GPP) in Japan, approximately 30% have a prior psoriasis vulgaris (PsV) diagnosis. Therefore, understanding factors associated with a GPP diagnosis is essential for early diagnosis of GPP in patients with PsV. This retrospective cohort study was conducted to identify associated factors for GPP diagnosis in patients with PsV. Eligible patients with two confirmed diagnoses of PsV with/without a confirmed GPP diagnosis (International Classification of Disease 10th revision codes L40.0 and L40.1, respectively) were identified from the Japanese Medical Data Center database (JMDC) (July 1, 2005-January 31, 2019). Weighted logistic regression was used to identify associated factors (based on recorded comorbidities) between the PsV only and PsV with GPP cohorts. Odds ratios (ORs) of ≥1.5, associated with a high probability of a GPP diagnosis, were reported for factors with ≥5 patients/cohort. The time from event to GPP diagnosis was evaluated. The highest associated factor for GPP diagnosis was psoriatic arthritis (OR 20.2, 95% confidence interval [CI] 17.06-23.92, P < 0.0001), which also had the shortest time from event to GPP diagnosis (median 119 days). Other comorbidities associated with GPP diagnosis were other psoriasis, tonsillitis, and sinusitis. Treatments associated with GPP diagnosis included systemic corticosteroids (OR 2.19, 95% CI 1.98-2.43, P < 0.0001; median time from treatment initiation to GPP diagnosis 180 days). Other associated treatments (other immunosuppressants, interleukin [IL]-17 or IL-23 inhibitors, and phototherapy) had a delay of ≥1 year from treatment initiation to GPP diagnosis. Back pain, headache, and fever were also identified as associated with a GPP diagnosis. Patients with PsV requiring systemic therapies are more likely to receive a GPP diagnosis than those not requiring systemic treatment. These data will help identify patients with PsV at high risk of developing GPP and potentially support early GPP diagnosis.
Collapse
Affiliation(s)
| | | | - Yahui Tian
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | | |
Collapse
|
41
|
Jirouš Drulak M, Grgić Z, Plužarić V, Šola M, Opačak-Bernardi T, Viljetić B, Glavaš K, Tolušić-Levak M, Periša V, Mihalj M, Štefanić M, Tokić S. Characterization of the TCRβ repertoire of peripheral MR1-restricted MAIT cells in psoriasis vulgaris patients. Sci Rep 2023; 13:20990. [PMID: 38017021 PMCID: PMC10684872 DOI: 10.1038/s41598-023-48321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023] Open
Abstract
Psoriasis vulgaris (PV) is an inflammatory skin disease largely driven by aberrant αβT cells. Mucosal-associated invariant T (MAIT) cells, which constitute the largest circulating innate-like αβT cell community in human adults, are characterized by a semi-invariant TCRVα7.2 receptor and MR1-restricted affinity toward microbial metabolites. Limited MAIT TCRα diversity is complemented by a more variable TCRβ repertoire, but its footprint in the MAIT repertoire of PV patients has never been tested. Here, we used bulk TCRSeq, MiXCR, VDJTools, and Immunarch pipelines to decipher and compare TCRβ clonotypes from flow-sorted, peripheral TCRVα7.2+MR1-5-OP-RU-tet+MAIT cells from 10 PV patients and 10 healthy, matched controls. The resulting TCRβ collections were highly private and individually unique, with small public clonotype content and high CDR3β amino acid length variability in both groups. The age-related increase in the 'hyperexpanded' clonotype compartment was observed in PV, but not in healthy MAIT repertoires. The TCRβ repertoires of PV patients were also marked by skewed TRBV/TRBJ pairing, and the emergence of PV-specific, public CDR3β peptide sequences closely matching the published CDR3β record from psoriatic skin. Overall, our study provides preliminary insight into the peripheral MAIT TCRβ repertoire in psoriasis and warrants further evaluation of its diagnostic and clinical significance.
Collapse
Affiliation(s)
- Maja Jirouš Drulak
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
| | - Zvonimir Grgić
- Department of Laboratory Medicine and Pharmacy, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Vera Plužarić
- Department of Laboratory Medicine and Pharmacy, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
| | - Marija Šola
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
| | - Teuta Opačak-Bernardi
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Barbara Viljetić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kristina Glavaš
- Department of Transfusion Medicine, University Hospital Osijek, Osijek, Croatia
| | - Maja Tolušić-Levak
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
- Department of Histology and Embryology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Vlatka Periša
- Department of Internal Medicine and History of Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Hematology, Clinic of Internal Medicine, University Hospital Osijek, Osijek, Croatia
| | - Martina Mihalj
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Mario Štefanić
- Department of Nuclear Medicine and Oncology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
| | - Stana Tokić
- Department of Laboratory Medicine and Pharmacy, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
| |
Collapse
|
42
|
Ettinger M, Burner T, Sharma A, Chang YT, Lackner A, Prompsy P, Deli IM, Traxler J, Wahl G, Altrichter S, Langer R, Tsai YC, Varkhande SR, Schoeftner LC, Iselin C, Gratz IK, Kimeswenger S, Guenova E, Hoetzenecker W. Th17-associated cytokines IL-17 and IL-23 in inflamed skin of Darier disease patients as potential therapeutic targets. Nat Commun 2023; 14:7470. [PMID: 37978298 PMCID: PMC10656568 DOI: 10.1038/s41467-023-43210-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Darier disease (DD) is a rare, inherited multi-organ disorder associated with mutations in the ATP2A2 gene. DD patients often have skin involvement characterized by malodorous, inflamed skin and recurrent, severe infections. Therapeutic options are limited and inadequate for the long-term management of this chronic disease. The aim of this study was to characterize the cutaneous immune infiltrate in DD skin lesions in detail and to identify new therapeutic targets. Using gene and protein expression profiling assays including scRNA sequencing, we demonstrate enhanced expression of Th17-related genes and cytokines and increased numbers of Th17 cells in six DD patients. We provide evidence that targeting the IL-17/IL-23 axis in a case series of three DD patients with monoclonal antibodies is efficacious with significant clinical improvement. As DD is a chronic, relapsing disease, our findings might pave the way toward additional options for the long-term management of skin inflammation in patients with DD.
Collapse
Affiliation(s)
- Monika Ettinger
- Department of Dermatology and Venereology, Kepler University Hospital Linz, Linz, Austria
- Department of Dermatology and Venereology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Teresa Burner
- Department of Dermatology and Venereology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Anshu Sharma
- Department of Biosciences and Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Yun-Tsan Chang
- Department of Dermatology, University of Lausanne and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Angelika Lackner
- Department of Dermatology and Venereology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Pacôme Prompsy
- Department of Dermatology, University of Lausanne and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Isabella M Deli
- Department of Dermatology and Venereology, Kepler University Hospital Linz, Linz, Austria
| | - Judith Traxler
- Department of Dermatology and Venereology, Kepler University Hospital Linz, Linz, Austria
| | - Gerald Wahl
- Department of Dermatology and Venereology, Kepler University Hospital Linz, Linz, Austria
| | - Sabine Altrichter
- Department of Dermatology and Venereology, Kepler University Hospital Linz, Linz, Austria
- Department of Dermatology and Venereology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Rupert Langer
- Institute of Pathology and Molecular Pathology, Kepler University Hospital Linz, Linz, Austria
- Institute of Pathology and Molecular Pathology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Yi-Chien Tsai
- Department of Dermatology, University of Lausanne and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Suraj R Varkhande
- Department of Biosciences and Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Leonie C Schoeftner
- Department of Biosciences and Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Christoph Iselin
- Department of Dermatology, University of Lausanne and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Iris K Gratz
- Department of Biosciences and Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Susanne Kimeswenger
- Department of Dermatology and Venereology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Emmanuella Guenova
- Department of Dermatology, University of Lausanne and Faculty of Biology and Medicine, Lausanne, Switzerland
- Department of Dermatology, Hospital 12 de octubre, Medical school, University Complutense, Madrid, Spain
| | - Wolfram Hoetzenecker
- Department of Dermatology and Venereology, Kepler University Hospital Linz, Linz, Austria.
- Department of Dermatology and Venereology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria.
| |
Collapse
|
43
|
Cancelliere R, Cosio T, Campione E, Corvino M, D’Amico MP, Micheli L, Signori E, Contini G. Label-free electrochemical immunosensor as a reliable point-of-care device for the detection of Interleukin-6 in serum samples from patients with psoriasis. Front Chem 2023; 11:1251360. [PMID: 38025060 PMCID: PMC10667553 DOI: 10.3389/fchem.2023.1251360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Interleukin-6 (IL-6) plays a crucial role in autoimmunity and chronic inflammation. This study aims to develop a low-cost, simple-to-manufacture, and user-friendly label-free electrochemical point-of-care device for the rapid detection of IL-6 in patients with psoriasis. Precisely, a sandwich-based format immunosensor was developed using two primary antibodies (mAb-IL6 clone-5 and clone-7) and screen-printed electrodes modified with an inexpensive recycling electrochemical enhancing material, called biochar. mAb-IL6 clone-5 was used as a covalently immobilized capture bioreceptor on modified electrodes, and mAb-IL6 clone-7 was used to recognize the immunocomplex (Anti-IL6 clone-5 and IL-6) and form the sandwich. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to conduct electrochemical characterization of the layer-by-layer assembly of the immunosensor, while square wave voltammetry (SWV) was used to perform the sensing. The developed immunosensor demonstrated robust analytical performance in buffer solution, with a wide linear range (LR) by varying from 2 to 250 pg/mL, a good limit of detection (LOD) of 0.78 pg/mL and reproducibility (RSD<7%). In addition, a spectrophotometric ELISA kit was employed to validate the results obtained with the label-free device by analyzing twenty-five serum samples from control and patients affected by psoriasis. A strong correlation in terms of pg/mL concentration of IL-6 was found comparing the two methods, with the advantage for our label-free biosensor of an ease use and a quicker detection time. Based on IL-6 levels, the proposed immunosensor is a dependable, non-invasive screening device capable of predicting disease onset, progression, and treatment efficacy.
Collapse
Affiliation(s)
- Rocco Cancelliere
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Roma, Italy
| | - Terenzio Cosio
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Roma, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Martina Corvino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Roma, Italy
| | - Maria Pia D’Amico
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Roma, Italy
| | - Laura Micheli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Roma, Italy
| | - Emanuela Signori
- Istituto di Farmacologia Traslazionale-CNR (IFT-CNR), Roma, Italy
| | - Giorgio Contini
- Istituto di Struttura Della Materia-CNR (ISM-CNR), Roma, Italy
- Department of Physics, University of Rome Tor Vergata, Roma, Italy
| |
Collapse
|
44
|
Wang H, Yu L, Cheng L, Guo Z. The roles of lncRNAs in Th17-associated diseases, with special focus on JAK/STAT signaling pathway. Clin Exp Med 2023; 23:3349-3359. [PMID: 37743424 DOI: 10.1007/s10238-023-01181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
One of the most crucial T cell subsets in a variety of autoimmune and chronic inflammatory illnesses is T helper (Th) 17 cells. Th17 cells appear to have an essential role in the clearance of extracellular pathogens during infections. However, Th17 cells are also involved in inflammation and have been implicated in the pathogenesis of several autoimmune diseases and human inflammatory conditions. Due to the involvement of Th17 cells in the onset of Th17-associated diseases, understanding molecular mechanisms of Th17 cell functions may open the door to developing tailored therapies to address these difficult disorders. However, the molecular mechanisms governing Th17 differentiation in various diseases are still not well understood. The JAK/STAT signaling pathway plays a critical role in immune responses and has been linked to various aspects of Th17 cell differentiation and function. In this article, we conducted a comprehensive review of various molecular mechanisms (JAK/STAT, microRNAs, etc.), that can affect the differentiation of Th17 cells in various Th17-associated diseases.
Collapse
Affiliation(s)
- Han Wang
- Department of Clinical Laboratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Lanlan Yu
- Department of Clinical Laboratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Li Cheng
- Department of Clinical Laboratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Zhigang Guo
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130031, China.
| |
Collapse
|
45
|
Siebert S, Pennington SR, Raychaudhuri SP, Chaudhari AJ, Jin JQ, Liao W, Chandran V, FitzGerald O. Novel Insights From Basic Science in Psoriatic Disease at the GRAPPA 2022 Annual Meeting. J Rheumatol 2023; 50:66-70. [PMID: 37527860 DOI: 10.3899/jrheum.2023-0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 08/03/2023]
Abstract
Recent basic science advances in psoriatic disease (PsD) were presented and discussed at the Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA) 2022 annual meeting. Topics included clinical applications of biomarkers, what the future of biomarkers for PsD may hold, the challenges of developing biomarker research to the point of clinical utility, advances in total-body positron emission tomography/computed tomography imaging, and emerging concepts from single-cell studies in PsD.
Collapse
Affiliation(s)
- Stefan Siebert
- S. Siebert, MD, PhD, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Stephen R Pennington
- S.R. Pennington, PhD, O. FitzGerald, MD, School of Medicine, UCD Conway Institute for Biomolecular Research, University College Dublin, Dublin, Ireland
| | - Siba P Raychaudhuri
- S.P. Raychaudhuri, MD, Department of Internal Medicine-Rheumatology, UC Davis School of Medicine and Northern California Veterans Affairs Medical Center, Mather, California, USA
| | - Abhijit J Chaudhari
- A.J. Chaudhari, PhD, Department of Radiology, UC Davis School of Medicine, Sacramento, California, USA
| | - Joy Q Jin
- J.Q. Jin, AB, School of Medicine, and Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Wilson Liao
- W. Liao, MD, Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Vinod Chandran
- V. Chandran, DM, PhD, Departments of Medicine, Laboratory Medicine, and Pathobiology and Institute of Medical Science, University of Toronto, and Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Oliver FitzGerald
- S.R. Pennington, PhD, O. FitzGerald, MD, School of Medicine, UCD Conway Institute for Biomolecular Research, University College Dublin, Dublin, Ireland;
| |
Collapse
|
46
|
Zhong Y, Zhang BW, Li JT, Zeng X, Pei JX, Zhang YM, Yang YX, Li FL, Deng Y, Zhao Q. Ethanol extract of Herpetospermum caudigerum Wall ameliorates psoriasis-like skin inflammation and promotes degradation of keratinocyte-derived ICAM-1 and CXCL9. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:584-592. [PMID: 37989697 DOI: 10.1016/j.joim.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE To explore whether the ethanol extract of Herpetospermum caudigerum Wall (EHC), a Xizang medicinal plant traditionally used for treating liver diseases, can improve imiquimod-induced psoriasis-like skin inflammation. METHODS Immunohistochemistry and immunofluorescence staining were used to determine the effects of topical EHC use in vivo on the skin pathology of imiquimod-induced psoriasis in mice. The protein levels of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin-17A (IL-17A) in mouse skin samples were examined using immunohistochemical staining. In vitro, IFN-γ-induced HaCaT cells with or without EHC treatment were used to evaluate the expression of keratinocyte-derived intercellular cell adhesion molecule-1 (ICAM-1) and chemokine CXC ligand 9 (CXCL9) using Western blotting and reverse transcription-quantitative polymerase chain reaction. The protein synthesis inhibitor cycloheximide and proteasome inhibitor MG132 were utilized to validate the EHC-mediated mechanism underlying degradation of ICAM-1 and CXCL9. RESULTS EHC improved inflammation in the imiquimod-induced psoriasis mouse model and reduced the levels of IFN-γ, TNF-α, and IL-17A in psoriatic lesions. Treatment with EHC also suppressed ICAM-1 and CXCL9 in epidermal keratinocytes. Further mechanistic studies revealed that EHC suppressed keratinocyte-derived ICAM-1 and CXCL9 by promoting ubiquitin-proteasome-mediated protein degradation rather than transcriptional repression. Seven primary compounds including ehletianol C, dehydrodiconiferyl alcohol, herpetrione, herpetin, herpetotriol, herpetetrone and herpetetrol were identified from the EHC using ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry. CONCLUSION Topical application of EHC ameliorates psoriasis-like skin symptoms and improves the inflammation at the lesion sites. Please cite this article as: Zhong Y, Zhang BW, Li JT, Zeng X, Pei JX, Zhang YM, Yang YX, Li FL, Deng Y, Zhao Q. Ethanol extract of Herpetospermum caudigerum Wall ameliorates psoriasis-like skin inflammation and promotes degradation of keratinocyte-derived ICAM-1 and CXCL9. J Integr Med. 2023; 21(6): 584-592.
Collapse
Affiliation(s)
- Ya Zhong
- Engineering Research Center of Sichuan-Xizang Traditional Medicinal Plant, Chengdu University, Chengdu 610106, Sichuan Province, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, Sichuan Province, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan Province, China
| | - Bo-Wen Zhang
- Engineering Research Center of Sichuan-Xizang Traditional Medicinal Plant, Chengdu University, Chengdu 610106, Sichuan Province, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, Sichuan Province, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan Province, China
| | - Jin-Tao Li
- Engineering Research Center of Sichuan-Xizang Traditional Medicinal Plant, Chengdu University, Chengdu 610106, Sichuan Province, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, Sichuan Province, China; School of Pharmacy, Chengdu University, Chengdu 610106, Sichuan Province, China
| | - Xin Zeng
- Engineering Research Center of Sichuan-Xizang Traditional Medicinal Plant, Chengdu University, Chengdu 610106, Sichuan Province, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, Sichuan Province, China; School of Pharmacy, Chengdu University, Chengdu 610106, Sichuan Province, China
| | - Jun-Xia Pei
- Engineering Research Center of Sichuan-Xizang Traditional Medicinal Plant, Chengdu University, Chengdu 610106, Sichuan Province, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, Sichuan Province, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan Province, China
| | - Ya-Mei Zhang
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University, Chengdu 610106, Sichuan Province, China
| | - Yi-Xi Yang
- Engineering Research Center of Sichuan-Xizang Traditional Medicinal Plant, Chengdu University, Chengdu 610106, Sichuan Province, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, Sichuan Province, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan Province, China
| | - Fu-Lun Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yu Deng
- Engineering Research Center of Sichuan-Xizang Traditional Medicinal Plant, Chengdu University, Chengdu 610106, Sichuan Province, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, Sichuan Province, China; School of Basic Medical Sciences, Chengdu University, Chengdu 610106, Sichuan Province, China.
| | - Qi Zhao
- Engineering Research Center of Sichuan-Xizang Traditional Medicinal Plant, Chengdu University, Chengdu 610106, Sichuan Province, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, Sichuan Province, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan Province, China.
| |
Collapse
|
47
|
Yu C, Huang Y, Yan W, Jiang X. A comprehensive overview of psoriatic research over the past 20 years: machine learning-based bibliometric analysis. Front Immunol 2023; 14:1272080. [PMID: 37954610 PMCID: PMC10637956 DOI: 10.3389/fimmu.2023.1272080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Background The surge in the number of publications on psoriasis has posed significant challenges for researchers in effectively managing the vast amount of information. However, due to the lack of tools to process metadata, no comprehensive bibliometric analysis has been conducted. Objectives This study is to evaluate the trends and current hotspots of psoriatic research from a macroscopic perspective through a bibliometric analysis assisted by machine learning based semantic analysis. Methods Publications indexed under the Medical Subject Headings (MeSH) term "Psoriasis" from 2003 to 2022 were extracted from PubMed. The generative statistical algorithm latent Dirichlet allocation (LDA) was applied to identify specific topics and trends based on abstracts. The unsupervised Louvain algorithm was used to establish a network identifying relationships between topics. Results A total of 28,178 publications were identified. The publications were derived from 176 countries, with United States, China, and Italy being the top three countries. For the term "psoriasis", 9,183 MeSH terms appeared 337,545 times. Among them, MeSH term "Severity of illness index", "Treatment outcome", "Dermatologic agents" occur most frequently. A total of 21,928 publications were included in LDA algorithm, which identified three main areas and 50 branched topics, with "Molecular pathogenesis", "Clinical trials", and "Skin inflammation" being the most increased topics. LDA networks identified "Skin inflammation" was tightly associated with "Molecular pathogenesis" and "Biological agents". "Nail psoriasis" and "Epidemiological study" have presented as new research hotspots, and attention on topics of comorbidities, including "Cardiovascular comorbidities", "Psoriatic arthritis", "Obesity" and "Psychological disorders" have increased gradually. Conclusions Research on psoriasis is flourishing, with molecular pathogenesis, skin inflammation, and clinical trials being the current hotspots. The strong association between skin inflammation and biologic agents indicated the effective translation between basic research and clinical application in psoriasis. Besides, nail psoriasis, epidemiological study and comorbidities of psoriasis also draw increased attention.
Collapse
Affiliation(s)
- Chenyang Yu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yingzhao Huang
- Department of Thoracic Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Wei Yan
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Di Salvo E, Gangemi S, Genovese C, Cicero N, Casciaro M. Polyphenols from Mediterranean Plants: Biological Activities for Skin Photoprotection in Atopic Dermatitis, Psoriasis, and Chronic Urticaria. PLANTS (BASEL, SWITZERLAND) 2023; 12:3579. [PMID: 37896042 PMCID: PMC10609915 DOI: 10.3390/plants12203579] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Polyphenols are a diverse class of natural compounds that are widely distributed in various fruits, vegetables, and herbs. They possess antioxidant and anti-inflammatory properties and bring benefits in the prevention and treatment of various diseases. Studies suggested that polyphenols may improve cardiovascular health and may have neuroprotective effects. The Mediterranean region is a vast area. Although the territory encompasses a wide variety of cultures and dietary patterns, there are some commonalities in terms of the plant-based foods and their polyphenol content. Such polyphenols have been studied for their potential photoprotective effects on the skin. We focused on nutraceutical effects of Mediterranean plants in skin photoprotection in atopic dermatitis, psoriasis, and chronic urticaria. Results highlight the importance of exploring natural compounds for therapeutic purposes. The wide variety of polyphenols found in different foods and plants allows for a diverse range of pharmacological effects. The Mediterranean diet, rich in polyphenol-containing foods, is associated with a lower incidence of various chronic diseases, including dermatological conditions. While more research is needed to fully understand the mechanisms of action and optimal dosing of polyphenols, there is initial evidence to support their potential use as adjunctive therapy for atopic dermatitis, psoriasis, and chronic urticaria.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.G.); (M.C.)
| | - Claudia Genovese
- National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean, Via Empedocle 58, 95128 Catania, Italy;
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy;
- Science4Life, Spin Off Company, University of Messina, 98168 Messina, Italy
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.G.); (M.C.)
| |
Collapse
|
49
|
Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: from bench to bedside. Signal Transduct Target Ther 2023; 8:402. [PMID: 37816755 PMCID: PMC10564932 DOI: 10.1038/s41392-023-01620-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
The interleukin-17 (IL-17) family comprises six members (IL-17A-17F), and recently, all of its related receptors have been discovered. IL-17 was first discovered approximately 30 years ago. Members of this family have various biological functions, including driving an inflammatory cascade during infections and autoimmune diseases, as well as boosting protective immunity against various pathogens. IL-17 is a highly versatile proinflammatory cytokine necessary for vital processes including host immune defenses, tissue repair, inflammatory disease pathogenesis, and cancer progression. However, how IL-17 performs these functions remains controversial. The multifunctional properties of IL-17 have attracted research interest, and emerging data have gradually improved our understanding of the IL-17 signaling pathway. However, a comprehensive review is required to understand its role in both host defense functions and pathogenesis in the body. This review can aid researchers in better understanding the mechanisms underlying IL-17's roles in vivo and provide a theoretical basis for future studies aiming to regulate IL-17 expression and function. This review discusses recent progress in understanding the IL-17 signaling pathway and its physiological roles. In addition, we present the mechanism underlying IL-17's role in various pathologies, particularly, in IL-17-induced systemic lupus erythematosus and IL-17-related tumor cell transformation and metastasis. In addition, we have briefly discussed promising developments in the diagnosis and treatment of autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Longjie Huangfu
- School of Stomatology, Harbin Medical University, Harbin, 150001, P. R. China
| | - Ruiying Li
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yamei Huang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China.
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, P. R. China.
| |
Collapse
|
50
|
Giang NH, Lien NTK, Trang DT, Huong PT, Hoang NH, Xuan NT. Associations of A20, CYLD, Cezanne and JAK2 Genes and Immunophenotype with Psoriasis Susceptibility. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1766. [PMID: 37893484 PMCID: PMC10608350 DOI: 10.3390/medicina59101766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Psoriasis is an immune-mediated chronic inflammatory skin disorder and commonly associated with highly noticeable erythematous, thickened and scaly plaques. Deubiquitinase genes, such as tumor necrosis factor-alpha protein 3 (TNFAIP3, A20), the cylindromatosis (CYLD) and Cezanne, function as negative regulators of inflammatory response through the Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathways. In this study, polymorphisms and expressions of A20, CYLD and Cezanne genes as well as immunophenotype in psoriatic patients were determined. Materials and Methods: In total, 82 patients with psoriasis and 147 healthy individuals with well-characterized clinical profiles were enrolled. Gene polymorphisms were determined by direct DNA sequencing, gene expression profile by quantitative real time-polymerase chain reaction (PCR), immunophenotype by flow cytometry, and the secretion of cytokines and cancer antigen (CA) 125 by enzyme-linked Immunosorbent assay (ELISA). Results: The inactivation of A20, CYLD and Cezanne and increased levels of TNF-α, IFN-γ and CA 125 was observed in psoriatic patients. Importantly, patients with low A20 expression had significant elevations of triglyceride and total cholesterol concentrations and higher numbers of CD13+CD117- and CD19+CD23+ (activated B) cells than those with high A20 expression. Genetic analysis indicated that all rs4495487 SNPs in the JAK2 gene, rs200878487 SNPs in the A20 gene and four SNPs (c.1584-375, c.1584-374, rs1230581026 and p.W433R) in the Cezanne gene were associated with significant risks, while the rs10974947 variant in the JAK2 gene was at reduced risk of psoriasis. Moreover, in the Cezanne gene, p.W433R was predicted to be probably damaging by the Polyphen-2 prediction tool and an AA/CC haplotype was associated with a high risk of psoriasis. In addition, patients with higher CA 125 levels than the clinical cutoff 35 U/mL showed increased levels of IFN-γ than those with normal CA 125 levels. Conclusions: A20 expression was associated with lipid metabolism and the recruitment of CD13+ CD117- and activated B cells into circulation in psoriatic patients. Besides this, the deleterious effect of the p.W433R variant in the Cezanne gene may contribute to the risk of psoriasis.
Collapse
Affiliation(s)
- Nguyen Hoang Giang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Ha Noi 100000, Vietnam
| | - Nguyen Thi Kim Lien
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Ha Noi 100000, Vietnam
| | - Do Thi Trang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Ha Noi 100000, Vietnam
| | - Pham Thi Huong
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Ha Noi 100000, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Ha Noi 100000, Vietnam
- Department of Biotechnology, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Ha Noi 100000, Vietnam
| | - Nguyen Thi Xuan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Ha Noi 100000, Vietnam
- Department of Biotechnology, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Ha Noi 100000, Vietnam
| |
Collapse
|