1
|
Shkarina K, Broz P. Selective induction of programmed cell death using synthetic biology tools. Semin Cell Dev Biol 2024; 156:74-92. [PMID: 37598045 DOI: 10.1016/j.semcdb.2023.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
Collapse
Affiliation(s)
- Kateryna Shkarina
- Institute of Innate Immunity, University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Switzerland.
| |
Collapse
|
2
|
Araújo NM, Rubio IGS, Toneto NPA, Morale MG, Tamura RE. The use of adenoviral vectors in gene therapy and vaccine approaches. Genet Mol Biol 2022; 45:e20220079. [PMID: 36206378 PMCID: PMC9543183 DOI: 10.1590/1678-4685-gmb-2022-0079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Adenovirus was first identified in the 1950s and since then this pathogenic group
of viruses has been explored and transformed into a genetic transfer vehicle.
Modification or deletion of few genes are necessary to transform it into a
conditionally or non-replicative vector, creating a versatile tool capable of
transducing different tissues and inducing high levels of transgene expression.
In the early years of vector development, the application in monogenic diseases
faced several hurdles, including short-term gene expression and even a fatality.
On the other hand, an adenoviral delivery strategy for treatment of cancer was
the first approved gene therapy product. There is an increasing interest in
expressing transgenes with therapeutic potential targeting the cancer hallmarks,
inhibiting metastasis, inducing cancer cell death or modulating the immune
system to attack the tumor cells. Replicative adenovirus as vaccines may be even
older and date to a few years of its discovery, application of non-replicative
adenovirus for vaccination against different microorganisms has been
investigated, but only recently, it demonstrated its full potential being one of
the leading vaccination tools for COVID-19. This is not a new vector nor a new
technology, but the result of decades of careful and intense work in this
field.
Collapse
Affiliation(s)
- Natália Meneses Araújo
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil.
| | - Ileana Gabriela Sanchez Rubio
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | | | - Mirian Galliote Morale
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil.
| |
Collapse
|
3
|
Alam M, Ali S, Mohammad T, Hasan GM, Yadav DK, Hassan MI. B Cell Lymphoma 2: A Potential Therapeutic Target for Cancer Therapy. Int J Mol Sci 2021; 22:ijms221910442. [PMID: 34638779 PMCID: PMC8509036 DOI: 10.3390/ijms221910442] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Defects in the apoptosis mechanism stimulate cancer cell growth and survival. B cell lymphoma 2 (Bcl-2) is an anti-apoptotic molecule that plays a central role in apoptosis. Bcl-2 is the founding constituent of the Bcl-2 protein family of apoptosis controllers, the primary apoptosis regulators linked with cancer. Bcl-2 has been identified as being over-expressed in several cancers. Bcl-2 is induced by protein kinases and several signaling molecules which stimulate cancer development. Identifying the important function played by Bcl-2 in cancer progression and development, and treatment made it a target related to therapy for multiple cancers. Among the various strategies that have been proposed to block Bcl-2, BH3-mimetics have appeared as a novel group of compounds thanks to their favorable effects on many cancers within several clinical settings. Because of the fundamental function of Bcl-2 in the regulation of apoptosis, the Bcl-2 protein is a potent target for the development of novel anti-tumor treatments. Bcl-2 inhibitors have been used against several cancers and provide a pre-clinical platform for testing novel therapeutic drugs. Clinical trials of multiple investigational agents targeting Bcl-2 are ongoing. This review discusses the role of Bcl-2 in cancer development; it could be exploited as a potential target for developing novel therapeutic strategies to combat various types of cancers. We further highlight the therapeutic activity of Bcl-2 inhibitors and their implications for the therapeutic management of cancer.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Dharmendra Kumar Yadav
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: (D.K.Y.); (M.I.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
- Correspondence: (D.K.Y.); (M.I.H.)
| |
Collapse
|
4
|
Zeng Q, Zeng Y, Nie X, Guo Y, Zhan Y. Britanin Exhibits Potential Inhibitory Activity on Human Prostate Cancer Cell Lines Through PI3K/Akt/NF-κB Signaling Pathways. PLANTA MEDICA 2020; 86:1401-1410. [PMID: 32781474 DOI: 10.1055/a-1211-4656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Britanin, a natural pseudoguaiacane sesquiterpene lactone, has significant antioxidant and anti-inflammatory activity, but little is known about its tumor inhibitory activity and the underlying mechanism. Here, we demonstrated in vitro and in vivo that britanin inhibited the growth of human prostate cancer cell lines (PC-3, PC-3-LUC, and DU-145). Through in vitro study, the results showed that britanin significantly decreased cell proliferation, migration, and motility. The moderate toxicity of britanin was determined with an acute toxicity study. A luciferase-labeled animal tumor xenograft model and bioluminescence imaging were applied, combining with biological validation for assessing the tumor progression. In vivo results demonstrated that britanin inhibited the growth of PC-3-LUC. The interleukin-2 level in mice was upregulated by britanin, which indicated that britanin induced antitumor immune activation. In addition, britanin downregulated the expression of nuclear factor (NF)-κB p105/p50, pp65, IκBα, pIκBα, phosphoinositide 3-kinase, pPI3k, Akt (protein kinase B, PKB), and pAkt proteins and upregulated expression of Bax. We discovered that britanin inhibits the growth of prostate cancer cells both in vitro and in vivo by regulating PI3K/Akt/NF-κB-related proteins and activating immunity. These findings shed light on the development of britanin as a promising agent for prostate cancer therapy.
Collapse
Affiliation(s)
- Qi Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Yun Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Xu Nie
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Yingying Guo
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
5
|
Apoptotic and predictive factors by Bax, Caspases 3/9, Bcl-2, p53 and Ki-67 in prostate cancer after 12 Gy single-dose. Sci Rep 2020; 10:7050. [PMID: 32341393 PMCID: PMC7184731 DOI: 10.1038/s41598-020-64062-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 02/03/2023] Open
Abstract
Radio-induced apoptosis is mediated by the activation of tumor protein p53, Bax and caspases. The purpose of this study was to investigate the early activation of this pathway in men receiving in vivo irradiation immediately before radical prostatectomy for locally advanced prostate cancer. We also investigated cell proliferation index (Ki-67), proto-oncogene (p53) and anti-apoptotic protein (Bcl-2) levels as potential predictive factors. We selected a homogeneous sample of 20 patients with locally advanced prostate cancer and candidate to radical prostatectomy. To assess the apoptotic pathways, Bax, is studied through immunofluorescence assay, before and after 12 Gy single dose intraoperative radiotherapy (IORT) to the prostate, on bioptic samples and on surgical specimens. Moreover, before and after IORT, Bcl-2, p53, and Ki-67 were also detected through immunohistochemistry. A count of positive Bax spots for immunofluorescence was performed on tumor cells, prostatic intraepithelial neoplasia (PIN), and healthy tissue areas before and after IORT. We also analyzed Caspases 3 and 9 expressions after IORT. Before IORT, Bcl-2 mean value in neoplastic cells was 2.23% ± 1.95, mean Ki-67 in neoplastic area was 4.5% ± 3.8, and p53 was 22.5% ± 6.8. After IORT, Bcl-2 mean value in neoplastic cells was 8.85 ± 8.92%, Ki-67 in neoplastic area was 7.8 ± 6.09%, and p53 was 24.9 ± 26.4%. After the irradiation, healthy areas expressed significantly lower levels of Bax (2.81 ± 1.69%) with respect to neoplastic cells (p < 0.0001), while in PIN areas, Bax positive cells were significantly more present than in neoplastic areas (p = 0.0001). At statistical analysis, it was observed that cancer cells with Ki-67 ≥ 8% had a trend toward greater expression of Bax (p = 0.0641). We observed an increase of Bcl-2 expression after IORT in neoplastic areas (p = 0.0041). Biopsy specimens with p53 ≥ 18% and Ki-67 ≥ 8% had worse post-operative staging with extracapsular invasion (p = 0.04 for both parameters) and nodal positivity (p = 0.04 for p53 and p = 0.0001 at pathology for ki-67). No correlation between IORT and Caspases activation was noted. In conclusion, after 12 Gy IORT, Bax was overexpressed in tumor and PIN cells. Pre-operative Ki-67 and p53 definition could be used in future studies to predict patients with worse pathological stage, while Bcl-2 activation after IORT might be a predictive factor for loco-regional failure.
Collapse
|
6
|
CoCl 2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis. Biol Res 2019; 52:12. [PMID: 30876462 PMCID: PMC6419504 DOI: 10.1186/s40659-019-0221-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/04/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/AIMS Hypoxia microenvironment plays a crucial role during tumor progression and it tends to exhibit poor prognosis and make resistant to various conventional therapies. HIF-1α acts as an important transcriptional regulator directly or indirectly associated with genes involved in cell proliferation, angiogenesis, apoptosis and energy metabolism during tumor progression in hypoxic microenvironment. This study was aimed to investigate the expression pattern of the hypoxia associated genes and their association during breast cancer progression under hypoxic microenvironment in breast cancer cells. METHODS Cell proliferation in MCF-7 and MDA-MB-231 cell lines treated with different concentration of CoCl2 was analyzed by MTT assay. Flow cytometry was performed to check cell cycle distribution, whereas cell morphology was examined by phase contrast microscopy in both the cells during hypoxia induction. Expression of hypoxia associated genes HIF-1α, VEGF, p53 and BAX were determined by semiquantitative RT-PCR and real-time PCR. Western blotting was performed to detect the expression at protein level. RESULTS Our study revealed that cell proliferation in CoCl2 treated breast cancer cells were concentration dependent and varies with different cell types, further increase in CoCl2 concentration leads to apoptotic cell death. Further, accumulation of p53 protein in response to hypoxia as compare to normoxia showed that induction of p53 in breast cancer cells is HIF-1α dependent. HIF-1α dependent BAX expression during hypoxia revealed that after certain extent of hypoxia induction, over expression of BAX conquers the effect of anti-apoptotic proteins and ultimately leads to apoptosis in breast cancer cells. CONCLUSION In conclusion our results clearly indicate that CoCl2 simulated hypoxia induce the accumulation of HIF-1α protein and alter the expression of hypoxia associated genes involved in angiogenesis and apoptosis.
Collapse
|
7
|
Exploiting Cell Death Pathways for Inducible Cell Elimination to Modulate Graft-versus-Host-Disease. Biomedicines 2017; 5:biomedicines5020030. [PMID: 28613269 PMCID: PMC5489816 DOI: 10.3390/biomedicines5020030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cell transplantation is a potent form of immunotherapy, potentially life-saving for many malignant hematologic diseases. However, donor lymphocytes infused with the graft while exerting a graft versus malignancy effect can also cause potentially fatal graft versus host disease (GVHD). Our group has previously validated the inducible caspase-9 suicide gene in the haploidentical stem cell transplant setting, which proved successful in reversing signs and symptoms of GVHD within hours, using a non-therapeutic dimerizing agent. Cellular death pathways such as apoptosis and necroptosis are important processes in maintaining healthy cellular homeostasis within the human body. Here, we review two of the most widely investigated cell death pathways active in T-cells (apoptosis and necroptosis), as well as the emerging strategies that can be exploited for the safety of T-cell therapies. Furthermore, such strategies could be exploited for the safety of other cellular therapeutics as well.
Collapse
|
8
|
Bali EB, Açık L, Elçi P, Sarper M, Avcu F, Vural M. In vitro anti-oxidant, cytotoxic and pro-apoptotic effects of Achillea teretifolia Willd extracts on human prostate cancer cell lines. Pharmacogn Mag 2015; 11:S308-15. [PMID: 26664020 PMCID: PMC4653342 DOI: 10.4103/0973-1296.166060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The majority of Achillea species are the most important native economic plants of Anatolia. They include highly bioactive compounds, so they have therapeutic applications. OBJECTIVE In the present study, the aim was to investigate in vitro anti-oxidant, cytotoxic and pro-apoptotic effects of Achillea teretifolia Willd extracts (Turkish name: Beyaz civanperÇemi). MATERIALS AND METHODS The anti-oxidant potential of the extracts was analyzed by the free radical 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and total phenolic content methods. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to detect cytotoxicity of the extracts onhuman prostate cancer cell lines (DU145 and PC-3) and human gingival fibroblast (HGF) cells. mRNA expression levels of pro-apoptotic (bax, caspase-3) and anti-apoptotic (bcl-2) genes were measured by quantitative real-time polymerase chain reaction. RESULTS The results showed that extracts exhibited a remarkable DPPH scavenging activity, and total phenolic content of the methanol extract was higher than that of the water extract. As time and concentration were increased, the methanol extract exhibited a more powerful cytotoxic effect on prostate cancer cells. In prostate cancer cells, the levels of mRNA expression of the bax and caspase-3 genes were significantly up-regulated (P < 0.05), whereas the expression of bcl-2 was down-regulated (P < 0.05). In HGF cells, there were no cytotoxic effect and apoptosis induction triggered by the extracts. CONCLUSION The methanol extract had more powerful anti-oxidant, cytotoxic and pro-apoptotic effects than the water extract. The extracts could be good anti-oxidant sources, and they might include anti-cancer compounds triggering the cytotoxicity and the apoptosis on prostate cancer cells.
Collapse
Affiliation(s)
- Elif Burcu Bali
- Department of Biology, Faculty of Science, University of Gazi, Beşevler, Ankara, Turkey
| | - Leyla Açık
- Department of Biology, Faculty of Science, University of Gazi, Beşevler, Ankara, Turkey
| | - Pınar Elçi
- Medical and Cancer Research Center, Gulhane Military Medical Academy, Ankara, Turkey
| | - Meral Sarper
- Medical and Cancer Research Center, Gulhane Military Medical Academy, Ankara, Turkey
| | - Ferit Avcu
- Medical and Cancer Research Center, Gulhane Military Medical Academy, Ankara, Turkey
| | - Mecit Vural
- Medical and Cancer Research Center, Gulhane Military Medical Academy, Ankara, Turkey
| |
Collapse
|
9
|
Ha US, Bae WJ, Kim SJ, Yoon BI, Hong SH, Lee JY, Hwang TK, Hwang SY, Wang Z, Kim SW. Anthocyanin induces apoptosis of DU-145 cells in vitro and inhibits xenograft growth of prostate cancer. Yonsei Med J 2015; 56:16-23. [PMID: 25510742 PMCID: PMC4276751 DOI: 10.3349/ymj.2015.56.1.16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To investigate the effects of anthocyanins extracted from black soybean, which have antioxidant activity, on apoptosis in vitro (in hormone refractory prostate cancer cells) and on tumor growth in vivo (in athymic nude mouse xenograft model). MATERIALS AND METHODS The growth and viability of DU-145 cells treated with anthocyanins were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and apoptosis was assessed by DNA laddering. Immunoblotting was conducted to evaluate differences in the expressions of p53, Bax, Bcl, androgen receptor (AR), and prostate specific antigen (PSA). To study the inhibitory effects of anthocyanins on tumor growth in vivo, DU-145 tumor xenografts were established in athymic nude mice. The anthocyanin group was treated with daily oral anthocyanin (8 mg/kg) for 14 weeks. After 2 weeks of treatment, DU-145 cells (2×10⁶) were inoculated subcutaneously into the right flank to establish tumor xenografts. Tumor dimensions were measured twice a week using calipers and volumes were calculated. RESULTS Anthocyanin treatment of DU-145 cells resulted in 1) significant increase in apoptosis in a dose-dependent manner, 2) significant decrease in p53 and Bcl-2 expressions (with increased Bax expression), and 3) significant decrease in PSA and AR expressions. In the xenograft model, anthocyanin treatment significantly inhibit tumor growth. CONCLUSION This study suggests that anthocyanins from black soybean inhibit the progression of prostate cancer in vitro and in a xenograft model.
Collapse
Affiliation(s)
- U Syn Ha
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woong Jin Bae
- Catholic Integrative Medicine Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Su Jin Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byung Il Yoon
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Hoo Hong
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Youl Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tae Kon Hwang
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Zhiping Wang
- Department of Urology, Second Hospital of Lanzhou University, Lanzhou, China
| | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
10
|
Palacios DA, Miyake M, Rosser CJ. Radiosensitization in prostate cancer: mechanisms and targets. BMC Urol 2013; 13:4. [PMID: 23351141 PMCID: PMC3583813 DOI: 10.1186/1471-2490-13-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/05/2012] [Indexed: 01/05/2023] Open
Abstract
Prostate cancer is the second most commonly diagnosed cancer in American men over the age of 45 years and is the third most common cause of cancer related deaths in American men. In 2012 it is estimated that 241,740 men will be diagnosed with prostate cancer and 28,170 men will succumb to prostate cancer. Currently, radiation therapy is one of the most common definitive treatment options for localized prostate cancer. However, significant number of patients undergoing radiation therapy will develop locally persistent/recurrent tumours. The varying response rates to radiation may be due to 1) tumor microenvironment, 2) tumor stage/grade, 3) modality used to deliver radiation, and 4) dose of radiation. Higher doses of radiation has not always proved to be effective and have been associated with increased morbidity. Compounds designed to enhance the killing effects of radiation, radiosensitizers, have been extensively investigated over the past decade. The development of radiosensitizing agents could improve survival, improve quality of life and reduce costs, thus benefiting both patients and healthcare systems. Herin, we shall review the role and mechanisms of various agents that can sensitize tumours, specifically prostate cancer.
Collapse
Affiliation(s)
- Diego A Palacios
- Section of Urologic Oncology, MD Anderson Cancer Center Orlando, Orlando, FL 32806, USA
| | | | | |
Collapse
|
11
|
Xie Z, Wroblewska L, Prochazka L, Weiss R, Benenson Y. Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 2011; 333:1307-11. [PMID: 21885784 DOI: 10.1126/science.1205527] [Citation(s) in RCA: 500] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Engineered biological systems that integrate multi-input sensing, sophisticated information processing, and precisely regulated actuation in living cells could be useful in a variety of applications. For example, anticancer therapies could be engineered to detect and respond to complex cellular conditions in individual cells with high specificity. Here, we show a scalable transcriptional/posttranscriptional synthetic regulatory circuit--a cell-type "classifier"--that senses expression levels of a customizable set of endogenous microRNAs and triggers a cellular response only if the expression levels match a predetermined profile of interest. We demonstrate that a HeLa cancer cell classifier selectively identifies HeLa cells and triggers apoptosis without affecting non-HeLa cell types. This approach also provides a general platform for programmed responses to other complex cell states.
Collapse
Affiliation(s)
- Zhen Xie
- Faculty of Arts and Sciences (FAS) Center for Systems Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
Cancer remains a leading cause of morbidity and mortality. Despite advances in understanding, detection, and treatment, it accounts for almost one-fourth of all deaths per year in Western countries. Prostate cancer is currently the most commonly diagnosed noncutaneous cancer in men in Europe and the United States, accounting for 15% of all cancers in men. As life expectancy of individuals increases, it is expected that there will also be an increase in the incidence and mortality of prostate cancer. Prostate cancer may be inoperable at initial presentation, unresponsive to chemotherapy and radiotherapy, or recur following appropriate treatment. At the time of presentation, patients may already have metastases in their tissues. Preventing tumor recurrence requires systemic therapy; however, current modalities are limited by toxicity or lack of efficacy. For patients with such metastatic cancers, the development of alternative therapies is essential. Gene therapy is a realistic prospect for the treatment of prostate and other cancers, and involves the delivery of genetic information to the patient to facilitate the production of therapeutic proteins. Therapeutics can act directly (eg, by inducing tumor cells to produce cytotoxic agents) or indirectly by upregulating the immune system to efficiently target tumor cells or by destroying the tumor's vasculature. However, technological difficulties must be addressed before an efficient and safe gene medicine is achieved (primarily by developing a means of delivering genes to the target cells or tissue safely and efficiently). A wealth of research has been carried out over the past 20 years, involving various strategies for the treatment of prostate cancer at preclinical and clinical trial levels. The therapeutic efficacy observed with many of these approaches in patients indicates that these treatment modalities will serve as an important component of urological malignancy treatment in the clinic, either in isolation or in combination with current approaches.
Collapse
Affiliation(s)
- Mark Tangney
- Cork Cancer Research Centre, Mercy University Hospital, Cork, Ireland.
| | | | | | | |
Collapse
|
13
|
Liao A, Wang J, Wang J, Zhuang H, Zhao Y. Relative biological effectiveness and cell-killing efficacy of continuous low-dose-rate 125I seeds on prostate carcinoma cells in vitro. Integr Cancer Ther 2010; 9:59-65. [PMID: 20150222 DOI: 10.1177/1534735409357758] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to determine the effects of (125)I seeds on prostate carcinoma (PC3) cells. The relative biological effectiveness of (125)I seeds on PC3 cells with respect to (60)Co gamma rays was 1.4. Both 4 Gy of (60)Co gamma ray and (125)I seed irradiation increased the percentage of cells in G(2) phase, but there was no significant difference between these 2 types of radiation. Significantly, (125)I seeds induced higher apoptotic rates of PC3 cells compared with (60)Co gamma ray irradiation. Furthermore, Bcl-2 expression, but not caspase-3 activity, in PC3 cells was downregulated after irradiation with (125)I seed or (60)Co gamma rays.
Collapse
Affiliation(s)
- Anyan Liao
- Peking University 3rd Hospital. Beijing, China
| | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Magnus Essand
- Clinical Immunology Division, Rudbeck Laboratory, Uppsala University, Sweden.
| |
Collapse
|
15
|
Zhang KX, Moussavi M, Kim C, Chow E, Chen IS, Fazli L, Jia W, Rennie PS. Lentiviruses with trastuzumab bound to their envelopes can target and kill prostate cancer cells. Cancer Gene Ther 2009; 16:820-31. [PMID: 19373278 DOI: 10.1038/cgt.2009.28] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this study, we took advantage of the overexpression of human epidermal growth factor receptor 2 (HER-2) in prostate cancers to design lentiviruses with modified envelope proteins that bind antibodies to specific cell-surface antigens. When bound to trastuzumab (Herceptin, Genentech, CA), lentiviruses were able to selectively infect androgen-sensitive LNCaP and castration-resistant C4-2 human prostate cancer cell lines, both of which express high levels of HER-2. To test for a therapeutic effect, we engineered our antibody-binding lentiviruses to express thymidine kinase, which can convert the non-toxic pro-drug ganciclovir (GCV) into a cytotoxic form. LNCaP and C4-2 cells infected by these viruses were sensitive to GCV killing. In vivo, C4-2 xenograft tumors treated either intratumorally or i.v. with trastuzumab-bound lentivirus expressed luciferase, although the latter route was less tumor specific. When a prostate-specific promoter for governing luciferase expression was combined with trastuzumab-mediated delivery, there was a further enrichment in targeting viral gene expression in prostate tumors. In conclusion, we found that although prostate cancers that express high levels of HER-2 are resistant to the killing effects of trastuzumab, they can be targeted for selective gene expression and destruction by viruses with envelope proteins engineered to bind this antibody.
Collapse
Affiliation(s)
- K-x Zhang
- Prostate Centre at Vancouver General Hospital, Vancouver, British Columbia, Canada V6H 3Z6
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Li N, Zheng L, Lin P, Danielpour D, Pan Z, Ma J. Overexpression of Bax induces down-regulation of store-operated calcium entry in prostate cancer cells. J Cell Physiol 2008; 216:172-9. [PMID: 18247359 DOI: 10.1002/jcp.21385] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Store-operated Ca2+ channels control homeostasis between extracellular Ca2+ reservoir and intracellular Ca2+ storage and play important roles in apoptosis in a wide variety of cells, including prostate epithelia. Recent studies have shown that the acquired apoptosis-resistant nature of androgen-independent prostate cancer is associated with reduced function of store-operated Ca2+ entry (SOCE). This study investigates the functional interaction between Bax and SOCE in the apoptosis signaling cascade in prostate cancer. Our previous findings show that NRP-154, an androgen-independent prostate cancer cell line, could sustain overexpression of exogenous Bax without undergoing apoptosis. Here we show that sustained overexpression of Bax in NRP-154 cells leads to down-regulation of SOCE and reduced Ca2+ storage inside the endoplasmic reticulum. While reduced SOCE may represent an adaptive mechanism for cell survival, increased levels of Bax in the latent state enhances the sensitivity of NRP-154 cells to TGF-beta and thapsigargin-induced apoptosis. This enhanced apoptosis can be reduced by 2-aminoethoxydiphenyl borate (2-APB), an inhibitor of SOCE, or reversed under conditions where SOCE is only partially activated. Our results demonstrate a functional interaction between Bax and SOCE in apoptosis of prostate cancer, and support the concept that improving this interaction has therapeutic implications for prostate cancer.
Collapse
Affiliation(s)
- Na Li
- Department of Physiology and Biophysics, University of Medicine & Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
There is a critical need to develop new and effective cancer therapies that target bone, the primary metastatic site for prostate cancer and other malignancies. Among the various therapeutic approaches being considered for this application, gene-modified cell-based therapies may have specific advantages. Gene-modified cell therapy uses gene transfer and cell-based technologies in a complementary fashion to chaperone appropriate gene expression cassettes to active sites of tumor growth. In this paper, we briefly review potential cell vehicles for this approach and discuss relevant gene therapy strategies for prostate cancer. We further discuss selected studies that led to the conceptual development and preclinical testing of IL-12 gene-modified bone marrow cell therapy for prostate cancer. Finally, we discuss future directions in the development of gene-modified cell therapy for metastatic prostate cancer, including the need to identify and test novel therapeutic genes such as GLIPR1.
Collapse
Affiliation(s)
- H Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
18
|
Rau KM, Day CP, Hung MC. Breast Cancer Gene Therapy. BREAST CANCER AND MOLECULAR MEDICINE 2007:705-740. [DOI: 10.1007/978-3-540-28266-2_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
19
|
Skommer J, Wlodkowic D, Deptala A. Larger than life: Mitochondria and the Bcl-2 family. Leuk Res 2007; 31:277-86. [PMID: 16911824 DOI: 10.1016/j.leukres.2006.06.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 06/04/2006] [Accepted: 06/16/2006] [Indexed: 01/09/2023]
Abstract
The intrinsic pathway of apoptosis relies on mitochondrial membrane permeabilization, with Bcl-2 proteins serving as its master regulators. They form a complex network of interactions both within the family and with multiple cellular factors outside the family. The understanding of the processes that regulate mitochondrial breach, and mechanisms that direct the pro- and anti-apoptotic functions of Bcl-2 proteins, should assist the development of novel anticancer therapies. Thus, it is of no surprise that research in the field is gaining momentum. In this review we outline the current concepts on regulatory circuits governing mitochondrial rupture and action of Bcl-2 proteins during cell death, and how this burgeoning knowledge is being translated into the clinics with the hope to combat cancer.
Collapse
Affiliation(s)
- Joanna Skommer
- Department of Clinical Sciences, University of Kuopio, Harjulantie 1 C, 70211 Kuopio, Finland.
| | | | | |
Collapse
|
20
|
Chang HK, Shin MS, Yang HY, Lee JW, Kim YS, Lee MH, Kim J, Kim KH, Kim CJ. Amygdalin induces apoptosis through regulation of Bax and Bcl-2 expressions in human DU145 and LNCaP prostate cancer cells. Biol Pharm Bull 2006; 29:1597-602. [PMID: 16880611 DOI: 10.1248/bpb.29.1597] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostate cancer is one of the most common non-skin cancers in men. Amygdalin is one of the nitrilosides, natural cyanide-containing substances abundant in the seeds of plants of the prunasin family that have been used to treat cancers and relieve pain. In particular, D-amygdalin (D-mandelonitrile-beta-D-gentiobioside) is known to exhibit selective killing effect on cancer cells. Apoptosis, programmed cell death, is an important mechanism in cancer treatment. In the present study, we prepared the aqueous extract of the amygdalin from Armeniacae semen and investigated whether this extract induces apoptotic cell death in human DU145 and LNCaP prostate cancer cells. In the present results, DU145 and LNCaP cells treated with amygdalin exhibited several morphological characteristics of apoptosis. Treatment with amygdalin increased expression of Bax, a pro-apoptotic protein, decreased expression of Bcl-2, an anti-apoptotic protein, and increased caspase-3 enzyme activity in DU145 and LNCaP prostate cancer cells. Here, we have shown that amygdalin induces apoptotic cell death in human DU145 and LNCaP prostate cancer cells by caspase-3 activation through down-regulation of Bcl-2 and up-regulation of Bax. The present study reveals that amygdalin may offer a valuable option for the treatment of prostate cancers.
Collapse
Affiliation(s)
- Hyun-Kyung Chang
- Department of Physiology, College of Medicine, Kyung Hee University, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Norris JS, Bielawska A, Day T, El-Zawahri A, ElOjeimy S, Hannun Y, Holman D, Hyer M, Landon C, Lowe S, Dong JY, McKillop J, Norris K, Obeid L, Rubinchik S, Tavassoli M, Tomlinson S, Voelkel-Johnson C, Liu X. Combined therapeutic use of AdGFPFasL and small molecule inhibitors of ceramide metabolism in prostate and head and neck cancers: a status report. Cancer Gene Ther 2006; 13:1045-51. [PMID: 16763610 DOI: 10.1038/sj.cgt.7700965] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As of January 2005, there were 1020 gene therapy clinical trials ongoing worldwide with 675 or 66.2% devoted to cancer gene therapy. The majority are occurring in the US and Europe (http://www.wiley.co.uk/genetherapy/clinical/). At the present time, to our knowledge there are no trials that employ gene delivery of Fas Ligand (FasL). As an important note, and in contrast to somatic cell therapy trials, there are no reported deaths due to therapeutic vector administration in any cancer gene therapy trial. That said, from our studies and from the published literature, the issue of gene delivery remains the major obstacle to successfully employing gene therapy for cancer treatment. Numerous laboratories are studying this with many different approaches. My co-workers and I have focused on the delivery issue by using various approaches that address tumor targeting and transgene expression. In addition, we are focusing on enhancing tumor cell killing via the bystander effect and through use of small molecules to enhance bystander activity.
Collapse
Affiliation(s)
- J S Norris
- Department of Microbiology, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
MacRae EJ, Giannoudis A, Ryan R, Brown NJ, Hamdy FC, Maitland N, Lewis CE. Gene therapy for prostate cancer: current strategies and new cell-based approaches. Prostate 2006; 66:470-94. [PMID: 16353250 DOI: 10.1002/pros.20388] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prostate cancer is the most commonly diagnosed cancer in adult males in the Western world. It accounts for one in ten cancer cases and is the second leading cause of cancer death in men, after lung cancer. A number of curative treatments are available for patients with localized prostate cancer such as radical prostatectomy, radiotherapy, or brachytherapy. However, a proportion of these men will develop progressive disease, and some will present de novo with advanced and metastatic prostate cancer, which is amenable to palliation only with androgen-withdrawal therapy. Most of these patients will eventually develop hormone refractory disease which is incurable, and for whom gene therapy, if feasible may develop as an alternative treatment option. In this review we discuss the gene therapy vectors and strategies that are currently in use, new cell-based approaches, discuss their advantages and disadvantages, and review the potential or proven pre-clinical and clinical efficacy in prostate cancer models/patients.
Collapse
Affiliation(s)
- E J MacRae
- Tumour Targeting Group, University of Sheffield Medical School, Beech Hill Road, Sheffield, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Surgery, radiation or hormonal therapy are not adequate to control prostate cancer. Clearly, other novel treatment approaches, such as gene therapy, for advanced/recurrent disease are desperately needed to achieve long-term local control and particularly to develop effective systemic therapy for metastatic prostate cancer. In the last decade, significant progress in gene therapy for the treatment of localised prostate cancer has been demonstrated. A broad range of different gene therapy approaches, including cytolytic, immunological and corrective gene therapy, have been successfully applied for prostate cancer treatment in animal models, with translation into early clinical trials. In addition, a wide variety of viral and nonbiological gene delivery systems are available for basic and clinical research. Gene therapy approaches that have been developed for the treatment of prostate cancer are summarised.
Collapse
Affiliation(s)
- Sergey A Kaliberov
- Division of Radiation Biology, Department of Radiation Oncology, University of Alabama at Birmingham, 1824 6th Avenue South, WTI 674, Birmingham, AL 35294-6832, USA
| | | |
Collapse
|
24
|
Mao JD, Wu P, Xia XH, Hu JQ. Relationship between expression of gastrin, somatostatin mRNA and cell apoptosis and Bcl-2, Bax in large intestinal carcinoma. Shijie Huaren Xiaohua Zazhi 2005; 13:2757-2761. [DOI: 10.11569/wcjd.v13.i23.2757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the correlations the between expression of somatostatin (SS), gastrin (GAS) mRNA and cell apoptosis index (AI) and Bcl-2, Bax in large intestinal cancer.
METHODS: The expression of GAS and SS genes were detected in 62 colorectal cancer patients by nested reverse transcription polymerase chain reaction (RT-PCR), and the apoptosis of the cells was detected by TUNEL method. The protein expression of,Bcl-2, Bax, GAS, and SS were detected using immunohistochemical staining (S-P method).
RESULTS: The expression of GAS and SS mRNA and protein were basically consistent. The AI in SS high and moderate expression patients with large intestinal cancer was remarkably higher than that in SS low expression ones (q = 5.06, 3.95, both P < 0.01), while it was just opposite in GAS positive patients (q = 6.66, 6.33, P < 0.01). The positive rates of Bax and Bcl-2 expression had significant difference between SS (or GAS) high, moderate and low expression patients with large intestinal cancer (Bax: χ2 = 9.24, 6.91, P < 0.05; Bcl-2: χ2 = 7.17, 13.83, P < 0.05). The positive rate of Bax expression in SS high (80%, 8/10) and moderate (76.5%, 13/17) expression patients was notably higher than that in the low expression ones (40.0%, 14/35) (χ2 = 5.24, 6.09, P < 0.05), but the rate of Bcl-2 expression was just opposite (χ2 = 4.71, 4.70, P < 0.05). The positive rate of Bcl-2 expression in GAS high (90.9%,10/11) and moderate expression patients (86.7%,13/15) was markedly higher than that in the low expression ones (44.4%, 16/36) (χ2 = 5.60, 7.69, P < 0.05), but the positive rate of Bax expression in GAS high expression patients (27.3%, 3/8) was obviously lower than that in the low expression ones (69.4%, 25/36) (χ2 = 4.59, P < 0.05). Bax expression was not significantly different between moderate and low GAS positive patients. The value of GAS/SS was positively correlated with Bcl-2 expression (r = 0.34, P < 0.01), but negatively with the AI value and Bax expression (r = -0.546, P < 0.01; r = -0.299, P < 0.05).
CONCLUSION: GAS and SS play important roles in the regulation and control of cell apoptosis in large intestinal carcinoma, and the mechanism may be related to the aberrant expression of Bcl-2 and Bax.
Collapse
|
25
|
Lin PH, Pan Z, Zheng L, Li N, Danielpour D, Ma JJ. Overexpression of Bax sensitizes prostate cancer cells to TGF-beta induced apoptosis. Cell Res 2005; 15:160-6. [PMID: 15780177 DOI: 10.1038/sj.cr.7290281] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
NRP-154 is a tumorigenic epithelial cell line derived from the preneoplastic dorsal-lateral prostate of rats. These cells are exquisitely sensitive to TGF-beta induced apoptosis. In contrast, we find that NRP-154 cells can sustain overexpression of exogenous Bax protein, which is different from non-tumor cells where Bax functions as a ubiquitous stimulator of apoptosis. NRP-154 cells stably overexpressing Bax show increased sensitivity to TGF-beta induced apoptosis. The degree of TGF-beta induced apoptosis displays high correlation with cleavage of Bax at the amino-terminus. Our data indicate that prostate cancer cells can host high levels of latent Bax which can be activated through post-translational modification.
Collapse
Affiliation(s)
- Pei Hui Lin
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The prognosis of patients with some kinds of cancers whose patients are often found unresectable upon diagnosis is still dismal. In these fields, development of a new therapeutic modality is needed and gene therapy represents one promising strategy. So far, numerous cancer gene therapy clinical trials based on these principles have been carried out and have shown the safety of such modalities, but have fallen short of the initial expectations to cure cancers. In this review, we would like to make a problem-oriented discussion of current status of cancer gene therapy research by using mainly gastrointestinal cancers as an example. In order to overcome obstacles for full realization of cancer gene therapy, numerous researches have been conducted by many researchers. Various cancer-selective and non-selective genes, as well as lytic viruses themselves have been employed for gene therapy. In the context of gene delivery method, different kinds of viral and non-viral strategies have been utilized. In addition, surrogate assays, such as soluble markers and imaging, have been developed for safer and more informative clinical trials. Many experiments and clinical trials to date have figured out current obstacles for the realization of an effective cancer gene therapy modality. Tireless efforts to overcome such hurdles and continuous infusion of novel concepts into this field should lead to break through technologies and the cure of the patients.
Collapse
Affiliation(s)
- Masato Yamamoto
- BMR2-410, 901 19th Street South, Birmingham, AL 35294-2172, USA
| | | |
Collapse
|
27
|
Abstract
Cancer cells transcriptionally activate many genes that are important for uncontrolled proliferation and cell death. Deregulated transcriptional machinery in tumor cells usually consists of increased expression/activity of transcription factors. Ideally, cancer-specific killing can be achieved by delivering a therapeutic gene under the control of the DNA elements that can be activated by transcription factors that are overexpressed and/or constitutively activated in cancer cells. Additionally, tumor-specific translation of tumor-killing genes has been also exploited in cancer gene therapy. Based on these rationales, cancer-specific expression of a therapeutic gene has emerged as a potentially successful approach for cancer gene therapy. To achieve tumor-specific expression, cancer-specific vectors are generally composed of promoters, enhancers, and/or 5'-UTR that are responsive to tumor-specific transcription factors. A number of cancer-specific promoters have been reported, such as those of probasin, human telomerase reverse transcriptase, survivin, ceruloplasmin, HER-2, osteocalcin, and carcinoembryonic antigen. Evidences suggest that the enhancer element targeted by beta-catenin can be useful to target colon cancer cells. The 5'-UTR of the basic fibroblast growth factor-2 has been reported to provide tumor specificity. Moreover, a variety of therapeutic genes demonstrated direct antitumor effects such as those encoding proapoptotic proteins p53, E1A, p202, PEA3, BAX, Bik, and prodrug metabolizing enzymes, namely thymidine kinase and cytosine deaminase. As cancerous cells of different origins vary significantly in their genetic, transcriptional/translational, and cellular profiles, the success of a cancer gene therapy will not be promised unless it is carefully designed based on the biology of a specific tumor type. Thus, tremendous research efforts have been focused on the development of non-viral vectors that selectively target various tumors resulting in minimal toxicity in the normal tissues. Significant progresses were also made in the exploitation of various novel apoptotic, cytotoxic genes as therapeutic tools that suppress the growth of different tumors. Together, these recent advances provide rationales for future clinical testing of transcriptionally targeted non-viral vectors in cancer patients.
Collapse
Affiliation(s)
- Hui-Wen Lo
- Department of Molecular and Cellular Oncology The University of Texas M.D. Anderson Cancer Center Houston, Texas 77030, USA
| | | | | |
Collapse
|
28
|
Ishii K, Shappell SB, Matusik RJ, Hayward SW. Use of tissue recombination to predict phenotypes of transgenic mouse models of prostate carcinoma. J Transl Med 2005; 85:1086-103. [PMID: 15980886 DOI: 10.1038/labinvest.3700310] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transgenic mouse models of cancer represent a powerful approach for exploring disease processes and testing potential therapeutic interventions. Currently, it is difficult to predict if a specific genetic manipulation will result in a desirable phenotype. The present study tests the idea that tissue recombinants recapitulate the pathologic features of the neoplastic prostate seen in transgenic mice, and would thus be suitable predictive models for new mouse design. The large probasin-large T-antigen (LPB-Tag) transgenic lines 12T-7f and 12T-10 were used as a basis for this study. Tissue recombinants of bladder epithelium (BlE) and urogenital sinus mesenchyme (UGM) were implanted under the renal capsule of athymic mice. Recombinants composed of BlE from 12T-10 LPB-Tag and wild-type (wt) UGM faithfully recapitulated the histopathologic and temporal features of intact transgenic mice of this line. Tissue recombinants using BlE from 12T-7f mice and wt UGM developed epithelial proliferation with atypia that lacked the associated hypercellular stroma seen in the intact 12T-7f line. Recombinants using 12T-7f UGM demonstrated that the hypercellular stroma results from stromal cell expression of the SV40 large T antigen. Corresponding to the recombinant phenotypes, stromal Tag immunostaining was observed in prostate tissues from intact 12T-7f but not 12T-10 mice. Similar stromal expression of Tag was also noted in the hypercellular TRAMP prostatic stroma. Further analysis revealed a previously unreported pattern of SV40T expression in the LADY and TRAMP models including ductus deferens and seminal vesicle stroma as well as region and cell type-specific patterns in the epididymis. The present study demonstrates the utility of using tissue recombination to explore organ-specific phenotypes. Recombination strategies should enable quick and cost-effective screening for likely phenotypes in transgenic animals. This comparison of tissue recombination to existing models shows that this approach can elicit new information on well-characterized models.
Collapse
Affiliation(s)
- Kenichiro Ishii
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232-2765, USA
| | | | | | | |
Collapse
|
29
|
Mao JD, Wu P, Xia XH, Hu JQ, Huang WB, Xu GQ. Correlation between expression of gastrin, somatostatin and cell apoptosis regulation gene bcl-2/bax in large intestine carcinoma. World J Gastroenterol 2005; 11:721-5. [PMID: 15655830 PMCID: PMC4250747 DOI: 10.3748/wjg.v11.i5.721] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the correlation between expression of somatostatin (SS), gastrin (GAS) and cell apoptosis regulation gene bcl-2/bax in large intestine carcinoma.
METHODS: Sixty-two large intestine cancer tissue samples were randomly and retrospectively selected from patients with large intestine carcinoma. Immunohistochemical staining for bcl-2, bax, GAS, SS was performed according to the standard streptavidin-biotin-peroxidase (S-P) method. According to the semi-quantitative integral evaluation, SS and GAS were divided into three groups as follows. Scores 1-3 were defined as the low expression group, 4-8 as the intermediate expression group, 9-16 as the high expression group. Bax and bcl-2 protein expressions in different GAS and SS expression groups of large intestine carcinoma were assessed.
RESULTS: The positive expression rate of bax had a prominent difference between SS and GAS high, intermediate and low expression groups (P<0.05, χ2SS = 9.246; P<0.05, χ2GAS = 6.981). The positive expression rate of bax in SS high (80.0%, 8/10) and intermediate (76.5%, 13/17) expression groups was higher than that in low expression group (40.0%, 14/35) (P<0.05, χ2high vs low = 5.242; P<0.05,χ2middle vs low = 6.097). The positive expression rate of bax in GAS high expression group (27.3%, 3/8) was lower than that in low expression group (69.4%, 25/36) (P<0.05, χ2 = 4.594). However, bax expression in GAS intermediate expression group (46.7%, 7/15) was lower than that in low expression group, but not statistically significant. The positive expression rate of bcl-2 had a prominent difference between SS and GAS high, intermediate and low expression groups (P<0.05, χ2SS = 7.178; P<0.05, χ2GAS = 13.831). The positive expression rate of bcl-2 in GAS high (90.9%, 10/11) and intermediate (86.7%, 13/15) expression groups was higher than that in low expression group (44.4%, 16/36) (P<0.05, χ2high vs low = 5.600; P<0.05, χ2middle vs low = 7.695). However, the positive expression rate of bcl-2 in SS high (40.0%, 4/10) and intermediate (47.1%, 8/9) expression groups was lower than that in low expression group (77.1%, 27/35) (P<0.05, χ2high vs low = 4.710; P<0.05, χ2middle vs low = 4.706). There was a significant positive correlation between the integral ratio of GAS to SS and the integral of bcl-2 (P<0.01, r = 0.340). However, there was a negative correlation between the integral ratio of GAS to the SS and bax the integral of (P<0.05, r = -0.299).
CONCLUSION: The regulation and control of gastrin, somatostatin in cell apoptosis of large intestine carcinoma may be directly related to the abnormal expression of bcl-2, bax.
Collapse
Affiliation(s)
- Jia-Ding Mao
- Department of General Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui Province, China.
| | | | | | | | | | | |
Collapse
|
30
|
Viktorsson K, Lewensohn R, Zhivotovsky B. Apoptotic Pathways and Therapy Resistance in Human Malignancies. Adv Cancer Res 2005; 94:143-96. [PMID: 16096001 DOI: 10.1016/s0065-230x(05)94004-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apoptosis and necrosis are two morphologically distinct forms of cell death that are important for maintaining of cellular homeostasis. Almost all agents can provoke either response when applied to cells; however, the duration of treatment and the dose of the used agents determine which type of death (apoptosis or necrosis) is initiated. The response of tumors to chemo-, radio-, and hormone therapy or to treatment with biologically active agents may depend at least in part on the propensity of these tumors to undergo cell death. Some tumors, e.g., leukemias, small cell lung cancer, and seminomas, respond quickly to first-line therapy; this fast response is thought to result from induction of apoptosis. Solid tumors, on the other hand, usually respond slowly and less effectively, with cell death characterized not only by apoptosis but also by necrosis, or mitotic catastrophe. It is likely that resistance of tumors to treatment might be associated with defects in, or dysregulation of, different steps of the apoptotic pathways. Several attempts were undertaken to use the knowledge of these defects to design new drugs, which might either activate or re-activate the apoptotic machinery of tumor cells. Here we discuss the apoptotic pathways and their role in therapy resistance of human malignancies. Although such studies are still in progress, they offer great promise for future cancer therapy. We hope that some of these agents will turn out to be valuable additions to the future therapeutic arsenal, which will most probably include a combination of conventional cytotoxic drugs and molecular target-based pro-apoptotic drugs.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Unit of Medical Radiobiology, Department of Oncology/Pathology, Cancer Center Karolinska, Karolinska Institute, S-171 76 Stockholm, Sweden
| | | | | |
Collapse
|
31
|
Gridley DS, Miller GM, Luo X, Cao JD, Timiryasova TM, Fodor I, Slater JM. Proton radiation and TNF-alpha/Bax gene therapy for orthotopic C6 brain tumor in Wistar rats. Technol Cancer Res Treat 2004; 3:217-27. [PMID: 15059028 DOI: 10.1177/153303460400300215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
High-grade tumors of the brain remain virtually incurable with current therapeutic regimens, new approaches to augment existing therapies need to be explored. The major goal of this pilot study was to evaluate the feasibility of gene therapy using plasmid DNA encoding tumor necrosis factor-alpha and bax together with proton radiation in an immunocompetent animal model with orthotopic brain tumor. C6 glioma cells were stereotactically implanted into the left hemibrain of Wistar rats (day 0). On day 5, the appropriate groups received intratumoral pGL1-TNF-a and pGL1-Bax (10 microg each), parental plasmid pWS4 (20 microg), or PBS. Hemibrain proton irradiation (10 Gy, 90 MeV, single fraction) was delivered 18-20 hr later. Rats were euthanized when signs of illness appeared. In addition, a subset of animals from each group was euthanized on day 9 for immune and other assays. By day 9, 25%, 20%, and 10% of rats treated with PBS, pWS4, or pGL1-TNF-alpha/pGL1-Bax, respectively, had been euthanized due to weight loss or other signs of illness, whereas all rats treated with pGL1-TNF-alpha/pGL1-Bax + radiation or radiation alone were healthy (P<0.05). At this same time, the pGL1-TNF-alpha/pGL1-Bax + radiation group had significantly elevated lymphocyte percentages (P<0.005 or less) and a relatively high level of lymphocytic infiltrate within tumors. Although the rats treated with pGL1-TNF-alpha/pGL1-Bax had the highest levels of activated T helper (CD4+/CD71+) and T cytotoxic (CD8+/CD71+) cells, the values were not significantly different compared to the pWS4-injected control group. Splenocytes in all tumor cell-injected groups had higher mean values for DNA and protein synthesis compared to the non-tumor cell injected control group, whereas oxygen radical production by phagocytes was consistently higher in groups injected with plasmid or treated with radiation. Body, hemibrain, and spleen masses, white blood cell, red blood cell and platelet counts, hemoglobin, hematocrit, and transforming growth factor-beta1 levels in plasma were similar among groups. The results demonstrate that treatment with pGL1-TNF-alpha/pGL1-Bax combined with proton hemibrain irradiation is safe under the conditions used. Overall, these data support further investigation of this unique combination therapy.
Collapse
Affiliation(s)
- Daila S Gridley
- Department of Radiation Medicine, Loma Linda University and Medical Center, CA 92354 U.S.A.
| | | | | | | | | | | | | |
Collapse
|
32
|
Kühnel F, Zender L, Wirth T, Schulte B, Trautwein C, Manns M, Kubicka S. Tumor-specific adenoviral gene therapy: transcriptional repression of gene expression by utilizing p53-signal transduction pathways. Cancer Gene Ther 2004; 11:28-40. [PMID: 14681724 DOI: 10.1038/sj.cgt.7700632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adenoviral gene expression that is repressed by p53 in nontransformed cells could provide a tumor-specific gene therapy approach for a large subset of tumors. Adenoviral infection in vivo induces stabilization of p53, which can be utilized for a strategy that includes p53-dependent expression of a transcriptional repressor and a target promoter,which is highly susceptible for transcriptional repression. Therefore, we constructed different versions of CMV-promoters (CMVgal) with binding sites for GAL4-DBD and investigated 11 GAL4-DBD fusion proteins to elucidate the most effective repressor domain to silence CMVgal activity. The transcriptional repressor GAL4-KRAB-A under control of a p53-dependent promoter facilitates strong CMVgal-mediated gene expression specifically in p53 mutant cells by a double-recombinant adenoviral vector (Ad-RGCdR). GAL4-KRAB-A mediates strong transcriptional repression of Ad-RGCdR in p53 wild-type cells, which could be further enhanced by preactivation of p53-signalling following low-dose chemotherapy prior to adenoviral infection. By utilizing p53 signalling involved in chemotherapy and adenoviral infection, more than 99% of Ad-RGCdR gene expression could be repressed in p53 wild-type cells. Controlled gene expression from CMVgal promoters by transcriptional repression utilizing functional p53 signalling thus provides a very effective tool for tumor-specific adenoviral gene therapy.
Collapse
Affiliation(s)
- Florian Kühnel
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Kaliberov S, Stackhouse MA, Kaliberova L, Zhou T, Buchsbaum DJ. Enhanced apoptosis following treatment with TRA-8 anti-human DR5 monoclonal antibody and overexpression of exogenous Bax in human glioma cells. Gene Ther 2004; 11:658-67. [PMID: 14973547 DOI: 10.1038/sj.gt.3302215] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Specific activation of apoptosis in tumor cells offers a promising approach for cancer therapy. Induction of apoptosis leads to activation of specific proteases. Two major pathways for caspase activation in mammalian cells have been described. One apoptotic pathway involves members of the tumor necrosis factor family of cytokine receptors (eg death receptor 5 (DR5)). The other pathway is controlled by the Bcl-2 family of proteins. The purpose of this study was to investigate whether increased apoptosis occurs in human glioma cells following infection with a recombinant adenoviral vector encoding the human Bax gene under the control of human vascular endothelial growth factor (VEGF) promoter element (AdVEGFBax) in combination with an anti-human DR5 monoclonal antibody (TRA-8). Specific overexpression of exogenous Bax protein induced apoptosis and cell death in glioma cell lines, through activation of both caspase-8 and -9, leading to activation of downstream caspase-3. The relative sensitivity to AdVEGFBax for the glioma cell lines was U251MG>U373MG>U87MG>D54MG. The recently characterized TRA-8 monoclonal antibody induces apoptosis of most TRAIL-sensitive tumor cells by specific binding to DR5 receptors on the cellular membrane. TRA-8 induced rapid apoptosis and cell death in glioma cells, but did not demonstrate detectable cytotoxicity of primary normal human astrocytes. The efficiency of TRA-8-induced apoptosis was variable in different glioma cell lines. The relative sensitivity to TRA-8 was U373MG>U87MG>U251MG>D54MG. The combination of TRA-8 treatment and overexpression of Bax overcame TRA-8 resistance of glioma cells in vitro. Cell viability of U251MG cells was 71.1% for TRA-8 (100 ng/ml) alone, 75.9% for AdVEGFBax (5 MOI) alone and 41.1% for their combination as measured by MTS assay. Similar enhanced apoptosis results were obtained for the other glioma cell lines. In vivo studies demonstrated that the combined treatment significantly (P<0.05) suppressed the growth of U251MG xenografts and produced 60% complete tumor regressions without recurrence. These data suggest that the combination of TRA-8 treatment with specific overexpression of Bax using AdVEGFBax may be an effective approach for the treatment of human malignant gliomas.
Collapse
Affiliation(s)
- S Kaliberov
- Department of Radiation Oncology, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | |
Collapse
|
34
|
Kim HS, Bowen P, Chen L, Duncan C, Ghosh L, Sharifi R, Christov K. Effects of tomato sauce consumption on apoptotic cell death in prostate benign hyperplasia and carcinoma. Nutr Cancer 2004; 47:40-7. [PMID: 14769536 DOI: 10.1207/s15327914nc4701_5] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Population studies have suggested that lycopene, which is mostly found in tomato and tomato products, may reduce the risk of prostate cancer. We previously found that tomato sauce consumption prior to prostatectomy for prostate cancer decreased serum prostate specific antigen, decreased oxidative DNA damage, and increased lycopene concentrations in prostate tissue (Chen et al., 2001). Here, we extended those investigations to determine whether apoptotic cell death and associated Bcl-2 and Bax proteins were modulated by tomato sauce intervention. Thirty-two patients diagnosed by biopsy with prostate carcinoma were given tomato sauce pasta entrees (30 mg lycopene/day) for 3 wk before prostatectomy. Thirty-four patients with prostate cancer who did not consume tomato sauce and underwent prostatectomy served as controls. When tumor areas with the most apoptotic cells were compared in the biopsy (before) and resected prostate tissue (after), tomato sauce consumption increased apoptotic cells in benign prostate hyperplasia (BPH) from 0.66 +/- 0.10% to 1.38 +/- 0.31% (P = 0.013) and in carcinomas from 0.84 +/- 0.13% to 2.76 +/- 0.58% (P = 0.0003). When comparable morphological areas were counted, apoptotic cell death in carcinomas increased significantly with treatment, from 0.84 +/- 0.13% to 1.17 +/- 0.19% (P = 0.028), and apoptotic cell death in BPH showed a tendency toward an increase from 0.66 +/- 0.10% to 1.20 +/- 0.32% (P = 0.20). When the values of apoptotic cells in BPH and carcinomas of patients who consume tomato sauce were compared with corresponding control lesions of the patients who did not consume tomato sauce in resected prostate tissue, the differences of values were not significant [BPH 1.38 +/- 0.31% vs. 1.14 +/- 0.32% (P = 0.97); carcinomas 2.76 +/- 0.58% vs. 1.91 +/- 0.32% (P = 0.24)]. Tomato sauce consumption did not affect Bcl-2 expression but decreased Bax expression in carcinomas. These data provide the first in vivo evidence that tomato sauce consumption may suppress the progression of the disease in a subset of patients with prostate cancer by increasing apoptotic cell death. However, because of the relatively small number of control and tomato sauce-supplemented patients and the variability in the values of apoptotic cells in BPH and carcinomas, a much larger number of patients needs to be examined to support the data generated in this study.
Collapse
Affiliation(s)
- Hyung-Sook Kim
- Department of Human Nutrition, University of Illinois at Chicago, 1919 W. Taylor, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Yu D, Jia WW, Gleave ME, Nelson CC, Rennie PS. Prostate-tumor targeting of gene expression by lentiviral vectors containing elements of the probasin promoter. Prostate 2004; 59:370-82. [PMID: 15065085 DOI: 10.1002/pros.20010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Lentiviruses are retroviruses that can infect and stably integrate into the chromatin of non-dividing cells. The purpose of this study was to determine whether lentiviral vectors containing the probasin (PB) promoter displayed prostate-specific, androgen-regulated, and persistent gene expression. METHODS Three lentiviral-PB promoter/enhanced green fluorescent protein (EGFP)-reporter vectors together with a control lentiviral-CMV-EGFP, were tested by microscopy and flowcytometry for expression of EGFP after infection of human prostate cancer cells (LNCaP, PC-3, PC-3(hAR), and Du145 cells) and non-prostate cells (COS-1, HeLa, HeLa(hAR), and MCF-7 cells). RESULTS All cells infected in vitro with lentiviral-CMV vectors expressed EGFP, whereas with lentiviral-PB vectors (the most potent being Lv-ARR(2)PB), reporter expression was only observed in LNCaP cells with a small amount seen in androgen-independent PC-3 cells. Stable or transient transfection of androgen receptor only raised EGFP expression in prostate-derived cell lines, but did not change tumor specificity. With Lv-ARR(2)PB infected LNCaP cells, androgens regulated EGFP both in vitro and in vivo. After intra-tumor injection of this vector, EGFP expression was observed in LNCaP tumors, but not in A-549 lung or CaKi-2 kidney tumors. CONCLUSIONS Lv-ARR(2)PB may be an ideal vector for prostate-tumor targeting and for persistent, hormone-enhanced expression of a therapeutic gene to treat slow growing prostate tumors.
Collapse
Affiliation(s)
- Duan Yu
- The Prostate Center at Vancouver General Hospital and the Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
36
|
Kirkin V, Joos S, Zörnig M. The role of Bcl-2 family members in tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1644:229-49. [PMID: 14996506 DOI: 10.1016/j.bbamcr.2003.08.009] [Citation(s) in RCA: 406] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Accepted: 08/18/2003] [Indexed: 02/07/2023]
Abstract
The Bcl-2 family consists of about 20 homologues of important pro- and anti-apoptotic regulators of programmed cell death. The established mode of function of the individual members is to either preserve or disturb mitochondrial integrity, thereby inducing or preventing release of apoptogenic factors like Cytochrome c (Cyt c) from mitochondria. Recent findings also indicate further Bcl-2-controlled mitochondria-independent apoptosis pathways. Bcl-2 represents the founding member of the new and growing class of cell death inhibiting oncoproteins. In this review, we try to briefly summarize current models of Bcl-2 family function and to outline the work demonstrating the influence of deregulated Bcl-2 family member expression on tumorigenesis and cancer therapy. Since several Bcl-2 homologues, in addition to influencing apoptotic behaviour, also impinge on cell cycle progression, we discuss possible implications of this additional role for the expression of Bcl-2 family members in tumor cells.
Collapse
Affiliation(s)
- Vladimir Kirkin
- Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt, Germany
| | | | | |
Collapse
|
37
|
Suzuki K, Drevet J, Hinton BT, Huhtaniemi I, Lareyre JJ, Matusik RJ, Pons E, Poutanen M, Sipilä P, Orgebin-Crist MC. Epididymis-specific promoter-driven gene targeting: a new approach to control epididymal function? Mol Cell Endocrinol 2004; 216:15-22. [PMID: 15109740 DOI: 10.1016/j.mce.2003.10.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Kichiya Suzuki
- Department of Obstetric and Gynecology, Vanderbilt Univerity School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Honda T, Coppola S, Ghibelli L, Cho SH, Kagawa S, Spurgers KB, Brisbay SM, Roth JA, Meyn RE, Fang B, McDonnell TJ. GSH depletion enhances adenoviral bax-induced apoptosis in lung cancer cells. Cancer Gene Ther 2004; 11:249-55. [PMID: 15002033 DOI: 10.1038/sj.cgt.7700684] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The utility of dominant acting proapoptotic molecules to induce cell death in cancer cells is being evaluated in preclinical studies and clinical trials. We recently developed a binary adenoviral expression system to enable the efficient gene transfer of Bax and other proapoptotic molecules. Using this system, overexpression of Bax protein in four non-small-cell lung cancer (NSCLC) cell lines, H1299, A549, H226 and H322, was evaluated. The H322 line exhibited significant resistance to Bax-induced cell death compared to the other cell lines. H322 cells had the highest level of glutathione (GSH). GSH levels were significantly decreased following buthionine sulfoximine treatment and this coincided with enhanced apoptosis induction by Ad-Bax in H322 cells. GSH depletion enhanced Bax protein translocation to mitochondrial membranes. These findings suggest that the redox status may be a determinant of Bax-mediated cell death and that manipulation of intracellular thiols may sensitize cells to apoptosis by facilitating Bax insertion into mitochondrial membranes.
Collapse
Affiliation(s)
- Tsuyoshi Honda
- Department of Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The field of cancer gene therapy is in continuous expansion, and technology is quickly moving ahead as far as gene targeting and regulation of gene expression are concerned. This review focuses on the endocrine aspects of gene therapy, including the possibility to exploit hormone and hormone receptor functions for regulating therapeutic gene expression, the use of endocrine-specific genes as new therapeutic tools, the effects of viral vector delivery and transgene expression on the endocrine system, and the endocrine response to viral vector delivery. Present ethical concerns of gene therapy and the risk of germ cell transduction are also discussed, along with potential lines of innovation to improve cell and gene targeting.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, I-35121 Padua, Italy
| | | | | |
Collapse
|
40
|
Lebedeva IV, Sarkar D, Su ZZ, Kitada S, Dent P, Stein CA, Reed JC, Fisher PB. Bcl-2 and Bcl-x(L) differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24. Oncogene 2003; 22:8758-73. [PMID: 14647471 DOI: 10.1038/sj.onc.1206891] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Subtraction hybridization identified melanoma differentiation associated gene-7, mda-7, in the context of terminally differentiated human melanoma cells. Based on its structure, cytokine-like properties and proposed mode of action, mda-7 has now been classified as IL-24. When expressed by means of a replication-incompetent adenovirus, Ad.mda-7 induces apoptosis in a broad range of cancer cells, without inducing harmful effects in normal fibroblast or epithelial cells. These unique properties of mda-7/IL-24 suggest that this gene will prove beneficial for cancer gene therapy. We now demonstrate that Ad.mda-7 decreases viability by induction of apoptosis in hormone-responsive (LNCaP) and hormone-independent (DU-145 and PC-3) human prostate carcinomas, without altering growth or survival in early-passage normal human prostate epithelial cells (HuPEC). Ad.mda-7 causes G(2)/M arrest and apoptosis in LNCaP (p53-wildtype), DU-145 (p53 mutant, Bax-negative) and PC-3 (p53-negative) prostate carcinomas, but not in HuPEC. Apoptosis induction correlated with changes in the ratio of pro- to antiapoptotic Bcl-2 protein family members. A potential functional role for changes in bcl-2 family gene expression in Ad.mda-7-induced apoptosis was suggested by the finding that forced overexpression of bcl-x(L) or bcl-2 differentially diminished the apoptotic effect of Ad.mda-7 in prostate carcinomas. These results confirm that induction of apoptosis by the mda-7/IL-24 gene in prostate cancer cells is Bax- and p53-independent and is mediated by mitochondrial pathways involving bcl-2 family gene members. The mda-7/IL-24 gene represents a new class of cancer-specific apoptosis-inducing genes with obvious potential for the targeted gene-based therapy of human prostate cancer.
Collapse
Affiliation(s)
- Irina V Lebedeva
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Irminger-Finger I. 3rd Geneva aging workshop 2002: cancer, apoptosis and aging. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1653:41-5. [PMID: 12781370 DOI: 10.1016/s0304-419x(03)00019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The topics of the 3rd Geneva Aging Workshop were cancer, apoptosis, and aging. As the risk for cancer is increasing with age, synergies that could emerge from this encounter could yield significant insights into the molecular mechanisms underlying both the etiology of cancer and the aging process. Several pathways that play a role in aging are thought to have an impact on the initiation and progression of cancer, with apoptosis being the key player. Which are the factors that are correlated with age-dependent cancer incidence? The regulators of apoptosis and genetic pathways that lead to apoptosis were discussed. This included genes that are clearly involved in aging, such as WS and BS, and genes that act in repair, such as BRCA1 and BARD1. The functions of telomere shortening and telomerase, extra cellular matrix, or epigenetic changes were presented in the light of their influence on aging and cancer risk.
Collapse
Affiliation(s)
- Irmgard Irminger-Finger
- Biology of Aging Laboratory, Department of Geriatrics, Geneva University Hospitals, 2 Chemin Petit-Bel-Air, 1225, Geneva, Switzerland.
| |
Collapse
|
42
|
Abstract
Cancer gene therapy has been one of the most exciting areas of therapeutic research in the past decade. In this review, we discuss strategies to restrict transcription of transgenes to tumour cells. A range of promoters which are tissue-specific, tumour-specific, or inducible by exogenous agents are presented. Transcriptional targeting should prevent normal tissue toxicities associated with other cancer treatments, such as radiation and chemotherapy. In addition, the specificity of these strategies should provide improved targeting of metastatic tumours following systemic gene delivery. Rapid progress in the ability to specifically control transgenes will allow systemic gene delivery for cancer therapy to become a real possibility in the near future.
Collapse
Affiliation(s)
- Tracy Robson
- School of Biomedical Sciences, University of Ulster, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| | - David G. Hirst
- School of Biomedical Sciences, University of Ulster, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| |
Collapse
|
43
|
Hyer ML, Sudarshan S, Schwartz DA, Hannun Y, Dong JY, Norris JS. Quantification and characterization of the bystander effect in prostate cancer cells following adenovirus-mediated FasL expression. Cancer Gene Ther 2003; 10:330-9. [PMID: 12679806 DOI: 10.1038/sj.cgt.7700576] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inducing Fas-mediated apoptosis in prostate cancer (PCa) is a promising new therapeutic approach with the potential to overcome delivery issues currently problematic in cancer gene therapy. We have previously demonstrated that a Fas Ligand (FasL) expressing adenovirus (AdGFPFasL(TET)) was able to induce Fas-mediated apoptosis in a panel of PCa cell lines regardless of their Fas-sensitivity as determined by the agonistic Fas antibody CH-11. We now report that AdGFPFasL(TET)-infected cells produce apoptotic bodies and cellular debris that continues to elicit FasL-mediated bystander killing in uninfected neighboring cells. Using light microscopy, we demonstrate that AdGFPFasL(TET)-infected cells release apoptotic bodies and cellular debris into the local environment and that this material will induce bystander killing in Jurkat, PPC-1, and PC-3 target cells, but not in DU145 and K-562 cells. The bystander killing mechanism is mediated through Fas/FasL interaction because it is significantly inhibited if target cells are pretreated with the pan spectrum caspase inhibitor Z-VAD-FMK or the Fas neutralizing antibody ZB-4. Coincubation of PPC-1 target cells with apoptotic bodies and cellular debris (effector material) induce nearly complete target cell killing at a ratio of 1:1 target to effector. Collectively, these data indicate that AdGFPFasL(TET)-infected PCa cells release apoptotic and cellular debris capable of inducing bystander killing in PCa and supports the development of FasL as a gene therapy agent.
Collapse
Affiliation(s)
- Marc L Hyer
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
44
|
Gridley DS, Timiryasova TM, Miller GM, Andres ML, Dutta-Roy R, Bayeta EJ, Fodor I. Evaluation of TNF-alpha/Bax gene therapy and radiation against C6 glioma xenografts. Technol Cancer Res Treat 2003; 2:41-50. [PMID: 12625753 DOI: 10.1177/153303460300200106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Successful therapy of high-grade tumors of the brain is likely to require a combination of new therapeutic approaches. The major goal of the present study was to construct a plasmid-based bax gene vector (pGL1-Bax) and evaluate its expression in vitro and in vivo using athymic mice with subcutaneously growing C6 glioma. Preliminary experiments of efficacy and safety were also performed using pGL1-Bax alone and in combination with previously constructed pGL1-TNF-alpha, as well as with radiation. pGL1-Bax was expressed by C6 cells and was correlated with apoptosis, indicating that the construct and the bax protein were functional. Although intratumoral injections of pGL1-Bax alone, up to total doses of 450 micro g, did not significantly affect tumor growth, consistently smaller tumors were obtained when pGL1-TNF-alpha plus pGL1-Bax were injected 16-18 hr prior to tumor irradiation. Furthermore, in mice with two tumors, one treated and one untreated, progression of the untreated tumor was delayed in the animals receiving all three modalities. No prohibitive toxicities were noted, based on mouse body weights and in vitro assays of blood and spleen. Significant increases in spleen mass, total leukocyte counts, percentage of granulocytes, spontaneous blastogenesis, and CD71-expressing B cells were primarily associated with tumor presence and not treatment type. Overall, the results are promising and suggest that TNF-alpha/Bax gene therapy may be beneficial against highly malignant tumors of the brain. To our knowledge, this is the first report of bax gene therapy used together with radiation in an in vivo glioma model.
Collapse
Affiliation(s)
- Daila S Gridley
- Department of Radiation Medicine, Radiobiology Program, Loma Linda University and Medical Center, Loma Linda, CA 92354, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Stanbridge LJ, Dussupt V, Maitland NJ. Baculoviruses as Vectors for Gene Therapy against Human Prostate Cancer. J Biomed Biotechnol 2003; 2003:79-91. [PMID: 12721513 PMCID: PMC323953 DOI: 10.1155/s1110724303209049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2002] [Accepted: 07/19/2002] [Indexed: 11/18/2022] Open
Abstract
Current curative strategies for prostate cancer are restricted to the primary tumour, and the effect of treatments to control metastatic disease is not sustained. Therefore, the application of gene therapy to prostate cancer is an attractive alternative. Baculoviruses are highly restricted insect viruses, which can enter, but not replicate in mammalian cells. Baculoviruses can incorporate large amounts of extra genetic material, and will express transgenes in mammalian cells when under the control of a mammalian or strong viral promoter. Successful gene delivery has been achieved both in vitro and in vivo and into both dividing and nondividing cells, which is important since prostate cancers divide relatively slowly. In addition, the envelope protein gp64 is sufficiently mutable to allow targeted transduction of particular cell types. In this review, the advantages of using baculoviruses for prostate cancer gene therapy are explored, and the mechanisms of viral entry and transgene expression are described.
Collapse
Affiliation(s)
- Lindsay J. Stanbridge
- YCR Cancer Research Unit, Department of Biology (Area 13), University of York Heslington, York YO10 5DD, UK
| | - Vincent Dussupt
- YCR Cancer Research Unit, Department of Biology (Area 13), University of York Heslington, York YO10 5DD, UK
| | - Norman J. Maitland
- YCR Cancer Research Unit, Department of Biology (Area 13), University of York Heslington, York YO10 5DD, UK
| |
Collapse
|
46
|
Pirocanac EC, Nassirpour R, Yang M, Wang J, Nardin SR, Gu J, Fang B, Moossa AR, Hoffman RM, Bouvet M. Bax-induction gene therapy of pancreatic cancer. J Surg Res 2002; 106:346-51. [PMID: 12175991 DOI: 10.1006/jsre.2002.6473] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Bax is a strong pro-apoptotic gene that induces programmed cell death when expressed. Human telomerase reverse transcriptase (hTERT) is the catalytic subunit for telomerase, an enzyme found to be active in more than 85% of human cancers. Recently, a binary adenoviral system (Ad/GT-Bax + Ad/hTERT-GV16) was constructed using the hTERT promoter to induce Bax gene expression in tumor cells. METHODS To test whether human pancreatic tumor cells would respond to this system of Bax-induced apoptosis, we compared the effects of Bax gene induction with that of LacZ gene induction using the same binary system. RESULTS Lysates of the human pancreatic cell lines PANC-28, MIA PaCa-2, and BxPC-3 showed significantly elevated levels of human telomerase using the PCR-based TRAP assay. As early as 24 h after treatment with Bax-induction gene therapy, growth inhibition was observed. Overexpression of the Bax protein was confirmed by Western blotting. Extensive apoptosis on FACS analysis at 48 h was seen after Bax induction. In addition, cytosolic cytochrome c levels increased compared to mitochondrial levels after Bax induction. Levels of caspase-3, a key downstream enzyme involved in apoptosis, also increased significantly compared to controls after treatment. None of these effects were seen with LacZ. CONCLUSION Our results suggest that the binary adenoviral vector system, Ad/GT-Bax + Ad/hTERT-GV16, induces high levels of Bax expression that induce apoptosis in human pancreatic cancer cells.
Collapse
Affiliation(s)
- Elissa C Pirocanac
- Department of Surgery, University of California at San Diego, 92161, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kaliberov SA, Buchsbaum DJ, Gillespie GY, Curiel DT, Arafat WO, Carpenter M, Stackhouse MA. Adenovirus-mediated transfer of BAX driven by the vascular endothelial growth factor promoter induces apoptosis in lung cancer cells. Mol Ther 2002; 6:190-8. [PMID: 12161185 DOI: 10.1006/mthe.2002.0648] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Apoptosis induction is a promising approach for cancer gene therapy. Bax is a death-promoting member of the Bcl2 family of genes that are intimately involved in apoptosis. Overexpression of BAX protein can accelerate cell death by homodimers that promote apoptosis in a variety of cancer cell lines. The cytotoxic effect of BAX was evaluated in vitro by a recombinant adenovirus system expressing the human BAX gene under control of human vascular endothelial growth factor (VEGF) promoter element (AdVEGFBAX). Overexpression of BAX in human lung carcinoma cells resulted in apoptosis induction, caspase activation, and cell growth suppression, none of which were observed in BEAS-2B normal human bronchial epithelial cells that do not overexpress VEGF under normoxic conditions. To examine the hypoxia responsiveness of the VEGF promoter, lung cancer cells were transiently exposed to hypoxia; this treatment increased enhanced green fluorescent protein (EGFP) expression after AdVEGFEGFP infection in both normal and cancer cell lines, and enhanced apoptosis and decreased the number of surviving cancer cells compared with the Ad/BAX plus Ad/Cre binary adenoviral system. These results suggest a possible therapeutic application of cancer-specific expression of the pro-apoptotic Bax gene driven by the VEGF promoter.
Collapse
Affiliation(s)
- Sergey A Kaliberov
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
AIM: To investigate the action of apoptosis in occurrence of liver cacinomas in vivo and the biological effect of Solanum lyratum Thumb on BEL-7404 cell line inducing apoptosis in vitro.
METHODS: The apoptosis in the liver carcinoma was detected with terminal deoxynucl neotidyl transferase mediated dUTP nick end labelling (TUNEL); the cancer cells cultured in DMED medium were treated with extract of Solanum lyratum Thumb and observed under microscope, and their DNA was assayed by gel electrophoresis.
RESULTS: In vivo apoptotic cells in the cancer adjacent tissues inceased; in vitro treatment of liver cancers with extract of Solanum lyratum Thumb could induce the cells to manifest a typical apoptotic morphology. Their DNA was fractured and a characteristic ladder pattern could be found using electrophoresis.
CONCLUSION: In vivo the apoptosis of carcinomas was lower; maybe the cells divided quickly and then the cancers occurred. In the cancer adjacent tissues, the apoptosis pricked up, and in vitro Solanum lyratum Thumb could induce the apoptosis of BEL-7404 cells.
Collapse
Affiliation(s)
- Chang-Min Shan
- Department of Biology, Binzhou Medical College, Binzhou 256603, China.
| | | |
Collapse
|