1
|
González-Moles MÁ, Moya-González E, García-Ferrera A, Nieto-Casado P, Ramos-García P. Prognostic and Clinicopathological Significance of Telomerase Reverse Transcriptase Upregulation in Oral Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14153673. [PMID: 35954336 PMCID: PMC9367569 DOI: 10.3390/cancers14153673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 12/07/2022] Open
Abstract
The aim of this systematic review and meta-analysis was to evaluate the current evidence on the prognostic and clinicopathological significance value of telomerase reverse transcriptase (TERT) upregulation in patients with oral squamous cell carcinoma (OSCC). PubMed, Embase, Web of Science, and Scopus were searched for studies published before April 2022, not restricted by date or publication language. The methodological quality of primary-level studies was critically assessed using the Quality in Prognosis Studies (QUIPS) tool. We carried out meta-analyses, explored heterogeneity and its sources, and performed subgroup, meta-regression, sensitivity, and small-study effects analyses. Twenty-one studies (1698 patients) met inclusion criteria. TERT protein overexpression was significantly associated with worse overall survival (hazard ratio [HR] = 3.01, 95% CI = 1.70−5.35, p < 0.001), disease-free survival (HR = 4.03, 95% CI = 1.80−9.05, p = 0.001), and higher histological grade OSCC (odds ratio [OR] = 3.20, 95% CI = 1.83−5.62, p < 0.001). These large effect sizes were consistently obtained by homogeneous subgroups (p > 0.10, I2 = 0.0, respectively), which reflects a high quality of evidence. On the other hand, TERT gene mutations obtained constantly nonsignificant null effect sizes for all outcomes investigated, evidencing no prognostic or clinicopathological value. In conclusion, our findings indicate that TERT upregulation is a prognostic indicator of poor survival in oral cancer. Our findings support the immunohistochemical assessment of TERT overexpression, which could probably be incorporated into the prognostic evaluation of OSCC.
Collapse
Affiliation(s)
- Miguel Ángel González-Moles
- School of Dentistry, University of Granada, 18011 Granada, Spain; (E.M.-G.); (A.G.-F.); (P.N.-C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Correspondence: (M.Á.G.-M.); (P.R.-G.)
| | - Eloísa Moya-González
- School of Dentistry, University of Granada, 18011 Granada, Spain; (E.M.-G.); (A.G.-F.); (P.N.-C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Alberto García-Ferrera
- School of Dentistry, University of Granada, 18011 Granada, Spain; (E.M.-G.); (A.G.-F.); (P.N.-C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Paola Nieto-Casado
- School of Dentistry, University of Granada, 18011 Granada, Spain; (E.M.-G.); (A.G.-F.); (P.N.-C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Pablo Ramos-García
- School of Dentistry, University of Granada, 18011 Granada, Spain; (E.M.-G.); (A.G.-F.); (P.N.-C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Correspondence: (M.Á.G.-M.); (P.R.-G.)
| |
Collapse
|
2
|
Bajaj S, Kumar MS, Peters GJ, Mayur YC. Targeting telomerase for its advent in cancer therapeutics. Med Res Rev 2020; 40:1871-1919. [PMID: 32391613 DOI: 10.1002/med.21674] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022]
Abstract
Telomerase has emerged as an important primary target in anticancer therapy. It is a distinctive reverse transcriptase enzyme, which extends the length of telomere at the 3' chromosomal end, and uses telomerase reverse transcriptase (TERT) and telomerase RNA template-containing domains. Telomerase has a vital role and is a contributing factor in human health, mainly affecting cell aging and cell proliferation. Due to its unique feature, it ensures unrestricted cell proliferation in malignancy and plays a major role in cancer disease. The development of telomerase inhibitors with increased specificity and better pharmacokinetics is being considered to design and develop newer potent anticancer agents. Use of natural and synthetic compounds for the inhibition of telomerase activity can lead to an opening of new vistas in cancer treatment. This review details about the telomerase biochemistry, use of natural and synthetic compounds; vaccines and oncolytic virus in therapy that suppress the telomerase activity. We have discussed structure-activity relationships of various natural and synthetic telomerase inhibitors to help medicinal chemists and chemical biology researchers with a ready reference and updated status of their clinical trials. Suppression of human TERT (hTERT) activity through inhibition of hTERT promoter is an important approach for telomerase inhibition.
Collapse
Affiliation(s)
| | | | - G J Peters
- Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Y C Mayur
- SPPSPTM, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
3
|
Xue AJ, Miao SJ, Sun H, Qiu XX, Wang SN, Wang L, Ye ZQ, Zheng CF, Huang ZH, Wang YH, Huang Y. Intestinal dysbiosis in pediatric Crohn's disease patients with IL10RA mutations. World J Gastroenterol 2020; 26:3098-3109. [PMID: 32587451 PMCID: PMC7304104 DOI: 10.3748/wjg.v26.i22.3098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/30/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Several studies have employed animal models to explore the association between microbiota and interleukin (IL) 10 signaling; however, limited information is available about the human microbiome.
AIM To characterize the microbiome in patients with IL10RA mutations and to explore the association between gut dysbiosis and disease severity.
METHODS Fecal samples were collected from patients who were diagnosed with loss-of-function mutations in the IL10RA gene between January 2017 and July 2018 at the Children's Hospital of Fudan University. Age-matched volunteer children were recruited as healthy controls. Patients with Crohn's disease (CD) were used as disease controls to standardize the antibiotic exposure. Microbial DNA was extracted from the fecal samples. All analyses were based on the 16S rRNA gene sequencing data.
RESULTS Seventeen patients with IL10RA mutations (IL10RA group), 17 patients with pediatric CD, and 26 healthy children were included. Both patients with IL10RA mutations and those with CD exhibited a reduced diversity of gut microbiome with increased variability. The relative abundance of Firmicutes was substantially increased in the IL10RA group (P = 0.02). On further comparison of the relative abundance of taxa between patients with IL10RA mutations and healthy children, 13 taxa showed significant differences. The IL10RA-specific dysbiosis indices exhibited a significant positive correlation with weighted pediatric CD activity index and simple endoscopic score for CD.
CONCLUSION In patients with IL10RA mutations and early onset inflammatory bowel disease, gut dysbiosis shows a moderate association with disease severity.
Collapse
Affiliation(s)
- Ai-Juan Xue
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Shi-Jian Miao
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Hua Sun
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Xiao-Xia Qiu
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Sheng-Nan Wang
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Lin Wang
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Zi-Qing Ye
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Cui-Fang Zheng
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Zhi-Heng Huang
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Yu-Huan Wang
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Ying Huang
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
4
|
Baginski M, Serbakowska K. In silico design of telomerase inhibitors. Drug Discov Today 2020; 25:1213-1222. [PMID: 32387261 DOI: 10.1016/j.drudis.2020.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/31/2022]
Abstract
Telomerase is a reverse transcriptase enzyme involved in DNA synthesis at the end of linear chromosomes. Unlike in most other cells, telomerase is reactivated most cancerous cells and, therefore, has become a promising new anticancer target. Despite extensive research, direct telomerase inhibitors have yet not been introduced to the clinics because of the complexity of this enzyme. Structures of this protein from simple organisms and human homology models are currently available and have been used in structure-based drug design efforts to find potential inhibitors. Different is silico strategies have been applied and different chemical groups have been explored. Here, we provide an overview of recent discoveries.
Collapse
Affiliation(s)
- Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland.
| | - Katarzyna Serbakowska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland
| |
Collapse
|
5
|
Chen X, Tang WJ, Shi JB, Liu MM, Liu XH. Therapeutic strategies for targeting telomerase in cancer. Med Res Rev 2019; 40:532-585. [PMID: 31361345 DOI: 10.1002/med.21626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022]
Abstract
Telomere and telomerase play important roles in abnormal cell proliferation, metastasis, stem cell maintenance, and immortalization in various cancers. Therefore, designing of drugs targeting telomerase and telomere is of great significance. Over the past two decades, considerable knowledge regarding telomere and telomerase has been accumulated, which provides theoretical support for the design of therapeutic strategies such as telomere elongation. Therefore, the development of telomere-based therapies such as nucleoside analogs, non-nucleoside small molecules, antisense technology, ribozymes, and dominant negative human telomerase reverse transcriptase are being prioritized for eradicating a majority of tumors. While the benefits of telomere-based therapies are obvious, there is a need to address the limitations of various therapeutic strategies to improve the possibility of clinical applications. In this study, current knowledge of telomere and telomerase is discussed, and therapeutic strategies based on recent research are reviewed.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Jing Bo Shi
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Ming Ming Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Xin-Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
6
|
Viviescas MA, Cano MIN, Segatto M. Chaperones and Their Role in Telomerase Ribonucleoprotein Biogenesis and Telomere Maintenance. CURR PROTEOMICS 2018. [DOI: 10.2174/1570164615666180713103133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Telomere length maintenance is important for genome stability and cell division. In most
eukaryotes, telomeres are maintained by the telomerase ribonucleoprotein (RNP) complex, minimally
composed of the Telomerase Reverse Transcriptase (TERT) and the telomerase RNA (TER) components.
In addition to TERT and TER, other protein subunits are part of the complex and are involved in
telomerase regulation, assembly, disassembly, and degradation. Among them are some molecular
chaperones such as Hsp90 and its co-chaperone p23 which are found associated with the telomerase
RNP complex in humans, yeast and probably in protozoa. Hsp90 and p23 are necessary for the telomerase
RNP assembly and enzyme activity. In budding yeast, the Hsp90 homolog (Hsp82) is also responsible
for the association and dissociation of telomerase from the telomeric DNA by its direct interaction
with a telomere end-binding protein (Cdc13), responsible for regulating telomerase access to telomeres.
In addition, AAA+ ATPases, such as Pontin and Reptin, which are also considered chaperone-
like proteins, associate with the human telomerase complex by the direct interaction of Pontin with
TERT and dyskerin. They are probably responsible for telomerase RNP assembly since their depletion
impairs the accumulation of the complex. Moreover, various RNA chaperones, are also pivotal in the
assembly and migration of the mature telomerase complex and complex intermediates. In this review,
we will focus on the importance of molecular chaperones for telomerase RNP biogenesis and how they
impact telomere length maintenance and cellular homeostasis.
Collapse
Affiliation(s)
- Maria Alejandra Viviescas
- Genetics Department, Biosciences Institute, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Marcela Segatto
- Genetics Department, Biosciences Institute, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
7
|
Yu P, Shen X, Yang W, Zhang Y, Liu C, Huang T. ZEB1 stimulates breast cancer growth by up-regulating hTERT expression. Biochem Biophys Res Commun 2017; 495:2505-2511. [PMID: 29288666 DOI: 10.1016/j.bbrc.2017.12.139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023]
Abstract
Dysfunctional cell proliferation and death are the foundation of the malignant biological characteristics of cancers. In this study, we discovered that ZEB1 was positively correlated with hTERT in breast invasive ductal carcinoma samples at both the mRNA and protein levels. Further, our in vitro study in breast cancer cell lines confirmed that ZEB1 regulates hTERT expression at the mRNA and protein levels; thus, hTERT promotes or inhibits telomerase activity, and telomere length is either protected or reduced. Finally, we verified that ZEB1, which mostly functions as a transcriptional repressor, can recruit the co-activator YAP to enhance the transcriptional activation of hTERT. Fascinatingly, instead of acting on E-boxes, the ZEB1/YAP complex tends to function as a transcriptional activator by binding with sequences potentially located in the hTERT promoter. Consequently, our research revealed a new ZEB1-hTERT signaling pathway involved in cell proliferation regulation that has never before been illuminated in breast cancer.
Collapse
Affiliation(s)
- Pan Yu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xi Shen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wen Yang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunke Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunping Liu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Telomerase reverse transcriptase promotes chemoresistance by suppressing cisplatin-dependent apoptosis in osteosarcoma cells. Sci Rep 2017; 7:7070. [PMID: 28765565 PMCID: PMC5539325 DOI: 10.1038/s41598-017-07204-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/23/2017] [Indexed: 11/18/2022] Open
Abstract
Cisplatin is one of the most efficacious antimitotic drugs used in the treatment of a range of malignant tumors. However, treatment failures are common due to the development of chemoresistance. In addition to its telomere maintenance function, telomerase plays a pro-survival role, inducing decreased apoptosis and increased resistance against DNA damage. Elucidation of the molecular mechanisms underlying this effect is critical to improve treatment outcomes. Previously, our group showed higher telomerase reverse transcriptase(TERT) expression in cisplatin resistant osteosarcoma cells. In this study, confocal fluorescence microscopy experiments revealed that TERT translocates from the nucleus to mitochondria in cisplatin treated osteosarcoma cells. We observed decreased apoptosis rate and improved mitochondrial function in TERT-overexpressing cells following cisplatin treatment. Based on these results, we further established that TERT inhibits cisplatin-induced apoptosis independently of telomerase reverse transcriptase activity. Moreover, TERT suppressed cisplatin-induced apoptosis and improved mitochondrial function via alleviating intracellular ROS in osteosarcoma cells. Our finding that TERT shuttles from the nucleus to the mitochondrion in response to cisplatin treatment and inhibits cisplatin-induced apoptosis in osteosarcoma cells may be especially important to overcome drug resistance.
Collapse
|
9
|
Ozturk MB, Li Y, Tergaonkar V. Current Insights to Regulation and Role of Telomerase in Human Diseases. Antioxidants (Basel) 2017; 6:antiox6010017. [PMID: 28264499 PMCID: PMC5384180 DOI: 10.3390/antiox6010017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 12/31/2022] Open
Abstract
The telomerase ribonucleoprotein complex has a pivotal role in regulating the proliferation and senescence of normal somatic cells as well as cancer cells. This complex is comprised mainly of telomerase reverse transcriptase (TERT), telomerase RNA component (TERC) and other associated proteins that function to elongate telomeres localized at the end of the chromosomes. While reactivation of telomerase is a major hallmark of most cancers, together with the synergistic activation of other oncogenic signals, deficiency in telomerase and telomeric proteins might lead to aging and senescence-associated disorders. Therefore, it is critically important to understand the canonical as well as non-canonical functions of telomerase through TERT to develop a therapeutic strategy against telomerase-related diseases. In this review, we shed light on the regulation and function of telomerase, and current therapeutic strategies against telomerase in cancer and age-related diseases.
Collapse
Affiliation(s)
- Mert Burak Ozturk
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore.
| | - Yinghui Li
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore.
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide SA 5000, Australia.
| |
Collapse
|
10
|
Abstract
Telomerase activity is responsible for the maintenance of chromosome end structures (telomeres) and cancer cell immortality in most human malignancies, making telomerase an attractive therapeutic target. The rationale for targeting components of the telomerase holoenzyme has been strengthened by accumulating evidence indicating that these molecules have extra-telomeric functions in tumour cell survival and proliferation. This Review discusses current knowledge of the biogenesis, structure and multiple functions of telomerase-associated molecules intertwined with recent advances in drug discovery approaches. We also describe the fertile ground available for the pursuit of next-generation small-molecule inhibitors of telomerase.
Collapse
Affiliation(s)
- Greg M Arndt
- Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Karen L MacKenzie
- Personalised Medicine Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| |
Collapse
|
11
|
β-Elemene inhibits the proliferation of esophageal squamous cell carcinoma by regulating long noncoding RNA-mediated inhibition of hTERT expression. Anticancer Drugs 2015; 26:531-9. [PMID: 25646744 DOI: 10.1097/cad.0000000000000216] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The study aimed to clarify the relationship between β-elemene, a long noncoding RNA (lncRNA), and human telomerase reverse transcriptase (hTERT) in esophageal carcinoma ECA-109 cells. The proliferation of ECA-109 cells was measured using a CCK-8 kit and flow cytometry. PCR microarray and real-time RT-PCR were designed to determine lncRNA expression in ECA-109 cells before and after treatment with β-elemene. Western blot was used to detect the hTERT level after the differentially expressed lncRNAs in ECA-109 cells were interfered with small interfering RNA (siRNA). On treatment with β-elemene, the proliferation of ECA-109 cells was notably inhibited, and about 85% of the lncRNAs showed higher expression levels in ECA-109 cells than in those untreated cells, from which, CDKN2B-AS1 was screened out. A specific siRNA (si-CDKN2B-AS1) that targets the β-elemene-mediated lncRNA CDKN2B-AS1 was designed, synthesized, and applied to treat ECA-109 cells. Its interference efficiency reached as high as 89.6%. When ECA-109 cells were transfected with the siRNA, the hTERT level was increased by 84.7%. The CCK-8 assay showed that the proliferation of ECA-109 cells treated with β-elemene was significantly promoted after siRNA transfection (P<0.01). It was also shown by flow cytometry that, compared with the scramble-treated group (negative control), the proliferation index value of ECA-109 cells in the si-CDKN2B-AS1 treatment group was notably increased (25.7 vs. 51.7%) and the TERT protein level was increased by 67.25% after the cells were treated with si-CDKN2B-AS1. The chemotherapeutic drug β-elemene suppressed the proliferation of esophageal carcinoma ECA-109 cells by regulating the inhibition of hTERT expression by lncRNA CDKN2B-AS1.
Collapse
|
12
|
Telomerase: central regulator of all of the hallmarks of cancer. Trends Biochem Sci 2013; 38:426-34. [PMID: 23932019 DOI: 10.1016/j.tibs.2013.07.001] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 12/13/2022]
Abstract
The hallmarks of cancer described by Hanahan and Weinberg are properties that cancer cells must possess for successful transformation. It is believed that each of these hallmarks is independently driven. Although elongation of telomeres is thought to be the prime function of reactivated telomerase reverse transcriptase, this activity does not account for all its effects, such as increasing cell proliferation, resistance to apoptosis, and invasion. Recent studies suggest that the telomerase subunit telomerase reverse transcriptase (TERT) has novel molecular functions including transcriptional regulation and metabolic reprogramming. We summarize these functions and discuss how they could directly regulate the various hallmarks of cancer. Finally, we suggest that therapeutics targeting noncanonical telomerase functions may work better than those that target its role in telomere extension.
Collapse
|
13
|
Telomerase and the search for the end of cancer. Trends Mol Med 2013; 19:125-33. [DOI: 10.1016/j.molmed.2012.11.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 11/11/2012] [Accepted: 11/16/2012] [Indexed: 12/30/2022]
|
14
|
Abstract
Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of the human telomerase complex. Growing evidence suggests that hTERT also contributes to the cell physiology independently of telomere elongation. However, its role in bacterial infection is unknown. Here we show that hTERT is critical for Listeria monocytogenes infection, as the depletion of hTERT impaired bacterial intracellular replication. In addition, we observed that L. monocytogenes caused a decrease in hTERT levels at early time points of the infectious process. This effect was mediated by the pore-forming toxin listeriolysin O (LLO) and did not require bacterial entry into host cells. Calcium influx through the LLO pores contributed to a proteasome-independent decrease in hTERT protein levels. Together, our data provide evidence that these bacteria trigger hTERT degradation, an event that is detrimental to bacterial replication.
Collapse
|
15
|
Wu X, Smavadati S, Nordfjäll K, Karlsson K, Qvarnström F, Simonsson M, Bergqvist M, Gryaznov S, Ekman S, Paulsson-Karlsson Y. Telomerase antagonist imetelstat inhibits esophageal cancer cell growth and increases radiation-induced DNA breaks. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2130-5. [PMID: 22906540 DOI: 10.1016/j.bbamcr.2012.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 11/28/2022]
Abstract
Telomerase is mainly active in human tumor cells, which provides an opportunity for a therapeutic window on telomerase targeting. We sought to evaluate the potential of the thio-phosphoramidate oligonucleotide inhibitor of telomerase, imetelstat, as a drug candidate for treatment of esophageal cancer. Our results showed that imetelstat inhibited telomerase activity in a dose-dependent manner in esophageal cancer cells. After only 1 week of imetelstat treatment, a reduction of colony formation ability of esophageal cancer cells was observed. Furthermore, long-term treatment with imetelstat decreased cell growth of esophageal cancer cells with different kinetics regarding telomere lengths. Short-term imetelstat treatment also increased γ-H2AX and 53BP1 foci staining in the esophageal cancer cell lines indicating a possible induction of DNA double strand breaks (DSBs). We also found that pre-treatment with imetelstat led to increased number and size of 53BP1 foci after ionizing radiation. The increase of 53BP1 foci number was especially pronounced during the first 1h of repair whereas the increase of foci size was prominent later on. This study supports the potential of imetelstat as a therapeutic agent for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Xuping Wu
- Department of Radiology, Oncology and Radiation Sciences, Section of Oncology, Uppsala University, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kim S, Youn H, Song MG, Kang JH, Chung HK, Lee DS, Chung JK. Complementary treatment of siTERT for improving the antitumor effect of TERT-specific I-131 therapy. Cancer Gene Ther 2012; 19:263-70. [PMID: 22301953 DOI: 10.1038/cgt.2011.88] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sodium iodide symporter (NIS)-based radionuclide therapy provides an effective means of treating malignant tumors. However, it is sometimes inadequate because of limited effects on radio-resistant tumors, and thus, combination therapies with other therapeutic options have been requested to enhance its efficacy. Human telomerase reverse transcriptase (hTERT) has been reported to be involved in the progression of most cancers and also been viewed as a good candidate for targeting tumor. Application of TERT-specific radionuclide therapies using NIS gene transfer have been reported to treat TERT-positive tumors, but this approach only demonstrated tumor regression rather than eradication. As inhibiting TERT expression by introducing the hTERT-specific shRNA (siTERT) has been suggested as a therapeutic option, we investigated the complementary role of siTERT treatment after the TERT-specific I-131 therapy and its possibility as a novel anticancer therapeutic strategy. Retroviruses containing TERT promoter/NIS for TERT specific Radionuclide therapy and siTERT for TERT targeting antisense therapy were produced. Hep3B cells expressing TERT specific NIS (Hep3B-TERT/NIS) were xenografted into nude mouse and visualized with micro-SPECT/CT for monitoring NIS activity. The levels of hTERT mRNA, protein and its activity were confirmed by RT-PCR, Western blotting and Telomerase repeat amplification protocol assay. Cell proliferation was monitored by MTT assay and induced apoptosis was confirmed by Annexin-V-PI staining. Therapeutic effects of I-131 and/or siTERT were evaluated by clonogenic assay and mouse tumor model. Reduction of hTERT mRNA, protein and TERT activity by siTERT were observed in Hep3B-TERT/NIS cells. The viabilities of the infected cells were significantly decreased to 50% versus siScramble treated controls. The early apoptotic cell population was increased by siTERT. The survival rates of cells treated with siTERT or I-131 alone were 72.4±7.6% and 56.2±5.2%, respectively. However, the survival rate of cells treated with I-131 and siTERT were decreased to 22.1±2.8%. From mouse xenograft model, we also found that the siTERT gene therapy showed synergism to the radioiodine therapy for reducing tumor growth in vivo. Our Results suggested that complementary siTERT gene therapy offers a novel strategy of cancer therapy to improve the therapeutic efficacy of TERT-specific I-131.
Collapse
Affiliation(s)
- S Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Guittat L, Alberti P, Gomez D, De Cian A, Pennarun G, Lemarteleur T, Belmokhtar C, Paterski R, Morjani H, Trentesaux C, Mandine E, Boussin F, Mailliet P, Lacroix L, Riou JF, Mergny JL. Targeting human telomerase for cancer therapeutics. Cytotechnology 2011; 45:75-90. [PMID: 19003245 DOI: 10.1007/s10616-004-5127-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Accepted: 09/21/2004] [Indexed: 01/28/2023] Open
Abstract
The enzyme telomerase is involved in the replication of telomeres, specialized structures that cap and protect the ends of chromosomes. Its activity is required for maintenance of telomeres and for unlimited lifespan, a hallmark of cancer cells. Telomerase is overexpressed in the vast majority of human cancer cells and therefore represents an attractive target for therapy. Several approaches have been developed to inhibit this enzyme through the targeting of its RNA or catalytic components as well as its DNA substrate, the single-stranded 3'-telomeric overhang. Telomerase inhibitors are chemically diverse and include modified oligonucleotides as well as small diffusable molecules, both natural and synthetic. This review presents an update of recent investigations pertaining to these agents and discusses their biological properties in the context of the initial paradigm that the exposure of cancer cells to these agents should lead to progressive telomere shortening followed by a delayed growth arrest response.
Collapse
Affiliation(s)
- Lionel Guittat
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle USM503, INSERM U 565, CNRS UMR 5153, 43, rue Cuvier, 75231, Paris cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Büchner N, Altschmied J, Jakob S, Saretzki G, Haendeler J. Well-known signaling proteins exert new functions in the nucleus and mitochondria. Antioxid Redox Signal 2010; 13:551-8. [PMID: 19958149 DOI: 10.1089/ars.2009.2994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One distinguishing feature of eukaryotic cells is their compartmentalization into organelles, which all have a unique structural and functional identity. Some proteins are exclusively localized in a single organelle, whereas others are found in more than one. A few proteins, whose function was thought to be completely understood, were only recently found to be present in the mitochondria. Although these proteins come from diverse functional classes, their common new denominator is the regulation of respiratory chain activity. Therefore, this review focuses on new functions of the Signal Transducer and Activator of Transcription 3, originally described as a transcription factor, the most prominent Src kinase family members, Src, Fyn, and Yes, which were so far known as plasma membrane-associated molecular effectors of a variety of extracellular stimuli, the tyrosine phosphatase Shp-2 previously characterized as a modulator of cytosolic signal transduction involved in cell growth, development, inflammation, and chemotaxis, and Telomerase Reverse Transcriptase, the key enzyme preventing telomere erosion in the nucleus. Their unexpected localization in other organelles and regulation of mitochondrial and/or nuclear functions by them adds a new layer of regulatory complexity. This extends the flexibility to cope with changing environmental demands using a limited number of genes and proteins.
Collapse
Affiliation(s)
- Nicole Büchner
- Leibniz-Institute for Molecular Preventive Medicine, University of Duesseldorf , Duesseldorf, Germany
| | | | | | | | | |
Collapse
|
19
|
Maritz MF, Napier CE, Wen VW, MacKenzie KL. Targeting telomerase in hematologic malignancy. Future Oncol 2010; 6:769-89. [PMID: 20465390 DOI: 10.2217/fon.10.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the past two decades, it has become increasingly apparent that telomerase-mediated telomere maintenance plays a crucial role in hematopoiesis. Supporting evidence is underscored by recent findings of mutations in genes involved in telomerase-mediated telomere maintenance that contribute to the pathogenesis of bone marrow failure syndromes. More recently described telomere-independent functions of telomerase are also likely to contribute to both normal hematopoiesis and hematologic diseases. The high levels of telomerase detected in aggressive leukemias have fueled fervent investigation into diverse approaches to targeting telomerase in hematologic malignancies. Successful preclinical investigations that employed genetic strategies, oligonucleotides, small-molecule inhibitors and immunotherapy have resulted in a rapid translation to clinical trials. Further investigation of telomere-independent functions of telomerase and detailed preclinical studies of telomerase inhibition in both normal and malignant hematopoiesis will be invaluable for refining treatments to effectively and safely exploit telomerase as a therapeutic target in hematologic malignancies.
Collapse
Affiliation(s)
- Michelle F Maritz
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, New South Wales, Australia
| | | | | | | |
Collapse
|
20
|
Abstract
Telomeres and telomerase play essential roles in the regulation of the lifespan of human cells. While normal human somatic cells do not or only transiently express telomerase and therefore shorten their telomeres with each cell division, most human cancer cells typically express high levels of telomerase and show unlimited cell proliferation. High telomerase expression allows cells to proliferate and expand long-term and therefore supports tumor growth. Owing to the high expression and its role, telomerase has become an attractive diagnostic and therapeutic cancer target. Imetelstat (GRN163L) is a potent and specific telomerase inhibitor and so far the only drug of its class in clinical trials. Here, we report on the structure and the mechanism of action of imetelstat as well as about the preclinical and clinical data and future prospects using imetelstat in cancer therapy.
Collapse
|
21
|
Luo Y, Yi Y, Yao Z. Growth Arrest in Ovarian Cancer Cells by hTERT Inhibition Short-Hairpin RNA Targeting Human Telomerase Reverse Transcriptase Induces Immediate Growth Inhibition but not Necessarily Induces Apoptosis in Ovarian Cancer Cells. Cancer Invest 2009; 27:960-70. [DOI: 10.3109/07357900802491451] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Saretzki G. Telomerase, mitochondria and oxidative stress. Exp Gerontol 2009; 44:485-92. [PMID: 19457450 DOI: 10.1016/j.exger.2009.05.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 04/17/2009] [Accepted: 05/11/2009] [Indexed: 12/16/2022]
Abstract
Telomerase plays an important role in cellular proliferation capacity and survival under conditions of stress. A large part of this protective function is due to telomere capping and maintenance. Thus it contributes to cellular immortality in stem cells and cancer. Recently, evidence has accumulated that telomerase can contribute to cell survival and stress resistance in a largely telomere-independent manner. Telomerase has been shown to shuttle dynamically between different cellular locations. Under increased oxidative stress telomerase is excluded from the nucleus and can be found within the mitochondria. This phenotype correlates with decreased oxidative stress within telomerase expressing cells and improved mitochondrial function by currently largely unknown mechanisms. Our data suggest that mitochondrial protection could be an important non-canonical function for telomerase in cell survival and ageing. This review summarises briefly our knowledge about extra-telomeric functions of telomerase and discusses the potential significance of its mitochondrial localisation.
Collapse
Affiliation(s)
- Gabriele Saretzki
- Crucible Laboratory, Institute for Ageing and Health, International Centre for Life, Bioscience Centre, Central Parkway, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
23
|
Suda T, Kamimura K, Kubota T, Tamura Y, Igarashi M, Kawai H, Aoyagi Y, Liu D. Progress toward liver-based gene therapy. Hepatol Res 2009; 39:325-340. [PMID: 19207594 DOI: 10.1111/j.1872-034x.2008.00479.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The liver is involved in the synthesis of serum proteins, regulation of metabolism and maintenance of homeostasis and provides a variety of opportunities for gene therapy. The enriched vasculature and blood circulation, fenestrated endothelium, abundant receptors on the plasma membranes of the liver cells, and effective transcription and translation machineries in the hepatocytes are some unique features that have been explored for delivery, and functional analysis, of genetic sequences in the liver. Both viral and non-viral methods have been developed for effective gene delivery and liver-based gene therapy. This review describes the fundamentals of gene delivery, and the preclinical and clinical progress that has been made toward gene therapy using the liver as a target.
Collapse
Affiliation(s)
- Takeshi Suda
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Park YP, Kim KD, Kang SH, Yoon DY, Park JW, Kim JW, Lee HG. Human telomerase reverse transcriptase (hTERT): a target molecule for the treatment of cisplatin-resistant tumors. Korean J Lab Med 2009; 28:430-7. [PMID: 19127107 DOI: 10.3343/kjlm.2008.28.6.430] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human telomerase reverse transcriptase (hTERT) is a catalytic enzyme that is required for telomerase activity (TA) and cancer progression. Telomerase inhibition or inactivation increases cellular sensitivity to UV irradiation, DNA-damaging agents, the tyrosine kinase inhibitor, imatinib, and pharmacological inhibitors, such as BIBR1532. hTERT is associated with apoptosis. Some patients show drug-resistance during anti-cancer drug treatment and the cancer cell acquire anti-apoptotic mechanism. Therefore, we attempted to study correlation between hTERT and drug-resistance. METHODS To study the correlation between protein level and activity of hTERT and drug-resistance, Western blotting and telomerase repeat amplification protocol (TRAP) assays were performed. To investigate whether hTERT contributes to drug resistance in tumor cells, we transiently decreased hTERT levels using small interfering RNA (siRNA) in T24/R2 cells. RESULTS hTERT knockdown increased Bax translocation into the mitochondria and cytochrome C release into the cytosol. Caspase inhibitors, especially Z-VAD-FMK, rescued this phenomenon, suggesting that the stability or expression of hTERT might be regulated by caspase activity. CONCLUSIONS These data suggest that hTERT might be a target molecule for drug-resistant tumor therapy.
Collapse
Affiliation(s)
- Yuk Pheel Park
- Medical Genomic Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Deville L, Hillion J, Ségal-Bendirdjian E. Telomerase regulation in hematological cancers: a matter of stemness? Biochim Biophys Acta Mol Basis Dis 2009; 1792:229-39. [PMID: 19419697 DOI: 10.1016/j.bbadis.2009.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 01/30/2009] [Accepted: 01/30/2009] [Indexed: 01/02/2023]
Abstract
Human telomerase is a nuclear ribonucleoprotein enzyme complex that catalyzes the synthesis and extension of telomeric DNA. This enzyme is highly expressed and active in most malignant tumors while it is usually not or transiently detectable in normal somatic cells, suggesting that it plays an important role in cellular immortalization and tumorigenesis. As most leukemic cells are generally telomerase-positive and have often shortened telomeres, our understanding of how telomerase is deregulated in these diseases could help to define novel therapies targeting the telomere/telomerase complex. Nonetheless, considering that normal hematopoietic stem cells and some of their progeny do express a functional telomerase, it is tempting to consider such an activity in leukemias as a sustained stemness feature and important to understand how telomere length and telomerase activity are regulated in the various forms of leukemias.
Collapse
Affiliation(s)
- Laure Deville
- INSERM UMR-S 685, Institut d'Hématologie, Hôpital Saint-Louis, 75475 Paris cedex 10, France
| | | | | |
Collapse
|
26
|
|
27
|
Abstract
Telomerase is an attractive cancer target as it appears to be required in essentially all tumours for immortalization of a subset of cells, including cancer stem cells. Moreover, differences in telomerase expression, telomere length and cell kinetics between normal and tumour tissues suggest that targeting telomerase would be relatively safe. Clinical trials are ongoing with a potent and specific telomerase inhibitor, GRN163L, and with several versions of telomerase therapeutic vaccines. The prospect of adding telomerase-based therapies to the growing list of new anticancer products is promising, but what are the advantages and limitations of different approaches, and which patients are the most likely to respond?
Collapse
Affiliation(s)
- Calvin B Harley
- Geron Corporation, 230 Constitution Drive, Menlo Park, California 94025, USA.
| |
Collapse
|
28
|
Phatak P, Burger AM. Telomerase and its potential for therapeutic intervention. Br J Pharmacol 2007; 152:1003-11. [PMID: 17603541 PMCID: PMC2095101 DOI: 10.1038/sj.bjp.0707374] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 06/08/2007] [Accepted: 06/08/2007] [Indexed: 01/12/2023] Open
Abstract
Telomerase and telomeres are attractive targets for anticancer therapy. This is supported by the fact that the majority of human cancers express the enzyme telomerase which is essential to maintain their telomere length and thus, to ensure indefinite cell proliferation--a hallmark of cancer. Tumours have relatively shorter telomeres compared to normal cell types, opening the possibility that human cancers may be considerably more susceptible to killing by agents that inhibit telomere replication than normal cells. Advances in the understanding of the regulation of telomerase activity and the telomere structure, as well as the identification of telomerase and telomere associated binding proteins have opened new avenues for therapeutic intervention. Here, we review telomere and telomerase biology and the various approaches which have been developed to inhibit the telomere/telomerase complex over the past decade. They include inhibitors of the enzyme catalytic subunit and RNA component, agents that target telomeres, telomerase vaccines and drugs targeting binding proteins. The emerging role of telomerase in cancer stem cells and the implications for cancer therapy are also discussed.
Collapse
Affiliation(s)
- P Phatak
- Department of Pharmacology and Experimental Therapeutics; and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine Baltimore, MD, USA
| | - A M Burger
- Department of Pharmacology and Experimental Therapeutics; and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
29
|
Passos JF, Saretzki G, von Zglinicki T. DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res 2007; 35:7505-13. [PMID: 17986462 PMCID: PMC2190715 DOI: 10.1093/nar/gkm893] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cellular senescence is the ultimate and irreversible loss of replicative capacity occurring in primary somatic cell culture. It is triggered as a stereotypic response to unrepaired nuclear DNA damage or to uncapped telomeres. In addition to a direct role of nuclear DNA double-strand breaks as inducer of a DNA damage response, two more subtle types of DNA damage induced by physiological levels of reactive oxygen species (ROS) can have a significant impact on cellular senescence: Firstly, it has been established that telomere shortening, which is the major contributor to telomere uncapping, is stress dependent and largely caused by a telomere-specific DNA single-strand break repair inefficiency. Secondly, mitochondrial DNA (mtDNA) damage is closely interrelated with mitochondrial ROS production, and this might also play a causal role for cellular senescence. Improvement of mitochondrial function results in less telomeric damage and slower telomere shortening, while telomere-dependent growth arrest is associated with increased mitochondrial dysfunction. Moreover, telomerase, the enzyme complex that is known to re-elongate shortened telomeres, also appears to have functions independent of telomeres that protect against oxidative stress. Together, these data suggest a self-amplifying cycle between mitochondrial and telomeric DNA damage during cellular senescence.
Collapse
Affiliation(s)
- João F Passos
- Henry Wellcome Laboratory for Biogerontology Research, Institute for Ageing and Health, University of Newcastle, Newcastle upon Tyne NE4 6BE, UK
| | | | | |
Collapse
|
30
|
Kondoh K, Tsuji N, Asanuma K, Kobayashi D, Watanabe N. Inhibition of estrogen receptor β-mediated human telomerase reverse transcriptase gene transcription via the suppression of mitogen-activated protein kinase signaling plays an important role in 15-deoxy-Δ12,14-prostaglandin J2-induced apoptosis in cancer cells. Exp Cell Res 2007; 313:3486-96. [PMID: 17706193 DOI: 10.1016/j.yexcr.2007.06.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 06/23/2007] [Accepted: 06/25/2007] [Indexed: 01/05/2023]
Abstract
The nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR)-gamma plays a role in cancer development in addition to its role in glucose metabolism. The natural ligand of PPAR-gamma, namely, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), has been shown to possess antineoplastic activity in cancer cells. However, the mechanism underlying its antineoplastic activity remains to be elucidated. Inhibition of the expression of human telomerase reverse transcriptase (hTERT), a major determinant of telomerase activity, reportedly induces rapid apoptosis in cancer cells. In this study, we investigated the effect of 15d-PGJ(2) on hTERT expression. We found that 15d-PGJ(2) induced apoptosis in the MIAPaCa-2 pancreatic cancer cells and dose-dependently decreased hTERT mRNA and protein expression. Down-regulation of hTERT expression by hTERT-specific small inhibitory RNA also induced apoptosis. Furthermore, 15d-PGJ(2) attenuated the DNA binding of estrogen receptor (ER). MIAPaCa-2 expressed only ERbeta, and although its expression did not decrease due to 15d-PGJ(2), its phosphorylation was suppressed. Additionally, a mitogen-activated protein kinase (MAPK) kinase inhibitor decreased ERbeta phosphorylation, and 15d-PGJ(2) attenuated MAPK activity. We conclude that hTERT down-regulation by 15d-PGJ(2) plays an important role in the proapoptotic property of the latter. Furthermore, 15d-PGJ(2) inhibits ERbeta-mediated hTERT gene transcription by suppressing ERbeta phosphorylation via the inhibition of MAP kinase signaling.
Collapse
Affiliation(s)
- Kei Kondoh
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
31
|
Tárkányi I, Aradi J. Pharmacological intervention strategies for affecting telomerase activity: future prospects to treat cancer and degenerative disease. Biochimie 2007; 90:156-72. [PMID: 17945408 DOI: 10.1016/j.biochi.2007.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 09/04/2007] [Indexed: 12/20/2022]
Abstract
Telomerase enzyme is a ribonucleoprotein maintaining the length of the telomeres by adding G-rich repeats to the end of the eukaryotic chromosomes. Normal human somatic cells, cultured in vitro, have a strictly limited proliferative potential undergoing senescence after about 50-70 population doublings. In contrast, most of the tumor cells have unlimited replicative potential. Although the mechanisms of immortalization are not understood completely at a genetic level, the key role of the telomere/telomerase system in the process is clear. The DNA replication machinery is not able to replicate fully the DNA at the very end of the chromosomes; therefore, about 50-200 nucleotides are lost during each of the replication cycles resulting in a gradual decrease of telomere length. Critically short telomere induces senescence, subsequent crisis and cell death. In tumor cells, however, the telomerase enzyme prevents the formation of critically short telomeres, adding GGTTAG repeats to the 3' end of the chromosomes immortalizing the cells. Immortality is one of the hallmarks of cancer. Besides the catalytic activity dependent telomere maintenance, catalytic activity-independent effects of telomerase may also be involved in the regulation of cell cycle. The telomere/telomerase system offers two possibilities to intervene the proliferative activity of the cell: (1) inhibition the telomere maintenance by inhibiting the telomerase activity; (2) activating the residual telomerase enzyme or inducing telomerase expression. Whilst the former approach could abolish the limitless replicative potential of malignant cells, the activation of telomerase might be utilized for treating degenerative diseases. Here, we review the current status of telomerase therapeutics, summarizing the activities of those pharmacological agents which either inhibit or activate the enzyme. We also discuss the future opportunities and challenges of research on pharmacological intervention of telomerase activity.
Collapse
Affiliation(s)
- I Tárkányi
- 3rd Department of Internal Medicine, University of Debrecen, 22 Moricz Zsigmond Krt., Debrecen 4004, Hungary
| | | |
Collapse
|
32
|
Zhou FX, Liao ZK, Dai J, Xiong J, Xie CH, Luo ZG, Liu SQ, Zhou YF. Radiosensitization effect of zidovudine on human malignant glioma cells. Biochem Biophys Res Commun 2007; 354:351-6. [PMID: 17223082 DOI: 10.1016/j.bbrc.2006.12.180] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
Telomeres are shortened with each cell division and play an important role in maintaining chromosomal integrity and function. Telomerase, responsible for telomere synthesis, is activated in 90% of human tumor cells but seldom in normal somatic cells. Zidovudine (AZT) is a reverse transcriptase inhibitor. In this study, we have investigated the effects of gamma-radiation in combination with AZT on telomerase activity (TA), telomere length, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and the changes in radiosensitivity of human malignant glioma cell line U251. The results showed that the TA was suppressed by AZT but enhanced by irradiation, resulting in a deceleration of restored rate of shortened telomere, decreased repair rate of DNA strand breaks, and increased radiosensitivity of U251 cells. Our results suggested that telomerase activity and telomere length may serve as markers for estimating the efficacy of cancer radiotherapy and reverse transcriptase inhibitors, such as AZT, may be used clinically as a new radiosensitizer in cancer radiotherapy.
Collapse
Affiliation(s)
- Fu-Xiang Zhou
- Department of Chemo-Radiotherapy Oncology, Zhongnan Hospital, Wuhan University, The Cancer Center of Wuhan University, Wuhan, Hubei 430071, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The application of gene transfer technologies to the treatment of cancer has led to the development of new experimental approaches like gene directed enzyme/pro-drug therapy (GDEPT), inhibition of oncogenes and restoration of tumor-suppressor genes. In addition, gene therapy has a big impact on other fields like cancer immunotherapy, anti-angiogenic therapy and virotherapy. These strategies are being evaluated for the treatment of primary and metastatic liver cancer and some of them have reached clinical phases. We present a review on the basis and the actual status of gene therapy approaches applied to liver cancer.
Collapse
|
34
|
Attenuation of telomerase activity by siRNA targeted telomerase RNA leads to apoptosis and inhibition of proliferation in human renal carcinoma cells. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11805-006-0097-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Bagheri S, Nosrati M, Li S, Fong S, Torabian S, Rangel J, Moore DH, Federman S, LaPosa RR, Baehner FL, Sagebiel RW, Cleaver JE, Haqq C, Debs RJ, Blackburn EH, Kashani-Sabet M. Genes and pathways downstream of telomerase in melanoma metastasis. Proc Natl Acad Sci U S A 2006; 103:11306-11. [PMID: 16847266 PMCID: PMC1544082 DOI: 10.1073/pnas.0510085103] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Indexed: 01/09/2023] Open
Abstract
Recent studies have demonstrated a role for telomerase in driving tumor progression, but its mechanism of action remains unclear. Here we show that stable, ribozyme-mediated suppression of mouse telomerase RNA reduced telomerase RNA expression, telomerase activity, and telomere length, which significantly reduced tumor invasion and metastatic potential. Our studies reveal that previously unidentified effects of telomerase may mediate its tumor-promoting effects. First, reducing telomerase activity induced a more dendritic morphology, accompanied by increased melanin content and increased expression of tyrosinase, a key enzyme in melanin biosynthesis. Second, gene expression profiling revealed that telomerase targeting down-regulated expression of several glycolytic pathway genes, with a corresponding decrease in glucose consumption and lactate production. Thus, telomerase activity controls the glycolytic pathway, potentially altering the energy state of tumor cells and thereby modulating tyrosinase activity and melanin production. These studies have important implications for understanding the mechanisms by which telomerase promotes tumor invasion and metastasis.
Collapse
Affiliation(s)
- Sepideh Bagheri
- *Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, Comprehensive Cancer Center, and Department of Dermatology, University of California, San Francisco, CA 94115
| | - Mehdi Nosrati
- *Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, Comprehensive Cancer Center, and Department of Dermatology, University of California, San Francisco, CA 94115
| | - Shang Li
- Departments of Biochemistry and Biophysics and
| | - Sylvia Fong
- California Pacific Medical Research Institute, San Francisco, CA 94115
| | - Sima Torabian
- *Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, Comprehensive Cancer Center, and Department of Dermatology, University of California, San Francisco, CA 94115
| | - Javier Rangel
- *Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, Comprehensive Cancer Center, and Department of Dermatology, University of California, San Francisco, CA 94115
| | - Dan H. Moore
- Epidemiology and Biostatistics, University of California, San Francisco, CA 94143
| | - Scot Federman
- Department of Urology and Comprehensive Cancer Center, University of California, San Francisco, CA 94115; and
| | - Rebecca R. LaPosa
- *Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, Comprehensive Cancer Center, and Department of Dermatology, University of California, San Francisco, CA 94115
| | - Frederick L. Baehner
- **Department of Pathology and Comprehensive Cancer Center Tissue Core, University of California, San Francisco, CA 94115
| | - Richard W. Sagebiel
- *Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, Comprehensive Cancer Center, and Department of Dermatology, University of California, San Francisco, CA 94115
| | - James E. Cleaver
- *Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, Comprehensive Cancer Center, and Department of Dermatology, University of California, San Francisco, CA 94115
| | - Christopher Haqq
- Department of Urology and Comprehensive Cancer Center, University of California, San Francisco, CA 94115; and
| | - Robert J. Debs
- California Pacific Medical Research Institute, San Francisco, CA 94115
| | | | - Mohammed Kashani-Sabet
- *Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, Comprehensive Cancer Center, and Department of Dermatology, University of California, San Francisco, CA 94115
| |
Collapse
|
36
|
Olaussen KA, Dubrana K, Domont J, Spano JP, Sabatier L, Soria JC. Telomeres and telomerase as targets for anticancer drug development. Crit Rev Oncol Hematol 2006; 57:191-214. [PMID: 16469501 DOI: 10.1016/j.critrevonc.2005.08.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 08/10/2005] [Accepted: 08/11/2005] [Indexed: 12/15/2022] Open
Abstract
In most human cancers, the telomere erosion problem has been bypassed through the activation of a telomere maintenance system (usually activation of telomerase). Therefore, telomere and telomerase are attractive targets for anti-cancer therapeutic interventions. Here, we review a large panel of strategies that have been explored to date, from small inhibitors of the catalytic sub-unit of telomerase to anti-telomerase immunotherapy and gene therapy. The many positive results that are reported from anti-telomere/telomerase assays suggest a prudent optimism for a possible clinical application in a close future. However, we discuss some of the main limits for these approaches of antitumour drug development and why significant work remains before a clinically useful drug can be proposed to patients.
Collapse
Affiliation(s)
- Ken André Olaussen
- Laboratory of Radiobiology and Oncology, DSV/DRR/LRO, CEA, Fontenay aux Roses, France
| | | | | | | | | | | |
Collapse
|
37
|
Bergqvist M, Brattström D, Brodin D, Lindkvist A, Dahlman-Wright K, Dreilich M, Wagenius G, Paulsson-Karlsson Y. Genes associated with telomerase activity levels in esophageal carcinoma cell lines. Dis Esophagus 2006; 19:20-3. [PMID: 16364039 DOI: 10.1111/j.1442-2050.2006.00532.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Telomerase activity levels have been shown to correlate with tumor progression in several malignancies. However, the genetic regulation of telomerase activity levels is not fully understood. The aim of the present study has been to identify a gene expression profile, predicting correlation with the telomerase-activity test. Ten human esophageal carcinoma cell lines were investigated using the telomerase activity assay (TRAPeze) Telomerase Detection Kit), followed by further characterization using the GeneChip Human Genome U133A 2.0 Array (Affymetrics Inc., USA), including 14 500 human genes. Telomerase activity levels were detected in all cell lines with a broad range of activity levels. Using a high correlation coefficient, r > 0.90, the following genes were found to be positively correlated with telomerase activity levels: N-myristoyltransferase 2; ribosomal protein L3; retinoblastoma-like 2 (pRb2/p130); and cyclin G2. Only one gene was negatively correlated with telomerase activity levels, zinc finger protein 207. In conclusion, the present microarray data provide primary validation data indicating possible candidates for prognostic and prediction factors in esophageal cancer in relation to telomerase activity.
Collapse
Affiliation(s)
- M Bergqvist
- Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Armstrong L, Saretzki G, Peters H, Wappler I, Evans J, Hole N, von Zglinicki T, Lako M. Overexpression of telomerase confers growth advantage, stress resistance, and enhanced differentiation of ESCs toward the hematopoietic lineage. Stem Cells 2006; 23:516-29. [PMID: 15790773 DOI: 10.1634/stemcells.2004-0269] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Embryonic stem cells (ESCs) are capable of extended self-renewal and maintenance of pluripotency even after many population doublings. This is supported by high levels of telomerase activity and enhanced antioxidant protection in ESCs, both of which are downregulated during differentiation. To examine the role of telomerase for ESC self-renewal and differentiation, we overexpressed the reverse transcriptase subunit (Tert) of murine telomerase in ESCs. Increased telomerase activity enhances the self-renewal ability of the Tert-overexpressing ESCs, improves their resistance to apoptosis, and increases their proliferation. The differentiated progeny of wild-type ESCs express little Tert and show shortening of telomeric overhangs. In contrast, the progeny of Tert-overexpressing ESCs maintain high telomerase activity, as well as the length of G-rich overhangs. In addition, these cells accumulate lower concentrations of peroxides than wild-type cells, implying greater resistance to oxidative stress. Finally, differentiation toward hematopoietic lineages is more efficient as a result of the continued expression of Tert. Microarray analysis revealed that overexpression of Tert altered expression of a variety of genes required for extended self-renewal and lifespan. Our results suggest that telomerase functions as a "survival enzyme" in ESCs and its differentiated progeny by protecting the telomere cap and by influencing the expression patterns of stress response and defense genes. This results in improved proliferation of ESCs and more efficient differentiation, and these results might have profound consequences for stem cell-replacement therapies.
Collapse
Affiliation(s)
- L Armstrong
- Institute of Human Genetics, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, U.K
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Pallini R, Sorrentino A, Pierconti F, Maggiano N, Faggi R, Montano N, Maira G, Larocca LM, Levi A, Falchetti ML. Telomerase inhibition by stable RNA interference impairs tumor growth and angiogenesis in glioblastoma xenografts. Int J Cancer 2006; 118:2158-67. [PMID: 16331616 DOI: 10.1002/ijc.21613] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Telomerase is highly expressed in advanced stages of most cancers where it allows the clonal expansion of transformed cells by counteracting telomere erosion. Telomerase may also contribute to tumor progression through still undefined cell growth-promoting functions. Here, we inhibited telomerase activity in 2 human glioblastoma (GBM) cell lines, TB10 and U87MG, by targeting the catalytic subunit, hTERT, via stable RNA interference (RNAi). Although the reduction in telomerase activity had no effect on GBM cell growth in vitro, the development of tumors in subcutaneously and intracranially grafted nude mice was significantly inhibited by antitelomerase RNAi. The in vivo effect was observed within a relatively small number of population doublings, suggesting that telomerase inhibition may hinder cancer cell growth in vivo prior to a substantial shortening of telomere length. Tumor xenografts that arose from telomerase-inhibited GBM cells also showed a less-malignant phenotype due both to the absence of massive necrosis and to reduced angiogenesis.
Collapse
Affiliation(s)
- Roberto Pallini
- Institute of Neurosurgery, Catholic University School of Medicine, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kraemer K, Schmidt U, Fuessel S, Herr A, Wirth MP, Meye A. Microarray analyses in bladder cancer cells: Inhibition of hTERT expression down-regulates EGFR. Int J Cancer 2006; 119:1276-84. [PMID: 16615118 DOI: 10.1002/ijc.21975] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human telomerase reverse transcriptase (hTERT) contributes to the immortal phenotype of the majority of cancers. Targeting hTERT by transfection with antisense oligonucleotides (AS-ODNs) induced immediate growth inhibition in human bladder cancer (BCa) cells. The molecular basis of the antiproliferative capacity of hTERT AS-ODNs was investigated by oligonucleotide microarray analyses and was compared to effects caused by siRNA-mediated knock-down of hTERT in EJ28 BCa cells. Two different AS-ODNs -- both down-regulated the expression of hTERT -- changed the expression of different genes mainly involved in stress response (including EGR1, ATF3 and GDF15), but without an association to telomerase function. This indicates that the immediate growth inhibition was caused, at least in part, by off-target effects. In comparison to that the blockade of the expression of hTERT using 2 different siRNAs was accompanied by the down-regulation of the oncogenes FOS-like antigen 1 (FOSL1) and epidermal growth factor receptor (EGFR), known to be overexpressed in BCa. We show here for the first time that repression of the hTERT transcript number decreased the expression of EGFR both at the mRNA and protein levels, suggesting a potential new function of hTERT in the regulation of EGFR-stimulated proliferation. Furthermore, the suppression of hTERT by siRNAs caused an enhancement of the antiproliferative capacity of the chemotherapeutics mitomycin C and cisplatin. The results presented herein may support the hypothesis that hTERT promotes the growth of tumor cells by mechanisms independent from telomere lengthening. The detailed clarification of these processes will shed light on the question, whether telomerase inhibitors might constitute suitable anticancer tools.
Collapse
Affiliation(s)
- Kai Kraemer
- Department of Urology, Technical University of Dresden, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Cunningham AP, Love WK, Zhang RW, Andrews LG, Tollefsbol TO. Telomerase inhibition in cancer therapeutics: molecular-based approaches. Curr Med Chem 2006; 13:2875-88. [PMID: 17073634 PMCID: PMC2423208 DOI: 10.2174/092986706778521887] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current standard cancer therapies (chemotherapy and radiation) often cause serious adverse off-target effects. Drug design strategies are therefore being developed that will more precisely target cancer cells for destruction while leaving surrounding normal cells relatively unaffected. Telomerase, widely expressed in most human cancers but almost undetectable in normal somatic cells, provides an exciting drug target. This review focuses on recent pharmacogenomic approaches to telomerase inhibition. Antisense oligonucleotides, RNA interference, ribozymes, mutant expression, and the exploitation of differential telomerase expression as a strategy for targeted oncolysis are discussed here in the context of cancer therapeutics. Reports of synergism between telomerase inhibitors and traditional cancer therapeutic agents are also analyzed.
Collapse
MESH Headings
- Drug Design
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/therapeutic use
- Humans
- Neoplasms/drug therapy
- Neoplasms/enzymology
- Neoplasms/pathology
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Oligonucleotides, Antisense/therapeutic use
- RNA, Antisense/genetics
- RNA, Antisense/pharmacology
- RNA, Antisense/therapeutic use
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Telomerase/antagonists & inhibitors
- Telomerase/genetics
- Telomerase/metabolism
Collapse
Affiliation(s)
- A P Cunningham
- Department of Biology, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
42
|
Del Bufalo D, Rizzo A, Trisciuoglio D, Cardinali G, Torrisi MR, Zangemeister-Wittke U, Zupi G, Biroccio A. Involvement of hTERT in apoptosis induced by interference with Bcl-2 expression and function. Cell Death Differ 2005; 12:1429-38. [PMID: 15920535 DOI: 10.1038/sj.cdd.4401670] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Here, we investigated the role of telomerase on Bcl-2-dependent apoptosis. To this end, the 4625 Bcl-2/Bcl-xL bispecific antisense oligonucleotide and the HA14-1 Bcl-2 inhibitor were used. We found that apoptosis induced by 4625 oligonucleotide was associated with decreased Bcl-2 protein expression and telomerase activity, while HA14-1 triggered apoptosis without affecting both Bcl-2 and telomerase levels. Interestingly, HA14-1 treatment resulted in a profound change from predominantly nuclear to a predominantly cytoplasmic localization of hTERT. Downregulation of endogenous hTERT protein by RNA interference markedly increased apoptosis induced by both 4625 and HA14-1, while overexpression of wild-type hTERT blocked Bcl-2-dependent apoptosis in a p53-independent manner. Catalytically and biologically inactive hTERT mutants showed a similar behavior as the wild-type form, indicating that hTERT inhibited the 4625 and HA14-1-induced apoptosis regardless of telomerase activity and its ability to lengthening telomeres. Finally, hTERT overexpression abrogated 4625 and HA14-1-induced mitochondrial dysfunction and nuclear translocation of hTERT. In conclusion, our results demonstrate that hTERT is involved in mitochondrial apoptosis induced by targeted inhibition of Bcl-2.
Collapse
Affiliation(s)
- D Del Bufalo
- Experimental Chemotherapy Laboratory, Experimental Research Center, Regina Elena Cancer Institute, Rome 00158, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ludwig A, Friedel B, Metzkow S, Meiners S, Stangl V, Baumann G, Stangl K. Effect of statins on the proteasomal activity in mammalian endothelial and vascular smooth muscle cells. Biochem Pharmacol 2005; 70:520-6. [PMID: 15996638 DOI: 10.1016/j.bcp.2005.04.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Accepted: 04/29/2005] [Indexed: 11/25/2022]
Abstract
Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, known as statins, effectively prevent cardiovascular events. In addition to their lipid lowering properties, a variety of pleiotropic effects on cardiovascular cells were demonstrated in vitro and in vivo. It has been hypothized that statins deploy a part of their effects by targeting the proteasome. Statin-induced effects remarkably overlap with effects obtained by inhibition of the proteasome in endothelial and vascular smooth muscle cells (e.g., endothelial nitric oxide synthase (eNOS)-upregulation, attenuation of nuclear factor kappa B (NF-kappaB) activation, inhibition of proliferation). We therefore examined, whether statins modulate the proteasomal activity of vascular cells. We studied the effect of simvastatin, atorvastatin, and pravastatin as well as of the proteasome inhibitor clasto-lactacystin on morphology, proliferation, viability, and proteasomal activity in two mammalian endothelial cell lines (CPAE and Ea.hy962), and in primary vascular smooth muscle cells (VSMCs). Both statins and lactacystin induced comparable morphological changes and attenuated proliferation of calf pulmonary artery cell line (CPAE). Whereas the statin-induced effects were reversed by mevalonic acid, however, the lactacystin-induced alterations were not influenced by mevalonic acid. As expected, lactacystin caused a significant loss of proteasomal activity measured in the extract of treated CPAE cells, whereas the extracts of statin-treated CPAEs exhibited unchanged activities. This result was also confirmed in Ea.hy926 cells and in primary rat VSMCs. We show here, that even high doses of statins do not modulate the activities of purified human 20S proteasomes. We conclude that the similar biological effects of statins and proteasome inhibitors in vascular cells are not due to a common inhibitory mechanism of action on the proteasome.
Collapse
Affiliation(s)
- Antje Ludwig
- Medizinische Klinik und Poliklinik, Schwerpunkt Kardiologie, Angiologie, Pneumologie Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
AIM: To study the effect of short hairpin RNAs (shRNAs) expressed from DNA vector on hTERT expression.
METHODS: Oligonucleotides coding for four shRNAs against hTERT were cloned into a mammalian shRNA expression vector pUC18U6 to form pUC18U6ht1-4, which were then introduced into HepG2 cells by using liposome-mediated transfection. HepG2 cells transfected by pUC18U6 and pUC18U6GFPsir, which expressed shRNA against green fluorescent protein (GFP), were used as controls. hTERT mRNA in the transfected cells were quantified by using real-time fluorescent RT-PCR.
RESULTS: Among the four shRNAs against hTERT, two decreased the hTERT mRNA level. Compared with the controls, pUC18U6ht which expressed the two shRNAs reduced hTERT mRNA by 39% and 49% (P<0.05).
CONCLUSION: hTERT expression is inhibited by the shRNAs expressed from the DNA vector.
Collapse
Affiliation(s)
- Ying Guo
- Department of Etiology, Fourth Military Medical University, Xi'an 710033, Shaanxi Province, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Kelland LR. Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics – current status and future prospects. Eur J Cancer 2005; 41:971-9. [PMID: 15862745 DOI: 10.1016/j.ejca.2004.11.024] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 11/24/2004] [Indexed: 10/25/2022]
Abstract
A key property of malignant tumours is their immortality or limitless replicative potential. Cell replication is associated with the maintenance of telomeres and in the great majority of cases, through the reactivation of the reverse transcriptase telomerase. Targeting the telomere/telomerase machinery offers a novel and potentially broad-spectrum anticancer therapeutic strategy since telomerase is constitutively overexpressed in the vast majority of human cancers. Telomeres are also critically short in most tumours compared to normal tissues. Strategies that exploit these differences include the direct targeting of components of telomerase: the protein component hTERT or RNA component hTR. Examples of such agents include the small molecule hTERT inhibitor BIBR1532 and GRN163L, a thio-phosphoramidate oligonucleotide targeting the template region of hTR as a "template antagonist". Anti-tumour effects have been observed in both cell lines and, especially for GRN163L, in xenografted human tumours in mice. Effects, however, are largely dependent upon initial telomere length, which can result in a substantial lag before antitumour activity is observed in tumours possessing relatively long telomeres. An alternative approach is to target the telomere itself (Telomere Targeting Agents, TTAs). Several classes of small molecules have been described that induce the G-rich single-stranded overhang of telomeric DNA to fold into 4-stranded G-quadruplex structures. Such folding is incompatible with telomerase function and may induce rapid telomere uncapping. These molecules have shown potent telomerase inhibition in nanomolar concentrations in vitro and the rapid induction of senescence in cancer cells. The trisubstituted acridine based TTA, BRACO19, has demonstrated single agent activity against human tumour xenografts with anti-tumour effects apparent from only 7 days of treatment. In the near future, it is expected that lead examples from both the direct telomerase targeted agents (e.g., GRN163L) and from the distinct class of those targeting telomeres (e.g., AS1410 based on BRACO19) will enter Phase I clinical trial where clinical benefit from this class of novel drugs will be determined.
Collapse
Affiliation(s)
- Lloyd R Kelland
- Antisoma Research Laboratories, St. Georges Hospital Medical School, Cranmer Terrace, London SW17 OQS, UK.
| |
Collapse
|
46
|
Wadhwa R, Deocaris CC, Widodo N, Taira K, Kaul SC. Imminent approaches towards molecular interventions in ageing. Mech Ageing Dev 2005; 126:481-90. [PMID: 15722107 DOI: 10.1016/j.mad.2004.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 09/23/2004] [Accepted: 10/18/2004] [Indexed: 10/26/2022]
Abstract
Ageing is an innate feature of living organisms. Sensational progress in its molecular understanding in the last decade has culminated into a highly complex picture. Emerging from this complexity are the distinctive roles of some of the tumor suppressor pathways including p53 and pRB in maintenance of senescence phenotype, and telomere maintaining pathways in its escape. We discuss here the current scenario of molecular ageing and the use of modern approaches for its intervention in culture system, at least. Many of the tools we describe here are the newly emergent functional RNA tools that are proved to be fruitful in decoding the human genome. These post-genomic technologies will help us in the discovery of gene targets for interventions aiming to improve the quality at later years of life beyond their mere algebraic extension.
Collapse
Affiliation(s)
- Renu Wadhwa
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | | | | | |
Collapse
|
47
|
Nosrati M, Li S, Bagheri S, Ginzinger D, Blackburn EH, Debs RJ, Kashani-Sabet M. Antitumor activity of systemically delivered ribozymes targeting murine telomerase RNA. Clin Cancer Res 2005; 10:4983-90. [PMID: 15297398 DOI: 10.1158/1078-0432.ccr-04-0134] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To test ribozymes targeting mouse telomerase RNA (mTER) for suppression of the progression of B16-F10 murine melanoma metastases in vivo. EXPERIMENTAL DESIGN Hammerhead ribozymes were designed to target mTER. The ribozyme sequences were cloned into a plasmid expression vector containing EBV genomic elements that substantially prolong expression of genes delivered in vivo. The activity of various antitelomerase ribozymes or control constructs was examined after i.v. injection of cationic liposome:DNA complexes containing control or ribozyme constructs. Expression of ribozymes and mTER at various time points were evaluated by quantitative real-time PCR. Telomerase activity was examined using the telomeric repeat amplification protocol. RESULTS Systemic administration of cationic liposome:DNA complexes containing a plasmid-expressed ribozyme specifically targeting a cleavage site at mTER nucleotide 180 significantly reduced the metastatic progression of B16-F10 murine melanoma. The antitumor activity of the anti-TER 180 ribozyme in mice was abolished by a single inactivating base mutation in the ribozyme catalytic core. The EBV-based expression plasmid produced sustained levels of ribozyme expression for the full duration of the antitumor studies. In addition to antitumor activity, cationic liposome:DNA complex-based ribozyme treatment also produced reductions in both TER levels and telomerase enzymatic activity in tumor-bearing mice. CONCLUSIONS Systemic, plasmid-based ribozymes specifically targeting TER can reduce both telomerase activity and metastatic progression in tumor-bearing hosts. The work reported here demonstrates the potential utility of plasmid-based anti-TER ribozymes in the therapy of melanoma metastasis.
Collapse
Affiliation(s)
- Mehdi Nosrati
- Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, Department of Dermatology, University of California San Francisco Cancer Center, San Francisco, California 94115, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Telomeres are specialized high-order chromatin structures that cap the ends of eukaryotic chromosomes. In vertebrates, telomeric DNA is composed of repetitions of the TTAGGG hexanucleotide, is bound to a set of specific proteins, and is elongated by the reverse transcriptase enzyme telomerase. Telomerase activity is promptly detected in cells with an indefinite replicative potential, such as cancer cells, while is almost undetectable in normal cells, which are characterized by a limited life span. Mounting evidence indicates that the maintenance of telomere integrity and telomerase protect cells from apoptosis. Disruption of the telomere capping function and (or) telomerase inhibition elicit an apoptotic response in cancer cells, while restoration of telomerase activity in somatic cells confers resistance to apoptosis. The possible mechanisms linking telomeres, telomerase and apoptosis are discussed in this review, together with the impact of this field in anticancer research.
Collapse
|
49
|
Folini M, Brambilla C, Villa R, Gandellini P, Vignati S, Paduano F, Daidone MG, Zaffaroni N. Antisense oligonucleotide-mediated inhibition of hTERT, but not hTERC, induces rapid cell growth decline and apoptosis in the absence of telomere shortening in human prostate cancer cells. Eur J Cancer 2005; 41:624-34. [PMID: 15737568 DOI: 10.1016/j.ejca.2004.12.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 10/25/2004] [Accepted: 12/03/2004] [Indexed: 11/22/2022]
Abstract
Recent evidence points to a novel function of human telomerase reverse transcriptase (hTERT) in promoting tumour cell survival, which might be independent of the telomere-elongating activity of the enzyme. To test this hypothesis, we evaluated comparatively the effects of telomerase inhibition, accomplished through antisense oligonucleotide-mediated interference with hTERT or human telomerase RNA component (hTERC), on the proliferative potential of DU145 human prostate cancer cells. Exposure of cells to a 2'-O-methyl-RNA phosphorothioate oligonucleotide targeting a splicing site within hTERT pre-mRNA induced almost complete inhibition of telomerase activity as a consequence of a marked reduction of the hTERT mRNA expression level, an early decline of DU145 cell growth and apoptotic cell death without any appreciable telomere shortening. Conversely, exposure of DU145 cells to a 2'-O-methyl-RNA phosphorothioate oligonucleotide targeting the template region of hTERC failed to interfere with cell proliferation in spite of the almost complete abrogation of telomerase activity. These results extend and corroborate earlier evidence in favour of an enzymatic activity-independent mechanism by which hTERT maintains tumour cell survival and proliferation.
Collapse
Affiliation(s)
- Marco Folini
- Dipartimento di Oncologia Sperimentale, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Yeo M, Rha SY, Jeung HC, Hu SX, Yang SH, Kim YS, An SW, Chung HC. Attenuation of telomerase activity by hammerhead ribozyme targeting human telomerase RNA induces growth retardation and apoptosis in human breast tumor cells. Int J Cancer 2005; 114:484-9. [PMID: 15551309 DOI: 10.1002/ijc.20720] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ribozyme possesses specific endoribonuclease activity and catalyzes the hydrolysis of specific phosphodiester bonds, which results in the cleavage of target RNA sequences. Here, we evaluated the ability of hammerhead ribozymes targeting human telomerase RNA (hTR) to inhibit the catalytic activity of telomerase and the proliferation of cancer cells. Hammerhead ribozymes were designed against 7 NUX sequences located in open loops of the hTR secondary structure. We verified the ribozyme specificity by in vitro cleavage assay by using a synthetic RNA substrate. Subsequently, we introduced ribozyme expression vector into human breast tumor MCF-7 cells and assessed the biologic effects of ribozyme. Hammerhead ribozyme R1 targeting the template region of hTR efficiently cleaved hTR in vitro, and stable transfectants of this ribozyme induced the degradation of target hTR RNA and attenuated telomerase activity in MCF-7 cells. Moreover, the ribozyme R1 transfectant displayed a significant telomere shortening and a lower proliferation rate than parental cells. Clones with reduced proliferation capacity showed enlarged senescence-like shapes or highly differentiated dendritic morphologies of apoptosis. In conclusion, the inhibition of telomerase activity by hammerhead ribozyme targeting the template region of the hTR presents a promising strategy for inhibiting the growth of human breast cancer cells.
Collapse
Affiliation(s)
- Marie Yeo
- Cancer Metastasis Research Center, Yonsei Cancer Center, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|