1
|
Cooper KN, Wielento A, Morris SC, Terekhova M, Rodriguez-Hernandez CJ, Potempa B, Carey KA, Artyomov MN, Potempa J, Bagaitkar J. Limited proteolysis of neutrophil granule proteins by the bacterial protease RgpB depletes neutrophil antimicrobial capacity. J Leukoc Biol 2025; 117:qiae209. [PMID: 39319408 PMCID: PMC11878996 DOI: 10.1093/jleuko/qiae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/12/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024] Open
Abstract
Neutrophils are highly abundant in the gingival tissues where they play an essential role in immune homeostasis by preventing microbial invasion. Here, we show that the oral periodontal pathogen Porphyromonas gingivalis utilizes its cysteine proteases (gingipains) to disengage phagosomal antimicrobial capacity. Arginine gingipains are a subfamily of trypsin-like proteases produced by P. gingivalis that cleave several host proteins at arginine residues. We find that RgpB-mediated proteolysis of host proteins is not limited to the extracellular or plasma membrane-associated host proteins, but also results in the degradation of several intracellular proteins. Using 2D-difference gel electrophoresis coupled with mass spectrometry, we identified several cytoskeletal and cytoplasmic proteins, including metabolic enzymes and antimicrobial proteins such as neutrophil elastase, myeloperoxidase, and proteinase 3 within neutrophil granules that were cleaved by RgpB. Strikingly, despite the breakdown of multiple proteins, RgpB-treated neutrophils did not undergo apoptosis but increased integrin expression and underwent broad transcriptional changes consistent with proinflammatory programming. However, despite their primed status and augmented inflammatory capacity, RgpB-treated neutrophils were conducive to intracellular bacterial survival due to the reduced activity of granule proteins and oxidative burst. Thus, our data show a previously unknown role for P. gingivalis proteases in the attenuation of neutrophil microbicidal capacity via proteolysis of intracellular proteins.
Collapse
Affiliation(s)
- Kelley N Cooper
- Department of Microbiology and Immunology, University of Louisville, 505 S Hancock St, Louisville, KY 40202, United States
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, 700 Children's Drive, WA4024, Columbus, OH 43205, United States
| | - Aleksandra Wielento
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387 Krakow, Poland
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm 17165, Sweden
| | - Savannah C Morris
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, 700 Children's Drive, WA4024, Columbus, OH 43205, United States
| | - Marina Terekhova
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Carlos J Rodriguez-Hernandez
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, 700 Children's Drive, WA4024, Columbus, OH 43205, United States
| | - Barbara Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville, 501 S Preston St, Louisville, KY 40202, United States
| | - Katherine A Carey
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, 700 Children's Drive, WA4024, Columbus, OH 43205, United States
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30–387 Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville, 501 S Preston St, Louisville, KY 40202, United States
| | - Juhi Bagaitkar
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, 700 Children's Drive, WA4024, Columbus, OH 43205, United States
- Department of Pediatrics, The Ohio State University College of Medicine, 700 Children‘s Drive, Columbus, OH 43205, United States
| |
Collapse
|
2
|
Ruma YN, Bu G, Hattne J, Gonen T. MicroED structure of the C11 cysteine protease clostripain. J Struct Biol X 2024; 10:100107. [PMID: 39100863 PMCID: PMC11296011 DOI: 10.1016/j.yjsbx.2024.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Clostripain secreted from Clostridium histolyticum is the founding member of the C11 family of Clan CD cysteine peptidases, which is an important group of peptidases secreted by numerous bacteria. Clostripain is an arginine-specific endopeptidase. Because of its efficacy as a cysteine peptidase, it is widely used in laboratory settings. Despite its importance the structure of clostripain remains unsolved. Here we describe the first structure of an active form of C. histolyticum clostripain determined at 2.5 Å resolution using microcrystal electron diffraction (MicroED). The structure was determined from a single nanocrystal after focused ion beam milling. The structure of clostripain shows a typical Clan CD α/β/α sandwich architecture and the Cys231/His176 catalytic dyad in the active site. It has a large electronegative substrate binding pocket showing its ability to accommodate large and diverse substrates. A loop in the heavy chain formed between residues 452 and 457 is potentially important for substrate binding. In conclusion, this result demonstrates the importance of MicroED to determine the unknown structure of macromolecules such as clostripain, which can be further used as a platform to study substrate binding and design of potential inhibitors against this class of peptidases.
Collapse
Affiliation(s)
- Yasmeen N. Ruma
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Guanhong Bu
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Johan Hattne
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
3
|
Cooper KN, Potempa J, Bagaitkar J. Dying for a cause: The pathogenic manipulation of cell death and efferocytic pathways. Mol Oral Microbiol 2024; 39:165-179. [PMID: 37786286 PMCID: PMC10985052 DOI: 10.1111/omi.12436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Cell death is a natural consequence of infection. However, although the induction of cell death was solely thought to benefit the pathogen, compelling data now show that the activation of cell death pathways serves as a nuanced antimicrobial strategy that couples pathogen elimination with the generation of inflammatory cytokines and the priming of innate and adaptive cellular immunity. Following cell death, the phagocytic uptake of the infected dead cell by antigen-presenting cells and the subsequent lysosomal fusion of the apoptotic body containing the pathogen serve as an important antimicrobial mechanism that furthers the development of downstream adaptive immune responses. Despite the complexity of regulated cell death pathways, pathogens are highly adept at evading them. Here, we provide an overview of the remarkable diversity of cell death and efferocytic pathways and discuss illustrative examples of virulence strategies employed by pathogens, including oral pathogens, to counter their activation and persist within the host.
Collapse
Affiliation(s)
- Kelley N Cooper
- Department of Immunology and Microbiology, University of Louisville, Louisville, KY
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Juhi Bagaitkar
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State College of Medicine, Columbus, OH
| |
Collapse
|
4
|
Tubero Euzebio Alves V, Alves T, Silva Rovai E, Hasturk H, Van Dyke T, Holzhausen M, Kantarci A. Arginine-specific gingipains (RgpA/RgpB) knockdown modulates neutrophil machinery. J Oral Microbiol 2024; 16:2376462. [PMID: 38988325 PMCID: PMC11234918 DOI: 10.1080/20002297.2024.2376462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Background Gingipains are important virulence factors present in Porphyromonas gingivalis. Arginine-specific gingipains (RgpA and RgpB) are critically associated with increased proteolytic activity and immune system dysfunction, including neutrophilic activity. In this study, we assessed the impact of gingipains (RgpA and RgpB) on neutrophil function. Methods Peripheral blood samples were obtained; neutrophils were isolated and incubated with P. gingivalis A7436, W50, and the double RgpA/RgpB double knockout mutant E8 at MOI 20 for 2 hours. Neutrophil viability was assessed by Sytox staining. Phagocytic capacity and apoptosis were measured by flow cytometry. Superoxide release was measured by superoxide dismutase and cytochrome c reduction assay. Gene expression of TLR2, p47-phox, p67-phox, and P2 × 7was measured by qPCR. Inflammatory cytokine and chemokine production was measured by IL-1β, IL-8, RANTES, and TNF-α in cell supernatants. Results Neutrophil TLR2 gene expression was reduced in the absence of RgpA/RgpB (p < 0.05), while superoxide production was not significantly impacted. RgpA/RgpB-/- significantly impaired neutrophil phagocytic function (p < 0.05) and increased TNF-α production when compared with the wild-type control (p < 0.05). Neutrophil apoptosis was not altered when exposed to RgpA/RgpB-/- E8 (p > 0.05). Conclusion These data suggest that arginine-specific gingipains (RgpA/RgpB) can modulate neutrophil responses against P. gingivalis infection.
Collapse
Affiliation(s)
- Vanessa Tubero Euzebio Alves
- Department of Applied Oral Sciences, ADA Forsyth Institute, Cambridge, MA, USA
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Tomaz Alves
- Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emanuel Silva Rovai
- Division of Periodontology, São Paulo State University – School of Dentistry, São José dos Campos, Brazil
| | - Hatice Hasturk
- Department of Applied Oral Sciences, ADA Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard University School of Dental Medicine, Boston, MA, USA
| | - Thomas Van Dyke
- Department of Applied Oral Sciences, ADA Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard University School of Dental Medicine, Boston, MA, USA
| | - Marinella Holzhausen
- Division of Periodontology, São Paulo State University – School of Dentistry, São José dos Campos, Brazil
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, ADA Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard University School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
5
|
Ruma YN, Bu G, Gonen T. MicroED structure of the C11 cysteine protease Clostripain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574240. [PMID: 38260293 PMCID: PMC10802345 DOI: 10.1101/2024.01.04.574240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Clostripain secreted from Clostridium histolyticum is the founding member of the C11 family of Clan CD cysteine peptidases, which is an important group of peptidases secreted by numerous bacteria. Clostripain is an arginine specific endopeptidase. Because of its efficacy as a cysteine peptidase, it is widely used in laboratory settings. Despite its importance the structure of clostripain remains unsolved. Here we describe the first structure of an active form of C. histolyticum Clostripain determined at 3.6 Å resolution using microcrystal electron diffraction (MicroED). The structure was determined from a single nanocrystal after focused ion beam milling. The structure of Clostripain shows a typical Clan CD α/β/α sandwich architecture and the Cys231/His176 catalytic dyad in the active site. It has a large electronegative substrate binding pocket showing its ability to accommodate large and diverse substrates. A loop in the heavy chain formed between residues 452 to 457 is potentially important for substrate binding. In conclusion, this result demonstrates the importance of MicroED to determine the unknown structure of macromolecules such as Clostripain, which can be further used as a platform to study substrate binding and design of potential inhibitors against this class of peptidases.
Collapse
|
6
|
Slimmen LJM, Giacalone VD, Schofield C, Horati H, Manaï BHAN, Estevão SC, Garratt LW, Peng L, Tirouvanziam R, Janssens HM, Unger WWJ. Airway macrophages display decreased expression of receptors mediating and regulating scavenging in early cystic fibrosis lung disease. Front Immunol 2023; 14:1202009. [PMID: 37457715 PMCID: PMC10338875 DOI: 10.3389/fimmu.2023.1202009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Background Cystic fibrosis (CF) airway disease is characterized by chronic inflammation, featuring neutrophil influx to the lumen. Airway macrophages (AMs) can promote both inflammation and resolution, and are thus critical to maintaining and restoring homeostasis. CF AM functions, specifically scavenging activity and resolution of inflammation, have been shown to be impaired, yet underlying processes remain unknown. We hypothesized that impaired CF AM function results from an altered expression of receptors that mediate or regulate scavenging, and set out to investigate changes in expression of these markers during the early stages of CF lung disease. Methods Bronchoalveolar lavage fluid (BALF) was collected from 50 children with CF aged 1, 3 or 5 years. BALF cells were analyzed using flow cytometry. Expression levels of surface markers on AMs were expressed as median fluorescence intensities (MFI) or percentage of AMs positive for these markers. The effect of age and neutrophilic inflammation, among other variables, on marker expression was assessed with a multivariate linear regression model. Results AM expression of scavenger receptor CD163 decreased with age (p = 0.016) and was negatively correlated with BALF %neutrophils (r = -0.34, p = 0.016). AM expression of immune checkpoint molecule SIRPα also decreased with age (p = 0.0006), but did not correlate with BALF %neutrophils. Percentage of AMs expressing lipid scavenger CD36 was low overall (mean 20.1% ± 16.5) and did not correlate with other factors. Conversely, expression of immune checkpoint PD-1 was observed on the majority of AMs (mean PD-1pos 72.9% ± 11.8), but it, too, was not affected by age or BALF %neutrophils. Compared to matched blood monocytes, AMs had a higher expression of CD16, CD91, and PD-1, and a lower expression of CD163, SIRPα and CD36. Conclusion In BALF of preschool children with CF, higher age and/or increased neutrophilic inflammation coincided with decreased expression of scavenger receptors on AMs. Expression of scavenging receptors and regulators showed a distinctly different pattern in AMs compared to blood monocytes. These findings suggest AM capacity to counter inflammation and promote homeostasis reduces during initiation of CF airway disease and highlight new avenues of investigation into impaired CF AM function.
Collapse
Affiliation(s)
- Lisa J. M. Slimmen
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
- Laboratory of Pediatrics, Infection and Immunity Group, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Vincent D. Giacalone
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Craig Schofield
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Hamed Horati
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Badies H. A. N. Manaï
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Silvia C. Estevão
- Laboratory of Pediatrics, Infection and Immunity Group, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Luke W. Garratt
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Limin Peng
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Hettie M. Janssens
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Wendy W. J. Unger
- Laboratory of Pediatrics, Infection and Immunity Group, Department of Pediatrics, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
7
|
Ruan Q, Guan P, Qi W, Li J, Xi M, Xiao L, Zhong S, Ma D, Ni J. Porphyromonas gingivalis regulates atherosclerosis through an immune pathway. Front Immunol 2023; 14:1103592. [PMID: 36999040 PMCID: PMC10043234 DOI: 10.3389/fimmu.2023.1103592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, involving a pathological process of endothelial dysfunction, lipid deposition, plaque rupture, and arterial occlusion, and is one of the leading causes of death in the world population. The progression of AS is closely associated with several inflammatory diseases, among which periodontitis has been shown to increase the risk of AS. Porphyromonas gingivalis (P. gingivalis), presenting in large numbers in subgingival plaque biofilms, is the “dominant flora” in periodontitis, and its multiple virulence factors are important in stimulating host immunity. Therefore, it is significant to elucidate the potential mechanism and association between P. gingivalis and AS to prevent and treat AS. By summarizing the existing studies, we found that P. gingivalis promotes the progression of AS through multiple immune pathways. P. gingivalis can escape host immune clearance and, in various forms, circulate with blood and lymph and colonize arterial vessel walls, directly inducing local inflammation in blood vessels. It also induces the production of systemic inflammatory mediators and autoimmune antibodies, disrupts the serum lipid profile, and thus promotes the progression of AS. In this paper, we summarize the recent evidence (including clinical studies and animal studies) on the correlation between P. gingivalis and AS, and describe the specific immune mechanisms by which P. gingivalis promotes AS progression from three aspects (immune escape, blood circulation, and lymphatic circulation), providing new insights into the prevention and treatment of AS by suppressing periodontal pathogenic bacteria.
Collapse
Affiliation(s)
- Qijun Ruan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Peng Guan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weijuan Qi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jiatong Li
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mengying Xi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Limin Xiao
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Sulan Zhong
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| |
Collapse
|
8
|
Hammers D, Carothers K, Lee S. The Role of Bacterial Proteases in Microbe and Host-microbe Interactions. Curr Drug Targets 2021; 23:222-239. [PMID: 34370632 DOI: 10.2174/1389450122666210809094100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Secreted proteases are an important class of factors used by bacterial to modulate their extracellular environment through the cleavage of peptides and proteins. These proteases can range from broad, general proteolytic activity to high degrees of substrate specificity. They are often involved in interactions between bacteria and other species, even across kingdoms, allowing bacteria to survive and compete within their niche. As a result, many bacterial proteases are of clinical importance. The immune system is a common target for these enzymes, and bacteria have evolved ways to use these proteases to alter immune responses for their benefit. In addition to the wide variety of human proteins that can be targeted by bacterial proteases, bacteria also use these secreted factors to disrupt competing microbes, ranging from outright antimicrobial activity to disrupting processes like biofilm formation. OBJECTIVE In this review, we address how bacterial proteases modulate host mechanisms of protection from infection and injury, including immune factors and cell barriers. We also discuss the contributions of bacterial proteases to microbe-microbe interactions, including antimicrobial and anti-biofilm dynamics. CONCLUSION Bacterial secreted proteases represent an incredibly diverse group of factors that bacteria use to shape and thrive in their microenvironment. Due to the range of activities and targets of these proteases, some have been noted for having potential as therapeutics. The vast array of bacterial proteases and their targets remains an expanding field of research, and this field has many important implications for human health.
Collapse
Affiliation(s)
- Daniel Hammers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Shaun Lee
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| |
Collapse
|
9
|
Abstract
Subtiligase-catalyzed peptide ligation is a powerful approach for site-specific protein bioconjugation, synthesis and semisynthesis of proteins and peptides, and chemoproteomic analysis of cellular N termini. Here, we provide a comprehensive review of the subtiligase technology, including its development, applications, and impacts on protein science. We highlight key advantages and limitations of the tool and compare it to other peptide ligase enzymes. Finally, we provide a perspective on future applications and challenges and how they may be addressed.
Collapse
Affiliation(s)
- Amy M Weeks
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
10
|
Bryzek D, Ciaston I, Dobosz E, Gasiorek A, Makarska A, Sarna M, Eick S, Puklo M, Lech M, Potempa B, Potempa J, Koziel J. Triggering NETosis via protease-activated receptor (PAR)-2 signaling as a mechanism of hijacking neutrophils function for pathogen benefits. PLoS Pathog 2019; 15:e1007773. [PMID: 31107907 PMCID: PMC6544335 DOI: 10.1371/journal.ppat.1007773] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/31/2019] [Accepted: 04/21/2019] [Indexed: 12/31/2022] Open
Abstract
Neutrophil-derived networks of DNA-composed extracellular fibers covered with antimicrobial molecules, referred to as neutrophil extracellular traps (NETs), are recognized as a physiological microbicidal mechanism of innate immunity. The formation of NETs is also classified as a model of a cell death called NETosis. Despite intensive research on the NETs formation in response to pathogens, the role of specific bacteria-derived virulence factors in this process, although postulated, is still poorly understood. The aim of our study was to determine the role of gingipains, cysteine proteases responsible for the virulence of P. gingivalis, on the NETosis process induced by this major periodontopathogen. We showed that NETosis triggered by P. gingivalis is gingipain dependent since in the stark contrast to the wild-type strain (W83) the gingipain-null mutant strain only slightly induced the NETs formation. Furthermore, the direct effect of proteases on NETosis was documented using purified gingipains. Notably, the induction of NETosis was dependent on the catalytic activity of gingipains, since proteolytically inactive forms of enzymes showed reduced ability to trigger the NETs formation. Mechanistically, gingipain-induced NETosis was dependent on proteolytic activation of protease-activated receptor-2 (PAR-2). Intriguingly, both P. gingivalis and purified Arg-specific gingipains (Rgp) induced NETs that not only lacked bactericidal activity but instead stimulated the growth of bacteria species otherwise susceptible to killing in NETs. This protection was executed by proteolysis of bactericidal components of NETs. Taken together, gingipains play a dual role in NETosis: they are the potent direct inducers of NETs formation but in the same time, their activity prevents P. gingivalis entrapment and subsequent killing. This may explain a paradox that despite the massive accumulation of neutrophils and NETs formation in periodontal pockets periodontal pathogens and associated pathobionts thrive in this environment. Periodontitis, or gum disease, is characterized by chronic inflammation and erosion of the tooth-supporting tissues. The condition is fuelled by bacterial accumulation on the tooth surface below the gum line that resists the host innate immune response, including massive accumulation of neutrophils. Despite possessing a formidable array of bactericidal machineries, including neutrophil extracellular traps (NETs) formation whereby neutrophils release DNA-composed fibers decorated with bactericidal proteins and peptides to efficiently trap and kill bacteria. Nevertheless, neutrophils in periodontitis are unable to clear the infection due to the presence of key periodontal pathogens, including Porphyromonas gingivalis. This bacterium secretes a variety of virulence factors, including proteases (gingipains) that allow the organism to manipulate the host immune response to benefit the entire dysbiotic microbial community. Here, we describe a unique strategy whereby P. gingivalis trigger NET formation through gingipain-dependent cleavage of Protease Activated Receptor (PAR)-2 on the neutrophil surface. Importantly, NETs formed in this way are deficient in antibacterial activity but instead, supports bacterial growth due to degradation of bactericidal components by gingipains. This finding may explain a paradox that dysbiotic bacteria flourished in periodontal pockets in spite of massive accumulation of neutrophils and abundant NETs formation.
Collapse
Affiliation(s)
- Danuta Bryzek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Izabela Ciaston
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Gasiorek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Makarska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michal Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Magdalena Puklo
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maciej Lech
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IV, Department of Nephrology, Munich, Germany
| | - Barbara Potempa
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, University of Louisville, Louisville, Kentucky, United States of America
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail: (JP); (JK)
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail: (JP); (JK)
| |
Collapse
|
11
|
Ohradanova-Repic A, Machacek C, Donner C, Mühlgrabner V, Petrovčíková E, Zahradníková A, Vičíková K, Hořejší V, Stockinger H, Leksa V. The mannose 6-phosphate/insulin-like growth factor 2 receptor mediates plasminogen-induced efferocytosis. J Leukoc Biol 2019; 105:519-530. [PMID: 30657605 PMCID: PMC6392118 DOI: 10.1002/jlb.1ab0417-160rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 12/17/2018] [Accepted: 12/24/2018] [Indexed: 12/14/2022] Open
Abstract
The plasminogen system is harnessed in a wide variety of physiological processes, such as fibrinolysis, cell migration, or efferocytosis; and accordingly, it is essential upon inflammation, tissue remodeling, wound healing, and for homeostatic maintenance in general. Previously, we identified a plasminogen receptor in the mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R, CD222). Here, we demonstrate by means of genetic knockdown, knockout, and rescue approaches combined with functional studies that M6P/IGF2R is up-regulated on the surface of macrophages, recognizes plasminogen exposed on the surface of apoptotic cells, and mediates plasminogen-induced efferocytosis. The level of uptake of plasminogen-coated apoptotic cells inversely correlates with the TNF-α production by phagocytes indicating tissue clearance without inflammation by this mechanism. Our results reveal an up-to-now undetermined function of M6P/IGF2R in clearance of apoptotic cells, which is crucial for tissue homeostasis.
Collapse
Affiliation(s)
- Anna Ohradanova-Repic
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - Christian Machacek
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - Clemens Donner
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - Vanessa Mühlgrabner
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - Eva Petrovčíková
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Alexandra Zahradníková
- Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Kristína Vičíková
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Václav Hořejší
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hannes Stockinger
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - Vladimir Leksa
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria.,Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
12
|
Roncase EJ, Moon C, Chatterjee S, González-Páez GE, Craik CS, O’Donoghue AJ, Wolan DW. Substrate Profiling and High Resolution Co-complex Crystal Structure of a Secreted C11 Protease Conserved across Commensal Bacteria. ACS Chem Biol 2017; 12:1556-1565. [PMID: 28414448 PMCID: PMC5575927 DOI: 10.1021/acschembio.7b00143] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cysteine proteases are among the most abundant hydrolytic enzymes produced by bacteria, and this diverse family of proteins have significant biological roles in bacterial viability and environmental interactions. Members of the clostripain-like (C11) family of cysteine proteases from commensal gut bacterial strains have recently been shown to mediate immune responses by inducing neutrophil phagocytosis and activating bacterial pathogenic toxins. Development of substrates, inhibitors, and probes that target C11 proteases from enteric bacteria will help to establish the role of these proteins at the interface of the host and microbiome in health and disease. We employed a mass spectrometry-based substrate profiling method to identify an optimal peptide substrate of PmC11, a C11 protease secreted by the commensal bacterium Parabacteroides merdae. Using this substrate sequence information, we synthesized a panel of fluorogenic substrates to calculate kcat and KM and to evaluate the importance of the P2 amino acid for substrate turnover. A potent and irreversible tetrapeptide inhibitor with a C-terminal acyloxymethyl ketone warhead, Ac-VLTK-AOMK, was then synthesized. We determined the crystal structure of PmC11 in complex with this inhibitor and uncovered key active-site interactions that govern PmC11 substrate recognition and specificity. This is the first C11 protease structure in complex with a substrate mimetic and is also the highest resolution crystal structure of a C11 protease to date at 1.12 Å resolution. Importantly, subjecting human epithelial cell lysates to PmC11 hydrolysis in combination with subtiligase-based N-terminal labeling and tandem mass spectrometry proteomics complemented the stringent substrate specificity observed in the in vitro substrate profiling experiment. The combination of chemical biological, biophysical, and biochemical techniques presented here to elucidate and characterize PmC11 substrate selectivity can be expanded to other proteases and the development of chemical tools to study these essential proteins in biologically relevant samples, such as the highly complex distal gut microbiome.
Collapse
Affiliation(s)
- Emily J. Roncase
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Clara Moon
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Sandip Chatterjee
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Gonzalo E. González-Páez
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Dennis W. Wolan
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
13
|
Glowczyk I, Wong A, Potempa B, Babyak O, Lech M, Lamont RJ, Potempa J, Koziel J. Inactive Gingipains from P. gingivalis Selectively Skews T Cells toward a Th17 Phenotype in an IL-6 Dependent Manner. Front Cell Infect Microbiol 2017; 7:140. [PMID: 28497028 PMCID: PMC5406403 DOI: 10.3389/fcimb.2017.00140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/05/2017] [Indexed: 01/05/2023] Open
Abstract
Gingipain cysteine proteases are considered key virulence factors of Porphyromonas gingivalis. They significantly influence antibacterial and homeostatic functions of macrophages, neutrophils, the complement system, and cytokine networks. Recent data indicate the role of P. gingivalis in T cell differentiation; however, the involvement of gingipains in this process remains elusive. Therefore, the aim of this study was to investigate the contribution of danger signals triggered by the gingipains on the generation of Th17 cells, which play a key role in protection against bacterial diseases but may cause chronic inflammation and bone resorption. To this end we compared the effects of the wild-type strain of P. gingivalis (W83) with its isogenic mutant devoid of gingipain activity (ΔKΔRAB), and bacterial cells pretreated with a highly-specific inhibitor of gingipains activity (KYTs). Antigen presenting cells (APCs), both professional (dendritic cells), and non-professional (gingival keratinocytes), exposed to viable bacteria expressed high amounts of cytokines (IL-6, IL-21, IL-23). These cytokines are reported to either stimulate or balance the Th17-dependent immune response. Surprisingly, cells infected with P. gingivalis devoid of gingipain activity showed increased levels of all tested cytokines compared to bacteria with fully active enzymes. The effect was dependent on both the reduction of cytokine proteolysis and the lack of cross-talk with other bacterial virulence factors, including LPS and fimbriae that induce de novo synthesis of cytokines. The profile of lymphocyte T differentiation from naive T cells showed enhanced generation of Th17 in response to bacteria with inactive gingipains. Moreover, we found that gingipain-dependent induction of Th17 cells was highly specific, since other T cell-subsets remained unchanged. Finally, inhibition of IL-6 signaling in dendritic cells led to a significant depletion of the Th17 population. Cumulatively, this study revealed a previously undisclosed role of gingipain activity in the process of Th17 differentiation reliant on blocking signaling through IL-6. Since inactivation of gingipains accelerates the skewing of T cells toward Th17 cells, which are detrimental in periodontitis, IL-6 signaling may serve as an attractive target for treatment of the disease.
Collapse
Affiliation(s)
- Izabela Glowczyk
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Alicia Wong
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Barbara Potempa
- Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, University of LouisvilleLouisville, KY, USA
| | - Olena Babyak
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Maciej Lech
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland.,Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IVMunich, Germany
| | - Richard J Lamont
- Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, University of LouisvilleLouisville, KY, USA
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland.,Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, University of LouisvilleLouisville, KY, USA
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
14
|
Porphyromonas gingivalis gingipains cause defective macrophage migration towards apoptotic cells and inhibit phagocytosis of primary apoptotic neutrophils. Cell Death Dis 2017; 8:e2644. [PMID: 28252646 PMCID: PMC5386511 DOI: 10.1038/cddis.2016.481] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 01/17/2023]
Abstract
Periodontal disease is a prevalent chronic inflammatory condition characterised by an aberrant host response to a pathogenic plaque biofilm resulting in local tissue damage and frustrated healing that can result in tooth loss. Cysteine proteases (gingipains) from the key periodontal pathogen Porphyromonas gingivalis have been implicated in periodontal disease pathogenesis by inhibiting inflammation resolution and are linked with systemic chronic inflammatory conditions such as rheumatoid arthritis. Efficient clearance of apoptotic cells is essential for the resolution of inflammation and tissue restoration. Here we sought to characterise the innate immune clearance of apoptotic cells and its modulation by gingipains. We examined the capacity of gingipain-treated macrophages to migrate towards and phagocytose apoptotic cells. Lysine gingipain treatment of macrophages impaired macrophage migration towards apoptotic neutrophils. Furthermore, lysine gingipain treatment reduced surface expression levels of CD14, a key macrophage receptor for apoptotic cells, which resulted in reduced macrophage interactions with apoptotic cells. Additionally, while apoptotic cells and their derived secretome were shown to inhibit TNF-α-induced expression by P. gingivalis lipopolysaccharide, we demonstrated that gingipain preparations induced a rapid inflammatory response in macrophages that was resistant to the anti-inflammatory effects of apoptotic cells or their secretome. Taken together, these data indicate that P. gingivalis may promote the chronic inflammation seen in periodontal disease patients by multiple mechanisms, including rapid, potent gingipain-mediated inflammation, coupled with receptor cleavage leading to defective clearance of apoptotic cells and reduced anti-inflammatory responses. Thus, gingipains represent a potential therapeutic target for intervention in the management of chronic periodontal disease.
Collapse
|
15
|
Links between atherosclerotic and periodontal disease. Exp Mol Pathol 2016; 100:220-35. [DOI: 10.1016/j.yexmp.2016.01.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 02/06/2023]
|
16
|
Danielson BT, Knudson CB, Knudson W. Extracellular processing of the cartilage proteoglycan aggregate and its effect on CD44-mediated internalization of hyaluronan. J Biol Chem 2015; 290:9555-70. [PMID: 25733665 DOI: 10.1074/jbc.m115.643171] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 11/06/2022] Open
Abstract
In many cells hyaluronan receptor CD44 mediates the endocytosis of hyaluronan and its delivery to endosomes/lysosomes. The regulation of this process remains largely unknown. In most extracellular matrices hyaluronan is not present as a free polysaccharide but often is found in complex with other small proteins and macromolecules such as proteoglycans. This is especially true in cartilage, where hyaluronan assembles into an aggregate structure with the large proteoglycan termed aggrecan. In this study when purified aggrecan was added to FITC-conjugated hyaluronan, no internalization of hyaluronan was detected. This suggested that the overall size of the aggregate prevented hyaluronan endocytosis and furthermore that proteolysis of the aggrecan was a required prerequisite for local, cell-based turnover of hyaluronan. To test this hypothesis, limited C-terminal digestion of aggrecan was performed to determine whether a size range of aggrecan exists that permits hyaluronan endocytosis. Our data demonstrate that only limited degradation of the aggrecan monomer was required to allow for hyaluronan internalization. When hyaluronan was combined with partially degraded, dansyl chloride-labeled aggrecan, blue fluorescent aggrecan was also visualized within intracellular vesicles. It was also determined that sonicated hyaluronan of smaller molecular size was internalized more readily than high molecular mass hyaluronan. However, the addition of intact aggrecan to hyaluronan chains sonicated for 5 and 10 s reblocked their endocytosis, whereas aggregates containing 15-s sonicated hyaluronan were internalized. These data suggest that hyaluronan endocytosis is regulated in large part by the extracellular proteolytic processing of hyaluronan-bound proteoglycan.
Collapse
Affiliation(s)
- Ben T Danielson
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Cheryl B Knudson
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Warren Knudson
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| |
Collapse
|
17
|
González-Reimers E, Santolaria-Fernández F, Martín-González MC, Fernández-Rodríguez CM, Quintero-Platt G. Alcoholism: A systemic proinflammatory condition. World J Gastroenterol 2014; 20:14660-14671. [PMID: 25356029 PMCID: PMC4209532 DOI: 10.3748/wjg.v20.i40.14660] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Excessive ethanol consumption affects virtually any organ, both by indirect and direct mechanisms. Considerable research in the last two decades has widened the knowledge about the paramount importance of proinflammatory cytokines and oxidative damage in the pathogenesis of many of the systemic manifestations of alcoholism. These cytokines derive primarily from activated Kupffer cells exposed to Gram-negative intestinal bacteria, which reach the liver in supra-physiological amounts due to ethanol-mediated increased gut permeability. Reactive oxygen species (ROS) that enhance the inflammatory response are generated both by activation of Kupffer cells and by the direct metabolic effects of ethanol. The effects of this increased cytokine secretion and ROS generation lie far beyond liver damage. In addition to the classic consequences of endotoxemia associated with liver cirrhosis that were described several decades ago, important research in the last ten years has shown that cytokines may also induce damage in remote organs such as brain, bone, muscle, heart, lung, gonads, peripheral nerve, and pancreas. These effects are even seen in alcoholics without significant liver disease. Therefore, alcoholism can be viewed as an inflammatory condition, a concept which opens the possibility of using new therapeutic weapons to treat some of the complications of this devastating and frequent disease. In this review we examine some of the most outstanding consequences of the altered cytokine regulation that occurs in alcoholics in organs other than the liver.
Collapse
|
18
|
Nanosecond pulsed electric field (nsPEF) treatment for hepatocellular carcinoma: a novel locoregional ablation decreasing lung metastasis. Cancer Lett 2014; 346:285-91. [PMID: 24462824 DOI: 10.1016/j.canlet.2014.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignancy. Nanosecond pulsed electric field (nsPEF) is a new technology destroying tumor cells with a non-thermal high voltage electric field using ultra-short pulses. The study's aim was to evaluate the ablation efficacy of nsPEFs with human HCC cell lines and a highly metastatic potential HCC xenograft model on BALB/c nude mice. The in vivo study showed nsPEFs induced HCC cell death in a dose dependent manner. On the high metastatic hepatocellular carcinoma cell line (HCCLM3) xenograft mice model, tumor growth was inhibited significantly in nsPEF-treated- groups (single dose and multi-fractionated dose). Besides a local effect, the nsPEF treatment reduced pulmonary metastases. The nsPEFs also enhanced HCC cell phagocytosis by human macrophage cell (THP1) in vitro. The nsPEF is efficient in controlling HCC progression and reducing its metastasis. NsPEF treatment may elicit a host immune response against tumor cells. This study suggests nsPEF therapy could be used as a potential locoregional therapy for hepatocellular carcinoma.
Collapse
|
19
|
Porphyromonas gingivalis regulates TREM-1 in human polymorphonuclear neutrophils via its gingipains. PLoS One 2013; 8:e75784. [PMID: 24124513 PMCID: PMC3790815 DOI: 10.1371/journal.pone.0075784] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/21/2013] [Indexed: 12/03/2022] Open
Abstract
The Triggering Receptor Expressed on Myeloid cells 1 (TREM-1) is a cell surface receptor of the immunoglobulin superfamily, with the capacity to amplify pro-inflammatory cytokine production and regulate apoptosis. Polymorphonuclear neutrophils (PMNs) are the first line of defence against infection, and a major source of TREM-1. Porphyromonas gingivalis is a Gram-negative anaerobe highly implicated in the inflammatory processes governing periodontal disease, which is characterized by the destruction of the tooth-supporting tissues. It expresses a number of virulence factors, including the cysteine proteinases (or gingipains). The aim of this in vitro study was to investigate the effect of P. gingivalis on TREM-1 expression and production by primary human PMNs, and to evaluate the role of its gingipains in this process. After 4 h of challenge, P. gingivalis enhanced TREM-1 expression as identified by quantitative real-time PCR. This was followed by an increase in soluble (s)TREM-1 secretion over a period of 18 h, as determined by ELISA. At this time-point, the P. gingivalis-challenged PMNs exhibited diminished TREM-1 cell-membrane staining, as identified by flow cytometry and confocal laser scanning microscopy. Furthermore engagement of TREM-1, by means of anti-TREM-1 antibodies, enhanced the capacity of P. gingivalis to stimulate interleukin (IL)-8 production. Conversely, antagonism of TREM-1 using a synthetic peptide resulted in reduction of IL-8 secretion. Using isogenic P. gingivalis mutant strains, we identified the Arg-gingipain to be responsible for shedding of sTREM-1 from the PMN surface, whereas the Lys-gingipain had the capacity to degrade TREM-1. In conclusion, the differential regulation of TREM-1 by the P. gingivalis gingipains may present a novel mechanism by which P. gingivalis manipulates the host innate immune response helping to establish chronic periodontal inflammation.
Collapse
|
20
|
Ganuelas LA, Li N, Yun P, Hunter N, Collyer CA. The lysine gingipain adhesin domains from Porphyromonas gingivalis interact with erythrocytes and albumin: Structures correlate to function. Eur J Microbiol Immunol (Bp) 2013; 3:152-62. [PMID: 24265933 PMCID: PMC3832095 DOI: 10.1556/eujmi.3.2013.3.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 07/17/2013] [Indexed: 01/07/2023] Open
Abstract
The crystal structure of the K1 domain, an adhesin module of the lysine gingipain (Kgp) expressed on the cell surface by the periodontopathic anaerobic bacterium, Porphyromonas gingivalis W83, is compared to the previously determined structures of homologues K2 and K3, all three being representative members of the cleaved adhesin domain family. In the structure of K1, the conformation of the most extensive surface loop is unexpectedly perturbed, perhaps by crystal packing, and is displaced from a previously reported arginine-anchored position observed in K2 and K3. This displacement allows the loop to become free to interact with other proteins; the alternate flipped-out loop conformation is a novel mechanism for interacting with target host proteins, other bacteria, or other gingipain protein domains. Further, the K1 adhesin module, like others, is found to be haemolytic in vitro, and so, functions in erythrocyte recognition thereby contributing to the haemolytic function of Kgp. K1 was also observed to selectively bind to haem-albumin with high affinity, suggesting this domain may be involved in gingipain-mediated haem acquisition from haem-albumin. Therefore, it is most likely that all cleaved adhesin domains of Kgp contribute to the pathogenicity of P. gingivalis in more complex ways than simply mediating bacterial adherence.
Collapse
Affiliation(s)
- L. A. Ganuelas
- School of Molecular Bioscience, The University of
SydneySydneyAustralia
| | - N. Li
- School of Molecular Bioscience, The University of
SydneySydneyAustralia
| | - P. Yun
- Institute of Dental Research, Westmead Millennium Institute and
Centre for Oral Health, Westmead HospitalSydney, NSWAustralia
| | - N. Hunter
- Institute of Dental Research, Westmead Millennium Institute and
Centre for Oral Health, Westmead HospitalSydney, NSWAustralia,Faculty of Dentistry, The University of SydneySydneyAustralia
| | - C. A. Collyer
- School of Molecular Bioscience, The University of
SydneySydneyAustralia
| |
Collapse
|
21
|
Rafatian N, Karunakaran D, Rayner KJ, Leenen FHH, Milne RW, Whitman SC. Cathepsin G deficiency decreases complexity of atherosclerotic lesions in apolipoprotein E-deficient mice. Am J Physiol Heart Circ Physiol 2013; 305:H1141-8. [PMID: 23934850 DOI: 10.1152/ajpheart.00618.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cathepsin G is a serine protease with a broad range of catalytic activities, including production of angiotensin II, degradation of extracellular matrix and cell-cell junctions, modulation of chemotactic responses, and induction of apoptosis. Cathepsin G mRNA expression is increased in human coronary atheroma vs. the normal vessel. To assess whether cathepsin G modulates atherosclerosis, cathepsin G knockout (Cstg(-/-)) mice were bred with apolipoprotein E knockout (Apoe(-/-)) mice to obtain Ctsg(+/-)Apoe(-/-) and Ctsg(+/+)Apoe(-/-) mice. Heterozygous cathepsin G deficiency led to a 70% decrease in cathepsin G activity in bone marrow cells, but this reduced activity did not impair generation of angiotensin II in bone marrow-derived macrophages (BMDM). Atherosclerotic lesions were compared in male Cstg(+/-)Apoe(-/-) and Cstg(+/+)Apoe(-/-) mice after 8 wk on a high-fat diet. Plasma cholesterol levels and cholesterol distribution within serum lipoprotein fractions did not differ between genotypes nor did the atherosclerotic lesion areas in either the aortic root or aortic arch. Cstg(+/-)Apoe(-/-) mice, however, showed a lower percentage of complex lesions within the aortic root and a smaller number of apoptotic cells compared with Cstg(+/+)Apoe(-/-) littermates. Furthermore, apoptotic Cstg(-/-) BMDM were more efficiently engulfed by phagocytic BMDM than were apoptotic Ctsg(+/+) BMDM. Thus cathepsin G activity may impair efferocytosis, which could lead to an accumulation of lesion-associated apoptotic cells and the accelerated progression of early atherosclerotic lesions to more complex lesions in Apoe(-/-) mice.
Collapse
Affiliation(s)
- Naimeh Rafatian
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Cugini C, Klepac-Ceraj V, Rackaityte E, Riggs JE, Davey ME. Porphyromonas gingivalis: keeping the pathos out of the biont. J Oral Microbiol 2013; 5:19804. [PMID: 23565326 PMCID: PMC3617648 DOI: 10.3402/jom.v5i0.19804] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 01/21/2023] Open
Abstract
The primary goal of the human microbiome initiative has been to increase our understanding of the structure and function of our indigenous microbiota and their effects on human health and predisposition to disease. Because of its clinical importance and accessibility for in vivo study, the oral biofilm is one of the best-understood microbial communities associated with the human body. Studies have shown that there is a succession of select microbial interactions that directs the maturation of a defined community structure, generating the formation of dental plaque. Although the initiating factors that lead to disease development are not clearly defined, in many individuals there is a fundamental shift from a health-associated biofilm community to one that is pathogenic in nature and a central player in the pathogenic potential of this community is the presence of Porphyromonas gingivalis. This anaerobic bacterium is a natural member of the oral microbiome, yet it can become highly destructive (termed pathobiont) and proliferate to high cell numbers in periodontal lesions, which is attributed to its arsenal of specialized virulence factors. Hence, this organism is regarded as a primary etiologic agent of periodontal disease progression. In this review, we summarize some of the latest information regarding what is known about its role in periodontitis, including pathogenic potential as well as ecological and nutritional parameters that may shift this commensal to a virulent state. We also discuss parallels between the development of pathogenic biofilms and the human cellular communities that lead to cancer, specifically we frame our viewpoint in the context of 'wounds that fail to heal'.
Collapse
Affiliation(s)
- Carla Cugini
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA ; Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | | | | | | | | |
Collapse
|
23
|
Rosenwald M, Koppe U, Keppeler H, Sauer G, Hennel R, Ernst A, Blume KE, Peter C, Herrmann M, Belka C, Schulze-Osthoff K, Wesselborg S, Lauber K. Serum-derived plasminogen is activated by apoptotic cells and promotes their phagocytic clearance. THE JOURNAL OF IMMUNOLOGY 2012; 189:5722-8. [PMID: 23150713 DOI: 10.4049/jimmunol.1200922] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The elimination of apoptotic cells, called efferocytosis, is fundamentally important for tissue homeostasis and prevents the onset of inflammation and autoimmunity. Serum proteins are known to assist in this complex process. In the current study, we performed a multistep chromatographic fractionation of human serum and identified plasminogen, a protein involved in fibrinolysis, wound healing, and tissue remodeling, as a novel serum-derived factor promoting apoptotic cell removal. Even at levels significantly lower than its serum concentration, purified plasminogen strongly enhanced apoptotic prey cell internalization by macrophages. Plasminogen acted mainly on prey cells, whereas on macrophages no enhancement of the engulfment process was observed. We further demonstrate that the efferocytosis-promoting activity essentially required the proteolytic activation of plasminogen and was completely abrogated by the urokinase plasminogen activator inhibitor-1 and serine protease inhibitor aprotinin. Thus, our study assigns a new function to plasminogen and plasmin in apoptotic cell clearance.
Collapse
Affiliation(s)
- Matthias Rosenwald
- Department of Internal Medicine I, University of Tuebingen, 72076 Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Caudrillier A, Kessenbrock K, Gilliss BM, Nguyen JX, Marques MB, Monestier M, Toy P, Werb Z, Looney MR. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest 2012; 122:2661-71. [PMID: 22684106 DOI: 10.1172/jci61303] [Citation(s) in RCA: 788] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 05/02/2012] [Indexed: 02/06/2023] Open
Abstract
There is emerging evidence that platelets are major contributors to inflammatory processes through intimate associations with innate immune cells. Here, we report that activated platelets induce the formation of neutrophil extracellular traps (NETs) in transfusion-related acute lung injury (TRALI), which is the leading cause of death after transfusion therapy. NETs are composed of decondensed chromatin decorated with granular proteins that function to trap extracellular pathogens; their formation requires the activation of neutrophils and release of their DNA in a process that may or may not result in neutrophil death. In a mouse model of TRALI that is neutrophil and platelet dependent, NETs appeared in the lung microvasculature and NET components increased in the plasma. We detected NETs in the lungs and plasma of human TRALI and in the plasma of patients with acute lung injury. In the experimental TRALI model, targeting platelet activation with either aspirin or a glycoprotein IIb/IIIa inhibitor decreased NET formation and lung injury. We then directly targeted NET components with a histone blocking antibody and DNase1, both of which protected mice from TRALI. These data suggest that NETs contribute to lung endothelial injury and that targeting NET formation may be a promising new direction for the treatment of acute lung injury.
Collapse
|
25
|
Starr AE, Bellac CL, Dufour A, Goebeler V, Overall CM. Biochemical characterization and N-terminomics analysis of leukolysin, the membrane-type 6 matrix metalloprotease (MMP25): chemokine and vimentin cleavages enhance cell migration and macrophage phagocytic activities. J Biol Chem 2012; 287:13382-95. [PMID: 22367194 PMCID: PMC3339980 DOI: 10.1074/jbc.m111.314179] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neutrophil-specific protease membrane-type 6 matrix metalloproteinase (MT6-MMP)/MMP-25/leukolysin is implicated in multiple sclerosis and cancer yet remains poorly characterized. To characterize the biological roles of MT6-MMP, it is critical to identify its substrates for which only seven are currently known. Here, we biochemically characterized MT6-MMP, profiled its tissue inhibitor of metalloproteinase inhibitory spectrum, performed degradomics analyses, and screened 26 chemokines for cleavage using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. MT6-MMP processes seven each of the CXC and CC chemokine subfamilies. Notably, cleavage of the neutrophil chemoattractant CXCL5 activates the chemokine, thereby increasing its agonist activity, indicating a feed-forward mechanism for neutrophil recruitment. Likewise, cleavage also activated CCL15 and CCL23 to increase monocyte recruitment. Utilizing the proteomics approach proteomic identification of cleavage site specificity (PICS), we identified 286 peptidic cleavage sites spanning from P6 to P6′ from which an unusual glutamate preference in P1 was identified. The degradomics screen terminal amine isotopic labeling of substrates (TAILS), which enriches for neo-N-terminal peptides of cleaved substrates, was used to identify 58 new native substrates in fibroblast secretomes after incubation with MT6-MMP. Vimentin, cystatin C, galectin-1, IGFBP-7, and secreted protein, acidic and rich in cysteine (SPARC) were among those substrates we biochemically confirmed. An extracellular “moonlighting” form of vimentin is a chemoattractant for THP-1 cells, but MT6-MMP cleavage abolished monocyte recruitment. Unexpectedly, the MT6-MMP-cleaved vimentin potently stimulated phagocytosis, which was not a property of the full-length protein. Hence, MT6-MMP regulates neutrophil and monocyte chemotaxis and by generating “eat-me” signals upon vimentin cleavage potentially increases phagocytic removal of neutrophils to resolve inflammation.
Collapse
Affiliation(s)
- Amanda E Starr
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
26
|
Pathogenic microbes and community service through manipulation of innate immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 946:69-85. [PMID: 21948363 DOI: 10.1007/978-1-4614-0106-3_5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The periodontal pathogen Porphyromonas gingivalis undermines major components of innate immunity, such as complement, Toll-like receptors (TLR), and their crosstalk pathways. At least in principle, these subversive activities could promote the adaptive fitness of the entire periodontal biofilm community. In this regard, the virulence factors responsible for complement and TLR exploitation (gingipain enzymes, atypical lipopolysaccharide molecules, and fimbriae) are released as components of readily diffusible membrane vesicles, which can thus become available to other biofilm organisms. This review summarizes important immune subversive tactics of P. gingivalis which might enable it to exert a supportive impact on the oral microbial community.
Collapse
|
27
|
Rapid decrease of CD16 (FcγRIII) expression on heat-shocked neutrophils and their recognition by macrophages. J Biomed Biotechnol 2011; 2011:284759. [PMID: 21541219 PMCID: PMC3085332 DOI: 10.1155/2011/284759] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/22/2011] [Indexed: 12/19/2022] Open
Abstract
Accumulation of neutrophils in the site of inflammation is a
typical mechanism of innate immunity. The accumulated neutrophils
are exposed to stressogenic factors usually associated with
inflammation. Here, we studied response of human peripheral blood
neutrophils subjected to short, febrile-range heat stress. We
show that 90 min heat stress slowed down the spontaneous apoptosis
of neutrophils. In the absence of typical markers of apoptosis the
heat-shocked neutrophils induced antiinflammatory effect in human
monocyte-derived macrophages (hMDMs), yet without being engulfed.
Importantly, the expression of FcγRIII (CD16) was sharply reduced.
Surprisingly, concentration of the soluble CD16 did not change in
heat-shocked neutrophil supernates indicating that the reduction
of the cell surface CD16 was achieved mainly by inhibition of
fresh CD16 delivery. Inhibitors of 90 kDa heat shock protein
(HSP90), a molecular chaperone found in membrane platforms
together with CD16 and CD11b, significantly increased the observed
effects caused by heat shock. The presented data suggest a novel
systemic aspect of increased temperature which relies on immediate
modification by heat of a neutrophil molecular pattern. This
effect precedes cell death and may be beneficial in the initial
phase of inflammation providing a nonphlogistic signal to
macrophages before it comes from apoptotic cells.
Collapse
|
28
|
Guzik K, Skret J, Smagur J, Bzowska M, Gajkowska B, Scott DA, Potempa JS. Cigarette smoke-exposed neutrophils die unconventionally but are rapidly phagocytosed by macrophages. Cell Death Dis 2011; 2:e131. [PMID: 21412277 PMCID: PMC3101810 DOI: 10.1038/cddis.2011.13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 01/21/2011] [Accepted: 01/28/2011] [Indexed: 12/31/2022]
Abstract
Pulmonary accumulation of neutrophils is typical for active smokers who are also predisposed to multiple inflammatory and infectious lung diseases. We show that human neutrophil exposure to cigarette smoke extract (CSE) leads to an atypical cell death sharing features of apoptosis, autophagy and necrosis. Accumulation of tar-like substances in autophagosomes is also apparent. Before detection of established cell death markers, CSE-treated neutrophils are effectively recognized and non-phlogistically phagocytosed by monocyte-derived macrophages. Blockade of LOX-1 and scavenger receptor A, but not MARCO or CD36, as well as pre-incubation with oxLDL, inhibited phagocytosis, suggesting that oxLDL-like structures are major phagocytosis signals. Specific lipid (β-carotene and quercetin), but not aqueous, antioxidants increased the pro-phagocytic effects of CSE. In contrast to non-phlogistic phagocytosis, degranulation of secondary granules, as monitored by lactoferrin release, was apparent on CSE exposure, which is likely to promote pulmonary inflammation and tissue degradation. Furthermore, CSE-exposed neutrophils exhibited a compromised ability to ingest the respiratory pathogen, Staphylococcus aureus, which likely contributes to bacterial persistence in the lungs of smokers and is likely to promote further pulmonary recruitment of neutrophils. These data provide mechanistic insight into the lack of accumulation of apoptotic neutrophil populations in the lungs of smokers and their increased susceptibility to degradative pulmonary diseases and bacterial infections.
Collapse
Affiliation(s)
- K Guzik
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - J Skret
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - J Smagur
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - M Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - B Gajkowska
- Laboratory of Cell Ultrastructure, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - D A Scott
- Oral Health and Systemic Disease Research Group, School of Dentistry, University of Louisville, Louisville, KY, USA
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - J S Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Oral Health and Systemic Disease Research Group, School of Dentistry, University of Louisville, Louisville, KY, USA
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
29
|
Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease. Apoptosis 2010; 15:1124-36. [PMID: 20552278 DOI: 10.1007/s10495-010-0516-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent evidence in humans indicate that defective phagocytic clearance of dying cells is linked to progression of advanced atherosclerotic lesions, the precursor to atherothrombosis, ischemic heart disease, and leading cause of death in the industrialized world. During atherogenesis, apoptotic cell turnover in the vascular wall is counterbalanced by neighboring phagocytes with high clearance efficiency, thereby limiting cellularity and maintaining lesion integrity. However, as lesions mature, phagocytic removal of apoptotic cells (efferocytosis) becomes defective, leading to secondary necrosis, expansion of plaque necrotic cores, and susceptibility to rupture. Recent genetic causation studies in experimental rodents have implicated key molecular regulators of efferocytosis in atherosclerotic progression. These include MER tyrosine kinase (MERTK), milk fat globule-EGF factor 8 (MFGE8), and complement C1q. At the cellular level, atheromata are infiltrated by a heterogenous population of professional phagocytes, comprised of monocytes, differentiated macrophages, and CD11c(+) dendritic-like cells. Each cell type is characterized by disparate clearance efficiencies and varying activities of key phagocytic signaling molecules. It is in this context that we outline a working model whereby plaque necrosis and destabilization is jointly promoted by (1) direct inhibition of core phagocytic signaling pathways and (2) expansion of phagocyte subsets with poor clearance capacity. Towards identifying targets for promoting efficient apoptotic cell clearance and resolving inflammation in atherosclerosis and during ischemic heart disease and post myocardial infarction, this review will discuss potential in vivo suppressors of efferocytosis at each stage of clearance and how these putative interventional targets may differentially affect uptake at the level of vascular phagocyte subsets.
Collapse
|
30
|
Guo Y, Nguyen KA, Potempa J. Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon's knife to a meat chopper-like brutal degradation of proteins. Periodontol 2000 2010; 54:15-44. [PMID: 20712631 DOI: 10.1111/j.1600-0757.2010.00377.x] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Tanaka H, Nariya H, Suzuki M, Houchi H, Tamai E, Miyata S, Okabe A. High-level production and purification of clostripain expressed in a virulence-attenuated strain of Clostridium perfringens. Protein Expr Purif 2010; 76:83-9. [PMID: 20940055 DOI: 10.1016/j.pep.2010.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/06/2010] [Accepted: 10/06/2010] [Indexed: 11/30/2022]
Abstract
Clostripain (CLO) produced by Clostridium histolyticum is an arginine-specific endopeptidase with the potential for applicability to diverse medical and industrial uses. In this study, we developed an expression system allowing high-level production and efficient purification of recombinant CLO (rCLO). Our expression system comprises pCLO, an rCLO expressing vector, and Clostridium perfringens 13Δ6, an in-frame deletion strain as to six genes encoding major virulence factors and secretory proteins. rCLO was purified from the culture supernatant of C. perfringens 13Δ6/pCLO by ammonium sulfate precipitation, hydroxyapatite chromatography, and affinity chromatography on benzamidine-Sepharose. From 200 ml of culture supernatant 4.5 mg of purified rCLO was obtained. N-Terminal amino acid sequencing and molecular mass determination of the purified rCLO and commercially available CLO revealed that the two enzymes have identical subunits, a 38.1-kDa heavy chain and a 15.0-kDa light chain, indicating that rCLO is processed in the same manner as CLO. Analysis of the enzymatic activities toward N-benzoyl-L-arginine p-nitroanilide and acyl-L-lysine p-nitroanilide showed that rCLO and CLO exhibit strict specificity for arginine at the P1 position, and that the specific activity of the former is approximately 2-fold higher than that of the latter. These results indicate that the new method involving a virulence-attenuated C. perfringens strain is useful for preparing large amounts of high-grade rCLO.
Collapse
Affiliation(s)
- Hiroaki Tanaka
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host's innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections.
Collapse
Affiliation(s)
- Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | | |
Collapse
|
33
|
Silva MT. Bacteria-induced phagocyte secondary necrosis as a pathogenicity mechanism. J Leukoc Biol 2010; 88:885-96. [PMID: 20566623 DOI: 10.1189/jlb.0410205] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Triggering of phagocyte apoptosis is a major virulence mechanism used by some successful bacterial pathogens. A central issue in the apoptotic death context is that fully developed apoptosis results in necrotic cell autolysis (secondary necrosis) with release of harmful cell components. In multicellular animals, this occurs when apoptosing cells are not removed by scavengers, mainly macrophages. Secondary necrotic lysis of neutrophils and macrophages may occur in infection when extensive phagocyte apoptosis is induced by bacterial cytotoxins and removal of apoptosing phagocytes is defective because the apoptotic process exceeds the available scavenging capacity or targets macrophages directly. Induction of phagocyte secondary necrosis is an important pathogenic mechanism, as it combines the pathogen evasion from phagocyte antimicrobial activities and the release of highly cytotoxic molecules, particularly of neutrophil origin, such as neutrophil elastase. This pathogenicity mechanism therefore promotes the unrestricted multiplication of the pathogen and contributes directly to the pathology of several necrotizing infections, where extensive apoptosis and necrosis of macrophages and neutrophils are present. Here, examples of necrotizing infectious diseases, where phagocyte secondary necrosis is implicated, are reviewed.
Collapse
Affiliation(s)
- Manuel T Silva
- Instituto de Biologia Molecular e Celular, University of Porto, Rua do Campo Alegre 823, Porto, Portugal.
| |
Collapse
|
34
|
Chvanov M, Petersen OH, Tepikin AV. Pharmacologically directed cell disposal: labeling damaged cells for phagocytosis as a strategy against acute pancreatitis. Mol Interv 2010; 10:80-5. [PMID: 20368368 DOI: 10.1124/mi.10.2.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Michael Chvanov
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK.
| | | | | |
Collapse
|
35
|
Karim AY, Kulczycka M, Kantyka T, Dubin G, Jabaiah A, Daugherty PS, Thogersen IB, Enghild JJ, Nguyen KA, Potempa J. A novel matrix metalloprotease-like enzyme (karilysin) of the periodontal pathogen Tannerella forsythia ATCC 43037. Biol Chem 2010; 391:105-17. [PMID: 19919176 DOI: 10.1515/bc.2010.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteases of Tannerella forsythia, a pathogen associated with periodontal disease, are implicated as virulence factors. Here, we characterized a matrix metalloprotease (MMP)-like enzyme of T. forsythia referred to as karilysin. Full-length (without a signal peptide) recombinant karilysin (49.9 kDa) processed itself into the mature 18-kDa enzyme through sequential autoproteolytic cleavage at both N- and C-terminal profragments. The first cleavage at the Asn14-Tyr15 peptide bond generated the fully active enzyme (47.9 kDa) and subsequent truncations at the C-terminus did not affect proteolytic activity. Mutation of Tyr15 to Ala generated a prokarilysin variant that processed itself into the final 18-kDa form with greatly reduced kinetics. Inactive prokarilysin with the mutated catalytic Glu residue (E136A) was processed by active karilysin at the same sites as the active enzymes. Karilysin proteolytic activity and autoprocessing were inhibited by 1,10-phenanthroline and EDTA. Calcium ions were found to be important for both the activity and thermal stability of karilysin. Using CLiPS technology, the specificity of karilysin was found to be similar to that of MMPs with preference for Leu/Tyr/Met at P1' and Pro/Ala at P3. This specificity and the ability to degrade elastin, fibrinogen and fibronectin may contribute to the pathogenicity of periodontitis.
Collapse
Affiliation(s)
- Abdulkarim Y Karim
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Purification and characterization of a clostripain-like protease from a recombinant Clostridium perfringens culture. Microbiology (Reading) 2010; 156:561-569. [DOI: 10.1099/mic.0.031609-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Clostridium perfringens produces a homologue of clostripain (Clo), the arginine-specific endopeptidase of Clostridium histolyticum. To determine the biochemical and biological properties of the C. perfringens homologue (Clp), it was purified from the culture supernatant of a recombinant C. perfringens strain by cation-exchange chromatography and ultrafiltration. Analysis by SDS-PAGE, N-terminal amino acid sequencing and TOF mass spectrometry revealed that Clp consists of two polypeptides comprising heavy (38 kDa) and light (16 kDa or 15 kDa) chains, and that the two light chains differ in the N-terminal cleavage site. This difference in the light chain did not affect the enzymic activity toward N-benzoyl-l-arginine p-nitroanilide (Bz-l-arginine pNA), as demonstrated by assaying culture supernatants differing in the relative ratio of the two light chains. Although the purified Clp preferentially degraded Bz-dl-arginine pNA rather than Bz-dl-lysine pNA, it degraded the latter more efficiently than did Clo. Clp showed 2.3-fold higher caseinolytic activity than Clo, as expected from the difference in substrate specificity. Clp caused an increase in vascular permeability when injected intradermally into mice, implying a possible role of Clp in the pathogenesis of clostridial myonecrosis.
Collapse
|
37
|
Smagur J, Guzik K, Bzowska M, Kuzak M, Zarebski M, Kantyka T, Walski M, Gajkowska B, Potempa J. Staphylococcal cysteine protease staphopain B (SspB) induces rapid engulfment of human neutrophils and monocytes by macrophages. Biol Chem 2009; 390:361-71. [PMID: 19284294 DOI: 10.1515/bc.2009.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract Circulating neutrophils and monocytes constitute the first line of antibacterial defence, which is responsible for the phagocytosis and killing of microorganisms. Previously, we have described that the staphylococcal cysteine proteinase staphopain B (SspB) cleaves CD11b on peripheral blood phagocytes, inducing the rapid development of features of atypical cell death in protease-treated cells. Here, we report that exposure of phagocytes to SspB critically impairs their antibacterial functions. Specifically, SspB blocks phagocytosis of Staphylococcus aureus by both neutrophils and monocytes, represses their chemotactic activity and induces extensive, nonphlogistic clearance of SspB-treated cells by macrophages. The proteinase also cleaves CD31, a major repulsion ('do not-eat-me') signal, on the surface of neutrophils. We suggest that both proteolytic degradation of repulsion signals and induction of 'eat-me' signals on the surface of leukocytes are responsible for the observed intensive phagocytosis of SspB-treated neutrophils by human monocyte-derived macrophages. Collectively, this may lead to the depletion of functional neutrophils at the site of infection, thus facilitating staphylococcal colonisation and spreading.
Collapse
Affiliation(s)
- Jan Smagur
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-386 Krakow, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jitkaew S, Witasp E, Zhang S, Kagan VE, Fadeel B. Induction of caspase- and reactive oxygen species-independent phosphatidylserine externalization in primary human neutrophils: role in macrophage recognition and engulfment. J Leukoc Biol 2008; 85:427-37. [PMID: 19106181 DOI: 10.1189/jlb.0408232] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Macrophage recognition and disposal of neutrophils are important steps in the resolution of inflammation. Externalization of phosphatidylserine (PS) on the cell surface serves as a common recognition signal for macrophages and is associated with the apoptosis program in neutrophils. Here, we report that macrophage-differentiated PLB-985 cells induce rapid, caspase-independent PS externalization in human neutrophils. A similar degree of PS externalization was seen when neutrophils were cocultured with gp91(phox)-deficient PLB-985 macrophages, thus demonstrating that macrophage-induced PS externalization was NADPH oxidase-independent. Macrophage-induced PS externalization required cell-to-cell contact and kinase activation and was shown to correlate with neutrophil degranulation. Of note, the degree of engulfment of such PS-positive neutrophils by activated human monocyte-derived macrophages was considerably lower than for neutrophils undergoing constitutive apoptosis, indicating that PS externalization alone is not sufficient for macrophage disposal of neutrophils. However, addition of recombinant milk fat globule epidermal growth factor 8, a PS-binding protein, restored engulfment of the macrophage-cocultured target cells. Finally, neutrophils undergoing spontaneous apoptosis but not macrophage-cocultured neutrophils displayed surface expression and release of annexin I, and the addition of N-t-Boc-Phe-D-Leu-Phe-D-Leu-Phe (Boc1), a formyl peptide receptor/lipoxin receptor antagonist, suppressed clearance of apoptotic neutrophils. Conditioned medium from apoptotic neutrophils also promoted the engulfment of macrophage-cocultured neutrophils, and Boc1 blocked this process. Taken together, these studies highlight a novel pathway of PS externalization in primary human neutrophils and also provide evidence for an auxiliary function of annexin I in macrophage clearance of neutrophils.
Collapse
Affiliation(s)
- Siriporn Jitkaew
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Nobels väg 13, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
39
|
Das J, Arora P, Gracias D, Praveen A, Raj BPJ, Martin E, Pal R. Endogenous humoral autoreactive immune responses to apoptotic cells: Effects on phagocytic uptake, chemotactic migration and antigenic spread. Eur J Immunol 2008; 38:3561-74. [DOI: 10.1002/eji.200838624] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Abstract
In contrast to the commonly accepted hypothesis of host-centred pathology, it is possible that surface bacteria, not host dysfunction, cause the chronicity and perpetual inflammation associated with chronic non-healing wounds.
Collapse
Affiliation(s)
- R D Wolcott
- Southwest Regional Wound Care Center, Lubbock, Texas, USA.
| | | | | |
Collapse
|
41
|
Jura J, Wegrzyn P, Korostyński M, Guzik K, Oczko-Wojciechowska M, Jarzab M, Kowalska M, Piechota M, Przewłocki R, Koj A. Identification of interleukin-1 and interleukin-6-responsive genes in human monocyte-derived macrophages using microarrays. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:383-9. [PMID: 18498781 DOI: 10.1016/j.bbagrm.2008.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/07/2008] [Accepted: 04/21/2008] [Indexed: 02/08/2023]
Abstract
The transcriptome profile of human monocyte-derived macrophages stimulated in vitro by low doses of IL-1 or IL-6 was analyzed by microarrays (Affymetrix, HG-U133A) in 5 independent experiments. Out of 4886 probe sets consistently detected in all 5 array replicates we found approximately 300 genes (FDR<5%) modulated by IL-1 and/or IL-6, among which 34 may be regarded as novel cytokine-responsive macrophage genes of various function. Detailed analysis indicates that cytokine-responsive genes include 125 transcripts significantly up-regulated by IL-1 and only 39 transcripts up-regulated by IL-6, whereas the number of down-regulated transcripts is lower and almost equal for both cytokines. These data indicate that, in comparison to liver cells, IL-1 is more potent than IL-6 in modulating gene expression of human macrophages. Hierarchical clustering analysis of these transcripts yielded 7 separate gene clusters. The most abundant group contains genes strongly activated by IL-1 alone and coding for chemokines, cytokines and their receptors, the components of intracellular signaling as well as transcription factors from NF-kB family. In order to validate the results obtained by microarray analysis the expression of 5 genes from various clusters was determined by quantitative RT-PCR. Moreover, the putative promoter regions of all cytokine-responsive genes were subjected to the in silico identification of transcription factor binding sites (TFBS). We found that TFBS corresponding to RelA/NF-kB is the most strongly over-represented group and we demonstrated involvement of NF-kB in the expression of selected genes.
Collapse
Affiliation(s)
- Jolanta Jura
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PLoS One 2008; 3:e1409. [PMID: 18183290 PMCID: PMC2169301 DOI: 10.1371/journal.pone.0001409] [Citation(s) in RCA: 339] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Accepted: 12/10/2007] [Indexed: 11/19/2022] Open
Abstract
Although considered to be an extracellular pathogen, Staphylococcus aureus is able to invade a variety of mammalian, non-professional phagocytes and can also survive engulfment by professional phagocytes such as neutrophils and monocytes. In both of these cell types S. aureus promptly escapes from the endosomes/phagosomes and proliferates within the cytoplasm, which quickly leads to host cell death. In this report we show that S. aureus interacted with human monocyte-derived macrophages in a very different way to those of other mammalian cells. Upon phagocytosis by macrophages, S. aureus persisted intracellularly in vacuoles for 3-4 days before escaping into the cytoplasm and causing host cell lysis. Until the point of host cell lysis the infected macrophages showed no signs of apoptosis or necrosis and were functional. They were able to eliminate intracellular staphylococci if prestimulated with interferon-gamma at concentrations equivalent to human therapeutic doses. S. aureus survival was dependent on the alternative sigma factor B as well as the global regulator agr, but not SarA. Furthermore, isogenic mutants deficient in alpha-toxin, the metalloprotease aureolysin, protein A, and sortase A were efficiently killed by macrophages upon phagocytosis, although with different kinetics. In particular alpha-toxin was a key effector molecule that was essential for S. aureus intracellular survival in macrophages. Together, our data indicate that the ability of S. aureus to survive phagocytosis by macrophages is determined by multiple virulence factors in a way that differs considerably from its interactions with other cell types. S. aureus persists inside macrophages for several days without affecting the viability of these mobile cells which may serve as vehicles for the dissemination of infection.
Collapse
|
43
|
Denes A, Vidyasagar R, Feng J, Narvainen J, McColl BW, Kauppinen RA, Allan SM. Proliferating resident microglia after focal cerebral ischaemia in mice. J Cereb Blood Flow Metab 2007; 27:1941-53. [PMID: 17440490 DOI: 10.1038/sj.jcbfm.9600495] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cerebral ischaemia usually results in the rapid death of neurons within the immediate territory of the affected artery. Neuronal loss is accompanied by a sequence of events, including brain oedema, blood-brain barrier (BBB) breakdown, and neuroinflammation, all of which contribute to further neuronal death. Although the role of macrophages and mononuclear phagocytes in the expansion of ischaemic injury has been widely studied, the relative contribution of these cells, either of exogenous or intrinsic central nervous system (CNS) origin is still not entirely clear. The purpose of this study, therefore, was to use different durations of transient middle cerebral artery occlusion (tMCAo) in the mouse to investigate fully post-occlusion BBB permeability and cellular changes in the brain during the 72 h post-MCAo period. This was achieved using in vivo magnetic resonance imaging (MRI) and cell labelling techniques. Our results show that BBB breakdown and formation of the primary ischaemic damage after tMCAo is not associated with significant infiltration of neutrophils, although more are observed with longer periods of MCAo. In addition, we observe very few infiltrating exogenous macrophages over a 72 h period after 30 or 60 mins of occlusion, instead a profound increase in proliferating resident microglia cells was observed. Interestingly, the more severe injury associated with 60 mins of MCAo leads to a markedly reduced proliferation of resident microglial cells, suggesting that these cells may play a protective function, possibly through phagocytosis of infiltrating neutrophils. These data further support possible beneficial actions of microglial cells in the injured brain.
Collapse
Affiliation(s)
- Adam Denes
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
44
|
Lavergne SN, Drescher NJ, Trepanier LA. Anti-myeloperoxidase and anti-cathepsin G antibodies in sulphonamide hypersensitivity. Clin Exp Allergy 2007; 38:199-207. [PMID: 17976219 DOI: 10.1111/j.1365-2222.2007.02845.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Anti-neutrophil cytoplasmic antibodies (ANCA) are associated with vasculitis in humans. Sulphonamide antimicrobials cause drug hypersensitivity (HS) reactions with some clinical signs that are suggestive of vasculitis. OBJECTIVE The purpose of this study was to determine whether sulphonamide HS is associated with anti-neutrophil antibodies, using the dog as a spontaneous clinical model. METHODS Thirty-four sulphonamide-HS dogs, 11 sulphonamide-'tolerant' dogs, and nine healthy sulphonamide-naïve dogs were evaluated for anti-neutrophil antibodies using a commercial ELISA against human myeloperoxidase (MPO), a commercial human ANCA Western blot protocol, and immunoblotting against whole canine neutrophils. RESULTS Using ELISA, anti-MPO antibodies were found with an apparent higher frequency in HS dogs (50%), compared with 'tolerant' dogs (18%), which also showed significantly lower absorbances. Among HS dogs, anti-MPO antibodies were significantly more common, with significantly higher absorbances, in dogs that did not survive the HS reaction (78%) compared with survivors (35%). Using immunoblotting, ANCA were detected with similar overall frequencies in HS and 'tolerant' dogs. However, one protein targeted by several HS dogs, but no 'tolerant' dogs, was identified as cathepsin G. CONCLUSION These data indicate that anti-MPO antibodies and anti-cathepsin G antibodies are associated with sulphonamide HS. Anti-MPO antibodies have been shown to be pathogenic both in vitro and in vivo, leading to vasculitis lesions and vasculitis-like syndromes. The present study therefore suggests that vasculitis might be one mechanism of tissue damage in this sulphonamide HS. Furthermore, the evaluation of ANCA, and its relationship to disease severity and clinical outcome, should be considered in human patients with sulphonamide drug HS.
Collapse
Affiliation(s)
- S N Lavergne
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | |
Collapse
|
45
|
Guzik K, Potempa J. Friendly fire against neutrophils: proteolytic enzymes confuse the recognition of apoptotic cells by macrophages. Biochimie 2007; 90:405-15. [PMID: 17964056 DOI: 10.1016/j.biochi.2007.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 09/14/2007] [Indexed: 12/27/2022]
Abstract
Physiologically the only acceptable fate for almost all damaged or unwanted cells is their apoptotic death, followed by engulfment of the corpses by healthy neighbors or professional phagocytes. Efficient clearance of cells that have succumbed to apoptosis is crucial for normal tissue homeostasis, and for the modulation of immune responses. The disposal of apoptotic cells is finely regulated by a highly redundant system of receptors, bridging molecules and 'eat me' signals. The complexity of the system is reflected by the term: 'engulfment synapse', used to describe the interaction between a phagocytic cell and its target. In healthy humans, dying neutrophils are the most abundant and important targets for such recognition and engulfment. In inflammation the scope and importance of this complicated task is further increased. Paradoxically, despite growing evidence highlighting the priority of neutrophils clearance, the recognition of these cells by phagocytes is not as well understood as the recognition of other apoptotic cell types. New findings indicate that the interaction of phosphatidylserine (PS) on apoptotic neutrophils with its receptor on macrophages is not as critical for the specific clearance of neutrophil corpses it was previously believed. In this review we focus on recent findings regarding alternative, PS-independent "eat me" signals expressed on neutrophils during cell death and activation. Based on our own research, we emphasize the clearance of dying neutrophils, especially at the focus of bacterial infection; and the associated inflammatory reaction, which occurs in a highly proteolytic milieu containing both host and bacteria-derived proteinases. In these environments, eat-me signals expressed by neutrophils are drastically modified; arguing against the phospholipid-based detection of apoptotic cells, but supporting the importance of proteinaceous ligand(s) for the recognition of neutrophils by macrophages. In this context we discuss the effect of the gingipain R (Rgp) proteinases from Porphyromonas gingivalis on neutrophils interactions with macrophages. Since the recognition of apoptotic neutrophils is an important fundamental process, serving multiple functions in the regulation of immunity and homeostasis, we hypothesize that many pathogenic bacteria may have developed similar strategies to confuse macrophage-neutrophil interaction as a common pathogenic strategy.
Collapse
Affiliation(s)
- Krzysztof Guzik
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland.
| | | |
Collapse
|
46
|
Venegas V, Zhou Z. Two alternative mechanisms that regulate the presentation of apoptotic cell engulfment signal in Caenorhabditis elegans. Mol Biol Cell 2007; 18:3180-92. [PMID: 17567952 PMCID: PMC1949360 DOI: 10.1091/mbc.e07-02-0138] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Phosphatidylserine exposed on the surface of apoptotic mammalian cells is considered an "eat-me" signal that attracts phagocytes. The generality of using phosphatidylserine as a clearance signal for apoptotic cells in animals and the regulation of this event remain uncertain. Using ectopically expressed mouse MFG-E8, a secreted phosphatidylserine-binding protein, we detected specific exposure of phosphatidylserine on the surface of apoptotic cells in Caenorhabditis elegans. Masking the surface phosphatidylserine inhibits apoptotic cell engulfment. CED-7, an ATP-binding cassette (ABC) transporter, is necessary for the efficient exposure of phosphatidylserine on apoptotic somatic cells, and for the recognition of these cells by phagocytic receptor CED-1. Alternatively, phosphatidylserine exposure on apoptotic germ cells is not CED-7 dependent, but instead requires phospholipid scramblase PLSC-1, a homologue of mammalian phospholipid scramblases. Moreover, deleting plsc-1 results in the accumulation of apoptotic germ cells but not apoptotic somatic cells. These observations suggest that phosphatidylserine might be recognized by CED-1 and act as a conserved eat-me signal from nematodes to mammals. Furthermore, the two different biochemical activities used in somatic cells (ABC transporter) and germ cells (phospholipid scramblase) suggest an increased complexity in the regulation of phosphatidylserine presentation in response to apoptotic signals in different tissues and during different developmental stages.
Collapse
Affiliation(s)
- Victor Venegas
- *Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
| | - Zheng Zhou
- *Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
- The Program of Developmental Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|