1
|
Sivakumar S, Lieber S, Dietze R, Beutgen VM, Sutor EC, Heidemann S, Finkernagel F, Teply-Szymanski J, Nist A, Stiewe T, Roth K, Reinartz S, Graumann J, Müller-Brüsselbach S, Müller R. Basal cell adhesion molecule (BCAM) promotes mesothelial-to-mesenchymal transition and tumor angiogenesis through paracrine signaling. Cell Commun Signal 2025; 23:136. [PMID: 40082910 PMCID: PMC11907816 DOI: 10.1186/s12964-025-02128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND High expression of basal cell adhesion molecule (BCAM) is a hallmark of ovarian cancer (OC) progression. BCAM facilitates transcoelomic dissemination by promoting mesothelial cell clearance at peritoneal attachment sites of tumor cell spheroids. We investigated how BCAM mediates this effect and potentially drives other pro-metastatic functions. METHODS The impact of BCAM on the tumor cell secretome and the mesothelial cell phenotype was analyzed by affinity proteomics, bulk and single-cell RNA sequencing, life-cell and multiphoton microscopy, biochemical and functional in vitro assays as well as a murine tumor model. BCAM manipulation involved ectopic overexpression, inducible expression and treatment with soluble BCAM. RESULTS All forms of BCAM enhanced the secretion of cytokines that impact cell motility, mesenchymal differentiation and angiogenesis, including AREG, CXCL family members, FGF2, TGFB2, and VEGF. Notably, their levels in OC ascites were correlated with BCAM expression, and recombinant BCAM-induced cytokines triggered mesothelial-mesenchymal transition (MMT). Mesothelial cells undergoing MMT exhibited enhanced motility away from attaching tumor spheroids, leading to mesothelial clearance at spheroid attachment sites. BCAM-mediated MMT-associated transcriptional changes were also observed in subpopulations of omental mesothelial cells from OC patients, and were associated with poor survival. Consistent with the secretome data, BCAM induced endothelial tube formation in vitro and markedly promoted tumor angiogenesis in a mouse model. CONCLUSION We have identified previously unknown functions of the BCAM-induced secretome potentially impacting distinct stages of OC metastasis. While BCAM's impact on MMT may facilitate initiation of micrometastases, neo-angiogenesis is essential for tumor growth. Taken together with the observed clinical adverse association, our findings underscore the potential of BCAM as a therapeutic target.
Collapse
Affiliation(s)
- Suresh Sivakumar
- Translational Oncology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Hans-Meerwein-Strasse 3, 35043, Marburg, Germany
| | - Sonja Lieber
- Translational Oncology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Hans-Meerwein-Strasse 3, 35043, Marburg, Germany
- Institute of Systems Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany
| | - Raimund Dietze
- Translational Oncology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Hans-Meerwein-Strasse 3, 35043, Marburg, Germany
| | - Vanessa M Beutgen
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
- Core Facility Translational Proteomics, Philipps University, Marburg, Germany
| | - Eileen C Sutor
- Translational Oncology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Hans-Meerwein-Strasse 3, 35043, Marburg, Germany
| | - Sophie Heidemann
- Translational Oncology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Hans-Meerwein-Strasse 3, 35043, Marburg, Germany
| | - Florian Finkernagel
- Translational Oncology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Hans-Meerwein-Strasse 3, 35043, Marburg, Germany
- Genomics Core Facility, Philipps University, Marburg, Germany
| | | | - Andrea Nist
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University, Marburg, Germany
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University, Marburg, Germany
- Institute of Lung Health, Justus-Liebig University, Giessen, Germany
| | - Katrin Roth
- Cell Imaging Core Facility, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany
| | - Silke Reinartz
- Translational Oncology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Hans-Meerwein-Strasse 3, 35043, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
- Core Facility Translational Proteomics, Philipps University, Marburg, Germany
| | - Sabine Müller-Brüsselbach
- Translational Oncology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Hans-Meerwein-Strasse 3, 35043, Marburg, Germany
| | - Rolf Müller
- Translational Oncology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Hans-Meerwein-Strasse 3, 35043, Marburg, Germany.
| |
Collapse
|
2
|
Brown ZJ, Krell M, Gitlin S, Ranjbar S, Vega DA, Pawlik TM. Prospects of the surgical management of colorectal peritoneal metastasis. J Gastrointest Surg 2025; 29:101940. [PMID: 39746646 DOI: 10.1016/j.gassur.2024.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignancy with the propensity to metastasize. Common sites of metastasis include the liver, lungs, and peritoneum, with peritoneal metastases (PMs) having the worst prognosis. Unfortunately, systemic chemotherapy is often less effective in the treatment of PMs. Therefore, removal of all visible tumor via cytoreductive surgery along with intraperitoneal (IP) therapies has been used. METHODS A comprehensive review of the literature was conducted using MEDLINE/PubMed and Web of Science with an end date of September 1, 2024, regarding cytoreductive surgery and heated IP chemotherapy for CRC PMs. RESULTS Recent studies have called into question the utility of IP chemotherapy in the treatment of CRC PMs. However, regardless of IP chemotherapy, cytoreductive surgery has demonstrated an additional survival benefit for patients with PM secondary to CRC. DISCUSSION This study reviews the pathophysiology of CRC PM, the current treatment paradigms, and a pathway for improving outcomes in patients with CRC PM.
Collapse
Affiliation(s)
- Zachary J Brown
- Division of Surgical Oncology, Department of Surgery, New York University Grossman Long Island School of Medicine, New York University Langone Health, Mineola, NY, United States.
| | - Matthew Krell
- Division of Surgical Oncology, Department of Surgery, New York University Grossman Long Island School of Medicine, New York University Langone Health, Mineola, NY, United States
| | - Saige Gitlin
- Division of Surgical Oncology, Department of Surgery, New York University Grossman Long Island School of Medicine, New York University Langone Health, Mineola, NY, United States
| | - Suedeh Ranjbar
- Division of Surgical Oncology, Department of Surgery, New York University Grossman Long Island School of Medicine, New York University Langone Health, Mineola, NY, United States
| | - Diego Alvarez Vega
- Division of Surgical Oncology, Department of Surgery, New York University Grossman Long Island School of Medicine, New York University Langone Health, Mineola, NY, United States
| | - Timothy M Pawlik
- Division of Surgical Oncology, Department of Surgery, Wexner Medical Center and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Demuytere J, Ernst S, Ceelen W. Pathophysiology of Peritoneal Metastasis. J Surg Oncol 2024; 130:1299-1305. [PMID: 39400354 DOI: 10.1002/jso.27890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 10/15/2024]
Abstract
Peritoneal metastasis is the result of a complex, stepwise process that involves multiple, spatially and temporally distinct interactions between the primary cancer, disseminated cancer cells or clusters, and the mesothelial lining of the peritoneal cavity and intraperitoneal organs. The biology of peritoneal metastasis, long a neglected field of research, is now increasingly being unraveled. Here, we provide an update on the mechanisms that drive the journey that eventually leads to widespread peritoneal metastatic disease.
Collapse
Affiliation(s)
- Jesse Demuytere
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sam Ernst
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
4
|
Neuhaus F, Lieber S, Shinkevich V, Steitz AM, Raifer H, Roth K, Finkernagel F, Worzfeld T, Burchert A, Keber C, Nist A, Stiewe T, Reinartz S, Beutgen VM, Graumann J, Pauck K, Garn H, Gaida M, Müller R, Huber M. Reciprocal crosstalk between Th17 and mesothelial cells promotes metastasis-associated adhesion of ovarian cancer cells. Clin Transl Med 2024; 14:e1604. [PMID: 38566518 PMCID: PMC10988119 DOI: 10.1002/ctm2.1604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND IL-17A and TNF synergistically promote inflammation and tumorigenesis. Their interplay and impact on ovarian carcinoma (OC) progression are, however, poorly understood. We addressed this question focusing on mesothelial cells, whose interaction with tumor cells is known to play a pivotal role in transcoelomic metastasis formation. METHODS Flow-cytometry and immunohistochemistry experiments were employed to identify cellular sources of IL-17A and TNF. Changes in transcriptomes and secretomes were determined by bulk and single cell RNA sequencing as well as affinity proteomics. Functional consequences were investigated by microscopic analyses and tumor cell adhesion assays. Potential clinical implications were assessed by immunohistochemistry and survival analyses. RESULTS We identified Th17 cells as the main population of IL-17A- and TNF producers in ascites and detected their accumulation in early omental metastases. Both IL-17A and its receptor subunit IL-17RC were associated with short survival of OC patients, pointing to a role in clinical progression. IL-17A and TNF synergistically induced the reprogramming of mesothelial cells towards a pro-inflammatory mesenchymal phenotype, concomitantly with a loss of tight junctions and an impairment of mesothelial monolayer integrity, thereby promoting cancer cell adhesion. IL-17A and TNF synergistically induced the Th17-promoting cytokines IL-6 and IL-1β as well as the Th17-attracting chemokine CCL20 in mesothelial cells, indicating a reciprocal crosstalk that potentiates the tumor-promoting role of Th17 cells in OC. CONCLUSIONS Our findings reveal a novel function for Th17 cells in the OC microenvironment, which entails the IL-17A/TNF-mediated induction of mesothelial-mesenchymal transition, disruption of mesothelial layer integrity and consequently promotion of OC cell adhesion. These effects are potentiated by a positive feedback loop between mesothelial and Th17 cells. Together with the observed clinical associations and accumulation of Th17 cells in omental micrometastases, our observations point to a potential role in early metastases formation and thus to new therapeutic options.
Collapse
Affiliation(s)
- Felix Neuhaus
- Institute of Systems ImmunologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
- Department of Translational OncologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Sonja Lieber
- Institute of Systems ImmunologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | | | - Anna Mary Steitz
- Department of Translational OncologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Hartmann Raifer
- Institute of Systems ImmunologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
- FACS Core FacilityCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Kathrin Roth
- Cell Imaging Core Facility, Center for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Florian Finkernagel
- Bioinformatics Core Facility, Center for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Thomas Worzfeld
- Institute of PharmacologyPhilipps UniversityMarburgGermany
- Department of PharmacologyMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Andreas Burchert
- Department of HematologyOncology and ImmunologyUniversity Hospital Giessen and MarburgMarburgGermany
| | - Corinna Keber
- Comprehensive Biomaterial Bank Marburg (CBBMR) and Institute of PathologyPhilipps UniversityMarburgGermany
| | - Andrea Nist
- Genomics Core FacilityInstitute of Molecular OncologyMember of the German Center for Lung Research (DZL)Philipps UniversityMarburgGermany
| | - Thorsten Stiewe
- Genomics Core FacilityInstitute of Molecular OncologyMember of the German Center for Lung Research (DZL)Philipps UniversityMarburgGermany
| | - Silke Reinartz
- Department of Translational OncologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Vanessa M. Beutgen
- Institute of Translational Proteomics and Translational Proteomics Core FacilityBiochemical Pharmacological CentrePhilipps UniversityMarburgGermany
| | - Johannes Graumann
- Institute of Translational Proteomics and Translational Proteomics Core FacilityBiochemical Pharmacological CentrePhilipps UniversityMarburgGermany
| | - Kim Pauck
- Translational Inflammation Research Division and Core Facility for Single Cell MultiomicsPhilipps UniversityMarburgGermany
| | - Holger Garn
- Translational Inflammation Research Division and Core Facility for Single Cell MultiomicsPhilipps UniversityMarburgGermany
| | - Matthias Gaida
- Institute of PathologyUniversity Medical Center Mainz, Johannes Gutenberg UniversityMainzGermany
- TRON, Translational Oncology at the University Medical CenterJohannes Gutenberg UniversityMainzGermany
- Research Center for ImmunotherapyUniversity Medical Center Mainz, Johannes Gutenberg UniversityMainzGermany
| | - Rolf Müller
- Department of Translational OncologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Magdalena Huber
- Institute of Systems ImmunologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| |
Collapse
|
5
|
Steitz AM, Schröder C, Knuth I, Keber CU, Sommerfeld L, Finkernagel F, Jansen JM, Wagner U, Müller-Brüsselbach S, Worzfeld T, Huber M, Beutgen VM, Graumann J, Pogge von Strandmann E, Müller R, Reinartz S. TRAIL-dependent apoptosis of peritoneal mesothelial cells by NK cells promotes ovarian cancer invasion. iScience 2023; 26:108401. [PMID: 38047087 PMCID: PMC10692662 DOI: 10.1016/j.isci.2023.108401] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
A crucial requirement for metastasis formation in ovarian high-grade serous carcinoma (HGSC) is the disruption of the protective peritoneal mesothelium. Using co-culture systems of primary human cells, we discovered that tumor-associated NK cells induce TRAIL-dependent apoptosis in mesothelial cells via death receptors DR4 and DR5 upon encounter with activated T cells. Upregulation of TRAIL expression in NK cells concomitant with enhanced cytotoxicity toward mesothelial cells was driven predominantly by T-cell-derived TNFα, as shown by affinity proteomics-based analysis of the T cell secretome in conjunction with functional studies. Consistent with these findings, we detected apoptotic mesothelial cells in the peritoneal fluid of HGSC patients. In contrast to mesothelial cells, HGSC cells express negligible levels of both DR4 and DR5 and are TRAIL resistant, indicating cell-type-selective killing by NK cells. Our data point to a cooperative action of T and NK in breaching the mesothelial barrier in HGSC patients.
Collapse
Affiliation(s)
- Anna Mary Steitz
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Clarissa Schröder
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Isabel Knuth
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Corinna U. Keber
- Institute for Pathology, Philipps University, 35043 Marburg, Germany
| | - Leah Sommerfeld
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Florian Finkernagel
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Julia M. Jansen
- Clinic for Gynecology, Gynecological Oncology, Gynecological Endocrinology, University Hospital (UKGM), 35043 Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology, Gynecological Endocrinology, University Hospital (UKGM), 35043 Marburg, Germany
| | - Sabine Müller-Brüsselbach
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), Philipps University, 35043 Marburg, Germany
| | - Magdalena Huber
- Institute of Systems Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Vanessa M. Beutgen
- Institute of Translational Proteomics, Philipps University, 35043 Marburg, Germany
- Core Facility Translational Proteomics, Philipps University, 35043 Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics, Philipps University, 35043 Marburg, Germany
- Core Facility Translational Proteomics, Philipps University, 35043 Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Clinic for Hematology, Oncology and Immunology, Philipps University, 35043 Marburg, Germany
| | - Rolf Müller
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Silke Reinartz
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| |
Collapse
|
6
|
Xia W, Geng Y, Hu W. Peritoneal Metastasis: A Dilemma and Challenge in the Treatment of Metastatic Colorectal Cancer. Cancers (Basel) 2023; 15:5641. [PMID: 38067347 PMCID: PMC10705712 DOI: 10.3390/cancers15235641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 10/25/2024] Open
Abstract
Peritoneal metastasis (PM) is a common mode of distant metastasis in colorectal cancer (CRC) and has a poorer prognosis compared to other metastatic sites. The formation of PM foci depends on the synergistic effect of multiple molecules and the modulation of various components of the tumor microenvironment. The current treatment of CRC-PM is based on systemic chemotherapy. However, recent developments in local therapeutic modalities, such as cytoreductive surgery (CRS) and intraperitoneal chemotherapy (IPC), have improved the survival of these patients. This article reviews the research progress on the mechanism, characteristics, diagnosis, and treatment strategies of CRC-PM, and discusses the current challenges, so as to deepen the understanding of CRC-PM among clinicians.
Collapse
Affiliation(s)
- Wei Xia
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, China;
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, China;
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, China;
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| |
Collapse
|
7
|
Dai W, Chen Y, Xue Y, Wan M, Mao C, Zhang K. Progress in the Treatment of Peritoneal Metastatic Cancer and the Application of Therapeutic Nanoagents. ACS APPLIED BIO MATERIALS 2023; 6:4518-4548. [PMID: 37916787 DOI: 10.1021/acsabm.3c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Peritoneal metastatic cancer is a cancer caused by the direct growth of cancer cells from the primary site through the bloodstream, lymph, or peritoneum, which is a difficult part of current clinical treatment. In the abdominal cavity of patients with metastatic peritoneal cancer, there are usually nodules of various sizes and malignant ascites. Among them, nodules of different sizes can obstruct intestinal movement and form intestinal obstruction, while malignant ascites can cause abdominal distension and discomfort, and even cause patients to have difficulty in breathing. The pathology and physiology of peritoneal metastatic cancer are complex and not fully understood. The main hypothesis is "seed" and "soil"; i.e., cells from the primary tumor are shed and implanted in the peritoneal cavity (peritoneal metastasis). In the last two decades, the main treatment modalities used clinically are cytoreductive surgery (CRS), systemic chemotherapy, intraperitoneal chemotherapy, and combined treatment, all of which help to improve patient survival and quality of life (QOL). However, the small-molecule chemotherapeutic drugs used clinically still have problems such as rapid drug metabolism and systemic toxicity. With the rapid development of nanotechnology in recent years, therapeutic nanoagents for the treatment of peritoneal metastatic cancer have been gradually developed, which has improved the therapeutic effect and reduced the systemic toxicity of small-molecule chemotherapeutic drugs to a certain extent. In addition, nanomaterials have been developed not only as therapeutic agents but also as imaging agents to guide peritoneal tumor CRS. In this review, we describe the etiology and pathological features of peritoneal metastatic cancer, discuss in detail the clinical treatments that have been used for peritoneal metastatic cancer, and analyze the advantages and disadvantages of the different clinical treatments and the QOL of the treated patients, followed by a discussion focusing on the progress, obstacles, and challenges in the use of therapeutic nanoagents in peritoneal metastatic cancer. Finally, therapeutic nanoagents and therapeutic tools that may be used in the future for the treatment of peritoneal metastatic cancer are prospected.
Collapse
Affiliation(s)
- Wenjun Dai
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yidan Chen
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxin Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ke Zhang
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
8
|
Qin X, Su M, Guo H, Peng B, Luo R, Ye J, Wang H. Functional biomaterials for the diagnosis and treatment of peritoneal surface malignancies. SMART MEDICINE 2023; 2:e20230013. [PMID: 39188342 PMCID: PMC11235712 DOI: 10.1002/smmd.20230013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/03/2023] [Indexed: 08/28/2024]
Abstract
Peritoneal surface malignancies (PSM) can originate from tumors in many organs and are highly malignant, and difficult to diagnose and cure, posing a serious threat to the survival of patients. Although the diagnosis and treatment of PSM have made significant progress in the past two decades, numerous challenges remain. Recently, functionalized biomaterials have shown promise for PSM diagnosis and treatment. Hence, we review the progress of functionalized biomaterials for the diagnosis and treatment of PSM. We first introduce the classification and pathogenesis of PSM. We then discuss the applications of functionalized biomaterials for the diagnosis and treatment of PSM. In particular, we focus on functionalized biomaterials as drug carriers for the treatment of PSM, including chemotherapy, immunotherapy, targeted therapy, combination therapy, and other therapies. Finally, we summarized the current challenges and provided a perspective on the diagnosis and treatment of PSM.
Collapse
Affiliation(s)
- Xiusen Qin
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Biomedical Innovation and Laboratory of Regenerative Medicine and BiomaterialsBiomedical Material Conversion and Evaluation Engineering Technology Research Center of Guangdong ProvinceGuangzhouChina
| | - Mingli Su
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Department of Endoscopic SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Huili Guo
- Department of Infectious DiseasesThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Binying Peng
- Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Rui Luo
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Biomedical Innovation and Laboratory of Regenerative Medicine and BiomaterialsBiomedical Material Conversion and Evaluation Engineering Technology Research Center of Guangdong ProvinceGuangzhouChina
| | - Junwen Ye
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Biomedical Innovation and Laboratory of Regenerative Medicine and BiomaterialsBiomedical Material Conversion and Evaluation Engineering Technology Research Center of Guangdong ProvinceGuangzhouChina
| | - Hui Wang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Biomedical Innovation and Laboratory of Regenerative Medicine and BiomaterialsBiomedical Material Conversion and Evaluation Engineering Technology Research Center of Guangdong ProvinceGuangzhouChina
| |
Collapse
|
9
|
Masoudian P, Kwok C, Li P, Hosseini S, Zhang T, Amjadi K. Outcomes for Malignant Pleural Effusions Because of Melanoma Treated With Indwelling Pleural Catheters. J Bronchology Interv Pulmonol 2023; 30:244-251. [PMID: 35867004 DOI: 10.1097/lbr.0000000000000877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/09/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Indwelling pleural catheters (IPCs) reduce dyspnea and improve quality of life in patients with malignant pleural effusions (MPEs). Data on outcomes of MPEs secondary to metastatic melanoma managed with IPCs are scarce. We aimed to evaluate outcomes of patients receiving IPCs for MPEs secondary to melanoma compared with other malignancies. METHODS We identified patients from our prospectively collected database of all patients who had an IPC insertion for MPEs at our tertiary care center for melanoma between May 2006 and November 2018 and for nonmelanoma between May 2006 and June 2013. Chart reviews were conducted to obtain patient demographics, catheter complications, time of IPC removal or death, x-ray imaging, and pleural fluid characteristics. RESULTS We identified 27 MPEs because of melanoma and 1114 because of nonmelanoma malignancies treated with IPC. The most frequent complication was pleural fluid loculation requiring fibrinolytics which was significantly higher in the melanoma (14.8%) compared with the nonmelanoma group (3.8%; P =0.02). Cumulative incidence functions for catheter removal ( P =0.8) or death with catheter in situ ( P =0.3) were not significant between melanoma and nonmelanoma groups in competing risk analysis. Baseline radiographic pleural effusion scores were similar, but became significantly higher (increased pleural opacity) in the melanoma group at time points following IPC insertion ( P <0.05). CONCLUSION MPEs because of melanoma had a higher rate of loculations requiring fibrinolytics and less radiographic improvement after IPC insertion suggesting this patient subgroup has a more complicated pleural space which may be less responsive to drainage.
Collapse
Affiliation(s)
- Pourya Masoudian
- Division of Respirology, Department of Medicine, University of Ottawa
| | - Chanel Kwok
- Division of Respirology, Department of Medicine, University of Ottawa
| | - Pen Li
- Division of Respirology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah Hosseini
- Division of Respirology, Department of Medicine, University of Ottawa
| | - Tinghua Zhang
- Ottawa Methods Centre, The Ottawa Hospital Research Institute, Ottawa, Ontario
| | - Kayvan Amjadi
- Division of Respirology, Department of Medicine, University of Ottawa
| |
Collapse
|
10
|
Sivakumar S, Lieber S, Librizzi D, Keber C, Sommerfeld L, Finkernagel F, Roth K, Reinartz S, Bartsch JW, Graumann J, Müller‐Brüsselbach S, Müller R. Basal cell adhesion molecule promotes metastasis-associated processes in ovarian cancer. Clin Transl Med 2023; 13:e1176. [PMID: 36647260 PMCID: PMC9842900 DOI: 10.1002/ctm2.1176] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Basal cell adhesion molecule (BCAM) is a laminin α5 (LAMA5) binding membrane-bound protein with a putative role in cancer. Besides full-length BCAM1, an isoform lacking most of the cytoplasmic domain (BCAM2), and a soluble form (sBCAM) of unknown function are known. In ovarian carcinoma (OC), all BCAM forms are abundant and associated with poor survival, yet BCAM's contribution to peritoneal metastatic spread remains enigmatic. METHODS Biochemical, omics-based and real-time cell assays were employed to identify the source of sBCAM and metastasis-related functions of different BCAM forms. OC cells, explanted omentum and a mouse model of peritoneal colonisation were used in loss- and gain-of-function experiments. RESULTS We identified ADAM10 as a major BCAM sheddase produced by OC cells and identified proteolytic cleavage sites proximal to the transmembrane domain. Recombinant soluble BCAM inhibited single-cell adhesion and migration identically to membrane-bound isoforms, confirming its biological activity in OC. Intriguingly, this seemingly anti-tumorigenic potential of BCAM contrasts with a novel pro-metastatic function discovered in the present study. Thus, all queried BCAM forms decreased the compactness of tumour cell spheroids by inhibiting LAMA5 - integrin β1 interactions, promoted spheroid dispersion in a three-dimensional collagen matrix, induced clearance of mesothelial cells at spheroid attachment sites in vitro and enhanced invasion of spheroids into omental tissue both ex vivo and in vivo. CONCLUSIONS Membrane-bound BCAM as well as sBCAM shed by ADAM10 act as decoys rather than signalling receptors to modulate metastasis-related functions. While BCAM appears to have tumour-suppressive effects on single cells, it promotes the dispersion of OC cell spheroids by regulating LAMA5-integrin-β1-dependent compaction and thereby facilitating invasion of metastatic target sites. As peritoneal dissemination is majorly mediated by spheroids, these findings offer an explanation for the association of BCAM with a poor clinical outcome of OC, suggesting novel therapeutic options.
Collapse
Affiliation(s)
- Suresh Sivakumar
- Department of Translational OncologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Sonja Lieber
- Department of Translational OncologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Damiano Librizzi
- Small Animal Imaging Core FacilityCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Corinna Keber
- Institute for PathologyPhilipps UniversityMarburgGermany
| | - Leah Sommerfeld
- Department of Translational OncologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Florian Finkernagel
- Department of Translational OncologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
- Bioinformatics Core FacilityCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Katrin Roth
- Cell Imaging Core FacilityCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Silke Reinartz
- Department of Translational OncologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | | | - Johannes Graumann
- Biomolecular Mass SpectrometryMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
- Institute for Translational ProteomicsPhilipps UniversityMarburgGermany
| | - Sabine Müller‐Brüsselbach
- Department of Translational OncologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Rolf Müller
- Department of Translational OncologyCenter for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| |
Collapse
|
11
|
Development of the Peritoneal Metastasis: A Review of Back-Grounds, Mechanisms, Treatments and Prospects. J Clin Med 2022; 12:jcm12010103. [PMID: 36614904 PMCID: PMC9821147 DOI: 10.3390/jcm12010103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Peritoneal metastasis is a malignant disease which originated from several gastrointestinal and gynecological carcinomas and has been leading to a suffering condition in patients for decades. Currently, as people have gradually become more aware of the severity of peritoneal carcinomatosis, new molecular mechanisms for targeting and new treatments have been proposed. However, due to the uncertainty of influencing factors involved and a lack of a standardized procedure for this treatment, as well as a need for more clinical data for specific evaluation, more research is needed, both for preventing and treating. We aim to summarize backgrounds, mechanisms and treatments in this area and conclude limitations or new aspects for treatments.
Collapse
|
12
|
Li J, Guo T. Role of Peritoneal Mesothelial Cells in the Progression of Peritoneal Metastases. Cancers (Basel) 2022; 14:2856. [PMID: 35740521 PMCID: PMC9221366 DOI: 10.3390/cancers14122856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Peritoneal metastatic cancer comprises a heterogeneous group of primary tumors that originate in the peritoneal cavity or metastasize into the peritoneal cavity from a different origin. Metastasis is a characteristic of end-stage disease, often indicative of a poor prognosis with limited treatment options. Peritoneal mesothelial cells (PMCs) are a thin layer of cells present on the surface of the peritoneum. They display differentiated characteristics in embryonic development and adults, representing the first cell layer encountering peritoneal tumors to affect their progression. PMCs have been traditionally considered a barrier to the intraperitoneal implantation and metastasis of tumors; however, recent studies indicate that PMCs can either inhibit or actively promote tumor progression through distinct mechanisms. This article presents a review of the role of PMCs in the progression of peritoneum implanted tumors, offering new ideas for therapeutic targets and related research.
Collapse
Affiliation(s)
- Junliang Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China;
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China;
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
| |
Collapse
|
13
|
Anderson KG, Oda SK, Bates BM, Burnett MG, Rodgers Suarez M, Ruskin SL, Greenberg PD. Engineering adoptive T cell therapy to co-opt Fas ligand-mediated death signaling in ovarian cancer enhances therapeutic efficacy. J Immunother Cancer 2022; 10:jitc-2021-003959. [PMID: 35264436 PMCID: PMC8915280 DOI: 10.1136/jitc-2021-003959] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 01/23/2023] Open
Abstract
Background In the USA, more than 50% of patients with ovarian cancer die within 5 years of diagnosis, highlighting the need for therapeutic innovations. Mesothelin (MSLN) is a candidate immunotherapy target; it is overexpressed by ovarian tumors and contributes to malignant/invasive phenotypes, making tumor antigen loss disadvantageous. We previously showed that MSLN-specific T cell receptor (TCR)-engineered T cells preferentially accumulate within established tumors, delay tumor growth, and significantly prolong survival in the ID8VEGF mouse model that replicates many aspects of human disease. However, T cell persistence and antitumor activity were not sustained. We therefore focused on Fas/FasL signaling that can induce activation-induced cell death, an apoptotic mechanism that regulates T cell expansion. Upregulation of FasL by tumor cells and tumor vasculature has been detected in the tumor microenvironment (TME) of human and murine ovarian cancers, can induce apoptosis in infiltrating, Fas (CD95) receptor-expressing lymphocytes, and can protect ovarian cancers from tumor-infiltrating lymphocytes. Methods To overcome potential FasL-mediated immune evasion and enhance T cell responses, we generated an immunomodulatory fusion protein (IFP) containing the Fas extracellular binding domain fused to a 4-1BB co-stimulatory domain, rather than the natural death domain. Murine T cells were engineered to express an MSLN-specific TCR (TCR1045), alone or with the IFP, transferred into ID8VEGF tumor-bearing mice and evaluated for persistence, proliferation, cytokine production and efficacy. Human T cells were similarly engineered to express an MSLN-specific TCR (TCR530) alone or with a truncated Fas receptor or a Fas-4-1BB IFP and evaluated for cytokine production and tumor lysis. Results Relative to murine T cells expressing only TCR1045, T cells expressing both TCR1045 and a Fas-4-1BB IFP preferentially persisted in the TME of tumor-bearing mice, with improved T cell proliferation and survival. Moreover, TCR1045/IFP+ T cells significantly prolonged survival in tumor-bearing mice, compared with TCR1045-only T cells. Human T cells expressing TCR530 and a Fas-4-1BB IFP exhibit enhanced functional activity and viability compared with cells with only TCR530. Conclusions As many ovarian tumors overexpress FasL, an IFP that converts the Fas-mediated death signal into pro-survival and proliferative signals may be used to enhance engineered adoptive T cell therapy for patients.
Collapse
Affiliation(s)
- Kristin G Anderson
- Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Shannon K Oda
- Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Breanna M Bates
- Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Madison G Burnett
- Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Susan L Ruskin
- Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Philip D Greenberg
- Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA .,Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
14
|
Mukherjee A, Zhang H, Ladner K, Brown M, Urbanski J, Grieco JP, Kapania RK, Lou E, Behkam B, Schmelz EM, Nain AS. Quantitative Biophysical Metrics for Rapid Evaluation of Ovarian Cancer Metastatic Potential. Mol Biol Cell 2022; 33:ar55. [PMID: 34985924 PMCID: PMC9265161 DOI: 10.1091/mbc.e21-08-0419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ovarian cancer is routinely diagnosed long after the disease has metastasized through the fibrous sub-mesothelium. Despite extensive research in the field linking ovarian cancer progression to increasingly poor prognosis, there are currently no validated cellular markers or hallmarks of ovarian cancer that can predict metastatic potential. To discern disease progression across a syngeneic mouse ovarian cancer progression model, here, we fabricated extracellular-matrix mimicking suspended fiber networks: crosshatches of mismatch diameters for studying protrusion dynamics, aligned same diameter networks of varying inter-fiber spacing for studying migration, and aligned nanonets for measuring cell forces. We found that migration correlated with disease, while force-disease biphasic relationship exhibited f-actin stress-fiber network dependence. However, unique to suspended fibers, coiling occurring at tips of protrusions and not the length or breadth of protrusions displayed strongest correlation with metastatic potential. To confirm that our findings were more broadly applicable beyond the mouse model, we repeated our studies in human ovarian cancer cell lines and found that the biophysical trends were consistent with our mouse model results. Altogether, we report complementary high throughput and high content biophysical metrics capable of identifying ovarian cancer metastatic potential on time scale of hours. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
| | - Haonan Zhang
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA
| | - Katherine Ladner
- Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Megan Brown
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA
| | - Jacob Urbanski
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA
| | - Joseph P Grieco
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA
| | - Rakesh K Kapania
- Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA
| | - Emil Lou
- Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA
| | - Eva M Schmelz
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA
| |
Collapse
|
15
|
Peritoneal Metastasis: Current Status and Treatment Options. Cancers (Basel) 2021; 14:cancers14010060. [PMID: 35008221 PMCID: PMC8750973 DOI: 10.3390/cancers14010060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Surgical and locoregional treatments of peritoneal metastasis, e.g., from colorectal cancer, has gained increasing acceptance after the publication of excellent patient outcomes from many groups around the world. Apart from systemic chemotherapy and surgical removal of the tumor, locoregional therapies such as HIPEC or PIPAC may improve tumor control. Understanding the molecular characteristics of peritoneal metastasis is crucial to evolve future therapeutic strategies for peritoneal metastasis. This includes the genetic background of PM, which is often different from other sites of metastasis, and promotes peritoneal dissemination and the growth of tumor cells. Growing knowledge and insight into the physiology of the peritoneal tumor microenvironment and the specific role of the immune system in this compartment may provide a critical step to move locoregional therapy to the next level. This review summarizes the current knowledge and highlights the molecular characteristics of peritoneal metastasis. Abstract Peritoneal metastasis (PM) originating from gastrointestinal cancer was considered a terminal disease until recently. The advent of better systemic treatment, a better understanding of prognostic factors, and finally, the advent of novel loco-regional therapies, has opened the door for the multimodal treatment of PM. These strategies, including radical surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) showed surprisingly good results, leading to the prolonged survival of patients with peritoneal metastasis. This has triggered a significant body of research, leading to the molecular characterization of PM, which may further help in the development of novel treatments. This review summarizes current evidence on peritoneal metastasis and explores potential novel mechanisms and therapeutic approaches to treat patients with peritoneal metastasis.
Collapse
|
16
|
Abstract
Peritoneal surface malignancies comprise a heterogeneous group of primary tumours, including peritoneal mesothelioma, and peritoneal metastases of other tumours, including ovarian, gastric, colorectal, appendicular or pancreatic cancers. The pathophysiology of peritoneal malignancy is complex and not fully understood. The two main hypotheses are the transformation of mesothelial cells (peritoneal primary tumour) and shedding of cells from a primary tumour with implantation of cells in the peritoneal cavity (peritoneal metastasis). Diagnosis is challenging and often requires modern imaging and interventional techniques, including surgical exploration. In the past decade, new treatments and multimodal strategies helped to improve patient survival and quality of life and the premise that peritoneal malignancies are fatal diseases has been dismissed as management strategies, including complete cytoreductive surgery embedded in perioperative systemic chemotherapy, can provide cure in selected patients. Furthermore, intraperitoneal chemotherapy has become an important part of combination treatments. Improving locoregional treatment delivery to enhance penetration to tumour nodules and reduce systemic uptake is one of the most active research areas. The current main challenges involve not only offering the best treatment option and developing intraperitoneal therapies that are equivalent to current systemic therapies but also defining the optimal treatment sequence according to primary tumour, disease extent and patient preferences. New imaging modalities, less invasive surgery, nanomedicines and targeted therapies are the basis for a new era of intraperitoneal therapy and are beginning to show encouraging outcomes.
Collapse
|
17
|
Soliman F, Ye L, Jiang W, Hargest R. Targeting Hyaluronic Acid and Peritoneal Dissemination in Colorectal Cancer. Clin Colorectal Cancer 2021; 21:e126-e134. [PMID: 34955378 DOI: 10.1016/j.clcc.2021.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/30/2021] [Accepted: 11/22/2021] [Indexed: 11/03/2022]
Abstract
Peritoneal metastasis (PM) from colorectal cancer (CRC) carries a significant mortality rate for patients and treatment is challenging. The development of PM is a multistep process involving detachment, adhesion, invasion and colonization of the peritoneal cavity. Cytoreductive surgery and HIPEC (hyperthermic intraperitoneal chemotherapy) for PM from CRC has some benefit but overall survival is poor and recurrence rates are high. Treatments to prevent the development of peritoneal metastasis could have the potential to improve CRC survival and disease-free outcomes. The ability of cancer cells to invade the peritoneum and become established as metastatic tumors is influenced by a multifactorial process. Hyaluronic acid (HA) has been shown to coat the mesothelial cells of the peritoneum and has been demonstrated to be utilized in various malignancies as part of the metastatic process in peritoneal dissemination. CD44, RHAMM (CD168) and ICAM-1 have all been shown to be binding partners for HA. Targeting HA-mediated binding may prevent adhesion to distant sites within the peritoneum through suppression of interaction of these molecules. Here we review the current literature and discuss key molecules involved with PM dissemination, with the potential to target these mechanisms in the delivery of future treatments.
Collapse
Affiliation(s)
- Faris Soliman
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, School of Medicine, Cardiff University; Cardiff and Vale University Health Board.
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, School of Medicine, Cardiff University
| | - Wenguo Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, School of Medicine, Cardiff University
| | - Rachel Hargest
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, School of Medicine, Cardiff University; Cardiff and Vale University Health Board
| |
Collapse
|
18
|
Sommerfeld L, Finkernagel F, Jansen JM, Wagner U, Nist A, Stiewe T, Müller‐Brüsselbach S, Sokol AM, Graumann J, Reinartz S, Müller R. The multicellular signalling network of ovarian cancer metastases. Clin Transl Med 2021; 11:e633. [PMID: 34841720 PMCID: PMC8574964 DOI: 10.1002/ctm2.633] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Transcoelomic spread is the major route of metastasis of ovarian high-grade serous carcinoma (HGSC) with the omentum as the major metastatic site. Its unique tumour microenvironment with its large populations of adipocytes, mesothelial cells and immune cells establishes an intercellular signaling network that is instrumental for metastatic growth yet poorly understood. METHODS Based on transcriptomic analysis of tumour cells, tumour-associated immune and stroma cells we defined intercellular signaling pathways for 284 cytokines and growth factors and their cognate receptors after bioinformatic adjustment for contaminating cell types. The significance of individual components of this network was validated by analysing clinical correlations and potentially pro-metastatic functions, including tumour cell migration, pro-inflammatory signal transduction and TAM expansion. RESULTS The data show an unexpected prominent role of host cells, and in particular of omental adipocytes, mesothelial cells and fibroblasts (CAF), in sustaining this signaling network. These cells, rather than tumour cells, are the major source of most cytokines and growth factors in the omental microenvironment (n = 176 vs. n = 13). Many of these factors target tumour cells, are linked to metastasis and are associated with a short survival. Likewise, tumour stroma cells play a major role in extracellular-matrix-triggered signaling. We have verified the functional significance of our observations for three exemplary instances. We show that the omental microenvironment (i) stimulates tumour cell migration and adhesion via WNT4 which is highly expressed by CAF; (ii) induces pro-tumourigenic TAM proliferation in conjunction with high CSF1 expression by omental stroma cells and (iii) triggers pro-inflammatory signaling, at least in part via a HSP70-NF-κB pathway. CONCLUSIONS The intercellular signaling network of omental metastases is majorly dependent on factors secreted by immune and stroma cells to provide an environment that supports ovarian HGSC progression. Clinically relevant pathways within this network represent novel options for therapeutic intervention.
Collapse
Affiliation(s)
- Leah Sommerfeld
- Department of Translational Oncology, Center for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Florian Finkernagel
- Department of Translational Oncology, Center for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Julia M. Jansen
- Clinic for Gynecology, Gynecological Oncology and Gynecological EndocrinologyUniversity Hospital (UKGM)MarburgGermany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological EndocrinologyUniversity Hospital (UKGM)MarburgGermany
| | - Andrea Nist
- Genomics Core Facility, Center for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Thorsten Stiewe
- Genomics Core Facility, Center for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
- Institute of Molecular OncologyPhilipps UniversityMarburgGermany
| | - Sabine Müller‐Brüsselbach
- Department of Translational Oncology, Center for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Anna M. Sokol
- The German Centre for Cardiovascular Research (DZHK), Partner Site Rhine‐MainMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Johannes Graumann
- The German Centre for Cardiovascular Research (DZHK), Partner Site Rhine‐MainMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
- Institute for Translational Proteomics, Philipps UniversityMarburgGermany
| | - Silke Reinartz
- Department of Translational Oncology, Center for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| | - Rolf Müller
- Department of Translational Oncology, Center for Tumor Biology and Immunology (ZTI)Philipps UniversityMarburgGermany
| |
Collapse
|
19
|
Kumari A, Shonibare Z, Monavarian M, Arend RC, Lee NY, Inman GJ, Mythreye K. TGFβ signaling networks in ovarian cancer progression and plasticity. Clin Exp Metastasis 2021; 38:139-161. [PMID: 33590419 PMCID: PMC7987693 DOI: 10.1007/s10585-021-10077-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Epithelial ovarian cancer (EOC) is a leading cause of cancer-related death in women. Late-stage diagnosis with significant tumor burden, accompanied by recurrence and chemotherapy resistance, contributes to this poor prognosis. These morbidities are known to be tied to events associated with epithelial-mesenchymal transition (EMT) in cancer. During EMT, localized tumor cells alter their polarity, cell-cell junctions, cell-matrix interactions, acquire motility and invasiveness and an exaggerated potential for metastatic spread. Key triggers for EMT include the Transforming Growth Factor-β (TGFβ) family of growth factors which are actively produced by a wide array of cell types within a specific tumor and metastatic environment. Although TGFβ can act as either a tumor suppressor or promoter in cancer, TGFβ exhibits its pro-tumorigenic functions at least in part via EMT. TGFβ regulates EMT both at the transcriptional and post-transcriptional levels as outlined here. Despite recent advances in TGFβ based therapeutics, limited progress has been seen for ovarian cancers that are in much need of new therapeutic strategies. Here, we summarize and discuss several recent insights into the underlying signaling mechanisms of the TGFβ isoforms in EMT in the unique metastatic environment of EOCs and the current therapeutic interventions that may be relevant.
Collapse
Affiliation(s)
- Asha Kumari
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Zainab Shonibare
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Mehri Monavarian
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology-Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Gareth J Inman
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karthikeyan Mythreye
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
20
|
The influence of secreted factors and extracellular vesicles in ovarian cancer metastasis. EJC Suppl 2020; 15:38-48. [PMID: 33240441 PMCID: PMC7573474 DOI: 10.1016/j.ejcsup.2019.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/02/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer cells mainly metastasise within the peritoneal cavity, the lethal consequence of tumour progression in this cancer type. Classically, changes in tumour cells, such as epithelial to mesenchymal transition, involve the down-regulatinon of E-cadherin, activation of extracellular proteases and integrin-mediated adhesion. However, our current understanding of ovarian tumour progression suggests the implication of both intrinsic and extrinsic factors. It has been proposed that ovarian cancer metastases are a consequence of the crosstalk between cancer cells and the tumour microenvironment by soluble factors and extracellular vesicles. Characterisation of the alterations in both the tumour cells and the surrounding microenvironment has emerged as a new research field to understand ovarian cancer metastasis. In this mini review, we will summarise the most recent findings, focusing our attention on the role of secreted factors and extracellular vesicles in ovarian cancer metastasis.
During ovarian cancer metastasis, tumour cells metastasise in the mesothelium as primarily ‘soil’ for ovarian cancer ‘seeds’. Soluble factors and extracellular vesicles secreted by tumor cells are involved in the generation of the pre-metastatic niche. Cancer-associated fibroblasts (CAFs) represent the majority of stromal cells in various types of human carcinoma, including ovarian cancer. Analysis of early metastasis to the omentum indicates that ovarian cancer cells rely on the interaction with immune cells such as macrophages. Liquid biopsy analyses in ovarian cancer may help to define novel biomarkers improving patient survival and reduce lethality.
Collapse
|
21
|
Ojasalu K, Brehm C, Hartung K, Nischak M, Finkernagel F, Rexin P, Nist A, Pavlakis E, Stiewe T, Jansen JM, Wagner U, Gattenlöhner S, Bräuninger A, Müller-Brüsselbach S, Reinartz S, Müller R. Upregulation of mesothelial genes in ovarian carcinoma cells is associated with an unfavorable clinical outcome and the promotion of cancer cell adhesion. Mol Oncol 2020; 14:2142-2162. [PMID: 32533757 PMCID: PMC7463315 DOI: 10.1002/1878-0261.12749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
A hallmark of ovarian high‐grade serous carcinoma (HGSC) is its early and massive peritoneal dissemination via the peritoneal fluid. It is generally believed that tumor cells must breach the mesothelium of peritoneal organs to adhere to the underlying extracellular matrix (ECM) and initiate metastatic growth. However, the molecular mechanisms underlying these processes are only partially understood. Here, we have analyzed 52 matched samples of spheroids and solid tumor masses (suspected primary lesions and metastases) from 10 patients by targeted sequencing of 21 loci previously proposed as targets of HGSC driver mutations. This analysis revealed very similar patterns of genetic alterations in all samples. One exception was FAT3 with a strong enrichment of mutations in metastases compared with presumed primary lesions in two cases. FAT3 is a putative tumor suppressor gene that codes for an atypical cadherin, pointing a potential role in peritoneal dissemination in a subgroup of HGSC patients. By contrast, transcriptome data revealed clear and consistent differences between tumor cell spheroids from ascites and metastatic lesions, which were mirrored by the in vitro adherence of ascites‐derived spheroids. The adhesion‐induced transcriptional alterations in metastases and adherent cells resembled epithelial–mesenchymal transition, but surprisingly also included the upregulation of a specific subset of mesothelial genes, such as calretinin (CALB2) and podoplanin (PDPN). Consistent with this finding, calretinin staining was also observed in subsets of tumor cells in HGSC metastases, particularly at the invasive tumor edges. Intriguingly, a high expression of either CALB2 or PDPN was strongly associated with a poor clinical outcome. siRNA‐mediated CALB2 silencing triggered the detachment of adherent HGSC cells in vitro and inhibited the adhesion of detached HGSC cells to collagen type I. Our data suggest that the acquisition of a mesenchymal–mesothelial phenotype contributes to cancer cell adhesion to the ECM of peritoneal organs and HGSC progression.
Collapse
Affiliation(s)
- Kaire Ojasalu
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Corinna Brehm
- Institute of Pathology, Philipps University, Marburg, Germany
| | - Kristin Hartung
- Institute of Pathology, Justus-Liebig University, Giessen, Germany
| | - Maximilian Nischak
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Peter Rexin
- Institute of Pathology, Philipps University, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Evangelos Pavlakis
- Institute of Molecular Oncology, Member of the German Center of Lung Research (DZL), Philipps University, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University, Marburg, Germany.,Institute of Molecular Oncology, Member of the German Center of Lung Research (DZL), Philipps University, Marburg, Germany
| | - Julia M Jansen
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | | | | | | | - Silke Reinartz
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Rolf Müller
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| |
Collapse
|
22
|
Rodriguez EF, Morris PC, Calsavara V, Pastorello RG, Saieg M. Number of mesothelial cells as a measure of adequacy criteria for pleural effusions: A multi-institutional study. Cytopathology 2020; 31:223-227. [PMID: 32048382 DOI: 10.1111/cyt.12808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/03/2020] [Accepted: 02/08/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND The development of a terminology system is essential to allow uniformity in reporting serous fluid specimens. An important topic to cover is the issue of specimen adequacy. In the present study, we aimed to evaluate whether there is a correlation between number of mesothelial cells and overall improved sensitivity and adequacy control of tests. METHODS Cases of negative pleural fluids with concomitant positive pleural biopsies were selected from two referral institutions, with observation of the number of mesothelial cells in 10 high-power fields, comparing the results with a control group (cases with negative biopsies, ie, true negatives). Comparisons were conducted using the nonparametric Mann-Whitney U test. Data were analysed for sensitivity and specificity derived from the receiver operating characteristics curve. For the choice of an optimal cut-off of mesothelial cells, receiver operating curve analysis was constructed and the Youden index was calculated. RESULTS A total of 112 pleural effusions with paired pleural biopsies were studied. There was no difference in distributions of the number of mesothelial cells between cases with a positive biopsy (false negatives) and the control group (median = 39 vs median = 30, respectively, P-value = .974). However, simple logistic regression found a cut-off of 750 cells per 10 high-power fields as an optimal number for improved sensitivity (72.7%), with fair discriminatory power. CONCLUSIONS Enumeration of mesothelial cells may improve the sensitivity of the cytological diagnosis of malignant pleural effusion, serving as an internal quality control for the test's overall accuracy.
Collapse
Affiliation(s)
| | - Paul C Morris
- Department of Pathology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Vinicius Calsavara
- Department of Epidemiology and Statistics, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | | - Mauro Saieg
- Department of Pathology, A.C. Camargo Cancer Center, São Paulo, Brazil.,Department of Pathology, Santa Casa Medical School, São Paulo, Brazil
| |
Collapse
|
23
|
Narasimhan V, Ooi G, Michael M, Ramsay R, Lynch C, Heriot A. Colorectal peritoneal metastases: pathogenesis, diagnosis and treatment options - an evidence-based update. ANZ J Surg 2020; 90:1592-1597. [PMID: 32129577 DOI: 10.1111/ans.15796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022]
Abstract
Peritoneal metastases confer the worst survival among all sites in patients with metastatic colorectal cancer. They develop largely through transcoelomic spread, with a sequence of events that allow cells to first detach from primary tumours, survive in the peritoneal environment, attach to the peritoneal surface of organs and migrate into the submesothelial space to create a microenvironment conducive to metastatic growth. Diagnostic challenges have previously hindered early identification of peritoneal metastases. While advances in diagnostic modalities have improved our ability to identify peritoneal metastases, lesions under 0.5 cm remain challenging to detect. The advent of cytoreductive surgery with hyperthermic intraperitoneal chemotherapy (HIPEC) can offer selected patients with colorectal peritoneal metastases a favourable long-term survival. Recent trials, however, have cast doubts on the efficacy of HIPEC, with the recent PRODIGE 7 trial showing no benefit from oxaliplatin based HIPEC in addition to good quality cytoreductive surgery in resectable disease. While peritoneal recurrence can be reliably predicted from high-risk features in primary tumours such as a perforated cancer, ovarian metastases or T4a cancers, the use of prophylactic second look surgery with HIPEC or adjuvant HIPEC failed to demonstrate any survival benefit in high-risk cases in recent clinical trials, raising further questions about the efficacy of HIPEC. With high failure rates from systemic chemotherapy in unresectable disease, novel surgical techniques such as pressurized intraperitoneal aerolized chemotherapy are being investigated in clinical trials worldwide. Further collaborative research is needed to explore newer avenues of treatment for this poor prognostic cohort.
Collapse
Affiliation(s)
- Vignesh Narasimhan
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Geraldine Ooi
- Department of General Surgery, Alfred Hospital, Melbourne, Victoria, Australia
| | - Michael Michael
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Robert Ramsay
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Craig Lynch
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Alexander Heriot
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Ceelen W, Ramsay RG, Narasimhan V, Heriot AG, De Wever O. Targeting the Tumor Microenvironment in Colorectal Peritoneal Metastases. Trends Cancer 2020; 6:236-246. [PMID: 32101726 DOI: 10.1016/j.trecan.2019.12.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 02/01/2023]
Abstract
Peritoneal metastasis (PM) occurs in approximately one in four colorectal cancer (CRC) patients. The pathophysiology of colorectal PM remains poorly characterized. Also, the efficacy of current treatment modalities, including surgery and intraperitoneal (IP) delivery of chemotherapy, is limited. Increasingly, therefore, efforts are being developed to unravel the PM cascade and at understanding the PM-associated tumor microenvironment (TME) and peritoneal ecosystem as potential therapeutic targets. Here, we review recent insights in the structure and components of the TME in colorectal PM, and discuss how these may translate into novel therapeutic approaches aimed at re-engineering the metastasis-promoting activity of the stroma.
Collapse
Affiliation(s)
- Wim Ceelen
- Department of Human Structure and Repair, Ghent University, B-9000 Ghent, Belgium; Department of GI Surgery, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
| | - Robert G Ramsay
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Vignesh Narasimhan
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia; Department of Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Alexander G Heriot
- Department of Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; Laboratory for Experimental Cancer Research, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Drakes ML, Stiff PJ. Regulation of Ovarian Cancer Prognosis by Immune Cells in the Tumor Microenvironment. Cancers (Basel) 2018; 10:E302. [PMID: 30200478 PMCID: PMC6162424 DOI: 10.3390/cancers10090302] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022] Open
Abstract
It is estimated that in the United States in 2018 there will be 22,240 new cases of ovarian cancer and 14,070 deaths due to this malignancy. The most common subgroup of this disease is high-grade serous ovarian cancer (HGSOC), which is known for its aggressiveness, high recurrence rate, metastasis to other sites, and the development of resistance to conventional therapy. It is important to understand the ovarian cancer tumor microenvironment (TME) from the viewpoint of the function of pre-existing immune cells, as immunocompetent cells are crucial to mounting robust antitumor responses to prevent visible tumor lesions, disease progression, or recurrence. Networks consisting of innate and adaptive immune cells, metabolic pathways, intracellular signaling molecules, and a vast array of soluble factors, shape the pathogenic nature of the TME and are useful prognostic indicators of responses to conventional therapy and immunotherapy, and subsequent survival rates. This review highlights key immune cells and soluble molecules in the TME of ovarian cancer, which are important in the development of effective antitumor immunity, as well as those that impair effector T cell activity. A more insightful knowledge of the HGSOC TME will reveal potential immune biomarkers to aid in the early detection of this disease, as well as biomarkers that may be targeted to advance the design of novel therapies that induce potent antitumor immunity and survival benefit.
Collapse
Affiliation(s)
- Maureen L Drakes
- Cardinal Bernardin Cancer Center, Department of Medicine, Loyola University Chicago, Building 112, 2160 South First Avenue, Maywood, IL 60153, USA.
| | - Patrick J Stiff
- Cardinal Bernardin Cancer Center, Department of Medicine, Loyola University Chicago, Building 112, 2160 South First Avenue, Maywood, IL 60153, USA.
| |
Collapse
|
26
|
Regulation of Ovarian Cancer Prognosis by Immune Cells in the Tumor Microenvironment. Cancers (Basel) 2018. [PMID: 30200478 DOI: 10.3390/cancers10090302]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It is estimated that in the United States in 2018 there will be 22,240 new cases of ovarian cancer and 14,070 deaths due to this malignancy. The most common subgroup of this disease is high-grade serous ovarian cancer (HGSOC), which is known for its aggressiveness, high recurrence rate, metastasis to other sites, and the development of resistance to conventional therapy. It is important to understand the ovarian cancer tumor microenvironment (TME) from the viewpoint of the function of pre-existing immune cells, as immunocompetent cells are crucial to mounting robust antitumor responses to prevent visible tumor lesions, disease progression, or recurrence. Networks consisting of innate and adaptive immune cells, metabolic pathways, intracellular signaling molecules, and a vast array of soluble factors, shape the pathogenic nature of the TME and are useful prognostic indicators of responses to conventional therapy and immunotherapy, and subsequent survival rates. This review highlights key immune cells and soluble molecules in the TME of ovarian cancer, which are important in the development of effective antitumor immunity, as well as those that impair effector T cell activity. A more insightful knowledge of the HGSOC TME will reveal potential immune biomarkers to aid in the early detection of this disease, as well as biomarkers that may be targeted to advance the design of novel therapies that induce potent antitumor immunity and survival benefit.
Collapse
|
27
|
Drakes ML, Stiff PJ. Regulation of Ovarian Cancer Prognosis by Immune Cells in the Tumor Microenvironment. Cancers (Basel) 2018. [PMID: 30200478 DOI: 10.3390/cancers10090302] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
It is estimated that in the United States in 2018 there will be 22,240 new cases of ovarian cancer and 14,070 deaths due to this malignancy. The most common subgroup of this disease is high-grade serous ovarian cancer (HGSOC), which is known for its aggressiveness, high recurrence rate, metastasis to other sites, and the development of resistance to conventional therapy. It is important to understand the ovarian cancer tumor microenvironment (TME) from the viewpoint of the function of pre-existing immune cells, as immunocompetent cells are crucial to mounting robust antitumor responses to prevent visible tumor lesions, disease progression, or recurrence. Networks consisting of innate and adaptive immune cells, metabolic pathways, intracellular signaling molecules, and a vast array of soluble factors, shape the pathogenic nature of the TME and are useful prognostic indicators of responses to conventional therapy and immunotherapy, and subsequent survival rates. This review highlights key immune cells and soluble molecules in the TME of ovarian cancer, which are important in the development of effective antitumor immunity, as well as those that impair effector T cell activity. A more insightful knowledge of the HGSOC TME will reveal potential immune biomarkers to aid in the early detection of this disease, as well as biomarkers that may be targeted to advance the design of novel therapies that induce potent antitumor immunity and survival benefit.
Collapse
Affiliation(s)
- Maureen L Drakes
- Cardinal Bernardin Cancer Center, Department of Medicine, Loyola University Chicago, Building 112, 2160 South First Avenue, Maywood, IL 60153, USA.
| | - Patrick J Stiff
- Cardinal Bernardin Cancer Center, Department of Medicine, Loyola University Chicago, Building 112, 2160 South First Avenue, Maywood, IL 60153, USA.
| |
Collapse
|
28
|
Kim SC, Hong CW, Jang SG, Kim YA, Yoo BC, Shin YK, Jeong SY, Ku JL, Park JG. Establishment and Characterization of Paired Primary and Peritoneal Seeding Human Colorectal Cancer Cell Lines: Identification of Genes That Mediate Metastatic Potential. Transl Oncol 2018; 11:1232-1243. [PMID: 30114595 PMCID: PMC6097464 DOI: 10.1016/j.tranon.2018.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/23/2018] [Indexed: 01/10/2023] Open
Abstract
Peritoneal metastasis is one of the major patterns of unresectability in colorectal cancer (CRC) and a cause of death in advanced CRC. Identification of distinct gene expressions between primary CRC and peritoneal seeding metastasis is to predict the metastatic potential of primary human CRC. Three pairs of primary CRC (SNU-2335A, SNU-2404A, and SNU-2414A) and corresponding peritoneal seeding (SNU-2335D, SNU-2404B, and SNU-2414B) cell lines were established to determine the different gene expressions and resulting aberrated signaling pathways in peritoneal metastasis tumor using whole exome sequencing and microarray. Whole exome sequencing detected that mutation in CYP2A7 was exclusively shared in peritoneal seeding cell lines. Microarray identified that there were five upregulated genes (CNN3, SORBS1, BST2, EPSTI1, and KLHL5) and two downregulated genes (TRY6 and STYL5) in the peritoneal metastatic cell lines. CNN3 expression was highly augmented in both mRNA and protein levels in peritoneal metastasis cells. Knockdown of Calponin 3 resulted in augmented level of E-cadherin in peritoneal metastasis cells, and migration and invasiveness decreased accordingly. We suggest that CNN3 takes part in cell projection and movement, and the detection and distribution of CNN3 may render prognostic information for predicting peritoneal seeding metastasis from primary colorectal cancer.
Collapse
Affiliation(s)
- Soon-Chan Kim
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Chang-Won Hong
- Colorectal Cancer Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea
| | - Sang-Geun Jang
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ye-Ah Kim
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Byong-Chul Yoo
- Colorectal Cancer Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea
| | - Young-Kyoung Shin
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seung-Yong Jeong
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Yeongeon-dong, Jongno-gu, Seoul 03080, Korea
| | - Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Jae-Gahb Park
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Yeongeon-dong, Jongno-gu, Seoul 03080, Korea.
| |
Collapse
|
29
|
Mikuła-Pietrasik J, Uruski P, Tykarski A, Książek K. The peritoneal "soil" for a cancerous "seed": a comprehensive review of the pathogenesis of intraperitoneal cancer metastases. Cell Mol Life Sci 2018; 75:509-525. [PMID: 28956065 PMCID: PMC5765197 DOI: 10.1007/s00018-017-2663-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/29/2017] [Accepted: 09/20/2017] [Indexed: 01/02/2023]
Abstract
Various types of tumors, particularly those originating from the ovary and gastrointestinal tract, display a strong predilection for the peritoneal cavity as the site of metastasis. The intraperitoneal spread of a malignancy is orchestrated by a reciprocal interplay between invading cancer cells and resident normal peritoneal cells. In this review, we address the current state-of-art regarding colonization of the peritoneal cavity by ovarian, colorectal, pancreatic, and gastric tumors. Particular attention is paid to the pro-tumoral role of various kinds of peritoneal cells, including mesothelial cells, fibroblasts, adipocytes, macrophages, the vascular endothelium, and hospicells. Anatomo-histological considerations on the pro-metastatic environment of the peritoneal cavity are presented in the broader context of organ-specific development of distal metastases in accordance with Paget's "seed and soil" theory of tumorigenesis. The activity of normal peritoneal cells during pivotal elements of cancer progression, i.e., adhesion, migration, invasion, proliferation, EMT, and angiogenesis, is discussed from the perspective of well-defined general knowledge on a hospitable tumor microenvironment created by the cellular elements of reactive stroma, such as cancer-associated fibroblasts and macrophages. Finally, the paper addresses the unique features of the peritoneal cavity that predispose this body compartment to be a niche for cancer metastases, presents issues that are topics of an ongoing debate, and points to areas that still require further in-depth investigations.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznan, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznan, Poland.
| |
Collapse
|
30
|
Asano Y, Odagiri T, Oikiri H, Matsusaki M, Akashi M, Shimoda H. Construction of artificial human peritoneal tissue by cell-accumulation technique and its application for visualizing morphological dynamics of cancer peritoneal metastasis. Biochem Biophys Res Commun 2017; 494:213-219. [DOI: 10.1016/j.bbrc.2017.10.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
|
31
|
Deng G, Qu J, Zhang Y, Che X, Cheng Y, Fan Y, Zhang S, Na D, Liu Y, Qu X. Gastric cancer-derived exosomes promote peritoneal metastasis by destroying the mesothelial barrier. FEBS Lett 2017. [PMID: 28643334 DOI: 10.1002/1873-3468.12722] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An intact mesothelium serves as a protective barrier to inhibit peritoneal carcinomatosis. Cancer-derived exosomes can mediate directional tumor metastasis; however, little is known about whether gastric cancer-derived exosomes will destroy the mesothelial barrier and promote peritoneal dissemination. Here, we demonstrate that gastric cancer-derived exosomes facilitate peritoneal metastasis by causing mesothelial barrier disruption and peritoneal fibrosis. Injury of peritoneal mesothelial cells elicited by gastric cancer-derived exosomes is through concurrent apoptosis and mesothelial-to-mesenchymal transition (MMT). Additionally, upregulation of p-ERK in peritoneal mesothelial cells is primarily responsible for the MMT while contributing little to apoptosis. Together, these data support the concept that exosomes play a crucial role in remodeling the premetastatic microenvironment and identify a novel mechanism for peritoneal metastasis of gastric carcinoma.
Collapse
Affiliation(s)
- Guang Deng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinglei Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ye Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Cheng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yibo Fan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Simeng Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Di Na
- Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
32
|
Falk P, Jonsson A, Swartling T, Ivarsson ML. Colorectal Cancer Cells Adhere to Traumatized Peritoneal Tissue in Clusters, An Experimental Study. J INVEST SURG 2017; 31:349-356. [PMID: 28541718 DOI: 10.1080/08941939.2017.1326544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Purpose/Aim: Colorectal malignity is one of the most common forms of cancer. The finding of free intraperitoneal colorectal cancer cells during surgery has been shown to be associated with poor outcome. The aim of this study was to develop an experimental model designed to investigate adhesion of colorectal cancer cells to the peritoneal surface. MATERIALS AND METHODS Two human experimental models were developed, the first using cultured mesothelial cells and the second consisting of an ex vivo model of peritoneal tissue. Both models were subjected to standardized trauma, following which labeled colorectal cancer cells (Colo205) were introduced. Adhesion of tumor cells was monitored using microscopy and detection of fluorochromes. RESULTS The mesothelial cell layers and peritoneal membranes remained viable in culture medium for several weeks. In our experimental model, the tumor cells added were seen to adhere to the edges of the traumatized area in cluster formations. CONCLUSIONS The use of human peritoneal tissue in an ex vivo model would appear to be a potentially useful tool for the study of interaction between human peritoneal membrane and free tumor cells. Experimental surgical trauma increases the ability of tumor cells to adhere to the peritoneal membrane. This ex vivo model should be useful in future studies on biological interactions between peritoneum and tumor cells in the search for novel forms of peritoneal cancer therapy.
Collapse
Affiliation(s)
- Peter Falk
- a Department of Surgery , Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg , SE-416 85 , Göteborg , Sweden
| | - Andreas Jonsson
- a Department of Surgery , Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg , SE-416 85 , Göteborg , Sweden.,b Varbergs Hospital , Region Halland, SE-432 37 , Varberg , Sweden
| | - Torbjörn Swartling
- a Department of Surgery , Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg , SE-416 85 , Göteborg , Sweden.,c Sahlgrenska University Hospital/Östra , SE-416 85 , Göteborg , Sweden
| | - Marie-Lois Ivarsson
- a Department of Surgery , Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg , SE-416 85 , Göteborg , Sweden
| |
Collapse
|
33
|
Psallidas I, Kalomenidis I, Porcel JM, Robinson BW, Stathopoulos GT. Malignant pleural effusion: from bench to bedside. Eur Respir Rev 2017; 25:189-98. [PMID: 27246596 DOI: 10.1183/16000617.0019-2016] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/25/2016] [Indexed: 11/05/2022] Open
Abstract
Malignant pleural effusion (MPE) is a common but serious condition that is related with poor quality of life, morbidity and mortality. Its incidence and associated healthcare costs are rising and its management remains palliative, with median survival ranging from 3 to 12 months. During the last decade there has been significant progress in unravelling the pathophysiology of MPE, as well as its diagnostics, imaging, and management. Nowadays, formerly bed-ridden patients are genotyped, phenotyped, and treated on an ambulatory basis. This article attempts to provide a comprehensive overview of current advances in MPE from bench to bedside. In addition, it highlights unanswered questions in current clinical practice and suggests future directions for basic and clinical research in the field.
Collapse
Affiliation(s)
- Ioannis Psallidas
- Oxford Respiratory Trials Unit, Oxford Centre for Respiratory Medicine, Oxford University Hospitals Trust, Oxford, UK
| | - Ioannis Kalomenidis
- 1st Dept of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Jose M Porcel
- Pleural Medicine Unit, Dept of Internal Medicine, Arnau de Vilanova University Hospital, Biomedical Research Institute of Lleida, Lleida, Spain
| | - Bruce W Robinson
- National Centre for Asbestos Related Disease, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia Dept of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Dept of Physiology, Faculty of Medicine, University of Patras, Achaia, Greece Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
34
|
Worzfeld T, Pogge von Strandmann E, Huber M, Adhikary T, Wagner U, Reinartz S, Müller R. The Unique Molecular and Cellular Microenvironment of Ovarian Cancer. Front Oncol 2017; 7:24. [PMID: 28275576 PMCID: PMC5319992 DOI: 10.3389/fonc.2017.00024] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
The reciprocal interplay of cancer cells and host cells is an indispensable prerequisite for tumor growth and progression. Cells of both the innate and adaptive immune system, in particular tumor-associated macrophages (TAMs) and T cells, as well as cancer-associated fibroblasts enter into a malicious liaison with tumor cells to create a tumor-promoting and immunosuppressive tumor microenvironment (TME). Ovarian cancer, the most lethal of all gynecological malignancies, is characterized by a unique TME that enables specific and efficient metastatic routes, impairs immune surveillance, and mediates therapy resistance. A characteristic feature of the ovarian cancer TME is the role of resident host cells, in particular activated mesothelial cells, which line the peritoneal cavity in huge numbers, as well as adipocytes of the omentum, the preferred site of metastatic lesions. Another crucial factor is the peritoneal fluid, which enables the transcoelomic spread of tumor cells to other pelvic and peritoneal organs, and occurs at more advanced stages as a malignancy-associated effusion. This ascites is rich in tumor-promoting soluble factors, extracellular vesicles and detached cancer cells as well as large numbers of T cells, TAMs, and other host cells, which cooperate with resident host cells to support tumor progression and immune evasion. In this review, we summarize and discuss our current knowledge of the cellular and molecular interactions that govern this interplay with a focus on signaling networks formed by cytokines, lipids, and extracellular vesicles; the pathophysiologial roles of TAMs and T cells; the mechanism of transcoelomic metastasis; and the cell type selective processing of signals from the TME.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), Philipps University, Marburg, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Magdalena Huber
- Institute of Medical Microbiology and Hygiene, Biomedical Research Center, Philipps University , Marburg , Germany
| | - Till Adhikary
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital of Giessen and Marburg (UKGM) , Marburg , Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University , Marburg , Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| |
Collapse
|
35
|
Lemoine L, Sugarbaker P, Van der Speeten K. Pathophysiology of colorectal peritoneal carcinomatosis: Role of the peritoneum. World J Gastroenterol 2016; 22:7692-7707. [PMID: 27678351 PMCID: PMC5016368 DOI: 10.3748/wjg.v22.i34.7692] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/28/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer-related death worldwide. Besides the lymphatic and haematogenous routes of dissemination, CRC frequently gives rise to transcoelomic spread of tumor cells in the peritoneal cavity, which ultimately leads to peritoneal carcinomatosis (PC). PC is associated with a poor prognosis and bad quality of life for these patients in their terminal stages of disease. A loco-regional treatment modality for PC combining cytoreductive surgery and hyperthermic intraperitoneal peroperative chemotherapy has resulted in promising clinical results. However, this novel approach is associated with significant morbidity and mortality. A comprehensive understanding of the molecular events involved in peritoneal disease spread is paramount in avoiding unnecessary toxicity. The emergence of PC is the result of a molecular crosstalk between cancer cells and host elements, involving several well-defined steps, together known as the peritoneal metastatic cascade. Individual or clumps of tumor cells detach from the primary tumor, gain access to the peritoneal cavity and become susceptible to the regular peritoneal transport. They attach to the distant peritoneum, subsequently invade the subperitoneal space, where angiogenesis sustains proliferation and enables further metastatic growth. These molecular events are not isolated events but rather a continuous and interdependent process. In this manuscript, we review current data regarding the molecular mechanisms underlying the development of colorectal PC, with a special focus on the peritoneum and the role of the surgeon in peritoneal disease spread.
Collapse
|
36
|
The Mesothelial Origin of Carcinoma Associated-Fibroblasts in Peritoneal Metastasis. Cancers (Basel) 2015; 7:1994-2011. [PMID: 26426054 PMCID: PMC4695872 DOI: 10.3390/cancers7040872] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/14/2015] [Accepted: 09/23/2015] [Indexed: 01/15/2023] Open
Abstract
Solid tumors are complex and unstructured organs that, in addition to cancer cells, also contain other cell types. Carcinoma-associated fibroblasts (CAFs) represent an important population in the tumor microenviroment and participate in several stages of tumor progression, including cancer cell migration/invasion and metastasis. During peritoneal metastasis, cancer cells detach from the primary tumor, such as ovarian or gastrointestinal, disseminate through the peritoneal fluid and colonize the peritoneum. Tumor cells metastasize by attaching to and invading through the mesothelial cell (MC) monolayer that lines the peritoneal cavity, then colonizing the submesothelial compact zone where CAFs accumulate. CAFs may derive from different sources depending on the surrounding metastatic niche. In peritoneal metastasis, a sizeable subpopulation of CAFs originates from MCs through a mesothelial-to-mesenchymal transition (MMT), which promotes adhesion, invasion, vascularization and subsequent tumor growth. The bidirectional communication between cancer cells and MC-derived CAFs via secretion of a wide range of cytokines, growth factors and extracellular matrix components seems to be crucial for the establishment and progression of the metastasis in the peritoneum. This manuscript provides a comprehensive review of novel advances in understanding how peritoneal CAFs provide cancer cells with a supportive microenvironment, as well as the development of future therapeutic approaches by interfering with the MMT in the peritoneum.
Collapse
|
37
|
Zu C, Zhang M, Xue H, Cai X, Zhao L, He A, Qin G, Yang C, Zheng X. Emodin induces apoptosis of human breast cancer cells by modulating the expression of apoptosis-related genes. Oncol Lett 2015; 10:2919-2924. [PMID: 26722264 DOI: 10.3892/ol.2015.3646] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 07/28/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the effects of emodin on the proliferation of human breast cancer cells Bcap-37 and ZR-75-30. Cell viability following emodin treatment was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of emodin on apoptosis were determined by flow cytometry using Annexin V-fluorescein isothiocyanate and propidium iodide staining. Quantitative polymerase chain reaction and western blot analysis were used to determine changes in the expression of apoptotic genes and protein, respectively. The effect of emodin on the invasiveness of breast cancer cells was evaluated by Matrigel invasion assay. Treatment of breast cancer cells Bcap-37 and ZR-75-30 with emodin was observed to inhibit the growth and induced apoptosis in a time- and dose-dependent manner. Emodin reduced the level of Bcl-2 and increased levels of cleaved caspase-3, PARP, p53 and Bax. These findings indicate that emodin induces growth inhibition and apoptosis in human breast cancer cells. Emodin may be a potential therapeutic agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Cong Zu
- Lab 1, Cancer Institute, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Mingdi Zhang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, P.R. China
| | - Hui Xue
- Department of Gynecology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaopeng Cai
- Department of Surgical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Lei Zhao
- Center of Experiment Technology and Medical Research, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Anning He
- Lab 1, Cancer Institute, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guangyuan Qin
- Lab 1, Cancer Institute, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chunshu Yang
- Lab 1, Cancer Institute, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xinyu Zheng
- Lab 1, Cancer Institute, China Medical University, Shenyang, Liaoning 110001, P.R. China ; Department of Breast Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
38
|
Yuan MM, Xu YY, Chen L, Li XY, Qin J, Shen Y. TLR3 expression correlates with apoptosis, proliferation and angiogenesis in hepatocellular carcinoma and predicts prognosis. BMC Cancer 2015; 15:245. [PMID: 25884709 PMCID: PMC4435918 DOI: 10.1186/s12885-015-1262-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/25/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Toll-like receptor 3 (TLR3) plays a key role in innate immunity. In the present study, we analyzed tissues of patients with human hepatocellular carcinoma (HCC) to determine the significance of the relationship between TLR3 expression and cell proliferation, apoptosis, hepatitis B virus infections, angiogenesis and prognosis. METHODS We collected paraffin-embedded tissues from 85 patients with HCC who had complete histories and were followed for >5 years. The expression and intracellular localization of TLR3 and downstream proteins (TRIF, NF-κB, and IRF3) were detected using immunohistochemistry. Further, we determined the expression of proteins that mediate cell proliferation (Ki67, cyclin D1), apoptosis (survivin, bcl-2, caspases 3, 8, and 9), and angiogenesis (CD34, MMP-2) as well as the HBV proteins HBsAg and HBcAg. Apoptosis in HCC tissues was detected using TUNEL. We conducted dual-labeling immunohistochemical analyses of TLR3 expression and TUNEL activity. RESULTS TLR3 expression was significantly lower in HCC tissues compared with adjacent tissues. TRIF, NF-κB, and IRF3 correlated positively with TLR3 expression. Survivin and Bcl-2 expression correlated negatively with TLR3. The frequencies of caspases 3, 8, and 9 expression correlated positively with TLR3 signaling proteins. Cytoplasmic TLR3 and serum levels of HBsAg correlated positively. The apoptotic index determined using the TUNEL method and correlated positively with TLR3 expression. TLR3 expression in the cytoplasm correlated positively with TUNEL-positive cells and HBsAg. Ki67 and cyclin D1 correlated negatively with TLR3 expression. MMP-2 expression, microvessel density (CD34(+)) and endothelial progenitor cells (EPCs) correlated negatively with TLR3 expression. Kaplan-Meier survival analysis shows that TLR3 expression correlated with longer survival. CONCLUSIONS The expression of TLR3 in HCC tissues may exert a synergistic effect on apoptosis and inhibit the proliferation of HCC cells, MMP-2 expression, generation of EPCs, and angiogenesis. Moreover, TLR3 expression may serve as a prognostic marker of HCC.
Collapse
Affiliation(s)
- Ming-Ming Yuan
- Department of Pathological Anatomy, Nantong University, Qixiu Road 19, Nantong City, Jiangsu, 226001, China. .,Department of Pathology, Nantong Rich Hospital, Jiangsu, China.
| | - Yu-Yin Xu
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Li Chen
- Department of Pathological Anatomy, Nantong University, Qixiu Road 19, Nantong City, Jiangsu, 226001, China.
| | - Xing-Yu Li
- Department of Pathological Anatomy, Nantong University, Qixiu Road 19, Nantong City, Jiangsu, 226001, China.
| | - Jing Qin
- Department of Pathological Anatomy, Nantong University, Qixiu Road 19, Nantong City, Jiangsu, 226001, China.
| | - Ying Shen
- Department of Pathological Anatomy, Nantong University, Qixiu Road 19, Nantong City, Jiangsu, 226001, China.
| |
Collapse
|
39
|
Santamaría B, Ucero AC, Benito-Martin A, Vicent MJ, Orzáez M, Celdrán A, Selgas R, Ruíz-Ortega M, Ortiz A. Biocompatibility Reduces Inflammation-Induced Apoptosis in Mesothelial Cells Exposed to Peritoneal Dialysis Fluid. Blood Purif 2015; 39:200-209. [DOI: 10.1159/000374103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/09/2015] [Indexed: 11/19/2022]
Abstract
Background/Aims: Peritonitis is a major complication that arises out of peritoneal dialysis (PD), leading to death and loss of mesothelium and peritoneal injury, which may impede PD. We studied the combined impact of inflammatory mediators and PD fluids on mesothelial cell death. Methods: Cultured human mesothelial cells. Results: Inflammatory cytokines (TNF-α and interferon-γ) cooperate with bioincompatible PD fluids containing high glucose degradation product (GDP) concentrations to promote mesothelial cell death. Thus, the inflammatory cytokine cocktail induced a higher rate of death in cells cultured in high GDP PD fluid than in low GDP PD fluid or cell culture medium (cell death expressed as % hypodiploid cells: TNF-α and interferon-γ in RPMI: 14.15 ± 1.68, TNF-α and interferon-γ in 4.25% low GDP PD fluid 13.16 ± 3.29, TNF-α and interferon-γ in 4.25% high GDP PD fluid 25.88 ± 2.18%, p < 0.05 vs. the other two groups). BclxL BH4 peptides, Apaf-1 inhibition or caspase inhibition failed to protect from apoptosis induced by the combination of inflammatory cytokines and bioincompatible PD fluids, although they protected from other forms of mesothelial cell apoptosis. Conclusion: Inflammation cooperates with high GDP PD fluids to promote mesothelial cell death, which is resistant to several therapeutic approaches. This information provides a framework for selection of PD fluid during peritonitis.
Collapse
|
40
|
Aoyagi T, Terracina KP, Raza A, Takabe K. Current treatment options for colon cancer peritoneal carcinomatosis. World J Gastroenterol 2014; 20:12493-12500. [PMID: 25253949 PMCID: PMC4168082 DOI: 10.3748/wjg.v20.i35.12493] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/10/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023] Open
Abstract
Peritoneal carcinomatosis (PC), the dissemination of cancer cells throughout the lining of the abdominal cavity, is the second most common presentation of colon cancer distant metastasis. Despite remarkable advances in cytotoxic chemotherapy and targeted therapy for colon cancer over the last 15 years, it has been repeatedly shown that these therapies remain ineffective for colon cancer PC. Recently, there has been a rapid accumulation of reports that cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (CRS-HIPEC) prolongs the life of colon cancer PC patients. Here, we will review the clinical presentation, the mechanisms of disease progression, and current treatment options for colon cancer PC, with a focus on the benefits and limitations of CRS-HIPEC.
Collapse
|
41
|
Kenny HA, Chiang CY, White EA, Schryver EM, Habis M, Romero IL, Ladanyi A, Penicka CV, George J, Matlin K, Montag A, Wroblewski K, Yamada SD, Mazar AP, Bowtell D, Lengyel E. Mesothelial cells promote early ovarian cancer metastasis through fibronectin secretion. J Clin Invest 2014; 124:4614-28. [PMID: 25202979 DOI: 10.1172/jci74778] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 07/31/2014] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer (OvCa) metastasizes to organs in the abdominal cavity, such as the omentum, which are covered by a single layer of mesothelial cells. Mesothelial cells are generally thought to be "bystanders" to the metastatic process and simply displaced by OvCa cells to access the submesothelial extracellular matrix. Here, using organotypic 3D cultures, we found that primary human mesothelial cells secrete fibronectin in the presence of OvCa cells. Moreover, we evaluated the tumor stroma of 108 human omental metastases and determined that fibronectin was consistently overexpressed in these patients. Blocking fibronectin production in primary mesothelial cells in vitro or in murine models, either genetically (fibronectin 1 floxed mouse model) or via siRNA, decreased adhesion, invasion, proliferation, and metastasis of OvCa cells. Using a coculture model, we determined that OvCa cells secrete TGF-β1, which in turn activates a TGF-β receptor/RAC1/SMAD-dependent signaling pathway in the mesothelial cells that promotes a mesenchymal phenotype and transcriptional upregulation of fibronectin. Additionally, blocking α5 or β1 integrin function with antibodies reduced metastasis in an orthotopic preclinical model of OvCa metastasis. These findings indicate that cancer-associated mesothelial cells promote colonization during the initial steps of OvCa metastasis and suggest that mesothelial cells actively contribute to metastasis.
Collapse
|
42
|
Na D, Song Y, Jiang CG, Sun Z, Xu YY, Wang ZN, Zhao ZZ, Xu HM. Induction of apoptosis in human peritoneal mesothelial cells by gastric cancer cell supernatant promotes peritoneal carcinomatosis. Tumour Biol 2014; 35:8301-7. [DOI: 10.1007/s13277-014-2093-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/13/2014] [Indexed: 01/28/2023] Open
|
43
|
Lv ZD, Liu XP, Zhao WJ, Dong Q, Li FN, Wang HB, Kong B. Curcumin induces apoptosis in breast cancer cells and inhibits tumor growth in vitro and in vivo. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2818-2824. [PMID: 25031701 PMCID: PMC4097278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
Curcumin has shown therapeutic and/or adjuvant therapeutic effects on the treatment of some patients with breast cancer. However, its mechanisms of action are largely unknown. This study was designed to investigate its antitumor effect and underlying mechanisms in human breast cancer MDA-MB-231 and MCF-7 cells. The MTT assay was used to evaluate cell viability, and flow cytometry, acridine orange staining and transmission electron microscopy were used to detect apoptosis for cultured cells. The protein expression in cells was evaluated by western blot analysis. Breast tumors were established by subcutaneous injection of MDA-MB-231 cells in nude BALB/c mice, and curcumin was administered to the mice. The size of tumors was monitored and the weight of tumors was examined. The exposure of breast cancer cells to curcumin resulted in growth inhibition and the induction of apoptosis in a dose-dependent manner. We also found that the expression of Bcl-2 protein decreased and the expression of Bax protein increased which lead to an increase of the Bax/Bcl-2 ratio. In mice bearing MDA-MB-231 xenograft tumors, administration of curcumin showed a significant decrease of tumor volumes and tumor weight compared with the control. Our results showed that curcumin exhibited antitumor effects in breast cancer cells with an induction of apoptosis.
Collapse
Affiliation(s)
- Zhi-Dong Lv
- Department of Breast Surgery, The Affiliated Hospital of Medical College, Qingdao UniversityQingdao 266003, P.R. China
| | - Xiang-Ping Liu
- Central Laboratory of Molecular Biology, The Affiliated Hospital of Medical College, Qingdao UniversityQingdao 266003, P.R. China
| | - Wei-Jun Zhao
- Department of General Surgery, The Affiliated Hospital of Chifeng UniversityChifeng 024000, Inner Mongolia, China
| | - Qian Dong
- Pediatric Surgery, The Affiliated Hospital of Medical College, Qingdao UniversityQingdao 266003, P.R. China
| | - Fu-Nian Li
- Department of Breast Surgery, The Affiliated Hospital of Medical College, Qingdao UniversityQingdao 266003, P.R. China
| | - Hai-Bo Wang
- Department of Breast Surgery, The Affiliated Hospital of Medical College, Qingdao UniversityQingdao 266003, P.R. China
| | - Bin Kong
- Department of Breast Surgery, The Affiliated Hospital of Medical College, Qingdao UniversityQingdao 266003, P.R. China
| |
Collapse
|
44
|
Competitive cell interactions in cancer: a cellular tug of war. Trends Cell Biol 2012; 23:160-7. [PMID: 23219382 DOI: 10.1016/j.tcb.2012.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/16/2012] [Accepted: 11/05/2012] [Indexed: 12/31/2022]
Abstract
Within tissues, cells sense differences in fitness levels and this can lead to fitter cells eliminating less fit, albeit viable, cells via competitive cell interactions. The involvement of several cancer-related genes in this phenomenon has drawn attention to a potential connection between competitive cell interactions and cancer. Indeed, initial studies found that tumor-promoting genes can turn cells into 'supercompetitors', able to kill normal cells around them. However, more recently it has been observed that cells harboring certain cancer-promoting mutations can be eliminated by surrounding normal cells, suggesting that competitive cell interactions could also have a tumor-suppressive role. These findings suggest a new view whereby tumor and host cells engage in a bidirectional tug of war, the outcome of which may have a profound impact on disease progression.
Collapse
|
45
|
Iwanicki MP, Davidowitz RA, Ng MR, Besser A, Muranen T, Merritt M, Danuser G, Ince TA, Brugge JS. Ovarian cancer spheroids use myosin-generated force to clear the mesothelium. Cancer Discov 2012; 1:144-57. [PMID: 22303516 DOI: 10.1158/2159-8274.cd-11-0010] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dissemination of ovarian tumors involves the implantation of cancer spheroids into the mesothelial monolayer on the walls of peritoneal and pleural cavity organs. Biopsies of tumors attached to peritoneal organs show that mesothelial cells are not present under tumor masses. We have developed a live, image-based in vitro model in which interactions between tumor spheroids and mesothelial cells can be monitored in real time to provide spatial and temporal understanding of mesothelial clearance. Here we provide evidence that ovarian cancer spheroids utilize integrin- and talin- dependent activation of myosin and traction force to promote mesothelial cells displacement from underneath a tumor cell spheroid. These results suggest that ovarian tumor cell clusters gain access to the sub-mesothelial environment by exerting force on the mesothelial cells lining target organs, driving migration and clearance of the mesothelial cells.
Collapse
Affiliation(s)
- Marcin P Iwanicki
- Department of Cell Biology, Harvard Medical School, Boston, 02115 MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kenny HA, Nieman KM, Mitra AK, Lengyel E. The first line of intra-abdominal metastatic attack: breaching the mesothelial cell layer. Cancer Discov 2012; 1:100-2. [PMID: 22013555 DOI: 10.1158/2159-8290.cd-11-0117] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Iwanicki and colleagues reveal that ovarian cancer spheroids clear mesothelial cells which cover the surface of the abdominal cavity using myosin-generated force.
Collapse
Affiliation(s)
- Hilary A Kenny
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology - Center for Integrative Science, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
47
|
Na D, Lv ZD, Liu FN, Xu Y, Jiang CG, Sun Z, Miao ZF, Li F, Xu HM. Gastric cancer cell supernatant causes apoptosis and fibrosis in the peritoneal tissues and results in an environment favorable to peritoneal metastases, in vitro and in vivo. BMC Gastroenterol 2012; 12:34. [PMID: 22520554 PMCID: PMC3444859 DOI: 10.1186/1471-230x-12-34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 04/20/2012] [Indexed: 11/13/2022] Open
Abstract
Background In this study, we examined effects of soluble factors released by gastric cancer cells on peritoneal mesothelial cells in vitro and in vivo. Methods HMrSV5, a human peritoneal mesothelial cell line, was incubated with supernatants from gastric cancer cells. Morphological changes of HMrSV5 cells were observed. Apoptosis of HMrSV5 cells was observed under a transmission electron microscope and quantitatively determined by MTT assay and flow cytometry. Expressions of apoptosis-related proteins (caspase-3, caspase-8, Bax, bcl-2) were immunochemically evaluated. Results Conspicuous morphological changes indicating apoptosis were observed in HMrSV5 cells 24 h after treatment with the supernatants of gastric cancer cells. In vivo, peritoneal tissues treated with gastric cancer cell supernatant were substantially thickened and contained extensive fibrosis. Conclusions These findings demonstrate that supernatants of gastric cancer cells can induce apoptosis and fibrosis in HMrSV5 human peritoneal mesothelial cells through supernatants in the early peritoneal metastasis, in a time-dependent manner, and indicate that soluble factors in the peritoneal cavity affect the morphology and function of mesothelial cells so that the resulting environment can become favorable to peritoneal metastases.
Collapse
Affiliation(s)
- Di Na
- Department of Oncology, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Vásquez Jiménez W, González Bayón L, García-Sabrido JL, González Moreno S. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal malignant disease. Clin Transl Oncol 2010; 12:794-804. [PMID: 21156410 DOI: 10.1007/s12094-010-0601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Peritoneal Malignant Disease (PMD) is the presence of tumoral tissue on the peritoneal surface from primary tumors or tumors from other locations (e.g. digestive or gynecologic). It is a regional disease with poor prognosis when treated with repeated "debulking" and traditional systemic chemotherapy. Cytoreduction plus hyperthermic intraperitoneal chemotherapy (HIPEC) is a combined multimodal regional procedure aimed at reducing the macroscopic tumoral mass as much as possible and treating with chemotherapy the microscopic disease that is out of the scope of the surgeon. This combined treatment may change the natural history of PMD, it is translated into a higher overall survival and cancer-free survival and it offers the option of cure in selected cases. The high-complexity procedure is also associated with complications and mortality, but in similar rates as other major oncologic procedures.
Collapse
|
49
|
Lengyel E. Ovarian cancer development and metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1053-64. [PMID: 20651229 DOI: 10.2353/ajpath.2010.100105] [Citation(s) in RCA: 1237] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The biology of ovarian carcinoma differs from that of hematogenously metastasizing tumors because ovarian cancer cells primarily disseminate within the peritoneal cavity and are only superficially invasive. However, since the rapidly proliferating tumors compress visceral organs and are only temporarily chemosensitive, ovarian carcinoma is a deadly disease, with a cure rate of only 30%. There are a number of genetic and epigenetic changes that lead to ovarian carcinoma cell transformation. Ovarian carcinoma could originate from any of three potential sites: the surfaces of the ovary, the fallopian tube, or the mesothelium-lined peritoneal cavity. Ovarian cacinoma tumorigenesis then either progresses along a stepwise mutation process from a slow growing borderline tumor to a well-differentiated carcinoma (type I) or involves a genetically unstable high-grade serous carcinoma that metastasizes rapidly (type II). During initial tumorigenesis, ovarian carcinoma cells undergo an epithelial-to-mesenchymal transition, which involves a change in cadherin and integrin expression and up-regulation of proteolytic pathways. Carried by the peritoneal fluid, cancer cell spheroids overcome anoikis and attach preferentially on the abdominal peritoneum or omentum, where the cancer cells revert to their epithelial phenotype. The initial steps of metastasis are regulated by a controlled interaction of adhesion receptors and proteases, and late metastasis is characterized by the oncogene-driven fast growth of tumor nodules on mesothelium covered surfaces, causing ascites, bowel obstruction, and tumor cachexia.
Collapse
Affiliation(s)
- Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
50
|
Santamaría B, Benito-Martin A, Ucero AC, Aroeira LS, Reyero A, Vicent MJ, Orzáez M, Celdrán A, Esteban J, Selgas R, Ruíz-Ortega M, Cabrera ML, Egido J, Pérez-Payá E, Ortiz A. A nanoconjugate Apaf-1 inhibitor protects mesothelial cells from cytokine-induced injury. PLoS One 2009; 4:e6634. [PMID: 19675677 PMCID: PMC2722088 DOI: 10.1371/journal.pone.0006634] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 06/23/2009] [Indexed: 01/22/2023] Open
Abstract
Background Inflammation may lead to tissue injury. We have studied the modulation of inflammatory milieu-induced tissue injury, as exemplified by the mesothelium. Peritoneal dialysis is complicated by peritonitis episodes that cause loss of mesothelium. Proinflammatory cytokines are increased in the peritoneal cavity during peritonitis episodes. However there is scarce information on the modulation of cell death by combinations of cytokines and on the therapeutic targets to prevent desmesothelization. Methodology Human mesothelial cells were cultured from effluents of stable peritoneal dialysis patients and from omentum of non-dialysis patients. Mesothelial cell death was studied in mice with S. aureus peritonitis and in mice injected with tumor necrosis factor alpha and interferon gamma. Tumor necrosis factor alpha and interferon gamma alone do not induce apoptosis in cultured mesothelial cells. By contrast, the cytokine combination increased the rate of apoptosis 2 to 3-fold over control. Cell death was associated with the activation of caspases and a pancaspase inhibitor prevented apoptosis. Specific caspase-8 and caspase-3 inhibitors were similarly effective. Co-incubation with both cytokines also impaired mesothelial wound healing in an in vitro model. However, inhibition of caspases did not improve wound healing and even impaired the long-term recovery from injury. By contrast, a polymeric nanoconjugate Apaf-1 inhibitor protected from apoptosis and allowed wound healing and long-term recovery. The Apaf-1 inhibitor also protected mesothelial cells from inflammation-induced injury in vivo in mice. Conclusion Cooperation between tumor necrosis factor alpha and interferon gamma contributes to mesothelial injury and impairs the regenerative capacity of the monolayer. Caspase inhibition attenuates mesothelial cell apoptosis but does not facilitate regeneration. A drug targeting Apaf-1 allows protection from apoptosis as well as regeneration in the course of inflammation-induced tissue injury.
Collapse
Affiliation(s)
- Beatriz Santamaría
- Dialysis Unit, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Instituto Reina Sofía de Investigación Nefrológica, Madrid, Spain
| | - Alberto Benito-Martin
- Dialysis Unit, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Instituto Reina Sofía de Investigación Nefrológica, Madrid, Spain
| | - Alvaro Conrado Ucero
- Dialysis Unit, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Instituto Reina Sofía de Investigación Nefrológica, Madrid, Spain
| | | | - Ana Reyero
- Dialysis Unit, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Instituto Reina Sofía de Investigación Nefrológica, Madrid, Spain
| | - María Jesús Vicent
- Polymer Therapeutics Laboratory, Department of Medicinal Chemistry, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Mar Orzáez
- Peptide and Protein Laboratory, Department of Medicinal Chemistry, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Angel Celdrán
- Dialysis Unit, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Instituto Reina Sofía de Investigación Nefrológica, Madrid, Spain
| | - Jaime Esteban
- Servicio de Microbiología, Fundación Jimenez Díaz, Madrid, Spain
| | - Rafael Selgas
- Servicio de Nefrología, Hospital Universitario La Paz, Madrid, Spain
| | - Marta Ruíz-Ortega
- Laboratory of Renal and Vascular Research, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel López Cabrera
- Molecular Biology Department, Hospital Universitario de la Princesa, Madrid, Spain
| | - Jesús Egido
- Laboratory of Renal and Vascular Research, Universidad Autónoma de Madrid, Madrid, Spain
| | - Enrique Pérez-Payá
- Peptide and Protein Laboratory, Department of Medicinal Chemistry, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Instituto de Biomedicina de Valencia CSIC, Valencia, Spain
| | - Alberto Ortiz
- Dialysis Unit, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Instituto Reina Sofía de Investigación Nefrológica, Madrid, Spain
- * E-mail:
| |
Collapse
|