1
|
Llopiz D, Silva L, Ruiz M, Castro-Alejos C, Aparicio B, Vegas L, Infante S, Santamaria E, Sarobe P. MERTK inhibition improves therapeutic efficacy of immune checkpoint inhibitors in hepatocellular carcinoma. Oncoimmunology 2025; 14:2473165. [PMID: 40029206 PMCID: PMC11881874 DOI: 10.1080/2162402x.2025.2473165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/29/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
Immunotherapy with immune checkpoint inhibitors (ICI) in hepatocellular carcinoma (HCC) patients only achieves response rates of 25%-30%, indicating the necessity of new therapies for non-responder patients. Since myeloid-related suppressive factors are associated with poor responses to ICI in a subgroup of HCC patients, modulation of these targets may improve response rates. Our aim was to characterize the expression of the efferocytosis receptor MERTK in HCC and to analyze its potential as a new therapeutic target. In HCC patients, MERTK was expressed by myeloid cells and was associated with poorer survival. In a murine HCC model with progressive myeloid cell infiltration, MERTK was detected in dendritic cells and macrophages with an activated phenotype, which overexpressed the checkpoint ligand PD-L1. Concomitant expression of PD-1 in tumor T-cells suggested the pertinence of combined PD-1/PD-L1 and MERTK blockade. In vivo experiments in mice showed that inhibition of MERTK improved the therapeutic effect promoted by anti-PD-1 or by ICI combinations currently approved for HCC. This effect was associated with enhanced tumor infiltration and superior activity of antigen presenting cells and effector lymphocytes. Our results indicate that MERTK may behave as a relevant target for immunotherapeutic combinations in those HCC patients with tumors enriched in a myeloid component.
Collapse
Affiliation(s)
- Diana Llopiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Leyre Silva
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Marta Ruiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Carla Castro-Alejos
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Belen Aparicio
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Lucia Vegas
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Stefany Infante
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Facultad de Medicina Humana, Universidad de Piura, Lima, Peru
| | - Eva Santamaria
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| |
Collapse
|
2
|
Zanuso V, Rimassa L, Braconi C. The rapidly evolving landscape of HCC: Selecting the optimal systemic therapy. Hepatology 2025; 81:1365-1386. [PMID: 37695554 DOI: 10.1097/hep.0000000000000572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023]
Abstract
Over the past years, there has been a remarkable advance in the systemic treatment options for advanced HCC. The overall survival has gradually increased over time, with larger benefits for patients with sensitive tumors and preserved liver function, the latter being an essential condition for the delivery of sequential lines of treatment and optimization of clinical outcomes. With the approval of new first-line agents and the introduction of immune checkpoint inhibitor-based therapies, the treatment landscape of advanced HCC is becoming wider than ever. Atezolizumab plus bevacizumab and, more recently, durvalumab plus tremelimumab have entered the clinical practice and are the current standard of care for treatment-naïve patients, surpassing sorafenib and lenvatinib monopoly. As no head-to-head comparisons are available among all the first-line treatment options, the recommendation for the most appropriate choice and sequence is patient-driven and integrates efficacy data with clinical comorbidities, background liver disease, and the safety profile of available drugs. In addition, predictive biomarkers for successful patients' stratification are yet to be available and constitute the focus of ongoing research. The treatment algorithm is likely to become even more complex since systemic therapeutic approaches are now being translated into earlier stages of the disease, with an impact on the evolution of the sequential treatment of patients with HCC.
Collapse
Affiliation(s)
- Valentina Zanuso
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Beatson West of Scotland Cancer Centre, Glasgow, UK
| |
Collapse
|
3
|
Lim J, Goh MJ, Song BG, Sinn DH, Kang W, Gwak GY, Choi MS, Lee JH, Cha DI, Gu K, Ha SY, Hwang I, Park WY, Paik YH. Unraveling the immune-activated tumor microenvironment correlated with clinical response to atezolizumab plus bevacizumab in advanced HCC. JHEP Rep 2025; 7:101304. [PMID: 40124166 PMCID: PMC11929055 DOI: 10.1016/j.jhepr.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 03/25/2025] Open
Abstract
Background & Aims Despite atezolizumab plus bevacizumab being a standard treatment for advanced hepatocellular carcinoma (HCC), a significant proportion of patients do not achieve durable benefit. This study aimed to identify predictive biomarkers for this therapy by investigating the role of immune activation within the tumor microenvironment (TME). Methods We characterized the intratumoral TME of patients with advanced HCC treated with atezolizumab plus bevacizumab using single cell transcriptomics on pretreatment tumor biopsies from 12 patients. To complement and support these findings, we integrated our single cell data with publicly available bulk RNA-sequencing data from independent clinical trial cohorts. Results Patients who responded to combination therapy with atezolizumab plus bevacizumab demonstrated an immune-activated TME, marked by enhanced cytotoxicity and a tumor-specific T cell response. These patients also exhibited an increased proportion of inflammatory cytokine-enriched tumor-associated macrophage clusters with stronger interactions with T cells, an increased population of conventional dendritic cells, and activated antigen-presenting function in tumor endothelial cells. When publicly available bulk RNA-sequencing data from independent clinical trial cohorts were analyzed, these immune activation features were associated with improved progression-free survival (median 10.8 months, 95% CI: 7.3-not reached versus 5.5 months, 95% CI: 4.0-6.7; p <0.001). Conclusions These findings suggest that the existence of an activated immune TME before treatment is crucial for a favorable clinical response in patients with HCC treated with atezolizumab plus bevacizumab. Impact and implications Only a subset of patients with HCC benefit from combination therapy with atezolizumab plus bevacizumab, limiting its clinical utility. In this study, we used single cell RNA analysis to identify TME features associated with a clinical response to this therapy. Our findings suggest that a pre-existing immune-activated TME is crucial for predicting the response to atezolizumab plus bevacizumab. Specifically, features such as enhanced T cell cytotoxicity, inflammatory cytokine-enriched macrophage clusters, active antigen presentation in endothelial cells, and an increased presence of dendritic cells may aid patient selection and inform therapeutic strategies.
Collapse
Affiliation(s)
- Jinyeong Lim
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sunkyunkwan University, Seoul, South Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Myung Ji Goh
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byeong Geun Song
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dong Hyun Sinn
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Wonseok Kang
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Geum-Youn Gwak
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Moon Seok Choi
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joon Hyeok Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dong Ik Cha
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyowon Gu
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Inwoo Hwang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Woong-Yang Park
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sunkyunkwan University, Seoul, South Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Yong-Han Paik
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sunkyunkwan University, Seoul, South Korea
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Sererols-Viñas L, Garcia-Vicién G, Ruiz-Blázquez P, Lee TF, Lee YA, Gonzalez-Sanchez E, Vaquero J, Moles A, Filliol A, Affò S. Hepatic Stellate Cells Functional Heterogeneity in Liver Cancer. Semin Liver Dis 2025. [PMID: 40043738 DOI: 10.1055/a-2551-0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Hepatic stellate cells (HSCs) are the liver's pericytes, and play key roles in liver homeostasis, regeneration, fibrosis, and cancer. Upon injury, HSCs activate and are the main origin of myofibroblasts and cancer-associated fibroblasts (CAFs) in liver fibrosis and cancer. Primary liver cancer has a grim prognosis, ranking as the third leading cause of cancer-related deaths worldwide, with hepatocellular carcinoma (HCC) being the predominant type, followed by intrahepatic cholangiocarcinoma (iCCA). Moreover, the liver hosts 35% of all metastatic lesions. The distinct spatial distribution and functional roles of HSCs across these malignancies represent a significant challenge for universal therapeutic strategies, requiring a nuanced and tailored understanding of their contributions. This review examines the heterogeneous roles of HSCs in liver cancer, focusing on their spatial localization, dynamic interactions within the tumor microenvironment (TME), and emerging therapeutic opportunities, including strategies to modulate their activity, and harness their potential as targets for antifibrotic and antitumor interventions.
Collapse
Affiliation(s)
- Laura Sererols-Viñas
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Gemma Garcia-Vicién
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Paloma Ruiz-Blázquez
- University of Barcelona, Barcelona, Spain
- Tissue Remodeling Fibrosis and Cancer Group, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IDIBAPS), Barcelona, Spain
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Ting-Fang Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Youngmin A Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ester Gonzalez-Sanchez
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
| | - Javier Vaquero
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Anna Moles
- Tissue Remodeling Fibrosis and Cancer Group, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IDIBAPS), Barcelona, Spain
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Aveline Filliol
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Silvia Affò
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
5
|
Omoto M, Sugimoto K, Kurebayashi Y, Kakegawa T, Takahashi H, Wada T, Takeuchi H, Nagao T, Nagakawa Y, Itoi T. Advanced intrahepatic cholangiocarcinoma successfully treated with combined immunotherapy: focusing on the tumor immune microenvironment. Clin J Gastroenterol 2025:10.1007/s12328-025-02113-2. [PMID: 40153223 DOI: 10.1007/s12328-025-02113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/11/2025] [Indexed: 03/30/2025]
Abstract
A 61-year-old female patient with advanced intrahepatic cholangiocarcinoma diagnosed based on imaging and tumor biopsy findings was treated with combination therapy comprising gemcitabine, cisplatin, and durvalumab. After eight cycles of therapy comprising gemcitabine, cisplatin, and durvalumab and two subsequent cycles of maintenance immunotherapy, significant tumor shrinkage enabled conversion surgery with R0 resection. The tumor immune microenvironment has a critical role in predicting the efficacy of combined immunotherapy in some types of cancer; however, its role in advanced intrahepatic cholangiocarcinoma remains largely unclear. In the current case, the tumor exhibited increased infiltration of CD8 T cells before treatment, and significant increase in CD8 T-cell infiltration, decrease in Treg/CD8 ratio, and development of tertiary lymphoid structures were observed after treatment. Pretreatment tumor immune microenvironment analyses may predict treatment outcomes and optimize strategies for advanced intrahepatic cholangiocarcinoma. Therapy comprising gemcitabine, cisplatin, and durvalumab and immune-based approaches may enhance personalized medicine for patients with advanced intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Mayu Omoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan.
| | - Yutaka Kurebayashi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuya Kakegawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan
| | - Hiroshi Takahashi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan
| | - Takuya Wada
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan
| | - Hirohito Takeuchi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Yuichi Nagakawa
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan
| |
Collapse
|
6
|
Vargas-Accarino E, Higuera M, Bermúdez-Ramos M, Soriano-Varela A, Torrens M, Pons M, Aransay AM, Martín JE, Rodríguez-Frías F, Merino X, Mínguez B. Harnessing Plasma Biomarkers to Predict Immunotherapy Outcomes in Hepatocellular Carcinoma: The Role of cfDNA, ctDNA, and Cytokines. Int J Mol Sci 2025; 26:2794. [PMID: 40141436 PMCID: PMC11942713 DOI: 10.3390/ijms26062794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Immunotherapy has improved survival in patients with advanced hepatocellular carcinoma (HCC); yet, objective radiological responses occur in only about 20% of cases, suggesting variable benefits. This study aimed to identify serologic markers predictive of response to immune checkpoint inhibitors (ICIs). A cohort of 38 advanced HCC patients receiving immunotherapy was prospectively analyzed. Levels of cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), and cytokines were measured pre-treatment and three months post-treatment initiation. Genomic profiling of ctDNA was also conducted. Baseline levels of cfDNA and ctDNA effectively discriminated HCC patients based on their radiological response to ICIs. Additionally, individuals with pathologic mutations in the CDKN2A gene exhibited significantly reduced survival. Patients with progressive disease (PD) as their best radiological response had significantly fewer copy number variations (CNVs) than those with a radiological response. Furthermore, levels of IL10, PD1, and TGFβ assessed after three months of treatment showed significant variations correlating with survival status. In conclusion, the analysis of cfDNA, ctDNA, and cytokines may improve treatment selection for HCC patients by predicting their expected response to immunotherapies.
Collapse
Affiliation(s)
- Elena Vargas-Accarino
- Liver Cancer Research Group, Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (E.V.-A.); (M.H.); (M.B.-R.); (A.S.-V.); (M.T.)
- Department of Medicine, Campus de la UAB, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Mónica Higuera
- Liver Cancer Research Group, Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (E.V.-A.); (M.H.); (M.B.-R.); (A.S.-V.); (M.T.)
| | - María Bermúdez-Ramos
- Liver Cancer Research Group, Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (E.V.-A.); (M.H.); (M.B.-R.); (A.S.-V.); (M.T.)
- Department of Medicine, Campus de la UAB, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.P.); (F.R.-F.)
| | - Agnès Soriano-Varela
- Liver Cancer Research Group, Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (E.V.-A.); (M.H.); (M.B.-R.); (A.S.-V.); (M.T.)
- Liver Unit, Hospital Universitario Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - María Torrens
- Liver Cancer Research Group, Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (E.V.-A.); (M.H.); (M.B.-R.); (A.S.-V.); (M.T.)
- Liver Unit, Hospital Universitario Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Mònica Pons
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.P.); (F.R.-F.)
- Liver Unit, Hospital Universitario Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Ana María Aransay
- Genome Analysis Platform, CIC bioGUNE, 48160 Derio, Spain; (A.M.A.); (J.E.M.)
| | | | - Francisco Rodríguez-Frías
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.P.); (F.R.-F.)
- Microbiology and Biochemistry Department, Hospital Universitario Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Xavier Merino
- Radiology Department, Hospital Universitario Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain;
| | - Beatriz Mínguez
- Liver Cancer Research Group, Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (E.V.-A.); (M.H.); (M.B.-R.); (A.S.-V.); (M.T.)
- Department of Medicine, Campus de la UAB, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.P.); (F.R.-F.)
- Liver Unit, Hospital Universitario Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| |
Collapse
|
7
|
Chen X, Wu X, Peng W, Liu L, Liu X, Wan X, Xu H, Zheng Y, Zhao H, Mao Y, Lu X, Sang X, Chang X, Zhou K, Pan J, Guan M, Hu D, Tan H, Zhang Y, Du S. Combined TACE with Targeted and Immunotherapy versus TACE Alone Improves DFS in HCC with MVI: A Multicenter Propensity Score Matching Study. J Hepatocell Carcinoma 2025; 12:561-577. [PMID: 40124969 PMCID: PMC11930282 DOI: 10.2147/jhc.s504016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) with microvascular invasion (MVI) is associated with high recurrence and poor survival outcomes. Although adjuvant therapies such as transcatheter arterial chemoembolization (TACE), targeted therapy, and immunotherapy show potential in improving outcomes, the optimal postoperative treatment strategy remains undetermined. This study evaluates the efficacy of different adjuvant treatments on disease-free survival (DFS) and overall survival (OS) in HCC patients with MVI following curative resection. Methods A retrospective cohort of 409 HCC patients with MVI who underwent curative resection from three clinical centers between 2017 and 2024 was analyzed. Patients were stratified into three groups: TACE alone (n=132), TACE + targeted therapy (n=58), and TACE + targeted immunotherapy (n=68). Propensity score matching (PSM) was employed to balance confounding factors. Kaplan-Meier survival curves and Cox regression models were used to assess DFS and OS. A nomogram was constructed for individualized DFS prediction. Results After PSM, both the TACE + targeted therapy and TACE + targeted immunotherapy groups exhibited significantly prolonged DFS compared to TACE alone (median DFS: 16 vs 22 and 21 months, respectively; p=0.027). No significant differences were observed in OS across the groups. The nomogram for DFS demonstrated robust predictive performance, with a C-index of 0.709 and 0.645 in the training and validation cohorts, respectively, supporting its utility in clinical decision-making. Conclusion In HCC patients with MVI, adjuvant TACE combined with targeted therapy or targeted immunotherapy significantly enhances DFS, though no OS benefit was observed. The developed nomogram provides a reliable tool for risk stratification and personalized postoperative management in this high-risk patient population.
Collapse
Affiliation(s)
- Xiaokun Chen
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, People’s Republic of China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100006, People’s Republic of China
| | - Xiangan Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, People’s Republic of China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100006, People’s Republic of China
| | - Wei Peng
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People’s Republic of China
| | - Liguo Liu
- Second Division of Hepatopancreatobiliary Surgery, China–Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Xiao Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, People’s Republic of China
| | - Xueshuai Wan
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, People’s Republic of China
| | - Haifeng Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, People’s Republic of China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, People’s Republic of China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, People’s Republic of China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, People’s Republic of China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, People’s Republic of China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, People’s Republic of China
| | - Xiaoyan Chang
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, People’s Republic of China
| | - Kang Zhou
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, People’s Republic of China
| | - Jie Pan
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, People’s Republic of China
| | - Mei Guan
- Department of Medical Oncology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, People’s Republic of China
| | - Dandan Hu
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People’s Republic of China
| | - Haidong Tan
- Second Division of Hepatopancreatobiliary Surgery, China–Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Yaojun Zhang
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People’s Republic of China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, People’s Republic of China
| |
Collapse
|
8
|
Yasukawa K, Shimada S, Akiyama Y, Taniai T, Igarashi Y, Tsukihara S, Tanji Y, Umemura K, Kamachi A, Nara A, Yamane M, Akahoshi K, Shimizu A, Soejima Y, Tanabe M, Tanaka S. ACVR2A attenuation impacts lactate production and hyperglycolytic conditions attracting regulatory T cells in hepatocellular carcinoma. Cell Rep Med 2025:102038. [PMID: 40139191 DOI: 10.1016/j.xcrm.2025.102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/01/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Although ACVR2A mutations are prevalent in non-viral hepatocellular carcinomas (HCCs), the underlying mechanism remains unelucidated. Our molecular investigation reveals that ACVR2A impairment induces hyperglycolysis through the inactivation of the SMAD signaling pathway. Using syngeneic transplantation models and human clinical samples, we clarify that ACVR2A-deficient HCC cells produce and secrete lactate via the upregulation of lactate dehydrogenase A (LDHA) and monocarboxylate transporter 4 (MCT4) expression levels, which promotes regulatory T (Treg) cell accumulation and then acquires resistance to immune checkpoint inhibitors. Remarkably, genetic knockdown and pharmacological inhibition of MCT4 ameliorate the high-lactate milieu in ACVR2A-deficient HCC, resulting in the suppression of intratumoral Treg cell recruitment and the restoration of the sensitivity to PD-1 blockade. These findings furnish compelling evidence that lactate attenuates anti-tumor immunity and that therapeutics targeting this pathway present a promising strategy for mitigating immunotherapy resistance in ACVR2A-deficient HCC.
Collapse
Affiliation(s)
- Koya Yasukawa
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Tomohiko Taniai
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Yosuke Igarashi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Shu Tsukihara
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Department of Surgery, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Yoshiaki Tanji
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Kentaro Umemura
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Atsushi Kamachi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Atsushi Nara
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Department of Hepato-Biliary-Pancreatic Surgery, Tokyo Medical and Dental University, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Masahiro Yamane
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Department of Hepato-Biliary-Pancreatic Surgery, Tokyo Medical and Dental University, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Keiichi Akahoshi
- Department of Hepato-Biliary-Pancreatic Surgery, Tokyo Medical and Dental University, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Akira Shimizu
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Yuji Soejima
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Tokyo Medical and Dental University, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Department of Hepato-Biliary-Pancreatic Surgery, Tokyo Medical and Dental University, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| |
Collapse
|
9
|
Guo R, Rao PG, Liao BZ, Luo X, Yang WW, Lei XH, Ye JM. Melatonin suppresses PD-L1 expression and exerts antitumor activity in hepatocellular carcinoma. Sci Rep 2025; 15:8451. [PMID: 40069331 PMCID: PMC11897332 DOI: 10.1038/s41598-025-93486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
Melatonin, also known as the pineal hormone, is secreted by the pineal gland and primarily regulates circadian rhythms. Additionally, it possesses immunomodulatory properties and anticancer effects. However, its specific mechanism in hepatocellular carcinoma (HCC) remains unclear, particularly regarding its effect on HCC-mediated immune escape through PD-L1 expression.In this study, in vitro experiments were conducted using Huh7 and HepG2 HCC cells. Melatonin treatment was applied to both cell types to observe changes in malignant phenotypes. Additionally, melatonin-pretreated Huh7 or HepG2 cells were co-cultured with T cells to simulate the tumor microenvironment. The results showed that melatonin inhibited cancer cell proliferation, migration, and invasion, as well as reduced PD-L1 expression in cancer cells, exhibiting similar anti-cancer effects in the co-culture system. In vivo experiments involved establishing ascitic HCC mouse models using H22 cells, followed by subcutaneous tumor models in Balb/c nude and Balb/c wild-type mice. Melatonin inhibited tumor growth and suppressed PD-L1 expression in cancer tissues in both subcutaneous tumor models, and it increased T lymphocyte activity in the spleen of Balb/c wild-type mice. Overall, the in vitro and in vivo experiments demonstrated that melatonin has dual anti-cancer effects in HCC: direct intrinsic anti-cancer activity and enhancement of anti-tumor immunity by reducing PD-L1 expression thereby inhibiting cancer immune escape. Furthermore, a decrease in the expression of the upstream molecule HIF-1α of PD-L1 and an increase in the expression levels of JNK, P38, and their phosphorylated forms were detected. Thus, the mechanism by which melatonin reduces PD-L1 may involve the downregulation of HIF-1α expression or the activation of the MAPK-JNK and MAPK-P38 pathways. This provides new insights and strategies for HCC treatment.
Collapse
Affiliation(s)
- Rui Guo
- Suzhou Medical College of Soochow University, Suzhou, China.
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, No.23 Qingnian Road, Ganzhou City, Jiangxi Province, China.
| | - Pan-Guo Rao
- Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Xin Luo
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wen-Wen Yang
- Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Jun-Ming Ye
- Suzhou Medical College of Soochow University, Suzhou, China.
- Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
10
|
Goodsell KE, Tao AJ, Park JO. Neoadjuvant therapy for hepatocellular carcinoma-priming precision innovations to transform HCC treatment. Front Surg 2025; 12:1531852. [PMID: 40115081 PMCID: PMC11922951 DOI: 10.3389/fsurg.2025.1531852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/18/2025] [Indexed: 03/23/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is increasing in prevalence globally, and cure remains limited with non-operative treatment. Surgical intervention, through resection or transplantation, offers a potential for cure for select patients. However, many patients present with advanced or unresectable disease, and recurrence rates remain high. Recent advances in systemic therapies, particularly immune checkpoint inhibitors, have demonstrated promise in treating unresectable HCC and as adjuvant therapy. Evidence from adjuvant trials highlights the synergistic potential of combined liver-directed and systemic therapies. These findings have ignited growing interest in neoadjuvant therapy across various scenarios: (1) as a bridging strategy while awaiting transplantation, (2) for downstaging disease to enable transplantation, (3) for converting unresectable disease to a resectable state, or (4) as neoadjuvant treatment in operable cases. Early-stage trials of neoadjuvant therapy in resectable HCC have reported promising outcomes. To realize the potential of neoadjuvant treatment for HCC, thoughtfully designed, adequately powered, multi-center clinical trials are essential.
Collapse
Affiliation(s)
- Kristin E Goodsell
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - Alice J Tao
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - James O Park
- Department of Surgery, University of Washington, Seattle, WA, United States
- Department of Surgery, Mount Sinai Hospital, New York, NY, United States
| |
Collapse
|
11
|
You W, Hu C, Zhao M, Zhang Y, Lu J, Huang Y, Li L, Chen Y. Extending inflamed-class signature to predict immune checkpoint inhibitor-based combination therapy in hepatocellular carcinoma. Gut 2025; 74:679-681. [PMID: 39266052 DOI: 10.1136/gutjnl-2024-333375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Affiliation(s)
- Wenhua You
- School of Chemistry and Chemical Engineering, Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, China
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center & Department of Immunology, School of Basic Medical Sciences, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, Jiangsu, China
- National Innovation Platform for Integration of Medical Engineering Education (NMEE), Southeast University, Nanjing, Jiangsu, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
| | - Chupeng Hu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center & Department of Immunology, School of Basic Medical Sciences, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengya Zhao
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center & Department of Immunology, School of Basic Medical Sciences, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuhan Zhang
- School of Chemistry and Chemical Engineering, Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, China
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center & Department of Immunology, School of Basic Medical Sciences, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinying Lu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center & Department of Immunology, School of Basic Medical Sciences, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yedi Huang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center & Department of Immunology, School of Basic Medical Sciences, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, Jiangsu, China
| | - Yun Chen
- School of Chemistry and Chemical Engineering, Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, China
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center & Department of Immunology, School of Basic Medical Sciences, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, Jiangsu, China
- National Innovation Platform for Integration of Medical Engineering Education (NMEE), Southeast University, Nanjing, Jiangsu, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
12
|
Lindblad KE, Donne R, Liebling I, Barcena-Varela M, Lozano A, de Galarreta MR, Dhainaut M, Param NJ, Giotti B, Cappuyns S, Kodama T, Wang Y, Kamphorst AO, Tsankov AM, Lujambio A. NOTCH1 Drives Sexually Dimorphic Immune Responses in Hepatocellular Carcinoma. Cancer Discov 2025; 15:495-510. [PMID: 39560425 PMCID: PMC11875915 DOI: 10.1158/2159-8290.cd-24-1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Hepatocellular carcinoma presents strong sexual dimorphism, being two to three times more frequent in males than in females; however, the role of sex in response to immunotherapies in HCC remains unknown. We demonstrate that NOTCH1, an understudied oncogene in HCC, elicits sexually dimorphic antitumor immunity and response to FDA-approved immunotherapies. Surprisingly, males harboring NOTCH1-driven tumors displayed enhanced antitumor immune responses, which, in mice, were mediated by dendritic and T cells. Conversely, females harboring NOTCH1-driven tumors presented immune evasion and resistance to immunotherapies through a defect in dendritic cell (DC)-mediated priming and activation of CD8+ T cells in mice, which was restored therapeutically with CD40 agonism. Mechanistically, the sexually dimorphic immunity was mediated by genes in the sex chromosomes but not by sex hormones. Together, our study unravels an unexpected association between NOTCH1 and sex in cancer immunity and highlights the potential of restoring the DC-CD8+ T-cell axis with CD40 agonism to improve outcomes. Significance: Although HCC presents strong sexual dimorphism, the role of sex in response to immunotherapies remains elusive. With a novel HCC mouse model and validation in patients with HCC, we demonstrate that NOTCH1 disrupts antitumor immunity specifically in females through a mechanism mediated by sex chromosome genes, which is reversed with CD40 agonism. See related commentary by Zhu and Koltsova, p. 452.
Collapse
Affiliation(s)
- Katherine E. Lindblad
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, USA
| | - Romain Donne
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ian Liebling
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Marina Barcena-Varela
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Anthony Lozano
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Marina Ruiz de Galarreta
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Maxime Dhainaut
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Nesteene J. Param
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, USA
| | - Bruno Giotti
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Sarah Cappuyns
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yulei Wang
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA, USA
| | - Alice O. Kamphorst
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alexander M. Tsankov
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Amaia Lujambio
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
13
|
Malone CD, Bajaj S, He A, Mody K, Hickey RM, Sarwar A, Krishnan S, Patel TC, Toskich BB. Combining Radioembolization and Immune Checkpoint Inhibitors for the Treatment of Hepatocellular Carcinoma: The Quest for Synergy. J Vasc Interv Radiol 2025; 36:414-424.e2. [PMID: 39586534 DOI: 10.1016/j.jvir.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
Hepatocellular carcinoma is a leading and increasing contributor to cancer-related death worldwide. Recent advancements in both liver-directed therapies in the form of yttrium-90 (90Y) radioembolization (RE) and systemic therapy in the form of immune checkpoint inhibitors (ICI) have expanded treatment options for patients with an otherwise poor prognosis. Despite these gains, ICIs and 90Y-RE each have key limitations with low objective response rates and persistent hazard of out-of-field recurrence, respectively, and overall survival remains low. However, each therapy's strength may mitigate the other's weakness, making them potentially ideal partners for combination treatment strategies. This review discusses the scientific and clinical rationale for combining 90Y-RE with ICIs, highlights early clinical trial data on its safety and effectiveness, and proposes key issues to be addressed in this emerging field. With optimal strategies, combination therapies can potentially result in increasing likelihood of durable and curative outcomes in later stage patients.
Collapse
Affiliation(s)
- Christopher D Malone
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri.
| | - Suryansh Bajaj
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Aiwu He
- Division of Gastroenterology and Medical Oncology, MedStar Health, Washington, DC
| | | | - Ryan M Hickey
- Department of Radiology, NYU Langone Health, New York, New York
| | - Ammar Sarwar
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sunil Krishnan
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center, Houston, Texas
| | - Tushar C Patel
- Department of Transplant, Mayo Clinic, Jacksonville, Florida
| | - Beau B Toskich
- Division of Vascular and Interventional Radiology, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
14
|
Kuronishi M, Ozawa Y, Kimura T, Li SD, Kato Y. Development of a Microvessel Density Gene Signature and Its Application in Precision Medicine. CANCER RESEARCH COMMUNICATIONS 2025; 5:398-408. [PMID: 39835481 PMCID: PMC11880750 DOI: 10.1158/2767-9764.crc-24-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/08/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
SIGNIFICANCE A novel gene signature for MVD was developed. This MVD gene score enables the estimation of MVD, reflecting the sensitivity to antiangiogenic inhibitors, in transcriptomic datasets. We demonstrated the utility of the MVD gene score together with a T cell-inflamed gene signature for potential future use as a clinical biomarker.
Collapse
Affiliation(s)
| | - Yoichi Ozawa
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Japan
| | - Takayuki Kimura
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Japan
| | | | - Yu Kato
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Japan
| |
Collapse
|
15
|
Dhanasekaran R, Suzuki H, Lemaitre L, Kubota N, Hoshida Y. Molecular and immune landscape of hepatocellular carcinoma to guide therapeutic decision-making. Hepatology 2025; 81:1038-1057. [PMID: 37300379 PMCID: PMC10713867 DOI: 10.1097/hep.0000000000000513] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Liver cancer, primarily HCC, exhibits highly heterogeneous histological and molecular aberrations across tumors and within individual tumor nodules. Such intertumor and intratumor heterogeneities may lead to diversity in the natural history of disease progression and various clinical disparities across the patients. Recently developed multimodality, single-cell, and spatial omics profiling technologies have enabled interrogation of the intertumor/intratumor heterogeneity in the cancer cells and the tumor immune microenvironment. These features may influence the natural history and efficacy of emerging therapies targeting novel molecular and immune pathways, some of which had been deemed undruggable. Thus, comprehensive characterization of the heterogeneities at various levels may facilitate the discovery of biomarkers that enable personalized and rational treatment decisions, and optimize treatment efficacy while minimizing the risk of adverse effects. Such companion biomarkers will also refine HCC treatment algorithms across disease stages for cost-effective patient management by optimizing the allocation of limited medical resources. Despite this promise, the complexity of the intertumor/intratumor heterogeneity and ever-expanding inventory of therapeutic agents and regimens have made clinical evaluation and translation of biomarkers increasingly challenging. To address this issue, novel clinical trial designs have been proposed and incorporated into recent studies. In this review, we discuss the latest findings in the molecular and immune landscape of HCC for their potential and utility as biomarkers, the framework of evaluation and clinical application of predictive/prognostic biomarkers, and ongoing biomarker-guided therapeutic clinical trials. These new developments may revolutionize patient care and substantially impact the still dismal HCC mortality.
Collapse
Affiliation(s)
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka
| | - Lea Lemaitre
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California
| | - Naoto Kubota
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
16
|
Miura R, Ono A, Nakahara H, Shirane Y, Yamaoka K, Fujii Y, Uchikawa S, Fujino H, Murakami E, Kawaoka T, Miki D, Tsuge M, Kishi T, Ohishi W, Sakamoto N, Arihiro K, Hayes CN, Oka S. Serum IL-6 concentration is a useful biomarker to predict the efficacy of atezolizumab plus bevacizumab in patients with hepatocellular carcinoma. J Gastroenterol 2025; 60:328-339. [PMID: 39652104 PMCID: PMC11880141 DOI: 10.1007/s00535-024-02185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/18/2024] [Indexed: 03/05/2025]
Abstract
BACKGROUND This study aims to identify biomarkers for treatment response of atezolizumab plus bevacizumab (Atezo+Bev) in patients with hepatocellular carcinoma (HCC). METHODS 96 patients who received Atezo+Bev or lenvatinib as a first-line systemic therapy were enrolled as the training group after propensity score matching (PSM), and 42 patients treated with Atezo+Bev were enrolled as the validation group. 17 serum cytokines were measured by Luminex multiplex assay at the start of treatment. For further assessment of the association between cytokine levels and the tumor microenvironment (TME), immunohistochemistry (IHC) was performed on pre-treatment liver biopsy specimens. RESULTS In the derivation set, multivariate analysis identified elevated IL-6 as an independent risk factor in the Atezo+Bev group (HR 5.80: p<0.01), but not in the lenvatinib group; in a subset analysis of patients with low IL-6, PFS was longer in the Atezo+Bev training group than in the lenvatinib group (p = 0.02). A validation study also showed a significantly longer prognosis in the low IL-6 group for both PFS (p = 0.0001) and OS (p = 0.03). Serum IL-6 had a positive correlation with tumor IL-6 expression (ρ = 0.56, p < 0.0001) and an inverse correlation with the CD8/CD163-positive cell count ratio (ρ = -0.4, p < 0.01). CONCLUSION Serum IL-6 levels are thought to be involved in the suppression of tumor immunity and are useful in predicting the therapeutic effect of Atezo+Bev treatment.
Collapse
Affiliation(s)
- Ryoichi Miura
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Atsushi Ono
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, Hiroshima, 734-8551, Japan.
| | - Hikaru Nakahara
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Yuki Shirane
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Kenji Yamaoka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Yasutoshi Fujii
- Department of Clinical Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinsuke Uchikawa
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Hatsue Fujino
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Eisuke Murakami
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Tomokazu Kawaoka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Daiki Miki
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Masataka Tsuge
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
- Liver Center, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Takeshi Kishi
- Biosample Research Center, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Waka Ohishi
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Naoya Sakamoto
- Department of Pathology and Clinical Laboratories, National Cancer Center-Hospital East, Kashiwa, Chiba, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Clair Nelson Hayes
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Shiro Oka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| |
Collapse
|
17
|
Weinfurtner K, Tischfield D, McClung G, Crainic J, Gordan J, Jiao J, Furth EE, Li W, Supan ET, Nadolski GJ, Hunt SJ, Kaplan DE, Gade TP. Human GM-CSF/IL-3 enhance tumor immune infiltration in humanized HCC patient-derived xenografts. JHEP Rep 2025; 7:101264. [PMID: 40028346 PMCID: PMC11869099 DOI: 10.1016/j.jhepr.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 03/05/2025] Open
Abstract
Background & Aims Response to immunotherapy in hepatocellular carcinoma (HCC) is suboptimal with no biomarkers to guide patient selection. "Humanized" mice represent promising models to address this deficiency but are limited by variable chimerism and underdeveloped myeloid compartments. We hypothesized that expression of human GM-CSF and IL-3 increases tumor immune cell infiltration, especially myeloid-derived cells, in humanized HCC patient-derived xenografts. Material and Methods NOG (NOD/Shi-scid/IL-2Rγnull) and NOG-EXL (huGM-CSF/huIL-3 NOG) mice conditioned with busulfan underwent i.v. injection of human CD34+ cells. HCC patient-derived xenograft tumors were then implanted subcutaneously or orthotopically. Following serial blood sampling, mice were euthanized at defined tumor sizes. Tumor, blood, liver, and spleen were analyzed by flow cytometry and immunohistochemistry. Results Humanized NOG-EXL mice demonstrated earlier and higher levels of human chimerism compared to humanized NOG mice (82.1% vs. 43.8%, p <0.0001) with a greater proportion of human monocytes (3.2% vs. 1.1%, p = 0.001) and neutrophils (0.8% vs. 0.3%, p = 0.02) in circulation. HCC tumors in humanized NOG-EXL mice exhibited greater human immune cell infiltration (57.6% vs. 30.2%, p = 0.04) with higher proportions of regulatory T cells (14.6% vs. 6.8%, p = 0.04), CD4+ PD-1 expression (84.7% vs. 32.0%, p <0.01), macrophages (1.2% vs. 0.6%, p = 0.02), and neutrophils (0.5% vs. 0.1%, p <0.0001). No differences were observed in tumor engraftment or growth latency in subcutaneous tumors, but orthotopic tumors required implantation at 2 rather than 4 weeks post-humanization for successful engraftment. Finally, utilizing adult bone marrow instead of fetal livers enabled partial HLA-matching to HCC tumors but required more CD34+ cells. Conclusions Human GM-CSF and IL-3 expression in humanized mice resulted in features more closely approximating the immune microenvironment of human disease, providing a promising model for investigating critical questions in immunotherapy for HCC. Impact and implications This study introduces a unique mouse model at a critical point in the evolution of treatment paradigms for patients with hepatocellular carcinoma (HCC). Immunotherapies have become the first-line treatment for advanced HCC; however, response rates remain low with no clear predictors of response to guide patient selection. In this context, animal models that recapitulate human disease are greatly needed. Leveraging xenograft tumors derived from patients with unresectable HCCs and a commercially available immunodeficient mouse strain that expresses human GM-CSF and IL-3, we demonstrate a novel but accessible approach for modeling the HCC tumor microenvironment.
Collapse
Affiliation(s)
- Kelley Weinfurtner
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA, United States
| | - David Tischfield
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - George McClung
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Jennifer Crainic
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - John Gordan
- Division of Hematology/Oncology, University of California- San Francisco, San Francisco, CA, United States
| | - Jing Jiao
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Emma E. Furth
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, United States
| | - Wuyan Li
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Erena Tuzneen Supan
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Gregory J. Nadolski
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen J. Hunt
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - David E. Kaplan
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA, United States
- Division of Gastroenterology and Hepatology, Corporal Michael J Crescenz Philadelphia VAMC, Philadelphia, PA, United States
| | - Terence P.F. Gade
- Penn Image-Guided Interventions Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, Corporal Michael J Crescenz Philadelphia VAMC, Philadelphia, PA, United States
| |
Collapse
|
18
|
Han JW, Kang MW, Lee SK, Yang H, Kim JH, Yoo JS, Cho HS, Jang EJ, Seo DH, Kwon JH, Nam SW, Bae SH, Jang JW, Choi JY, Yoon SK, Sung PS. Dynamic Peripheral T-Cell Analysis Identifies On-Treatment Prognostic Biomarkers of Atezolizumab plus Bevacizumab in Hepatocellular Carcinoma. Liver Cancer 2025; 14:104-116. [PMID: 40144473 PMCID: PMC11936438 DOI: 10.1159/000541181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/21/2024] [Indexed: 03/28/2025] Open
Abstract
Introduction Variability in response to atezolizumab plus bevacizumab (AB) treatment of hepatocellular carcinoma (HCC) underscores the critical need for the development of effective biomarkers. We sought to identify peripheral blood biomarkers reflecting response to AB treatment. Methods We analyzed dynamic changes in peripheral blood mononuclear cells from a prospective, multicenter cohort of 65 patients with HCC, using flow cytometry to evaluate the T-cell population before and 3 weeks after the first AB treatment. Results We found a unique response of the CD8+ T cells in terms of both frequency and phenotype, in contrast to CD4+ T cells and regulatory T cells. Notably, CD8+ T cells showed significant changes in expression of Ki-67 and T-cell immunoreceptors with Ig and ITIM domains (TIGIT). These distinct responses were observed particularly in the programmed cell death receptor-1 (PD-1)+ subpopulation of CD8+ T cells. Interestingly, the baseline differentiation status of PD-1+CD8+ T cells, particularly the central memory T-cell subset, correlated positively with greater proliferation (higher Ki-67 expression) of PD-1+CD8+ T cells after treatment. Moreover, effector memory cells expressing CD45RA correlated negatively with the increase in TIGIT+/PD-1+CD8+ T cells. The increase in TIGIT+/CD8+ T cells was associated with the development of immune-related adverse events, whereas increase in Ki-67+/PD-1+CD8+ T cells was associated with the better objective response rate. Importantly, dynamic shifts of Ki-67+/PD-1+CD8+ T cells and TIGIT+/CD8+ T cells significantly predicted progression-free survival and overall survival, as confirmed by multivariate analysis. Conclusion These findings highlight the potential of dynamic changes in CD8+ T cells as an on-treatment prognostic biomarker. Our study underscores the value of peripheral blood profiling as a noninvasive and practical method for predicting the clinical outcomes of AB treatment in patients with HCC.
Collapse
Affiliation(s)
- Ji Won Han
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, Catholic University of Korea College of Medicine, POSTECH-Catholic Biomedical Engineering Institute, Seoul, Republic of Korea
| | - Min Woo Kang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, Catholic University of Korea College of Medicine, POSTECH-Catholic Biomedical Engineering Institute, Seoul, Republic of Korea
| | - Soon Kyu Lee
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Incheon St. Mary’s Hospital, The Catholic University of Korea, Incheon, Republic of Korea
| | - Hyun Yang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hoon Kim
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Uijeongbu, Republic of Korea
| | - Jae-Sung Yoo
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee Sun Cho
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Ji Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, Catholic University of Korea College of Medicine, POSTECH-Catholic Biomedical Engineering Institute, Seoul, Republic of Korea
| | - Deok Hwa Seo
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, Catholic University of Korea College of Medicine, POSTECH-Catholic Biomedical Engineering Institute, Seoul, Republic of Korea
| | - Jung Hyun Kwon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Incheon St. Mary’s Hospital, The Catholic University of Korea, Incheon, Republic of Korea
| | - Soon Woo Nam
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Incheon St. Mary’s Hospital, The Catholic University of Korea, Incheon, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, Catholic University of Korea College of Medicine, POSTECH-Catholic Biomedical Engineering Institute, Seoul, Republic of Korea
| |
Collapse
|
19
|
Barcena-Varela M, Monga SP, Lujambio A. Precision models in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2025; 22:191-205. [PMID: 39663463 DOI: 10.1038/s41575-024-01024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Hepatocellular carcinoma (HCC) represents a global health challenge, and ranks among one of the most prevalent and deadliest cancers worldwide. Therapeutic advances have expanded the treatment armamentarium for patients with advanced HCC, but obstacles remain. Precision oncology, which aims to match specific therapies to patients who have tumours with particular features, holds great promise. However, its implementation has been hindered by the existence of numerous 'HCC influencers' that contribute to the high inter-patient heterogeneity. HCC influencers include tumour-related characteristics, such as genetic alterations, immune infiltration, stromal composition and aetiology, and patient-specific factors, such as sex, age, germline variants and the microbiome. This Review delves into the intricate world of HCC, describing the most innovative model systems that can be harnessed to identify precision and/or personalized therapies. We provide examples of how different models have been used to nominate candidate biomarkers, their limitations and strategies to optimize such models. We also highlight the importance of reproducing distinct HCC influencers in a flexible and modular way, with the aim of dissecting their relative contribution to therapy response. Next-generation HCC models will pave the way for faster discovery of precision therapies for patients with advanced HCC.
Collapse
Affiliation(s)
- Marina Barcena-Varela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Satdarshan P Monga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
20
|
Pan Y, Yuan C, Zeng C, Sun C, Xia L, Wang G, Chen X, Zhang B, Liu J, Ding ZY. Cancer stem cells and niches: challenges in immunotherapy resistance. Mol Cancer 2025; 24:52. [PMID: 39994696 PMCID: PMC11852583 DOI: 10.1186/s12943-025-02265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Cancer stem cells (CSCs) are central to tumor progression, metastasis, immune evasion, and therapeutic resistance. Characterized by remarkable self-renewal and adaptability, CSCs can transition dynamically between stem-like and differentiated states in response to external stimuli, a process termed "CSC plasticity." This adaptability underpins their resilience to therapies, including immune checkpoint inhibitors and adoptive cell therapies (ACT). Beyond intrinsic properties, CSCs reside in a specialized microenvironment-the CSC niche-which provides immune-privileged protection, sustains their stemness, and fosters immune suppression. This review highlights the critical role of CSCs and their niche in driving immunotherapy resistance, emphasizing the need for integrative approaches to overcome these challenges.
Collapse
Affiliation(s)
- Yonglong Pan
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Cellular Signaling laboratory, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chaoyi Yuan
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenglong Zeng
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chaoyang Sun
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the MOE, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Limin Xia
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guihua Wang
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Tongji Hospital, GI Cancer Research Institute, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jianfeng Liu
- Cellular Signaling laboratory, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Ze-Yang Ding
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
21
|
Bloom M, Podder S, Dang H, Lin D. Advances in Immunotherapy in Hepatocellular Carcinoma. Int J Mol Sci 2025; 26:1936. [PMID: 40076561 PMCID: PMC11900920 DOI: 10.3390/ijms26051936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Over the past several years, the therapeutic landscape for patients with advanced, unresectable, or metastatic hepatocellular carcinoma has been transformed by the incorporation of checkpoint inhibitor immunotherapy into the treatment paradigm. Frontline systemic treatment options have expanded beyond anti-angiogenic tyrosine kinase inhibitors, such as sorafenib, to a combination of immunotherapy approaches, including atezolizumab plus bevacizumab and durvalumab plus tremelimumab, both of which have demonstrated superior response and survival to sorafenib. Additionally, combination treatments with checkpoint inhibitors and tyrosine kinase inhibitors have been investigated with variable success. In this review, we discuss these advances in systemic treatment with immunotherapy, with a focus on understanding both the underlying biology and mechanism of these strategies and their efficacy outcomes in clinical trials. We also review challenges in identifying predictive biomarkers of treatments and discuss future directions with novel immunotherapy targets.
Collapse
Affiliation(s)
- Matthew Bloom
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA;
| | - Sourav Podder
- Department of Surgery, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (S.P.); (H.D.)
| | - Hien Dang
- Department of Surgery, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (S.P.); (H.D.)
| | - Daniel Lin
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA;
| |
Collapse
|
22
|
Myojin Y, Babaei S, Trehan R, Hoffman C, Kedei N, Ruf B, Benmebarek MR, Bauer KC, Huang P, Ma C, Monge C, Xie C, Hrones D, Duffy AG, Armstrong P, Kocheise L, Desmond F, Buchalter J, Galligan M, Cantwell C, Ryan R, McCann J, Bourke M, Mac Nicholas R, McDermott R, Awosika J, Cam M, Krebs R, Budhu A, Revsine M, Figg WD, Kleiner DE, Redd B, Wood BJ, Wang XW, Korangy F, Claassen M, Greten TF. Multiomics analysis of immune correlatives in hepatocellular carcinoma patients treated with tremelimumab plus durvalumab. Gut 2025:gutjnl-2024-334026. [PMID: 39965889 DOI: 10.1136/gutjnl-2024-334026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. The combination of tremelimumab and durvalumab is now a standard treatment option for advanced HCC. OBJECTIVE To study immune responses in HCC patients treated with tremelimumab and durvalumab. DESIGN We treated 28 HCC patients with durvalumab, tremelimumab and locoregional therapies. We performed a high-dimensional multiomics analysis including whole exome sequencing, single-cell RNA seq, CO-Detection by indEXing, flow cytometry and multiplex cytokine/chemokine analysis of patients' blood and tumour samples and integrated this data to elucidate immune correlatives and response mechanisms. Mice with syngeneic HCC were treated with anti-PD-L1 plus anti-CTLA4 for hepatic lymphocytes, tumour-infiltrating lymphocytes and peripheral blood mononuclear cell analysis. RESULTS The median overall survival was 19.2 months. Tumour tissue analysis revealed enhanced interferon responses, with stronger effects in responders. Gene set variation analysis indicated enhanced antigen presentation in responders. Spatial analysis revealed that non-responder tumours had higher numbers of Tregs located in neighbourhoods enriched with immune cells and expressed higher levels of ICOS and PD-1. Conversely, non-responder PD1+CD8+T in these Treg-enriched neighbourhoods expressed lower ICOS. Cell-communication analysis demonstrated that Treg-CD8+T interaction was enhanced in non-responder tissue. Peripheral blood analysis showed increased classical monocytes in responders and Tregs in non-responders. Treg-CD8+T interaction was confirmed in preclinical models. Finally, single-patient computational analysis from the all-across analysis was performed on 860 features, which led to the identification of multiomics feature sets including Treg features. CONCLUSION Our study provides a blueprint for in-depth analysis of immune correlates in immunotherapy studies and demonstrates the importance of Treg distribution in HCC. TRIAL REGISTRATION NUMBERS NCT02821754 and the EudraCT identifier: 2019-002767-98.
Collapse
Affiliation(s)
- Yuta Myojin
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sepideh Babaei
- Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tubingen, Germany
- Department of Internal Medicine I (Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectious Diseases and Geriatrics), University Hospital Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Rajiv Trehan
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christoph Hoffman
- Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tubingen, Germany
- Department of Internal Medicine I (Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectious Diseases and Geriatrics), University Hospital Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Noemi Kedei
- Collaborative Protein Technology Resources, Office of Science and Technology Resources, National Institutes of Health, Bethesda, Maryland, USA
| | - Benjamin Ruf
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Internal Medicine I (Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectious Diseases and Geriatrics), University Hospital Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Mohamed-Reda Benmebarek
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kylynda C Bauer
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Patrick Huang
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chi Ma
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Cecilia Monge
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Changqing Xie
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Donna Hrones
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Austin G Duffy
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Paul Armstrong
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Lorenz Kocheise
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Fiona Desmond
- Mater Misericordiae University Hospital, Dublin, Ireland
| | | | - Marie Galligan
- Clinical Research Centre, University College Dublin, Dublin, Ireland
| | - Colin Cantwell
- St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ronan Ryan
- St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Jeff McCann
- St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Michele Bourke
- St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ross Mac Nicholas
- St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ray McDermott
- St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Joy Awosika
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maggie Cam
- Center for Collaborative Bioinformatics, National Institutes of Health, Bethesda, Maryland, USA
| | - Rosanna Krebs
- Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tubingen, Germany
- Department of Internal Medicine I (Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectious Diseases and Geriatrics), University Hospital Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Anuradha Budhu
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mahler Revsine
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William D Figg
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David E Kleiner
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Bernadette Redd
- Radiology and Imaging Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Bradford J Wood
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Radiology and Imaging Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Center for Interventional Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Manfred Claassen
- Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tubingen, Germany
- Department of Internal Medicine I (Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectious Diseases and Geriatrics), University Hospital Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Tim F Greten
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Dong Y, Guo L, Song L, Liu T, Zheng G, Zheng M, Li B. Two-Dimensional MXenes Surface Engineering Nanoplatform for PTT-Chemotherapy Synergistic Tumor Therapy. Int J Nanomedicine 2025; 20:1983-1998. [PMID: 39968062 PMCID: PMC11834670 DOI: 10.2147/ijn.s487405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025] Open
Abstract
Background Triple-negative breast cancer (TNBC) has a high early recurrence rate and poor prognosis. Given its insensitivity to traditional systemic chemotherapy, there is an urgent need for new therapeutic strategies for effective treatment. This paper reports the development of a novel two-dimensional MXene composite nanoplatform for efficient synergistic chemotherapy and photothermal therapy of TNBC. Results To achieve surface functionalization of MXene, we developed a surface nanopore engineering strategy, enabling the uniform coating of a thin mesoporous silica layer on the two-dimensional Ti3C2 MXene surface. This strategy endows MXenes with well-defined mesopores for on-demand drug release/delivery and enhanced hydrophilicity/dispersibility. Systematic in vitro and in vivo evaluations demonstrate that Ti3C2@MSNs have high active targeting capability upon entering tumors, and through the synergistic chemotherapy of the mesoporous shell and the photothermal therapy of the Ti3C2 MXene core, tumors can be completely eradicated with no significant recurrence. Conclusion This study provides a new strategy for developing MXene-based composite nano drug delivery systems to effectively combat TNBC.
Collapse
Affiliation(s)
- Yang Dong
- Department of Breast Surgery, Breast Cancer Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, People’s Republic of China
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Liang Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
| | - Lu Song
- Department of Breast Surgery, Breast Cancer Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, People’s Republic of China
| | - Tingting Liu
- Department of Breast Surgery, Breast Cancer Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, People’s Republic of China
| | - Gang Zheng
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Meizhu Zheng
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Baojiang Li
- Department of Breast Surgery, Breast Cancer Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, People’s Republic of China
| |
Collapse
|
24
|
Macarulla T, Ren Z, Chon HJ, Park JO, Kim JW, Pressiani T, Li D, Zhukova L, Zhu AX, Chen MH, Hack SP, Wu S, Liu B, Guan X, Lu S, Wang Y, El-Khoueiry AB. Atezolizumab Plus Chemotherapy With or Without Bevacizumab in Advanced Biliary Tract Cancer: Clinical and Biomarker Data From the Randomized Phase II IMbrave151 Trial. J Clin Oncol 2025; 43:545-557. [PMID: 39423355 PMCID: PMC11809731 DOI: 10.1200/jco.24.00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/29/2024] [Accepted: 08/01/2024] [Indexed: 10/21/2024] Open
Abstract
PURPOSE Biliary tract cancers (BTCs) harbor an immunosuppressed tumor microenvironment and respond poorly to PD-1/PD-L1 inhibitors. Bevacizumab (anti-vascular endothelial growth factor) plus chemotherapy can promote anticancer immunity, augmenting response to PD-L1 inhibition. PATIENTS AND METHODS This randomized, double-blind, proof-of-concept phase II study enrolled patients (n = 162) with previously untreated advanced BTC (IMbrave151; ClinicalTrials.gov identifier: NCT04677504). Patients were randomly assigned 1:1 to receive cycles of atezolizumab (1,200 mg) plus bevacizumab (15 mg/kg) or atezolizumab plus placebo once every 3 weeks until disease progression or unacceptable toxicity. All patients received cisplatin (25 mg/m2) plus gemcitabine (1,000 mg/m2; cisplatin plus gemcitabine [CisGem]) on days 1 and 8 once every 3 weeks for up to eight cycles. Stratification of patients was by disease status, geographic region, and primary tumor location. The primary end point was progression-free survival (PFS). No formal hypothesis testing was performed. Exploratory correlative biomarker analysis was undertaken using transcriptome analysis (n = 95) and mutation profiling (n = 102) on baseline tumor samples. RESULTS Between February and September 2021, 162 patients were enrolled. Median PFS was 8.3 months in the bevacizumab arm and 7.9 months in the placebo arm (stratified hazard ratio [HR], 0.67 [95% CI, 0.46 to 0.95]). Median overall survival (OS) was 14.9 and 14.6 months in the bevacizumab and placebo arms, respectively (stratified HR, 0.97 [95% CI, 0.64 to 1.47]). The incidence of grade 3 or 4 adverse events was 74% in both arms. High VEGFA gene expression was associated with improved PFS (HR, 0.44 [95% CI, 0.23 to 0.83]) in the bevacizumab arm versus placebo. CONCLUSION In unselected patients with advanced BTC, adding bevacizumab to atezolizumab plus CisGem modestly improves PFS but not OS. High VEGFA gene expression may represent a predictive biomarker of benefit from atezolizumab/bevacizumab, warranting further investigation.
Collapse
Affiliation(s)
- Teresa Macarulla
- Vall d'Hebron University Hospital, Vall d'Hebrón Institute of Oncology (VHIO), Barcelona, Spain
| | - Zhenggang Ren
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Jae Chon
- CHA Bundang Medical Center, Seongnam-Si, South Korea
| | - Joon Oh Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jin Won Kim
- Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Tiziana Pressiani
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Daneng Li
- City of Hope National Comprehensive Cancer Center, Duarte, CA
| | - Lyudmila Zhukova
- SBIH “Moscow Clinical Scientific and Practical Center Named After A.S. Loginov” DHM, Moscow, Russian Federation
| | - Andrew X. Zhu
- Jiahui International Cancer Center, Jiahui Health, Shanghai, China
| | | | | | | | - Bo Liu
- Genentech Inc, South San Francisco, CA
| | | | - Shan Lu
- Genentech Inc, South San Francisco, CA
| | | | | |
Collapse
|
25
|
Nishitani M, Okada H, Nio K, Hayashi T, Terashima T, Iida N, Shimakami T, Takatori H, Honda M, Kaneko S, Sakamoto T, Yamashita T. Mint3 as a Molecular Target Activated in the Early Stage of Hepatocarcinogenesis. Int J Mol Sci 2025; 26:1430. [PMID: 40003897 PMCID: PMC11855386 DOI: 10.3390/ijms26041430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Mint3 enhances aerobic ATP production with subsequent nuclear translocation of hypoxia-inducible factor-1 (HIF-1) and activation of angiogenesis-related genes. It remains unclear if and when Mint3 is activated and whether it is involved in hepatocarcinogenesis. We explored the expression of Mint3 in surgically resected hepatocellular carcinoma (HCC) tissues. We evaluated the effects of Mint3 knockdown on spheroid formation capacity and subcutaneous tumor growth in immune-deficient mice. We used Mint3 knockout mice to evaluate the effects of chemically induced HCC development. Mint3 was overexpressed in well-differentiated HCC with the activation of HIF-1 target genes irrespective of the absence of hypervascularization. Mint3 knockdown ameliorated the expression of HIF-1 target genes in patient-derived HCC cell lines and suppressed spheroid formation. Mint3 knockdown further inhibited subcutaneous tumor formation in vivo in immune-deficient mice. Chemical HCC development induced by N-nitrosodiethylamine (DEN) or DEN/CCl4 was dramatically suppressed in Mint3 knockout mice compared to control mice. Mint3 plays a crucial role in early-stage HCC development before hypervascularization by activating HIF-1 target genes before the tumor becomes hypoxic. Mint3 is a molecular target that prevents HCC development in the early stages.
Collapse
MESH Headings
- Animals
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/chemically induced
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/chemically induced
- Humans
- Mice
- Mice, Knockout
- Male
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
Collapse
Affiliation(s)
- Masaki Nishitani
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Tomoyuki Hayashi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Takeshi Terashima
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Noriho Iida
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Hajime Takatori
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| |
Collapse
|
26
|
Salié H, Wischer L, D'Alessio A, Godbole I, Suo Y, Otto-Mora P, Beck J, Neumann O, Stenzinger A, Schirmacher P, Fulgenzi CAM, Blaumeiser A, Boerries M, Roehlen N, Schultheiß M, Hofmann M, Thimme R, Pinato DJ, Longerich T, Bengsch B. Spatial single-cell profiling and neighbourhood analysis reveal the determinants of immune architecture connected to checkpoint inhibitor therapy outcome in hepatocellular carcinoma. Gut 2025; 74:451-466. [PMID: 39349005 PMCID: PMC11874287 DOI: 10.1136/gutjnl-2024-332837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/05/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND The determinants of the response to checkpoint immunotherapy in hepatocellular carcinoma (HCC) remain poorly understood. The organisation of the immune response in the tumour microenvironment (TME) is expected to govern immunotherapy outcomes but spatial immunotypes remain poorly defined. OBJECTIVE We hypothesised that the deconvolution of spatial immune network architectures could identify clinically relevant immunotypes in HCC. DESIGN We conducted highly multiplexed imaging mass cytometry on HCC tissues from 101 patients. We performed in-depth spatial single-cell analysis in a discovery and validation cohort to deconvolute the determinants of the heterogeneity of HCC immune architecture and develop a spatial immune classification that was tested for the prediction of immune checkpoint inhibitor (ICI) therapy. RESULTS Bioinformatic analysis identified 23 major immune, stroma, parenchymal and tumour cell types in the HCC TME. Unsupervised neighbourhood detection based on the spatial interaction of immune cells identified three immune architectures with differing involvement of immune cells and immune checkpoints dominated by either CD8 T-cells, myeloid immune cells or B- and CD4 T-cells. We used these to define three major spatial HCC immunotypes that reflect a higher level of intratumour immune cell organisation: depleted, compartmentalised and enriched. Progression-free survival under ICI therapy differed significantly between the spatial immune types with improved survival of enriched patients. In patients with intratumour heterogeneity, the presence of one enriched area governed long-term survival.
Collapse
Affiliation(s)
- Henrike Salié
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Lara Wischer
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Antonio D'Alessio
- Department of Surgery & Cancer, Imperial College London, London, UK
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Ira Godbole
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Yuan Suo
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Patricia Otto-Mora
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Juergen Beck
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Olaf Neumann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Andreas Blaumeiser
- Institute of Medical Bioinformatics and Systems Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany, partner site Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany, partner site Freiburg, Freiburg, Germany
| | - Natascha Roehlen
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Michael Schultheiß
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - David J Pinato
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bertram Bengsch
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany, partner site Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| |
Collapse
|
27
|
Liu R, Ye J, Wang J, Ma W, Qiu Z, Yu J, Wang W. Single-cell landscape of dynamic changes in CD8 + T cells, CD4 + T cells and exhausted T cells in hepatocellular carcinoma. Sci Rep 2025; 15:4130. [PMID: 39900964 PMCID: PMC11791069 DOI: 10.1038/s41598-025-88377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
Hepatocellular carcinoma has a high incidence and poor prognosis. In this study, we investigated the value of T-cell-related genes in prognosis by single-cell sequencing data in hepatocellular carcinoma. Twelve cases of hepatocellular carcinoma single-cell sequencing were included in the study. The high dimensional weighted gene co-expression network analysis (hdWGCNA) was used to identify gene modules associated with CD4+ T cells, CD8+ T cells and exhausted T cells. Altered signaling pathway activity in exhausted T cells was uncovered by the AUCell algorithm. xCELL, TIMER, QUANTISEQ, CIBERSORT and CIBERSORT-abs were performed to explore immune cell infiltration. Immune checkpoint inhibitor genes and TIDE methods were used to predict immunotherapy response. Finally, immunohistochemistry and real-time PCR were used to verify gene expression. The hdWGCNA algorithm identified 40 genes strongly associated with CD4+ T cells, CD8+ T cells and exhausted T cells. Seven genes were finally selected for transcriptome data modeling. The results of the three independent datasets suggested that the model had strong prognostic value. Model genes were critical factors influencing CD4+ T cell and CD8+ T cell infiltration in patients. The efficacy of PD-1 immunotherapy was higher in patients belonging to the low-risk group. Alterations in signaling pathways' activity within exhausted T cells were crucial factors contributing to the decline in immune function. Differential expression of seven genes in CD8+ T cells, CD4+ T cells and exhausted T cells were key targets for improving immunotherapy response in HCC.
Collapse
Affiliation(s)
- Rongqiang Liu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jing Ye
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jianguo Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Wangbin Ma
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhendong Qiu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jia Yu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Weixing Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
28
|
Lim M, Espinoza M, Huang YH, Franses J, Zhu H, Hsiehchen D. Complete Response to Immunotherapy in Patients With Hepatocellular Carcinoma. JAMA Netw Open 2025; 8:e2461735. [PMID: 39998829 PMCID: PMC11862977 DOI: 10.1001/jamanetworkopen.2024.61735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/20/2024] [Indexed: 02/27/2025] Open
Abstract
Importance Immunotherapies are the preferred frontline treatment for most hepatocellular carcinomas (HCCs), but only a small subset of patients attain complete responses to immunotherapies, resulting in an absence of radiographic apparent disease. The clinical importance of these complete responses is unclear, and whether clinical or molecular features may define HCCs that are exquisitely sensitive to immunotherapies is ambiguous. Objective To describe the long-term survival outcomes of complete responders to immunotherapies, and to examine whether clinical and genomic characteristics are associated with complete response. Design, Setting, and Participants This cohort study includes a post hoc analysis of the IMbrave150 trial (which enrolled patients across 17 countries in North America, Europe, Asia, and Australia) and a multicenter cohort analysis of patients with advanced HCC treated with frontline immunotherapies across 3 institutions (2 in the US and 1 in Asia). Complete responders were defined as patients with a complete response according to Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 or modified RECIST. Statistical analyses were conducted from January to May 2024. Main Outcomes and Measures The main outcome was overall survival measured as the time from start of immunotherapy to the date of death. Kaplan-Meier curves were used to estimate progression-free and overall survival, and differences in survival outcomes were assessed using the log-rank test. Results The analytical sample included 279 patients (mean [SD] age, 64.7 [11.1] years; 228 male patients [81.7%]) treated with atezolizumab and bevacizumab in the IMbrave150 trial and 194 patients (mean [SD] age, 64.3 [11.4] years; 155 male patients [78.7%]) with frontline anti-programmed cell death 1 ligand 1 (PD-1/L1) therapies in a multicenter patient cohort. Complete responders had high disease-free survival rates at 2 years in the IMbrave150 (58.0%; 95% CI, 36.2%-74.7%) and multicenter (87.4%; 95% CI, 58.2%-96.7%) cohorts. Overall survival rates at 2 years for complete responders were 81.1% (95% CI, 64.4%-90.5%) in the IMbrave150 cohort and 93.3% (95% CI, 61.2%-99.0%) in the multicenter cohort. Among complete responders who discontinued treatment for reasons other than disease progression after a median duration of treatment of 24 months, disease recurrence was rare. Molecular profiling of HCC among complete responders did not reveal unique genetic alterations in these patients. However, cancers with complete responses had higher PD-L1 protein expression in the immune cell compartment and lower circulating tumor DNA levels. Conclusions and Relevance In this post hoc trial and multicenter cohort analysis of patients with HCC treated with immunotherapy, complete responders demonstrated prolonged survival and durable disease control even after discontinuation of therapy. Biological features of complete responders were also distinct, and further evaluation of immune cell PD-L1 protein expression and circulating tumor DNA as potential biomarkers is warranted.
Collapse
Affiliation(s)
- Mir Lim
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Magdalena Espinoza
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Institute of Clinical Medicine, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Joseph Franses
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Hao Zhu
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas
| | - David Hsiehchen
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
29
|
Chen Z, Xie T, Chen S, Li Z, Yao S, Lu X, He W, Tang C, Yang D, Li S, Shi F, Lin H, Li Z, Madabhushi A, Zhao X, Liu Z, Lu C. AI-based tumor-infiltrating lymphocyte scoring system for assessing HCC prognosis in patients undergoing liver resection. JHEP Rep 2025; 7:101270. [PMID: 39927235 PMCID: PMC11803844 DOI: 10.1016/j.jhepr.2024.101270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 02/11/2025] Open
Abstract
Background & Aims Tumor-infiltrating lymphocytes (TILs), particularly CD8+ TILs, are key prognostic markers in many cancers. However, their prognostic value in hepatocellular carcinoma (HCC) remains controversial, with different evidence. Given the heterogeneous outcomes in patients with HCC undergoing liver resection, this study aims to develop an AI-based system to quantify CD8+ TILs and assess their prognostic value for patients with HCC. Methods We conducted a retrospective multicenter study on patients undergoing liver resection across three cohorts (N = 514). We trained a deep neural network and a random forest model to segment tumor regions and locate CD8+ TILs in H&E and CD8-stained whole-slide images. We quantified CD8+ TIL density and established an Automated CD8+ Tumor-infiltrating Lymphocyte Scoring (ATLS-8) system to assess its prognostic value. Results In the discovery cohort, the 5-year overall survival (OS) rates were 34.05% for ATLS-8 low-score and 65.03% for ATLS-8 high-score groups (hazard ratio [HR] 2.40; 95% CI, 1.37-4.19; p = 0.015). These findings were confirmed in validation cohort 1, which had 5-year OS rates of 28.57% and 68.73% (HR 3.38; 95% CI, 1.27-9.02; p = 0.0098), and validation cohort 2, which had 59.26% and 81.48% (HR 2.74; 95% CI, 1.05-7.15; p = 0.031). ATLS-8 improved the prognostic model based on clinical variables (C-index 0.770 vs. 0.757; 0.769 vs. 0.727; 0.712 vs. 0.642 in three cohorts). Conclusions We developed an automated system using CD8-stained whole-slide images to assess immune infiltration (ATLS-8). In patients with HCC undergoing resection, higher CD8+ TIL density correlates with better OS, as per ATLS-8 assessment. This system is a promising tool for advancing clinical immune microenvironment assessment and outcome prediction. Impact and implications CD8+ tumor-infiltrating lymphocytes (TILs) have been identified as a prognostic factor associated with many cancers. In this study, CD8+ TILs were identified as an independent prognostic factor for overall survival in patients with hepatocellular carcinoma who undergoing liver resection. Therefore, ATLS-8, a novel digital biomarker based on whole-slide image-level CD8+ TILs, could play an important role in the prognostic assessment of patients with HCC and could be integrated into clinicopathological models to participate in the decision-making and prognostic assessment of patients. The scoring system combined with artificial intelligence is essential for automated, quantitative, whole-slide image-level assessment of TILs, which can be widely applied to quantify the immune profile of multi-cancer disease types with the discussion of subsequent immunotherapy.
Collapse
Affiliation(s)
- Zhiyang Chen
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Tingting Xie
- Medical Imaging Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Shuting Chen
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhenhui Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, Yunnan, China
| | - Su Yao
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xuanjun Lu
- School of Electronics Engineering, Xi’an Shiyou University, Xi’an, China
| | - Wenfeng He
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Chao Tang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Dacheng Yang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou China
| | - Shaohua Li
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Feng Shi
- Department of Interventional Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huan Lin
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zipei Li
- School of Computer Science, University of St Andrews, Fife, UK
| | - Anant Madabhushi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Radiology and Imaging Sciences, Biomedical Informatics (BMI) and Pathology, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Atlanta Veterans Administration Medical Center, Atlanta, GA, USA
| | - Xiangtian Zhao
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Cheng Lu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou China
| |
Collapse
|
30
|
Finn RS, Ryoo BY, Hsu CH, Li D, Burgoyne AM, Cotter C, Badhrinarayanan S, Wang Y, Yin A, Edubilli TR, Mahrus S, Secrest MH, Shemesh CS, Yu N, Hack SP, Cha E, Gane E. Tiragolumab in combination with atezolizumab and bevacizumab in patients with unresectable, locally advanced or metastatic hepatocellular carcinoma (MORPHEUS-Liver): a randomised, open-label, phase 1b-2, study. Lancet Oncol 2025; 26:214-226. [PMID: 39855251 DOI: 10.1016/s1470-2045(24)00679-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND PD-L1 and VEGF blockade with atezolizumab plus bevacizumab has been shown to improve survival in unresectable hepatocellular carcinoma. TIGIT is an immune checkpoint regulator implicated in many cancers, including unresectable hepatocellular carcinoma. Here, we evaluate the clinical activity and safety of the addition of tiragolumab, an anti-TIGIT monoclonal antibody, to atezolizumab plus bevacizumab. METHODS This randomised, open-label, phase 1b-2 umbrella study was conducted at 26 centres across China, France, Israel, New Zealand, South Korea, Taiwan, and the USA. Eligible patients were adults aged 18 years old or older with previously untreated locally advanced unresectable hepatocellular carcinoma, an Eastern Cooperative Oncology Group performance status of 0-1, Child-Pugh class A disease, and a life expectancy of at least 3 months. Eligible patients were randomly assigned (2:1) using permuted block randomisation to receive either tiragolumab 600 mg plus atezolizumab 1200 mg plus bevacizumab 15 mg/kg or atezolizumab 1200 mg plus bevacizumab 15 mg/kg, administered via intravenous infusion every 3 weeks on day 1 of each 21-day cycle. Patients received treatment until unacceptable toxic effects or loss of clinical benefit, whichever occurred first. The primary endpoint was objective response rate. Analysis of clinical activity was done in the efficacy-evaluable population (all patients who received at least one dose of each drug for their assigned treatment regimen) and safety was assessed in all patients who received any study treatment. The trial is registered with ClinicalTrials.gov, NCT04524871, and is ongoing. FINDINGS Between Aug 20, 2020, and Feb 10, 2022, we assessed 154 patients for eligibility and 59 eligible patients were randomly assigned to receive tiragolumab plus atezolizumab plus bevacizumab (n=41) or atezolizumab plus bevacizumab (n=18); one patient in the tiragolumab plus atezolizumab plus bevacizumab group experienced an adverse event before receiving any treatment and withdrew from the study. Median age was 65·0 years (IQR 61·0-73·0). 46 (79%) of 58 patients were male and 12 (21%) were female. Most patients were Asian (23 [40%]) or White (21 [36%]). At the time of clinical cutoff (Aug 21, 2023), median follow-up was 20·6 months (IQR 10·6-28·0) in the tiragolumab plus atezolizumab plus bevacizumab group and 14·0 months (4·2-18·5) in the atezolizumab plus bevacizumab group. The confirmed objective response rate was 43% (95% CI 27-59, n=17) in the tiragolumab plus atezolizumab plus bevacizumab group and 11% (1-35, n=2) in the atezolizumab plus bevacizumab group. All patients in both groups experienced an adverse event. The incidence of pruritis (20 [50%] of 40 patients vs three [17%] of 18 patients), arthralgia (13 [33%] vs two [11%]), and diarrhoea (12 [30%] vs one [6%]) was notably higher in the tiragolumab plus atezolizumab plus bevacizumab group than in the atezolizumab plus bevacizumab group, although these were mainly grade 1-2. The most common grade 3-4 adverse events were hypertension (six [15%] of 40 patients in the tiragolumab plus atezolizumab plus bevacizumab group vs two [11%] of 18 patients in the atezolizumab plus bevacizumab group), aspartate aminotransferase increased (three [8%] of 40 patients vs one [6%] of 18 patients), and proteinuria (two [5%] of 40 patients vs two [11%] of 18 patients). Serious adverse events occurred in 21 (53%) of 40 patients in the tiragolumab plus atezolizumab plus bevacizumab group and in ten (56%) of 18 patients in the atezolizumab plus bevacizumab group. Treatment-related deaths occurred in one patient in the tiragolumab plus atezolizumab plus bevacizumab group (due to cholestasis) and two patients in the atezolizumab plus bevacizumab group (due to oesophageal varices haemorrhage and upper gastrointestinal haemorrhage). The addition of tiragolumab to atezolizumab plus bevacizumab did not appear to result in a substantial worsening of treatment-related or immune-mediated adverse events, and no new safety signals were identified. INTERPRETATION This signal-seeking study suggests that the addition of tiragolumab to atezolizumab and bevacizumab might be more clinically active than atezolizumab plus bevacizumab alone in unresectable hepatocellular carcinoma. Based on these data, further study of combination tiragolumab plus atezolizumab plus bevacizumab is warranted. FUNDING F Hoffmann-La Roche and Genentech.
Collapse
Affiliation(s)
- Richard S Finn
- University of California Los Angeles (UCLA), Los Angeles, CA, USA.
| | | | | | - Daneng Li
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | | | | | | | - Anqi Yin
- Roche (China) Holding, Shanghai, China
| | | | | | | | | | - Nancy Yu
- Genentech, South San Francisco, CA, USA
| | | | | | - Ed Gane
- University of Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
Xie Z, Shao J, Shen Z, Ye Z, Okada Y, Okuzaki D, Okada N, Tachibana M. HDAC1-3 inhibition triggers NEDD4-mediated CCR2 downregulation and attenuates immunosuppression in myeloid-derived suppressor cells. Cancer Immunol Immunother 2025; 74:81. [PMID: 39891718 PMCID: PMC11787094 DOI: 10.1007/s00262-024-03931-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/21/2024] [Indexed: 02/03/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) play a critical role in cancer progression and resistance, thus representing promising targets for immunotherapy. Despite the established role of histone deacetylases (HDACs) in epigenetic regulation of cell fate and function, their specific impact on MDSCs remains elusive. We sought to investigate the effects and underlying mechanisms of HDAC on MDSCs using various HDAC inhibitors. Our results indicate that HDAC1-3 inhibitors reduce CCR2 expression, a chemokine receptor that mediates the migration of monocytic (M-)MDSCs to tumors and attenuated the immunosuppressive activity of MDSCs. In an orthotropic hepatocellular carcinoma (HCC) murine model, HDAC1-3 inhibitors reduced the infiltration of M-MDSCs, increased the number of natural killer cells in tumors, and suppressed tumor growth. Our results also suggest that HDAC1-3 inhibitors potentiate the antitumor effects of anti-programmed cell death protein 1 antibodies. ATAC-seq and RNA-seq analyses revealed 115 genes epigenetically upregulated by HDAC1-3 inhibitors, primarily linked to transcriptional regulation and ubiquitination. We further elucidated that HDAC1-3 inhibitors facilitate CCR2 protein degradation through ubiquitination-mediated by NEDD4 E3 ligase. Our findings reveal a novel mechanism of action of HDAC1-3 inhibitors in MDSCs and suggest a potential synergistic immunotherapy strategy for clinical benefit in HCC.
Collapse
Affiliation(s)
- Zhiqi Xie
- Wuyi First People's Hospital, Affiliated Hospital, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Jinjin Shao
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, 310053, China
| | - Zeren Shen
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhichao Ye
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, 310053, China
| | - Yoshiaki Okada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Naoki Okada
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Masashi Tachibana
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan.
- Laboratory for Context-Dependent Cell Immunology, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
32
|
Cheng Y, Chen X, Feng L, Yang Z, Xiao L, Xiang B, Wang X, Liu D, Lin P, Shi J, Song G, Qian W, Zhang B, Xu Y, Gao Z, Chen L, Wu Y, Ma J, Lin Y, Zhao H, Peng L, Mao X, Liu Y, Hou H, Yang M, Ji Y, Wang X, Zhou J, Xu X, Liu X, Wei W, Zhang X, Gao Q, Zhou H, Sun Y, Wu K, Fan J. Stromal architecture and fibroblast subpopulations with opposing effects on outcomes in hepatocellular carcinoma. Cell Discov 2025; 11:1. [PMID: 39870619 PMCID: PMC11772884 DOI: 10.1038/s41421-024-00747-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/29/2024] [Indexed: 01/29/2025] Open
Abstract
Dissecting the spatial heterogeneity of cancer-associated fibroblasts (CAFs) is vital for understanding tumor biology and therapeutic design. By combining pathological image analysis with spatial proteomics, we revealed two stromal archetypes in hepatocellular carcinoma (HCC) with different biological functions and extracellular matrix compositions. Using paired single-cell RNA and epigenomic sequencing with Stereo-seq, we revealed two fibroblast subsets CAF-FAP and CAF-C7, whose spatial enrichment strongly correlated with the two stromal archetypes and opposing patient prognosis. We discovered two functional units, one is the intratumor inflammatory hub featured by CAF-FAP plus CD8_PDCD1 proximity and the other is the marginal wound-healing hub with CAF-C7 plus Macrophage_SPP1 co-localization. Inhibiting CAF-FAP combined with anti-PD-1 in orthotopic HCC models led to improved tumor regression than either monotherapy. Collectively, our findings suggest stroma-targeted strategies for HCC based on defined stromal archetypes, raising the concept that CAFs change their transcriptional program and intercellular crosstalk according to the spatial context.
Collapse
Affiliation(s)
- Yifei Cheng
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaofang Chen
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Feng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhicheng Yang
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liyun Xiao
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
| | - Bin Xiang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaodong Wang
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Dongbin Liu
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
| | - Penghui Lin
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
| | - Jieyi Shi
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guohe Song
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wulei Qian
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Boan Zhang
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yanan Xu
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lv Chen
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingcheng Wu
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqiang Ma
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Youpei Lin
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haichao Zhao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lihua Peng
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
| | | | - Yang Liu
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Hou
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyu Yang
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoying Wang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xun Xu
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, Guangdong, China
| | - Xiyang Liu
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Wu Wei
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hu Zhou
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yidi Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Kui Wu
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, Guangdong, China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
33
|
Wu HY, Cao SY, Xu ZG, Wang T, Ji GW, Wang K. Construction of a radiogenomic signature based on endoplasmic reticulum stress for predicting prognosis and systemic combination therapy response in hepatocellular carcinoma. BMC Cancer 2025; 25:131. [PMID: 39849389 PMCID: PMC11756198 DOI: 10.1186/s12885-025-13433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide. Various factors in the tumor environment (TME) can lead to the activation of endoplasmic reticulum stress (ERS), thereby affecting the occurrence and development of tumors. The objective of our study was to develop and validate a radiogenomic signature based on ERS to predict prognosis and systemic combination therapy response. METHODS Using data from The Cancer Genome Atlas Program (TCGA) as a training cohort and data from International cancer genome consortium (ICGC) as a testing cohort. Univariate Cox regression and multivariate Cox regression analysis were used to identify prognostic-related genes and construct a model. HCC single-cell data obtained from Gene Expression Omnibus (GEO) were used to map gene signatures and explore inter-cellular signaling communications. Finally, a radiogenomic signature was used to predict the objective response rate (ORR) and overall survival (OS). RESULTS A total of four gene signatures related to ERS, including Stanniocalcin-2 (STC2), Melanoma-Associated Antigen 3 (MAGEA3), BR Serine/Threonine-Protein Kinase 2 (BRSK2), DEAD/H-Box Helicase 11 (DDX11) were identified. Macrophages were significantly different between high-risk and low-risk groups. The high-risk group showed higher targeting programmed cell death-1 (PD-1) and mutated tumor protein p53 (TP53) scores. Drug sensitivity analysis found that most sensitive drugs target the phosphatidylinositol 3-kinase/ mechanistic target of rapamycin (PI3K/mTOR) signaling pathway. Further research revealed the expression of STC2 in the endothelial cells (ECs), particularly plasmalemma vesicle associated protein (PLVAP) + ECs, and may regulate the reprogramming and function of macrophages. Furthermore, we identified nine radiomic features and established a radiogenomic signature based on ERS that can predict prognosis and response to systemic combination therapy. This signature can guide systemic combination therapy for patients with unresectable HCC. CONCLUSIONS We established an ERS prognostic model that can predict patient prognosis. We also found that ERS is closely related to the TME and is mainly manifested in the interaction between tumor-associated endothelial cells (TAEs) and tumor-associated macrophages (TAMs). Moreover, we constructed a radiogenomic signature based on the ERS. This signature can guide subsequent combination therapy for patients with unresectable HCC.
Collapse
Affiliation(s)
- Huai-Yu Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, People's Republic of China
- NHC Key laboratory of Hepatobiliary cancers, Nanjing, Jiangsu, People's Republic of China
| | - Shu-Ya Cao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, People's Republic of China
- NHC Key laboratory of Hepatobiliary cancers, Nanjing, Jiangsu, People's Republic of China
| | - Zheng-Gang Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, People's Republic of China
- NHC Key laboratory of Hepatobiliary cancers, Nanjing, Jiangsu, People's Republic of China
| | - Tian- Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, People's Republic of China
- NHC Key laboratory of Hepatobiliary cancers, Nanjing, Jiangsu, People's Republic of China
| | - Gu-Wei Ji
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, People's Republic of China.
- NHC Key laboratory of Hepatobiliary cancers, Nanjing, Jiangsu, People's Republic of China.
| | - Ke Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, People's Republic of China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, People's Republic of China.
- NHC Key laboratory of Hepatobiliary cancers, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
34
|
Zhou M, Zhou Z, Hu L, Chen S, Meng F, Chen J, Shen J. Multiplex immunohistochemistry to explore the tumor immune microenvironment in HCC patients with different GPC3 expression. J Transl Med 2025; 23:88. [PMID: 39838375 PMCID: PMC11748271 DOI: 10.1186/s12967-025-06106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVES GPC3 has been recognized as a promising target for immunotherapy in hepatocellular carcinoma (HCC). However, the GPC3-targeted immunotherapies have shown limited therapeutic efficacy. The use of anti-PD-1/PD-L1 monoclonal antibodies in HCC treatment is considerably constrained. Furthermore, there is still a notable lack of understanding concerning the immune landscape in HCC, especially regarding varied GPC3 expression levels. Therefore, thorough exploration of the intricate tumor immune microenvironment at different GPC3 expression levels is essential for guiding and improving HCC treatment strategies. METHODS Sixty patients with HCC were enrolled in this study, receiving a first-line treatment that combined anti-angiogenesis targeted drugs and immunotherapy. Immunohistochemistry was used to assess the levels of GPC3 expression. Multiple immunohistochemical markers, such as CD8, PD-1, LAG3, TIGIT, TIM-3, CD103, Claudin18.2, PD-L1, CD4, Foxp3, CD68, CD163, GPC3, CD11C, CD14, CD66b, and HLA-DR, were used to characterize the immune microenvironment and spatial distribution of immune cells in HCC tumors with different levels of GPC3 expression. Cell expression levels and spatial distribution were determined by fluorescence staining and subsequent analysis of fluorescence intensity using the Panoramic Pathology Workstation (Pano ATLAS). This approach facilitated a detailed examination of cell characteristics and spatial information within the samples. RESULTS Based on the result of GPC3 immunohistochemical analysis, patients with strong positive GPC3 expression were classified as high GPC3 expression, while the others were classified as low GPC3 expression. Patients in the low GPC3 expression group had longer overall survival (OS) than in the high group (P = 0.003, HR = 2.9240). Further exploration of the immune microenvironment based on different GPC3 expression levels revealed that in high GPC3 expression group, the proportions of CD8+ T cells(P = 0.0435), TIM-3+ T cells(P = 0.0447), CD103+CD8+ tissue-resident T cells(P = 0.0410), CD11C+CD14-DC cells(P = 0.0497), CD11C+HLA-DR-DC cells(P = 0.0309), CD11C+CD14-HLA-DR-DC cells(P = 0.0233), and CD11C+CD14-CD66b-DC cells(P = 0.0474) were all higher compared to low expression group. At spatial distances of 10 μm, 20 μm, and 30 μm, the levels of CD8+ T cells were higher in the high expression group compared to the low expression group (high vs. low: P = 0.0281, P = 0.0236, P = 0.0220). CONCLUSIONS Multiple immunohistochemistry is a powerful technique for exploring the intricate immune microenvironment of hepatocellular carcinoma, enabling the precise identification of diverse cell subsets and their spatial distribution within the tumor microenvironment. This methodology provides valuable insights into the complex interactions and spatial organization of immune cells in the context of hepatocellular carcinoma progression. Low GPC3 expression in HCC patients indicates potential benefits from combined targeted and immunotherapy. Different levels of GPC3 expression levels can predict the effectiveness of targeted combination immunotherapy in HCC patients. Additionally, different GPC3 expression patterns in HCC patients correspond to unique tumor immune microenvironments, which have implications for guiding HCC treatment approaches.
Collapse
Affiliation(s)
- Mingzhen Zhou
- Comprehensive Cancer Center, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Ziyan Zhou
- Comprehensive Cancer Center, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Lina Hu
- Comprehensive Cancer Center, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Sidong Chen
- Department of Precision Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fanyan Meng
- Comprehensive Cancer Center, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, China.
- Department of Medical and Scientific Affairs, Virtue Diagnostics (Suzhou) Co., Ltd, Shanghai, China.
| | - Jun Chen
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, China.
| | - Jie Shen
- Comprehensive Cancer Center, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, China.
- Department of Precision Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
35
|
He Y, Huang J, Liang X, Shao C, Sun X, Zhang J. Global perspectives and hotspots of VEGF signaling pathway in liver disease from 2008 to 2023: A bibliometric analysis and visualization. Heliyon 2025; 11:e41346. [PMID: 39811369 PMCID: PMC11729667 DOI: 10.1016/j.heliyon.2024.e41346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Background The vascular endothelial growth factor (VEGF) signaling pathway is closely related to pathological angiogenesis in liver disease. Anti-angiogenesis is an effective intervention in the clinical treatment of liver disease. Some antiangiogenic drugs are resistant and have limitations in clinical use. Methods This research uses bibliometric methods to assess the literature on the VEGF signaling pathway in liver disease from 2008 to 2023. Results The number of publications has generally increased over the past 16 years, meaning that enormous researchers are interested in this field. China and the USA have published the most articles and cooperate closely with each other. Plos one has published the largest number of articles in this area, and Hepatology and Journal of Hepatology is the most authoritative journal. Llovet JM is an outstanding researcher in the field with the highest citations. Keywords and research hotspots analysis indicated that researchers are very concerned about the application and clinical research status of anti-angiogenic drugs in hepatocellular carcinoma (HCC). Continuing to deepen the research on the use of anti-angiogenic drugs alone and in combination is necessary. In addition, the resistance of anti-angiogenic therapeutic drugs leads to a complex mechanism of angiogenesis response caused by hypoxia, which requires further research. Conclusions This study analyzed the research situation related to the VEGF signaling pathway in liver disease from a bibliometric and visual perspective. Our analysis helps researchers better understand the research directions and hotspots in this area, enabling them to better carry out research in the future.
Collapse
Affiliation(s)
- Yi He
- College of Basic Medical Science, Zhejiang Chinese Medical University, China
| | - Jiaxin Huang
- College of Basic Medical Science, Zhejiang Chinese Medical University, China
| | - Xiaofan Liang
- College of Basic Medical Science, Zhejiang Chinese Medical University, China
| | - Chang Shao
- College of Basic Medical Science, Zhejiang Chinese Medical University, China
| | - Xiguang Sun
- College of Basic Medical Science, Zhejiang Chinese Medical University, China
| | - Junjie Zhang
- College of Basic Medical Science, Zhejiang Chinese Medical University, China
| |
Collapse
|
36
|
Eghbali S, Heumann TR. Next-Generation Immunotherapy for Hepatocellular Carcinoma: Mechanisms of Resistance and Novel Treatment Approaches. Cancers (Basel) 2025; 17:236. [PMID: 39858016 PMCID: PMC11764197 DOI: 10.3390/cancers17020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, and, with only 15-20% of HCC patients being suitable for potentially curative treatments, the vast majority of patients with HCC ultimately require systemic therapy. For decades, the choice of effective systemic therapy for HCC remained sparse. In recent years, after the combination of atezolizumab and bevacizumab demonstrated superior overall survival over the first-line standard, sorafenib, there has been a major therapeutic paradigm shift to immunotherapy-based regimens for HCC. While representing a great leap forward for the treatment of this cancer, the reality is that less than one-third of patients achieve an objective response to immune checkpoint inhibitor-based therapy, so there remains a significant clinical need for further therapeutic optimization. In this review, we provide an overview of the current landscape of immunotherapy for unresectable HCC and delve into the tumor intrinsic and extrinsic mechanisms of resistance to established immunotherapies with a focus on novel therapeutic targets with strong translational potential. Following this, we spotlight emerging immunotherapy approaches and notable clinical trials aiming to optimize immunotherapy efficacy in HCC that include novel immune checkpoint inhibitors, tumor microenvironment modulators, targeted delivery systems, and locoregional interventions.
Collapse
Affiliation(s)
- Shabnam Eghbali
- Division of Internal Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thatcher Ross Heumann
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA
| |
Collapse
|
37
|
Borden ES, Jorgensen A, Natri HM, Hastings KT, Buetow KH, Wilson MA. HCV- and HBV-mediated liver cancer converge on similar transcriptomic landscapes and immune profiles. HGG ADVANCES 2025; 6:100373. [PMID: 39427232 PMCID: PMC11570839 DOI: 10.1016/j.xhgg.2024.100373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related deaths worldwide, and a large proportion is attributable to viral causes, including hepatitis B (HBV) and C viruses (HCV). The pathogenesis of viral-mediated HCC can differ between HBV and HCV, but it is unclear how much these differences influence the tumors' final molecular and immune profiles. Additionally, there are known sex differences in the molecular etiology of HCC, but sex differences have not been explored in the context of viral-mediated HCC. To determine the extent to which the viral status and sex impact the molecular and immune profiles of HCC, we performed differential expression and immune cell deconvolution analyses. We identified a large number of differentially expressed genes unique to the HBV or HCV tumor:tumor-adjacent comparison. Pathway enrichment analyses demonstrated that changes unique to the HCV tumor:tumor-adjacent tissue were dominated by changes in immune pathways. Immune cell deconvolution demonstrated that HCV tumor-adjacent tissue had the largest immune cell infiltrate, with no difference in the immune profiles within HBV and HCV tumor samples. Overall, this work demonstrates the convergence of HBV- and HCV-mediated HCC on a similar transcriptomic landscape and immune profile despite differences in the surrounding tissue.
Collapse
Affiliation(s)
- Elizabeth S Borden
- Department of Dermatology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA; Phoenix Veterans Affairs Health Care System, Phoenix, AZ, USA
| | - Annika Jorgensen
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Heini M Natri
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Karen Taraszka Hastings
- Department of Dermatology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA; Phoenix Veterans Affairs Health Care System, Phoenix, AZ, USA
| | - Kenneth H Buetow
- School of Life Sciences, Arizona State University, Tempe, AZ, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
38
|
Zhang M, Huang K, Yin Q, Wu X, Zhu M, Li M. Spatial heterogeneity of the hepatocellular carcinoma microenvironment determines the efficacy of immunotherapy. Discov Oncol 2025; 16:15. [PMID: 39775241 PMCID: PMC11706828 DOI: 10.1007/s12672-025-01747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge owing to its widespread incidence and high mortality. HCC has a specific immune tolerance function because of its unique physiological structure, which limits the efficacy of chemotherapy, radiotherapy, and molecular targeting. In recent years, new immune approaches, including adoptive cell therapy, tumor vaccines, and oncolytic virus therapy, have shown great potential. As the efficacy of immunotherapy mainly depends on the spatial heterogeneity of the tumor immune microenvironment, it is necessary to elucidate the crosstalk between the composition of the liver cancer immune environment, from which potential therapeutic targets can be selected to provide more appropriate individualized treatment programs. The role of spatial heterogeneity of immune cells in the microenvironment of HCC in the progression and influence of immunotherapy on improving the treatment and prognosis of HCC were comprehensively analyzed, providing new inspiration for the subsequent clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Minni Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
- The First Affiliated Hospital, Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, The Hainan Branch of National Clinical Research Center for Cancer, Hainan Medical University, Haikou, 570102, Hainan, People's Republic of China
| | - Kailin Huang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Qiushi Yin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Xueqin Wu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou, 570023, Hainan, People's Republic of China.
- Key Laboratory of Tropical Translational Medicine, Ministry of Education, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| |
Collapse
|
39
|
Teo JMN, Chen Z, Chen W, Tan RJY, Cao Q, Chu Y, Ma D, Chen L, Yu H, Lam KH, Lee TKW, Chakarov S, Becher B, Zhang N, Li Z, Ma S, Xue R, Ling GS. Tumor-associated neutrophils attenuate the immunosensitivity of hepatocellular carcinoma. J Exp Med 2025; 222:e20241442. [PMID: 39636298 PMCID: PMC11619716 DOI: 10.1084/jem.20241442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/11/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
Tumor-associated neutrophils (TANs) are heterogeneous; thus, their roles in tumor development could vary depending on the cancer type. Here, we showed that TANs affect metabolic dysfunction-associated steatohepatitis hepatocellular carcinoma (MASH-related HCC) more than viral-associated HCC. We attributed this difference to the predominance of SiglecFhi TANs in MASH-related HCC tumors. Linoleic acid and GM-CSF, which are commonly elevated in the MASH-related HCC microenvironment, fostered the development of this c-Myc-driven TAN subset. Through TGFβ secretion, SiglecFhi TANs promoted HCC stemness, proliferation, and migration. Importantly, SiglecFhi TANs supported immune evasion by directly suppressing the antigen presentation machinery of tumor cells. SiglecFhi TAN removal increased the immunogenicity of a MASH-related HCC model and sensitized it to immunotherapy. Likewise, a high SiglecFhi TAN signature was associated with poor prognosis and immunotherapy resistance in HCC patients. Overall, our study highlights the importance of understanding TAN heterogeneity in cancer to improve therapeutic development.
Collapse
Affiliation(s)
- Jia Ming Nickolas Teo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhulin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Weixin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rachael Julia Yuenyinn Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qi Cao
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Yingming Chu
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Delin Ma
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
| | - Liting Chen
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Huajian Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ka-Hei Lam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Svetoslav Chakarov
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Burkhard Becher
- Institue of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ning Zhang
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
| | - Ruidong Xue
- Yunnan Baiyao International Medical Research Center, Peking University, Beijing, China
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
- International Cancer Institute and State Key Laboratory of Molecular Oncology, Peking University, Beijing, China
- MOE Frontiers Science Center for Cancer Integrative Omics, Peking University, Beijing, China
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
40
|
Osuga T, Kubo T, Miyanishi K, Ito R, Sugawara T, Ohnuma H, Murase K, Takada K. Hepatocellular Carcinoma Presenting with Pseudoprogression in a Patient Receiving Atezolizumab Plus Bevacizumab Combination Therapy. Intern Med 2025:4710-24. [PMID: 39756877 DOI: 10.2169/internalmedicine.4710-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
A 65-year-old man with hepatocellular carcinoma and lung metastasis was treated with a combination of atezolizumab and bevacizumab. Subsequently, the patient developed fever and new liver lesions, which were considered to indicate a pseudoprogression. Despite this, the treatment was continued. Three months later, CT scans demonstrated that the new lesions had disappeared and both the primary tumor and metastases had shrunk. A partial response was achieved and maintained for two years. A histological examination revealed a predominance of CD8-positive lymphocytes and PD-L1-positive tumor-associated macrophages, which may predict a positive response to this therapy. Pseudoprogression may therefore be a favorable prognostic factor in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Takahiro Osuga
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Japan
| | - Tomohiro Kubo
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Japan
| | - Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Japan
| | - Ryo Ito
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Japan
| | - Taro Sugawara
- Department of Surgical Pathology, Sapporo Medical University, School of Medicine, Japan
| | - Hiroyuki Ohnuma
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Japan
| | - Kazuyuki Murase
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Japan
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Japan
| |
Collapse
|
41
|
Muto S, Ozaki Y, Yamaguchi H, Watanabe M, Okabe N, Matsumura Y, Hamada K, Suzuki H. Tumor β-Catenin Expression Associated With Poor Prognosis to Anti-PD-1 Antibody Monotherapy in Non-small Cell Lung Cancer. CANCER DIAGNOSIS & PROGNOSIS 2025; 5:32-41. [PMID: 39758230 PMCID: PMC11696345 DOI: 10.21873/cdp.10409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025]
Abstract
Background/Aim Tumor intrinsic β-catenin signaling has been reported to influence the tumor immune microenvironment and may be a resistance mechanism to immune checkpoint inhibitors in various cancers. Patients and Methods We studied the association between tumor β-catenin expression and survival in 50 patients with non-small cell lung cancer (NSCLC) treated with anti-programmed death-1 antibody monotherapy. Tumor β-catenin expression was evaluated by immunohistochemistry. Results Patients with positive tumor β-catenin expression (20% of all patients) had worse progression-free survival and overall survival compared with those with negative tumor β-catenin expression. Patients with positive tumor β-catenin expression had reduced CD8+ cell and CD11c+ cell infiltration into tumor nests than those with negative tumor β-catenin expression. RT-PCR of tumor tissue revealed that patients with positive tumor β-catenin expression showed lower gene expression of CD8A, CD4, IFN-γ, BATF3, and CCL4. Knockdown of CTNNB1 tended to increase CCL4 expression, likely mediated by ATF3, in a lung cancer cell line with positive β-catenin expression. Conclusion NSCLC patients with positive tumor β-catenin expression that were treated with anti-programmed death-1 antibody monotherapy had poor prognosis.
Collapse
Affiliation(s)
- Satoshi Muto
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Yuki Ozaki
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Hikaru Yamaguchi
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Masayuki Watanabe
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Naoyuki Okabe
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Yuki Matsumura
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Kazuyuki Hamada
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Hiroyuki Suzuki
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
42
|
Fan G, Na J, Shen Z, Lin F, Zhong L. Heterogeneity of tumor-associated neutrophils in hepatocellular carcinoma. Mol Immunol 2025; 177:1-16. [PMID: 39642781 DOI: 10.1016/j.molimm.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 12/09/2024]
Abstract
Neutrophils are the most abundant cell type in human blood and play a crucial role in the immune system and development of tumors. This review begins with the generation and development of neutrophils, traces their release from the bone marrow into the bloodstream, and finally discusses their role in the hepatocellular carcinoma (HCC) microenvironment. It elaborates in detail the mechanisms by which tumor-associated neutrophils (TANs) exert antitumor or protumor effects under the influence of various mediators in the tumor microenvironment. Neutrophils can exert antitumor effects through direct cytotoxic action. However, they can also accelerate the formation and progression of HCC by being recruited and infiltrated, promoting tumor angiogenesis, and maintaining an immunosuppressive microenvironment. Therefore, based on the heterogeneity and plasticity of neutrophils in tumor development, this review summarizes the current immunotherapies targeting TANs, discusses potential opportunities and challenges, and provides new insights into exploring more promising strategies for treating HCC.
Collapse
Affiliation(s)
- Guixiang Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Faquan Lin
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
43
|
Lee SH, Yim SY, Kim JH, Lee SS, Kaseb AO, Wei P, Lee JS. Correspondence to letter to the editor on "Genomic biomarkers to predict response to atezolizumab plus bevacizumab immunotherapy in hepatocellular carcinoma: Insights from the IMbrave150 trial". Clin Mol Hepatol 2025; 31:e110-e112. [PMID: 39355874 PMCID: PMC11791560 DOI: 10.3350/cmh.2024.0828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/03/2024] Open
Affiliation(s)
- Sung Hwan Lee
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Sun Young Yim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ji Hoon Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sunyoung S Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
44
|
Zhang H, Xu J, Meng H, Shen L. Comparison of the Effectiveness of Transarterial Bland Embolization and Transarterial Chemoembolization for Intermediate-Stage Hepatocellular Carcinoma: A Propensity Score-Matched Study of 1,008 Patients. J Vasc Interv Radiol 2025; 36:41-49. [PMID: 39299651 DOI: 10.1016/j.jvir.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
PURPOSE To assess the effectiveness of transarterial bland embolization (TAE) compared with transarterial chemoembolization (TACE) therapy in the treatment of patients with intermediate-stage hepatocellular carcinoma (HCC). MATERIALS AND METHODS Two thousand two hundred ninety-seven patients with intermediate-stage HCC were screened, and 1,461 patients who underwent TAE or TACE as the first-choice treatment were retrospectively analyzed and baseline matched according to the 2 treatment methods. Subgroup analysis was performed among patients according to the Up-to-7 criteria. The primary endpoint was overall survival (OS). RESULTS A total of 1,461 patients with HCC who underwent TAE or TACE were included; 730 patients underwent TACE and 731 underwent TAE. The patients in the TAE group exhibited poorer liver function and a significantly higher rate of hepatitis B infection (P < .001) compared with the TACE group. After propensity score matching, 504 well-matched pairs of patients with intermediate-stage HCC were selected for analysis. Univariate analysis showed that TACE significantly prolonged patient survival compared with TAE (P < .001). The 1-, 2-, and 3-year OS rates were 74.3%, 57.1%, and 44.4% and for the TACE group and 58.3%, 32.4%, and 21.7% for the TAE group, respectively. Multivariate analysis showed a hazard ratio of 0.517 (95% CI, 0.442-0.605; P < .001) for the TACE approach over the TAE approach for OS. The TACE group had a significantly higher overall response rate than the TAE group (35% vs 26%; P = .024). CONCLUSIONS TACE resulted in higher response rate and longer OS compared with TAE as the initial treatment for intermediate-stage HCC.
Collapse
Affiliation(s)
- Hongmin Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jian Xu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Haoyu Meng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lujun Shen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
45
|
Nishida N. Personalized approaches to the treatment of hepatocellular carcinoma using immune checkpoint inhibitors: Editorial on "Genomic biomarkers to predict response to atezolizumab plus bevacizumab immunotherapy in hepatocellular carcinoma: Insights from the IMbrave150 trial". Clin Mol Hepatol 2025; 31:311-315. [PMID: 39228069 PMCID: PMC11791597 DOI: 10.3350/cmh.2024.0739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024] Open
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
46
|
Li B, Wen J, Xu Z, Yan P, Han B, Yu D. Comprehensive analysis of transcriptomic biomarkers for predicting response to atezolizumab plus bevacizumab immunotherapy in hepatocellular carcinoma. Clin Mol Hepatol 2025; 31:e31-e34. [PMID: 39300923 PMCID: PMC11791609 DOI: 10.3350/cmh.2024.0628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024] Open
Affiliation(s)
- Binghua Li
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jingyuan Wen
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhu Xu
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peng Yan
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bing Han
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Decai Yu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
47
|
Lehrich BM, Delgado ER. Lipid Nanovesicle Platforms for Hepatocellular Carcinoma Precision Medicine Therapeutics: Progress and Perspectives. Organogenesis 2024; 20:2313696. [PMID: 38357804 PMCID: PMC10878025 DOI: 10.1080/15476278.2024.2313696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality globally. HCC is highly heterogenous with diverse etiologies leading to different driver mutations potentiating unique tumor immune microenvironments. Current therapeutic options, including immune checkpoint inhibitors and combinations, have achieved limited objective response rates for the majority of patients. Thus, a precision medicine approach is needed to tailor specific treatment options for molecular subsets of HCC patients. Lipid nanovesicle platforms, either liposome- (synthetic) or extracellular vesicle (natural)-derived present are improved drug delivery vehicles which may be modified to contain specific cargos for targeting specific tumor sites, with a natural affinity for liver with limited toxicity. This mini-review provides updates on the applications of novel lipid nanovesicle-based therapeutics for HCC precision medicine and the challenges associated with translating this therapeutic subclass from preclinical models to the clinic.
Collapse
Affiliation(s)
- Brandon M. Lehrich
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evan R. Delgado
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
48
|
Bukhari I, Li M, Li G, Xu J, Zheng P, Chu X. Pinpointing the integration of artificial intelligence in liver cancer immune microenvironment. Front Immunol 2024; 15:1520398. [PMID: 39759506 PMCID: PMC11695355 DOI: 10.3389/fimmu.2024.1520398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Liver cancer remains one of the most formidable challenges in modern medicine, characterized by its high incidence and mortality rate. Emerging evidence underscores the critical roles of the immune microenvironment in tumor initiation, development, prognosis, and therapeutic responsiveness. However, the composition of the immune microenvironment of liver cancer (LC-IME) and its association with clinicopathological significance remain unelucidated. In this review, we present the recent developments related to the use of artificial intelligence (AI) for studying the immune microenvironment of liver cancer, focusing on the deciphering of complex high-throughput data. Additionally, we discussed the current challenges of data harmonization and algorithm interpretability for studying LC-IME.
Collapse
Affiliation(s)
- Ihtisham Bukhari
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengxue Li
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Guangyuan Li
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jixuan Xu
- Department of Gastrointestinal & Thyroid Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Zheng
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiufeng Chu
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
49
|
Cappuyns S, Piqué-Gili M, Esteban-Fabró R, Philips G, Balaseviciute U, Pinyol R, Gris-Oliver A, Vandecaveye V, Abril-Fornaguera J, Montironi C, Bassaganyas L, Peix J, Zeitlhoefler M, Mesropian A, Huguet-Pradell J, Haber PK, Figueiredo I, Ioannou G, Gonzalez-Kozlova E, D'Alessio A, Mohr R, Meyer T, Lachenmayer A, Marquardt JU, Reeves HL, Edeline J, Finkelmeier F, Trojan J, Galle PR, Foerster F, Mínguez B, Montal R, Gnjatic S, Pinato DJ, Heikenwalder M, Verslype C, Van Cutsem E, Lambrechts D, Villanueva A, Dekervel J, Llovet JM. Single-cell RNA sequencing-derived signatures define response patterns to atezolizumab + bevacizumab in advanced hepatocellular carcinoma. J Hepatol 2024:S0168-8278(24)02771-5. [PMID: 39709141 DOI: 10.1016/j.jhep.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND & AIMS The combination of atezolizumab and bevacizumab (atezo+bev) is the current standard of care for advanced hepatocellular carcinoma (HCC), providing a median overall survival (OS) of 19.2 months. Here, we aim to uncover the underlying cellular processes driving clinical benefit vs. resistance to atezo+bev. METHODS We harnessed the power of single-cell RNA sequencing in advanced HCC to derive gene expression signatures recapitulating 21 cell phenotypes. These signatures were applied to 422 RNA-sequencing samples of patients with advanced HCC treated with atezo+bev (n = 317) vs. atezolizumab (n = 47) or sorafenib (n = 58) as comparators. RESULTS We unveiled two distinct patterns of response to atezo+bev. First, an immune-mediated response characterised by the combined presence of CD8+ T effector cells and pro-inflammatory CXCL10+ macrophages, representing an immune-rich microenvironment. Second, a non-immune, angiogenesis-related response distinguishable by a reduced expression of the VEGF co-receptor neuropilin-1 (NRP1), a biomarker that specifically predicts improved OS upon atezo+bev vs. sorafenib (p = 0.039). Primary resistance was associated with an enrichment of immunosuppressive myeloid populations, namely CD14+ monocytes and TREM2+ macrophages, and Notch pathway activation. Based on these mechanistic insights we define "Immune-competent" and "Angiogenesis-driven" molecular subgroups, each associated with a significantly longer OS with atezo+bev vs. sorafenib (p of interaction = 0.027), and a "Resistant" subset. CONCLUSION Our study unveils two distinct molecular subsets of clinical benefit to atezolizumab plus bevacizumab in advanced HCC ("Immune-competent" and "Angiogenesis-driven") as well as the main traits of primary resistance to this therapy, thus providing a molecular framework to stratify patients based on clinical outcome and guiding potential strategies to overcome resistance. IMPACT AND IMPLICATIONS Atezolizumab + bevacizumab (atezo+bev) is standard of care in advanced hepatocellular carcinoma (HCC), yet molecular determinants of clinical benefit to the combination remain unclear. This study harnesses the power of single-cell RNA sequencing, deriving gene expression signatures representing 21 cell subtypes in the advanced HCC microenvironment. By applying these signatures to RNA-sequencing samples, we reveal two distinct response patterns to atezo+bev and define molecular subgroups of patients ("Immune-competent" and "Angiogenesis-driven" vs. "Resistant") with differential clinical outcomes upon treatment with atezo+bev, pointing towards the role of immunosuppressive myeloid cell types and Notch pathway activation in primary resistance to atezo+bev. These results may help refine treatment strategies and improve outcomes for patients with advanced HCC, while also guiding future research aimed at overcoming resistance mechanisms.
Collapse
Affiliation(s)
- Sarah Cappuyns
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium; Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium; Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Centre for Cancer Biology, Leuven, Belgium; Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Marta Piqué-Gili
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roger Esteban-Fabró
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Gino Philips
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Centre for Cancer Biology, Leuven, Belgium
| | - Ugne Balaseviciute
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roser Pinyol
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Albert Gris-Oliver
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Vincent Vandecaveye
- Radiology Department, University Hospitals Leuven, Leuven, Belgium; Laboratory of Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jordi Abril-Fornaguera
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Carla Montironi
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain; Pathology Department and Molecular Biology Core, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Laia Bassaganyas
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Judit Peix
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marcus Zeitlhoefler
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Agavni Mesropian
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Júlia Huguet-Pradell
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Philipp K Haber
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Igor Figueiredo
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giorgio Ioannou
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edgar Gonzalez-Kozlova
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antonio D'Alessio
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Tim Meyer
- Research Department of Oncology, UCL Cancer Institute, University College London, Royal Free Hospital, London, UK
| | - Anja Lachenmayer
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jens U Marquardt
- Department of Medicine I, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| | - Helen L Reeves
- Hepatopancreatobiliary Multidisciplinary Team, Newcastle upon Tyne NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK; Newcastle University Translational and Clinical Research Institute and Newcastle University Centre for Cancer, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Julien Edeline
- Department of Medical Oncology, Centre Eugène Marquis, Rennes, France
| | - Fabian Finkelmeier
- Department of Gastroenterology, University Liver and Cancer Centre, Frankfurt, Germany
| | - Jörg Trojan
- Department of Gastroenterology, University Liver and Cancer Centre, Frankfurt, Germany
| | - Peter R Galle
- Department of Medicine I, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Friedrich Foerster
- Department of Medicine I, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Beatriz Mínguez
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Liver Diseases Research Group, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; CIBERehd, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Robert Montal
- Department of Medical Oncology, Cancer Biomarkers Research Group, Hospital Universitari Arnau de Vilanova, IRBLleida, University of Lleida (UdL), Catalonia, Spain
| | - Sacha Gnjatic
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David J Pinato
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK; Department of Translational Medicine, Università Del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chris Verslype
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium; Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Eric Van Cutsem
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium; Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Centre for Cancer Biology, Leuven, Belgium
| | - Augusto Villanueva
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jeroen Dekervel
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium; Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Josep M Llovet
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, 08010, Spain.
| |
Collapse
|
50
|
Chen K, Li Y, Ni J, Yang X, Zhou Y, Pang Y, Ye R, Chen H, Yu S, Wang P, Zhu Z. Identification of a novel subtype of SPP1 + macrophages expressing SIRPα: implications for tumor immune evasion and treatment response prediction. Exp Hematol Oncol 2024; 13:119. [PMID: 39696410 DOI: 10.1186/s40164-024-00587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND SPP1 + macrophages are among the major phagocytic cells, yet promoting tumor immune evasion and predicting unfavorable prognosis, in various cancer types. Meanwhile, the predictive value of the abundance of SPP1 + macrophages in patients receiving immunotherapy remains debatable, indicating the potential existence of subtypes of SPP1 + macrophages with diverse biological functions. METHODS The single cell RNA sequencing data of myeloid cells integrated from several cancers including esophageal squamous cell carcinoma was analyzed for characterizing the function and cellular interactions of SPP1 + macrophages expressing SIRPα. Multiplexed immunohistochemistry was used to quantify the quantity and spatial distribution of SPP1 + macrophages expressing SIRPα. Kaplan-Meier method was used for survival analysis. In vitro and in vivo studies investigating the function of SPP1 + macrophages were performed. RESULTS SPP1 + macrophages possessed a high phagocytic signature and could engulf more tumor cells in vitro and in vivo. SIRPα expression could represent the phagocytic activity of SPP1 + macrophages and delineated subsets of SPP1 + macrophages with different functions. SPP1 + SIRPα + macrophages showed close spatial distance to tumor cells and positively correlated with PD1 + CD8 + T cells. A high abundance of SPP1 + SIRPα + macrophages at baseline corresponded to patients' response to PD-1/PD-L1 inhibitors. CONCLUSION A novel subtype of SPP1 + macrophages expressing SIRPα was identified and their abundance predicted patients' response to PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Kun Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yida Li
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yechun Pang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Ruiting Ye
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Hongru Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Silai Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Peng Wang
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China.
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.
- Institute of Thoracic Oncology, Fudan University, Shanghai, China.
| |
Collapse
|