1
|
Zhai C, Sun X, Zhang S, Xing L. ROBO1 enhanced esophageal carcinoma cell radioresistance through accelerating G3BP2-mediated eIF3A degradation. Cell Death Dis 2025; 16:256. [PMID: 40188129 PMCID: PMC11972380 DOI: 10.1038/s41419-025-07604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Radiotherapy, as a vital means of esophageal cancer treatment, has benefited countless cancer patients, but owing to the occurrence of radio-resistance, its therapeutic efficiency has been dramatically mitigated. Discovering key biomarkers governing radio-tolerance in esophageal cancer and revealing their inherent molecular mechanisms will be of great significance for clinical cancer treatment. Here, we have found roundabout guidance receptor 1 (ROBO1) was significantly upregulated in esophageal cancerous tissues and showed enhanced expression with the development of cancer staging. Cellular experiments demonstrated ROBO1 directly interacted with eukaryotic translation initiation factor 3A (eIF3A) and accelerated its degradation in esophageal cancer cells after irradiation treatment. Mass spectrum analysis further revealed that in response to irradiation, ROBO1, eIF3A and G3BP2 (Ras GTPase-activating protein-binding protein 2) formed a hetero-complex and triggered lysosomes-mediated protein degradation. Knocking down of G3BP2 abrogated the influence of ROBO1 on eIF3A instability. Besides, ROBO1-mediated eIF3A degradation interrupted P53 translation process which in turn provoked downstream mTOR signaling and increased DNA repair associated genes expressions, resulting in radio-resistance enhancement in cancer cells. In conclusion, our findings revealed a novel role of eIF3A in modulating P53/mTOR signaling activity and provided a drug candidate (ROBO1) for overcoming radio-resistance in esophageal cancer.
Collapse
Affiliation(s)
- Chunmei Zhai
- Shandong Provincial Key Laboratory of Precision Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, Shandong, China
| | - Xiaorong Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Song Zhang
- Shandong Provincial Key Laboratory of Precision Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University Affiliated Tumor Hospital, Jinan, Shandong, China.
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute; Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
2
|
Dai W, Nian X, Zhou Z, Du A, Liu Q, Jia S, Lu Y, Li D, Lu X, Zhu Y, Huang Q, Lu J, Xiao Y, Zheng L, Lei W, Sheng N, Zang X, Hou Y, Qiu Z, Xu R, Xu S, Zhang X, Zhang L. A neuronal Slit1-dependent program rescues oligodendrocyte differentiation and myelination under chronic hypoxic conditions. Cell Rep 2025; 44:115467. [PMID: 40117292 DOI: 10.1016/j.celrep.2025.115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/25/2025] [Accepted: 03/05/2025] [Indexed: 03/23/2025] Open
Abstract
Oligodendrocyte maturation arrest in hypoxia-induced white matter injury (WMI) results in long-term neurofunctional disabilities of preterm infants. Although neurons are closely linked to myelination regulation, how neurons respond to the above process remains elusive. Here, we identify a compensatory role of neuronal Slit1-dependent signaling in protecting against hypoxia-induced hypomyelination and ameliorating motor and cognitive disabilities. Conditional ablation of Slit1 in neurons exacerbates hypoxia-induced hypomyelination but is negligible for developmental myelination. Secreted Slit1 from hypoxic neurons directly targets oligodendrocyte, acting through Robo2-srGAP1-RhoA signaling. Pharmacological inhibition of RhoA restores myelination and promotes neurofunctional recovery in adolescent mice. Notably, natural selection analysis and functional validation indicate an adaptive variant with higher Slit1 gene expression in the Tibetan population, which has low oxygen availability. Collectively, these findings show a neuronal Slit1-dependent program of OL differentiation and suggest that targeting the Slit1-Robo2 signaling axis may have therapeutic potential for treatment of preterm infants with hypoxic WMI.
Collapse
Affiliation(s)
- Wenxiu Dai
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ximing Nian
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhihao Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ailian Du
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qi Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Shufang Jia
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Daopeng Li
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoyun Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yanqin Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiuying Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiaquan Lu
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunshan Xiao
- Department of Obstetrics and Gynecology, Women and Children's Hospital Affiliated to Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Liangkai Zheng
- Department of Pathology, Women and Children's Hospital Affiliated to Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wanying Lei
- Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xiujuan Zang
- Department of Nephrology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanqiang Hou
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zilong Qiu
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xueqin Zhang
- Department of Obstetrics and Gynecology, Women and Children's Hospital Affiliated to Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Liang Zhang
- Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
3
|
Tripathi S, Sharma Y, Kumar D. Unveiling the link between chronic inflammation and cancer. Metabol Open 2025; 25:100347. [PMID: 39876904 PMCID: PMC11772974 DOI: 10.1016/j.metop.2025.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
The highly nuanced transition from an inflammatory process to tumorigenesis is of great scientific interest. While it is well known that environmental stimuli can cause inflammation, less is known about the oncogenic modifications that chronic inflammation in the tissue microenvironment can bring about, as well as how these modifications can set off pro-tumorigenic processes. It is clear that no matter where the environmental factors come from, maintaining an inflammatory microenvironment encourages carcinogenesis. In addition to encouraging angiogenesis and metastatic processes, sustaining the survival and proliferation of malignant transformed cells, and possibly altering the efficacy of therapeutic agents, inflammation can negatively regulate the antitumoral adaptive and innate immune responses. Because chronic inflammation has multiple pathways involved in tumorigenesis and metastasis, it has gained recognition as a marker of cancer and a desirable target for cancer therapy. Recent advances in our knowledge of the molecular mechanisms that drive cancer's progression demonstrate that inflammation promotes tumorigenesis and metastasis while suppressing anti-tumor immunity. In many solid tumor types, including breast, lung, and liver cancer, inflammation stimulates the activation of oncogenes and impairs the body's defenses against the tumor. Additionally, it alters the microenvironment of the tumor. As a tactical approach to cancer treatment, these findings have underscored the importance of targeting inflammatory pathways. This review highlights the role of inflammation in cancer development and metastasis, focusing on its impact on tumor progression, immune suppression, and therapy resistance. It examines current anti-inflammatory strategies, including NSAIDs, cytokine modulators, and STAT3 inhibitors, while addressing their potential and limitations. The review emphasizes the need for further research to unravel the complex mechanisms linking inflammation to cancer progression and identify molecular targets for specific cancer subtypes.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
4
|
Wen J, Li Y, Deng W, Li Z. Central nervous system and immune cells interactions in cancer: unveiling new therapeutic avenues. Front Immunol 2025; 16:1528363. [PMID: 40092993 PMCID: PMC11907007 DOI: 10.3389/fimmu.2025.1528363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer remains a leading cause of mortality worldwide. Despite significant advancements in cancer research, our understanding of its complex developmental pathways remains inadequate. Recent research has clarified the intricate relationship between the central nervous system (CNS) and cancer, particularly how the CNS influences tumor growth and metastasis via regulating immune cell activity. The interactions between the central nervous system and immune cells regulate the tumor microenvironment via various signaling pathways, cytokines, neuropeptides, and neurotransmitters, while also incorporating processes that alter the tumor immunological landscape. Furthermore, therapeutic strategies targeting neuro-immune cell interactions, such as immune checkpoint inhibitors, alongside advanced technologies like brain-computer interfaces and nanodelivery systems, exhibit promise in improving treatment efficacy. This complex bidirectional regulatory network significantly affects tumor development, metastasis, patient immune status, and therapy responses. Therefore, understanding the mechanisms regulating CNS-immune cell interactions is crucial for developing innovative therapeutic strategies. This work consolidates advancements in CNS-immune cell interactions, evaluates their potential in cancer treatment strategies, and provides innovative insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Junkai Wen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanli Deng
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of General Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
5
|
Meng M, Feng X, Zhang Y, Gao Y, Han L, Li Z, Zhang X, Zhang M. Efficacy and mechanism of the XPO1 inhibitor selinexor combined with decitabine in T-cell lymphoblastic lymphoma. Ann Hematol 2025:10.1007/s00277-025-06271-8. [PMID: 40014082 DOI: 10.1007/s00277-025-06271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
PURPOSE T-cell lymphoblastic lymphoma (T-LBL) has a poor response to traditional chemotherapy regimens, and is prone to relapse after treatment. Effective drugs are lacking for relapsed and refractory (RR) T-LBL patients, highlighting the need for novel treatments. Selinexor and decitabine have good effects on a variety of hematolymphatic diseases and solid tumors, but how effective they are in treating T-LBL has not been reported. In this study, we first investigated the efficacy and mechanism of selinexor combined with decitabine in the treatment of T- LBL. METHODS The proliferation, apoptosis, and cell cycle progression of T-LBL cells were detected via CCK-8 and flow cytometry. Changes in mRNA expression and protein levels were assessed via mRNA sequencing, quantitative real-time PCR, and Western blotting. SLIT2 expression was detected by immunohistochemistry and Western blotting. Tumor xenograft models were established to evaluate the efficacy of drugs in vivo. RESULTS Selinexor or decitabine alone inhibited T-LBL cell proliferation in a dose-dependent manner. Cotreatment with both drugs had obvious synergistic effects, promoted cell apoptosis, and induced G0/G1-phase cell cycle arrest in T-LBL cells, and the RNA sequencing results indicated that the tumor suppressor gene SLIT2 might be involved in the synergistic effect of the two drugs. In vivo, this combination showed synergistic antitumor effects in xenograft mouse models. CONCLUSIONS In summary, selinexor in combination with decitabine has significant synergistic effects both in vitro and in vivo and represents a new treatment option for RR T-LBL.
Collapse
Affiliation(s)
- Miaomiao Meng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, Henan, China
- The First Clinical Medical College of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Xiaoyan Feng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Yue Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Yuyang Gao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Lijuan Han
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Zhengzhou, 450052, Henan, China.
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Bloomer H, Dame HB, Parker SR, Oudin MJ. Neuronal mimicry in tumors: lessons from neuroscience to tackle cancer. Cancer Metastasis Rev 2025; 44:31. [PMID: 39934425 PMCID: PMC11813822 DOI: 10.1007/s10555-025-10249-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/02/2025] [Indexed: 02/13/2025]
Abstract
Cellular plasticity and the ability to avoid terminal differentiation are hallmarks of cancer. Here, we review the evidence that tumor cells themselves can take on properties of neurons of the central nervous system, which can regulate tumor growth and metastasis. We discuss recent evidence that axon guidance molecules and regulators of electrical activity and synaptic transmission, such as ion channels and neurotransmitters, can drive the oncogenic and invasive properties of tumor cells from a range of cancers. We also review how FDA-approved treatments for neurological disorders are being tested in pre-clinical models and clinical trials for repurposing as anti-cancer agents, offering the potential for new therapies for cancer patients that can be accessed more quickly.
Collapse
Affiliation(s)
- Hanan Bloomer
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Haley B Dame
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Savannah R Parker
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Madeleine J Oudin
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
7
|
Li Y, Wu C, Long X, Wang X, Gao W, Deng K, Xie B, Zhang S, Wu M, Liu Q. Single-cell transcriptomic analysis of glioblastoma reveals pericytes contributing to the blood-brain-tumor barrier and tumor progression. MedComm (Beijing) 2024; 5:e70014. [PMID: 39640361 PMCID: PMC11617595 DOI: 10.1002/mco2.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
The blood-brain barrier is often altered in glioblastoma (GBM) creating a blood-brain-tumor barrier (BBTB) composed of pericytes. The BBTB affects chemotherapy efficacy. However, the expression signatures of BBTB-associated pericytes remain unclear. We aimed to identify BBTB-associated pericytes in single-cell RNA sequencing data of GBM using pericyte markers, a normal brain pericyte expression signature, and functional enrichment. We identified parathyroid hormone receptor-1 (PTH1R) as a potential marker of pericytes associated with BBTB function. These pericytes interact with other cells in GBM mainly through extracellular matrix-integrin signaling pathways. Compared with normal pericytes, pericytes in GBM exhibited upregulation of several ECM genes (including collagen IV and FN1), and high expression levels of these genes were associated with a poor prognosis. Cell line experiments showed that PTH1R knockdown in pericytes increased collagen IV and FN1 expression levels. In mice models, the expression levels of PTH1R, collagen IV, and FN1 were consistent with these trends. Evans Blue leakage and IgG detection in the brain tissue suggested a negative correlation between PTH1R expression levels and blood-brain barrier function. Further, a risk model based on differentially expressed genes in PTH1R+ pericytes had predictive value for GBM, as validated using independent and in-house cohorts.
Collapse
Affiliation(s)
- Yuzhe Li
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of NeurosurgeryChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Changwu Wu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinmiao Long
- Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Xiangyu Wang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Wei Gao
- Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Kun Deng
- Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Bo Xie
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Sen Zhang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Minghua Wu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Qing Liu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
8
|
Zhao J, Sun Y, Feng Y, Rong J. Brain Specific RagA Overexpression Triggers Depressive-Like Behaviors in Mice via Activating ADORA2A Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404188. [PMID: 39373701 PMCID: PMC11615787 DOI: 10.1002/advs.202404188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/09/2024] [Indexed: 10/08/2024]
Abstract
Neuroinflammation hallmarks the pathology of depression although the etiological complexity has not yet been resolved. Previous studies demonstrate that bacterial lipopolysaccharide induces depressive-like behaviors by activating RagA-mTOR-p70S6K signaling pathway. The current project aims to investigate whether and how brain-specific RagA overexpression triggers depressive-like behaviors in mice. Full-length RagA cDNA is cloned into the mammalian expression vector under the control of brain specific promoter, and subsequently overexpressed in the brain of mouse embryos. Indeed, RagA transgenic mice exhibit depressive-like behaviors and memory impairments. RNA-seq profiling of the prefrontal cortex (PFC) transcriptome highlights adenosine A2a receptor (ADORA2A) as a key differentially expressed gene (DEG). Western blotting confirms that ADORA2A and phospho-p70S6K are markedly elevated in RagA transgenic mice. Behavioral assessments demonstrate that ADORA2A inhibitor istradefylline markedly attenuates depressive-like behaviors. Further metabolomics reveals that N-acetylserotonin and several depression-related metabolites are downregulated while proteomic profiling showed that OLIG1 and other proteins are significantly regulated in RagA transgenic mice. Collectively, RagA overexpression alters the expression patterns of signaling proteins and the metabolism of depression-associated metabolites. RagA may cause depressive-like behaviors in mice via activating p70S6K/ADORA2A signaling pathway. Thus, RagA-p70S6K-ADORA2A signaling pathway may be a target for the development of new antidepressant therapies.
Collapse
Affiliation(s)
- Jia Zhao
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong Kong3 Sassoon Road, PokfulamHong Kong999077P. R. China
- Department of Chinese MedicineThe University of Hong Kong Shenzhen HospitalShenzhen518053P. R. China
| | - Yilu Sun
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong Kong3 Sassoon Road, PokfulamHong Kong999077P. R. China
- Department of Chinese MedicineThe University of Hong Kong Shenzhen HospitalShenzhen518053P. R. China
| | - Yibin Feng
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong Kong3 Sassoon Road, PokfulamHong Kong999077P. R. China
| | - Jianhui Rong
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong Kong3 Sassoon Road, PokfulamHong Kong999077P. R. China
| |
Collapse
|
9
|
Xue Y, Yin T, Yuan S, Wang L, Lin H, Jin T, Xu R, Gu J, Shen S, Chen X, Chen Z, Sima N, Chen L, Lu W, Li X, Cheng X, Wang H. CYP1B1 promotes PARPi-resistance via histone H1.4 interaction and increased chromatin accessibility in ovarian cancer. Drug Resist Updat 2024; 77:101151. [PMID: 39395328 DOI: 10.1016/j.drup.2024.101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/14/2024]
Abstract
INTRODUCTION Ovarian cancer is the most lethal gynecological cancer and presents significant therapeutic challenges. The discovery of synthetic lethality between PARP inhibitors (PARPi) and homologous recombination deficiency marked a new era in treating BRCA1/2-mutated tumors. However, PARPi resistance remains a major clinical challenge. METHODS RNA sequencing was used to identify genes altered by PARPi treatment and LC-MS was used to detect proteins interacting with CYP1B1. Resistance mechanisms were explored through ATAC-seq and gene expression manipulation. Additional techniques, including micrococcal nuclease digestion assays, DAPI staining, and fluorescence microscopy, were used to assess changes in nuclear morphology and chromatin accessibility. RESULTS The gradual exposure of Olaparib has developed a PARPi-resistant cell line, A2780-OlaR, which exhibits significant upregulation of CYP1B1 at both RNA and protein levels. Down-regulating CYP1B1 expression or using specific inhibitors decreased the cellular response to Olaparib. Linker histone H1.4 was identified as associated with CYP1B1. ATAC-seq showed differential chromatin accessibility between A2780-OlaR and parental cells, indicating that the downregulation of H1.4 was associated with increased chromatin accessibility and higher cell viability after Olaparib treatment. CONCLUSION Our findings reveal a novel role for CYP1B1 in driving PARPi resistance through distinct molecular mechanisms in A2780-OlaR. This study highlights the importance of chromatin accessibility in PARPi efficacy and suggests the CYP1B1/H1.4 axis as a promising therapeutic target for overcoming drug resistance in ovarian cancer, offering potentially therapeutic benefits.
Collapse
Affiliation(s)
- Yite Xue
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Taotao Yin
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Shuo Yuan
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Lingfang Wang
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Hui Lin
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Tianzhe Jin
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Ruiyi Xu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Jiaxin Gu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Shizhen Shen
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Xiaojing Chen
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Zhuoye Chen
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Ni Sima
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China
| | - Lifeng Chen
- Department of Gynecology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiao Li
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China.
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China.
| | - Hui Wang
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China; Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Reproductive Health Research, Hangzhou, China.
| |
Collapse
|
10
|
Qiu C, Tang C, Tang Y, Su K, Chai X, Zhan Z, Niu X, Li J. RGS5 + lymphatic endothelial cells facilitate metastasis and acquired drug resistance of breast cancer through oxidative stress-sensing mechanism. Drug Resist Updat 2024; 77:101149. [PMID: 39306871 DOI: 10.1016/j.drup.2024.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 11/12/2024]
Abstract
AIMS Oxidative stress reflected by elevated reactive oxygen species (ROS) in the tumor ecosystem, is a hallmark of human cancers. The mechanisms by which oxidative stress regulate the metastatic ecosystem and resistance remain elusive. This study aimed to dissect the oxidative stress-sensing machinery during the evolvement of early dissemination and acquired drug resistance in breast cancer. METHODS Here, we constructed single-cell landscape of primary breast tumors and metastatic lymph nodes, and focused on RGS5+ endothelial cell subpopulation in breast cancer metastasis and resistance. RESULTS We reported on RGS5 as a master in endothelial cells sensing oxidative stress. RGS5+ endothelial cells facilitated tumor-endothelial adhesion and transendothelial migration of breast cancer cells. Antioxidant suppressed oxidative stress-induced RGS5 expression in endothelial cells, and prevented adhesion and transendothelial migration of cancer cells. RGS5-overexpressed HLECs displayed attenuated glycolysis and oxidative phosphorylation. Drug-resistant HLECs with RGS5 overexpression conferred acquired drug resistance of breast cancer cells. Importantly, genetic knockdown of RGS5 prevented tumor growth and lymph node metastasis. CONCLUSIONS Our work demonstrates that RGS5 in lymphatic endothelial cells senses oxidative stress to promote breast cancer lymph node metastasis and resistance, providing a novel insight into a potentially targetable oxidative stress-sensing machinery in breast cancer treatment.
Collapse
Affiliation(s)
- Caixin Qiu
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Chaoyi Tang
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yujun Tang
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ka Su
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiao Chai
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zexu Zhan
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xing Niu
- China Medical University Shenyang 110122, China; Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, 999077, Hong Kong, China.
| | - Jiehua Li
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
11
|
Malireddi RKS, Kanneganti TD. Sensory nerves unlock the TOLL-7 gate for cancer spread. Trends Immunol 2024; 45:732-734. [PMID: 39327205 DOI: 10.1016/j.it.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Cancers hijack the nervous system for growth and spread. Thus, disrupting neuron-cancer crosstalk holds promise for blocking metastasis. Recently, Padmanaban et al. reported new therapeutic targets and showed that breast cancer cells activate sensory neurons to secrete the neuropeptide substance P (SP), leading to single-strand (ss)RNA release and noncanonical Toll-like receptor (TLR)7 signaling that drives metastasis.
Collapse
|
12
|
Zhang J, Yu D, Ji C, Wang M, Fu M, Qian Y, Zhang X, Ji R, Li C, Gu J, Zhang X. Exosomal miR-4745-5p/3911 from N2-polarized tumor-associated neutrophils promotes gastric cancer metastasis by regulating SLIT2. Mol Cancer 2024; 23:198. [PMID: 39272149 PMCID: PMC11396805 DOI: 10.1186/s12943-024-02116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Tumor cells remodel the phenotype and function of tumor microenvironment (TME) cells to favor tumor progression. Previous studies have shown that neutrophils in TME are polarized to N2 tumor-associated neutrophils (TANs) by tumor derived factors, thus promoting tumor growth and metastasis, angiogenesis, therapy resistance, and immunosuppression. Exosomes act as critical intercellular messengers in human health and diseases including cancer. So far, the biological roles of exosomes from N2 TANs in gastric cancer have not been well characterized. Herein, we represented the first report that exosomes from N2 TANs promoted gastric cancer metastasis in vitro and in vivo. We found that exosomes from N2 TANs transferred miR-4745-5p/3911 to gastric cancer cells to downregulate SLIT2 (slit guidance ligand 2) gene expression. Adenovirus-mediated overexpression of SLIT2 reversed the promotion of gastric cancer metastasis by N2 TANs derived exosomes. We further revealed that gastric cancer cells induced glucose metabolic reprogramming in neutrophils through exosomal HMGB1 (high mobility group protein B1)/NF-κB pathway, which mediated neutrophil N2 polarization and miR-4745-5p/3911 upregulation. We further employed ddPCR (droplet digital PCR) to detect the expression of miR-4745-5p/3911 in N2 TANs exosomes from human serum samples and found their increased levels in gastric cancer patients compared to healthy controls and benign gastric disease patients. Conclusively, our results indicate that N2 TANs facilitate cancer metastasis via regulation of SLIT2 in gastric cancer cells by exosomal miR-4745-5p/3911, which provides a new insight into the roles of TME cells derived exosomes in gastric cancer metastasis and offers a potential biomarker for gastric cancer diagnosis.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- Kunshan Biomedical Big Data Innovation Application Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Dan Yu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Cheng Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Maoye Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Min Fu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yu Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaoxin Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Runbi Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Chong Li
- Kunshan Biomedical Big Data Innovation Application Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China.
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, 226300, China.
| | - Xu Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
13
|
Augustin HG, Koh GY. A systems view of the vascular endothelium in health and disease. Cell 2024; 187:4833-4858. [PMID: 39241746 DOI: 10.1016/j.cell.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 09/09/2024]
Abstract
The dysfunction of blood-vessel-lining endothelial cells is a major cause of mortality. Although endothelial cells, being present in all organs as a single-cell layer, are often conceived as a rather inert cell population, the vascular endothelium as a whole should be considered a highly dynamic and interactive systemically disseminated organ. We present here a holistic view of the field of vascular research and review the diverse functions of blood-vessel-lining endothelial cells during the life cycle of the vasculature, namely responsive and relaying functions of the vascular endothelium and the responsive roles as instructive gatekeepers of organ function. Emerging translational perspectives in regenerative medicine, preventive medicine, and aging research are developed. Collectively, this review is aimed at promoting disciplinary coherence in the field of angioscience for a broader appreciation of the importance of the vasculature for organ function, systemic health, and healthy aging.
Collapse
Affiliation(s)
- Hellmut G Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ), 69120 Heidelberg, Germany.
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
14
|
Padmanaban V, Keller I, Seltzer ES, Ostendorf BN, Kerner Z, Tavazoie SF. Neuronal substance P drives metastasis through an extracellular RNA-TLR7 axis. Nature 2024; 633:207-215. [PMID: 39112700 PMCID: PMC11633843 DOI: 10.1038/s41586-024-07767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/28/2024] [Indexed: 08/17/2024]
Abstract
Tumour innervation is associated with worse patient outcomes in multiple cancers1,2, which suggests that it may regulate metastasis. Here we observed that highly metastatic mouse mammary tumours acquired more innervation than did less-metastatic tumours. This enhanced innervation was driven by expression of the axon-guidance molecule SLIT2 in tumour vasculature. Breast cancer cells induced spontaneous calcium activity in sensory neurons and elicited release of the neuropeptide substance P (SP). Using three-dimensional co-cultures and in vivo models, we found that neuronal SP promoted breast tumour growth, invasion and metastasis. Moreover, patient tumours with elevated SP exhibited enhanced lymph node metastatic spread. SP acted on tumoral tachykinin receptors (TACR1) to drive death of a small population of TACR1high cancer cells. Single-stranded RNAs (ssRNAs) released from dying cells acted on neighbouring tumoural Toll-like receptor 7 (TLR7) to non-canonically activate a prometastatic gene expression program. This SP- and ssRNA-induced Tlr7 gene expression signature was associated with reduced breast cancer survival outcomes. Therapeutic targeting of this neuro-cancer axis with the TACR1 antagonist aprepitant, an approved anti-nausea drug, suppressed breast cancer growth and metastasis in multiple models. Our findings reveal that tumour-induced hyperactivation of sensory neurons regulates multiple aspects of metastatic progression in breast cancer through a therapeutically targetable neuropeptide/extracellular ssRNA sensing axis.
Collapse
Affiliation(s)
- Veena Padmanaban
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Isabel Keller
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Ethan S Seltzer
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Benjamin N Ostendorf
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
- Department of Hematology, Oncology, and Tumor Immunology and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Zachary Kerner
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
15
|
Liu Y, Yin S, Lu G, Du Y. The intersection of the nervous system and breast cancer. Cancer Lett 2024; 598:217132. [PMID: 39059572 DOI: 10.1016/j.canlet.2024.217132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Breast cancer (BC) represents a paradigm of heterogeneity, manifesting as a spectrum of molecular subtypes with divergent clinical trajectories. It is fundamentally characterized by the aberrant proliferation of malignant cells within breast tissue, a process modulated by a myriad of factors that govern its progression. Recent endeavors outline the interplay between BC and the nervous system, illuminate the complex symbiosis between neural structures and neoplastic cells, and elucidate nerve dependence as a cornerstone of BC progression. This includes the neural modulations on immune response, neurovascular formation, and multisystem interactions. Such insights have unveiled the critical impact of neural elements on tumor dynamics and patient prognosis. This revelation beckons a deeper exploration into the neuro-oncological interface, potentially unlocking novel therapeutic vistas. This review endeavors to delineate the intricate mechanisms between the nervous system and BC, aiming to accentuate the implications and therapeutic strategies of this intersection for tumor evolution and the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China
| | - Shiqi Yin
- Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, China
| | - Guanyu Lu
- Cancer Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China
| | - Ye Du
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China.
| |
Collapse
|
16
|
Najem MY, Rys RN, Laurance S, Bertin F, Gourdou‐Latyszenok V, Gourhant L, Le Gall L, Le Corre R, Couturaud F, Blostein MD, Lemarié CA. Extracellular RNA Induces Neutrophil Recruitment Via Toll-Like Receptor 3 During Venous Thrombosis After Vascular Injury. J Am Heart Assoc 2024; 13:e034492. [PMID: 39028040 PMCID: PMC11964037 DOI: 10.1161/jaha.124.034492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/24/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Venous thromboembolism is associated with endothelial cell activation that contributes to the inflammation-dependent activation of the coagulation system. Cellular damage is associated with the release of different species of extracellular RNA (eRNA) involved in inflammation and coagulation. TLR3 (toll-like receptor 3), which recognizes (viral) single-stranded or double-stranded RNAs and self-RNA fragments, might be the receptor of these species of eRNA during venous thromboembolism. Here, we investigate how the TLR3/eRNA axis contributes to venous thromboembolism. METHODS AND RESULTS Thrombus formation and size in wild-type and TLR3 deficient (-/-) mice were monitored by ultrasonography after venous thrombosis induction using the ferric chloride and stasis models. Mice were treated with RNase I, with polyinosinic-polycytidylic acid, a TLR3 agonist, or with RNA extracted from murine endothelial cells. Gene expression and signaling pathway activation were analyzed in HEK293T cells overexpressing TLR3 in response to eRNA or in human umbilical vein endothelial cells transfected with a small interference RNA against TLR3. Plasma clot formation on treated human umbilical vein endothelial cells was analyzed. Thrombosis exacerbated eRNA release in vivo and increased eRNA content within the thrombus. RNase I treatment reduced thrombus size compared with vehicle-treated mice (P<0.05). Polyinosinic-polycytidylic acid and eRNA treatments increased thrombus size in wild-type mice (P<0.01 and P<0.05), but not in TLR3-/- mice, by reinforcing neutrophil recruitment (P<0.05). Mechanistically, TLR3 activation in endothelial cells promotes CXCL5 (C-X-C motif chemokine 5) secretion (P<0.001) and NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation (P<0.05). Finally, eRNA triggered plasma clot formation in vitro (P<0.01). CONCLUSIONS We show that eRNA and TLR3 activation enhance venous thromboembolism through neutrophil recruitment possibly through secretion of CXCL5, a potent neutrophil chemoattractant.
Collapse
Affiliation(s)
| | - Ryan N. Rys
- Lady Davis Institute for Medical ResearchMontréalQuébecCanada
| | - Sandrine Laurance
- Lady Davis Institute for Medical ResearchMontréalQuébecCanada
- INSERM, BIGR, Université de Paris and Université des AntillesParisFrance
| | - François‐René Bertin
- Lady Davis Institute for Medical ResearchMontréalQuébecCanada
- School of Veterinary ScienceThe University of QueenslandGattonQueenslandAustralia
| | | | | | | | | | - Francis Couturaud
- Univ Brest, Inserm, UMR 1304, GETBOBrestFrance
- Département de Pneumologie et de Médecine InterneCHU BrestBrestFrance
| | - Mark D. Blostein
- Lady Davis Institute for Medical ResearchMontréalQuébecCanada
- Department of MedicineSir Mortimer B. Davis‐Jewish General Hospital, McGill UniversityMontréalQuébecCanada
| | - Catherine A. Lemarié
- Univ Brest, Inserm, UMR 1304, GETBOBrestFrance
- Département de Pneumologie et de Médecine InterneCHU BrestBrestFrance
- Lady Davis Institute for Medical ResearchMontréalQuébecCanada
| |
Collapse
|
17
|
Borrelli C, Roberts M, Eletto D, Hussherr MD, Fazilaty H, Valenta T, Lafzi A, Kretz JA, Guido Vinzoni E, Karakatsani A, Adivarahan S, Mannhart A, Kimura S, Meijs A, Baccouche Mhamedi F, Acar IE, Handler K, Ficht X, Platt RJ, Piscuoglio S, Moor AE. In vivo interaction screening reveals liver-derived constraints to metastasis. Nature 2024; 632:411-418. [PMID: 39048831 PMCID: PMC11306111 DOI: 10.1038/s41586-024-07715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
It is estimated that only 0.02% of disseminated tumour cells are able to seed overt metastases1. While this suggests the presence of environmental constraints to metastatic seeding, the landscape of host factors controlling this process remains largely unclear. Here, combining transposon technology2 and fluorescence niche labelling3, we developed an in vivo CRISPR activation screen to systematically investigate the interactions between hepatocytes and metastatic cells. We identify plexin B2 as a critical host-derived regulator of liver colonization in colorectal and pancreatic cancer and melanoma syngeneic mouse models. We dissect a mechanism through which plexin B2 interacts with class IV semaphorins on tumour cells, leading to KLF4 upregulation and thereby promoting the acquisition of epithelial traits. Our results highlight the essential role of signals from the liver parenchyma for the seeding of disseminated tumour cells before the establishment of a growth-promoting niche. Our findings further suggest that epithelialization is required for the adaptation of CRC metastases to their new tissue environment. Blocking the plexin-B2-semaphorin axis abolishes metastatic colonization of the liver and therefore represents a therapeutic strategy for the prevention of hepatic metastases. Finally, our screening approach, which evaluates host-derived extrinsic signals rather than tumour-intrinsic factors for their ability to promote metastatic seeding, is broadly applicable and lays a framework for the screening of environmental constraints to metastasis in other organs and cancer types.
Collapse
Affiliation(s)
- Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Morgan Roberts
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Davide Eletto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Atefeh Lafzi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jonas A Kretz
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Elena Guido Vinzoni
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | | | - Ardian Mannhart
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shoichiro Kimura
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ab Meijs
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Ilhan E Acar
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kristina Handler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Xenia Ficht
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Salvatore Piscuoglio
- IRCCS Humanitas Research Hospital, Milan, Italy
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
18
|
Cui L, Liu T, Huang C, Yang F, Luo L, Sun L, Zhao Y, Wang D, Wang M, Ji Y, Zhu W. Gastric Cancer Mesenchymal Stem Cells Trigger Endothelial Cell Functional Changes to Promote Cancer Progression. Stem Cell Rev Rep 2024; 20:1285-1298. [PMID: 38598065 DOI: 10.1007/s12015-024-10720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Our previous studies have highlighted the pivotal role of gastric cancer mesenchymal stem cells (GCMSCs) in tumor initiation, progression, and metastasis. In parallel, it is well-documented that endothelial cells (ECs) undergo functional alterations in response to challenging tumor microenvironment. This study aims to elucidate whether functional changes in ECs might be induced by GCMSCs and thus influence cancer progression. Cell proliferation was assessed through CCK-8 and colony formation assays, while cell migration and invasion capabilities were evaluated by wound-healing and Transwell assays. Immunohistochemistry was employed to examine protein distribution and expression levels. Additionally, quantitative analysis of protein and mRNA expression was carried out through Western blotting and qRT-PCR respectively, with gene knockdown achieved using siRNA. Our findings revealed that GCMSCs effectively stimulate cell proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs), both in vitro and in vivo. GCMSCs promote the migration and invasion of gastric cancer cells by inducing the expression of Slit2 in HUVECs. Notably, the inhibition of phosphorylated AKT partially mitigates the aforementioned effects. In conclusion, GCMSCs may exert regulatory control over Slit2 expression in ECs via the AKT signaling pathway, thereby inducing functional changes in ECs that promote tumor progression.
Collapse
Affiliation(s)
- Linjing Cui
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Ting Liu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Chao Huang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Fumeng Yang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Liqi Luo
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu Province, China
| | - Yuanyuan Zhao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Deqiang Wang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mei Wang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Yong Ji
- Department of Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu Province, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
19
|
Zhou J, Zhang L, Liu S, DeRubeis D, Zhang D. Toll-like receptors in breast cancer immunity and immunotherapy. Front Immunol 2024; 15:1418025. [PMID: 38903515 PMCID: PMC11187004 DOI: 10.3389/fimmu.2024.1418025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Toll-like receptors (TLRs) are a key family of pattern recognition receptors (PRRs) in the innate immune system. The activation of TLRs will not only prevent pathogen infection but also respond to damage-induced danger signaling. Increasing evidence suggests that TLRs play a critical role in breast cancer development and treatment. However, the activation of TLRs is a double-edged sword that can induce either pro-tumor activity or anti-tumor effect. The underlying mechanisms of these opposite effects of TLR signaling in cancer are not fully understood. Targeting TLRs is a promising strategy for improving breast cancer treatment, either as monotherapies or by improving other current therapies. Here we provide an update on the role of TLRs in breast cancer immunity and immunotherapy.
Collapse
Affiliation(s)
- Joseph Zhou
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Lin Zhang
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Siyao Liu
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - David DeRubeis
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Dekai Zhang
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| |
Collapse
|
20
|
Li QQ, Guo M, He GH, Xi KH, Zhou MY, Shi RY, Chen GQ. VEGF-induced Nrdp1 deficiency in vascular endothelial cells promotes cancer metastasis by degrading vascular basement membrane. Oncogene 2024; 43:1836-1851. [PMID: 38654108 DOI: 10.1038/s41388-024-03038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Vascular endothelial cells (VECs) are key players in the formation of neovessels and tumor metastasis, the ultimate cause of the majority of cancer-related human death. However, the crosstalk between VECs and metastasis remain greatly elusive. Based on our finding that tumor-associated VECs present significant decrease of Nrdp1 protein which is closely correlated with higher metastatic probability, herein we show that the conditional medium from hypoxia-incubated cancer cells induces extensive Nrdp1 downregulation in human and mouse VECs by vascular endothelial growth factor (VEGF), which activates CHIP, followed by Nrdp1 degradation in ubiquitin-proteasome-dependent way. More importantly, lung metastases of cancer cells significantly increase in conditional VECs Nrdp1 knockout mice. Mechanically, Nrdp1 promotes degradation of Fam20C, a secretory kinase involved in phosphorylating numerous secreted proteins. Reciprocally, deficiency of Nrdp1 in VECs (ecNrdp1) results in increased secretion of Fam20C, which induces degradation of extracellular matrix and disrupts integrity of vascular basement membrane, thus driving tumor metastatic dissemination. In addition, specific overexpression of ecNrdp1 by Nrdp1-carrying adeno-associated virus or chemical Nrdp1 activator ABPN efficiently mitigates tumor metastasis in mice. Collectively, we explore a new mechanism for VEGF to enhance metastasis and role of Nrdp1 in maintaining the integrity of vascular endothelium, suggesting that ecNrdp1-mediated signaling pathways might become potential target for anti-metastatic therapies.
Collapse
Affiliation(s)
- Qing-Qing Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Meng Guo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China.
| | - Guang-Huan He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Kai-Hua Xi
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Mei-Yi Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Rong-Yi Shi
- Hainan Academy of Medical Sciences and School of Basic Medicine, Hainan Medical University, Hainan, 570000, China.
- Key Laboratory of Pediatric Hematology and Oncology in National Health Commission, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, SJTU-SM, Shanghai, 200127, China.
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China.
- Hainan Academy of Medical Sciences and School of Basic Medicine, Hainan Medical University, Hainan, 570000, China.
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer, Research Units of Stress and Tumor (2019RU043), Chinese Academy of Medical Sciences, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
21
|
Ma Y, Lv H, Xing F, Xiang W, Wu Z, Feng Q, Wang H, Yang W. Cancer stem cell-immune cell crosstalk in the tumor microenvironment for liver cancer progression. Front Med 2024; 18:430-445. [PMID: 38600350 DOI: 10.1007/s11684-023-1049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/15/2023] [Indexed: 04/12/2024]
Abstract
Crosstalk between cancer cells and the immune microenvironment is determinant for liver cancer progression. A tumor subpopulation called liver cancer stem cells (CSCs) significantly accounts for the initiation, metastasis, therapeutic resistance, and recurrence of liver cancer. Emerging evidence demonstrates that the interaction between liver CSCs and immune cells plays a crucial role in shaping an immunosuppressive microenvironment and determining immunotherapy responses. This review sheds light on the bidirectional crosstalk between liver CSCs and immune cells for liver cancer progression, as well as the underlying molecular mechanisms after presenting an overview of liver CSCs characteristic and their microenvironment. Finally, we discuss the potential application of liver CSCs-targeted immunotherapy for liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ma
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Hongwei Lv
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
| | - Fuxue Xing
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Wei Xiang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Zixin Wu
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Qiyu Feng
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Hongyang Wang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| | - Wen Yang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| |
Collapse
|
22
|
Wang K, Huang H, Zhan Q, Ding H, Li Y. Toll-like receptors in health and disease. MedComm (Beijing) 2024; 5:e549. [PMID: 38685971 PMCID: PMC11057423 DOI: 10.1002/mco2.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Toll-like receptors (TLRs) are inflammatory triggers and belong to a family of pattern recognition receptors (PRRs) that are central to the regulation of host protective adaptive immune responses. Activation of TLRs in innate immune myeloid cells directs lymphocytes to produce the most appropriate effector responses to eliminate infection and maintain homeostasis of the body's internal environment. Inappropriate TLR stimulation can lead to the development of general autoimmune diseases as well as chronic and acute inflammation, and even cancer. Therefore, TLRs are expected to be targets for therapeutic treatment of inflammation-related diseases, autoimmune diseases, microbial infections, and human cancers. This review summarizes the recent discoveries in the molecular and structural biology of TLRs. The role of different TLR signaling pathways in inflammatory diseases, autoimmune diseases such as diabetes, cardiovascular diseases, respiratory diseases, digestive diseases, and even cancers (oral, gastric, breast, colorectal) is highlighted and summarizes new drugs and related clinical treatments in clinical trials, providing an overview of the potential and prospects of TLRs for the treatment of TLR-related diseases.
Collapse
Affiliation(s)
- Kunyu Wang
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Hanyao Huang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Qi Zhan
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Haoran Ding
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yi Li
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
23
|
Michaelsen GL, da Silva LDRE, de Lima DS, Jaeger MDC, Brunetto AT, Dalmolin RJS, Sinigaglia M. A Prognostic Methylation-Driven Two-Gene Signature in Medulloblastoma. J Mol Neurosci 2024; 74:47. [PMID: 38662144 DOI: 10.1007/s12031-024-02203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/21/2024] [Indexed: 04/26/2024]
Abstract
Medulloblastoma (MB) is one of the most common pediatric brain tumors and it is estimated that one-third of patients will not achieve long-term survival. Conventional prognostic parameters have limited and unreliable correlations with MB outcome, presenting a major challenge for patients' clinical improvement. Acknowledging this issue, our aim was to build a gene signature and evaluate its potential as a new prognostic model for patients with the disease. In this study, we used six datasets totaling 1679 samples including RNA gene expression and DNA methylation data from primary MB as well as control samples from healthy cerebellum. We identified methylation-driven genes (MDGs) in MB, genes whose expression is correlated with their methylation. We employed LASSO regression, incorporating the MDGs as a parameter to develop the prognostic model. Through this approach, we derived a two-gene signature (GS-2) of candidate prognostic biomarkers for MB (CEMIP and NCBP3). Using a risk score model, we confirmed the GS-2 impact on overall survival (OS) with Kaplan-Meier analysis. We evaluated its robustness and accuracy with receiver operating characteristic curves predicting OS at 1, 3, and 5 years in multiple independent datasets. The GS-2 showed highly significant results as an independent prognostic biomarker compared to traditional MB markers. The methylation-regulated GS-2 risk score model can effectively classify patients with MB into high and low-risk, reinforcing the importance of this epigenetic modification in the disease. Such genes stand out as promising prognostic biomarkers with potential application for MB treatment.
Collapse
Affiliation(s)
- Gustavo Lovatto Michaelsen
- Children's Cancer Institute, Porto Alegre, 90620-110, RS, Brazil
- Bioinformatics Multidisciplinary Environment-BioME, Digital Metropole Institute, Federal University of Rio Grande do Norte, Natal, 59076-550, RN, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, 90035-003, RS, Brazil
| | - Lívia Dos Reis Edinger da Silva
- Children's Cancer Institute, Porto Alegre, 90620-110, RS, Brazil
- Federal University of Health Sciences of Porto Alegre, Porto Alegre, 90050-170, RS, Brazil
| | - Douglas Silva de Lima
- Children's Cancer Institute, Porto Alegre, 90620-110, RS, Brazil
- Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90035-003, RS, Brazil
| | - Mariane da Cunha Jaeger
- Children's Cancer Institute, Porto Alegre, 90620-110, RS, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, 90035-003, RS, Brazil
| | - André Tesainer Brunetto
- Children's Cancer Institute, Porto Alegre, 90620-110, RS, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, 90035-003, RS, Brazil
| | - Rodrigo Juliani Siqueira Dalmolin
- Bioinformatics Multidisciplinary Environment-BioME, Digital Metropole Institute, Federal University of Rio Grande do Norte, Natal, 59076-550, RN, Brazil
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, 59064-741, RN, Brazil
| | - Marialva Sinigaglia
- Children's Cancer Institute, Porto Alegre, 90620-110, RS, Brazil.
- Bioinformatics Multidisciplinary Environment-BioME, Digital Metropole Institute, Federal University of Rio Grande do Norte, Natal, 59076-550, RN, Brazil.
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, 90035-003, RS, Brazil.
| |
Collapse
|
24
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
25
|
Iwata T, Kishikawa T, Seimiya T, Notoya G, Suzuki T, Shibata C, Miyakawa Y, Odawara N, Funato K, Tanaka E, Yamagami M, Sekiba K, Otsuka M, Koike K, Fujishiro M. Satellite double-stranded RNA induces mesenchymal transition in pancreatic cancer by regulating alternative splicing. J Biol Chem 2024; 300:105742. [PMID: 38346537 PMCID: PMC10943486 DOI: 10.1016/j.jbc.2024.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 03/11/2024] Open
Abstract
Human satellite II (HSATII), composed of tandem repeats in pericentromeric regions, is aberrantly transcribed in epithelial cancers, particularly pancreatic cancer. Dysregulation of repetitive elements in cancer tissues can facilitate incidental dsRNA formation; however, it remains controversial whether dsRNAs play tumor-promoting or tumor-suppressing roles during cancer progression. Therefore, we focused on the double-stranded formation of HSATII RNA and explored its molecular function. The overexpression of double-stranded HSATII (dsHSATII) RNA promoted mesenchymal-like morphological changes and enhanced the invasiveness of pancreatic cancer cells. We identified an RNA-binding protein, spermatid perinuclear RNA-binding protein (STRBP), which preferentially binds to dsHSATII RNA rather than single-stranded HSATII RNA. The mesenchymal transition of dsHSATII-expressing cells was rescued by STRBP overexpression. Mechanistically, STRBP is involved in the alternative splicing of genes associated with epithelial-mesenchymal transition (EMT). We also confirmed that isoform switching of CLSTN1, driven by dsHSATII overexpression or STRBP depletion, induced EMT-like morphological changes. These findings reveal a novel tumor-promoting function of dsHSATII RNA, inducing EMT-like changes and cell invasiveness, thus enhancing our understanding of the biological significance of aberrant expression of satellite arrays in malignant tumors.
Collapse
Affiliation(s)
- Takuma Iwata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Takahiro Seimiya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Genso Notoya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chikako Shibata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yu Miyakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nariaki Odawara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuyoshi Funato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eri Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mari Yamagami
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Xie H, Sun Q, Chu X, Zhu S, Xie F. Review of pre-metastatic niches in lung metastasis: From cells to molecules, from mechanism to clinics. Biochim Biophys Acta Rev Cancer 2024; 1879:189081. [PMID: 38280471 DOI: 10.1016/j.bbcan.2024.189081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
Distant metastasis is responsible for high mortality in most cancer cases and the lung is one of the most common target organs, severely affecting the quality of daily life and overall survival of cancer patients. With relevant research breakthroughs accumulating, scientists have developed a deeper understanding of lung metastasis (LM) from the rudimentary "seed and soil" theory to a more vivid concept of the pre-metastatic niche (PMN). Thus, the mechanisms of PMN formation become considerably complicated, involving various types of cells, chemokines, cytokines, and proteins, providing potential biomarkers for improved LM diagnosis and treatment techniques. Here we summarized the latest findings (in 3 years) of lung PMN and systematically collated it from basic research to clinical application, which clearly exhibited the influences of the primary tumor, stromal, and bone marrow-derived cells (BMDCs) and associated molecules in the formation of lung PMN.
Collapse
Affiliation(s)
- Hongting Xie
- Department of Oncology, Wangjing Hospital of China Academy of Traditional Chinese Medicine, Beijing, China
| | - Quan Sun
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuelei Chu
- Department of Oncology, Wangjing Hospital of China Academy of Traditional Chinese Medicine, Beijing, China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital of China Academy of Traditional Chinese Medicine, Beijing, China
| | - Feiyu Xie
- Integrated Traditional Chinese and Western Medicine Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China.
| |
Collapse
|
27
|
Liu Y, Liu Y, Sun X, Wang Y, Du C, Bai J. Morphologically transformable peptide nanocarriers coloaded with doxorubicin and curcumin inhibit the growth and metastasis of hepatocellular carcinoma. Mater Today Bio 2024; 24:100903. [PMID: 38130427 PMCID: PMC10733681 DOI: 10.1016/j.mtbio.2023.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/03/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
In tumor treatment, the highly disordered vascular system and lack of accumulation of chemotherapeutic drugs in tumors severely limit the therapeutic role of nanocarriers. Smaller drug-containing nanoparticles (NPs) can better penetrate the tumor but are easily removed, which severely limits the tumor-killing properties of the drug. The chemotherapeutic medication doxorubicin (DOX) is highly toxic to the heart, but this toxicity can be effectively mitigated and the combined anticancer effect can be enhanced by clinically incorporating curcumin (CUR) as part of the dual therapy. We designed a small-molecule peptide, Pep1, containing a targeting peptide (CREKA) and a pH-responsive moiety. These NPs can target the blood vessels in tumor microthrombi and undergo a morphological shift in the tumor microenvironment. This process enhances the penetration and accumulation of drugs, ultimately improving the effectiveness of cancer treatment. In vitro and in vivo experiments demonstrated that this morphological transformation allowed rapid and effective drug release into tumors, the effective inhibition of tumor angiogenesis, and the promotion of tumor cell apoptosis, thus effectively killing tumor cells. Our findings provide a novel and simple approach to nhibit the growth and metastasis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yun Liu
- School of Stomatology, Weifang Medical University, Weifang, 261053, China
| | - Yunxia Liu
- School of Stomatology, Weifang Medical University, Weifang, 261053, China
- Department of Dentistry, Affiliated Hospital of Weifang Medical University, Weifang, 261035, China
| | - Xinyu Sun
- School of Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Yue Wang
- School of Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Changqing Du
- Department of Dentistry, Affiliated Hospital of Weifang Medical University, Weifang, 261035, China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| |
Collapse
|
28
|
Fischer A, Alsina-Sanchis E. Disturbed endothelial cell signaling in tumor progression and therapy resistance. Curr Opin Cell Biol 2024; 86:102287. [PMID: 38029706 DOI: 10.1016/j.ceb.2023.102287] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Growth of new blood vessels is considered requisite to cancer progression. Recent findings revealed that in addition to inducing angiogenesis, tumor-derived factors alter endothelial cell gene transcription within the tumor mass but also systemically throughout the body. This subsequently contributes to immunosuppression, altered metabolism, therapy resistance and metastasis. Clinical studies demonstrated that targeting the endothelium can increase the success rate of immunotherapy. Single-cell technologies revealed remarkable organ-specific endothelial heterogeneity that becomes altered by the presence of a tumor. In metastases, endothelial transcription differs remarkably between newly formed and co-opted vessels which may provide a basis for developing new therapies to target endothelial cells and overcome therapy resistance more effectively. This review addresses how cancers impact the endothelium to facilitate tumor progression.
Collapse
Affiliation(s)
- Andreas Fischer
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen University, 37075 Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany.
| | - Elisenda Alsina-Sanchis
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen University, 37075 Göttingen, Germany
| |
Collapse
|
29
|
Sacdalan DB, Ul Haq S, Lok BH. Plasma Cell-Free Tumor Methylome as a Biomarker in Solid Tumors: Biology and Applications. Curr Oncol 2024; 31:482-500. [PMID: 38248118 PMCID: PMC10814449 DOI: 10.3390/curroncol31010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
DNA methylation is a fundamental mechanism of epigenetic control in cells and its dysregulation is strongly implicated in cancer development. Cancers possess an extensively hypomethylated genome with focal regions of hypermethylation at CPG islands. Due to the highly conserved nature of cancer-specific methylation, its detection in cell-free DNA in plasma using liquid biopsies constitutes an area of interest in biomarker research. The advent of next-generation sequencing and newer computational technologies have allowed for the development of diagnostic and prognostic biomarkers that utilize methylation profiling to diagnose disease and stratify risk. Methylome-based predictive biomarkers can determine the response to anti-cancer therapy. An additional emerging application of these biomarkers is in minimal residual disease monitoring. Several key challenges need to be addressed before cfDNA-based methylation biomarkers become fully integrated into practice. The first relates to the biology and stability of cfDNA. The second concerns the clinical validity and generalizability of methylation-based assays, many of which are cancer type-specific. The third involves their practicability, which is a stumbling block for translating technologies from bench to clinic. Future work on developing pan-cancer assays with their respective validities confirmed using well-designed, prospective clinical trials is crucial in pushing for the greater use of these tools in oncology.
Collapse
Affiliation(s)
- Danielle Benedict Sacdalan
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| | - Sami Ul Haq
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
- Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada
| | - Benjamin H. Lok
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Room 15-701, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
30
|
Yang Y, Jin C, Yeo A, Jin B. Multiple Factors Determine the Oncolytic or Carcinogenic Effects of TLRs Activation in Cancer. J Immunol Res 2024; 2024:1-28. [DOI: 10.1155/2024/1111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Toll-like receptors (TLRs) belong to a germline-encoded protein family. These are pattern recognition receptors. They sense pathogen-associated molecular patterns (PAMPs). When this occurs, activation of the NF-ĸB pathway follows. This triggers the innate immune response of the host. The consequent inflammatory cytokine response usually contributes to the elimination of the pathogen. Activation of TLRs also induces an adaptive immune response by a cross-prime mechanism. This mechanism is employed in cancer immunotherapy. Using TLR ligands as adjuvants induces upregulation of costimulatory signals which in turn activates a cytotoxic leukocyte response against cancer cells. However, TLRs are also overexpressed in human cancer cells resulting in increased cell proliferation, migration, invasion, and angiogenesis. An intracellular adaptor, myeloid differentiation factor 88 (MyD88) probably mediates this process. MyD88 is intimately involved with all TLRs except TLR3. One consequence of the interaction between a TLR and MyD88 is activation of NF-ĸB. In this context of a variety of proinflammtory cytokines being produced, chronic inflammation may result. Inflammation is an important protective mechanism. However, chronic inflammation is also involved in carcinogenesis. Activation of NF-ĸB inhibits apoptosis and under certain circumstances, tumor cell survival. In this review, the potential therapeutic value of TLRs in immunotherapy and its role in oncogenesis are explored. The emerging use of artificial intelligence is mentioned.
Collapse
Affiliation(s)
- Yingxiang Yang
- Department of Hepato-Pancreato-Biliary Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Chengyue Jin
- Beijing Arion Cancer Center, Beijing 100070, China
| | | | - Bo Jin
- Senior Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing 100853, China
| |
Collapse
|
31
|
Zhao L, Qiu Z, Yang Z, Xu L, Pearce TM, Wu Q, Yang K, Li F, Saulnier O, Fei F, Yu H, Gimple RC, Varadharajan V, Liu J, Hendrikse LD, Fong V, Wang W, Zhang J, Lv D, Lee D, Lehrich BM, Jin C, Ouyang L, Dixit D, Wu H, Wang X, Sloan AE, Wang X, Huan T, Mark Brown J, Goldman SA, Taylor MD, Zhou S, Rich JN. Lymphatic endothelial-like cells promote glioblastoma stem cell growth through cytokine-driven cholesterol metabolism. NATURE CANCER 2024; 5:147-166. [PMID: 38172338 DOI: 10.1038/s43018-023-00658-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024]
Abstract
Glioblastoma is the most lethal primary brain tumor with glioblastoma stem cells (GSCs) atop a cellular hierarchy. GSCs often reside in a perivascular niche, where they receive maintenance cues from endothelial cells, but the role of heterogeneous endothelial cell populations remains unresolved. Here, we show that lymphatic endothelial-like cells (LECs), while previously unrecognized in brain parenchyma, are present in glioblastomas and promote growth of CCR7-positive GSCs through CCL21 secretion. Disruption of CCL21-CCR7 paracrine communication between LECs and GSCs inhibited GSC proliferation and growth. LEC-derived CCL21 induced KAT5-mediated acetylation of HMGCS1 on K273 in GSCs to enhance HMGCS1 protein stability. HMGCS1 promoted cholesterol synthesis in GSCs, favorable for tumor growth. Expression of the CCL21-CCR7 axis correlated with KAT5 expression and HMGCS1K273 acetylation in glioblastoma specimens, informing patient outcome. Collectively, glioblastomas contain previously unrecognized LECs that promote the molecular crosstalk between endothelial and tumor cells, offering potentially alternative therapeutic strategies.
Collapse
Affiliation(s)
- Linjie Zhao
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Zhixin Qiu
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zhengnan Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, China
| | - Lian Xu
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Thomas M Pearce
- Department of Pathology, Division of Neuropathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qiulian Wu
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - FuLong Li
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Olivier Saulnier
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fan Fei
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Huaxu Yu
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan C Gimple
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Juxiu Liu
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Liam D Hendrikse
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Vernon Fong
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Wei Wang
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Jiao Zhang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Deguan Lv
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Derrick Lee
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Brandon M Lehrich
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Chunyu Jin
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Deobrat Dixit
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Wang
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Andrew E Sloan
- Department of Neurosurgery, Case Western Reserve University, Cleveland, OH, USA
| | - Xiuxing Wang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Steven A Goldman
- University of Rochester Medical Center, Rochester, NY, USA
- University of Copenhagen, Copenhagen, Denmark
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, China.
| | - Jeremy N Rich
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Reghu G, Vemula PK, Bhat SG, Narayanan S. Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy. J Biosci 2024; 49:63. [PMID: 38864238 PMCID: PMC11286319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 06/13/2024]
Abstract
Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.
Collapse
Affiliation(s)
- Gayatri Reghu
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682 022, India
| | | | | | | |
Collapse
|
33
|
Yang C, Cheng X, Gao S, Pan Q. Integrating bulk and single-cell data to predict the prognosis and identify the immune landscape in HNSCC. J Cell Mol Med 2024; 28:e18009. [PMID: 37882107 PMCID: PMC10805493 DOI: 10.1111/jcmm.18009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
The complex interplay between tumour cells and the tumour microenvironment (TME) underscores the necessity for gaining comprehensive insights into disease progression. This study centres on elucidating the elusive the elusive role of endothelial cells within the TME of head and neck squamous cell carcinoma (HNSCC). Despite their crucial involvement in angiogenesis and vascular function, the mechanistic diversity of endothelial cells among HNSCC patients remains largely uncharted. Leveraging advanced single-cell RNA sequencing (scRNA-Seq) technology and the Scissor algorithm, we aimed to bridge this knowledge gap and illuminate the intricate interplay between endothelial cells and patient prognosis within the context of HNSCC. Here, endothelial cells were categorized into Scissorhigh and Scissorlow subtypes. We identified Scissor+ endothelial cells exhibiting pro-tumorigenic profiles and constructed a prognostic risk model for HNSCC. Additionally, four biomarkers also were identified by analysing the gene expression profiles of patients with HNSCC and a prognostic risk prediction model was constructed based on these genes. Furthermore, the correlations between endothelial cells and prognosis of patients with HNSCC were analysed by integrating bulk and single-cell sequencing data, revealing a close association between SHSS and the overall survival (OS) of HNSCC patients with malignant endothelial cells. Finally, we validated the prognostic model by RT-qPCR and IHC analysis. These findings enhance our comprehension of TME heterogeneity at the single-cell level and provide a prognostic model for HNSCC.
Collapse
Affiliation(s)
- Chunlong Yang
- Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Xiaoning Cheng
- Zhanjiang Central HospitalGuangdong Medical UniversityZhanjiangChina
| | - Shenglan Gao
- Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Qingjun Pan
- Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| |
Collapse
|
34
|
Du Y, Zhou L, Wen Z, Feng L, Zhang S, Zhang T. Slit2 suppresses endotoxin-induced uveitis by inhibiting the PI3K/Akt/IKK/NF-κB pathway. Scand J Immunol 2023; 98:e13319. [PMID: 38441217 DOI: 10.1111/sji.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/17/2023] [Accepted: 07/18/2023] [Indexed: 03/07/2024]
Abstract
Uveitis is a devastating intraocular inflammatory disease. The secreted leucine-rich repeat protein slit homologue 2 (Slit2) has been found to be an essential regulator of inflammation. This study aimed to analyse the anti-inflammatory effects and the underlying mechanisms of Slit2 in an endotoxin-induced uveitis (EIU) rat model. In this study, rats with EIU pretreated recombinant human Slit2 (rhSlit2) or a control vehicle by intravitreal injection. The clinical scores were graded under a slit lamp. The protein concentrations and total number of cells in the aqueous humour (AqH) were examined, and the retinal expression of various inflammatory mediators was detected. The levels of nuclear factor-kappa B (NF-κB), phosphorylated NF-κB, IkappaB-a (IκB-a), phosphorylated IκB-a, IKK, phosphorylated IKK, PI3Kp85, phosphorylated PI3Kp85, Akt and phosphorylated Akt were evaluated by western blotting. Treatment with rhSlit2 dramatically diminished the clinical scores of EIU, with significant decreases in inflammatory cell infiltration, protein concentrations, cellulose-like exudates, the production of ICAM-1, MCP-1, TNF-α and IL-6 in the AqH; and adhesion of leucocytes. The PI3K/Akt/IKK/NF-κB pathway was found to be activated in EIU. However, the pre-treatment of rhSlit2 significantly inhibited the production of ICAM-1, MCP-1, TNF-α, and IL-6, and inhibited leucocyte adhesion by modulating the PI3K/Akt/IKK/NF-κB pathway. In conclusion, the intravitreal injection of rhSlit2 alleviated EIU-related inflammation in Sprague-Dawley rats by reducing the proinflammatory cytokines and leucocyte adhesion; in particular, rhSlit2 may inhibit LPS-induced inflammation by inhibiting the activation of PI3K/Akt/IKK/NF-κB signalling pathway. Therefore, rhSlit2 shows significant potential for effectively alleviating immune inflammatory responses in vivo.
Collapse
Affiliation(s)
- Yong Du
- Chongqing Key Lab of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Linbin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Zijun Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Lujia Feng
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Ting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| |
Collapse
|
35
|
Bhosle VK, Sun C, Patel S, Ho TWW, Westman J, Ammendolia DA, Langari FM, Fine N, Toepfner N, Li Z, Sharma M, Glogauer J, Capurro MI, Jones NL, Maynes JT, Lee WL, Glogauer M, Grinstein S, Robinson LA. The chemorepellent, SLIT2, bolsters innate immunity against Staphylococcus aureus. eLife 2023; 12:e87392. [PMID: 37773612 PMCID: PMC10541174 DOI: 10.7554/elife.87392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023] Open
Abstract
Neutrophils are essential for host defense against Staphylococcus aureus (S. aureus). The neuro-repellent, SLIT2, potently inhibits neutrophil chemotaxis, and might, therefore, be expected to impair antibacterial responses. We report here that, unexpectedly, neutrophils exposed to the N-terminal SLIT2 (N-SLIT2) fragment kill extracellular S. aureus more efficiently. N-SLIT2 amplifies reactive oxygen species production in response to the bacteria by activating p38 mitogen-activated protein kinase that in turn phosphorylates NCF1, an essential subunit of the NADPH oxidase complex. N-SLIT2 also enhances the exocytosis of neutrophil secondary granules. In a murine model of S. aureus skin and soft tissue infection (SSTI), local SLIT2 levels fall initially but increase subsequently, peaking at 3 days after infection. Of note, the neutralization of endogenous SLIT2 worsens SSTI. Temporal fluctuations in local SLIT2 levels may promote neutrophil recruitment and retention at the infection site and hasten bacterial clearance by augmenting neutrophil oxidative burst and degranulation. Collectively, these actions of SLIT2 coordinate innate immune responses to limit susceptibility to S. aureus.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Chunxiang Sun
- Faculty of Dentistry, University of TorontoTorontoCanada
| | - Sajedabanu Patel
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Tse Wing Winnie Ho
- The Keenan Research Centre for Biomedical Science, Unity Health TorontoTorontoCanada
- Department of Laboratory Medicine & Pathobiology, Medical Sciences Building, University of TorontoTorontoCanada
| | - Johannes Westman
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Dustin A Ammendolia
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Molecular Genetics, Medical Sciences Building, University of TorontoTorontoCanada
| | - Fatemeh Mirshafiei Langari
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, Medical Sciences Building, University of TorontoTorontoCanada
| | - Noah Fine
- Faculty of Dentistry, University of TorontoTorontoCanada
| | - Nicole Toepfner
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Zhubing Li
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Manraj Sharma
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Judah Glogauer
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Faculty of Dentistry, University of TorontoTorontoCanada
| | - Mariana I Capurro
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Nicola L Jones
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick ChildrenTorontoCanada
- Department of Physiology, Medical Sciences Building, University of TorontoTorontoCanada
- Department of Paediatrics, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Jason T Maynes
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick ChildrenTorontoCanada
- Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Warren L Lee
- The Keenan Research Centre for Biomedical Science, Unity Health TorontoTorontoCanada
- Department of Laboratory Medicine & Pathobiology, Medical Sciences Building, University of TorontoTorontoCanada
- Department of Biochemistry, Medical Sciences Building, University of TorontoTorontoCanada
- Department of Medicine and Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Michael Glogauer
- Faculty of Dentistry, University of TorontoTorontoCanada
- Department of Dental Oncology and Maxillofacial Prosthetics, University Health Network, Princess Margaret Cancer CentreTorontoCanada
- Centre for Advanced Dental Research and Care, Mount Sinai HospitalTorontoCanada
| | - Sergio Grinstein
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- The Keenan Research Centre for Biomedical Science, Unity Health TorontoTorontoCanada
- Department of Biochemistry, Medical Sciences Building, University of TorontoTorontoCanada
| | - Lisa A Robinson
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Paediatrics, Temerty Faculty of Medicine, University of TorontoTorontoCanada
- Institute of Medical Science, University of Toronto, Medical Sciences Building, University of TorontoTorontoCanada
- Division of Nephrology, The Hospital for Sick ChildrenTorontoCanada
| |
Collapse
|
36
|
Bhosle VK, Tan JM, Li T, Hua R, Kwon H, Li Z, Patel S, Tessier-Lavigne M, Robinson LA, Kim PK, Brumell JH. SLIT2/ROBO1 signaling suppresses mTORC1 for organelle control and bacterial killing. Life Sci Alliance 2023; 6:e202301964. [PMID: 37311584 PMCID: PMC10264968 DOI: 10.26508/lsa.202301964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
SLIT/ROBO signaling impacts many aspects of tissue development and homeostasis, in part, through the regulation of cell growth and proliferation. Recent studies have also linked SLIT/ROBO signaling to the regulation of diverse phagocyte functions. However, the mechanisms by which SLIT/ROBO signaling acts at the nexus of cellular growth control and innate immunity remain enigmatic. Here, we show that SLIT2-mediated activation of ROBO1 leads to inhibition of mTORC1 kinase activity in macrophages, leading to dephosphorylation of its downstream targets, including transcription factor EB and ULK1. Consequently, SLIT2 augments lysosome biogenesis, potently induces autophagy, and robustly promotes the killing of bacteria within phagosomes. Concordant with these results, we demonstrate decreased lysosomal content and accumulated peroxisomes in the spinal cords of embryos from Robo1 -/- , Robo2 -/- double knockout mice. We also show that impediment of auto/paracrine SLIT-ROBO signaling axis in cancer cells leads to hyperactivation of mTORC1 and inhibition of autophagy. Together, these findings elucidate a central role of chemorepellent SLIT2 in the regulation of mTORC1 activity with important implications for innate immunity and cancer cell survival.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Joel Mj Tan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Taoyingnan Li
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Rong Hua
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Hyunwoo Kwon
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Zhubing Li
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Sajedabanu Patel
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, Rockefeller University, New York, NY, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Lisa A Robinson
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Nephrology, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Peter K Kim
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - John H Brumell
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- SickKids IBD Centre, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
37
|
Lu G, Du R, Dong J, Sun Y, Zhou F, Feng F, Feng B, Han Y, Shang Y. Cancer associated fibroblast derived SLIT2 drives gastric cancer cell metastasis by activating NEK9. Cell Death Dis 2023; 14:421. [PMID: 37443302 PMCID: PMC10344862 DOI: 10.1038/s41419-023-05965-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
The secretory properties of cancer-associated fibroblasts (CAFs) play predominant roles in shaping a pro-metastatic tumor microenvironment. The present study demonstrated that SLIT2, an axon guidance protein, produced by CAFs and promoted gastric cancer (GC) metastasis in two gastric cancer cell lines (AGS and MKN45) by binding to roundabout guidance receptor 1 (ROBO1). Mass-spectrometry analysis revealed that ROBO1 could interact with NEK9, a serine/threonine kinase. And their mutual binding activities were further enhanced by SLIT2. Domain analysis revealed the kinase domain of NEK9 was critical in its interaction with the intracellular domain (ICD) of ROBO1, and it also directly phosphorylated tripartite motif containing 28 (TRIM28) and cortactin (CTTN) in AGS and MKN45 cells. TRIM28 function as a transcriptional elongation factor, which directly facilitate CTTN activation. In addition, Bioinformatics analysis and experimental validation identified transcriptional regulation of STAT3 and NF-κB p100 by TRIM28, and a synergetic transcription of CTTN by STAT3 and NF-κB p100 was also observed in AGS and MKN45. Therefore, CAF-derived SLIT2 increased the expression and phosphorylation levels of CTTN, which induced cytoskeletal reorganization and GC cells metastasis. A simultaneous increase in the expression levels of NEK9, TRIM28 and CTTN was found in metastatic GC lesions compared with paired non-cancerous tissues and primary cancer lesions via IHC and Multiplex IHC. The analysis of the data from a cohort of patients with GC revealed that increased levels of NEK9, TRIM28 and CTTN were associated with a decreased overall survival rate. On the whole, these findings revealed the connections of CAFs and cancer cells through SLIT2/ROBO1 and inflammatory signaling, and the key molecules involved in this process may serve as potential biomarkers and therapeutic targets for GC.
Collapse
Affiliation(s)
- Guofang Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jiaqiang Dong
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Sun
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Fenli Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Fan Feng
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Bin Feng
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Ying Han
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yulong Shang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
38
|
Shenoy AK, Pi L, Ligocki AP, Hosaka K, Cogle CR, Scott EW. Targeting Redundant ROBO1 and SDF-1 Pathways Prevents Adult Hemangioblast Derived-EPC and CEC Activity Effectively Blocking Tumor Neovascularization. Stem Cell Rev Rep 2023; 19:928-941. [PMID: 36652143 DOI: 10.1007/s12015-022-10498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/19/2023]
Abstract
Neovascularization is a key therapeutic target for cancer treatment. However, anti-angiogenic therapies have shown modest success, as tumors develop rapid resistance to treatment owing to activation of redundant pathways that aid vascularization. We hypothesized that simultaneously targeting different pathways of neovascularization will circumvent the current issue of drug resistance and offer enhanced therapeutic benefits. To test this hypothesis, we made use of two distinct models of tumor-neovascularization, which exhibit equally dense microvasculature but show disparate sensitivity to anti-SDF-1 treatment. Lewis lung carcinoma (LLC) is primarily a vasculogenic-tumor that is associated with HSC functioning as a hemangioblast to generate circulating Endothelial Progenitor Cells contributing to formation of new blood vessels, and responds to anti-SDF-1 treatment. B16F0 melanoma is an angiogenic-tumor that derives new blood vessels from existing vasculature and is resistant to anti-SDF-1 therapy. In this study, we observed increased expression of the angiogenic-factor, Robo1 predominantly expressed on the blood vessels of B16F0 tumor. Blockade of Robo1 by the decoy receptor, RoboN, resulted in reduced microvascular-density and tumor-growth. However, this was associated with mobilization of BM-cells into the B16F0 tumor, thus switching the mode of neovascularization from angiogenic to vasculogenic. The use of a combinatorial treatment of RoboN and the monoclonal anti-SDF-1 antibody effectively attenuated tumor-growth and inhibited both angiogenic and BM-derived microvessels.
Collapse
Affiliation(s)
- Anitha K Shenoy
- Program in Stem Cell Biology and Regenerative Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Liya Pi
- Program in Stem Cell Biology and Regenerative Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Alexander P Ligocki
- Program in Stem Cell Biology and Regenerative Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Koji Hosaka
- Program in Stem Cell Biology and Regenerative Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Christopher R Cogle
- Program in Stem Cell Biology and Regenerative Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Edward W Scott
- Program in Stem Cell Biology and Regenerative Medicine, University of Florida College of Medicine, Gainesville, FL, USA.
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA.
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbology, University of Florida, PO Box 100232, Gainesville, FL, 32610, USA.
| |
Collapse
|
39
|
Abstract
Our defenses against infection rely on the ability of the immune system to distinguish invading pathogens from self. This task is exceptionally challenging, if not seemingly impossible, in the case of retroviruses that have integrated almost seamlessly into the host. This review examines the limits of innate and adaptive immune responses elicited by endogenous retroviruses and other retroelements, the targets of immune recognition, and the consequences for host health and disease. Contrary to theoretical expectation, endogenous retroelements retain substantial immunogenicity, which manifests most profoundly when their epigenetic repression is compromised, contributing to autoinflammatory and autoimmune disease and age-related inflammation. Nevertheless, recent evidence suggests that regulated immune reactivity to endogenous retroelements is integral to immune system development and function, underpinning cancer immunosurveillance, resistance to infection, and responses to the microbiota. Elucidation of the interaction points with endogenous retroelements will therefore deepen our understanding of immune system function and contribution to disease.
Collapse
Affiliation(s)
- George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom;
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
40
|
Wu Z, Wu Y, Liu Z, Song Y, Ge L, Du T, Liu Y, Liu L, Liu C, Ma L. L1CAM deployed perivascular tumor niche promotes vessel wall invasion of tumor thrombus and metastasis of renal cell carcinoma. Cell Death Discov 2023; 9:112. [PMID: 37015905 PMCID: PMC10073121 DOI: 10.1038/s41420-023-01410-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/06/2023] Open
Abstract
The survival of tumor cells in the bloodstream, and vasculature adhesion at metastatic sites are crucial for tumor metastasis. Perivascular invasion aids tumor cell self-renewal, survival, and formation of metastases by facilitating readily available oxygen, nutrients, and endothelial-derived paracrine factors. Renal cell carcinoma (RCC) is among the most prevalent tumors of the urinary system, and the formation of venous tumor thrombus (VTT) is a characteristic feature of RCC. We observed high expression of L1CAM in the VTT with vessel wall invasion. L1CAM promotes the adhesion, migration, and invasion ability of RCC and enhances metastasis by interacting with ITGA5, which elicits activation of signaling downstream of integrin α5β1. L1CAM promotes ADAM17 transcription to facilitate transmembrane ectodomain cleavage and release of soluble L1CAM. In response to soluble L1CAM, vascular endothelial cells release several cytokines and chemokines. Endothelial-derived CXCL5 and its receptor CXCR2 promote the migration and intravasation of RCC toward endothelial cells suggesting that crosstalk between endothelial cells and tumor cells has a direct guiding role in driving the metastatic spread of RCC. LICAM plays a crucial role in the invasive ability of RCC, and regulation of L1CAM expression may contribute therapeutically to preventing RCC progression.
Collapse
Affiliation(s)
- Zonglong Wu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Yaqian Wu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Zhuo Liu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Yimeng Song
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Liyuan Ge
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Tan Du
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Yunchong Liu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Li Liu
- School of Nursing, Beijing University of Chinese Medicine, Beijing, 100191, P.R. China
| | - Cheng Liu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China.
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China.
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China.
| |
Collapse
|
41
|
Wang Y, Su L, Wang W, Zhao J, Wang Y, Li S, Liu Y, Chai R, Li X, Teng Z, Liu C, Hu B, Ji F, Jiao J. Endothelial Arid1a deletion disrupts the balance among angiogenesis, neurogenesis and gliogenesis in the developing brain. Cell Prolif 2023; 56:e13447. [PMID: 36916004 DOI: 10.1111/cpr.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
The vascular system and the neural system processes occur simultaneously, the interaction among them is fundamental to the normal development of the central nervous system. Arid1a (AT-rich interaction domain 1A), which encodes an epigenetic subunit of the SWI/SNF chromatin-remodelling complex, is associated with promoter-mediated gene regulation and histone modification. However, the molecular mechanism of the interaction between cerebrovascular and neural progenitor cells (NPCs) remains unclear. To generate Arid1acKO-Tie2 mice, Arid1afl/fl mice were hybridized with Tie2-Cre mice. The Angiogenesis, neurogenesis and gliogenesis were studied by immunofluorescence staining and Western blotting. RNA-seq, RT-PCR, Western blotting, CO-IP and rescue experiments were performed to dissect the molecular mechanisms of Arid1a regulates fate determination of NPCs. We found that the absence of Arid1a results in increased the density of blood vessels, delayed neurogenesis and decreased gliogenesis, even after birth. Mechanistically, the deletion of Arid1a in endothelial cells causes a significant increase in H3k27ac and the secretion of maternal protein 2 (MATN2). In addition, matn2 alters the AKT/SMAD4 signalling pathway through its interaction with the NPCs receptor EGFR, leading to the decrease of SMAD4. SMAD complex further mediates the expression of downstream targets, thereby promoting neurogenesis and inhibiting gliogenesis. This study suggests that endothelial Arid1a tightly controls fate determination of NPCs by regulating the AKT-SMAD signalling pathway.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Libo Su
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Wenwen Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jinyue Zhao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanyan Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sihan Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Liu
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Renjie Chai
- Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xin Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhaoqian Teng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Changmei Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Fen Ji
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Jianwei Jiao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Dialog beyond the Grave: Necrosis in the Tumor Microenvironment and Its Contribution to Tumor Growth. Int J Mol Sci 2023; 24:ijms24065278. [PMID: 36982351 PMCID: PMC10049335 DOI: 10.3390/ijms24065278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released from the necrotic cells dying after exposure to various stressors. After binding to their receptors, they can stimulate various signaling pathways in target cells. DAMPs are especially abundant in the microenvironment of malignant tumors and are suspected to influence the behavior of malignant and stromal cells in multiple ways often resulting in promotion of cell proliferation, migration, invasion, and metastasis, as well as increased immune evasion. This review will start with a reminder of the main features of cell necrosis, which will be compared to other forms of cell death. Then we will summarize the various methods used to assess tumor necrosis in clinical practice including medical imaging, histopathological examination, and/or biological assays. We will also consider the importance of necrosis as a prognostic factor. Then the focus will be on the DAMPs and their role in the tumor microenvironment (TME). We will address not only their interactions with the malignant cells, frequently leading to cancer progression, but also with the immune cells and their contribution to immunosuppression. Finally, we will emphasize the role of DAMPs released by necrotic cells in the activation of Toll-like receptors (TLRs) and the possible contributions of TLRs to tumor development. This last point is very important for the future of cancer therapeutics since there are attempts to use TLR artificial ligands for cancer therapeutics.
Collapse
|
43
|
Yamamoto A, Huang Y, Krajina BA, McBirney M, Doak AE, Qu S, Wang CL, Haffner MC, Cheung KJ. Metastasis from the tumor interior and necrotic core formation are regulated by breast cancer-derived angiopoietin-like 7. Proc Natl Acad Sci U S A 2023; 120:e2214888120. [PMID: 36853945 PMCID: PMC10013750 DOI: 10.1073/pnas.2214888120] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/06/2023] [Indexed: 03/01/2023] Open
Abstract
Necrosis in the tumor interior is a common feature of aggressive cancers that is associated with poor clinical prognosis and the development of metastasis. How the necrotic core promotes metastasis remains unclear. Here, we report that emergence of necrosis inside the tumor is correlated temporally with increased tumor dissemination in a rat breast cancer model and in human breast cancer patients. By performing spatially focused transcriptional profiling, we identified angiopoietin-like 7 (Angptl7) as a tumor-specific factor localized to the perinecrotic zone. Functional studies showed that Angptl7 loss normalizes central necrosis, perinecrotic dilated vessels, metastasis, and reduces circulating tumor cell counts to nearly zero. Mechanistically, Angptl7 promotes vascular permeability and supports vascular remodeling in the perinecrotic zone. Taken together, these findings show that breast tumors actively produce factors controlling central necrosis formation and metastatic dissemination from the tumor core.
Collapse
Affiliation(s)
- Ami Yamamoto
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA98195
| | - Yin Huang
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Brad A. Krajina
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Margaux McBirney
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Andrea E. Doak
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA98195
| | - Sixuan Qu
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Carolyn L. Wang
- Department of Radiology, University of Washington School of Medicine, Seattle, WA98195
| | - Michael C. Haffner
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Kevin J. Cheung
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| |
Collapse
|
44
|
Zezulin AU, Ye D, Howell E, Yen D, Bresciani E, Diemer J, Ren JG, Ahmad MH, Castilla LH, Touw IP, Minn AJ, Tong W, Liu PP, Tan K, Yu W, Speck NA. RUNX1 is required in granulocyte-monocyte progenitors to attenuate inflammatory cytokine production by neutrophils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525911. [PMID: 36747636 PMCID: PMC9900925 DOI: 10.1101/2023.01.27.525911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The transcription factor RUNX1 is mutated in familial platelet disorder with associated myeloid malignancies (FPDMM) and in sporadic myelodysplastic syndrome and leukemia. RUNX1 regulates inflammation in multiple cell types. Here we show that RUNX1 is required in granulocyte-monocyte progenitors (GMPs) to restrict the inflammatory response of neutrophils to toll-like receptor 4 (TLR4) signaling. Loss of RUNX1 in GMPs increased the TLR4 coreceptor CD14 on neutrophils, which contributed to neutrophils’ increased inflammatory cytokine production in response to the TLR4 ligand lipopolysaccharide. RUNX1 loss increased the chromatin accessibility of retrotransposons in GMPs and neutrophils and induced a type I interferon signature characterized by enriched footprints for signal transducer and activator of transcription (STAT1::STAT2) and interferon regulatory factors (IRF) in opened chromatin, and increased expression of interferon-stimulated genes. The overproduction of inflammatory cytokines by neutrophils was reversed by inhibitors of type I IFN signaling. We conclude that RUNX1 restrains the chromatin accessibility of retrotransposons in GMPs and neutrophils, and that loss of RUNX1 increases proinflammatory cytokine production by elevating tonic type I interferon signaling.
Collapse
|
45
|
Zhang C, Chen W, Pan S, Zhang S, Xie H, Zhang Z, Lei W, Bao L, You Y. SEVs-mediated miR-6750 transfer inhibits pre-metastatic niche formation in nasopharyngeal carcinoma by targeting M6PR. Cell Death Dis 2023; 9:2. [PMID: 36609569 PMCID: PMC9823008 DOI: 10.1038/s41420-022-01262-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 01/07/2023]
Abstract
Reliable detection of circulating small extracellular vesicles (SEVs) and their miRNA cargo has been needed to develop potential specific non-invasive diagnostic and therapeutic marker for cancer metastasis. Here, we detected miR-6750, the precise molecular function of which was largely unknown, was significantly enriched in serum-SEVs from normal volunteers vs. patients with nasopharyngeal carcinoma (NPC). And we determined that miR-6750-SEVs attenuated NPC metastasis. Subsequently, miR-6750-SEVs was proven to inhibit angiogenesis and activate macrophage toward to M1 phenotype to inhibit pre-metastatic niche formation. After analyzing the expression level of miR-6750 in NPC cells, HUVECs and macrophage, we found that once miR-6750 level in NPC cells was close to or higher than normal nasopharyngeal epithelial cells (NP69), miR-6750-SEVs would be transferred from NPC cells to macrophage and then to HUVECs to modulate metastatic niche. Moreover, in vitro assays and BALB/c mouse tumor models revealed that miR-6750 directly targeted mannose 6-phosphate receptor (M6PR). Taken together, our findings revealed that miR-6750-M6PR axis can mediate NPC metastasis by remodeling tumor microenvironment (TME) via SEVs, which give novel sights to pathogenesis of NPC.
Collapse
Affiliation(s)
- Caiming Zhang
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenhui Chen
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Si Pan
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Siyu Zhang
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Haijing Xie
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zixiang Zhang
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Lei
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Lili Bao
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yiwen You
- grid.440642.00000 0004 0644 5481Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China ,grid.440642.00000 0004 0644 5481Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
46
|
Niepmann ST, Willemsen N, Boucher AS, Stei M, Goody P, Zietzer A, Bulic M, Billig H, Odainic A, Weisheit CK, Quast C, Adam M, Schmidt SV, Bakhtiary F, Jansen F, Nickenig G, Latz E, Zimmer S. Toll-like receptor-3 contributes to the development of aortic valve stenosis. Basic Res Cardiol 2023; 118:6. [PMID: 36723728 PMCID: PMC9892139 DOI: 10.1007/s00395-023-00980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/02/2023]
Abstract
Aortic valve stenosis (AS) development is driven by distinct molecular and cellular mechanisms which include inflammatory pathways. Toll-like-receptor-3 (TLR3) is a lysosomal pattern-recognition receptor that binds double-stranded RNA and promotes pro-inflammatory cellular responses. In recent years, TLR3 has emerged as a major regulator of vascular inflammation. The exact role of TLR3 in the development of AS has not been investigated. Isolated human valvular interstitial cells (VICs) were stimulated with the TLR3-agonist polyIC and the resulting pro-inflammatory and pro-osteogenic response measured. Severe AS was induced in wildtype- and TLR3-/- mice via mechanical injury of the aortic valve with a coronary springwire. TLR3 activation was achieved by polyIC injection every 24 h after wire injury, while TLR3 inhibition was realized using Compound 4a (C4a) every 48 h after surgery. Endothelial mesenchymal transition (EndoMT) of human valvular endothelial cells (VECs) was assessed after polyIC stimulation. Stimulation of human VICs with polyIC promoted a strong inflammatory and pro-osteogenic reaction. Similarly, injection of polyIC marginally increased AS development in mice after wire injury. AS induction was significantly decreased in TLR3-/- mice, confirming the role of endogenous TLR3 ligands in AS pathology. Pharmacological inhibition of TLR3 with C4a not only prevented the upregulation of inflammatory cytokines and osteogenic markers in VICs, and EndoMT in VECs, but also significantly abolished the development of AS in vivo. Endogenous TLR3 activation significantly contributes to AS development in mice. Pharmacological inhibition of TLR3 with C4a prevented AS formation. Therefore, targeting TLR3 may be a viable treatment option.
Collapse
Affiliation(s)
- Sven Thomas Niepmann
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany.
| | - Nicola Willemsen
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Ann Sophie Boucher
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Marta Stei
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Philip Goody
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Andreas Zietzer
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Marko Bulic
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Hannah Billig
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Alexandru Odainic
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany ,Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC Australia
| | | | - Christine Quast
- Cardiovascular Research Laboratory, Division of Cardiology, Pulmonary Diseases and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany ,Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Matti Adam
- Clinic for Cardiology, University Hospital Cologne, Cologne, Germany
| | | | - Farhad Bakhtiary
- Heart Center Bonn, Clinic for Heard Surgery, University Hospital Bonn, Bonn, Germany
| | - Felix Jansen
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Georg Nickenig
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Eike Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Sebastian Zimmer
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
47
|
Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:6433-6477. [PMID: 36569275 PMCID: PMC9782839 DOI: 10.3748/wjg.v28.i46.6433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Hepatectomy is currently considered the most effective option for treating patients with early and intermediate hepatocellular carcinoma (HCC). Unfortunately, the postoperative prognosis of patients with HCC remains unsatisfactory, predominantly because of high postoperative metastasis and recurrence rates. Therefore, research on the molecular mechanisms of postoperative HCC metastasis and recurrence will help develop effective intervention measures to prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. Herein, we review the latest research progress on the molecular mechanisms underlying postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Department of Internal Medicine, Qingdao Shibei District People's Hospital, Qingdao 266033, Shandong Province, China
| |
Collapse
|
48
|
Piras R, Ko EY, Barrett C, De Simone M, Lin X, Broz MT, Tessaro FHG, Castillo-Martin M, Cordon-Cardo C, Goodridge HS, Di Vizio D, Batish M, Lawrenson K, Chen YG, Chan KS, Guarnerio J. circCsnk1g3- and circAnkib1-regulated interferon responses in sarcoma promote tumorigenesis by shaping the immune microenvironment. Nat Commun 2022; 13:7243. [PMID: 36433954 PMCID: PMC9700836 DOI: 10.1038/s41467-022-34872-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
Exonic circular RNAs (circRNAs) produce predominantly non-coding RNA species that have been recently profiled in many tumors. However, their functional contribution to cancer progression is still poorly understood. Here, we identify the circRNAs expressed in soft tissue sarcoma cells and explore how the circRNAs regulate sarcoma growth in vivo. We show that circCsnk1g3 and circAnkib1 promote tumor growth by shaping a pro-tumorigenic microenvironment, possibly due to their capabilities to regulate tumor-promoting elements extrinsic to the tumor cells. Accordingly, circCsnk1g3 and circAnkib1 can control the expression of interferon-related genes and pro-inflammatory factors in the sarcoma cells, thus directing immune cell recruitment into the tumor mass, and hence their activation. Mechanistically, circRNAs may repress pro-inflammatory elements by buffering activation of the pathways mediated by RIG-I, the cytosolic viral RNA sensor. The current findings suggest that the targeting of specific circRNAs could augment the efficacy of tumor and immune response to mainstay therapies.
Collapse
Affiliation(s)
- Roberta Piras
- Department of Radiation Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Emily Y Ko
- Department of Radiation Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Connor Barrett
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Marco De Simone
- Department of Radiation Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xianzhi Lin
- Women's Cancer Research Program at Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marina T Broz
- Department of Radiation Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Fernando H G Tessaro
- Department of Radiation Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mireia Castillo-Martin
- Department of Pathology, Mount Sinai School of Medicine, The Mount Sinai Medical Center, New York, NY, 10029, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Mount Sinai School of Medicine, The Mount Sinai Medical Center, New York, NY, 10029, USA
| | - Helen S Goodridge
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dolores Di Vizio
- Department of Surgery and Department of Pathology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Kate Lawrenson
- Women's Cancer Research Program at Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Y Grace Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Keith Syson Chan
- Department of Pathology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jlenia Guarnerio
- Department of Radiation Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- David Geffen Medical School, Department of Hematology Oncology, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Hu J, Chen W, Shen L, Chen Z, Huang J. Crosstalk between the peripheral nervous system and breast cancer influences tumor progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188828. [PMID: 36283598 DOI: 10.1016/j.bbcan.2022.188828] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
Abstract
Recent studies have shown that peripheral nerves play an important role in the progression of breast cancer. Breast cancer cells (BCCs) promote local peripheral nerve growth and branching by secreting neuroactive molecules, including neurotrophins and axon guidance molecules (AGMs). Sympathetic nerves promote breast cancer progression, while parasympathetic and sensory nerves mainly have anti-tumor effects in the progression of breast cancer. Specifically, peripheral nerves can influence the progression of breast cancer by secreting neurotransmitters not only directly binding to the corresponding receptors of BCCs, but also indirectly acting on immune cells to modulate anti-tumor immunity. In this review, we summarize the crosstalk between breast cancer and peripheral nerves and the roles of important neuroactive molecules in the progression of breast cancer. In addition, we summarize indicators, including nerve fiber density and perineural invasion (PNI), that may help determine the prognosis of breast cancer based on current research results, as well as potential therapeutic approaches, such as β-blockers and retroviral-mediated genetic neuroengineering techniques, that may enhance the prognosis of breast cancer. In addition, we propose suggestions for future research priorities based on a current lack of knowledge in this area.
Collapse
Affiliation(s)
- Jianming Hu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Wuzhen Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lesang Shen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhigang Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China..
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China..
| |
Collapse
|
50
|
Hao H, Guo Z, Li Z, Li J, Jiang S, Fu J, Jiao Y, Deng X, Han S, Li P. Modified Bu-Fei decoction inhibits lung metastasis via suppressing angiopoietin-like 4. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154409. [PMID: 36070661 DOI: 10.1016/j.phymed.2022.154409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/11/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Modified Bu-Fei decoction (MBFD), a formula of traditional Chinese medicine, is used for treating lung cancer in clinic. The actions and mechanisms of MBFD on modulating lung microenvironment is not clear. PURPOSE Lung microenvironment is rich in vascular endothelial cells (ECs). This study is aimed to examine the actions of MBFD on tumor biology, and to uncover the underlying mechanisms by focusing on pulmonary ECs. METHODS The Lewis lung carcinoma (LLC) xenograft model and the metastatic cancer model were used to determine the efficacy of MBFD on inhibiting tumor growth and metastasis. Flow cytometry and trans-well analysis were used to determine the role of ECs in anti-metastatic actions of MBFD. The in silico analysis and function assays were used to identify the mechanisms of MBFD in retarding lung metastasis. Plasma from lung cancer patients were used to verify the effects of MBFD on angiogenin-like protein 4 (ANGPTL4) in clinical conditions. RESULTS MBFD significantly suppressed spontaneous lung metastasis of LLC tumors, but not tumor growth, at clinically relevant concentrations. The anti-metastatic effects of MBFD were verified in metastatic cancer models created by intravenous injection of LLC or 4T1 cells. MBFD inhibited lung infiltration of circulating tumor cells, without reducing tumor cell proliferations in lung. In vitro, MBFD dose-dependently inhibited trans-endothelial migrations of tumor cells. RNA-seq assay and verification experiments confirmed that MBFD potently depressed endothelial ANGPTL4 which is able to broke endothelial barrier and protect tumor cells from anoikis. Database analysis revealed that high ANGPTL4 levels is negatively correlated with overall survival of cancer patients. Importantly, MBFD therapy reduced plasma levels of ANGPTL4 in lung cancer patients. Finally, MBFD was revealed to inhibit ANGPTL4 expressions in a hypoxia inducible factor-1α (HIF-1α)-dependent manner, based on results from specific signaling inhibitors and network pharmacology analysis. CONCLUSION MBFD, at clinically relevant concentrations, inhibits cancer lung metastasis via suppressing endothelial ANGPTL4. These results revealed novel effects and mechanisms of MBFD in treating cancer, and have a significant clinical implication of MBFD therapy in combating metastasis.
Collapse
Affiliation(s)
- Huifeng Hao
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Zhengwang Guo
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Zhandong Li
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Junfeng Li
- Departments of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Shantong Jiang
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China; Vascular Medicine Center, Peking University Shougang Hospital, Beijing, 100144, P.R. China
| | - Jialei Fu
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Yanna Jiao
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Xinxin Deng
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Shuyan Han
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China.
| | - Pingping Li
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China.
| |
Collapse
|