1
|
Sun X, Wu J, Lv H, Wang B, Chen X, Ren W, Miao X, Guo Y, Kong X, Xu H, Bao Z, Xu Y, Li Z. C-C motif chemokines ligand 7 contributes to metabolic dysfunction-associated steatotic liver disease by enabling redox-sensitive induction of hypermethylated in cancer 1. Metabolism 2025; 168:156242. [PMID: 40157597 DOI: 10.1016/j.metabol.2025.156242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become a global pandemic and the most critical implication for liver transplantation. In the present study, we investigated the role of CC motif chemokine ligand 7 (CCL7) in MASLD pathogenesis focusing on mechanism and translational potential. We report that CCL7 blockade with a neutralization antibody attenuated MASLD in mice. RNA-seq performed in hepatocytes identified hypermethylated in cancer 1 (HIC1) as a novel target gene responsive to CCL7 treatment. CCL7 induced HIC1 expression was mediated by steroid receptor co-activator 1 (SRC-1) in a redox-sensitive manner. Mechanistically, enhanced ROS production by CCL7 activated protein kinase C theta (PKCθ), which in turn phosphorylated SRC-1 thereby enabling SRC-1 recruitment to the Hic1 promoter. Consistently SRC-1 depletion or HIC1 depletion ameliorated MASLD in mice. Further analysis revealed that SRC-1 activated Hic1 transcription in part by recruiting protein arginine methyltransferase 4 (PRMT4) in a redox-sensitive and phosphorylation-dependent manner. Importantly, pharmaceutical inhibition of PRMT4 activity with a small-molecule compound TP-064 mitigated MASLD in mice. Finally, relevance of the CCL7-SRC-1-PRMT4-HIC1 axis was confirmed in MASLD patients. In conclusion, our data uncover a previously unrecognized redox-sensitive mechanism underlying MASLD pathogenesis and present druggable targets for MASLD intervention.
Collapse
Affiliation(s)
- Xinyue Sun
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China; Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinge Wu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Huiqian Lv
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Ben Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xuelian Chen
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Wenjing Ren
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiulian Miao
- Institute of Biomedical Research and College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Yan Guo
- Institute of Biomedical Research and College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Xiaocen Kong
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zeqing Bao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.
| | - Yong Xu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China; Institute of Biomedical Research and College of Agriculture and Biology, Liaocheng University, Liaocheng, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China.
| | - Zilong Li
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China; Institute of Biomedical Research and College of Agriculture and Biology, Liaocheng University, Liaocheng, China.
| |
Collapse
|
2
|
Yang X, Guo C, Yang Y, Huang L, Luo L, Zhou Y, Xiao Y, Deng L, Li S. Targeting neutrophil extracellular traps: SERPINE1 and THBS1 as non-invasive biomarkers for early detection of liver fibrosis in metabolic dysfunction-associated Steatotic liver disease. Int Immunopharmacol 2025; 158:114828. [PMID: 40349409 DOI: 10.1016/j.intimp.2025.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/26/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Metabolic dysfunction - Associated Steatotic Liver Disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), poses a significant clinical burden due to its high prevalence and potential progression to fibrosis. While neutrophil extracellular traps (NETs) have been implicated in MASLD progression, their specific role in fibrosis remains unclear. This study integrates transcriptomic and single-cell data using weighted gene co-expression network analysis (WGCNA), causal WGCNA (CWGCNA), single-sample gene set enrichment analysis (ssGSEA), gene set variation analysis (GSVA), and linear models for microarray data (Limma) to identify key genes driving steatosis-to-fibrosis transition. Validation in human serum, mouse liver tissue, and mouse serum confirmed that SERPINE1 and THBS1 as robust non-invasive biomarkers with strong diagnostic performance. When combined with clinical features, these markers improved fibrosis prediction accuracy in MASLD patients. Additionally, SERPINE1 appears to mediate interactions between hepatic stellate cells and neutrophils, highlighting a novel therapeutic target. Overall, our findings reveal that NETs-related genes, particularly SERPINE1 and THBS1, hold strong diagnostic value for early-stage fibrosis in MASLD. Targeting SERPINE1 in hepatic stellate cells offers a promising strategy for therapeutic intervention. This study provides a novel framework for non-invasive MASLD fibrosis prediction and lays the foundation for targeted interventions to mitigate disease progression.
Collapse
Affiliation(s)
- Xiaofeng Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunhong Guo
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yichun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Huang
- Department of Pediatric Research Institute, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Luo
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, China
| | - Youping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuliang Xiao
- Department of Gastroenterology, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Liang Deng
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Shan Li
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Li L, Gao W, Yao F, Li J, Sang W, Zhang R. Innovative nanomedicine approaches for the management of nonalcoholic fatty liver disease. J Control Release 2025; 382:113680. [PMID: 40180250 DOI: 10.1016/j.jconrel.2025.113680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disorder globally. The prevalence of NAFLD in the general population is estimated to be 25-30 %, making it the most common chronic liver condition in China as well as worldwide. Given the escalating disease burden and the scarcity of effective therapeutic interventions, there is a pressing unmet clinical need. Consequently, the development of novel pharmaceuticals has emerged as a pivotal research focus in recent years. Moreover, the advent of nano-delivery technology offers innovative solutions for NAFLD drug therapy. This paper presents a comprehensive examination of the pathogenesis and therapeutic targets of NAFLD. It critically reviews the latest advancements in nanomedicine research pertinent to NAFLD treatment. The review synthesizes a broad range of research findings to bridge the gap between current knowledge and emerging therapeutic strategies, and aims to inform and guide future research directions in NAFLD management.
Collapse
Affiliation(s)
- Limeng Li
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Weiqi Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China; Shanxi Academy of Advanced Research and Innovation (SAARl), Taiyuan, 030032, China
| | - Fengyang Yao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Jiayi Li
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Wei Sang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China.
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
4
|
Jin H, Zhong X, Zhang C, Wu Y, Sun J, Wang X, Wang Z, Zhu J, Jiang Y, Du X, Zhang Z, Zhang D, Sun G. CD73 promotes the immunoregulatory functions of hepatic Tregs through enzymatic and nonenzymatic pathways in MASLD development. Mol Metab 2025; 96:102131. [PMID: 40139441 PMCID: PMC12002957 DOI: 10.1016/j.molmet.2025.102131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading chronic liver disease characterized by chronic inflammation. Regulatory T cells (Tregs) highly express CD73 and play a critical role in modulating the immune response. However, the roles and mechanisms by which CD73 modulates Tregs in MASLD are still unknown. A choline-deficient high-fat diet (CDHFD) or methionine/choline-deficient diet (MCD) was used to establish a MASLD model. We found that CD73 expression was upregulated in Tregs via the FFA-mediated p38/GATA2 signaling pathway. Cd73 KO promoted MASLD progression, accompanied by decreased Treg viability and activity. Compared with Cd73 KO Tregs, adoptively transferred WT Tregs exhibited increased Treg activity and provided greater protection against hepatic inflammatory responses in MASLD. This immune protection is mediated by CD73 via both enzymatic and nonenzymatic pathways, degrading AMP into ADO to increase Treg function and block DR5-TRAIL-mediated cell death signaling. These findings suggest a potential immunotherapeutic approach for MASLD treatment and highlight its possible relevance for clinical application.
Collapse
Affiliation(s)
- Hua Jin
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xinjie Zhong
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Chunpan Zhang
- Department of Infectious Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yongle Wu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jie Sun
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiyu Wang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zeyu Wang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jingjing Zhu
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuan Jiang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaonan Du
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zihan Zhang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Dong Zhang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China
| | - Guangyong Sun
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
5
|
Cheng WT, Pei SY, Wu J, Wang YJ, Yang YW, Xiao MF, Chen J, Wang YY, Wu L, Huang ZB. Cannabinoid-2 receptor depletion promotes non-alcoholic fatty liver disease in mice via disturbing gut microbiota and tryptophan metabolism. Acta Pharmacol Sin 2025; 46:1676-1691. [PMID: 39979552 PMCID: PMC12098919 DOI: 10.1038/s41401-025-01495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. NAFLD encompasses a spectrum of liver damage starting with liver steatosis and lipid disorders presented as the hallmark. Cannabinoid-2 receptor (CB2R) is the receptor of endocannabinoids mainly expressed in immune cells. Our preliminary study revealed the preventative role of CB2R in liver injury related to lipid metabolism. In this study, we aimed to explore the role of CB2R in NAFLD and the underlying mechanism related to microbial community. High-fat diet-induced NAFLD model was established in mice. We found that hepatic CB2R expression was significantly reduced in NAFLD mice and CB2R-/- mice fed with normal chow. Interestingly, cohousing with or transplanted with microbiota from WT mice, or treatment with an antibiotic cocktail ameliorated the NAFLD phenotype of CB2R-/- mice. The gut dysbiosis in CB2R-/- mice including increased Actinobacteriota and decreased Bacteroidota was similar to that of NAFLD patients and NAFLD mice. Microbial functional analysis and metabolomics profiling revealed obviously disturbed tryptophan metabolism in NAFLD patients and NAFLD mice, which were also seen in CB2R-/- mice. Correlation network showed that the disordered tryptophan metabolites such as indolelactic acid (ILA) and xanthurenic acid in CB2R-/- mice were mediated by gut dysbiosis and related to NAFLD severity indicators. In vitro and in vivo validation experiments showed that the enriched tryptophan metabolites ILA aggravated NAFLD phenotypes. These results demonstrate the involvement of CB2R in NAFLD, which is related to gut microbiota-mediated tryptophan metabolites. Our findings highlight CB2R and the associated microbes and tryptophan metabolites as promising targets for the treatment of NAFLD.
Collapse
MESH Headings
- Animals
- Non-alcoholic Fatty Liver Disease/metabolism
- Non-alcoholic Fatty Liver Disease/microbiology
- Non-alcoholic Fatty Liver Disease/pathology
- Gastrointestinal Microbiome/physiology
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/deficiency
- Tryptophan/metabolism
- Mice, Inbred C57BL
- Male
- Mice
- Mice, Knockout
- Diet, High-Fat/adverse effects
- Humans
- Disease Models, Animal
- Dysbiosis/metabolism
- Liver/metabolism
- Liver/pathology
Collapse
Affiliation(s)
- Wei-Ting Cheng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Si-Ya Pei
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, 410007, China
| | - Jie Wu
- Shantou University Medical College, Shantou, 515041, China
| | - Yan-Jie Wang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, 410007, China
| | - Yong-Wen Yang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mei-Fang Xiao
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jun Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuan-Yuan Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Li Wu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Ze-Bing Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
6
|
Cheng F, Niu X, Wang Y, Yang F, Yang K, Li W. Decoding the impact of glucose-dependent insulinotropic polypeptide receptor (GIPR) agonist on cardiometabolic health: inflammatory mediators at the focus. Diabetol Metab Syndr 2025; 17:175. [PMID: 40426228 DOI: 10.1186/s13098-025-01744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND The Glucagon-like peptide-1 receptor (GLP-1R) and the glucose-dependent insulinotropic polypeptide receptor (GIPR) are well-established drug targets for the treatment of diabetes and obesity. Studies have linked GLP-1R agonist to cardiometabolic diseases (CMDs), while the therapeutic potential of the GIPR agonist remains a topic of debate. METHODS Using genetic variants as instrumental variables, we performed a two-sample Mendelian randomization (MR) analysis to investigate causal relationships between genetically proxied GIPR agonist and 23 CMD outcomes, and a two-step mediation analysis to identify mediating inflammatory biomarkers. The inverse variance weighted (IVW) method served as the primary analytical approach, supplemented by sensitivity analyses to validate robustness. RESULTS The genetic mimicry of GIPR enhancement showed significant protective associations with 14 CMDs. Mediation analysis revealed that Fms-related tyrosine kinase 3 ligand (Flt3L) partially mediated the effects of GIPR agonist on angina (OR 0.997 [0.995-0.999], P = 0.0048) and myocardial infarction(MI) (OR 0.998 [0.996-0.999], P = 0.0077), accounting for 15.49% and 16.71% of the total risk reduction, respectively. CONCLUSION Our study revealed that GIPR agonist lowers the risk of 14 CMDs. Flt3L is pinpointed as a key mediating factor in reducing angina and MI risk, suggesting a new therapeutic avenue.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 1277, Jiefang Avenue, Wuhan, 430000, Hubei, China
| | - Xinyu Niu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 1277, Jiefang Avenue, Wuhan, 430000, Hubei, China
| | - Yaoling Wang
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fan Yang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 1277, Jiefang Avenue, Wuhan, 430000, Hubei, China
| | - Kang Yang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 1277, Jiefang Avenue, Wuhan, 430000, Hubei, China
| | - Wei Li
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No 1277, Jiefang Avenue, Wuhan, 430000, Hubei, China.
| |
Collapse
|
7
|
Ge Z, Wu Q, Lv C, He Q. The Roles of T Cells in the Development of Metabolic Dysfunction-Associated Steatohepatitis. Immunology 2025. [PMID: 40414629 DOI: 10.1111/imm.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/28/2025] [Accepted: 04/28/2025] [Indexed: 05/27/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), the progressed period of metabolic dysfunction-associated steatotic liver disease (MASLD), is a multifaceted liver disease characterised by inflammation and fibrosis that develops from simple steatosis, even contributing to hepatocellular carcinoma and death. MASH involves several immune cell-mediated inflammation and fibrosis, where T cells play a crucial role through the release of pro-inflammatory cytokines and pro-fibrotic factors. This review discusses the complex role of various T cell subsets in the pathogenesis of MASH and highlights the progress of ongoing clinical trials involving T cell-targeted MASH therapies.
Collapse
Affiliation(s)
- Zhifa Ge
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qingwei Wu
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qifeng He
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Alén R, Garcia-Martinez I, Cobo-Vuilleumier N, Fernández-Millán E, Gallardo-Villanueva P, Ferreira V, Izquierdo M, Moro MÁ, Lizasoain I, Nieto N, Gauthier BR, Valverde ÁM. Effect of lipotoxic hepatocyte-derived extracellular vesicles in pancreas inflammation: essential role of macrophage TLR4 in beta cell functionality. Diabetologia 2025:10.1007/s00125-025-06445-z. [PMID: 40387904 DOI: 10.1007/s00125-025-06445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/03/2025] [Indexed: 05/20/2025]
Abstract
AIMS/HYPOTHESIS Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common feature of obesity and type 2 diabetes. Under lipotoxic stress, hepatocytes release small extracellular vesicles (sEVs) which act locally and contribute to MASLD progression, but their role in beta cell function and development of type 2 diabetes remains largely unexplored. We aimed to examine whether hepatocyte-derived sEVs (Hep-sEVs) under lipotoxic conditions impact on liver and pancreas inflammation and subsequent effects on beta cell function. METHODS Primary mouse hepatocytes and Huh7 human hepatocytes were treated with palmitic acid and Hep-sEVs were purified from the culture medium by differential ultracentrifugation. In vitro and in vivo approaches were used to decipher the role of Hep-sEVs in liver and pancreas inflammation and beta cell dysfunction in mouse and human pancreatic islets. The contribution of the Toll-like receptor 4 (TLR4) to Hep-sEV-mediated effects was investigated in pancreatic islets from myeloid-specific TLR4-deficient mice. RESULTS Lipotoxic Hep-sEVs targeted pancreatic islet macrophages and induced TLR4-mediated inflammation. The subsequent inflammatory response downregulated beta cell identity genes and impaired glucose-stimulated insulin secretion in both INS-1 beta cells (p<0.05) and isolated pancreatic islets from mice (p<0.01) and humans (p<0.05). Specific deletion of TLR4 in macrophages protected pancreatic islets against inflammation and the impairment of glucose-stimulated insulin secretion induced by lipotoxic Hep-sEVs. Chronic administration of lipotoxic Hep-sEVs in lean mice induced liver and pancreas inflammation through the recruitment of immune cells. This intervention induced hepatocyte injury and fibrotic damage together with detrimental immunometabolic systemic effects. Insulin resistance in hepatocytes (p<0.01) and a compensatory insulin secretion (p<0.001) that prevented glucose intolerance were also observed in mice treated with lipotoxic Hep-sEVs. CONCLUSIONS/INTERPRETATION This study has provided evidence of liver and pancreas inflammation and beta cell dysfunction induced by lipotoxic Hep-sEVs. Our data also envision TLR4-mediated signalling in islet macrophages as a key mediator of the effects of lipotoxic Hep-sEVs on beta cell function.
Collapse
Affiliation(s)
- Rosa Alén
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBm, CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Irma Garcia-Martinez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBm, CSIC-UAM), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Nadia Cobo-Vuilleumier
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain
| | - Elisa Fernández-Millán
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Paula Gallardo-Villanueva
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Vitor Ferreira
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBm, CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Manuel Izquierdo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBm, CSIC-UAM), Madrid, Spain
| | - María Ángeles Moro
- Fisiopatología Neurovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Natalia Nieto
- Department of Pathology, Department of Medicine (Gastroenterology and Hepatology), University of Illinois at Chicago, Chicago, IL, USA
| | - Benoit R Gauthier
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBm, CSIC-UAM), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
9
|
Lv C, Shi K, Guo Y, Guo Z, Luo P, Wang L, Wu Z, Yu P. Emerging Roles of Periodontal Pathogen-Derived Outer Membrane Vesicles in NAFLD. Int Dent J 2025; 75:100825. [PMID: 40378508 DOI: 10.1016/j.identj.2025.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 05/19/2025] Open
Abstract
The rising incidence of nonalcoholic fatty liver disease (NAFLD) poses a great socioeconomic burden worldwide. Also, periodontitis is the most common chronic inflammatory disease caused by a group of oral pathogens, affecting both oral health and systemic conditions, especially liver disease. Although accumulating evidence has elucidated an association between periodontal pathogens and NAFLD, the role of periodontal pathogen-derived outer membrane vesicles (OMVs) has not yet been clarified. In this comprehensive review, we aim to address this gap by summarising the progression and pathogenesis of NAFLD and revealing the relationship between periodontal disease and NAFLD multidimensionally. Additionally, this review sheds light on the multifunctional roles of periodontal pathogens OMVs and emphasises that periodontal pathogen-derived OMVs promote the development of NAFLD by stimulating Kupffer cells to produce inflammatory factors and inducing the activation of Hepatic stellate cells. However, it is still controversial whether periodontal pathogen-derived OMVs can be transferred to the liver through the bloodstream route or the oral-gut-liver axis. This highlights the pressing need for continued research efforts to develop new and optimised research schemes to observe the formation of the systemic distribution pathway of periodontal pathogen-derived OMVs. Finally, it is notable that there are currently no relevant clinical treatment guidelines to make specific provisions on controlling the level of periodontal pathogen-derived OMVs in patients with NAFLD. Guidelines developed based on our findings may contribute to the standardisation of practices. It can also provide effective strategies and potential therapeutic targets for NAFLD patients with periodontitis to alleviate the development of NAFLD diseases by inhibiting periodontal pathogens OMVs.
Collapse
Affiliation(s)
- Congcong Lv
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction and Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Kaikai Shi
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction and Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yadong Guo
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction and Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zixin Guo
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction and Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Pingchan Luo
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction and Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction and Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhe Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction and Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| | - Pei Yu
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction and Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Liu G, Mao Q, Tian X, Zhang C, Zhang Y, He J, Kong Y. Association of biological aging and the prevalence of nonalcoholic fatty liver disease: a population-based study. BMC Gastroenterol 2025; 25:368. [PMID: 40360998 PMCID: PMC12070789 DOI: 10.1186/s12876-025-03955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
PURPOSE To examine the relationship between biological aging and the prevalence of NAFLD. METHOD We used the recommended sampling weights to account for the complex survey design of NHANES. The analysis, utilizing data from 2005 to 2016, aimed to investigate the impact of biological aging on NAFLD prevalence using various statistical methods. A restricted cubic spline (RCS) model was applied to explore the dose-response relationship, while logistic regression examined linear associations. The robustness of the association across different subgroups was also tested. RESULT The study included 2786 participants. We found significant associations between NAFLD and the following biological aging metrics: AL score (OR (95%CI) = 1.1932 (1.0597 ~ 1.3435), P = 0.0035), HD (OR (95%CI) = 1.2092 (1.0565 ~ 1.3839), P = 0.0058), and PA (OR (95%CI) = 1.7564 (1.1949 ~ 2.5818), P = 0.0042). All biological aging metrics were identified as independent predictors. PA was most associated with the prevalence of NAFLD. The associations persisted across most subgroups. CONCLUSION The prevalence of NAFLD was associated with biological aging, emphasizing the importance of addressing potential health risks related to aging.
Collapse
Affiliation(s)
- Gang Liu
- Department of Infection Control, International School of Medicine, The Fourth Affiliated Hospital of School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qingsong Mao
- Hepatobiliary Pancreatic Surgery, Banan Hospital Affiliated of Chongqing Medical University, Chongqing, China
| | - Xinling Tian
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Chenwei Zhang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, The First Hospital of Shanxi Medical University, Taiyuan, China
- First School of Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Yukai Zhang
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jiarong He
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuzhe Kong
- Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
11
|
Rose JP, Morgan DA, Sullivan AI, Fu X, Inigo-Vollmer M, Burgess SC, Meyerholz DK, Rahmouni K, Potthoff MJ. FGF21 reverses MASH through coordinated actions on the CNS and liver. Cell Metab 2025:S1550-4131(25)00252-9. [PMID: 40367940 DOI: 10.1016/j.cmet.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/24/2025] [Accepted: 04/21/2025] [Indexed: 05/16/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form, metabolic dysfunction-associated steatohepatitis (MASH), represent a growing public health burden with limited therapeutic options. Recent studies have revealed that fibroblast growth factor 21 (FGF21)-based analogs can significantly improve MASH, but the mechanisms for this effect are not well understood. Here, we demonstrate that the beneficial metabolic effects of FGF21 to reverse MASH are mediated through distinct mechanisms to independently lower hepatic triglyceride and cholesterol levels. Specifically, FGF21 signaling directly to glutamatergic neurons in the central nervous system (CNS) stimulates hepatic triglyceride reduction and reversal of fibrosis, whereas FGF21 signaling directly to hepatocytes is necessary and sufficient to reduce hepatic cholesterol levels in mice. Mechanistically, we show that FGF21 acts in the CNS to increase sympathetic nerve activity to the liver, which suppresses hepatic de novo lipogenesis. These results provide critical insights into a promising pharmacological target to treat MASH.
Collapse
Affiliation(s)
- Jesse P Rose
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andrew I Sullivan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Xiaorong Fu
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Melissa Inigo-Vollmer
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Veterans' Affairs Medical Center, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Veterans' Affairs Medical Center, Iowa City, IA 52242, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA.
| |
Collapse
|
12
|
Lin Z, Li W, Xu Y, Liu H, Zhang Y, Li R, Zhao W, Guan Y, Zhang X. Identification of regulatory cell death-related genes during MASH progression using bioinformatics analysis and machine learning strategies. Front Immunol 2025; 16:1542524. [PMID: 40406118 PMCID: PMC12094957 DOI: 10.3389/fimmu.2025.1542524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
Background Metabolic dysfunction-associated steatohepatitis (MASH) is becoming increasingly prevalent. Regulated cell death (RCD) has emerged as a significant disease phenotype and may act as a marker for liver fibrosis. The present study aimed to investigate the regulation of RCD-related genes in MASH to elucidate the role of RCD in the progression of MASH. Methods The gene expression profiles from the GSE130970 and GSE49541 datasets were retrieved from the Gene Expression Omnibus (GEO) database for analysis. A total of 101 combinations of 10 machine learning algorithms were employed to screen for characteristic RCD-related differentially expressed genes (DEGs) that reflect the progression of MASH. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to explore the enrichment pathways and functions of the feature genes. we performed cell classification analysis to investigate immune cell infiltration. Consensus cluster analysis was performed to identify MASH subtypes associated with RCD. The GSE89632 dataset was utilized to analyze the correlation of characteristic genes with clinical features of MASH. The DGIdb database was employed to screen for potential therapeutic drugs and compounds targeting the feature genes. In addition, we established mouse liver fibrosis models induced by methionine-choline-deficient (MCD) diet or CCl4 treatment, and further validated the expression of characteristic genes through quantitative real-time PCR (q-PCR). Lastly, we knocked down EPHA3 in LX2 cells to explore its effect on TGFb-induced activation of LX2 cells. Results This study discovered a total of 11 RCD-associated DEGs, which predicted the progression of MASH. Advanced MASH has higher levels of immune cell infiltration and is significantly correlated with the RCD-related DEGs expression. MASH can be classified into two subtypes, cluster 1 and cluster 2, based on these feature genes. Compared with cluster 1, cluster 2 has highly expressed RCD-related DEGs, shows an increase in the degree of fibrosis. Furthermore, We discovered that the expression levels of feature genes were positively correlated with AST and ALT levels. Subsequently, We also evaluated the expression of these 11 feature genes in the liver tissues of mice with fibrosis induced by MCD or CCl4, and the results suggested that these genes may be involved in the development of fibrosis. WB results showed that the protein level of EPHA3 significantly increased in both mouse models of liver fibrosis. In vitro, we observed that knocking down EPHA3 in LX2 cells significantly inhibited the activation of the TGF-β/Smad3 signaling pathway. Conclusion Our study sheds light on the fact that RCD contribute to the progression of MASH, high lighting potential therapeutic targets for treating this disease.
Collapse
Affiliation(s)
- Zhiqiang Lin
- Health Science Center, East China Normal University, Shanghai, China
| | - Weiyi Li
- Department of Nephrology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yuan Xu
- Health Science Center, East China Normal University, Shanghai, China
| | - Hangchi Liu
- Health Science Center, East China Normal University, Shanghai, China
| | - Yufei Zhang
- Health Science Center, East China Normal University, Shanghai, China
| | - Ruifen Li
- Health Science Center, East China Normal University, Shanghai, China
| | - Wenqian Zhao
- Health Science Center, East China Normal University, Shanghai, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaoyan Zhang
- Health Science Center, East China Normal University, Shanghai, China
| |
Collapse
|
13
|
Huang Y, Qian J, Luan Z, Han J, Tang L. Comprehensive Analysis Reveals the Molecular Features and Immune Infiltration of PANoptosis-Related Genes in Metabolic Dysfunction-Associated Steatotic Liver Disease. BIOLOGY 2025; 14:518. [PMID: 40427707 DOI: 10.3390/biology14050518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD), a chronic inflammatory disorder characterized by alcohol-independent hepatic lipid accumulation, remains poorly understood in terms of PANoptosis involvement. METHODS We integrated high-throughput sequencing data with bioinformatics to profile differentially expressed genes (DEGs) and immune infiltration patterns in MASLD, identifying PANoptosis-associated DEGs (PANoDEGs). Machine learning algorithms prioritized key PANoDEGs, while ROC curves assessed their diagnostic efficacy. Cellular, animal, and clinical validations confirmed target expression. RESULTS Three PANoDEGs (SNHG16, Caspase-6, and Dynamin-1-like protein) exhibited strong MASLD associations and diagnostic significance. Immune profiling revealed elevated M1 macrophages, naïve B cells, and activated natural killer cells in MASLD tissues versus controls. Further experiments verified the expression of the key PANoDEGs. CONCLUSIONS This study provides new insights for further studies on the pathogenesis and treatment strategies of PANoptosis in MASLD.
Collapse
Affiliation(s)
- Yan Huang
- Medical College, Yangzhou University, Yangzhou 225000, China
| | - Jingyu Qian
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Zhengyun Luan
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Junling Han
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Limin Tang
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| |
Collapse
|
14
|
Xia LY, Yu NR, Huang SL, Qu H, Qin L, Zhao QS, Leng Y. Dehydrotrametenolic acid methyl ester, a triterpenoid of Poria cocos, alleviates non-alcoholic steatohepatitis by suppressing NLRP3 inflammasome activation via targeting Caspase-1 in mice. Acta Pharmacol Sin 2025:10.1038/s41401-025-01569-9. [PMID: 40329004 DOI: 10.1038/s41401-025-01569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025]
Abstract
Non-alcoholic steatohepatitis (NASH) has emerged as a prevalent chronic liver disease with a huge unmet clinical need. A few studies have reported the beneficial effects of Poria cocos Wolf (P. cocos) extract on NASH mice, but the active components were still unknown. In this study we investigated the therapeutic effects of dehydrotrametenolic acid methyl ester (ZQS5029-1), a lanosterol-7,9(11)-diene triterpenes in P. cocos, in a high-fat diet plus CCl4 induced murine NASH model and a GAN diet induced ob/ob murine NASH model. The NASH mice were treated with ZQS5029-1 (75 mg·kg-1·d-1, i.g.) for 6 and 8 weeks, respectively. We showed that ZQS5029-1 treatment markedly relieved liver injury, inflammation and fibrosis in both the murine NASH models. We found that ZQS5029-1 treatment significantly suppressed hepatic NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation in both the NASH murine models, and blocked lipopolysaccharides (LPS)+adenosine 5'-triphosphate (ATP)/Nigericin-induced NLRP3 inflammasome activation in bone marrow-derived macrophages (BMDMs) and Kupffer cells in vitro. We demonstrated that ZQS5029-1 directly bound to the H236 residue of mouse Caspase-1, thereby inhibiting NLRP3 inflammasome activation. The effects of ZQS5029-1 on macrophage-hepatocyte/HSC crosstalk were analyzed using the supernatants from macrophages preconditioned with LPS + ATP introduced into hepatocytes and hepatic stellate cells (HSCs). We found that the conditioned medium from the BMDMs induced injury and death, as well as lipid accumulation in hepatocytes, and activation of HSCs; these effects were blocked by conditioned medium from BMDMs treated with ZQS5029-1. Moreover, the protective effects of ZQS5029-1 on hepatocytes and HSCs were eliminated by H236A-mutation of Caspase-1. We conclude that ZQS5029-1 is a promising lead compound for the treatment of NASH by inhibiting NLRP3 inflammasome activation through targeting Caspase-1 and regulating the macrophage-hepatocyte/HSC crosstalk.
Collapse
Affiliation(s)
- Ling-Yan Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nai-Rong Yu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Su-Ling Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Qu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Li Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qin-Shi Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Luo X, Deng H, Li Q, Zhao M, Zhang Y, Guo J, Wen Y, Chen G, Li J. Bulk transcriptome and single-nucleus RNA sequencing analyses highlight the role of recombination activating 1 in non-alcoholic fatty liver disease. Int J Biol Macromol 2025; 307:141919. [PMID: 40074128 DOI: 10.1016/j.ijbiomac.2025.141919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic condition with an incompletely understood pathogenesis. In this study, five candidate genes-RAG1, CKAP2, CENPK, TYMS, and BUB1-were identified as being associated with NAFLD progression through integrative bioinformatics analyses. A predictive model incorporating these genes demonstrated strong robustness and diagnostic accuracy. Single-nucleus RNA sequencing analysis further revealed that RAG1 plays a potential role in hepatocytes of NAFLD patients. Functional experiments using RNA interference to suppress RAG1 expression in HepG2 cells treated with oleic and palmitic acids showed reduced total glyceride and cholesterol levels, mitigated lipid accumulation, and alterations in pathways related to lipid metabolism, inflammation, and fibrosis. Furthermore, adeno-associated virus-specific knockdown of RAG1 in hepatocytes attenuated hepatic steatosis in high-fat diet-fed mice. These findings suggest that investigating the molecular mechanisms of hub genes like RAG1 may advance our understanding of NAFLD pathogenesis and inform therapeutic development.
Collapse
Affiliation(s)
- Xiaohua Luo
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Hongbo Deng
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Qiang Li
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Miao Zhao
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, 410078 Changsha, China
| | - Yu Zhang
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Junjie Guo
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Yifan Wen
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Guangshun Chen
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China.
| | - Jiequn Li
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China.
| |
Collapse
|
16
|
Steixner-Kumar AA, Santacruz D, Geiger T, Rust W, Böttner D, Krenkel O, Bahrami E, Okafo G, Barth TF, Haenle M, Kratzer W, Schlingeloff P, Schmidberger J, Neubauer H, Dick A, Werner M, Simon E. Single-cell landscape of peripheral immune cells in MASLD/MASH. Hepatol Commun 2025; 9:e0643. [PMID: 40257301 PMCID: PMC12014121 DOI: 10.1097/hc9.0000000000000643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/30/2024] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) progresses to metabolic dysfunction-associated steatohepatitis (MASH) and is a major cause of liver cirrhosis. Although liver inflammation is the hallmark feature of MASH versus MASLD, the involvement of the peripheral immune cell compartments in disease progression is poorly understood, and single-cell profiles of peripheral immune cells in MASLD/MASH are not known. METHODS Patients with MASLD/MASH and healthy volunteers have been prospectively enrolled in a cross-sectional study. Patients have been histologically stratified and further characterized by liver bulk RNA sequencing (RNA-Seq). Peripheral immune cells from patients and control blood samples have been comprehensively profiled using bulk and single RNA-Seq. RESULTS Twenty-two patients with fibrosis stage less than F3 have been histologically stratified into patients with low, medium, and high disease activity scores (NAFLD activity score [NAS]). In contrast to fibrosis, the NAS group correlated with noninvasive imaging readouts and blood biomarkers of liver damage and inflammation (ALT, AST). The prevalence of type 2 diabetes and obesity increased with the NAS stage. Bulk RNA-seq profiling of patient liver biopsies revealed gene signatures that were positively and negatively associated with NAS. Known marker genes for liver fibrosis where upregulated on RNA level. Blood bulk RNA-seq showed only moderate differences in patients versus healthy controls. In contrast, single-cell analysis of white blood cells revealed multiple alterations of immune (sub-)populations, including an increased abundance of immature B cells and myeloid suppressor cells in patients with MASLD/MASH as compared to healthy controls. CONCLUSIONS The study gives new insights into the pathophysiology of MASLD/MASH already manifesting relatively early in peripheral immune cell compartments. This opens new avenues for the development of new biomarker diagnostics and disease therapies.
Collapse
Affiliation(s)
- Agnes Anna Steixner-Kumar
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Diana Santacruz
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Tobias Geiger
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Werner Rust
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Dennis Böttner
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Oliver Krenkel
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Ehsan Bahrami
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - George Okafo
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | | | - Mark Haenle
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Wolfgang Kratzer
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | | | | | - Heike Neubauer
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Alec Dick
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Markus Werner
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Eric Simon
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| |
Collapse
|
17
|
Qiu J, Xu F, Wei H, Gao Y, Liu N, Zhao J, Yu Z, Chen L, Dou X. Metabolic restoration: Rhubarb polysaccharides as a shield against non-alcoholic fatty liver disease. Int J Biol Macromol 2025; 305:141151. [PMID: 39965694 DOI: 10.1016/j.ijbiomac.2025.141151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) accounts for remarkable burden of death and costs worldwide with no recommended pharmacological intervention for the clinical management. This study aimed to investigate the efficacy and underlying mechanisms of rhubarb-derived polysaccharides (RP) in mitigating high-fat diet (HFD)-induced NAFLD and to analyze the primary monosaccharide components of RP. Forty male C57BL/6 mice were subjected to a dietary intervention consisting of either a high fat or chow diet for a duration of 12 weeks. RP (270, 540 mg·kg-1·d-1) was administered to the mice for 4 consecutive weeks from the 9th week. Various assessments were conducted, including histopathological examination, liver transcriptome analysis, non-targeted metabolomics analysis, and evaluation of protein expressions related to lipid and bile acid metabolism. This study found RP demonstrate a protective effect on the livers of NAFLD mice by inhibiting lipid accumulation and reducing hepatocyte inflammatory damage. The metabolomics analysis of multi-tissues revealed that the RP exert a hepatoprotective effect against NAFLD by restoring the altered bile acids (BAs) and fatty acids (FFAs) metabolism through the improvement of BA transporter, nucleus hormone receptor, lipogenesis protein, FFA transporter, and lipolysis proteins. Hence, RP may serve as a potential therapeutic agent for NAFLD.
Collapse
Affiliation(s)
- Jiannan Qiu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fangying Xu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huaxin Wei
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanyan Gao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Nian Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jinghua Zhao
- The First Affiliated Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiling Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Lin Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Khalil SM, de Souza MHG, de Oliveira FD, Sato EDBDS, Meine GC. Efficacy and safety of aldafermin for the treatment of metabolic dysfunction-associated steatohepatitis: A systematic review and meta-analysis. Clin Res Hepatol Gastroenterol 2025; 49:102579. [PMID: 40147589 DOI: 10.1016/j.clinre.2025.102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND We aimed to assess the efficacy and safety of Aldafermin in treating patients with biopsy-confirmed metabolic dysfunction-associated steatohepatitis (MASH). METHODS We searched PubMed, Embase, and Cochrane Library for randomized controlled trials (RCTs) comparing Aldafermin to placebo for treating patients with MASH up to December 8, 2024. The risk ratios (RR) with 95 % confidence intervals (CI) were pooled for binary outcomes using a random-effects model. Additionally, we conducted subgroup analysis by fibrosis stage and Aldafermin dosage, and meta-regression analysis assuming the dosage of Aldafermin as a covariate. RESULTS We included 4 RCTs, encompassing 491 patients. Compared to placebo, Aldafermin had a higher probability of MASH resolution without worsening of fibrosis (RR 3.04; 95 %CI 1.12-8.28), composite of fibrosis improvement and MASH resolution (RR 5.86; 95 %CI 1.15-29.94), and reduction ≥30 % in hepatic fat fraction by MRI-PDFF (RR 3.14; 95 %CI 1.44-6.85). There were no significant differences in fibrosis improvement ≥1 stage without worsening of MASH (RR 1.48; 95 %CI 0.93-2.35), and overall AEs (RR 1.02; 95 %CI 0.95-1.11) between the groups. Subgroup analysis by fibrosis stage and Aldafermin dosage showed consistent results, and meta-regression analysis by dosage showed a dose-dependent improvement for the outcome of ≥30 % reduction in hepatic fat fraction by MRI-PDFF. CONCLUSION In conclusion, Aldafermin improved MASH resolution without worsening fibrosis, enhanced the composite of fibrosis improvement and MASH resolution, reduced hepatic fat fraction by MRI-PDFF, and was safe for treating patients with biopsy-confirmed MASH compared to placebo.
Collapse
Affiliation(s)
| | | | | | | | - Gilmara Coelho Meine
- Division of Gastroenterology, Internal Medicine Department, Feevale University, Novo Hamburgo, Brazil.
| |
Collapse
|
19
|
Mansouri M, Imenshahidi M, Rameshrad M, Hosseinzadeh H. Effects of Tinospora cordifolia (giloy) on metabolic syndrome components: a mechanistic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4979-5009. [PMID: 39731594 DOI: 10.1007/s00210-024-03642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/15/2024] [Indexed: 12/30/2024]
Abstract
Metabolic syndrome is a cluster of some conditions such as high blood sugar, high blood triglycerides, low HDL cholesterol, abdominal obesity, and high blood pressure. Introducing a drug or a food that manages the majority of these medical conditions is invaluable. Tinospora cordifolia, known as guduchi and giloy, is a medicinal herb in ayurvedic medicine that is used in the treatment of various diseased conditions and also as a food for the maintenance of health. Here, we reviewed the current evidence supporting the role of giloy in the development and treatment of metabolic syndrome components. Appropriate articles that have been published until May 2024 were carefully extracted from PubMed, Scopus, and WOS databases to write a narrative review systematically. Gathered data showed the beneficial effects of giloy on metabolic syndrome components: hyperlipidemia, obesity, atherosclerosis, hypertension, and especially diabetes mellitus. As diabetes and insulin resistance seem to be a central feature of metabolic syndrome and in turn, can cause dyslipidemia, obesity, and, atherosclerosis, these beneficial effects are predictable with the anti-diabetogenic property of giloy. In this review, the main mechanisms of action of giloy in metabolic syndrome components are discussed. Based on the results, although giloy has been less investigated, considerable studies provide evidence of its beneficial effects on different components of metabolic syndrome. Relevant clinical trials are necessary to validate the mentioned effects, safety, and optimum dose of this herbal medicine and its components in managing different components of metabolic syndrome and transition from bench to bedside.
Collapse
Affiliation(s)
- Mehran Mansouri
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Zhou C, Chen H, Wu X, Dong H, Feng S, Tie Y, Zhao Z, Si L. Mechanism of GBE Combined with TP on the Effect of AMPK/SREBP-1C/ACC Pathway on Lipid Metabolism in Heat-Stressed Broiler Liver. Vet Sci 2025; 12:424. [PMID: 40431517 DOI: 10.3390/vetsci12050424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
The liver accounts for almost 95% of lipid metabolism in broilers and serves as a crucial metabolic organ. Stress, which occurs when broilers are exposed to a heated environment, inhibits liver metabolism, significantly impacting their growth. This experiment investigated the combination of GBE with TP to improve hepatic lipid metabolism in heat-stressed broiler chickens by inhibiting the AMPK/SREBP-1C/ACC pathway. Three hundred broilers were reared usually until 21 days and randomly divided into six groups, namely CON group, HS group, TP group (300 mg/kg), GBE100 group (GBE100 mg/kg + TP300 mg/kg), GBE300 group (GBE 300 mg/kg + TP 300 mg/kg), GBE600 (600 mg/kg + TP 300 mg/kg) groups, where the CON group was kept at 23 °C, and the HS group and the TP, GBE100, GBE300, and GBE600 groups of each medication group were kept at 35 ± 2 °C for 10 h per day. Liver and serum samples were extracted at 28 and 42 days of age, respectively. The results showed that, at 42 days of age, the GBE600 group exhibited significantly superior performance to the HS group in ADG, ADFI, and F/G (p < 0.01). Serum TG, TC, and LDL-C levels were significantly lower (p < 0.01), while HDL-C levels were significantly higher (p < 0.05). Additionally, the mRNA expression levels of LKB1, AMPK, SREBP-1C, and ACC were markedly reduced (p < 0.01). In contrast, the mRNA expression of HSL and CPT1A was significantly elevated (p < 0.01), indicating that the GBE600 was more effective in mitigating heat stress in broiler chickens at 42 days of age. It showed that the GBE600 was more effective in ameliorating heat stress in broilers at 42 days of age, thus providing an ethical basis for ameliorating the flocculation of hepatic lipid metabolism in heat-stressed broilers.
Collapse
Affiliation(s)
- Chenyang Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
| | - Haoxiang Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
| | - Xingyue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
| | - Huili Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
| | - Siliang Feng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
| | - Yajin Tie
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
| | - Zhanqin Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
| | - Lifang Si
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
21
|
Tu S, Jing X, Bu X, Zhang Q, Liao S, Zhu X, Guo Y, Sha W. Identification of pyroptosis-associated gene to predict fibrosis and reveal immune characterization in non-alcoholic fatty liver disease. Sci Rep 2025; 15:14944. [PMID: 40301412 PMCID: PMC12041580 DOI: 10.1038/s41598-025-96158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/26/2025] [Indexed: 05/01/2025] Open
Abstract
Despite advances in research, studies on predictive models for Non-Alcoholic Fatty Liver Disease (NAFLD)-related fibrosis remain limited. Identifying new biomarkers to distinguish Non-Alcoholic Steatohepatitis (NASH) from NAFLD would aid in the treatment of NASH. Gene expression and clinical profiles of NAFL and NASH patients were collected from databases. Differentially expressed genes with prognostic value were used to construct predictive model. Validation of fibrosis stage-related pyroptosis-related genes (PRGs) was performed using Sprague-Dawley rats liver fibrosis models induced by CCl4 or PS. Immune cell infiltration assessment demonstrated that stromal score, immune score, and ESTIMATE score were higher in patients with NASH compared to those with NAFL. BAX, BAK1, PYCARD, and NLRP3 were identified as hub genes that exhibit a strong correlation with fibrosis stage. Additionally, the expression of these genes was increased in fibrotic liver tissues induced by CCl4 and PS. The pyroptosis-associated gene signature effectively predicts the degree of liver fibrosis in NASH patients. Our study indicates that BAX, BAK1, PYCARD, and NLRP3 might serve as biomarkers for NASH-associated fibrosis.
Collapse
Affiliation(s)
- Sha Tu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, 510632, China
| | - Xiaoling Bu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Qingfang Zhang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Shanying Liao
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Xiaobo Zhu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Ying Guo
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
22
|
Feng X, Song X, Yang X, Luan F, Gu Y, Zheng F, Guo H, Qiao S. MAFLD mediates the association between CHR and gallstones in the U.S. adults: evidence from NHANES 2021-2023. BMC Gastroenterol 2025; 25:268. [PMID: 40247188 PMCID: PMC12007222 DOI: 10.1186/s12876-025-03805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Gallstones, a global hepatobiliary disorder, are linked to systemic inflammation, lipid disturbances, and metabolic-associated fatty liver disease (MAFLD). This population-based study aims to investigate the association of the novel inflammation-lipid composite biomarker high-sensitivity C-reactive protein-to-HDL cholesterol ratio (CHR) with gallstones and evaluate whether MAFLD mediates this relationship. METHODS This cross-sectional analysis utilized data from the National Health and Nutrition Examination Survey (NHANES, 2021-2023) to assess the correlation between the CHR and gallstone prevalence through weighted logistic regression. To evaluate potential nonlinear relationships and assess heterogeneity across key demographics, restricted cubic splines (RCS) were employed to model the association, complemented by subgroup analyses stratified by age, sex, and other covariates. A mediation analysis was used for elucidating the mediating effects of MAFLD. RESULTS Among 4,078 participants, 432 (10.60%) had gallstones. After adjusting for confounders, each unit increase in CHR was associated with a 165% increased risk of gallstones (OR: 2.65, 95% CI: 1.43-4.93, P = 0.006). The RCS curve demonstrated a nonlinear association between the CHR and gallstones (Poverall < 0.001, Pnonlinear < 0.001). Mediation analysis indicated that MAFLD explained 27.1% of this association. CONCLUSIONS CHR is positively associated with gallstones, with MAFLD partially mediating this relationship. Managing CHR levels and preventing MAFLD may reduce gallstone incidence.
Collapse
Affiliation(s)
- Xin Feng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiangyu Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xi'an Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Fuxiang Luan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yufei Gu
- Department of General Surgery, The First Affiliated Hospital of Henan University, Kaifeng, Henan, 475001, China
| | - Fengyu Zheng
- Department of Comprehensive Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Huahu Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shishi Qiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
23
|
Liao J, Shao M, Zhou Z, Wang S, Lv Y, Lu Y, Yao F, Li W, Yang L. Correlation of organelle interactions in the development of non-alcoholic fatty liver disease. Front Immunol 2025; 16:1567743. [PMID: 40308615 PMCID: PMC12040704 DOI: 10.3389/fimmu.2025.1567743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Organelles, despite having distinct functions, interact with each other. Interactions between organelles typically occur at membrane contact sites (MCSs) to maintain cellular homeostasis, allowing the exchange of metabolites and other pieces of information required for normal cellular physiology. Imbalances in organelle interactions may lead to various pathological processes. Increasing evidence suggests that abnormalorganelle interactions contribute to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the key role of organelle interactions in NAFLD has not been fully evaluated and researched. In this review, we summarize the role of organelle interactions in NAFLD and emphasize their correlation with cellular calcium homeostasis, lipid transport, and mitochondrial dynamics.
Collapse
Affiliation(s)
- Jiabao Liao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Department of Endocrinology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Mengqiu Shao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ze Zhou
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Si Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - You Lv
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yanming Lu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Fang Yao
- Department of Endocrinology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Wenting Li
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ling Yang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
24
|
Ma X, Li B, Liu Y, Guo X. An inverted U-shaped association between high-sensitivity C-reactive protein and the albumin ratio and hepatic steatosis and liver fibrosis: a population-based study. Front Nutr 2025; 12:1534200. [PMID: 40303878 PMCID: PMC12037389 DOI: 10.3389/fnut.2025.1534200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
Background The high-sensitivity C-reactive protein to albumin (CAR) ratio is a comprehensive measure of inflammation in vivo. Hepatic steatosis and fibrosis are significantly correlated with inflammation. The present study aimed to explore the possible associations between CAR and hepatic steatosis and fibrosis in the American population. Methods The study population involved the National Health and Nutrition Examination Survey (NHANES) participants from 2017 to 2020. The natural logarithm of CAR, calculated as Ln(CAR) with base "e," was used for further analyses. The relationships between Ln(CAR) and the controlled attenuation parameter (CAP) and between Ln(CAR) and liver stiffness measurement (LSM) were investigated through multivariate linear regression analysis. Interaction and subgroup analysis identified factors affecting these variables. Nonlinear relationships were elucidated by smoothing curves and threshold effect analysis. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the predictive performance of the CAR for non-alcoholic fatty liver disease (NAFLD). The results were adjusted for U.S. population estimates. Results The study included a total of 7,404 individuals. Ln(CAR) was positively correlated with CAP in the fully adjusted model, with an effect value of β = 1.827 (95% CI, 0.611, 3.042). A more pronounced positive association was observed among participants with a BMI ≥ 25 kg/m2 in the subgroup analysis. An inverted U-shaped association was shown between Ln(CAR) and CAP through smooth curve fitting and a two-segment linear regression model, with an inflection point of (-9.594). ROC curve analysis showed that CAR had a moderate predictive value for NAFLD (AUC = 0.6895), with a sensitivity of 0.7276 and a specificity of 0.6092. No significant association was detected between Ln(CAR) and the LSM. Conclusion We demonstrate an inverted U-shaped relationship between Ln(CAR) and CAP risk within the U.S. demographic. Our results suggest that CAR may serve as a valuable diagnostic tool for NAFLD. Further prospective research is necessary to validate this conclusion.
Collapse
Affiliation(s)
| | | | | | - Xiaoyan Guo
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
25
|
Feng J, Gong Z, Yang J, Mo Y, Song F. Machine learning-based integration reveals reliable biomarkers and potential mechanisms of NASH progression to fibrosis. Sci Rep 2025; 15:12411. [PMID: 40217090 PMCID: PMC11992153 DOI: 10.1038/s41598-025-97670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects about 25% of adults worldwide. Its advanced form, non-alcoholic steatohepatitis (NASH), is a major cause of liver fibrosis, but there are no non-invasive tests for diagnosing or preventing it. In our study, we analyzed data from multiple sources to find crucial genes linked to NASH fibrosis. We built diagnostic models using 103 machine learning algorithms and validated them with two external datasets. All models performed well, with the best one (RF + Enet[alpha = 0.6]) achieving an average AUC of 0.822. This model used five key genes: LUM, COL1A2, THBS2, COL5A2, and NTS. Our findings show that these genes are important in collagen and extracellular matrix pathways, shedding light on how NASH progresses to liver fibrosis. We also found that certain immune cells, like M1 macrophages, are involved in this process. This study provides a reliable diagnostic tool for assessing fibrosis risk in NASH patients and suggests potential for immunotherapy, laying a foundation for future treatments.
Collapse
Affiliation(s)
- Jiahui Feng
- Department of Gastroenterology, Loudi Central Hospital, Loudi, Hunan, China.
| | - Zheng Gong
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialing Yang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuting Mo
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fengqian Song
- Department of Gastroenterology, Loudi Central Hospital, Loudi, Hunan, China.
| |
Collapse
|
26
|
Xiao P, Ye Z, Li X, Feng Q, Su Y. Ginseng and its functional components in non-alcoholic fatty liver disease: therapeutic effects and multi-target pharmacological mechanisms. Front Pharmacol 2025; 16:1540255. [PMID: 40271056 PMCID: PMC12014752 DOI: 10.3389/fphar.2025.1540255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/28/2025] [Indexed: 04/25/2025] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a common type of chronic liver disease and its incidence is increasing. Its disease progression is closely related to non-alcoholic steatohepatitis and liver fibrosis. Effective treatment is currently lacking. The traditional Chinese medicine ginseng (Panax ginseng) shows unique advantages in NAFLD intervention, but its complex compositional system and molecular mechanism network still need to be systematically analyzed. Objective This paper systematically integrates evidence from nearly 20 years of research to elucidate the multi-target pharmacological mechanism of ginseng for the treatment of NAFLD. Methods Relevant information was sourced from Pubmed, Web of science, Embase and CNKI databases. Using BioRender and visio to draw biomedical illustrations. Results The active ingredients of ginseng contain 2 classes of saponins (tetracyclic triterpene saponins, pentacyclic triterpene saponins and other modified types) and non-saponins. Different cultivation methods, processing techniques and extraction sites have expanded the variety of ginseng constituents and demonstrated different pharmacological activities. Studies have shown that ginseng and its functional components have the ability to regulate lipid metabolism disorders, inflammation, oxidative stress, endoplasmic reticulum stress, insulin resistance, disruption of intestinal flora structure, cell death and senescence. Demonstrates the potential of ginseng for the treatment of NAFLD. Conclusion This study reveals for the first time the integrative mechanism of ginseng in the treatment of NAFLD through the tertiary mode of action of "multi-component multi-target multi-pathway". The multilevel modulatory ability of ginseng provides a new direction for the development of comprehensive therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
| | | | | | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Su
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Song Z, Miao X, Liu S, Hu M, Xie X, Sun Y, Leng S. Associations between cardiometabolic indices and the onset of metabolic dysfunction-associated steatotic liver disease as well as its progression to liver fibrosis: a cohort study. Cardiovasc Diabetol 2025; 24:154. [PMID: 40181314 PMCID: PMC11969729 DOI: 10.1186/s12933-025-02716-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND This study sought to examine the associations between cardiometabolic indices and the onset of metabolic dysfunction-associated steatotic liver disease (MASLD) as well as its progression to liver fibrosis. METHODS This study comprised 25,366 subjects aged 18 years and older, free of MASLD at baseline, from the Dalian Health Management Cohort (DHMC). Cardiometabolic indices include cardiometabolic index (CMI), atherogenic index of plasma (AIP), triglyceride glucose (TyG), triglyceride glucose-body mass index (TyG-BMI), triglyceride glucose-waist circumference (TyG-WC) and triglyceride glucose-waist height ratio (TyG-WHtR). All participants were categorized into quartile groups based on cardiometabolic indices. Cox proportional hazards regression models and restricted cubic splines were employed to examine the relationship between cardiometabolic indices and the incidence of MASLD as well as its progression to liver fibrosis, and analyses were performed between different subgroups. Mediation analysis was employed to explore how obesity and inflammation serve as mediators in the connection between cardiometabolic indices and MASLD. To evaluate the predictive ability of cardiometabolic indices for the onset of MASLD, the time-dependent receiver operating characteristic (ROC) curve was utilized. RESULTS A total of 5378 (21.2%) individuals developed MASLD during the follow-up period of 82,445 person-years. Multivariates Cox regression analyses showed that participants in the highest quartile of cardiometabolic indices had greater risk of MASLD than those in the lowest quartile (CMI: HR = 6.11, 95% CI 5.45-6.86; AIP: HR = 4.58, 95% CI 4.11-5.10; TyG: HR = 3.55, 95% CI 3.21-3.92; TyG-BMI: HR = 13.55, 95% CI 11.80-15.57; TyG-WC: HR = 12.52, 95% CI 10.93-14.34; TyG-WHtR: HR = 11.37, 95% CI 9.96-12.98). TyG-BMI (HR = 1.36, 95% CI 1.18-1.57), but not other cardiometabolic indices, was associated with liver fibrosis. Mediation analysis indicated that BMI mediated 40.4%, 33.2%, 36.5%, - 10.4%, 37.4%, 48.5% of the associations between CMI, AIP, TyG, TyG-BMI, TyG-WC, TyG-WHtR and MASLD. Time-dependent ROC curves demonstrated that TyG-BMI had a superior predictive ability for MASLD onset compared to other indicators. CONCLUSIONS The risk of developing MASLD increases as the level of cardiometabolic indices increases. Obesity may serve as a mediating factor in the aforementioned association. TyG-BMI showed the strongest association with the onset of MASLD and its progression to liver fibrosis, proved to be outperformed other cardiometabolic indicators, and could be the best clinical non-invasive biomarker for early screening of MASLD and liver fibrosis.
Collapse
Affiliation(s)
- Ziping Song
- Health Management Center, The Second Hospital of Dalian Medical University, No.467, Zhongshan Road, Dalian, 116023, China
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning, China
| | - Xinlei Miao
- Health Management Center, The Second Hospital of Dalian Medical University, No.467, Zhongshan Road, Dalian, 116023, China
| | - Shuang Liu
- School of Public Health, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Manling Hu
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning, China
| | - Xiaoling Xie
- School of Public Health, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Yuting Sun
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning, China
| | - Song Leng
- Health Management Center, The Second Hospital of Dalian Medical University, No.467, Zhongshan Road, Dalian, 116023, China.
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, Dalian, 116023, Liaoning, China.
| |
Collapse
|
28
|
Li J, Yang L, Xiao M, Li N, Huang X, Ye L, Zhang H, Liu Z, Li J, Liu Y, Liang X, Li T, Li J, Cao Y, Pan Y, Lin X, Dai H, Dai E, Li M. Spatial and Single-Cell Transcriptomics Reveals the Regional Division of the Spatial Structure of MASH Fibrosis. Liver Int 2025; 45:e16125. [PMID: 39400982 PMCID: PMC11891380 DOI: 10.1111/liv.16125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To elucidate the regional distribution of metabolic dysfunction-associated steatohepatitis (MASH) fibrosis within the liver and to identify potential therapeutic targets for MASH fibrosis. METHODS Liver sections from healthy controls, patients with simple steatosis and MASH patients were analysed using spatial transcriptomics integrated with single-cell RNA-seq. RESULTS Spatial transcriptomics analysis of liver tissues revealed that the fibrotic region (Cluster 9) was primarily distributed in lobules, with some fibrosis also found in the surrounding area. Integration of the single-cell-sequencing data set (GSE189175) showed a greater proportion of inflammatory cells (Kupffer cells and T cells) and myofibroblasts in MASH. Six genes, showing high- or low-specific expression in Cluster 9, namely, ADAMTSL2, PTGDS, S100A6, PPP1R1A, ASS1 and G6PC, were identified in combination with pathology. The average expression levels of ADAMTSL2, PTGDS and S100A6 on the pathological HE staining map were positively correlated with the increase in the degree of fibrosis and aligned strongly with the distribution of fibrosis. ADAMTSL2+ myofibroblasts play a role in TNF signalling pathways and in the production of ECM structural components. Pseudotime analysis indicated that in the early stages of MASH, infiltration by T cells and Kupffer cells triggers a significant inflammatory response. Subsequently, this inflammation leads to the activation of hepatic stellate cells (HSCs), transforming them into myofibroblasts and promoting the development of liver fibrosis. CONCLUSION This study is the first to characterise lineage-specific changes in gene expression, subpopulation composition, and pseudotime analysis in MASH fibrosis and reveals potential therapeutic targets for this condition.
Collapse
Affiliation(s)
- Jin‐zhong Li
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Liu Yang
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Min‐xi Xiao
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Ni Li
- Division of General Internal MedicineBeijing Tsinghua Changgung Hospital, Tsinghua UniversityBeijingChina
| | - Xin Huang
- Division of Hepatobiliary SurgeryBeijing Tsinghua Changgung Hospital, Tsinghua UniversityBeijingChina
| | - Li‐hong Ye
- Division of PathologyThe Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuangChina
| | - Hai‐cong Zhang
- Division of PathologyThe Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuangChina
| | - Zhi‐quan Liu
- Division of PathologyThe Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuangChina
| | - Jun‐qing Li
- Division of Liver DiseaseThe Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuangChina
| | - Yun‐yan Liu
- Division of Liver DiseaseThe Fifth Hospital of Shijiazhuang, Hebei Medical UniversityShijiazhuangChina
| | - Xu‐jing Liang
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Tao‐yuan Li
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Jie‐ying Li
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yang Cao
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yun Pan
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Xun‐ge Lin
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Hai‐mei Dai
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Er‐hei Dai
- Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and TreatmentThe Fifth Hospital of ShijiazhuangShijiazhuangChina
| | - Min‐ran Li
- Division of Infectious DiseaseThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| |
Collapse
|
29
|
Wang J, Guo Y, Hu J, Peng J. STING Activation in Various Cell Types in Metabolic Dysfunction-Associated Steatotic Liver Disease. Liver Int 2025; 45:e70063. [PMID: 40116753 DOI: 10.1111/liv.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND During the hepatic histological progression in metabolic dysfunction-associated steatotic liver disease (MASLD), the immunological mechanisms play a the pivotal role, especially when progressing to metabolic dysfunction-associated steatohepatitis (MASH). The discovery of the stimulator of interferon genes (STING) marked a significant advancement in understanding the immune system. METHODS We searched literature on STING involved in MASLD in PubMed to summarise the role of intrahepatic or extrahepatic STING signal pathways and the potential agonists or inhibitors of STING in MASLD. RESULTS Besides inflammation and type I interferon response induced by STING activation in the intrahepatic or extrahepatic immune cells, STING activation in hepatocytes leads to protein aggregates and lipid deposition. STING activation in hepatic macrophages inhibits autophagy in hepatocytes and promotes hepatic stellate cells (HSCs) activation. STING activation in HSCs promotes HSC activation and exacerbates liver sinusoidal endothelial cells (LSECs) impairment. However, it was also reported that STING activation in hepatic macrophages promotes lipophagy in hepatocytes and STING activation in HSCs leads to HSC senescence. STING activation in LSEC, inhibits angiogenesis. For extrahepatic tissue, STING signalling participates in the regulation of the intestinal permeability, intestinal microecology and insulin action in adipocytes, which were all involved in the pathogenesis of MASLD. CONCLUSION There're plenty of STING ligands in MASLD. How STING activation affects the intercellular conversation in MASLD deserves thorough investigation.
Collapse
Affiliation(s)
- JingJing Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Guo
- Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Hu
- Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
30
|
Zhang Y, Ju F, Yan L, Shen X, Guo S, Yu M, Cao Y, Wang W. Elevated Porcupine Disrupts Lipid Metabolism and Promotes Inflammatory Response in MASLD. Liver Int 2025; 45:e16130. [PMID: 39403838 DOI: 10.1111/liv.16130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 03/11/2025]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) presents a high incidence globally and is a major cause of cirrhosis and hepatocellular carcinoma, lacking of efficient interventions. Patients with MASLD exhibit exceeded serum levels of palmitic acid (PA). However, the association between PA and MASLD remains obscure. METHODS Gene expression omnibus dataset analysis, western blotting, mRNA-sequencing, RT-qPCR, a click chemistry-immunoprecipitation-immunofluorescence system, ELISA, lipid extraction and UHPLC-MS/MS analysis, CyTOF mass cytometry, gene knockdown via lentivirus-mediated shRNA, and high-fat methionine and choline-deficient diet-fed WT and db/db mice models were used to reveal the expression and functions of Porcupine in MASLD development both in vitro and in vivo. RESULTS Our findings show that PA, as a crucial substrate for protein palmitoylation, induced the expression of palmitoyltransferase Porcupine in a time-dependent manner. This induction was closely associated with dysregulated lipid metabolism and stimulated inflammatory response observed in vitro. Porcupine protein levels were significantly increased in liver tissues from both MASLD mice models, which was predominantly localised in lipid droplet-rich hepatocytes. Pharmacological inhibition of Porcupine by Wnt974 markedly ameliorated the aberrant lipid accumulation and inflammatory response in mouse livers. Furthermore, increased Porcupine positively correlated with CD36 at protein levels, and its inhibition or knockdown decreased CD36 protein levels via mechanisms irrelevant to transcriptional regulation, but primarily dependent on protein palmitoylation. CONCLUSIONS The current study reveals that PA-induced Porcupine disrupts lipid metabolism and promotes inflammatory response during MASLD development, which can be ameliorated by the Porcupine inhibitor Wnt974. Therefore, Porcupine may be a potential pharmacological target for the treatment of MASLD.
Collapse
Affiliation(s)
- Yalin Zhang
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fengyu Ju
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Li Yan
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xin Shen
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shiqing Guo
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Muchen Yu
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yujia Cao
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Wenhui Wang
- Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
31
|
Ryu T, Chang Y, Jeong SW, Yoo JJ, Lee SH, Kim SG, Kim YS, Kim HS, Kim SU, Jang JY. Adverse impact of metabolic dysfunction on fibrosis regression following direct-acting antiviral therapy: A multicenter study for chronic hepatitis C. Clin Mol Hepatol 2025; 31:548-562. [PMID: 39788108 PMCID: PMC12016602 DOI: 10.3350/cmh.2024.0904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND/AIMS Direct-acting antivirals (DAAs) effectively eradicate hepatitis C virus. This study investigated whether metabolic dysfunction influences the likelihood of fibrosis regression after DAA treatment in patients with chronic hepatitis C (CHC). METHODS This multicenter, retrospective study included 8,819 patients diagnosed with CHC who were treated with DAAs and achieved a sustained virological response (SVR) between January 2014 and December 2022. Fibrosis regression was defined as a 20% reduction in noninvasive surrogates for liver fibrosis, such as liver stiffness (LS) measured by vibration-controlled transient elastography (VCTE) and the fibrosis-4 (FIB-4) score. Hypercholesterolemia (h-TC) was defined as >200 mg/dL. RESULTS The median age of the study population was 59.6 years, with a predominance of male patients (n=4,713, 57.3%). Genotypes 1, 2, and others were confirmed in 3,872 (46.2%), 3,487 (41.6%), and 1,024 (12.2%) patients, respectively. Diabetes mellitus (DM) was present in 1,442 (17.2%) patients and the median LS was 7.50 kPa (interquartile range, 5.30-12.50). Multivariate analysis revealed that the presence of DM and pre-DAA h-TC were independently associated with a decreased probability of fibrosis regression by VCTE. Additionally, pre-DAA h-TC was independently associated with a decreased probability of fibrosis regression by the FIB-4. CONCLUSION Metabolic dysfunction has an unfavorable influence on fibrosis regression in patients with CHC who achieve SVR after DAA treatment.
Collapse
Affiliation(s)
- Tom Ryu
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Young Chang
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Soung Won Jeong
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Jeong-Ju Yoo
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Sae Hwan Lee
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sang Gyune Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Young Seok Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Hong Soo Kim
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Seung Up Kim
- Department of Internal Medicine and Yonsei Liver Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Young Jang
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Yuan H, Huang H, Du Y, Zhao J, Yu S, Lin Y, Chen Y, Shan C, Zhao Y, Belwal T, Fu X. Sea buckthorn polyphenols on gastrointestinal health and the interactions with gut microbiota. Food Chem 2025; 469:142591. [PMID: 39721439 DOI: 10.1016/j.foodchem.2024.142591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The potential health benefits of sea buckthorn polyphenols (SBP) have been extensively studied, attracting increasing attention from researchers. This paper reviews the composition of SBP, the effects of processing on SBP, its interactions with nutrients, and its protective role in the gastrointestinal tract. Polyphenols influence nutrient absorption and metabolism by regulating the intestinal flora, thereby enhancing bioavailability, protecting the gastrointestinal tract, and altering nutrient structures. Additionally, polyphenols exhibit anti-inflammatory and immunomodulatory effects, promoting intestinal health. The interaction between polyphenols and intestinal flora plays a significant role in gastrointestinal health, supporting the composition and diversity of the gut microbiota. However, further research is needed to emphasize the importance of human trials and to explore the intricate relationship between SBP and gut microbiota, as these insights are crucial for understanding the mechanisms underlying SBP's benefits for the gastrointestinal tract (GIT).
Collapse
Affiliation(s)
- Hexi Yuan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Hao Huang
- College of Ecology, Lishui University, Lishui 323000, China
| | - Yinglin Du
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China.
| | - Jiaqi Zhao
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Shiyang Yu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yanhong Lin
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yan Chen
- GOBI Memory Brand Management Co. Ltd, Ninth Division 170 Regiment Sea buckthorn Picking-garden, Tacheng 834700, China
| | - Chunhui Shan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yue Zhao
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | | | - Xizhe Fu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
33
|
Yu C, Chen L, Hu W, Lei X, Liu X, Xu Z, Chen C, Zhao H. The role of the advanced lung cancer inflammation index (ALI) in the risk of liver fibrosis and mortality among US adult MAFLD patients: a cross-sectional study of NHANES 1999-2018. BMC Gastroenterol 2025; 25:190. [PMID: 40114055 PMCID: PMC11927276 DOI: 10.1186/s12876-025-03762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is a prevalent chronic liver disease globally, with inflammation and nutrition playing key roles in its progression. The Advanced Lung Cancer Inflammation Index (ALI) is a novel biomarker reflecting nutritional and inflammatory status. This study aims to explore the association between ALI and the risk of liver fibrosis and prognosis in MAFLD patients. METHODS This cross-sectional study analyzed NHANES data from the 1999-2018 on adult participants in the US. Weighted logistic regression assessed the association between ALI and liver fibrosis risk. Mortality outcomes, including all-cause, cardiovascular disease (CVD), and cancer mortality, analyzed using weighted Kaplan-Meier and Cox proportional hazards models. Restricted cubic splines (RCS) and threshold effect analyses were uesd to explore non-linear relationships. Receiver operating characteristic (ROC) curve evaluated the prognostic value of ALI, and stratified analyses examined subgroup differences. RESULTS A total of 6,858 MAFLD patients (mean age 51.38 ± 17.22 years, 54% male) were included. A non-linear relationship was found between ALI and liver fibrosis risk, with a threshold at 5.68, beyond which the risk increased significantly (OR = 2.35, 95% CI: 1.89-2.95). Stronger associations were observed in subgroups with central obesity and prediabetes (P for interaction < 0.05). ALI was inversely associated with all-cause mortality (HR = 0.64, 95% CI: 0.56-0.72) and CVD mortality (HR = 0.57, 95% CI: 0.46-0.65), but not cancer mortality. RCS analysis showed an L-shaped non-linear relationship with all-cause mortality (threshold at 5.36) and a linear relationship with CVD mortality. Low HDL cholesterol and excessive alcohol consumption influenced the association between ALI and all-cause mortality (P for interaction < 0.05). ALI demonstrated the highest predictive accuracy for CVD mortality. CONCLUSION ALI is associated with an increased risk of liver fibrosis and reduced all-cause and CVD mortality, highlighting its potential value in assessing MAFLD prognosis, particularly CVD-related mortality.
Collapse
Affiliation(s)
- Chunchun Yu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lefu Chen
- Department of Internal Medicine, Nassau University Medical Center, East Meadow, NY, USA
| | - Wanting Hu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiong Lei
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiling Liu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhixiao Xu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Zhejiang Province Engineering Research Center for Endoscope Instruments and Technology Development, Department of Pulmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
| | - Hongjun Zhao
- Zhejiang Province Engineering Research Center for Endoscope Instruments and Technology Development, Department of Pulmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
| |
Collapse
|
34
|
Ryu T, Chae SY, Lee J, Han JW, Yang H, Chung BS, Yang K. Multivitamin supplementation and its impact in metabolic dysfunction-associated steatotic liver disease. Sci Rep 2025; 15:8675. [PMID: 40082562 PMCID: PMC11906897 DOI: 10.1038/s41598-025-92858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an emerging global health concern with limited therapeutic options. Multivitamins, widely consumed dietary supplements, have been proposed to modulate oxidative stress and inflammation, potentially impacting MASLD progression. However, their efficacy in reducing mortality and other complications in MASLD remains unclear. Using data from the UK Biobank with 7 years of median follow-up period, this study assessed the association between multivitamin use and health outcomes, including all-cause mortality, liver-related mortality, cardio-cerebrovascular disease (CVD), and chronic kidney disease (CKD), in individuals with MASLD and those without steatotic liver disease. Inverse probability of treatment weighting (IPTW) was employed to adjust for confounders. Multivitamin users showed a significantly lower all-cause mortality risk in the MASLD cohort both before (HR: 0.88, 95% CI 0.81-0.95, P = 0.034) and after (HR: 0.94, 95% CI 0.88-1.00, P = 0.037) IPTW adjustment. Multivitamin use was also associated with the lower risk of CVD (HR: 0.72, 95% CI 0.68-0.76, P < 0.001) and CKD (HR: 0.73, 95% CI 0.67-0.81, P < 0.001) in the MASLD cohort. No significant reduction was found for liver-related mortality or liver cirrhosis incidence. These findings suggest that multivitamins might provide broader protective effects in populations with metabolic dysfunction. Further research is needed to clarify their role in liver-specific outcomes.
Collapse
Affiliation(s)
- Tom Ryu
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul, 04401, Republic of Korea
| | - Seung Yun Chae
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaejun Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Ji Won Han
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hyun Yang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Beom Sun Chung
- Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju, 26426, Republic of Korea
| | - Keungmo Yang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
35
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
36
|
Huang DQ, Wong VWS, Rinella ME, Boursier J, Lazarus JV, Yki-Järvinen H, Loomba R. Metabolic dysfunction-associated steatotic liver disease in adults. Nat Rev Dis Primers 2025; 11:14. [PMID: 40050362 DOI: 10.1038/s41572-025-00599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/09/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the umbrella term that comprises metabolic dysfunction-associated steatotic liver, or isolated hepatic steatosis, through to metabolic dysfunction-associated steatohepatitis, the progressive necroinflammatory disease form that can progress to fibrosis, cirrhosis and hepatocellular carcinoma. MASLD is estimated to affect more than one-third of adults worldwide. MASLD is closely associated with insulin resistance, obesity, gut microbial dysbiosis and genetic risk factors. The obesity epidemic and the growing prevalence of type 2 diabetes mellitus greatly contribute to the increasing burden of MASLD. The treatment and prevention of major metabolic comorbidities such as type 2 diabetes mellitus and obesity will probably slow the growth of MASLD. In 2023, the field decided on a new nomenclature and agreed on a set of research and action priorities, and in 2024, the US FDA approved the first drug, resmetirom, for the treatment of non-cirrhotic metabolic dysfunction-associated steatohepatitis with moderate to advanced fibrosis. Reliable, validated biomarkers that can replace histology for patient selection and primary end points in MASH trials will greatly accelerate the drug development process. Additionally, noninvasive tests that can reliably determine treatment response or predict response to therapy are warranted. Sustained efforts are required to combat the burden of MASLD by tackling metabolic risk factors, improving risk stratification and linkage to care, and increasing access to therapeutic agents and non-pharmaceutical interventions.
Collapse
Affiliation(s)
- Daniel Q Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Vincent W S Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Mary E Rinella
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Jerome Boursier
- Service d'Hépato-Gastroentérologie et Oncologie Digestive, Centre Hospitalier Universitaire d'Angers, Angers, France
- Laboratoire HIFIH, SFR ICAT 4208, Université d'Angers, Angers, France
| | - Jeffrey V Lazarus
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, San Diego, CA, USA.
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, USA.
| |
Collapse
|
37
|
Baumert BO, Maretti-Mira AC, Walker DI, Li Z, Stratakis N, Wang H, Zhao Y, Fischer FC, Jia Q, Valvi D, Bartell SM, Chen C, Inge T, Ryder J, Jenkins T, Sisley S, Xanthakos S, Kleiner DE, Kohli R, Rock S, Eckel SP, La Merrill MA, Aung MM, Salomon MP, McConnell R, Goodrich J, Conti DV, Golden-Mason L, Chatzi L. Integrated Spheroid-to-Population Framework for Evaluating PFHpA-Associated Metabolic Dysfunction and Steatotic Liver Disease. RESEARCH SQUARE 2025:rs.3.rs-5960979. [PMID: 40092438 PMCID: PMC11908348 DOI: 10.21203/rs.3.rs-5960979/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The rising prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), particularly among pediatric populations, requires identification of modifiable risk factors to control disease progression. Per- and polyfluoroalkyl substances (PFAS) have emerged as potential contributors to liver damage; however, their role in the etiology of MASLD remains underexplored. This study aimed to bridge the gap between human epidemiological data and in vitro experimental findings to elucidate the effect of perfluoroheptanoic acid (PFHpA), a short chain, unregulated PFAS congener on MASLD development. Our analysis of the Teen-LABS cohort, a national multi-site study on obese adolescents undergoing bariatric surgery, revealed that doubling of PFHpA plasma levels was associated with an 80% increase in MASLD risk (OR, 1.8; 95% CI: 1.3-2.5) based on liver biospies. To further investigate the underlying mechanisms, we used 3D human liver spheroids and single-cell transcriptomics to assess the effect of PFHpA on hepatic metabolism. Integrative analysis identified dysregulation of common pathways in both human and spheroid models, particularly those involved in innate immunity, inflammation, and lipid metabolism. We applied the latent unknown clustering with integrated data (LUCID) model to assess associations between PFHpA exposure, multiomic signatures, and MASLD risk. Our results identified a proteome profile with significantly higher odds of MASLD (OR = 7.1), whereas a distinct metabolome profile was associated with lower odds (OR = 0.51), highlighting the critical role of protein dysregulation in disease pathogenesis. A translational framework was applied to uncover the molecular mechanisms of PFAS-induced MASLD in a cohort of obese adolescents. Identifying key molecular mechanisms for PFAS-induced MASLD can guide the development of targeted prevention and treatment.
Collapse
Affiliation(s)
- Brittney O. Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ana C. Maretti-Mira
- USC Research Center for Liver Diseases, Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Douglas I. Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, 1518 Clifton Road, NE, Atlanta, GA, United States
| | - Zhenjiang Li
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Nikos Stratakis
- Barcelona Institute for Global Health, ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Hongxu Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yinqi Zhao
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Fabian Christoph Fischer
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Qiran Jia
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Damaskini Valvi
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Scott M. Bartell
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, United States
| | - Carmen Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Thomas Inge
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Justin Ryder
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Todd Jenkins
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Stephanie Sisley
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Stavra Xanthakos
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David E. Kleiner
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Bethesda, MD, United States
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Sarah Rock
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sandrah P. Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Michele A. La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, United States
| | - Max M. Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Matthew P. Salomon
- USC Research Center for Liver Diseases, Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jesse Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - David V. Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lucy Golden-Mason
- USC Research Center for Liver Diseases, Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
38
|
Hu Z, Yue H, Jiang N, Qiao L. Diet, oxidative stress and MAFLD: a mini review. Front Nutr 2025; 12:1539578. [PMID: 40104813 PMCID: PMC11913703 DOI: 10.3389/fnut.2025.1539578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
Globally, metabolic dysfunction-associated fatty liver disease (MAFLD), also known as non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD), is a common chronic liver disease. The progression of MAFLD leads to a vicious cycle in which oxidative stress results from the disease that is augmenting de-novo lipid levels and increases steatosis. Most non-enzymatic antioxidants are present in food. Therefore, the present review summarizes the findings of studies on food-derived antioxidants and presents an oxidative stress-related regulatory network in MAFLD, offering new ideas for MAFLD prevention and treatment.
Collapse
Affiliation(s)
- Zenan Hu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hanxun Yue
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Na Jiang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
39
|
Dhengle S, Maharana KC, Meenakshi S, Singh S. Mechanistic Insights into the Role of MCP-1 in Diverse Liver Pathological Conditions: A Recent Update. Curr Pharm Des 2025; 31:1167-1179. [PMID: 39779567 DOI: 10.2174/0113816128332969241120030733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 01/11/2025]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) is regarded as a crucial proinflammatory cytokine that controls the migration and entry of macrophages. It has been demonstrated that chemokine ligand 2 and its receptor, chemokine receptor 2, are both implicated in several liver disorders. In a similar context, immunity mediators are overexpressed and stimulated by MCP-1. Additionally, MCP-1 alters the physiology of the hepatocytes, promoting immunologic and inflammatory responses beyond regular metabolism. Alcoholism and other factor including abnormal diet stimulate the liver's synthesis of MCP-1, which can result in inflammation in liver. Studies shows how MCP-1' linked to various liver disorders like alcoholic liver disease, liver fibrosis, non-alcoholic fatty liver disease, hepatitis, hepatic steatosis, hepatocellular cancer, primary biliary cirrhosis. MCP-1 not only predicts the onset, progression, and prognosis of the illness, but it is also directly related to the degree and stage of liver inflammation. In this review, we will explore the mechanism and connection between MCP-1's overexpression in liver disorders, further how it can be linked as a therapeutic biomarker in the above scenario.
Collapse
Affiliation(s)
- Sahil Dhengle
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Krushna Ch Maharana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sarasa Meenakshi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
40
|
Fiorucci S, Marchianò S, Distrutti E, Biagioli M. Bile acids and their receptors in hepatic immunity. LIVER RESEARCH (BEIJING, CHINA) 2025; 9:1-16. [PMID: 40206435 PMCID: PMC11977286 DOI: 10.1016/j.livres.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 01/23/2025] [Indexed: 04/11/2025]
Abstract
Similarly to conventional steroids, bile acids function as signaling molecules, acting on a family of membrane and nuclear receptors. The best-characterized bile acid-regulated receptors are the farnesoid X receptor, activated by primary bile acids, and the G-protein-coupled bile acid receptor 1 (also known as Takeda G protein-coupled receptor 5), which is activated by secondary bile acids, such as lithocholic acid (LCA) and deoxycholic acid. Both the farnesoid X receptor and G-protein-coupled bile acid receptor 1 are expressed in cells of innate immunity, monocytes/macrophages, and natural killer cells. Their activation in these cells provides counter-regulatory signals that are inhibitory in nature and attenuate inflammation. In recent years, however, it has been increasingly appreciated that bile acids biotransformations by intestinal microbiota result in the formation of chemically different secondary bile acids that potently regulate adaptive immunity. The 3-oxoLCA and isoalloLCA, two LCA derivatives, bind receptors such as the retinoic acid receptor-related orphan receptor gamma t (RORγt) and the vitamin D receptor (VDR) that are expressed only by lymphoid cells, extending the regulatory role of bile acids to T cells, including T-helper 17 cells and type 3 innate lymphoid cells (ILC3). In this novel conceptual framework, bile acids have emerged as one of the main components of the postbiota, the waste array of chemical mediators generated by the intestinal microbiota. Deciphering the interaction of these mediators with the immune system in the intestine and liver is a novel and fascinating area of bile acid renaissance.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
41
|
Etemad A, Tanaka Y, Wang S, Slae M, Sultan M, Elpeleg O, Hirokawa N. Mutations in the kinesin KIF12 promote MASH in humans and mice by disrupting lipogenic enzyme turnover. EMBO J 2025; 44:1608-1640. [PMID: 39920308 PMCID: PMC11914266 DOI: 10.1038/s44318-025-00366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025] Open
Abstract
As a common cause of liver cirrhosis, metabolic dysfunction-associated steatohepatitis (MASH) is regarded as a target of therapeutic intervention. However, a successful therapy has not yet been found, partly because the molecular pathogenesis is largely elusive. Here we show that KIF12 kinesin suppresses MASH development by accelerating the breakdown of two lipid biosynthesis enzymes, acetyl-CoA carboxylase 1 (ACC1) and pyruvate carboxylase (PC), in hepatocytes. We report three familial early-onset liver cirrhosis pedigrees with homozygous KIF12 mutations, accompanying MASH-like steatosis and cholestasis. The mouse genetic model carrying the corresponding Kif12 nonsense mutation faithfully reproduced the phenotypes as early as between 8 and 10 weeks of age. Furthermore, KIF12-deficient HepG2 cells exhibited significant steatosis, which was ameliorated by overexpressing a proline-rich domain (PRD) of KIF12. We found that KIF12-PRD promotes the degradation of ACC1 and PC, and this effect is likely to be through its direct interaction with these enzymes. Interestingly, KIF12 enhanced the ubiquitination of ACC1 by the E3 ligase COP1 and colocalized with these proteins as seen by super-resolution microscopy imaging. These data propose a role for KIF12 in suppressing MASH by accelerating turnover of lipogenic enzymes.
Collapse
Affiliation(s)
- Asieh Etemad
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Shuo Wang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Mordechai Slae
- Department of Genetics, Hadassah Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Mutaz Sultan
- Makassed Hospital, Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Orly Elpeleg
- Department of Genetics, Hadassah Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan.
- Department of Advanced Morphological Imaging, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
42
|
Zeng R, Wang Y, Wen J, Cen Z, Wang T, Duan M, Huang X, Zhao Z, Zhang Z, Yang C, Chen S. Hypoxia-inducible factor-1α inhibitor promotes non-alcoholic steatohepatitis development and increases hepatocellular lipid accumulation via TSKU upregulation. Arch Biochem Biophys 2025; 765:110313. [PMID: 39832609 DOI: 10.1016/j.abb.2025.110313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Non-alcoholic steatohepatitis (NASH) is the progressive form of non-alcoholic fatty liver disease (NAFLD) which is the most common chronic liver disease worldwide. Hypoxia-inducible factor-1α (HIF1α) inhibitor is emerging as a promising therapeutic strategy for diseases. However, the role of HIF1α inhibitor in NASH is still unclear. A choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) -induced NASH mouse model was established to identify the impacts of HIF1α inhibitor KC7F2 on the development of NASH. We found that KC7F2 treatment substantially aggravated lipid accumulation, inflammation, and fibrosis in the liver of NASH mice presumably via increasing Tsukushi (TSKU) expression in the liver. Mechanistically, KC7F2 up-regulated expression of TSKU in hepatocyte in vitro, which led to increased hepatocellular lipid accumulation and was reversed when TSKU was knockdown in hepatocyte. Our findings indicated that HIF1α inhibitor promotes the development of NASH presumably via increasing TSKU expression in the liver, suggesting that HIF1α attenuates NASH, and that we should assess the potential liver toxicity when use HIF1α inhibitor or medicines that can decrease the expression of HIF1α to therapy other diseases.
Collapse
Affiliation(s)
- Renli Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China; Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Yuxin Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Zhipeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Meng Duan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510000, China.
| | - Xiuyi Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Zhengde Zhao
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Zhongyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Chuan Yang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
43
|
He Y, Ye M, Xia Y, Zhong Z, Wang W, Li Q. The role of cytokines as predictors for NAFLD-related diseases: A bidirectional Mendelian randomization study. Clin Res Hepatol Gastroenterol 2025; 49:102545. [PMID: 39900199 DOI: 10.1016/j.clinre.2025.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND Prior research has highlighted associations between inflammatory cytokines and non-alcoholic fatty liver disease (NAFLD), but causal relationships remain unclear. Employing the Mendelian randomization (MR) approach, this investigation aims to explore the connection between 41 inflammatory cytokines and NAFLD-related diseases. METHODS Our research implemented bidirectional study focusing on 41 cytokines in 8,293 Finns, predicting genetic associations with NAFLD, nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. We primarily utilized the inverse variance weighted (IVW) method to evaluate the bidirectional relationships. Additionally, a sensitivity analysis was carried out to ensure the reliability of our findings. RESULTS An elevated risk for NAFLD was correlated with both IL-2 (OR = 1.226, 95 % CI = 1.018-1.477, p = 0.031) and TNF-β (OR = 1.151, 95 % CI = 1.011-1.310, p = 0.033). IL-16 is associated with decreased NAFLD risk (OR = 0.820, 95 % CI = 0.719-0.934, p = 0.033). β-NGF (OR = 2.495, 95 % CI = 1.019-6.108, p = 0.045) and SCGFβ (OR = 1.541, 95 % CI = 1.052-2.256, p = 0.026) are linked to higher NASH risk. No significant associations were found for fibrosis and cirrhosis. Furthermore, the causal relationship between genetic predisposition to NAFLD-related diseases and various inflammatory cytokines was established. CONCLUSIONS Our MR analysis identifies specific cytokines as genetic predictors for NAFLD and NASH. IL-2 and TNF-β increase NAFLD risk, IL-16 appears protective, and β-NGF and SCGFβ are associated with greater NASH risk. These insights are crucial for understanding the etiology and treatment of NAFLD-related diseases.
Collapse
Affiliation(s)
- Yijia He
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Miaomin Ye
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yin Xia
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ziyi Zhong
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weiping Wang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Li
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
44
|
Ates E, My Ong HT, Yu SM, Kim JH, Kang MJ. Comparative Analysis of the Total Proteome in Nonalcoholic Steatohepatitis: Identification of Potential Biomarkers. Mol Cell Proteomics 2025; 24:100921. [PMID: 39894410 PMCID: PMC11910689 DOI: 10.1016/j.mcpro.2025.100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/06/2024] [Accepted: 11/08/2024] [Indexed: 02/04/2025] Open
Abstract
Nonalcoholic fatty liver disease is a hepatic condition characterized by excessive fat accumulation in the liver with advanced stage nonalcoholic steatohepatitis (NASH), potentially leading to liver fibrosis, cirrhosis, and cancer. Currently, the identification and classification of NASH require invasive liver biopsy, which has certain limitations. Mass spectrometry-based proteomics can detect crucial proteins and pathways implicated in NASH development and progression. We collected the liver and serum samples from choline-deficient, L-amino acid-defined high-fat diet fed NASH C57BL/6J mice and human serum samples to examine proteomic alterations and identify early biomarkers for NASH diagnosis. In-depth targeted multiple reaction monitoring scanning and immunoblotting assays were used to verify the biomarker candidates from mouse liver and serum samples, and enzyme-linked immunosorbent assay (ELISA) was employed to analyze human serum samples. The multiple reaction monitoring analysis of NASH liver revealed 50 proteins with altered expression (21 upregulated and 29 downregulated) that are involved in biological processes such as detoxification, fibrosis, inflammation, and fatty acid metabolism. Ingenuity pathway analysis identified impaired protein synthesis, cellular stress and defense, cellular processes and communication, and metabolism in NASH mouse liver. Immunoblotting analysis confirmed that the expression of proteins associated with fatty acid metabolism (Aldo B and Fasn) and urea cycle (Arg1, Cps1, and Otc) was altered in the mouse liver and serum. Further analysis on human serum samples using ELISA confirmed the increased expression of multiple proteins, including Aldo B, Asl, and Lgals3, demonstrating values of 0.917, 0.979, and 0.965 of area under the curve in NASH diagnosis. These findings offer valuable insights into the molecular mechanisms of NASH and possible diagnostic biomarkers for early detection.
Collapse
Affiliation(s)
- Eda Ates
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea
| | - Hien Thi My Ong
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea
| | - Seung-Min Yu
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hoon Kim
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Min-Jung Kang
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea.
| |
Collapse
|
45
|
Zhang X, Lau HCH, Yu J. Pharmacological treatment for metabolic dysfunction-associated steatotic liver disease and related disorders: Current and emerging therapeutic options. Pharmacol Rev 2025; 77:100018. [PMID: 40148030 DOI: 10.1016/j.pharmr.2024.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD; formerly known as nonalcoholic fatty liver disease) is a chronic liver disease affecting over a billion individuals worldwide. MASLD can gradually develop into more severe liver pathologies, including metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and liver malignancy. Notably, although being a global health problem, there are very limited therapeutic options against MASLD and its related diseases. While a thyroid hormone receptor agonist (resmetirom) is recently approved for MASH treatment, other efforts to control these diseases remain unsatisfactory. Given the projected rise in MASLD and MASH incidence, it is urgent to develop novel and effective therapeutic strategies against these prevalent liver diseases. In this article, the pathogenic mechanisms of MASLD and MASH, including insulin resistance, dysregulated nuclear receptor signaling, and genetic risk factors (eg, patatin-like phospholipase domain-containing 3 and hydroxysteroid 17-β dehydrogenase-13), are introduced. Various therapeutic interventions against MASH are then explored, including approved medication (resmetirom), drugs that are currently in clinical trials (eg, glucagon-like peptide 1 receptor agonist, fibroblast growth factor 21 analog, and PPAR agonist), and those failed in previous trials (eg, obeticholic acid and stearoyl-CoA desaturase 1 antagonist). Moreover, given that the role of gut microbes in MASLD is increasingly acknowledged, alterations in the gut microbiota and microbial mechanisms in MASLD development are elucidated. Therapeutic approaches that target the gut microbiota (eg, dietary intervention and probiotics) against MASLD and related diseases are further explored. With better understanding of the multifaceted pathogenic mechanisms, the development of innovative therapeutics that target the root causes of MASLD and MASH is greatly facilitated. The possibility of alleviating MASH and achieving better patient outcomes is within reach. SIGNIFICANCE STATEMENT: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, and it can progress to more severe pathologies, including steatohepatitis, cirrhosis, and liver cancer. Better understanding of the pathogenic mechanisms of these diseases has facilitated the development of innovative therapeutic strategies. Moreover, increasing evidence has illustrated the crucial role of gut microbiota in the pathogenesis of MASLD and related diseases. It may be clinically feasible to target gut microbes to alleviate MASLD in the future.
Collapse
Affiliation(s)
- Xiang Zhang
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
46
|
Wei Y, Jiang Y, Zhu J, Zhang Z, Li M, Zheng S, Wang X, Sun J, Li C, Shi W, Wang S, Liu X, Lin M, Zhang Z, Zhang D, Sun G. CD36-mediated uptake of oxidized LDL induces double-negative regulatory T cell ferroptosis in metabolic dysfunction-associated steatotic liver disease. Metabolism 2025; 164:156127. [PMID: 39743040 DOI: 10.1016/j.metabol.2024.156127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Metabolic alterations have been shown to instigate liver inflammation in metabolic dysfunction-associated steatotic liver disease (MASLD), but the underlying mechanism is not fully elucidated. During MASLD progression, intrahepatic CD3+TCRαβ+CD4-CD8- double negative T regulatory cells (DNT) decrease cell survival and immunosuppressive function, leading to aggravated liver inflammation. In this study, we aim to reveal the underlying mechanisms that cause changes in DNT during MASLD progression. METHODS The correlation of serum oxidized low-density lipoprotein (oxLDL) levels and DNT from patients with MASLD and MASLD mouse models were evaluated. The mechanisms of oxLDL affecting DNT survival and function were explored through transcriptome sequencing analysis, flow cytometry, and CUT & TAG experiments. RESULTS Serum oxLDL levels are negative correlated with survival and functional molecule expression of circulating DNT in patients with MASLD and intrahepatic DNT in MASLD mouse models. Mechanistically, oxLDL increases DNT CD36 expression through the NF-κB pathway, leading to enhanced uptake of oxLDL and subsequent occurrence of ferroptosis and functional impairment. oxLDL enhances ferroptosis in DNT by upregulating acyl-CoA synthetase long chain family member 4 expression. By transferring CD36-/- DNT into MASLD mice, we observe a significant reduction in ferroptosis and improved immune regulation in CD36-/- DNT compared to wild type DNT. This improvement in DNT results in a notable enhancement of therapeutic efficacy against MASLD. CONCLUSION oxLDL induces a decline in the survival and immune regulatory function of DNT, subsequently weakening their role in maintaining liver immune homeostasis in MASLD. Specific targeting of CD36 to prevent ferroptosis in DNT may provide a novel therapeutic approach for the treatment of MASLD.
Collapse
Affiliation(s)
- Yunxiong Wei
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yuan Jiang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jingjing Zhu
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zihan Zhang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Mengyi Li
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shimeng Zheng
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiyu Wang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jie Sun
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Changying Li
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wen Shi
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Songlin Wang
- Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Minjie Lin
- Academic Affairs Department, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhongtao Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Dong Zhang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China.
| | - Guangyong Sun
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
47
|
An G, Song J, Ying W, Lim W. Overview of the hazardous impacts of metabolism-disrupting chemicals on the progression of fatty liver diseases. Mol Cell Toxicol 2025; 21:387-397. [PMID: 40160987 PMCID: PMC11947047 DOI: 10.1007/s13273-025-00521-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 04/02/2025]
Abstract
Background Given the global increase in obesity, metabolic dysfunction-associated steatotic liver disease (MASLD) is a major health concern. Because the liver is the primary organ for xenobiotic metabolism, the impact of environmental stressors on liver homeostasis and MASLD has garnered significant interest over the past few decades. The concept of metabolism-disrupting chemicals (MDCs) has been introduced to underscore the importance of environmental factors in metabolic homeostasis. Recent epidemiological and biological studies suggest a causal link between exposure to MDCs and prevalence and progression of MASLD. Objective This review aims to introduce the emerging concept of MDCs and their representative toxic mechanisms. In particular, this review focuses on broadening the understanding of their impacts on MASLD or metabolic dysfunction-associated steatohepatitis (MASH) progression. Result Recent research has highlighted the environmental contaminants, such as heavy metals, microplastics, and pesticides, have the potential to influence hepatic metabolism and aggravate MASLD/MASH progression. These MDCs not only directly affect lipid metabolism in hepatocytes but also affect other cell types, such as immune cells and stellate cells, as well as the gut-liver axis. Conclusion Collectively, these findings contribute to establishing a well-defined adverse outcome pathway and identify novel therapeutic options for liver diseases associated with pollutants.
Collapse
Affiliation(s)
- Garam An
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Jisoo Song
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093 USA
| | - Whasun Lim
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| |
Collapse
|
48
|
Hui L, Chen X, Huang M, Jiang Y, Liu T. TANK-Binding Kinase 1 in the Pathogenesis and Treatment of Inflammation-Related Diseases. Int J Mol Sci 2025; 26:1941. [PMID: 40076567 PMCID: PMC11900955 DOI: 10.3390/ijms26051941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
TANK-binding kinase 1 (TBK1) is a key signaling kinase involved in innate immune and inflammatory responses. TBK1 drives immune cells to participate in the inflammatory response by activating the NF-κB and interferon regulatory factor signaling pathways in immune cells, promoting the expression of pro-inflammatory genes, and regulating immune cell function. Thus, it plays a crucial role in initiating a signaling cascade that establishes an inflammatory environment. In inflammation-related diseases, TBK1 acts as a bridge linking inflammation to immunity, metabolism, or tumorigenesis, playing an important role in the pathogenesis of immune-mediated inflammatory diseases, metabolic, inflammatory syndromes, and inflammation-associated cancers by regulating the activation of inflammatory pathways and the production of inflammatory cytokines in cells. In this review, we focused on the mechanisms of TBK1 in immune cells and inflammatory-related diseases, providing new insights for further studies targeting TBK1 as a potential treatment for inflammation-related diseases. Thus, optimizing and investigating highly selective cell-specific TBK1 inhibitors is important for their application in these diseases.
Collapse
Affiliation(s)
- Lu Hui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Xiaolin Chen
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Mengke Huang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center/National Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
49
|
Vizioli G, Nicoletti A, Feliciani D, Funaro B, Zileri Dal Verme L, Ponziani FR, Zocco MA, Gasbarrini A, Gabrielli M. Immunotherapy and MASLD-Related HCC: Should We Reconsider the Role of Etiology in the Therapeutic Approach to HCC? APPLIED SCIENCES 2025; 15:2279. [DOI: 10.3390/app15052279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Hepatocellular carcinoma (HCC) accounts for 90% of primary liver cancers and typically arises in the context of chronic liver disease. With the increasing prevalence of metabolic disorders, metabolic dysfunction-associated steatotic liver disease (MASLD) has become the leading cause of chronic liver disease and the most rapidly increasing cause of HCC. The role of dysfunctional innate and adaptive immune responses in the development and progression of HCC is well-established, prompting numerous trials to evaluate the efficacy of immune checkpoint inhibitors (ICIs) in targeting tumor cells. These trials have yielded promising results, and ICIs, in combination with anti-vascular endothelial growth factor (VEGF) monoclonal antibodies, are now approved as first-line therapy for patients with metastatic or unresectable HCC, irrespective of the underlying liver disease. Notably, MASLD itself is characterized by immune system dysfunction, as metabolic inflammation plays a central role in its onset and progression. However, clinical studies and post-hoc analyses suggest that immunotherapy may be less effective in MASLD-associated HCC compared to viral-related HCC. This emerging evidence raises the question of whether the underlying liver disease influences the therapeutic response to ICIs in HCC. It may be time to consider tailoring therapeutic strategies for HCC based on the specific etiological, histological, and genotypical subgroups.
Collapse
Affiliation(s)
- Giuseppina Vizioli
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alberto Nicoletti
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Daniela Feliciani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Barbara Funaro
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenzo Zileri Dal Verme
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maurizio Gabrielli
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
50
|
Mo Y, He X, Cui H, Cheng Y, Zhou M, Cui X, Zhang T. Gut microbiota: A new key of understanding for Panax notoginseng against multiple disorders and biotransformation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119306. [PMID: 39761836 DOI: 10.1016/j.jep.2024.119306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burkill) F.H.Chen(P. notoginseng) has been widely used as an herbal medicine for reducing swelling, relieving pain, promoting blood circulation and stopping bleeding, with notable therapeutic effects on obesity, liver diseases, colitis, Alzheimer's disease, chronic kidney disease and other diseases. AIM OF THE STUDY This review highlighted the close link and bidirectional effects between P. notoginseng and gut microbiota, with the ultimate aim of providing new insights into the potential mechanisms of pharmacological effects of P. notoginseng in the treatment of different diseases and PNS transformation. MATERIALS AND METHODS By means of some reputable databases (PubMed, China National Knowledge Infrastructure (CNKI), Google Scholar, etc.), we screened the published articles related to P. notoginseng from 1998 to 2024, including original research, clinical trials and review on raw materials and chemical constituents of P. notoginseng. Then, we employed the keywords "gut microbiota", "intestinal microbiota", "gut biotransformation" and "intestinal" to exclude the articles that do not in line with our topic. Plant information was obtained from www.worldfloraonline.org using "Panax notoginseng (Burkill) F.H.Chen" as the keyword. RESULTS P. notoginseng elevated certain probiotics including Lactobacillus, Bifidobacterium and Akkermansia, while simultaneously reducing pathogenic bacteria such as Prevotellaceae, Enterococcus, Enterobacter and Helicobacter, to fight various diseases. Meanwhile, considering to the low oral bioavailability and degradable properties of Panax notoginseng saponin (PNS), gut microbiota converted it into protopanaxatriol(PPT) and protopanaxadiol(PPD) mainly through deglycosylation reactions to enhance the bioactivity. CONCLUSION Increasing evidences suggest that gut microbiota may play a vital role for P. notoginseng exerting on beneficial effects on the prevention and treatment of metabolic disorders, liver diseases, neurological diseases, chronic kidney diseases, vascular diseases, colitis, and other diseases, as well as for biotransformation of P. notoginseng.
Collapse
Affiliation(s)
- Yueting Mo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiyuan He
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, State Administration of Traditional Chinese Medicine, Kunming, 650500, China
| | - Yifan Cheng
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, State Administration of Traditional Chinese Medicine, Kunming, 650500, China
| | - Mingmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, State Administration of Traditional Chinese Medicine, Kunming, 650500, China.
| | - Ting Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|