1
|
Zhang S, Miao L, Tian X, Yang B, Luo B. Opportunities and challenges of immuno-oncology: A bibliometric analysis from 2014 to 2023. Hum Vaccin Immunother 2025; 21:2440203. [PMID: 39885669 PMCID: PMC11792843 DOI: 10.1080/21645515.2024.2440203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 02/01/2025] Open
Abstract
The emergence of immuno-oncology (IO) has led to revolutionary changes in the field of cancer treatment. Despite notable advancements in this field, a thorough exploration of its full depth and extent has yet to be performed. This study provides a comprehensive overview of publications pertaining to IO. Publications on IO from 2014 to 2023 were retrieved by searching the Web of Science Core Collection database (WoSCC). VOSviewer software and Citespace software were used for the visualized analysis. A total of 1,874 articles have been published in the IO domain. The number of publications and citations has been increasing annually. This study also examines the primary research directions within the field of IO. In conclusion, this study offers a comprehensive overview of the opportunities and challenges associated with IO, illuminating the current status of research and indicating potential future trajectories in this rapidly progressing field. This study provides a comprehensive survey of the current research status and hot spots within the field of IO. It will assist researchers in comprehending the current research emphasis and development trends in this field and offers guidance for future research directions.
Collapse
Affiliation(s)
- Siqi Zhang
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Oncology, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Oncology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Lina Miao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxia Tian
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Bingxu Yang
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Baoping Luo
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Oncology, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Oncology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
2
|
Fang Z, Pan Y, Lu Z, Wang L, Hu X, Ma Y, Li S. LncRNA SNHG1: A novel biomarker and therapeutic target in hepatocellular carcinoma. Gene 2025; 958:149462. [PMID: 40187618 DOI: 10.1016/j.gene.2025.149462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality globally. Increasing evidence suggests that long non-coding RNAs play a critical role in cancer development, with the small nucleolar RNA host gene family being a key participant in multiple types of carcinogenesis, including HCC. Small nucleolar RNA host gene 1 (SNHG1) is a significant member of the SNHG family. SNHG1 expression consistently increases in various HCC-associated processes, such as cell proliferation, apoptosis, angiogenesis, migration, invasion, and treatment resistance. Higher SNHG1 expression levels predict worse prognosis by positively correlating with clinicopathological features, including larger tumour size, poor differentiation, and advanced stages in patients with HCC. Nevertheless, the precise role of SNHG1 in the initiation and progression of HCC remains unclear. Therefore, this review aims to summarise the current investigations on the pathogenesis of SNHG1 in HCC, highlighting its potential as a molecular marker for early prediction and prognostic assessment. As a multifunctional modulator, SNHG1 is extensively involved in molecular signalling pathways in HCC progression and is valuable for therapeutic targeting.
Collapse
Affiliation(s)
- Zhou Fang
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Yong Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou 31003, China
| | - Zhengmei Lu
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Lingyun Wang
- Department of Infectious Diseases, Zhoushan Hospital, Zhejiang University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Xiaodan Hu
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Yingqiu Ma
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Shibo Li
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China.
| |
Collapse
|
3
|
Gao Y, Zhang X, Ding M, Fu Z, Zhong L. Targeting "don't eat me" signal: breast cancer immunotherapy. Breast Cancer Res Treat 2025; 211:277-292. [PMID: 40100495 DOI: 10.1007/s10549-025-07659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE Breast cancer ranks as the most prevalent cancer type impacting women globally, both in terms of incidence and mortality rates, making it a major health concern for females. There's an urgent requirement to delve into new cancer treatment methods to improve patient survival rates. METHODS Immunotherapy has gained recognition as a promising area of research in the treatment of breast cancer, with targeted immune checkpoint therapies demonstrating the potential to yield sustained clinical responses and improve overall survival rates. Presently, the predominant immune checkpoints identified on breast cancer cells include CD47, CD24, PD-L1, MHC-I, and STC-1, among others. Nevertheless, the specific roles of these various immune checkpoints in breast carcinogenesis, metastasis, and immune evasion have yet to be comprehensively elucidated. We conducted a comprehensive review of the existing literature pertaining to breast cancer and immune checkpoint inhibitors, providing a summary of findings and an outlook on future research directions. RESULTS This article reviews the advancements in research concerning each immune checkpoint in breast cancer and their contributions to immune evasion, while also synthesizing immunotherapy strategies informed by these mechanisms. Furthermore, it anticipates future research priorities, thereby providing a theoretical foundation to guide immunotherapy as a potential interventional approach for breast cancer treatment. CONCLUSION Knowledge of immune checkpoints will drive the creation of novel cancer therapies, and future breast cancer research will increasingly emphasize personalized treatments tailored to patients' specific tumor characteristics.
Collapse
Affiliation(s)
- Yue Gao
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyan Zhang
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingqiang Ding
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenkun Fu
- Department of Immunology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China.
| | - Lei Zhong
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
Chen J, Bu C, Lu Y, Peng X, Yu J, Ding X, Yuan P, Hong S. Bioresponsive nanoreactor initiates cascade reactions for tumor vascular normalization and lactate depletion to augment immunotherapy. Biomaterials 2025; 317:123100. [PMID: 39799700 DOI: 10.1016/j.biomaterials.2025.123100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment. However, abnormal tumor vasculature and excess lactate contribute to tumor immunosuppression and confer resistance to ICB therapy, seriously limiting its clinical application. Here, we have developed a bioresponsive nanoreactor, ALMn, which consists of hollow manganese dioxide nanoparticles with encapsulation of lactate oxidase and L-Arginine, to overcome immunosuppression and sensitize ICB therapy. In the tumor microenvironment, lactate oxidase catalyzes lactate to produce hydrogen peroxide, which subsequently oxidizes L-Arginine to generate nitric oxide for vascular normalization. Through cascade reactions, ALMn effectively depletes excess lactate and normalize tumor vasculature, reshaping the immunosuppressive phenotype to an immune-activated one. Transcriptomics and immunological analyses prove that ALMn facilitates the infiltration and activation of effector cells, further potentiating antitumor immunity. Consequently, ALMn sensitizes anti-PD-L1 therapy, significantly suppressing tumor growth with an 83.7 % suppression, and prolonging the survival of mice, with the median survival time increasing from 29.5 days to 54.5 days. Our study demonstrates that ALMn effectively alleviates tumor immunosuppression and synergizes with anti-PD-L1, which shows promise in boosting ICB therapy.
Collapse
Affiliation(s)
- Jiaoyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Changxin Bu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Yuting Lu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xinran Peng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Jiayin Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xin Ding
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China.
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China.
| | - Sheng Hong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China.
| |
Collapse
|
5
|
Zhang Q, Kuang G, Li W, Zhao Y. Cryo-Inactivated Cancer Cells Derived Magnetic Micromotors for Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e04986. [PMID: 40405693 DOI: 10.1002/advs.202504986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/24/2025] [Indexed: 05/24/2025]
Abstract
Immunotherapy represents a highly promising modality in cancer treatment, with substantial advancements in therapeutic strategies. The primary challenge lies in enhancing the efficacy of immunotherapy approaches. Here, novel cryo-inactivated cancer cells (CICC) derived magnetic micromotors (CICC@FeMnP) are reported for tumor synergistic immunotherapy. Through the magnetic control, the CICC@FeMnP micromotors can on-demand target and accumulate at the tumor site. The FeMnP can induce ferroptosis and then trigger immunogenic cell death of tumor cells. The CICC containing the whole cancer antigen can conduct vaccination effects. Together with the Mn2+-mediated cGAS-STING pathway to stimulate the immune response, substantial anti-tumor immune effects can be achieved. Importantly, the CICC@FeMnP micromotors not only facilitate the establishment of a collaborative anti-tumor immune network to enhance effective tumoricidal immunity but also induce long-lasting immune memory effects. These results contribute to the inhibition of tumor progression, recurrence and lung metastasis, thereby prolonging the overall survival of tumor-bearing mice. This work underscores the potential of an engineered biohybrid micromotor system as an alternative therapeutic approach in immunotherapy to enhance efficacy against tumors.
Collapse
Affiliation(s)
- Qingfei Zhang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Gaizhen Kuang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Wenzhao Li
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yuanjin Zhao
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
6
|
Yang Y, Zhu L, Xu Y, Liang L, Liu L, Chen X, Li H, Liu H. The progress and prospects of targeting the adenosine pathway in cancer immunotherapy. Biomark Res 2025; 13:75. [PMID: 40390144 PMCID: PMC12090549 DOI: 10.1186/s40364-025-00784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/26/2025] [Indexed: 05/21/2025] Open
Abstract
Despite the notable success of cancer immunotherapy, its effectiveness is often limited in a significant proportion of patients, highlighting the need to explore alternative tumor immune evasion mechanisms. Adenosine, a key metabolite accumulating in hypoxic tumor regions, has emerged as a promising target in oncology. Inhibiting the adenosinergic pathway not only inhibits tumor progression but also holds potential to enhance immunotherapy outcomes. Multiple therapeutic strategies targeting this pathway are being explored, ranging from preclinical studies to clinical trials. This review examines the complex interactions between adenosine, its receptors, and the tumor microenvironment, proposing strategies to target the adenosinergic axis to boost anti-tumor immunity. It also evaluates early clinical data on pharmacological inhibitors of the adenosinergic pathway and discusses future directions for improving clinical responses.
Collapse
Affiliation(s)
- Yuying Yang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lin Zhu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yantao Xu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Long Liang
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Li Liu
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Hui Li
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Hong Liu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
7
|
Niu X, Li B, Luo F, Li W, Zhou X, Zhao W. VISTA as a context-dependent immune checkpoint: Implications for tumor immunity and autoimmune pathogenesis. Biochim Biophys Acta Rev Cancer 2025; 1880:189351. [PMID: 40350098 DOI: 10.1016/j.bbcan.2025.189351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
V-domain Ig suppressor of T cell activation (VISTA) is a recently characterized as immune checkpoint regulator with critical roles in modulating immune responses across pathological contexts. In cancer, VISTA contributes to immune evasion by sustaining an immunosuppressive tumor microenvironment, emerging as a promising target for immunotherapeutic intervention. In contrast, in autoimmune diseases, VISTA preserves peripheral immune tolerance and suppresses aberrant immune activation, thereby preventing tissue destruction. This functional dichotomy reflects the complexity of VISTA-mediated signaling, which is modulated by cellular context, microenvironmental cues, and disease stage. Recent studies have elucidated key aspects of VISTA biology, including its structural features, ligand interactions, and context-dependent expression patterns. VISTA operates as a co-inhibitory molecule in cancer, while exerting co-stimulatory or regulatory effects in autoimmunity. This review provides a comprehensive overview of VISTA's discovery, molecular mechanisms, and dual roles in cancer and autoimmune pathogenesis. Furthermore, the current status of VISTA-targeted therapeutic strategies is critically examined, highlighting the translational challenges posed by discrepancies between preclinical models and clinical trial outcomes. Finally, the potential of targeting VISTA within the broader paradigm of immune checkpoint plasticity is discussed, with emphasis on overcoming compensatory immune resistance to enhance therapeutic efficacy. A deeper mechanistic understanding of VISTA is essential for the rational design of future immunomodulatory therapies tailored to specific disease contexts.
Collapse
Affiliation(s)
- Xiaoshuang Niu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Beibei Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Feiyu Luo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Wanqiong Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiuman Zhou
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Zhou Y, Wang X, Zhang D, Cui H, Tian X, Du W, Yang Z, Wan D, Qiu Z, Liu C, Yang Z, Zhang L, Yang Q, Xu X, Li W, Wang D, Huang H, Wu W. Precision-Guided Stealth Missiles in Biomedicine: Biological Carrier-Mediated Nanomedicine Hitchhiking Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2504672. [PMID: 40345158 DOI: 10.1002/advs.202504672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/14/2025] [Indexed: 05/11/2025]
Abstract
Nanodrug delivery systems (NDDS) have demonstrated broad application prospects in disease treatment, prevention, and diagnosis due to several advantages, including functionalization capability, high drug-loading capacity, drug stability protection, and the enhanced permeability and retention (EPR) effect. However, their clinical translation still faces multiple challenges, including rapid clearance by the reticuloendothelial system (RES), poor targeting specificity, and insufficient efficiency in crossing biological barriers. To address these limitations, researchers have developed the biological carrier-mediated nanomedicine hitchhiking strategy (BCM-NHS), which leverages circulating cells, proteins, or bacteria as natural "mobile carriers" to enhance drug delivery. This approach enables nanocarriers to inherit the intrinsic biological properties, endowing them with immune evasion, prolonged circulation, dynamic targeting, biocompatibility, biodegradability, and naturally optimized biological interfaces. Here, a systematic overview of the BCM-NHS is provided. First, the review delves into the methods of nanoparticles (NPs) binding and immobilization, encompassing both the surface-attachment-mediated "backpack" strategy and the encapsulation-based "Trojan horse" strategy. Second, the classification of biological carriers, including both cell-based and non-cell-based carriers, is elucidated. Third, the physical properties and release mechanisms of these nanomaterials are thoroughly described. Finally, the latest applications of BCM-NHS in therapeutic and diagnostic contexts across various disease models including tumor, ischemic stroke, and pneumonia are highlighted.
Collapse
Affiliation(s)
- Yuyan Zhou
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, 610072, China
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Xinyue Wang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Deyu Zhang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Hanxiao Cui
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Xiaorong Tian
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Wei Du
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Zhenghui Yang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Dongling Wan
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Zhiwei Qiu
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Chao Liu
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Zhicheng Yang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Lizhihong Zhang
- Department of Stomatology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong Province, 519041, China
| | - Qiusheng Yang
- Department of Infectious Diseases, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Xuefeng Xu
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Wenhao Li
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, 610072, China
| | - Dong Wang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, 610072, China
| | - Haojie Huang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Wencheng Wu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, 610072, China
| |
Collapse
|
9
|
Zhang M, Liu C, Tu J, Tang M, Ashrafizadeh M, Nabavi N, Sethi G, Zhao P, Liu S. Advances in cancer immunotherapy: historical perspectives, current developments, and future directions. Mol Cancer 2025; 24:136. [PMID: 40336045 PMCID: PMC12057291 DOI: 10.1186/s12943-025-02305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/15/2025] [Indexed: 05/09/2025] Open
Abstract
Cancer immunotherapy, encompassing both experimental and standard-of-care therapies, has emerged as a promising approach to harnessing the immune system for tumor suppression. Experimental strategies, including novel immunotherapies and preclinical models, are actively being explored, while established treatments, such as immune checkpoint inhibitors (ICIs), are widely implemented in clinical settings. This comprehensive review examines the historical evolution, underlying mechanisms, and diverse strategies of cancer immunotherapy, highlighting both its clinical applications and ongoing preclinical advancements. The review delves into the essential components of anticancer immunity, including dendritic cell activation, T cell priming, and immune surveillance, while addressing the challenges posed by immune evasion mechanisms. Key immunotherapeutic strategies, such as cancer vaccines, oncolytic viruses, adoptive cell transfer, and ICIs, are discussed in detail. Additionally, the role of nanotechnology, cytokines, chemokines, and adjuvants in enhancing the precision and efficacy of immunotherapies were explored. Combination therapies, particularly those integrating immunotherapy with radiotherapy or chemotherapy, exhibit synergistic potential but necessitate careful management to reduce side effects. Emerging factors influencing immunotherapy outcomes, including tumor heterogeneity, gut microbiota composition, and genomic and epigenetic modifications, are also examined. Furthermore, the molecular mechanisms underlying immune evasion and therapeutic resistance are analyzed, with a focus on the contributions of noncoding RNAs and epigenetic alterations, along with innovative intervention strategies. This review emphasizes recent preclinical and clinical advancements, with particular attention to biomarker-driven approaches aimed at optimizing patient prognosis. Challenges such as immunotherapy-related toxicity, limited efficacy in solid tumors, and production constraints are highlighted as critical areas for future research. Advancements in personalized therapies and novel delivery systems are proposed as avenues to enhance treatment effectiveness and accessibility. By incorporating insights from multiple disciplines, this review aims to deepen the understanding and application of cancer immunotherapy, ultimately fostering more effective and widely accessible therapeutic solutions.
Collapse
Affiliation(s)
- Meiyin Zhang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chaojun Liu
- Department of Breast Surgery, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Jing Tu
- Department of Pulmonary and Critical Care Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8 V 1P7, Canada
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR) Yong Loo Lin, School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Peiqing Zhao
- Translational Medicine Center, Zibo Central Hospital Affiliated to Binzhou Medical University, No. 54 Communist Youth League Road, Zibo, China.
| | - Shijian Liu
- Department of General Medicine, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, 150081, China.
| |
Collapse
|
10
|
Liu JG, Yu L, Guo XL, He XM, Li M, Gao RY, Zhao BH, Li QY, Zhu WJ, Xu P, Gu XH, Chen YA, Yin XL, Shang Y, Guo ZH, Mao JH, Hu YX, Lu LM, Hua J, Zhang H, Li Y. Characterizing the immune landscape of tumor-infiltrating lymphocytes in non-small cell lung cancer. Genes Immun 2025:10.1038/s41435-025-00330-w. [PMID: 40325180 DOI: 10.1038/s41435-025-00330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/11/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Tumor-Infiltrating Lymphocytes (TILs) immunotherapy is a highly promising treatment for Non-small Cell Lung Cancer (NSCLC), which is responsible for 18% of all cancer-related deaths. The heterogeneity of TILs remains poorly understood. Here, we utilized combined single-cell RNA (scRNA)/T cell receptor sequencing (scTCR-seq) data from lung adenocarcinoma (LUAD) patients. Naïve CD4+ and effector memory CD8+ T cells were increased in tumor tissue compared with circulating blood samples. Activated signaling pathways were detected, and GZMA was identified as a potential novel diagnostic biomarker. During the transitional phase, macrophages (FTL) and dendritic (AIF1) cells transported the most CD3 TCR clones to T cells, while cytotoxicity CD8+ T (NKG7) cells transported to terminal exhausted CD8+ T cells. In both transition and expansion phases, T helper cells (CXCL13) are transported to regulatory T cells (Tregs). Additionally, we investigated the expression profiles of key cytokines, checkpoint receptors, and their ligands. Cytotoxicity CD8+ T cells (CCL5 and IFNG), T helper cells (FTL, TNFRSF4, and TIGIT), and regulatory T cells (CTLA4, TIGIT and FTL) exhibited functional roles in both primary and metastatic tumor stages. Taken together, our study provides a single-cell resolution of the TIL immune landscape and suggests potential treatment strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Jin-Guo Liu
- Department of Oncology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Lin Yu
- Department of Pathology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xian-Ling Guo
- Department of Oncology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Xue-Min He
- Department of Oncology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Man Li
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Ren-Yuan Gao
- Department of Abdominal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Bing-Hui Zhao
- Department of Radiology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Qian-Yu Li
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Wen-Jing Zhu
- Department of Orthopedics, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Ping Xu
- Standard BioTools, Shanghai, China
| | - Xiao-Hua Gu
- Department of Interventional Therapy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong-An Chen
- Department of Oncology, No. 455 Hospital of Chinese People's Liberation Army, The Navy Medical University, Shanghai, China
| | - Xiao-Lan Yin
- Department of Oncology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Yan Shang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhen-Hong Guo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, China
| | - Jia-Hao Mao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yang-Xi Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Li-Ming Lu
- Central Laboratory, Shanghai Chest Hospital and Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Hua
- SPH Biotherapeutics (Shanghai) Limited, Cellular Therapeutics Center for Cancers, Shanghai, China
| | - Hua Zhang
- SPH Biotherapeutics (Shanghai) Limited, Cellular Therapeutics Center for Cancers, Shanghai, China
| | - Yue Li
- SPH Biotherapeutics (Shanghai) Limited, Cellular Therapeutics Center for Cancers, Shanghai, China.
| |
Collapse
|
11
|
Xia J, Chen X, Dong M, Liu S, Zhang L, Pan J, Wang J. Antigen self-presenting dendrosomes swallowing nanovaccines boost antigens and STING agonists codelivery for cancer immunotherapy. Biomaterials 2025; 316:122998. [PMID: 39657509 DOI: 10.1016/j.biomaterials.2024.122998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Cancer vaccines show promise by eliciting tumor-specific cytotoxic T lymphocytes (CTL) responses. Efficient cytosolic co-delivery of antigens and adjuvants to dendritic cells (DCs) is crucial for vaccines to induce anti-tumor immunity. However, peptide- or nucleic acid-based biomolecules like tumor antigens and STING agonist cyclic-di-GMP (cdGMP) are prone to endosomal degradation, resulting in low cytosolic delivery and CTL response rates. Cationic nanocarriers can improve cytosolic delivery, but their positive charges induce off-target effects. Here, we develop cationic poly(ester amide) based nanoparticles co-loaded with antigens and adjuvant cdGMP (NP(cG, OVA)) for efficient cytosolic delivery and swallow them within antigen self-presenting DCs-derived dendrosomes (ODs) for lymph nodes (LNs) homing. The constructed dendrosomes swallowing nanovaccines ODs/NP(cG, OVA) demonstrated significantly reduced liver accumulation and enhanced LNs and DCs targeting compared to NP(cG, OVA). ODs/NP(cG, OVA) effectively cross-dressed the antigen epitopes on the shell to DCs and facilitated internalization of NP(cG, OVA), realizing DCs cytosolic co-delivery of antigens and adjuvants, thereby promoting antigen presentation, maturation and inflammatory cytokines secretion of DCs. Consequently, DCs stimulated by ODs/NP(cG, OVA) effectively induced activation, proliferation, and differentiation of antigen-specific CTLs that provided robust immune protection against tumor invasion. This work presents a powerful vaccine strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiaxuan Xia
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China
| | - Xing Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China
| | - Meichen Dong
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China
| | - Shengyao Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China
| | - Longlong Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China
| | - Junjie Pan
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China; Quzhou Fudan Institute, Quzhou, Zhejiang Province, 324000, China.
| |
Collapse
|
12
|
Jadhav K, Abhang A, Kole EB, Gadade D, Dusane A, Iyer A, Sharma A, Rout SK, Gholap AD, Naik J, Verma RK, Rojekar S. Peptide-Drug Conjugates as Next-Generation Therapeutics: Exploring the Potential and Clinical Progress. Bioengineering (Basel) 2025; 12:481. [PMID: 40428099 DOI: 10.3390/bioengineering12050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Peptide-drug conjugates (PDCs) have emerged as a next-generation therapeutic platform, combining the target specificity of peptides with the pharmacological potency of small-molecule drugs. As an evolution beyond antibody-drug conjugates (ADCs), PDCs offer distinct advantages, including enhanced cellular permeability, improved drug selectivity, and versatile design flexibility. This review provides a comprehensive analysis of the fundamental components of PDCs, including homing peptide selection, linker engineering, and payload optimization, alongside strategies to address their inherent challenges, such as stability, bioactivity, and clinical translation barriers. Therapeutic applications of PDCs span oncology, infectious diseases, metabolic disorders, and emerging areas like COVID-19, with several conjugates advancing in clinical trials and achieving regulatory milestones. Innovations, including bicyclic peptides, supramolecular architectures, and novel linker technologies, are explored as promising avenues to enhance PDC design. Additionally, this review examines the clinical trajectory of PDCs, emphasizing their therapeutic potential and highlighting ongoing trials that exemplify their efficacy. By addressing limitations and leveraging emerging advancements, PDCs hold immense promise as targeted therapeutics capable of addressing complex disease states and driving progress in precision medicine.
Collapse
Affiliation(s)
- Krishna Jadhav
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar, Mohali 140306, Punjab, India
| | - Ashwin Abhang
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT 06269, USA
| | - Eknath B Kole
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon 425001, Maharashtra, India
| | - Dipak Gadade
- Department of Pharmaceutical Sciences, Delhi Skill and Entrepreneurship University, Dwarka Campus, Sector 9 Dwarka, New Delhi 110077, Delhi, India
| | - Apurva Dusane
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Aditya Iyer
- Biopharmaceutics Department, Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore 560099, Karnataka, India
| | | | - Saroj Kumar Rout
- Research and Development, LNK International Inc., New York, NY 11788, USA
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Jitendra Naik
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon 425001, Maharashtra, India
| | - Rahul K Verma
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar, Mohali 140306, Punjab, India
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
13
|
Wang Y, Chen Z, Liang K, Wang W, Hu Z, Mao Y, Liang X, Jiang L, Liu Z, Ma Z. AGO2 mediates immunotherapy failure via suppressing tumor IFN-gamma response-dependent CD8 + T cell immunity. Cell Rep 2025; 44:115445. [PMID: 40106436 DOI: 10.1016/j.celrep.2025.115445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/28/2024] [Accepted: 02/27/2025] [Indexed: 03/22/2025] Open
Abstract
Interferon-gamma (IFN-γ), a cytokine essential for activating cellular immune responses, plays a crucial role in cancer immunosurveillance and the clinical success of immune checkpoint blockade therapy. In this study, we show that Argonaute 2 (AGO2), a key mediator in small RNA-guided gene regulation, inversely correlates with tumor responsiveness to IFN-γ and the efficacy of immunotherapy. Mechanistically, IFN-γ upregulates miR-1246 expression in tumor cells, enhancing its interaction with AGO2. This miR-1246-AGO2 complex disrupts IFN-γ-mediated signal transducer and activator of transcription 1 (STAT1) phosphorylation by stabilizing protein tyrosine phosphatase non-receptor 6 (PTPN6) mRNA, thereby suppressing the expression of downstream C-X-C motif chemokine ligands (CXCLs), IFN-stimulated genes (ISGs), and human leukocyte antigen (HLA) molecules, which collectively contribute to tumor immune evasion. In preclinical cancer models, inhibiting AGO2 with BCI-137 or targeting miR-1246 with its antagomir re-sensitizes tumor cells to IFN-γ, leading to the enhanced recruitment, activation, and cytotoxicity of CD8+ T cells and ultimately improving immunotherapy efficacy.
Collapse
Affiliation(s)
- Yuzhao Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zibin Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ke Liang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Weikai Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihao Hu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yize Mao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiaoyu Liang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Lijuan Jiang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Zhuowei Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Sun Yat-sen University Cancer Center Gansu Hospital, Lanzhou 730050, China.
| | - Zikun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
14
|
Liu T, Cui Y, Ouyang Y, Wang M, Yue S. Exosomal CCT3 as a biomarker for diagnosis and immune therapy response in patients diagnosed with hepatocellular carcinoma. Dig Liver Dis 2025:S1590-8658(25)00301-9. [PMID: 40221386 DOI: 10.1016/j.dld.2025.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/19/2024] [Accepted: 03/21/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the dominant type of liver cancer and is associated with a high mortality rate. However, HCC lacks biomarkers for diagnosis and immune therapy response. Tumor-derived exosomes (TDEs) carcinogen-specific molecules have been used for screening multiple biomarkers. This study aimed to identify new biomarkers for the diagnosis of HCC and response to immune checkpoint blockade (ICB) therapy. METHODS Analysis of differentially expressed genes (DEGs) in HCC and normal tissues was integrated using The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and ExoCarta datasets. The expression of CCT3 was validated in samples from patients with HCC using quantitative polymerase chain reaction (qPCR), Western blotting, and immunohistochemistry (IHC) techniques. RESULTS Exosomal CCT3 was identified as a potential biomarker with significant impact. The expression of CCT3 in different tumor stages and normal tissues adjacent to the tumors (NATs) was validated using qPCR, western blotting, and IHC. CCT3 expression significantly increased the number of activated natural killer cells in HCC, as confirmed by qPCR and IHC. CCT3 expression significantly increases the expression of immune checkpoints in HCC. HCC-derived exosomes significantly increase the enrichment of CCT3. CONCLUSION Exosomal CCT3 is a biomarker for diagnosis and ICB therapy of HCC via MYC pathway activation and immune infiltration.
Collapse
Affiliation(s)
- Tiange Liu
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China; Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, China; Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
| | - Yanyan Cui
- The Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
| | - Yiben Ouyang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Meilin Wang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shijing Yue
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
15
|
Shi K, Zhao Y, Ye H, Zhu X, Chen Z. Targeting DKK3 to remodel tumor immune microenvironment and enhance cancer immunotherapy. BMC Cancer 2025; 25:645. [PMID: 40205566 PMCID: PMC11984186 DOI: 10.1186/s12885-025-14075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
Cancer immunotherapy such as immune checkpoint blockade (ICB) therapy has made important breakthroughs in cancer treatment, however, currently only parts of cancer patients benefit from ICB therapy. The suppressive tumor immune microenvironment (TIME) impedes the treatment response of immunotherapy, indicating the necessity to explore new treatment targets. Here, we reported a new potential immunotherapeutic target, Dickkopf-3 (DKK3), for cancer treatment. DKK3 expression is up-regulated in the tumors from multiple cancer types, and high DKK3 expression is associated with worse survival outcome across different cancers. We observed that DKK3 directly inhibits the activation of CD8+ T cells and the Th1 differentiation of CD4+ T cells ex vivo. Also, by establishing four different mouse cancer models, we found that DKK3 blockade triggers effective anti-tumor effects and improve the survival of tumor-bearing mice in vivo. DKK3 blockade also remodels the suppressive TIME of different cancer types, including the increased infiltration of CD8+ T cells, IFN-γ+CD8+ T cells, Th1 cells, and decreased infiltration of M2 macrophages and MDSCs in the TIME. Moreover, we found that combined blockade of DKK3 and PD-1 induces synergistic tumor-control effect in our mouse cancer model. Therefore, our study reveals the impact of DKK3 in the TIME and cancer progression, which suggests that DKK3 is a novel and promising immunotherapeutic target for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Kai Shi
- Department of Thoracic Surgery, Huai'an Hospital of Huai'an City & Huai'an Cancer Hospital & The Affiliated Huai'an Hospital of Jiangsu College of Nursing, Huai'an, Jiangsu Province, China
| | - Yan Zhao
- Department of Thoracic Surgery, Huai'an Hospital of Huai'an City & Huai'an Cancer Hospital & The Affiliated Huai'an Hospital of Jiangsu College of Nursing, Huai'an, Jiangsu Province, China
| | - Hao Ye
- Department of Thoracic Surgery, Huai'an Hospital of Huai'an City & Huai'an Cancer Hospital & The Affiliated Huai'an Hospital of Jiangsu College of Nursing, Huai'an, Jiangsu Province, China
| | - Xiaoming Zhu
- Department of Thoracic Surgery, Huai'an Hospital of Huai'an City & Huai'an Cancer Hospital & The Affiliated Huai'an Hospital of Jiangsu College of Nursing, Huai'an, Jiangsu Province, China
| | - Zhenghai Chen
- Department of Thoracic Surgery, Huai'an Hospital of Huai'an City & Huai'an Cancer Hospital & The Affiliated Huai'an Hospital of Jiangsu College of Nursing, Huai'an, Jiangsu Province, China.
| |
Collapse
|
16
|
Lu S, Li J, Li Y, Liu S, Liu Y, Liang Y, Zheng X, Chen Y, Deng J, Zhang H, Ma J, Lv J, Wang Y, Huang B, Tang K. Succinate-loaded tumor cell-derived microparticles reprogram tumor-associated macrophage metabolism. Sci Transl Med 2025; 17:eadr4458. [PMID: 40203081 DOI: 10.1126/scitranslmed.adr4458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/08/2024] [Accepted: 03/03/2025] [Indexed: 04/11/2025]
Abstract
The tumor microenvironment predominantly polarizes tumor-associated macrophages (TAMs) toward an M2-like phenotype, thereby inhibiting antitumor immune responses. This process is substantially affected by metabolic reprogramming; however, reeducating TAMs to enhance their antitumor capabilities through metabolic remodeling remains a challenge. Here, we show that tumor-derived microparticles loaded with succinate (SMPs) can remodel the metabolic state of TAMs. SMPs promote classical M1-like polarization of macrophages by enhancing glycolysis and attenuating the tricarboxylic acid (TCA) cycle in a protein succinylation-dependent manner. Mechanistically, succinate is delivered into the mitochondria and nucleus by SMPs, leading to succinylation of isocitrate dehydrogenase 2 (IDH2) and histone H3K122 within the lactate dehydrogenase A (Ldha) promoter region. Our findings provide a distinct approach for TAM polarization using cell membrane-derived microparticles loaded with endogenous metabolites, a platform that may be used more broadly for posttranslational modification-based tumor immunotherapy.
Collapse
Affiliation(s)
- Shuya Lu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiexiao Li
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Breast and Thyroid Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Shichuan Liu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yutong Liu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Liang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xifen Zheng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiyang Chen
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinghui Deng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiadi Lv
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100005, China
| | - Yugang Wang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bo Huang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100005, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Breast and Thyroid Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
17
|
Cui G, Shao Y, Wang J, Xu C, Zhang J, Zhong Z. Polymersome-mediated Cbl-b silencing activates T cells against solid tumors. Biomater Sci 2025; 13:2036-2046. [PMID: 40017436 DOI: 10.1039/d5bm00001g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Unleashing T cell function is critical for efficacious cancer immunotherapy. Here, we present an in vivo T cell activation strategy by silencing Casitas B-lineage lymphoma proto-oncogene b (Cbl-b), an intracellular checkpoint, to effectively combat solid tumors. The polymersomes are able to efficiently load and deliver siRNA against cblb to T cells both in vitro and in vivo, successfully silencing the cblb gene expression in primary T cells and enhancing the IL-2 receptor CD25 expression, which in turn enhances T cell function and prevents T cell exhaustion. In vitro and in vivo studies showed that siRNA against cblb caused an effective inhibition of tumor progression in subcutaneous B16-F10 and LLC models, in which a significant increase of effector T cells in peripheral blood mononuclear cells and an increase of effector T cells and a significant decrease of Treg cells in the tumor were clearly observed. This polymersome-mediated down-regulation of the cblb gene in T cells provides a promising approach for activating T cells and enhancing their anti-tumor capacity.
Collapse
Affiliation(s)
- Guanhong Cui
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
| | - Yu Shao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P.R. China.
| | - Junyao Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P.R. China.
| | - Congcong Xu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, 215222, P.R. China
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P.R. China.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, 215222, P.R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
18
|
Zhang C, Wang H, Li X, Jiang Y, Sun G, Yu H. Enhancing antitumor immunity: the role of immune checkpoint inhibitors, anti-angiogenic therapy, and macrophage reprogramming. Front Oncol 2025; 15:1526407. [PMID: 40260303 PMCID: PMC12009726 DOI: 10.3389/fonc.2025.1526407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Cancer treatment has long been hindered by the complexity of the tumor microenvironment (TME) and the mechanisms that tumors employ to evade immune detection. Recently, the combination of immune checkpoint inhibitors (ICIs) and anti-angiogenic therapies has emerged as a promising approach to improve cancer treatment outcomes. This review delves into the role of immunostimulatory molecules and ICIs in enhancing anti-tumor immunity, while also discussing the therapeutic potential of anti-angiogenic strategies in cancer. In particular, we highlight the critical role of endoplasmic reticulum (ER) stress in angiogenesis. Moreover, we explore the potential of macrophage reprogramming to bolster anti-tumor immunity, with a focus on restoring macrophage phagocytic function, modulating hypoxic tumor environments, and targeting cytokines and chemokines that shape immune responses. By examining the underlying mechanisms of combining ICIs with anti-angiogenic therapies, we also review recent clinical trials and discuss the potential of biomarkers to guide and predict treatment efficacy.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xinying Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuxin Jiang
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hanqing Yu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Dong Y, Li J, Dai Y, Zhang X, Wang T, Zhao B, Liu W, Chen L, Yang S, Du P, Jiao Z. Redox-responsive metal-organic framework nanocapsules enhance tumor chemo-immunotherapy by modulating tumor metabolic reprogramming. Mater Today Bio 2025; 31:101487. [PMID: 39896279 PMCID: PMC11786678 DOI: 10.1016/j.mtbio.2025.101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/04/2025] [Accepted: 01/11/2025] [Indexed: 02/04/2025] Open
Abstract
Immunotherapy, particularly immune checkpoint blockade (ICB), has opened the era of modern oncology, offering significant promise for modern oncology. However, the efficacy of immunotherapy is frequently curtailed by the immunosuppressive tumor microenvironment (ITM), a milieu shaped by tumor metabolic reprogramming. Herein, a novel tumor microenvironment-responsive nanocapsules (DNMCs) were developed that simultaneously modulate tumor metabolism and the ITM to enhance the effectiveness of chemo-immunotherapy. DNMCs consist of an acidic and redox-sensitive metal-organic framework (MOF) encapsulating Doxorubicin (DOX) and the indoleamine-2,3-dioxygenase1 (IDO1) inhibitor NLG919. In the tumor microenvironment, DNMCs degrade, rapidly releasing DOX and NLG919. DOX induces immunogenic cell death (ICD), while NLG919 regulates amino acid metabolism by modulating IDO1 activity, thereby reversing the immunosuppressive of ITM. Consequently, DNMCs elicit effective anti-tumor immune responses, characterized by an increased density of tumor-infiltrating CD8+ cytotoxic T cells as well as depletion of immunosuppressive regulatory T cells (Tregs), thus effectively suppressing pancreatic cancer growth in KPC mice through combined chemo-immunotherapy. Overall, DNMCs exhibit significant tumor growth inhibition in pancreatic cancer patient-derived organoids (PDOs) and mouse models. This study presents a promising approach to enhancing chemo-immunotherapy by targeting tumor metabolic reprogramming and augmenting immune response against malignant tumors.
Collapse
Affiliation(s)
- Yuman Dong
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Jieru Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Yiwei Dai
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Xinyu Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Tao Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Bin Zhao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Wenbo Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Li Chen
- Department of Orthopaedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Shaopei Yang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Pengcheng Du
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zuoyi Jiao
- Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| |
Collapse
|
20
|
Ji RJ, Wang MY, Zhang Y. Precision epitope editing: A path to advanced immunotherapies. CELL INSIGHT 2025; 4:100226. [PMID: 39906754 PMCID: PMC11791281 DOI: 10.1016/j.cellin.2024.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025]
Abstract
The ability to recognize antigen epitope is crucial for generating an effective immune response. By engineering these epitopes, researchers can reduce on-target/off-tumor toxicity associated with targeted immunotherapy. Recent studies indicate that employing various gene editing tools to modify the epitopes of healthy hematopoietic stem and progenitor cells (HSPCs) can protect these cells from toxicity during tumor eradication, all while preserving their differentiation and function. This advancement greatly enhances the safety and efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Rui-Jin Ji
- Esophagus, Mediastinum and Lymphatic Oncology Department, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Mu-Yao Wang
- Esophagus, Mediastinum and Lymphatic Oncology Department, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Ying Zhang
- Esophagus, Mediastinum and Lymphatic Oncology Department, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei, China
- TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, Hubei, China
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430071, Hubei, China
| |
Collapse
|
21
|
Hua Q, Li Z, Weng Y, Wu Y, Zheng L. Myeloid cells: key players in tumor microenvironments. Front Med 2025; 19:265-296. [PMID: 40048137 DOI: 10.1007/s11684-025-1124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/16/2024] [Indexed: 05/04/2025]
Abstract
Cancer is the result of evolving crosstalk between neoplastic cell and its immune microenvironment. In recent years, immune therapeutics targeting T lymphocytes, such as immune checkpoint blockade (ICB) and CAR-T, have made significant progress in cancer treatment and validated targeting immune cells as a promising approach to fight human cancers. However, responsiveness to the current immune therapeutic agents is limited to only a small proportion of solid cancer patients. As major components of most solid tumors, myeloid cells played critical roles in regulating the initiation and sustentation of adaptive immunity, thus determining tumor progression as well as therapeutic responses. In this review, we discuss emerging data on the diverse functions of myeloid cells in tumor progression through their direct effects or interactions with other immune cells. We explain how different metabolic reprogramming impacts the characteristics and functions of tumor myeloid cells, and discuss recent progress in revealing different mechanisms-chemotaxis, proliferation, survival, and alternative sources-involved in the infiltration and accumulation of myeloid cells within tumors. Further understanding of the function and regulation of myeloid cells is important for the development of novel strategies for therapeutic exploitation in cancer.
Collapse
Affiliation(s)
- Qiaomin Hua
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhixiong Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yulan Weng
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yan Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Limin Zheng
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
22
|
Wu S, Wu Z, Lu Z, Qi F, Cheng J, Chu T, Li B, Zhao Y, Nie G, Li S. Selective apoptosis of tumor-associated platelets boosts the anti-metastatic potency of PD-1 blockade therapy. Cell Rep Med 2025; 6:101984. [PMID: 40020674 PMCID: PMC11970387 DOI: 10.1016/j.xcrm.2025.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/24/2024] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
Despite the transformative impact of programmed cell death protein-1 (PD-1) blockade therapy on metastatic/advanced solid tumor treatment, its efficacy is hindered by a limited response rate. Platelets play a pivotal role in tumor metastasis by shielding circulating tumor cells and secreting immunosuppressive factors. We here demonstrate that selectively inducing apoptosis in tumor-associated platelets (TAPs) using ABT-737-loaded nanoparticles (cyclic arginine-glycine-aspartate containing peptide-modified ABT-737-loaded nanoparticles [cRGD-NP@A]) enhances the anti-metastatic efficacy of the anti-PD-1 antibody (aPD-1). cRGD-NP@A specifically binds to TAPs, disrupting platelet-tumor cell interactions and exposing tumor cells to immune surveillance in vivo. Combined with aPD-1, cRGD-NP@A substantially augments immune activation and reduces TAP-derived immunosuppressive factors, notably transforming growth factor β1 (TGF-β1), consequently improving anti-metastatic outcomes across multiple metastasis-bearing animal models without observable adverse effects. Our study underscores the importance of depleting TAPs to enhance PD-1 blockade therapy, presenting a promising strategy to improve response rates and clinical outcomes for patients with metastatic cancer.
Collapse
Affiliation(s)
- Suying Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300211, P.R. China
| | - Zefang Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Feilong Qi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Jin Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Tianjiao Chu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; School of Astronautics, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Bozhao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
23
|
Ma YY, Wang XH, Zeng JY, Chen JB, Niu LZ. Irreversible electroporation combined with anti-programmed cell death protein 1 therapy promotes tumor antigen-specific CD8 + T cell response. World J Gastrointest Oncol 2025; 17:101991. [PMID: 40092962 PMCID: PMC11866226 DOI: 10.4251/wjgo.v17.i3.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/21/2024] [Accepted: 01/08/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Irreversible electroporation (IRE) is a novel local tumor ablation approach with the potential to activate the host's immune system. However, this approach is insufficient to prevent cancer progression, and complementary approaches are required for effective immunotherapy. AIM To assess the immunomodulatory effects and mechanism of IRE combined anti-programmed cell death protein 1 (PD-1) treatment in subcutaneous pancreatic cancer models. METHODS C57BL-6 tumor-bearing mice were randomly divided into four groups: Control group; IRE group; anti-PD-1 group; and IRE + anti-PD-1 group. Tumor-infiltrating T, B, and natural killer cell levels and plasma concentrations of T helper type 1 cytokines (interleukin-2, interferon-γ, and tumor necrosis factor-α) were evaluated. Real-time PCR was used to determine the expression of CD8 (marker of CD8+ T cells) in tumor tissues of the mice of all groups at different points of time. The growth curves of tumors were drawn. RESULTS The results demonstrated that the IRE + anti-PD-1 group exhibited significantly higher percentages of T lymphocyte infiltration, including CD4+ and CD8+ T cells compared with the control group. Additionally, the IRE + anti-PD-1 group showed increased infiltration of natural killer and B cells, elevated cytokine levels, and higher CD8 mRNA expression. Tumor volume was significantly reduced in the IRE + anti-PD-1 group, indicating a more pronounced therapeutic effect. CONCLUSION The combination of IRE and anti-PD-1 therapy promotes CD8+ T cell immunity responses, leading to a more effective reduction in tumor volume and improved therapeutic outcomes, which provides a new direction for ablation and immunotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Yang-Yang Ma
- Central Laboratory, Guangzhou Fuda Cancer Hospital, Guangzhou 510665, Guangdong Province, China
| | - Xiao-Hua Wang
- Central Laboratory, Guangzhou Fuda Cancer Hospital, Guangzhou 510665, Guangdong Province, China
| | - Jian-Ying Zeng
- Central Laboratory, Guangzhou Fuda Cancer Hospital, Guangzhou 510665, Guangdong Province, China
| | - Ji-Bing Chen
- Central Laboratory, Guangzhou Fuda Cancer Hospital, Guangzhou 510665, Guangdong Province, China
| | - Li-Zhi Niu
- Department of Oncology, Guangzhou Fuda Cancer Hospital, Guangzhou 510665, Guangdong Province, China
| |
Collapse
|
24
|
Zhu H, Zhang Z, Jiang R, Xu L, Yang X, Chen J, Wang Z, Xu X, Liu Z. MXene-based nanosheet for enhanced glioma therapy via photonic hyperthermia to boost the abscopal effect of radioimmunotherapy. J Nanobiotechnology 2025; 23:203. [PMID: 40069686 PMCID: PMC11895210 DOI: 10.1186/s12951-025-03288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/02/2025] [Indexed: 03/15/2025] Open
Abstract
Radiotherapy (RT) effectiveness is limited by low DNA damage in tumor cells, surrounding tissue harm, and tumor radioresistance with active DNA repair. Herein, we have engineered a two-dimensional nanomaterial consisting of MXene nanosheets at its core, coated with gold nanorods and a cisplatin shell, and further modified with polyvinyl alcohol, referred to as APMP. The APMP exploits its distinctive electronic properties and photothermal effects to augment radiosensitivity and impede DNA damage repair mechanisms. In vitro experiments demonstrate that APMP elevates reactive oxygen species (ROS) production to approximately 2.6 times higher than that achieved with radiotherapy alone, thereby significantly enhancing the sensitivity to radiotherapy. Combining APMP with photothermal therapy (PTT) and RT is a promising glioblastoma treatment strategy, achieving tumor destruction via localized hyperthermia and overcoming radioresistance. This approach achieves precise tumor targeting, reducing side effects and enhancing therapeutic response in preclinical models. The novel core-shell design enables potent radiotherapy-specific radiosensitizers that drive immunogenic cell death, enhancing glioblastoma combination immunotherapy. This universal strategy heralds a new era in integrating radiotherapy sensitizers with immunotherapy.
Collapse
Affiliation(s)
- Huan Zhu
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The 10th Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510280, China
- Department of Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Zhaoyuan Zhang
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The 10th Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510280, China
| | - Rong Jiang
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The 10th Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510280, China
| | - Liangfu Xu
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The 10th Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510280, China
| | - Xiangdi Yang
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The 10th Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510280, China
| | - Jie Chen
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The 10th Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510280, China
| | - Zhenning Wang
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The 10th Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510280, China
| | - Xiao Xu
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The 10th Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510280, China.
| | - Zhigang Liu
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The 10th Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
25
|
Li X, Wang C, Liu J, Deng G, Deng Y, Hu F, Wang Y, Zhou D. Tailoring Tumor Cell Golgi Apparatus-Targeting Self-Assembled Peptide for Effective Immunotherapy via Reshaping MIF-Mediated Immunosuppressive Network. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415133. [PMID: 39908165 PMCID: PMC11948030 DOI: 10.1002/advs.202415133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/12/2025] [Indexed: 02/07/2025]
Abstract
The immunosuppressive network formed by the enhanced crosstalk between tumor cells and various types of immune cells may ultimately lead to the formation of tumor immunosuppressive microenvironment (TIME). The Golgi apparatus (GA) of tumor cells is a key organelle in the formation of a tumor immunosuppressive network. However, there are no studies to show whether interfering with the GA of tumor cells can reshape the immunosuppressive network to enhance the effectiveness of immunotherapy. Therefore, the tumor cell GA-targeting self-assembled peptide (NF-1) is tailored, and confirmed that NF-1 treatment can achieve an effective immunotherapy and found that tumor cell-derived GA-dependent migration inhibitory factor (MIF) mediates the formation of immunosuppressive network in breast cancer (BRCA) through multi-omics analysis, in vivo, and in vitro experiments. NF-1 treatment-induced MIF reduction can reshape the immunosuppressive network and convert a "cold" tumor into a "hot" tumor, thus enabling immunotherapy in BRCA and enhancing the ICB efficacy in colon adenocarcinoma (COAD). This study presents a general strategy for interfering with tumor GA for effective immunotherapy in BRCA, COAD, and other cancers characterized by a "cold" immune microenvironment.
Collapse
Affiliation(s)
- Xiang Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong‐Hongkong‐Macao Joint Laboratory for New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510 515P. R. China
| | - Chengxinqiao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong‐Hongkong‐Macao Joint Laboratory for New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510 515P. R. China
- Department of Ultrasonic Diagnosis & Orthopedic and TraumatologyZhujiang HospitalSouthern Medical UniversityGuangzhou510 515P. R. China
| | - Junhan Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong‐Hongkong‐Macao Joint Laboratory for New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510 515P. R. China
| | - Guifang Deng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong‐Hongkong‐Macao Joint Laboratory for New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510 515P. R. China
| | - Yongqiang Deng
- Department of PathophysiologyGuangdong Provincial Key Laboratory of ProteomicsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510 515P. R. China
| | - Fang Hu
- Biomaterials Research CenterSchool of Biomedical EngineeringSouthern Medical UniversityGuangzhou510 515P. R. China
| | - Yupeng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong‐Hongkong‐Macao Joint Laboratory for New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510 515P. R. China
| | - Dongfang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong‐Hongkong‐Macao Joint Laboratory for New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510 515P. R. China
- Department of Ultrasonic Diagnosis & Orthopedic and TraumatologyZhujiang HospitalSouthern Medical UniversityGuangzhou510 515P. R. China
- Key Laboratory of Mental Health of the Ministry of EducationSouthern Medical UniversityGuangzhou510 515P. R. China
| |
Collapse
|
26
|
Luo Y, Linghu M, Luo X, Li D, Wang J, Peng S, Ma Y. Remodeling tumor immunosuppressive microenvironment through dual activation of immunogenic panoptosis and ferroptosis by H 2S-amplified nanoformulation to enhance cancer immunotherapy. Acta Pharm Sin B 2025; 15:1242-1254. [PMID: 40370544 PMCID: PMC12069112 DOI: 10.1016/j.apsb.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 05/16/2025] Open
Abstract
The deficiency in immunogenicity and the presence of immunosuppression within the tumor microenvironment significantly hindered the efficacy of immunotherapy. Consequently, a nanoformulation containing metal sulfide of FeS and GSDMD plasmid (NPFeS/GD) had been developed to effectively augment antitumor immune responses through dual activation of immunogenic PANoptosis and ferroptosis, as well as reprogramming immunosuppressive effects via H2S amplification. The bioactive NPFeS/GD exhibited controlled release of GSDMD plasmid, H2S, and Fe2+ in response to the tumor microenvironment. Fe2+, H2S, and the expression of GSDMD protein could effectively elicit highly immunogenic PANoptosis and ferroptosis. Furthermore, releasing H2S could mitigate the overexpression of indoleamine 2,3-dioxygenase1 (IDO1) induced by immunogenic PANoptotic and ferroptotic cell death and disrupt the activity of IDO1. Consequently, NPFeS/GD effectively triggered the antitumor innate and adaptive immune responses through induction of PANoptotic and ferroptotic cell death and reshaped the tumor immunosuppressive microenvironment to enhance antitumor immunotherapy for metastasis inhibition. This study unveiled the significant potential of immunogenic PANoptosis and ferroptosis in H2S gas therapy for enhancing tumor immunotherapy, offering novel insights and ideas for the rational design of nanomedicine to enhance tumor immunogenicity while reprogramming the tumor immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Yingli Luo
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi 214062, China
| | - Maoyuan Linghu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xianyu Luo
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Dongdong Li
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Jilong Wang
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Shaojun Peng
- Center for Biological Science and Technology & College of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Yinchu Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi 214062, China
| |
Collapse
|
27
|
Zhao M, Zhou L, Zhang Q, Wang M, Dong Y, Wang Y, Pei R, He E, Liang Y, Shen Y, Deng G, Chen H, Sun D, Shen Y, Sun Y, Cheng H. Targeting MAPK14 by Lobeline Upregulates Slurp1-Mediated Inhibition of Alternative Activation of TAM and Retards Colorectal Cancer Growth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407900. [PMID: 39840525 PMCID: PMC11904982 DOI: 10.1002/advs.202407900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/19/2024] [Indexed: 01/23/2025]
Abstract
Colorectal cancer (CRC) usually creates an immunosuppressive microenvironment, thereby hindering immunotherapy response. Effective treatment options remain elusive. Using scRNA-seq analysis in a tumor-bearing murine model, it is found that lobeline, an alkaloid from the herbal medicine lobelia, promotes polarization of tumor-associated macrophages (TAMs) toward M1-like TAMs while inhibiting their polarization toward M2-like TAMs. Additionally, lobeline upregulates mRNA expression of secreted Ly-6/UPAR-related protein 1 (Slurp1) in cancer cells. The inhibitory effects of lobeline on tumor load and TAM polarization are almost completely eliminated when Slurp1-deficient MC38 cells are subcutaneously injected into mice, suggesting that lobeline exerts an antitumor effect in a Slurp1-dependent manner. Furthermore, using target-responsive accessibility profiling, MAPK14 is identified as the direct target protein of lobeline. Mechanistically, upon binding to MAPK14 in colon cancer cells, lobeline prevents nuclear translocation of MAPK14, resulting in decreased levels of phosphorylated p53. Consequently, negative transcriptional regulation of SLURP1 by p53 is suppressed, leading to enhanced transcription and secretion of SLURP1. Finally, combination therapy using lobeline and anti-PD1 exhibits stronger antitumor effects. Taken together, these findings suggest that remodeling the immunosuppressive microenvironment using small-molecule lobeline may represent a promising therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Mingxia Zhao
- School of Basic Medical SciencesBiopharmaceutical Research InstituteAnhui Medical UniversityHefei230032China
| | - Lisha Zhou
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing Drum Tower Hospitalthe Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Qinchang Zhang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of TumorThe First Clinical CollegeNanjing University of Chinese Medicine138 Xianlin AvenueNanjing210023China
| | - Meijing Wang
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing Drum Tower Hospitalthe Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Yue Dong
- School of Basic Medical SciencesBiopharmaceutical Research InstituteAnhui Medical UniversityHefei230032China
| | - Yue Wang
- School of Basic Medical SciencesBiopharmaceutical Research InstituteAnhui Medical UniversityHefei230032China
| | - Ruixue Pei
- School of Basic Medical SciencesBiopharmaceutical Research InstituteAnhui Medical UniversityHefei230032China
| | - Enguang He
- School of Basic Medical SciencesBiopharmaceutical Research InstituteAnhui Medical UniversityHefei230032China
| | - Yanyan Liang
- School of Basic Medical SciencesBiopharmaceutical Research InstituteAnhui Medical UniversityHefei230032China
| | - Yujun Shen
- School of Basic Medical SciencesBiopharmaceutical Research InstituteAnhui Medical UniversityHefei230032China
| | - Guoliang Deng
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing Drum Tower Hospitalthe Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Hongqi Chen
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Dongdong Sun
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of TumorThe First Clinical CollegeNanjing University of Chinese Medicine138 Xianlin AvenueNanjing210023China
| | - Yuxian Shen
- School of Basic Medical SciencesBiopharmaceutical Research InstituteAnhui Medical UniversityHefei230032China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical BiotechnologyNanjing Drum Tower Hospitalthe Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical University209 Tongshan RoadXuzhou221004China
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of TumorThe First Clinical CollegeNanjing University of Chinese Medicine138 Xianlin AvenueNanjing210023China
| |
Collapse
|
28
|
Chen Y, Jia H, Zhang X, Zhao H, Xiao Y, Li N, Yao Y, Xing X. Disruption of GPSM1/CSF1 signaling reprograms tumor-associated macrophages to overcome anti-PD-1 resistance in colorectal cancer. J Immunother Cancer 2025; 13:e010826. [PMID: 40010765 PMCID: PMC12083360 DOI: 10.1136/jitc-2024-010826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/10/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) therapies, particularly anti-PD-1, benefit only a limited subset of colorectal cancer (CRC) patients. G-protein signaling modulator 1 (GPSM1) is implicated in immunity and oncology, yet its role in regulating the CRC tumor microenvironment (TME) and contributing to anti-PD-1 resistance remains poorly understood. METHODS We employed single-cell RNA sequencing and multiplex immunofluorescence on tumor samples from anti-PD-1-resistant CRC patients to evaluate GPSM1 expression and its impact on macrophage polarization. An orthotopic CRC xenograft model in C57BL/6 mice was used to assess the role of GPSM1 in vivo. An in vitro co-culture system, alongside mass cytometry and flow cytometry, explored GPSM1's biological functions within the TME. We further used ChIP-PCR, mass spectrometry, and co-immunoprecipitation to elucidate the mechanisms regulating GPSM1 activity. RESULTS GPSM1 expression was significantly elevated in anti-PD-1-resistant CRC tissues. Enhanced GPSM1 levels promoted anti-PD-1 resistance by driving macrophage polarization toward an immunosuppressive M2 phenotype, facilitating their infiltration into the TME. We identified the deubiquitinase USP9X as a key factor preventing GPSM1 degradation through K63-polyubiquitination. This stabilization of GPSM1 led to MEIS3 nuclear translocation, activating macrophage colony-stimulating factor expression. Importantly, ruxolitinib emerged as a promising GPSM1-targeting candidate, demonstrating improved efficacy in combination with anti-PD-1 therapy in both microsatellite instability-high and microsatellite stable CRC models. CONCLUSIONS Our findings highlight the pivotal role of GPSM1-driven M2 macrophage infiltration in mediating anti-PD-1 resistance in CRC. Targeting GPSM1 offers a novel therapeutic strategy to enhance ICB efficacy, potentially broadening the patient population that may benefit from these therapies.
Collapse
Affiliation(s)
- Yang Chen
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Huiqing Jia
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiangyan Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Han Zhao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yujing Xiao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Na Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yifan Yao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoming Xing
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
29
|
Wang M, Yu F, Zhang Y. Present and future of cancer nano-immunotherapy: opportunities, obstacles and challenges. Mol Cancer 2025; 24:26. [PMID: 39827147 PMCID: PMC11748575 DOI: 10.1186/s12943-024-02214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
Clinically, multimodal therapies are adopted worldwide for the management of cancer, which continues to be a leading cause of death. In recent years, immunotherapy has firmly established itself as a new paradigm in cancer care that activates the body's immune defense to cope with cancer. Immunotherapy has resulted in significant breakthroughs in the treatment of stubborn tumors, dramatically improving the clinical outcome of cancer patients. Multiple forms of cancer immunotherapy, including immune checkpoint inhibitors (ICIs), adoptive cell therapy and cancer vaccines, have become widely available. However, the effectiveness of these immunotherapies is not much satisfying. Many cancer patients do not respond to immunotherapy, and disease recurrence appears to be unavoidable because of the rapidly evolving resistance. Moreover, immunotherapies can give rise to severe off-target immune-related adverse events. Strategies to remove these hindrances mainly focus on the development of combinatorial therapies or the exploitation of novel immunotherapeutic mediations. Nanomaterials carrying anticancer agents to the target site are considered as practical approaches for cancer treatment. Nanomedicine combined with immunotherapies offers the possibility to potentiate systemic antitumor immunity and to facilitate selective cytotoxicity against cancer cells in an effective and safe manner. A myriad of nano-enabled cancer immunotherapies are currently under clinical investigation. Owing to gaps between preclinical and clinical studies, nano-immunotherapy faces multiple challenges, including the biosafety of nanomaterials and clinical trial design. In this review, we provide an overview of cancer immunotherapy and summarize the evidence indicating how nanomedicine-based approaches increase the efficacy of immunotherapies. We also discuss the key challenges that have emerged in the era of nanotechnology-based cancer immunotherapy. Taken together, combination nano-immunotherapy is drawing increasing attention, and it is anticipated that the combined treatment will achieve the desired success in clinical cancer therapy.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| |
Collapse
|
30
|
Wellhausen J, Röhl L, Berszin M, Krücken I, Zebralla V, Pirlich M, Stoehr M, Wiegand S, Dietz A, Wald T, Wichmann G. Suppression of MCP-1, IFN-γ and IL-6 production of HNSCC ex vivo by pembrolizumab added to docetaxel and cisplatin (TP) exceeding those of TP alone is linked to improved survival. Front Immunol 2025; 15:1473897. [PMID: 39882242 PMCID: PMC11774711 DOI: 10.3389/fimmu.2024.1473897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Background Adding pembrolizumab, an anti-PD-1 antibody approved for treatment of head and neck squamous cell carcinoma (HNSCC) to neoadjuvant (induction-) chemotherapy utilizing docetaxel and cisplatin (TP) followed by radiotherapy may improve outcome in larynx organ-preservation (LOP) that is investigated in the European Larynx-Organ preservation Study (ELOS). As biomarkers for response to TP and pembrolizumab +TP are missing but may include cytokines, this work aims on determining cytokines potentially linked to outcome as prognostic markers sufficient to predict and/or monitor response to successful LOP. Methods Collagenase IV digests were generated from 47 histopathological confirmed HNSCC tumor samples and seeded in 96-well plates containing pembrolizumab, docetaxel, cisplatin either solely or in binary or ternary combination. According to the FLAVINO protocol, supernatants were collected after 3 days, adherent cells fixed using ethanol, air-dried and pan-cytokeratin positive epithelial cells counted using fluorescence microscopy. The cytokines IL-6, IL-8, IFN-γ, IP-10, MCP-1, TNF-α, and VEGF in the supernatant were quantified by sandwich ELISA. Results The mode of interaction between pembrolizumab and TP was assessed and correlated to outcome (overall, disease-specific and progression-free survival of patients). Suppression of MCP-1, IFN-γ and IL-6 production by pembrolizumab + TP exceeding the suppressive effect of TP was detected in the majority of samples and linked to improved survival. Multivariate Cox proportional hazard regression modeling revealed MCP-1, IFN-γ and IL-6 as independent outcome predictors. Conclusions Comparing response to TP vs. pembrolizumab vs. TP + pembrolizumab may allow for identification of patients with superior outcome independent from treatment applied.
Collapse
Affiliation(s)
- Jana Wellhausen
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Louisa Röhl
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Michael Berszin
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Irene Krücken
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Veit Zebralla
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Markus Pirlich
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Matthaeus Stoehr
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Susanne Wiegand
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Andreas Dietz
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Theresa Wald
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Gunnar Wichmann
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| |
Collapse
|
31
|
Li M, Huang Y, Shen C, Wang Y, Lin Y, Wang Z, Chen N, Luo Y. Application of quantum dots in cancer diagnosis and treatment: Advances and perspectives. NANO RESEARCH 2025; 18:94907163. [DOI: 10.26599/nr.2025.94907163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
32
|
Li Y, Li B, Chen C, Hou H, Su M, Li F, Xiao Z, Yang X. Capturing Hydrophilic Chemotherapeutics Agents Into siRNA-Encapsulated Vesicle-Like Nanoparticles for Convenient ICB-Chemo Combination Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404073. [PMID: 39498748 DOI: 10.1002/smll.202404073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/15/2024] [Indexed: 11/07/2024]
Abstract
Clinical evidence has demonstrated that combining immune checkpoint blockade (ICB) therapy with chemotherapy significantly improves response rates to ICB therapy and therapeutic efficacy in various tumor types. However, a convenient method for achieving synergistic ICB therapy and chemotherapy with precise co-delivery of both agents is still highly desirable. In this study, a strategy for co-delivering small interfering RNA (siRNA) encapsulated in vesicle-like nanoparticles (VNPsiRNA) and chemotherapeutic drugs is aimed to develop. It is discovered that the hydrophilic chemotherapeutic drug mitoxantrone hydrochloride (MTO·2HCl) can be captured into VNPsiRNA. The resulting VNPsiRNACpMTO can simultaneously block immune checkpoints via RNA silencing and induce chemotherapeutic effects on tumor cells. The mechanism of MTO·2HCl is elucidates, captures, and demonstrates the superior therapeutic effect of VNPsiRNACpMTO through chemo-immunotherapy. This strategy can also be extended to deliver other hydrochloride anticancer drugs, such as doxorubicin hydrochloride (DOX·HCl), for achieving synergistic combination therapy. This study provides a facile strategy for enhancing combined ICB and chemotherapy via co-delivering siRNA and chemotherapeutic drugs, offering a promising approach to cancer treatment.
Collapse
Affiliation(s)
- Yan Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, P. R. China
| | - Bingqin Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, P. R. China
| | - Chaoran Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Hengliang Hou
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, P. R. China
| | - Miao Su
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, P. R. China
| | - Fangzheng Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, P. R. China
| | - Zekai Xiao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, P. R. China
| | - Xianzhu Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| |
Collapse
|
33
|
Hu Y, Yu Q, Li X, Wang J, Guo L, Huang L, Gao W. Nanoformula Design for Inducing Non-Apoptotic Cell Death Regulation: A Powerful Booster for Cancer Immunotherapy. Adv Healthc Mater 2025; 14:e2403493. [PMID: 39632361 DOI: 10.1002/adhm.202403493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Indexed: 12/07/2024]
Abstract
Cancer treatment has witnessed revolutionary advancements marked by the emergence of immunotherapy, specifically immune checkpoint blockade (ICB). However, the inherent low immunogenicity of tumor cells and the intricate immunosuppressive network within the tumor microenvironment (TME) pose significant challenges to the further development of immunotherapy. Nanotechnology has ushered in unprecedented opportunities and vast prospects for tumor immunotherapy. Nevertheless, traditional nano-formulations often rely on inducing apoptosis to kill cancer cells, which encounters the issue of immune silencing, hindering effective tumor immune activation. The non-apoptotic modes of regulated cell death (RCD), including pyroptosis, ferroptosis, autophagy, necroptosis, and cuproptosis, have gradually garnered attention. These non-apoptotic cell death pathways can induce effective immunogenic cell death (ICD), enhancing cancer immunotherapy. This review comprehensively explores advanced nano-formulation design strategies and their applications in enhancing cancer immunotherapy by promoting non-apoptotic RCD in recent years. It also discusses the potential advantages of these strategies in inducing tumor-specific non-apoptotic RCD. By deeply understanding the significance of non-apoptotic RCD in synergistic cancer immunotherapy, this article provides valuable insights for developing more advanced nano-delivery systems that can robustly induce highly immunogenic non-apoptotic modes, offering novel research and development avenues to address the clinical challenges encountered by immunotherapy represented by ICB.
Collapse
Affiliation(s)
- Yi Hu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Qing Yu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
34
|
Gupta G, Hussain MS, Pant K, Ali H, Thapa R, Bhat AA. Antibody-Drug Conjugates (ADCs): A Novel Therapy for Triple-Negative Breast Cancer (TNBC). Curr Cancer Drug Targets 2025; 25:108-112. [PMID: 39248064 DOI: 10.2174/0115680096343056240828190900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Affiliation(s)
- Gaurav Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Chandigarh, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand 248007, India
| | - Kumud Pant
- Graphic Era (Deemed to be University) Clement Town Dehradun- 248002, India
- Graphic Era Hill University, School of Pharmaceutical Sciences, Clement Town Dehradun- 248002, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand 248007, India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
35
|
Ciernikova S, Sevcikova A, Novisedlakova M, Mego M. Insights into the Relationship Between the Gut Microbiome and Immune Checkpoint Inhibitors in Solid Tumors. Cancers (Basel) 2024; 16:4271. [PMID: 39766170 PMCID: PMC11674129 DOI: 10.3390/cancers16244271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Immunotherapy with immune checkpoint inhibitors represents a revolutionary approach to the treatment of solid tumors, including malignant melanoma, lung cancer, and gastrointestinal malignancies. Anti-CTLA-4 and anti-PD-1/PDL-1 therapies provide prolonged survival for cancer patients, but their efficacy and safety are highly variable. This review focuses on the crucial role of the gut microbiome in modulating the efficacy and toxicity of immune checkpoint blockade. Studies suggest that the composition of the gut microbiome may influence the response to immunotherapy, with specific bacterial strains able to promote an anti-tumor immune response. On the other hand, dysbiosis may increase the risk of adverse effects, such as immune-mediated colitis. Interventions aimed at modulating the microbiome, including the use of probiotics, prebiotics, fecal microbial transplantation, or dietary modifications, represent promising strategies to increase treatment efficacy and reduce toxicity. The combination of immunotherapy with the microbiome-based strategy opens up new possibilities for personalized treatment. In addition, factors such as physical activity and nutritional supplementation may indirectly influence the gut ecosystem and consequently improve treatment outcomes in refractory patients, leading to enhanced patient responses and prolonged survival.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia;
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia;
| | - Maria Novisedlakova
- Department of Oncology, Hospital Bory, Ivana Bukovčana 6118, 841 08 Bratislava, Slovakia;
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia;
| |
Collapse
|
36
|
Choubey RB, Sweta, Vibha, Sharma A, Rai AK. Immunotherapy to CD5, a T-cell antigen having roles from development to peripheral function: Future prospective and challenges. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 144:431-460. [PMID: 39978974 DOI: 10.1016/bs.apcsb.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
CD5 is a pan T-cell marker expressed by all T-cells and a subset of B-cells, i.e., B1a cells. The significance of CD5 is evident from its functions, starting from T-cell development, antigen priming, activation, and effector response to the maintenance of tolerance. Varying CD5 expression and signaling in response to TCR-pMHC complex avidity is associated with thymic selection, competency, and effector response. Altered CD5 expression is associated with immunological and diseased conditions such as CD5-/low infiltrating T-cells in solid tumors, CD5hi T-cells in anergy conditions, CD5-/low phenotype of leukemic T-cells, high CD5 expression by regulatory T-cells, CD5lowphenotype of autoreactive T-cells, etc. A low CD5 expression triggers activation-induced cell death upon antigenic stimulation. There are three forms of CD5: membrane CD5 (mCD5), intracellular CD5 (cCD5) and soluble CD5 (sCD5). mCD5 and cCD5 are generated from conventional and non-conventional mRNA variants, i.e., E1A and E1B, respectively. E1B variant encoding cCD5 is derived from a human endogenous retrovirus segment inserted 8.2 kb upstream to conventional E1A exon. Various conditions, such as leukemia, exposure to hydrocarbon, hypoxia, etc., can trigger E1B transcription and, thus, cCD5 expression. Blocking mCD5 with mAb can restore immune response, effectively targeting cancer. Understanding cCD5, linked to leukemogenesis, can offer new avenues of immunotherapy.
Collapse
Affiliation(s)
- Ranjeet Bahadur Choubey
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| | - Sweta
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| | - Vibha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| | - Avika Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India.
| |
Collapse
|
37
|
Jiang S, Lv X, Ouyang Z, Chi H, Zeng Y, Wang Y, He J, Chen J, Chen J, An K, Cheng M, Wen Y, Li J, Zhang P. Programmable Circular Multivalent Nanobody-Targeting Chimeras (mNbTACs) for Multireceptor-Mediated Protein Degradation and Targeted Drug Delivery. Angew Chem Int Ed Engl 2024; 63:e202407986. [PMID: 39402961 DOI: 10.1002/anie.202407986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/14/2024] [Indexed: 11/12/2024]
Abstract
Multispecific therapeutics hold significant promise in drug delivery, protein degradation, and cell recruitment to address clinical issues of tumor heterogeneity, resistance, and immune evasion. However, their modular engineering remains challenging. We developed a targeted degradation platform, termed multivalent nanobody-targeting chimeras (mNbTACs), by encoding diverse nanobody codons on a circular template using DNA printing technology. The homo- or hetero- mNbTACs specifically recognized membrane targets in a multivalent manner and simultaneously recruited scavenger receptors to favor clathrin-/caveolae-dependent endocytosis and lysosomal degradation of multiple proteins with high efficiency and selectivity. We demonstrated that a bispecific doxorubicin-loaded mNbTAC, named Doxo-mvNbsPPH, passively accumulated at tumor sites, specifically interacted with PD-L1 and HER2 targets, and was rapidly transported into lysosome, inducing potent immunogenic cell death and alleviating immune checkpoint evasion. The synergistic boosting of innate and adaptive immunity promoted the infiltration and proliferation of CD8+ T cells in tumor microenvironment (an 11-fold increase) with high toxicity and low exhaustion, eventually enhancing antitumor efficacy. Our mNbTAC platform provides multispecific therapeutics with variable valences and programmed species, whereas it induces targeted protein degradation through multireceptor-mediated endocytosis and lysosomal degradation without the need for lysosome-targeting receptors, representing a general and modular tool to harness extracellular proteome for disease treatment.
Collapse
Affiliation(s)
- Shiqi Jiang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xinru Lv
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310022, China
| | - Zhenlin Ouyang
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongli Chi
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yuchen Zeng
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yani Wang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jiaxuan He
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jinling Chen
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jingyi Chen
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Keli An
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Ming Cheng
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yurong Wen
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Juan Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Penghui Zhang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
38
|
Chen J, Chi H, Wang C, Du Y, Wang Y, Yang S, Jiang S, Lv X, He J, Chen J, Fu T, Wang Z, Cheng M, An K, Zhang P, Tan W. Programmable Circular Multispecific Aptamer-Drug Engager to Broadly Boost Antitumor Immunity. J Am Chem Soc 2024; 146:34311-34323. [PMID: 39631842 DOI: 10.1021/jacs.4c06189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Safely and effectively harnessing innate immunity to boost cancer immunotherapy is promising yet challenging. Hence, we have developed a series of programmable aptamer-based multispecific engagers by encoding various artificial aptamer-drug codons with DNA-templated polymerization, aiming to broadly boost innate and adaptive immunity for antitumor therapy. All circular single-stranded multivalent aptamer-drug conjugates (os-mvApDCs) had a dendritic structure, precise size, and excellent stability, enabling prolonged blood circulation, targeted tumor accumulation, and rapid multireceptor-mediated endocytosis. A trispecific engager (Sl/Pd/Mjos-mvApDCsSMT), targeting PD-1 on CD8+ T cells and PD-L1/c-Met on tumor cells, recruited large amounts of immune cells into the tumor and released cytotoxic MMAE and immunomodulators, inducing severe cell death and broad activation of innate immunity. When combined with the αPD-1 blockade, there was a significant increase in the number of CD8+ T cells (10-fold increase versus untreated control) engaged and expanded in the tumor, exhibiting potent function (IFN-γ+/GzmB+) and low exhaustion (PD-1+TIM-3+). The orchestrated innate and adaptive immunity effectively eliminated immunosuppressive MDSCs, Tregs, and M2-like macrophages in tumors and promoted the maturation of dendritic cells (DCs) in the draining lymph nodes, resulting in robust and durable systemic antitumor efficacy, with 7 out of 8 mice surviving over 60 days. Our programmable DNA-templated printing technology enables the rational design of multispecific therapeutics with modular composition and function but minimal production issues, providing a versatile tool for the development of multifunctional personalized medicine.
Collapse
Affiliation(s)
- Jinling Chen
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Hongli Chi
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Chao Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yanlin Du
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yani Wang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Shijie Yang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Shiqi Jiang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xinru Lv
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jiaxuan He
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jingyi Chen
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ting Fu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Zeng Wang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ming Cheng
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Keli An
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Penghui Zhang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Weihong Tan
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
39
|
Zheng ZY, Lin W, Su JW, Huang QF, Zhang C, Pan WX, Li EM, Zhang HF, Xu LY. NIR-715 photodynamic therapy induces immunogenic cancer cell death by enhancing the endoplasmic reticulum stress response. Cell Death Dis 2024; 15:890. [PMID: 39695072 DOI: 10.1038/s41419-024-07283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Effectively interfering with endoplasmic reticulum (ER) function in tumor cells and simultaneously activating an anti-tumor immune microenvironment to attack the tumor cells are promising strategies for cancer treatment. However, precise ER-stress induction is still a huge challenge. In this study, we synthesized a near-infrared (NIR) probe, NIR-715, which induces tumor cell death and inhibits tumor growth without causing apparent side effects. NIR-715 triggers severe ER stress and immunogenic cell death (ICD) after visible light exposure. NIR-715 induced ICD-associated HMGB1 release in vitro and anti-tumor immune responses, including increased cytotoxic T lymphocyte (GZMB+ CD8+ T cell) infiltration and decreased numbers of exhausted T lymphocytes (PD-L1+ CD8+ T cell). These findings suggest that NIR-715 may be a novel agent for "cold" tumor photodynamic therapy (PDT). Schematic illustration of NIR-715 photodynamic therapy for visible light-triggered, endoplasmic reticulum-targeting antitumor therapy.
Collapse
Affiliation(s)
- Zhen-Yuan Zheng
- Department of Oncobiology, Department of Basic Medical Sciences, Shantou University Medical College, Shantou, Guangdong, PR China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, P. R. China
- Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Shantou, China
| | - Wan Lin
- Department of Oncobiology, Department of Basic Medical Sciences, Shantou University Medical College, Shantou, Guangdong, PR China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, P. R. China
| | - Jia-Wan Su
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Science Building, 243 Daxue Road, Shantou, 515063, Guangdong, PR China
| | - Qing-Feng Huang
- Department of Oncobiology, Department of Basic Medical Sciences, Shantou University Medical College, Shantou, Guangdong, PR China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, P. R. China
| | - Cong Zhang
- Department of Oncobiology, Department of Basic Medical Sciences, Shantou University Medical College, Shantou, Guangdong, PR China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, P. R. China
| | - Wen-Xing Pan
- Department of Oncobiology, Department of Basic Medical Sciences, Shantou University Medical College, Shantou, Guangdong, PR China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, P. R. China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - He-Feng Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Science Building, 243 Daxue Road, Shantou, 515063, Guangdong, PR China.
| | - Li-Yan Xu
- Department of Oncobiology, Department of Basic Medical Sciences, Shantou University Medical College, Shantou, Guangdong, PR China.
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, P. R. China.
- Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Shantou, China.
| |
Collapse
|
40
|
Li B, Xu L, Chen C, Ye J. Mapping the Binding Hotspots and Transient Binding Pockets on V-Domain Immunoglobulin Suppressor of T Cell Activation Protein Surface. ACS OMEGA 2024; 9:48657-48669. [PMID: 39676951 PMCID: PMC11635502 DOI: 10.1021/acsomega.4c07757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/02/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
V-domain immunoglobulin suppressor of T cell activation (VISTA), an inhibitory immune checkpoint present on both immune and tumor cells, has emerged as a highly promising target for cancer therapy due to its potential to overcome resistance encountered with existing immune checkpoint treatments. VSIG-3 is determined as an inhibitory ligand for VISTA, leading to the suppression of T cell proliferation. However, hotspots between VISTA/VSIG-3 protein-protein interaction remain ambiguous, mainly attributed to the lack of the structure of the VISTA/VSIG-3 complex. Therefore, in this study, in order to determine the energetic contributions of the interfacial residues on VISTA, we first constructed VISTA/VSIG-3 complex models by the protein docking method, followed by molecular dynamics simulations, binding free-energy decomposition, and alanine scanning. Results suggested that the putative hotspots in VISTA comprise residues His32, Tyr37, Thr35, Glu47, Val48, Gln49, Glu53, Arg54, Gln73, His122, and His126. Moreover, the distribution of the hotspots was clustered into two regions (hot regions I and II), and by using the TRAPP tool, transient subpockets within the hot regions were identified. Furthermore, conformational states of the binding pockets exhibiting druggability scores higher than those observed in the crystal structure were found. Overall, we hope that the findings outlined in this study can be used to facilitate the development of inhibitors targeting the VISTA/VSIG-3 immune checkpoint pathway in the future.
Collapse
Affiliation(s)
- Bingjie Li
- School of Pharmacy, Inflammation and
Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Lixiu Xu
- School of Pharmacy, Inflammation and
Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Chu Chen
- School of Pharmacy, Inflammation and
Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Jiqing Ye
- School of Pharmacy, Inflammation and
Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
41
|
Bai B, Xie S, Wang Y, Wu F, Chen Y, Bian J, Gao X. Development of anti-cancer drugs for tumor-associated macrophages: a comprehensive review and mechanistic insights. Front Mol Biosci 2024; 11:1463061. [PMID: 39717759 PMCID: PMC11663717 DOI: 10.3389/fmolb.2024.1463061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/21/2024] [Indexed: 12/25/2024] Open
Abstract
This review provides an in-depth summary of the development of anti-cancer drugs for tumor-associated macrophages (TAMs), with a particular focus on the development and tissue specialization of macrophages, and factors influencing the polarization of M1 and M2 macrophages, and mechanistic insights underlying the targeting therapeutic approaches. TAMs, pivotal in the tumor microenvironment, exhibit notable plasticity and diverse functional roles. Influenced by the complex milieu, TAMs polarize into M1-type, which suppresses tumors, and M2-type, which promotes metastasis. Notably, targeting M2-TAMs is a promising strategy for tumor therapy. By emphasizing the importance of macrophages as a therapeutic target of anti-cancer drugs, this review aims to provide valuable insights and research directions for clinicians and researchers.
Collapse
Affiliation(s)
- Bingjun Bai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shangzhi Xie
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ya Wang
- Department of Hospital Infection-Control, Zhejiang Cancer Hospital, Hangzhou, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Chen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jia Bian
- Department of Gynecology and Obstetrics, The Affiliated People’s Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xing Gao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
42
|
Adhikary S, Roy S, Budhathoki S, Chowdhury S, Stillwell A, Basnakian AG, Tackett A, Avaritt N, Milad M, Alam MA. Thiazole-fused androstenone and ethisterone derivatives: potent β- and γ-actin cytoskeleton inhibitors to treat melanoma tumors. RSC Med Chem 2024; 16:d4md00719k. [PMID: 39703801 PMCID: PMC11653411 DOI: 10.1039/d4md00719k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024] Open
Abstract
Melanoma, the most fatal form of skin cancer, often becomes resistant to the current therapeutic approaches in most patients. To explore new treatment options, fused thiazole derivatives were synthesized, and several of these compounds demonstrated potent anti-melanoma activity both in vitro and in vivo. These compounds exhibited significant cytotoxicity against melanoma cell lines at low concentrations. The lead molecules induced apoptosis and caused G2/M phase cell cycle arrest to a lesser extent. These compounds also displayed remarkable antimetastatic activities in several cell-based and molecular assays, significantly inhibiting key processes of metastasis, such as cell migration and adhesion. mRNA sequencing revealed significant downregulation of β-actin (ACTB) and γ-actin (ACTG1) at the transcriptional level, and a similar effect was observed at the protein level by western immunoblotting and proteomics assays. Actin-rich membrane protrusions formation is crucial for facilitating metastasis by promoting cell migration. Fluorescence microscopy demonstrated that compounds E28 and E47 inhibited the formation of these membrane protrusions and impaired actin cytoskeleton dynamics. Docking studies suggested the lead compounds may suppress tumor proliferation and metastasis by targeting the mechanistic target of Rapamycin complex 2 (mTORC2). All these findings unanimously indicated the translational perspective of ethisterone and androstenone fused thiazole derivatives as potent antimetastatic and antimelanoma agents. In a preclinical mouse melanoma model, compounds E2 and E47 significantly reduced tumor growth and greatly improved overall mice survival, while showing a favorable safety profile based on a comprehensive blood plasma metabolite profile. These lead molecules also displayed promising physicochemical properties, making them strong candidates for further drug development studies.
Collapse
Affiliation(s)
- Sanjay Adhikary
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
| | - Subrata Roy
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
- Enviromental Sciences Program, College of Sciences and Mathematics, Arkansas State University Jonesboro AR 72467 USA
| | - Shailesh Budhathoki
- Molecular Biosciences Program, College of Sciences and Mathematics, Arkansas State University Jonesboro AR 72467 USA
| | - Siam Chowdhury
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
- Computer Science, The College of Engineering and Computer Science, Arkansas State University Jonesboro AR 72468 USA
| | - Abbey Stillwell
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
| | - Alexei G Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences 4301 W. Markham St Little Rock AR 72205 USA
- Central Arkansas Veterans Healthcare System W. 7th St Little Rock AR 72205 USA
| | - Alan Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Nathan Avaritt
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Mohamed Milad
- The Department of Mathematics and Statistics, Arkansas State University Jonesboro AR 72467 USA
| | - Mohammad Abrar Alam
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
- Enviromental Sciences Program, College of Sciences and Mathematics, Arkansas State University Jonesboro AR 72467 USA
- Molecular Biosciences Program, College of Sciences and Mathematics, Arkansas State University Jonesboro AR 72467 USA
- Arkansas Biosciences Institute, Arkansas State University Jonesboro AR 72467 USA
| |
Collapse
|
43
|
Gao S, Hou Y, Xu Y, Li J, Zhang C, Jiang S, Yu S, Liu L, Tu W, Yu B, Zhang Y, Li L. Discovery of orally bioavailable phosphonate prodrugs of potent ENPP1 inhibitors for cancer treatment. Eur J Med Chem 2024; 279:116853. [PMID: 39270452 DOI: 10.1016/j.ejmech.2024.116853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) is the dominant hydrolase of 2',3'-cyclic GMP-AMP (cGAMP). Inhibition of ENPP1 contributes to increased cGAMP concentration and stimulator of interferon gene (STING) activation, with the potential to boost immune response against cancer. ENPP1 is a promising therapeutic target in tumor immunotherapy. To date, orally bioavailable ENPP1 inhibitors with highly potent activity under physiological conditions have been rarely reported. Herein, we report our effort in the design and synthesis of two different series of ENPP1 inhibitors, and in the identification of a highly potent ENPP1 inhibitor 27 (IC50 = 1.2 nM at pH 7.5), which significantly enhanced the cGAMP-mediated STING activity in THP-1 cells. Phosphonate compound 27 has good preclinical pharmacokinetic profiles with low plasma clearance rate in mouse, rat, and dog. It has been developed as bis-POM prodrug 36 which successfully improves the oral bioavailability of 27. In the Pan02 syngeneic mouse model of pancreatic cancer, orally administered 36 showed synergistic effect in combination with radiotherapy.
Collapse
Affiliation(s)
- Shanyun Gao
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Yingjie Hou
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Yanxiao Xu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Jingjing Li
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Chaobo Zhang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Shujuan Jiang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Songda Yu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Lei Liu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China
| | - Wangyang Tu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| | - Bing Yu
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| | - Yixiang Zhang
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| | - Leping Li
- Discovery & Early Development, Haihe Biopharma Co., Ltd., No 865, Zuchongzhi Road, Zhangjiang Science City, Shanghai, 201203, China.
| |
Collapse
|
44
|
Brem S. Vagus nerve stimulation: Novel concept for the treatment of glioblastoma and solid cancers by cytokine (interleukin-6) reduction, attenuating the SASP, enhancing tumor immunity. Brain Behav Immun Health 2024; 42:100859. [PMID: 39512605 PMCID: PMC11541944 DOI: 10.1016/j.bbih.2024.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/31/2024] [Accepted: 09/07/2024] [Indexed: 11/15/2024] Open
Abstract
Immuno-oncology, specifically immune checkpoint inhibitors (ICIs), has revolutionized cancer care with dramatic, long-term responses and increased survival, including patients with metastatic cancer to the brain. Glioblastomas, and other primary brain tumors, are refractory to ICIs as monotherapy or in combination with standard therapy. The tumor microenvironment (TME) poses multiple biological hurdles: blood-brain barrier, immune suppression, heterogeneity, and tumor infiltration. Genomic analysis of the senescence-associated secretory phenotype (SASP) and preclinical models of glioma suggest that an exciting approach would entail reprogramming of the glioma microenvironment, attenuating the pro-inflammatory, pro-tumorigenic cytokines of the SASP, especially interleukin-6 (IL-6). A testable hypothesis now proposed is to modulate the immune system by harnessing the body's 'inflammatory reflex' to reduce cytokines. Vagus nerve stimulation can activate T cell immunity by the cholinergic, α7nicotinic acetylcholine receptor agonist (α7nAchR), and suppress IL-6 systemically, as well as other pro-inflammatory cytokines of the SASP, interleukin -1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). The hypothesis predicts that electrical activation of the vagus nerve, with cytokine reduction, in combination with ICIs, would convert an immune resistant ("cold") tumor to an immune responsive ("hot") tumor, and halt glioma progression. The hypothesis also envisions cancer as an immune "dysautonomia" whereby a therapeutic intervention, vagus nerve stimulation (VNS), resets the systemic and local cytokine levels. A prospective, randomized, phase II clinical trial, to confirm the hypothesis, is a logical, exigent, next step. Cytokine reduction by VNS could also be useful for other forms of human cancer, e.g., breast, colorectal, head and neck, lung, melanoma, ovarian, pancreatic, and prostate cancer, as the emerging field of "cancer neuroscience" shows a role for neural regulation of multiple tumor types. Because IL-6, and companion pro-inflammatory cytokines, participate in the initiation, progression, spread and recurrence of cancer, minimally invasive VNS could be employed to suppress glioma or cancer progression, while also mitigating depression and/or seizures, thereby enhancing quality of life. The current hypothesis reimagines glioma pathophysiology as a dysautonomia with the therapeutic objective to reset the autonomic nervous system and form an immune responsive state to halt tumor progression and prevent recurrence. VNS, as a novel method to control cancer, can be administered with ICIs, standard therapy, or in clinical trials, combined with emerging immunotherapy: dendritic cell, mRNA, or chimeric antigen receptor (CAR) T cell vaccines.
Collapse
Affiliation(s)
- Steven Brem
- University of Pennsylvania, Department of Neurosurgery, Perelman Center for Advanced Medicine, 15-141, 3400 Civic Center Blvd., Philadelphia, PA, 19104, United States
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, United States
| |
Collapse
|
45
|
Kzhyshkowska J, Shen J, Larionova I. Targeting of TAMs: can we be more clever than cancer cells? Cell Mol Immunol 2024; 21:1376-1409. [PMID: 39516356 PMCID: PMC11607358 DOI: 10.1038/s41423-024-01232-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
АBSTRACT: With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany.
- German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia.
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia.
| | - Jiaxin Shen
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Kooperativnyi st, Tomsk, Russia
| |
Collapse
|
46
|
Lu Y, Quan J, Liu F, Huang B. Systematic pan-cancer analysis of the prognostic value of MECOM in human cancer. Discov Oncol 2024; 15:694. [PMID: 39576394 PMCID: PMC11584820 DOI: 10.1007/s12672-024-01599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024] Open
Abstract
Recently, emerging evidence suggests an association between MECOM (MDS1 and EVI1 complex locus) and cancers. However, a comprehensive pan-cancer analysis to fully investigate this relationship is lacking. Herein, public platforms with large-scale genomics, including The Cancer Genome Atlas, Gene Expression Omnibus dataset, and the Human Protein Atlas were explored to investigate the prognostic and immunological roles of MECOM across certain cancer types. Our findings revealed differential expression of MECOM in various cancer types, indicating its potential to predict diverse clinical outcomes, such as overall survival time and disease-free survival time in patients with various malignancies. Additionally, we observed an association between the mutation burden in MECOM in various cancers and patient survival. Furthermore, the mechanism of MECOM-mediated oncogenesis was tentatively explored by immune infiltration analysis. This study provided a relatively comprehensive overview of the prognostic and immunological roles of MECOM in multiple cancers.
Collapse
Affiliation(s)
- Yingqiang Lu
- Department of Urology, Urology and Nephrology Center, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Jing Quan
- Department of Urology, Urology and Nephrology Center, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Feng Liu
- Department of Urology, Urology and Nephrology Center, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Banggao Huang
- Department of Urology, Urology and Nephrology Center, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
47
|
Burvenich IJG, Wichmann CW, McDonald AF, Guo N, Rigopoulos A, Huynh N, Vail M, Allen S, O'Keefe GJ, Scott FE, Soikes R, Angelides S, Roemeling RV, Scott AM. Targeting of immune checkpoint regulator V-domain Ig suppressor of T-cell activation (VISTA) with 89Zr-labelled CI-8993. Eur J Nucl Med Mol Imaging 2024; 51:3863-3873. [PMID: 39060374 PMCID: PMC11527895 DOI: 10.1007/s00259-024-06854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND CI-8993 is a fully human IgG1κ monoclonal antibody (mAb) that binds specifically to immune checkpoint molecule VISTA (V-domain Ig suppressor of T-cell activation). Phase I safety has been established in patients with advanced cancer (NCT02671955). To determine the pharmacokinetics and biodistribution of CI-8993 in patients, we aimed to develop 89Zr-labelled CI-8993 and validate PET imaging and quantitation in preclinical models prior to a planned human bioimaging trial. METHODS CI-8993 and human isotype IgG1 control were conjugated to the metal ion chelator p-isothiocyanatobenzyl-desferrioxamine (Df). Quality of conjugates were assessed by SE-HPLC, SDS-PAGE, and FACS. After radiolabelling with zirconium-89 (89Zr), radioconjugates were assessed for radiochemical purity, immunoreactivity, antigen binding affinity, and serum stability in vitro. [89Zr]Zr-Df-CI-8993 alone (1 mg/kg, 4.6 MBq) or in combination with 30 mg/kg unlabelled CI-8993, as well as isotype control [89Zr]Zr-Df-IgG1 (1 mg/kg, 4.6 MBq) were assessed in human VISTA knock-in female (C57BL/6 N-Vsirtm1.1(VSIR)Geno, huVISTA KI) or control C57BL/6 mice bearing syngeneic MB49 bladder cancer tumours; and in BALB/c nu/nu mice bearing pancreatic Capan-2 tumours. RESULTS Stable constructs with an average chelator-to-antibody ratio of 1.81 were achieved. SDS-PAGE and SE-HPLC showed integrity of CI-8993 was maintained after conjugation; and ELISA indicated no impact of conjugation and radiolabelling on binding to human VISTA. PET imaging and biodistribution in MB49 tumour-bearing huVISTA KI female mice showed specific localisation of [89Zr]Zr-Df-CI-8993 to VISTA in spleen and tumour tissues expressing human VISTA. Specific tumour uptake was also demonstrated in Capan-2 xenografted BALB/c nu/nu mice. CONCLUSIONS We radiolabelled and validated [89Zr]Zr-Df-CI-8993 for specific binding to huVISTA in vivo. Our results demonstrate that 89Zr-labelled CI-8993 is now suitable for targeting and imaging VISTA expression in human trials.
Collapse
Affiliation(s)
- Ingrid Julienne Georgette Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Christian Werner Wichmann
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Alexander Franklin McDonald
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, VIC, 3084, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Nhi Huynh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Mary Vail
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Stacey Allen
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Graeme Joseph O'Keefe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia
| | - Fiona Elizabeth Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | | | | | | | - Andrew Mark Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Level 5 ONJ Centre, 145 Studley Road, Heidelberg, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia.
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
48
|
Wauters AC, Scheerstra JF, van Leent MMT, Teunissen AJP, Priem B, Beldman TJ, Rother N, Duivenvoorden R, Prévot G, Munitz J, Toner YC, Deckers J, van Elsas Y, Mora-Raimundo P, Chen G, Nauta SA, Verschuur AVD, Griffioen AW, Schrijver DP, Anbergen T, Li Y, Wu H, Mason AF, van Stevendaal MHME, Kluza E, Post RAJ, Joosten LAB, Netea MG, Calcagno C, Fayad ZA, van der Meel R, Schroeder A, Abdelmohsen LKEA, Mulder WJM, van Hest JCM. Polymersomes with splenic avidity target red pulp myeloid cells for cancer immunotherapy. NATURE NANOTECHNOLOGY 2024; 19:1735-1744. [PMID: 39085390 PMCID: PMC11567884 DOI: 10.1038/s41565-024-01727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
Regulating innate immunity is an emerging approach to improve cancer immunotherapy. Such regulation requires engaging myeloid cells by delivering immunomodulatory compounds to hematopoietic organs, including the spleen. Here we present a polymersome-based nanocarrier with splenic avidity and propensity for red pulp myeloid cell uptake. We characterized the in vivo behaviour of four chemically identical yet topologically different polymersomes by in vivo positron emission tomography imaging and innovative flow and mass cytometry techniques. Upon intravenous administration, relatively large and spherical polymersomes accumulated rapidly in the spleen and efficiently targeted myeloid cells in the splenic red pulp. When loaded with β-glucan, intravenously administered polymersomes significantly reduced tumour growth in a mouse melanoma model. We initiated our nanotherapeutic's clinical translation with a biodistribution study in non-human primates, which revealed that the platform's splenic avidity is preserved across species.
Collapse
Affiliation(s)
- Annelies C Wauters
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jari F Scheerstra
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mandy M T van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abraham J P Teunissen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bram Priem
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Medical Oncology (NA Angiogenesis Laboratory), Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Thijs J Beldman
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nils Rother
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Raphaël Duivenvoorden
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Geoffrey Prévot
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jazz Munitz
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yohana C Toner
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen Deckers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yuri van Elsas
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Patricia Mora-Raimundo
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Gal Chen
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Sheqouia A Nauta
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Vera D Verschuur
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arjan W Griffioen
- Department of Medical Oncology (NA Angiogenesis Laboratory), Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - David P Schrijver
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tom Anbergen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yudong Li
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Hanglong Wu
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Alexander F Mason
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Marleen H M E van Stevendaal
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Ewelina Kluza
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Richard A J Post
- Department of Mathematics and Computer Science, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Avi Schroeder
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Loai K E A Abdelmohsen
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Willem J M Mulder
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
49
|
Wang K, Cai S, Cheng Y, Qi Z, Ni X, Zhang K, Xiao Y, Zhang X, Wang T. Discovery of Benzo[ d]oxazoles as Novel Dual Small-Molecule Inhibitors Targeting PD-1/PD-L1 and VISTA Pathway. J Med Chem 2024; 67:18526-18548. [PMID: 39389791 DOI: 10.1021/acs.jmedchem.4c01899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The blockers of programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway have achieved great clinical success. However, the limited efficacy and low tumor response rate of anti-PD-1/PD-L1 monotherapy limit the clinical application of PD-1/PD-L1 inhibitors. V-domain immunoglobulin suppressor of T-cell activation (VISTA), a novel checkpoint regulator, exhibits potential synergy with PD-1/PD-L1 in enhancing antitumor immunity. Herein, we report the discovery of benzo[d]oxazole B3 as novel dual small-molecule inhibitors targeting PD-1/PD-L1 and VISTA with high PD-1/PD-L1 inhibitory activity and VISTA binding affinity. B3 rescues the immunosuppression of T-cells mediated by PD-L1 and VISTA and activates antitumor immunity effectively. Moreover, B3 could induce degradation of PD-L1 and VISTA in tumor cell. Furthermore, B3 displays significant in vivo antitumor efficacy in a CT26 mouse model. Our results discover B3 as a promising dual PD-1/PD-L1 and VISTA inhibitor, providing a novel therapeutic strategy to overcome the limitations of current anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Kaizhen Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shi Cai
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Innovation Department of the Research Institute, Nanjing Chia-Tai Tianqing Pharmaceutical Co., Ltd., Nanjing 210046, China
| | - Yao Cheng
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihao Qi
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiang Ni
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kuojun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
50
|
Jiang D, Huang A, Zhu BX, Gong J, Ruan YH, Liu XC, Zheng L, Wu Y. Targeting CD93 on monocytes revitalizes antitumor immunity by enhancing the function and infiltration of CD8 + T cells. J Immunother Cancer 2024; 12:e010148. [PMID: 39448202 PMCID: PMC11499807 DOI: 10.1136/jitc-2024-010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Limited activation and infiltration of CD8+ T cells are major challenges facing T cell-based immunotherapy for most solid tumors, of which the mechanism is multilayered and not yet fully understood. METHODS Levels of CD93 expression on monocytes from paired non-tumor, peritumor and tumor tissues of human hepatocellular carcinoma (HCC) were evaluated. The underlying mechanisms mediating effects of CD93+ monocytes on the inhibition and tumor exclusion of CD8+ T cells were studied through both in vitro and in vivo experiments. RESULTS In this study, we found that monocytes in the peritumoral tissues of HCC significantly increased levels of CD93 expression, and these CD93+ monocytes collocated with CD8+ T cells, whose density was much higher in peritumor than intratumor areas. In vitro experiments showed that glycolytic switch mediated tumor-induced CD93 upregulation in monocytes via the Erk signaling pathway. CD93 on the one hand could enhance PD-L1 expression through the AKT-GSK3β axis, while on the other hand inducing monocytes to produce versican, a type of matrix component which interacted with hyaluronan and collagens to inhibit CD8+ T cell migration. Consistently, levels of CD93+ monocytes positively correlated with the density of peritumoral CD8+ T cells while negatively correlated with that of intratumoral CD8+ T cells. Targeting CD93 on monocytes not only increased the infiltration and activation of CD8+ T cells but also enhanced tumor sensitivity to anti-PD-1 treatment in mice in vivo. CONCLUSION This study identified an important mechanism contributing to the activation and limited infiltration of CD8+ T cells in solid tumors, and CD93+ monocytes might represent a plausible immunotherapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Da Jiang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Aiqi Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bai-Xi Zhu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiangling Gong
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong-Hao Ruan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xing-Chen Liu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Limin Zheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|