1
|
Wu JS, Kan JY, Chang YS, Le UNP, Su WC, Lai HC, Lin CW. Developing Zika virus-transduced hACE2 expression models for severe acute respiratory syndrome coronavirus 2 infection in vitro and in vivo. J Virol Methods 2025; 336:115166. [PMID: 40239870 DOI: 10.1016/j.jviromet.2025.115166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
To address the human ACE2 dependence for SARS-CoV-2 infection, this study presents a novel strategy for generating ZIKV-hACE2 single-round infectious particles (SRIPs) by incorporating the hACE2 gene into a Zika virus (ZIKV) mini-replicon. SARS-CoV-2 SRIP infection was significantly enhanced in HEK293T cells pre-infected with ZIKV-hACE2, as evidenced by increased cytopathic effects and elevated mRNA and protein levels of the SARS-CoV-2 nucleocapsid (N) protein. A mouse model was also developed with this approach to investigate SARS-CoV-2 infection. Immunohistochemical and real-time RT-PCR analyses confirmed the presence of the SARS-CoV-2 N protein in the lungs of mice injected with ZIKV-hACE2 SRIPs, indicating successful infection. The mouse model displayed COVID-19-like pathological changes, including increased macrophages in BALF, severe lung damage, and elevated pro-inflammatory cytokines (IL-6 and IL-1β). These features mimic severe COVID-19 cases in humans. Additionally, treatment with nirmatrelvir resulted in a 6.2-fold reduction in viral load and a marked decrease in N protein levels. Overall, this ZIKV mini-replicon-mediated hACE2 expression model, both in vitro and in vivo, is a valuable tool for studying SARS-CoV-2 infection and evaluating therapeutic interventions. The mouse model's pathological features further underscore its relevance for in vivo research on SARS-CoV-2.
Collapse
Affiliation(s)
- Joh-Sin Wu
- PhD Program for Health Science and Industry, China Medical University, Taichung 404394, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan
| | - Ju-Ying Kan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan; The PhD program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404394, Taiwan
| | - Young-Sheng Chang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan
| | - Uyen Nguyen Phuong Le
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan; Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan; International Master's Program of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan
| | - Hsueh-Chou Lai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung 404332, Taiwan
| | - Cheng-Wen Lin
- PhD Program for Health Science and Industry, China Medical University, Taichung 404394, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan; The PhD program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404394, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan; Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung 404332, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung 413305, Taiwan.
| |
Collapse
|
2
|
Chen R, Hao Z, Ye J, Zhao X, Hu S, Luo J, Li J, Wu H, Liang X, Shen C, Deng M, Zhang W, Zhu Z, Qin Y, Hu G, Zhang L, Cao F, Liu Y, Liu R, Sun Q, Wei H, Wang Z. Decoding post-mortem infection dynamics of SARS-CoV-2, IAV and RSV: New insights for public health and emerging infectious diseases management. J Infect 2025; 90:106489. [PMID: 40268146 DOI: 10.1016/j.jinf.2025.106489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/25/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025]
Abstract
OBJECTIVES The persistence and infectivity of respiratory viruses in cadavers remain poorly characterized, posing significant biosafety risks for forensic and healthcare professionals. This study systematically evaluates the post-mortem stability and transmission potential of SARS-CoV-2, influenza A virus (IAV), and respiratory syncytial virus (RSV) under varying environmental conditions, providing critical insights into viral kinetics. METHODS To assess the post-mortem stability of SARS-CoV-2, tissue samples were collected from infected cadavers at 4 ℃, room temperature (RT, 20-22 ℃), and 37 ℃ over a predetermined timeframe. Viral kinetics were analyzed using quantitative assays, while histopathology and immunohistochemistry characterized tissue-specific distribution. Additionally, comparative analyses were conducted both in vitro and in cadaveric tissues to characterize the survival dynamics of IAV and RSV under identical conditions. RESULTS SARS-CoV-2 exhibited prolonged post-mortem infectivity, persisting for up to 5 days at RT and 37 ℃ and over 7 days at 4 ℃, with the highest risk of transmission occurring within the first 72 h at RT and 24 h at 37 ℃. In contrast, RSV remained viable for 1-2 days, while IAV persisted for only a few hours post-mortem. Viral decay rates were temperature-dependent and varied across tissues, demonstrating distinct post-mortem survival kinetics. CONCLUSIONS This study presents the first comprehensive analysis of viral persistence in cadavers, revealing prolonged SARS-CoV-2 stability compared to IAV and RSV. These findings underscore the need for enhanced post-mortem biosafety protocols to mitigate occupational exposure risks in forensic and clinical settings. By elucidating viral decay dynamics across environmental conditions, this research establishes a critical foundation for infection control strategies, informing biosafety policies for emerging respiratory pathogens.
Collapse
Affiliation(s)
- Run Chen
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zeyi Hao
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jian Ye
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Xingchun Zhao
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Sheng Hu
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Jianliang Luo
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Junhua Li
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Hao Wu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - XingGong Liang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chen Shen
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mingyan Deng
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wanqing Zhang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhengyang Zhu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yudong Qin
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Gengwang Hu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Letong Zhang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Fan Cao
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuzhao Liu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ruina Liu
- Center for Translational Medicine, Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, China
| | - Qinru Sun
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Hongping Wei
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China.
| | - Zhenyuan Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
3
|
Maloney SM, Shaw TM, Nennig KM, Larsen MS, Shah A, Kumar A, Marcotrigiano J, Grove J, Snijder EJ, Kirchdoerfer RN, Bailey AL. CD81 is a receptor for equine arteritis virus (family: Arteriviridae). mBio 2025:e0062325. [PMID: 40422661 DOI: 10.1128/mbio.00623-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
Arteriviruses are a family of single-stranded, positive-sense RNA (+ssRNA) viruses that infect diverse animal hosts. Many arteriviruses are macrophage-tropic, consistent with their utilization of the macrophage-specific molecule CD163 as a receptor. However, the horse arterivirus (equine arteritis virus, EAV), which infects additional cell types beyond macrophages, does not utilize CD163 in its entry mechanism. Here, we use a genome-wide CRISPR knockout screen to identify alternative receptors that could explain this discrepancy in arterivirus receptor utilization and tropism, identifying the plasma membrane tetraspanin CD81 as a required host factor for EAV infection. Genetic knockout of CD81 or pre-incubation with soluble CD81 protected cells from infection with EAV, but had no impact on susceptibility to other arteriviruses. Bypassing the entry step of the viral life cycle by transfecting the EAV genome into CD81-knockout cells produced infectious EAV, implicating CD81 in the EAV entry process. Screening of CD81 orthologs from natural arterivirus hosts identified the brushtail possum CD81 as unsupportive of EAV entry, indicating that CD81 incompatibility can serve as a barrier to cross-species infection. Horse/possum CD81 chimeras were then used to map the structural domains of CD81 engaged by EAV, identifying alpha helix "D" on the large extracellular loop of CD81 as critical for EAV entry. This study identifies the first example of receptor switching in the Arteriviridae family and, given the broad tissue distribution of CD81 expression, suggests that the adoption of CD81 enabled an expansion of EAV tropism.IMPORTANCEArteriviruses are a family of diverse positive-sense RNA viruses that can infect a wide range of animal hosts, but many details regarding how arteriviruses gain entry into cells remain unclear. Most arteriviruses are thought to utilize the macrophage-specific molecule CD163 as a receptor; however, the horse arterivirus (equine arteritis virus, EAV) infects additional cell types beyond macrophages and does not utilize CD163. In this study, we identified the host factor CD81 as a significant player in EAV entry. Beyond the implications that this discovery holds for equine health, this study adds to the increasingly complex picture of arterivirus entry and demonstrates that these viruses are capable of adopting new host molecules as receptors, with consequences for the types of cells these viruses infect, the disease they cause, and their mode(s) of transmission.
Collapse
Affiliation(s)
- Sara M Maloney
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
- University of Wisconsin-Madison Cellular and Molecular Pathology Graduate Program, Madison, Wisconsin, USA
| | - Teressa M Shaw
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kylie M Nennig
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Malorie S Larsen
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Aadit Shah
- Stanford University School of Medicine, Stanford, California, USA
| | - Ashish Kumar
- Structural Virology Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph Marcotrigiano
- Structural Virology Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Joe Grove
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Eric J Snijder
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, South Holland, The Netherlands
| | - Robert N Kirchdoerfer
- Department of Biochemistry, Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adam L Bailey
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Li Y, Yang S, Qian J, Liu S, Li Y, Song X, Cao Q, Guo R, Zhao Y, Sun M, Hu M, Li J, Zhang X, Fan B, Li B. Molecular characteristics of the immune escape of coronavirus PEDV under the pressure of vaccine immunity. J Virol 2025; 99:e0219324. [PMID: 40237499 PMCID: PMC12090811 DOI: 10.1128/jvi.02193-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/05/2025] [Indexed: 04/18/2025] Open
Abstract
Coronaviruses have undergone evolutionary changes and mutations in response to the immune pressures exerted by vaccines and environmental factors, resulting in more severe consequences during breakthrough infections. Nevertheless, the specific correlation between the evolutionary mutations of coronaviruses and immune pressures remains ambiguous. Swine coronavirus-porcine epidemic diarrhea virus (PEDV)-has existed for decades. This study utilized in vivo preparation of polyclonal antibodies against the PEDV and identified critical neutralizing epitopes through serial in vitro passaging. Then, the recombinant mutated strains were successfully constructed. In vitro experiments confirmed the ability of the rA1273P strain to escape neutralization by polyclonal antibodies. Both in vitro cell studies and in vivo animal experiments revealed that the strain maintains virulence and pathogenicity while evading antibody pressure post-vaccination. The pathogenicity of the strain while evading immune pressure is comparable to wild-type strains. A comparison of the S protein gene between vaccine strains and clinical strains identified mutations in 1273 amino acid positions in clinical strains. In conclusion, this study identified a novel PEDV S protein neutralizing site under immune pressure through serial passaging, indicating that the 1,273th amino acid position is prone to mutation under prolonged antibody pressure, enhancing the virus's ability to escape hosts. This study offers new insights into the interpretation of coronavirus escape immune pressure and provides technical support for monitoring and predicting the variation and evolution of coronavirus.IMPORTANCECoronaviruses represent an ongoing public health threat because of high variability. Since 2010, the emergence of highly pathogenic porcine epidemic diarrhea virus (PEDV) strains has resulted in significant economic losses to the global pig industry. PEDV undergoes evolution and mutation under external immune pressure, rendering it an increasingly challenging target for prevention and control measures. Here, we prepared the polyclonal antibodies against PEDV and identified a novel neutralization epitope on the S protein (1,273th amino acids) through serial in vitro passaging. Furthermore, our findings indicate that the mutation of A1273P in the S protein did not alter the virulence of the PEDV but significantly enhanced its ability to escape and infect the host in vitro and in vivo. Finally, we found that the 1,273 amino acid position of the S gene has been mutated to varying degrees in clinical PEDV strains. This work provides a specific correlation between the evolutionary mutations of coronaviruses and immune pressures.
Collapse
Affiliation(s)
- Yunchuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shanshan Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiali Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shiyu Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yupeng Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xu Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Qiuxia Cao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongxiang Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Min Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Mi Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| |
Collapse
|
5
|
Xiao X, Li S, Zheng Z, Ji Y, Du Q, Zuo Y, Miao Y, Yuan Y, Zheng H, Huang F, Wang J. Targeting USP22 to promote K63-linked ubiquitination and degradation of SARS-CoV-2 nucleocapsid protein. J Virol 2025; 99:e0223424. [PMID: 40183543 PMCID: PMC12090743 DOI: 10.1128/jvi.02234-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/13/2025] [Indexed: 04/05/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) generally hijacks the cellular machinery of host cells for survival. However, how SARS-CoV-2 employs the host's deubiquitinase to facilitate virus replication remains largely unknown. In this study, we identified the host deubiquitinase USP22 as a crucial regulator of the expression of SARS-CoV-2 nucleocapsid protein (SARS-CoV-2 NP), which is essential for SARS-CoV-2 replication. We demonstrated that SARS-CoV-2 NP proteins undergo ubiquitination-dependent degradation in host cells, while USP22 interacts with SARS-CoV-2 NP and downregulates K63-linked polyubiquitination of SARS-CoV-2 NP, thereby protecting SARS-CoV-2 NP from degradation. Importantly, we further revealed that sulbactam, an antibiotic, can reduce USP22 protein levels, eventually promoting the degradation of SARS-CoV-2 NP in vitro and in vivo. This study reveals the mechanism by which SARS-CoV-2-encoded NP protein employs host deubiquitinase for virus survival and provides a potential strategy to fight against SARS-CoV-2 infection.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (SARS-CoV-2 NP) plays a pivotal role in viral infection by binding to viral RNA, stabilizing the viral genome, and promoting replication. However, the interactions between SARS-CoV-2 NP and host intracellular proteins had not been elucidated. In this study, we provide evidence that SARS-CoV-2 NP interacts with the deubiquitinase USP22 in host cells, which downregulates SARS-CoV-2 NP ubiquitination. This reduction in ubiquitination effectively prevents intracellular degradation of SARS-CoV-2 NP, thereby enhancing its stability, marking USP22 as a potential target for antiviral strategies. Additionally, our findings indicate that sulbactam significantly decreases the protein levels of USP22, thereby reducing SARS-CoV-2 NP levels. This discovery suggests a novel therapeutic pathway in which sulbactam could be repurposed as an antiviral agent, demonstrating how certain antibiotics might contribute to antiviral treatment. This work thus opens avenues for drug repurposing and highlights the therapeutic potential of targeting host pathways to inhibit viral replication.
Collapse
Affiliation(s)
- Xin Xiao
- Department of Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shifeng Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhijin Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu, China.
| | - Yingying Ji
- Department of Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian Du
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu, China.
| | - Yibo Zuo
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu, China.
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ying Miao
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu, China.
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hui Zheng
- Department of Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu, China.
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Fang Huang
- Department of Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Mahdi M, Kiarie IW, Mótyán JA, Hoffka G, Al-Muffti AS, Tóth A, Tőzsér J. Receptor Binding for the Entry Mechanisms of SARS-CoV-2: Insights from the Original Strain and Emerging Variants. Viruses 2025; 17:691. [PMID: 40431702 DOI: 10.3390/v17050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/03/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Since its emergence in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continuously evolved, giving rise to multiple variants that have significantly altered the trajectory of the COVID-19 pandemic. These variants have resulted in multiple waves of the pandemic, exhibiting characteristic mutations in the spike (S) protein that may have affected receptor interaction, tissue tropism, and cell entry mechanisms. While the virus was shown to primarily utilize the angiotensin-converting enzyme 2 (ACE2) receptor and host proteases such as transmembrane serine protease 2 (TMPRSS2) for entry into host cells, alterations in the S protein have resulted in changes to receptor binding affinity and use of alternative receptors, potentially expanding the virus's ability to infect different cell types or tissues, contributing to shifts in clinical presentation. These changes have been linked to variations in disease severity, the emergence of new clinical manifestations, and altered transmission dynamics. In this paper, we overview the evolving receptor utilization strategies of SARS-CoV-2, focusing on how mutations in the S protein may have influenced viral entry mechanisms and clinical outcomes across the ongoing pandemic waves.
Collapse
Affiliation(s)
- Mohamed Mahdi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Infectology, Faculty of Medicine, University of Debrecen, 4031 Debrecen, Hungary
| | - Irene Wanjiru Kiarie
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gyula Hoffka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Aya Shamal Al-Muffti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
7
|
Ishigaki H, Itoh Y. Translational research on pandemic virus infection using nonhuman primate models. Virology 2025; 606:110511. [PMID: 40139071 DOI: 10.1016/j.virol.2025.110511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
After the COVID-19 pandemic, nonhuman primate (NHP) models, which are necessary for the rapid development of vaccines and new medical therapies, have become important in studies on infectious diseases because of their genetic, metabolic, and immunological similarities to humans. Our group has long been using NHP models in studies on infectious diseases including H1N1 influenza pandemic and COVID-19. Despite limitations such as the limited number of animals and the husbandry requirements, NHP models have contributed to the prediction of the pathogenicity of emerging viruses and the evaluation of the efficacy of vaccines and therapeutics due to the similarity of NHP models to humans before starting clinical trials to select good candidates of vaccines and drugs. In this review, the findings obtained in NHP infectious disease models of influenza and COVID-19 are summarized to clarify the benefits of NHP models for studies on infectious diseases. We believe that this review will support future research in exploring new perspectives for the development of vaccines and therapies targeting influenza, COVID-19, and infectious diseases in future pandemics.
Collapse
Affiliation(s)
- Hirohito Ishigaki
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, 460 Setatsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, 460 Setatsukinowa, Otsu, Shiga, 520-2192, Japan; Central Research Laboratory, Shiga University of Medical Science, 205 Setatsukinowa, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
8
|
Das Sarma J. Murine β-coronavirus spike protein: A major determinant of neuropathogenic properties. Virology 2025; 606:110499. [PMID: 40120171 DOI: 10.1016/j.virol.2025.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Coronaviruses have emerged as a significant challenge to human health. While earlier outbreaks of coronaviruses such as SARS-CoV and MERS-CoV posed serious threats, the recent SARS-CoV-2 pandemic has heightened interest in coronavirus research due to its pulmonary pathology, in addition to its neurological manifestations. In addition, the patients who have recovered from SARS-CoV-2 infection show long-term symptoms such as anosmia, brain fog and long COVID. A major hurdle in studying these viruses is the limited availability of specialized research facilities, emphasizing the need for prototype virus-based models to investigate the pathophysiology. The mouse hepatitis virus (MHV), a member of the β-coronavirus family, serves as an excellent model to unravel the mechanisms underlying virus-induced pathogenesis. This review highlights two decades of research efforts aimed at understanding the pathophysiological mechanism of coronavirus-induced diseases, focusing on the development of targeted recombinant strains to identify the minimal essential motif of the spike protein responsible for fusogenicity and neuropathogenicity. By synthesizing findings from these studies, the review identifies the most promising therapeutic targets against coronaviruses, paving the way for the development of pan-coronavirus antivirals.
Collapse
Affiliation(s)
- Jayasri Das Sarma
- Department of Biological Science, Indian Institute of Science Education and Research, Kolkata, India; Department of Ophthalmology, University of Pennsylvania, USA.
| |
Collapse
|
9
|
Yılmaz S, Eken A, Sezer Z, Bağcı BŞ, Erdem S, Sarıkaya MD, Kaplan B, Inal A, Bayram A, Kalın Unuvar G, Zararsız G, Yerlitas Sİ, Cakir N, Pavel STI, Uygut MA, Yetiskin H, Kara A, Ozdarendeli A. Vaccination with inactivated SARS-CoV-2 vaccine TURKOVAC induces durable humoral and cellular immune responses up to 8 months. Front Med (Lausanne) 2025; 12:1524393. [PMID: 40357274 PMCID: PMC12066321 DOI: 10.3389/fmed.2025.1524393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Background The rapid spread of the SARS-CoV-2 virus has led to a global health crisis, necessitating swift responses in medical science, mainly through vaccination strategies. While short-term vaccine effectiveness is evident, immune protection's long-term effects and duration remain incompletely understood. Systematic monitoring of these responses is essential for optimizing vaccination strategies. Aims This study aimed to explore the durability of antigen-specific T and B cell responses and antibody levels up to 8 months post-immunization with the inactivated TURKOVAC vaccine in volunteers. Additionally, the impact of two versus three doses of vaccination on these parameters was analyzed. Methods Volunteers (n = 80) received two or three doses of TURKOVAC. Spike-specific B cells, CD4+ T cells, CD8+ T cells, and antibody levels were measured at multiple time points post-immunization. Results Spike-specific B cells remained elevated up to 8 months post-immunization. SARS-CoV-2-specific CD4+ and CD8+ T cells peaked at 4 months but declined thereafter. TURKOVAC resulted in durable antigen-specific humoral and cellular immune memory with distinct kinetics. Still, most assessments observed no significant differences between two and three doses, except for antigen specific-IL-2 and CD4+ LAMP1 responses. Conclusion TURKOVAC vaccination induces durable immune responses, with spike-specific B cells persisting up to 8 months and T cell responses peaking at 4 months before declining. These findings suggest that TURKOVAC contributes to long-term immune protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Seçil Yılmaz
- Genome and Stem Cell Center, Erciyes University, Kayseri, Türkiye
| | - Ahmet Eken
- Genome and Stem Cell Center, Erciyes University, Kayseri, Türkiye
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Zafer Sezer
- Department of Medical Pharmacology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
- Good Clinical Practise Centre (IKUM), Erciyes University, Kayseri, Türkiye
| | - Burcu Şen Bağcı
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri, Türkiye
| | - Serife Erdem
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | | | - Busra Kaplan
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri, Türkiye
- Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Ahmet Inal
- Department of Medical Pharmacology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
- Good Clinical Practise Centre (IKUM), Erciyes University, Kayseri, Türkiye
| | - Adnan Bayram
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Gamze Kalın Unuvar
- Infectious Diseases Clinic, Department of Infectious Diseases, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Gokmen Zararsız
- Department of Biostatistics, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Serra İlayda Yerlitas
- Department of Biostatistics, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Nuri Cakir
- Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | | | - Muhammet Ali Uygut
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri, Türkiye
| | - Hazel Yetiskin
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri, Türkiye
| | - Ates Kara
- Pediatric Infectious Department, Faculty of Medicine, Hacettepe University Hospitals, Ankara, Türkiye
| | - Aykut Ozdarendeli
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri, Türkiye
- Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
10
|
Ban J, Qian J, Zhang C, Li J. Recent advances in TAM mechanisms in lung diseases. J Transl Med 2025; 23:479. [PMID: 40287707 PMCID: PMC12032715 DOI: 10.1186/s12967-025-06398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
TYRO3, MERTK, and AXL receptor tyrosine kinases, collectively known as TAM receptors, play a vital role in maintaining lung tissue homeostasis by regulating integrity and self-renewal. These receptors activate signalling pathways that inhibit apoptosis, promote cell proliferation and differentiation, mediate cell adhesion and migration, and perform other essential biological functions. Additionally, TAM receptors are implicated in mechanisms that suppress anti-tumor immunity and confer resistance to immune checkpoint inhibitors. Disruption of the homeostatic balances can lead to pathological conditions such as lung inflammation, fibrosis, or tumors. Recent studies highlight their significant role in COVID-19-induced lung injury. However, the exact mechanisms by which TAM receptors contribute to lung diseases remain unclear. This article reviews the potential mechanisms of TAM receptor involvement in disease progression, focusing on lung inflammation, fibrosis, cancer, and COVID-19-induced lung injury. It also explores future research aspects and the therapeutic potentials of targeting TAM receptors, providing a theoretical foundation for understanding lung disease mechanisms and identifying treatment targets.
Collapse
Affiliation(s)
- Jiaqi Ban
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guiyang, 561113, Guizhou, China
| | - Jiayi Qian
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guiyang, 561113, Guizhou, China
| | - Chi Zhang
- School of Clinical Medicine, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, People's Republic of China
| | - Jun Li
- School of Public Health, The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guiyang, 561113, Guizhou, China.
| |
Collapse
|
11
|
Beverley J, Babcock S, Benson C, De Colle G, Cohen S, Diehl AD, Challa RA, Mavrovich RA, Billig J, Huffman A, He Y. A Fourfold Pathogen Reference Ontology Suite. ARXIV 2025:arXiv:2501.01454v3. [PMID: 40313667 PMCID: PMC12045396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Background Infectious diseases remain a critical global health challenge, and the integration of standardized ontologies plays a vital role in managing related data. The Infectious Disease Ontology (IDO) and its extensions, such as the Coronavirus Infectious Disease Ontology (CIDO), are essential for organizing and disseminating information related to infectious diseases. The COVID-19 pandemic highlighted the need for updating IDO and its virus-specific extensions. There is an additional need to update IDO extensions specific to bacteria, fungus, and parasite infectious diseases. Methods The "hub-and-spoke" methodology is adopted to generate pathogen-specific extensions of IDO: Virus Infectious Disease Ontology (VIDO), Bacteria Infectious Disease Ontology (BIDO), Mycosis Infectious Disease Ontology (MIDO), and Parasite Infectious Disease Ontology (PIDO). Results IDO is introduced before reporting on the scopes, major classes and relations, applications and extensions of IDO to VIDO, BIDO, MIDO, and PIDO. Conclusions The creation of pathogen-specific reference ontologies advances modularization and reusability of infectious disease ontologies within the IDO ecosystem. Future work will focus on further refining these ontologies, creating new extensions, and developing application ontologies based on them, in line with ongoing efforts to standardize biological and biomedical terminologies for improved data sharing, quality, and analysis.
Collapse
Affiliation(s)
- John Beverley
- National Center for Ontological Research, United States
- University at Buffalo, State University of New York, United States
| | - Shane Babcock
- National Center for Ontological Research, United States
- KadSci LLC, United States
| | - Carter Benson
- University at Buffalo, State University of New York, United States
- CUBRC, Inc., United States
| | - Giacomo De Colle
- National Center for Ontological Research, United States
- University at Buffalo, State University of New York, United States
| | - Sydney Cohen
- National Center for Ontological Research, United States
| | - Alexander D. Diehl
- National Center for Ontological Research, United States
- University at Buffalo, State University of New York, United States
| | | | - Rachel A. Mavrovich
- National Center for Ontological Research, United States
- University at Buffalo, State University of New York, United States
| | - Joshua Billig
- National Center for Ontological Research, United States
- University at Buffalo, State University of New York, United States
| | | | - Yongqun He
- University of Michigan-Ann Arbor, United States
| |
Collapse
|
12
|
Lloreta-Trull J, Marin-Corral J, Juanpere N, Pascual-Guardia S, Gimeno J, Naranjo D, Segalés L, Hernández S, Simón M, Serrano L, Casado B, Lloveras B, Gea J. Muscle disease in severe COVID-19 patients: a microangiopathic myopathy. Ultrastruct Pathol 2025; 49:296-305. [PMID: 40257175 DOI: 10.1080/01913123.2025.2488809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/07/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025]
Abstract
Patients surviving coronavirus disease of 2019 (COVID-19) often complain of skeletal muscle weakness that may be very limiting and long-lasting. There are almost no studies on the skeletal muscle of these patients, and electron microscopic data are scarce. We assessed the ultrastructural changes in the quadriceps of eight patients with COVID-19 and found a combination of features different from those reported in corticosteroid myopathy and acute relaxant-steroid myopathy. The most remarkable and constant changes involved the endothelial cells and consisted of massive amounts of pinocytotic vesicles, degenerative changes, platelet aggregates and, most characteristic of all, an increase in the external lamina thickness that seems to stem from reduplication due to successive bouts of endothelial cell damage and subsequent regeneration. Viral particles were not found in any of the cases. This distinct and quite common set of alterations defines the myopathy associated with infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This association seems to be the result of an inflammatory process that would arise in infected cells but could damage non-infected endomysial blood vessels, thus resulting in persistent changes of the microvasculature that would be related to long-standing myopathic clinical features.
Collapse
Affiliation(s)
- Josep Lloreta-Trull
- Department of Pathology, Hospital del Mar-Parc de Salut Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Judith Marin-Corral
- Intensive Care Department, Hospital del Mar., Critical Pathology Research Group (GREPAC), IMIM, Barcelona, Spain
| | - Nuria Juanpere
- Department of Pathology, Hospital del Mar-Parc de Salut Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Sergi Pascual-Guardia
- Department of Experimental and Health Sciences (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
- Department of Respiratory Medicine, Hospital del Mar-IMIM, Barcelona, Spain
| | - Javier Gimeno
- Department of Pathology, Hospital del Mar-Parc de Salut Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Dolores Naranjo
- Department of Pathology, Hospital del Mar-Parc de Salut Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Laura Segalés
- Department of Pathology, Hospital del Mar-Parc de Salut Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Silvia Hernández
- Department of Pathology, Hospital del Mar-Parc de Salut Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Mercedes Simón
- Department of Pathology, Hospital del Mar-Parc de Salut Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Laia Serrano
- Department of Pathology, Hospital del Mar-Parc de Salut Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Beatriz Casado
- Department of Pathology, Hospital del Mar-Parc de Salut Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Belén Lloveras
- Department of Pathology, Hospital del Mar-Parc de Salut Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Joaquim Gea
- Department of Experimental and Health Sciences (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
- Department of Respiratory Medicine, Hospital del Mar-IMIM, Barcelona, Spain
| |
Collapse
|
13
|
Zhang J, Fang F, Zhang Y, Han X, Wang Y, Yin Q, Sun K, Zhou H, Qin H, Zhao D, Tai W, Zhang J, Zhang Z, Yang T, Wei Y, Zhang S, Li S, Li M, Zhao G. Humanized Major Histocompatibility Complex Transgenic Mouse Model Can Play a Potent Role in SARS-CoV-2 Human Leukocyte Antigen-Restricted T Cell Epitope Screening. Vaccines (Basel) 2025; 13:416. [PMID: 40333292 PMCID: PMC12031200 DOI: 10.3390/vaccines13040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 04/14/2025] [Indexed: 05/09/2025] Open
Abstract
Background: COVID-19, caused by SARS-CoV-2, poses a significant threat to human health. Vaccines designed for T-cell epitopes play an important role in eliminating the virus. However, T cell epitope screening often requires the use of a large number of peripheral blood mononuclear cells (PBMCs) from infected or convalescent patients, and if MHC humanized mice can be used for epitope screening, they will not have to wait for enough PBMCs to be available to screen for epitopes, thus buying time for epitope confirmation and vaccine design. Methods: In this study, we used SARS-CoV-2 BA.5 to infect HLA-A11/DR1, C57BL/6, hACE2 mice, and detected body weight changes, viral load, and pathological changes after infection. Fourteen days after the HLA-A11/DR1 and C57BL/6 mice were immunized against inactivated viruses, IgG antibodies were detected in mouse serum using ELISA, and IFN-γ produced by peptide stimulation of splenocytes was detected by ELISpot. Results: There is no obvious pathogenic phenotype of SARS-CoV-2 infection in HLA-A11/DR1 mice. Specific IgG antibodies were detected in serum after immunization of inactivated virus in both HLA-A11/DR1 and C57BL/6 mice, but specific IFN-γ was detected in splenocytes of HLA-A11/DR1 mice. Conclusions: Although HLA-A11/DR1 mice are unable to replicate the virus effectively in vivo, they are able to generate cellular immune responses after immunization inactivated viruses. Therefore, it can be used as a tool to substitute for human PBMCs in epitope screening, thus shortening the timeliness of T cell epitope screening and obtaining the immunogenicity information of new epitopes in a timely manner.
Collapse
Affiliation(s)
- Jiejie Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (J.Z.); (F.F.); (H.Z.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (Q.Y.); (K.S.); (T.Y.); (Y.W.); (S.Z.)
| | - Feimin Fang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (J.Z.); (F.F.); (H.Z.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (Q.Y.); (K.S.); (T.Y.); (Y.W.); (S.Z.)
| | - Yue Zhang
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China; (Y.Z.); (J.Z.); (Z.Z.)
| | - Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (Q.Y.); (K.S.); (T.Y.); (Y.W.); (S.Z.)
| | - Yuan Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (Q.Y.); (K.S.); (T.Y.); (Y.W.); (S.Z.)
| | - Qi Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (Q.Y.); (K.S.); (T.Y.); (Y.W.); (S.Z.)
| | - Keyu Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (Q.Y.); (K.S.); (T.Y.); (Y.W.); (S.Z.)
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Haisheng Zhou
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (J.Z.); (F.F.); (H.Z.)
| | - Hanxiong Qin
- Changchun Institute of Biological Products Co., Ltd., Changchun 130012, China; (H.Q.); (D.Z.)
| | - Dongmei Zhao
- Changchun Institute of Biological Products Co., Ltd., Changchun 130012, China; (H.Q.); (D.Z.)
| | - Wanbo Tai
- Shenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen 518132, China;
| | - Jun Zhang
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China; (Y.Z.); (J.Z.); (Z.Z.)
| | - Zhang Zhang
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China; (Y.Z.); (J.Z.); (Z.Z.)
| | - Tiantian Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (Q.Y.); (K.S.); (T.Y.); (Y.W.); (S.Z.)
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Yuwei Wei
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (Q.Y.); (K.S.); (T.Y.); (Y.W.); (S.Z.)
| | - Shuai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (Q.Y.); (K.S.); (T.Y.); (Y.W.); (S.Z.)
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Shuai Li
- Changchun Institute of Biological Products Co., Ltd., Changchun 130012, China; (H.Q.); (D.Z.)
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (Q.Y.); (K.S.); (T.Y.); (Y.W.); (S.Z.)
| | - Guangyu Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (J.Z.); (F.F.); (H.Z.)
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China; (Y.Z.); (J.Z.); (Z.Z.)
| |
Collapse
|
14
|
Jana ID, Kanjo K, Roy S, Bhasin M, Bhattacharya S, Banerjee I, Jana S, Chatterjee A, Chakrabarti AK, Chakraborty S, Mukherjee B, Varadarajan R, Mondal A. Early 2022 breakthrough infection sera from India target the conserved cryptic class 5 epitope to counteract immune escape by SARS-CoV-2 variants. J Virol 2025; 99:e0005125. [PMID: 40135898 PMCID: PMC11998512 DOI: 10.1128/jvi.00051-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, the vast majority of epitope mapping studies have focused on sera from mRNA-vaccinated populations from high-income countries. In contrast, here, we report an analysis of 164 serum samples isolated from patients with breakthrough infection in India during early 2022 who received two doses of the ChAdOx viral vector vaccine. Sera were screened for neutralization breadth against wild-type (WT), Kappa, Delta, and Omicron BA.1 viruses. Three sera with the highest neutralization breadth and potency were selected for epitope mapping, using charged scanning mutagenesis coupled with yeast surface display and next-generation sequencing. The mapped sera primarily targeted the recently identified class 5 cryptic epitope and, to a lesser extent, the class 1 and class 4 epitopes. The class 5 epitope is completely conserved across all severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and for most sarbecoviruses. Based on these observations, an additional 26 sera were characterized, and all showed a broad neutralizing activity, including against XBB.1.5. This is in contrast with the results obtained with the sera from individuals receiving multiple doses of original and updated mRNA vaccines, where impaired neutralization of XBB and later variants of concern (VOCs) were observed. Our study demonstrates that two doses of the ChAdOx vaccine in a highly exposed population were sufficient to drive substantial neutralization breadth against emerging and upcoming variants of concern. These data highlight the important role of hybrid immunity in conferring broad protection and inform future vaccine strategies to protect against rapidly mutating viruses. IMPORTANCE Worldwide implementation of coronavirus disease 2019 (COVID-19) vaccines and the parallel emergence of newer severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have shaped the humoral immune response in a population-specific manner. While characterizing this immune response is important for monitoring disease progression at the population level, it is also imperative for developing effective countermeasures in the form of novel vaccines and therapeutics. India has implemented the world's second largest COVID-19 vaccination drive and encountered a large number of post-vaccination "breakthrough" infections. From a cohort of patients with breakthrough infection, we identified individuals whose sera showed broadly neutralizing immunity against different SARS-CoV-2 variants. Interestingly, these sera primarily target a novel cryptic epitope, which was not identified in previous population-level studies conducted in Western countries. This rare cryptic epitope remains conserved across all SARS-CoV-2 variants, including recently emerged ones and for the SARS-like coronaviruses that may cause future outbreaks, thus representing a potential target for future vaccines.
Collapse
Affiliation(s)
- Indrani Das Jana
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Kawkab Kanjo
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | - Subhanita Roy
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Munmun Bhasin
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | - Shatarupa Bhattacharya
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Indranath Banerjee
- B.C. Roy Technology Hospital, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | | | - Alok Kumar Chakrabarti
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Arindam Mondal
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
15
|
Teoh YC, Noor MS, Aghakhani S, Girton J, Hu G, Chowdhury R. Viral escape-inspired framework for structure-guided dual bait protein biosensor design. PLoS Comput Biol 2025; 21:e1012964. [PMID: 40233103 PMCID: PMC12021294 DOI: 10.1371/journal.pcbi.1012964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 04/24/2025] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
A generalizable computational platform, CTRL-V (Computational TRacking of Likely Variants), is introduced to design selective binding (dual bait) biosensor proteins. The iteratively evolving receptor binding domain (RBD) of SARS-CoV-2 spike protein has been construed as a model dual bait biosensor which has iteratively evolved to distinguish and selectively bind to human entry receptors and avoid binding neutralizing antibodies. Spike RBD prioritizes mutations that reduce antibody binding while enhancing/ retaining binding with the ACE2 receptor. CTRL-V's through iterative design cycles was shown to pinpoint 20% (of the 39) reported SARS-CoV-2 point mutations across 30 circulating, infective strains as responsible for immune escape from commercial antibody LY-CoV1404. CTRL-V successfully identifies ~70% (five out of seven) single point mutations (371F, 373P, 440K, 445H, 456L) in the latest circulating KP.2 variant and offers detailed structural insights to the escape mechanism. While other data-driven viral escape variant predictor tools have shown promise in predicting potential future viral variants, they require massive amounts of data to bypass the need for physics of explicit biochemical interactions. Consequently, they cannot be generalized for other protein design applications. The publicly availably viral escape data was leveraged as in vivo anchors to streamline a computational workflow that can be generalized for dual bait biosensor design tasks as exemplified by identifying key mutational loci in Raf kinase that enables it to selectively bind Ras and Rap1a GTP. We demonstrate three versions of CTRL-V which use a combination of integer optimization, stochastic sampling by PyRosetta, and deep learning-based ProteinMPNN for structure-guided biosensor design.
Collapse
Affiliation(s)
- Yee Chuen Teoh
- Department of Computer Science, Iowa State University, Ames, Iowa, United States of America
| | - Mohammed Sakib Noor
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Sina Aghakhani
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Jack Girton
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Guiping Hu
- School of Industrial Engineering and Management, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States of America
- Nanovaccine Institute, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
16
|
Gonzalez V, Word C, Guerra-Pilaquinga N, Mazinani M, Fawcett S, Portfors C, Falzarano D, Kell AM, Jangra RK, Banerjee A, Seifert SN, Letko M. Expanding the bat toolbox: Carollia perspicillata bat cell lines and reagents enable the characterization of viral susceptibility and innate immune responses. PLoS Biol 2025; 23:e3003098. [PMID: 40233033 PMCID: PMC11999112 DOI: 10.1371/journal.pbio.3003098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/04/2025] [Indexed: 04/17/2025] Open
Abstract
Multiple viruses that are highly pathogenic in humans are known to have evolved in bats. How bats tolerate infection with these viruses, however, is poorly understood. As viruses engage in a wide range of interactions with their hosts, it is essential to study bat viruses in a system that resembles their natural environment like bat-derived in vitro cellular models. However, stable and accessible bat cell lines are not widely available for the broader scientific community. Here, we generated in vitro reagents for the Seba's short-tailed bat (Carollia perspicillata), tested multiple methods of immortalization, and characterized their susceptibility to virus infection and response to immune stimulation. Using pseudotyped virus library and authentic virus infections, we show that these C. perspicillata cell lines derived from a diverse array of tissues are susceptible to viruses bearing the glycoprotein of numerous orthohantaviruses, including Andes and Hantaan virus and are also susceptible to live hantavirus infection. Furthermore, stimulation with synthetic double-stranded RNA prior to infection with vesicular stomatitis virus and Middle Eastern respiratory syndrome coronavirus induced a protective antiviral response, demonstrating the suitability of our cell lines to study the bat antiviral immune response. Taken together, the approaches outlined here will inform future efforts to develop in vitro tools for virology from non-model organisms and these C. perspicillata cell lines will enable studies on virus-host interactions in these bats.
Collapse
Affiliation(s)
- Victoria Gonzalez
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | - Cierra Word
- Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Nahomi Guerra-Pilaquinga
- Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Mitra Mazinani
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| | - Stephen Fawcett
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| | - Christine Portfors
- Washington State University, Vancouver, Washington, United States of America
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | - Alison M. Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Rohit K. Jangra
- Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
- Department of Biology, University of Waterloo, Waterloo, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Stephanie N. Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| | - Michael Letko
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
17
|
Murugesan R, Sagar P, Kumar R, Kabra SK, Chaturvedi PK, Khan MA, Singh CA, Kumar R, Thakar A. Long Term Impact of Adeno-tonsillectomy on Immunity Against Respiratory Viral Infections; Evidence Deduced During COVID-19 Pandemic. Indian J Pediatr 2025; 92:383-389. [PMID: 38710955 DOI: 10.1007/s12098-024-05125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
OBJECTIVES To evaluate the risk of acquiring COVID-19 infection in patients who have undergone adeno-tonsillectomy (AT) as compared to their siblings. METHODS In this bidirectional cohort control study, 36 cohorts, younger than 18 y, who underwent AT, and 27 controls (siblings of the enrolled cohorts, younger than 18 y) were recruited. Incidence of COVID-19 was analyzed by symptoms suggestive of COVID-19 infection, COVID-19 testing, and SARS-CoV-2 specific antibody measurement. RESULTS In the cohort group, the overall COVID-19 positivity rate was 80.5% (n = 29/36) and symptomatic COVID-19 positivity rate was 68.9% (n = 20/29). Among the controls, the overall COVID-19 positivity rate was 44% (n = 12/27) and symptomatic COVID-19 positivity rate was 16% (n = 2/12). The cohorts had 1.8 times higher risk of contracting COVID-19 infection and the relative risk of symptomatic COVID-19 infections as compared to controls was 4.14. CONCLUSIONS This pilot study indicates that adeno-tonsillectomy poses children at a significantly higher risk of COVID-19 infections and likely other viral upper respiratory tract infections.
Collapse
Affiliation(s)
- Ramaneeshwaran Murugesan
- Department of Otolaryngology and Head & Neck Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prem Sagar
- Department of Otolaryngology and Head & Neck Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Rajeev Kumar
- Department of Otolaryngology and Head & Neck Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | | - Maroof Ahmad Khan
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Chirom Amit Singh
- Department of Otolaryngology and Head & Neck Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rakesh Kumar
- Department of Otolaryngology and Head & Neck Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Alok Thakar
- Department of Otolaryngology and Head & Neck Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
18
|
Letscher H, Guilligay D, Effantin G, Amen A, Sulbaran G, Burger JA, Bossevot L, Junges L, Leonec M, Morin J, Van Tilbeurgh M, Hérate C, Gallouët AS, Relouzat F, van der Werf S, Cavarelli M, Dereuddre-Bosquet N, van Gils MJ, Sanders RW, Poignard P, Le Grand R, Weissenhorn W. RBD-depleted SARS-CoV-2 spike generates protective immunity in cynomolgus macaques. NPJ Vaccines 2025; 10:63. [PMID: 40159504 PMCID: PMC11955555 DOI: 10.1038/s41541-025-01113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
The SARS-CoV-2 pandemic revealed the rapid evolution of circulating strains. This led to new variants carrying mostly mutations within the receptor binding domain, which is immunodominant upon immunization and infection. In order to steer the immune response away from RBD epitopes to more conserved domains, we generated S glycoprotein trimers without RBD and stabilized them by formaldehyde cross-linking. The cryoEM structure demonstrated that SΔRBD folds into the native prefusion conformation, stabilized by one specific cross-link between S2 protomers. SΔRBD was coated onto lipid vesicles, to produce synthetic virus-like particles, SΔRBD-LV, which were utilized in a heterologous prime-boost strategy. Immunization of cynomolgus macaques either three times with the mRNA Comirnaty vaccine or two times followed by SΔRBD-LV showed that the SΔRBD-LV boost induced similar antibody titers and neutralization of different variants, including omicron. Upon challenge with omicron XBB.3, both the Comirnaty only and Comirnaty/SΔRBD-LV vaccination schemes conferred similar overall protection from infection for both the Comirnaty only and Comirnaty/SΔRBD-LV vaccination schemes. However, the SΔRBD-LV boost indicated better protection against lung infection than the Comirnaty strategy alone. Together our findings indicate that SΔRBD is highly immunogenic and provides improved protection compared to a third mRNA boost indicative of superior antibody-based protection.
Collapse
Affiliation(s)
- Hélène Letscher
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France.
| | - Delphine Guilligay
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Gregory Effantin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Axelle Amen
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- CHU Grenoble Alpes, Grenoble, France
| | - Guidenn Sulbaran
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Judith A Burger
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Laetitia Bossevot
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Laura Junges
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Marco Leonec
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Julie Morin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Matthieu Van Tilbeurgh
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Cécile Hérate
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Sylvie van der Werf
- Institut Pasteur, Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR 3569, Université de Paris, Paris, France
- Institut Pasteur, National Reference Center for Respiratory Viruses, Paris, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Marit J van Gils
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Rogier W Sanders
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Weill Medical College of Cornell University, Department of Microbiology and Immunology, New York, NY, USA
| | - Pascal Poignard
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- CHU Grenoble Alpes, Grenoble, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France.
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| |
Collapse
|
19
|
Schnaubelt S, Jakobljevich A, Brock R, Oppenauer J, Kornfehl A, Eibensteiner F, Veigl C, Perkmann T, Haslacher H, Strassl R, Reindl-Schwaighofer R, Schlager O, Sulzgruber P. The Relation of Angiotensin-Converting Enzyme 2, Renin-Angiotensin-Aldosterone System Inhibitors, and Arterial Stiffness in Acute COVID-19 Emergency Department Patients-A Prospective Observational Study. J Clin Med 2025; 14:2233. [PMID: 40217682 PMCID: PMC11989675 DOI: 10.3390/jcm14072233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/22/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) can damage the endothelium and increase arterial stiffness, potentially leading to adverse cardiovascular events. In parallel, systemic inflammation in COVID-19 also impacts endothelial function. Angiotensin-converting enzyme 2 (ACE2) promotes vasodilation and anti-inflammatory effects, but also facilitates SARS-CoV-2 entry into human cells. Thus, concerns have been raised about the use of RAAS inhibitors (RAASi) in COVID-19 patients due to potential ACE2 upregulation. However, the clinical significance of increased plasma ACE2 (sACE2) in RAASi-treated COVID-19 patients remains unclear. Methods: This prospective, single-centre study evaluated RAASi, sACE2, and vascular function in acutely ill patients with COVID-19 in comparison with acutely ill patients without COVID-19. Adult emergency department patients with confirmed or suspected COVID-19 were enrolled and underwent pulse wave velocity, ankle brachial index, and sACE2 measurements. Results: In the 152 included patients (50% female, median age 62 years, 68% COVID-19 positive), the sACE2 values were slightly higher in the COVID-19 (0.485 [0.364-1.329]) than in the non-COVID-19 subgroup (0.458 [0.356-1.138]; p = 0.70). No significant differences in sACE2 were observed between patients with and without RAASi, regardless of COVID-19 status. Pulse wave velocity values differed significantly between groups (p = 0.015). Conclusions: In emergency department patients, sACE2 was upregulated in COVID-19 patients, probably due to oxidative stress and inflammation. RAASi did not increase sACE2, but may have protective effects against inflammation. Elevated sACE2 appeared to have a beneficial effect on arterial stiffness in all patients. These findings support continued RAASi therapy in COVID-19 patients to protect against chronic inflammation and apoptosis.
Collapse
Affiliation(s)
- Sebastian Schnaubelt
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Emergency Medical Service Vienna, 1030 Vienna, Austria
| | - Anna Jakobljevich
- Division of Pulmonology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Roman Brock
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Oppenauer
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrea Kornfehl
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Felix Eibensteiner
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Veigl
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Perkmann
- Department Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Helmuth Haslacher
- Department Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Robert Strassl
- Division of Clinical Virology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Roman Reindl-Schwaighofer
- Division of Nephrology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Patrick Sulzgruber
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
20
|
Garcia Lopez V, Plate L. Comparative Interactome Profiling of Nonstructural Protein 3 Across SARS-CoV-2 Variants Emerged During the COVID-19 Pandemic. Viruses 2025; 17:447. [PMID: 40143373 PMCID: PMC11946765 DOI: 10.3390/v17030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
SARS-CoV-2 virus and its variants remain a global health threat, due to their capacity for rapid evolution. Variants throughout the COVID-19 pandemic exhibited variations in virulence, impacting vaccine protection and disease severity. Investigating nonstructural protein variants is critical to understanding viral evolution and manipulation of host protein interactions. We focus on nonstructural protein 3 (nsp3), with multiple domains with different activities, including viral polyprotein cleavage, host deubiquitylation, de-ISGylation, and double-membrane vesicle formation. Using affinity purification-mass spectrometry (AP-MS), we identify differential protein interactions in nsp3 caused by mutations found in variants identified between 2019 and 2024: Alpha 20I, Beta 20H, Delta 21I, Delta 21J, Gamma 20J, Kappa 21B, Lambda 21G, Omicron 21K, and Omicron 21L. A small set of amino acid substitutions in the N-terminal region of nsp3 (nsp3.1) could be traced to increased interactions with RNA-binding proteins, which are vital in viral replication. Meanwhile, variants of the central region of nsp3 (nsp3.2) were found to share interactions with protein quality control machinery, including ER-associated degradation. In this construct, shared trends in interactor enrichment are observed between Omicron 21K and Delta 21I. These results underscore how minor mutations reshape host interactions, emphasizing the evolutionary arms race between the host and virus. We provide a roadmap to track the interaction changes driven by SARS-CoV-2 variant evolution.
Collapse
Affiliation(s)
- Valeria Garcia Lopez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA;
| | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA;
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
21
|
Wang J, Ma Y, Li Z, Yuan H, Liu B, Li Z, Su M, Habib G, Liu Y, Fu L, Wang P, Li M, He J, Chen J, Zhou P, Shi Z, Chen X, Xiong X. SARS-related coronavirus S-protein structures reveal synergistic RBM interactions underpinning high-affinity human ACE2 binding. SCIENCE ADVANCES 2025; 11:eadr8772. [PMID: 40085715 PMCID: PMC11908486 DOI: 10.1126/sciadv.adr8772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025]
Abstract
High-affinity and specific binding toward the human angiotensin-converting enzyme 2 (hACE2) receptor by severe acute respiratory syndrome coronavirus (SARS)-related coronaviruses (SARSr-CoVs) remains incompletely understood. We report cryo-electron microscopy structures of eight different S-proteins from SARSr-CoVs found across Asia, Europe, and Africa. These S-proteins all adopt tightly packed, locked, prefusion conformations. These structures enable the classification of SARSr-CoV S-proteins into three types, based on their receptor-binding motif (RBM) structures and ACE2 binding characteristics. Type-2 S-proteins often preferentially bind bat ACE2 (bACE2) over hACE2. We report a structure of a type-2 BtKY72-RBD in complex with bACE2 to understand ACE2 specificity. Structure-guided mutagenesis of BtKY72-RBD reveals that multiple synergistic mutations in four different regions of RBM are required to achieve high-affinity hACE2 binding. Similar RBM changes can also confer hACE2 binding to another type-2 BM48-31 S-protein, which is primarily non-ACE2 binding. These results provide an understanding of how high-affinity hACE2 binding may be acquired by SARSr-CoV S-proteins.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yong Ma
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zimu Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- Graduate School of Guangzhou Medical University, Guangzhou, China
| | - Hang Yuan
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Banghui Liu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zexuan Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengzhen Su
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Science and Technology of China, Hefei, China
| | - Gul Habib
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yutong Liu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lutang Fu
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Peiyi Wang
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Mei Li
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Jun He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jing Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Peng Zhou
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Zhengli Shi
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Research Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
22
|
Álvarez-Herrera M, Ruiz-Rodriguez P, Navarro-Domínguez B, Zulaica J, Grau B, Bracho MA, Guerreiro M, Aguilar‐Gallardo C, González-Candelas F, Comas I, Geller R, Coscollá M. Genome data artifacts and functional studies of deletion repair in the BA.1 SARS-CoV-2 spike protein. Virus Evol 2025; 11:veaf015. [PMID: 40308784 PMCID: PMC12041916 DOI: 10.1093/ve/veaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/20/2025] [Accepted: 03/11/2025] [Indexed: 05/02/2025] Open
Abstract
Mutations within the N-terminal domain (NTD) of the spike (S) protein are critical for the emergence of successful severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral lineages. The NTD has been repeatedly impacted by deletions, often exhibiting complex and dynamic patterns, such as the recurrent emergence and disappearance of deletions in dominant variants. This study investigates the influence of repair of NTD lineage-defining deletions found in the BA.1 lineage (Omicron variant) on viral success. We performed comparative genomic analyses of >10 million SARS-CoV-2 genomes from the Global Initiative on Sharing All Influenza Data (GISAID) EpiCov database to evaluate the detection of viruses lacking S:ΔH69/V70, S:ΔV143/Y145, or both. These findings were contrasted against a screening of publicly available raw sequencing data, revealing substantial discrepancies between data repositories, suggesting that spurious deletion repair observations in GISAID may result from systematic artifacts. Specifically, deletion repair events were approximately an order of magnitude less frequent in the read-run survey. Our results suggest that deletion repair events are rare, isolated events with limited direct influence on SARS-CoV-2 evolution or transmission. Nevertheless, such events could facilitate the emergence of fitness-enhancing mutations. To explore potential drivers of NTD deletion repair patterns, we characterized the viral phenotype of such markers in a surrogate in vitro system. Repair of the S:ΔH69/V70 deletion reduced viral infectivity, while simultaneous repair with S:ΔV143/Y145 led to lower fusogenicity. In contrast, individual S:ΔV143/Y145 repair enhanced both fusogenicity and susceptibility to neutralization by sera from vaccinated individuals. This work underscores the complex genotype-phenotype landscape of the spike NTD in SARS-CoV-2, which impacts viral biology, transmission efficiency, and immune escape potential, offering insights with direct relevance to public health, viral surveillance, and the adaptive mechanisms driving emerging variants.
Collapse
Affiliation(s)
- Miguel Álvarez-Herrera
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia - Spanish National Research Council (CSIC), FISABIO Joint Research Unit “Infection and Public Health”, C/ Catedràtic Agustín Escardino 9, Paterna 46980, Spain
| | - Paula Ruiz-Rodriguez
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia - Spanish National Research Council (CSIC), FISABIO Joint Research Unit “Infection and Public Health”, C/ Catedràtic Agustín Escardino 9, Paterna 46980, Spain
| | - Beatriz Navarro-Domínguez
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia - Spanish National Research Council (CSIC), FISABIO Joint Research Unit “Infection and Public Health”, C/ Catedràtic Agustín Escardino 9, Paterna 46980, Spain
- Department of Genetics, Universtiy of Granada, Avenida de la Fuente Nueva, Granada 18071, Spain
| | - Joao Zulaica
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia - Spanish National Research Council (CSIC), FISABIO Joint Research Unit “Infection and Public Health”, C/ Catedràtic Agustín Escardino 9, Paterna 46980, Spain
| | - Brayan Grau
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia - Spanish National Research Council (CSIC), FISABIO Joint Research Unit “Infection and Public Health”, C/ Catedràtic Agustín Escardino 9, Paterna 46980, Spain
| | - María Alma Bracho
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia - Spanish National Research Council (CSIC), FISABIO Joint Research Unit “Infection and Public Health”, C/ Catedràtic Agustín Escardino 9, Paterna 46980, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Manuel Guerreiro
- Department of Haematology, La Fe University and Polytechnic Hospital, Av. Fernando Abril Martorell 106, Valencia 46026, Spain
- La Fe Health Research Institute (IIS-La Fe), Av. Fernando Abril Martorell 106, Valencia 46026, Spain
| | | | - Fernando González-Candelas
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia - Spanish National Research Council (CSIC), FISABIO Joint Research Unit “Infection and Public Health”, C/ Catedràtic Agustín Escardino 9, Paterna 46980, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Iñaki Comas
- CIBER in Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos 3-5, Madrid 28029, Spain
- Tuberculosis Genomics Unit, Institute of Biomedicine of Valencia (IBV-CSIC), C/ Jaume Roig 11, Valencia 46010, Spain
| | - Ron Geller
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia - Spanish National Research Council (CSIC), FISABIO Joint Research Unit “Infection and Public Health”, C/ Catedràtic Agustín Escardino 9, Paterna 46980, Spain
| | - Mireia Coscollá
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia - Spanish National Research Council (CSIC), FISABIO Joint Research Unit “Infection and Public Health”, C/ Catedràtic Agustín Escardino 9, Paterna 46980, Spain
| |
Collapse
|
23
|
Iqbal Z, Asim M, Khan UA, Sultan N, Ali I. Computational electrostatic engineering of nanobodies for enhanced SARS-CoV-2 receptor binding domain recognition. Front Mol Biosci 2025; 12:1512788. [PMID: 40129869 PMCID: PMC11931142 DOI: 10.3389/fmolb.2025.1512788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/11/2025] [Indexed: 03/26/2025] Open
Abstract
This study presents a novel computational approach for engineering nanobodies (Nbs) for improved interaction with receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Using Protein Structure Reliability reports, RBD (7VYR_R) was selected and refined for subsequent Nb-RBD interactions. By leveraging electrostatic complementarity (EC) analysis, we engineered and characterized five Electrostatically Complementary Nbs (ECSb1-ECSb5) based on the CeVICA library's SR6c3 Nb. Through targeted modifications in the complementarity-determining regions (CDR) and framework regions (FR), we optimized electrostatic interactions to improve binding affinity and specificity. The engineered Nbs (ECSb3, ECSb4, and ECSb5) demonstrated high binding specificity for AS3, CA1, and CA2 epitopes. Interestingly, ECSb1 and ECSb2 selectively engaged with AS3 and CA1 instead of AS1 and AS2, respectively, due to a preference for residues that conferred superior binding complementarities. Furthermore, ECSbs significantly outperformed SR6c3 Nb in MM/GBSA results, notably, ECSb4 and ECSb3 exhibited superior binding free energies of -182.58 kcal.mol-1 and -119.07 kcal.mol-1, respectively, compared to SR6c3 (-105.50 kcal.mol-1). ECSbs exhibited significantly higher thermostability (100.4-148.3 kcal·mol⁻1) compared to SR6c3 (62.6 kcal·mol⁻1). Similarly, enhanced electrostatic complementarity was also observed for ECSb4-RBD and ECSb3-RBD (0.305 and 0.390, respectively) relative to SR6c3-RBD (0.233). Surface analyses confirmed optimized electrostatic patches and reduced aggregation propensity in the engineered Nb. This integrated EC and structural engineering approach successfully developed engineered Nbs with enhanced binding specificity, increased thermostability, and reduced aggregation, laying the groundwork for novel therapeutic applications targeting the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Zafar Iqbal
- Central Laboratories, King Faisal University, Al Hofuf, Saudi Arabia
| | - Muhammad Asim
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Umair Ahmad Khan
- Medical and Allied Department, Faisalabad Medical University, Faisalabad, Pakistan
| | - Neelam Sultan
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Irfan Ali
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
24
|
Sanna G, Riabova O, Kazakova E, Lepioshkin A, Monakhova N, Marongiu A, Franci G, Manzin A, Makarov V. Efficacy of dispirotripiperazine PDSTP in a golden Syrian hamster model of SARS-CoV-2 infection. Front Microbiol 2025; 16:1546946. [PMID: 40130242 PMCID: PMC11931052 DOI: 10.3389/fmicb.2025.1546946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/10/2025] [Indexed: 03/26/2025] Open
Abstract
The increasing incidence of viral pandemics calls for new small-molecule therapeutics beyond traditional approaches and targets. Dispirotripiperazine, composed of two positively charged nitrogen atoms, represents an unusual scaffold in drug discovery campaigns, and molecules based on it are known to prevent virus infection by disrupting early host-pathogen interactions. In this study, the adhesion-blocking dispirotripiperazine core compound PDSTP was evaluated against SARS-CoV-2 in vitro and in vivo. We demonstrated that the molecule was acceptably active against two clinical isolates affecting the early stages of the SARS-CoV-2 cycle. In a hamster model of SARS-CoV-2 pneumonia, PDSTP treatment resulted in reduced viral loads in the lungs and turbinates and milder lung tissue lesions. Overall, these data support PDSTP as a preclinical candidate for the treatment of COVID-19.
Collapse
Affiliation(s)
- Giuseppina Sanna
- Department of Biomedical Sciences, Microbiology and Virology Unit, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Olga Riabova
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| | - Elena Kazakova
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| | - Alexander Lepioshkin
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| | - Natalia Monakhova
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| | - Alessandra Marongiu
- Department of Biomedical Sciences, Microbiology and Virology Unit, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Aldo Manzin
- Department of Biomedical Sciences, Microbiology and Virology Unit, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Vadim Makarov
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| |
Collapse
|
25
|
Muneeswaran S, Poopathi Raja KM. Modes of Binding of Small Molecules Dictate the Interruption of RBD-ACE2 Complex of SARS-CoV-2. Chemphyschem 2025; 26:e202400751. [PMID: 39644215 DOI: 10.1002/cphc.202400751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The spike protein is a vital target for therapeutic advancement to inhibit viral entrance. Given that the connection between Spike and ACE2 constitutes the initial phase of SARS-CoV-2 pathogenesis, obstructing this interaction presents a promising therapeutic approach. This work aims to find compounds from DrugBank that can modulate the stability of the spike RBD-ACE2 protein-protein complex. Employing a therapeutic repurposing strategy, we conducted molecular docking of over 9000 DrugBank compounds against the Spike RBD-ACE2 complex, on ten variants, including the wild-type. We also evaluated the intricate stability of the RBD-ACE2 proteins by molecular dynamics simulations, hydrogen bond analysis, RMSD analysis, radius of gyration analysis, and the QM-MM approach. We assessed the efficacy of the top ten candidates for each variant as an inhibitor. Our findings demonstrated for the first time that DrugBank small molecules can interact in three distinct modalities inside the extensive protein-protein interface of RBD and ACE2 complexes. The top ten analyses identified specific DrugBank candidates for each variant and molecules capable of binding to multiple variants. This comprehensive computational technique enables the screening and forecasting of hits for any big and shallow protein-protein interface drug targets.
Collapse
Affiliation(s)
- Sithanantham Muneeswaran
- Chemical Biology and Biophysics Laboratory, Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, India, 625 021
| | - Karuppiah Muruga Poopathi Raja
- Chemical Biology and Biophysics Laboratory, Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, India, 625 021
- Chemical Biology and Biophysics Laboratory, Department of Chemistry, School of Physical Sciences, Central University of Kerala, Sabarmati Building, Tejaswini Hills, Periye, Kasaragod District, Kerala, India, 671 320
| |
Collapse
|
26
|
Xiao W, Li Z, Chen C, Shi Y, Fang P, Xiao S, Fang L. Revisiting the roles of trypsin in the productive infection of porcine deltacoronavirus in porcine-derived cells. Virology 2025; 604:110453. [PMID: 39961260 DOI: 10.1016/j.virol.2025.110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/25/2025] [Accepted: 02/12/2025] [Indexed: 05/09/2025]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteric coronavirus with the potential for interspecies transmission. Trypsin has been shown to play a positive role in the isolation and multiplication of PDCoV in vitro, however, the functions of trypsin during PDCoV replication cycle remain controversial. In this study, we revisited the roles of trypsin for PDCoV infection by utilizing two kinds of PDCoV, PDCoVT+ and PDCoVT-, which were prepared in the presence or absence of trypsin, respectively. We found that PDCoVT+ was able to continuously proliferate in the medium containing trypsin, achieving a higher titer as the infection progress in LLC-PK1 and other tested porcine-derived cells. However, its replication was only transiently improved at 12 hours post-infection, and lower viral titers were observed under trypsin-free culture conditions. Furthermore, the trypsin-mediated enhancement of viral replication could be inhibited by trypsin inhibitor SBTI, suggesting that the second-round viral reproduction of PDCoVT+ might be impeded without trypsin. We further investigated the replication dynamics of PDCoVT- in LLC-PK1 cells in the presence or absence of trypsin. The results indicated that PDCoVT- generated lower viral titers under trypsin-free culture conditions, while the addition of trypsin reverted the infectivity of PDCoVT-. Additionally, we demonstrated that trypsin cleaved the PDCoV spike protein, activating viral attachment and internalization. Moreover, trypsin promoted viral replication and release, accelerating PDCoV maturation and facilitating second-round infection. Taken together, this study systematically revaluated and emphasized an essential role of trypsin in PDCoV infection, providing mechanistic insights into the productive infection of PDCoV in porcine-derived cells.
Collapse
Affiliation(s)
- Wenwen Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chaoqun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yuting Shi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Puxian Fang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
27
|
Fornt‐Suñé M, Puertas MC, Martinez‐Picado J, García‐Pardo J, Ventura S. Protein Nanoparticles for Targeted SARS-CoV-2 Trapping and Neutralization. Adv Healthc Mater 2025; 14:e2402744. [PMID: 39400473 PMCID: PMC11874693 DOI: 10.1002/adhm.202402744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/27/2024] [Indexed: 10/15/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to challenge global health despite widespread vaccination efforts, underscoring the need for innovative strategies to combat emerging infectious diseases effectively. Herein, LCB1-NPs and LCB3-NPs are engineered as a novel class of protein-only nanoparticles formed through coiled coil-driven self-assembly and tailored to interact specifically with the SARS-CoV-2 spike protein. The multivalency of LCB1-NPs and LCB3-NPs offers a strategy for efficiently targeting and neutralizing SARS-CoV-2 both in solution and when immobilized on surfaces. It is demonstrated that LCB1-NPs and LCB3-NPs bind to the SARS-CoV-2 spike protein's receptor-binding domain (RBD) with high affinity, effectively blocking the entry of SARS-CoV-2 virus-like particles into angiotensin-converting enzyme 2 (ACE2)-coated human cells. The cost-effectiveness, scalability, and straightforward production process of these protein nanoparticles make them suitable for developing novel anti-viral materials. Accordingly, it is shown how these nanostructures can be packed into columns to build up economic and highly potent trapping devices for SARS-CoV-2 adsorption.
Collapse
Affiliation(s)
- Marc Fornt‐Suñé
- Institut de Biotecnologia i de Biomedicina (IBB)Universitat Autònoma de BarcelonaBellaterra08193Spain
- Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBellaterra08193Spain
| | - Maria C. Puertas
- IrsiCaixaBadalona08916Spain
- Germans Trias i Pujol Research Institute (IGTP)Badalona08916Spain
- Biomedical Research Networking Center on Infectious Diseases (CIBERINFEC)Madrid28029Spain
| | - Javier Martinez‐Picado
- IrsiCaixaBadalona08916Spain
- Germans Trias i Pujol Research Institute (IGTP)Badalona08916Spain
- Biomedical Research Networking Center on Infectious Diseases (CIBERINFEC)Madrid28029Spain
- Infectious Diseases and Immunity DepartmentUniversity of Vic‐Central University of CataloniaVic (UVic‐UCC)Vic08500Spain
- Catalan Institution for Research and Advanced Studies (ICREA)Barcelona08010Spain
| | - Javier García‐Pardo
- Institut de Biotecnologia i de Biomedicina (IBB)Universitat Autònoma de BarcelonaBellaterra08193Spain
- Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBellaterra08193Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina (IBB)Universitat Autònoma de BarcelonaBellaterra08193Spain
- Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBellaterra08193Spain
- Catalan Institution for Research and Advanced Studies (ICREA)Barcelona08010Spain
- Institut d'Investigació i Innovació Parc Taulí (I3PT CERCA)Universitat Autònoma de BarcelonaSabadell08208Spain
| |
Collapse
|
28
|
Nawa H, Murakami M. Neurobiology of COVID-19-Associated Psychosis/Schizophrenia: Implication of Epidermal Growth Factor Receptor Signaling. Neuropsychopharmacol Rep 2025; 45:e12520. [PMID: 39754403 PMCID: PMC11702486 DOI: 10.1002/npr2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/06/2025] Open
Abstract
COVID-19 exhibits not only respiratory symptoms but also neurological/psychiatric symptoms rarely including delirium/psychosis. Pathological studies on COVID-19 provide evidence that the cytokine storm, in particular (epidermal growth factor) EGF receptor (EGFR, ErbB1, Her1) activation, plays a central role in the progression of viral replication and lung fibrosis. Of note, SARS-CoV-2 virus (specifically, S1 spike domain) mimics EGF and directly transactivates EGFR, preceding the inflammatory process. In agreement, the anticancer drugs targeting EGFR such as Nimotuzumab and tyrosine kinase inhibitors are markedly effective on COVID-19. However, these data might raise a provisional caution regarding implication of psychiatric disorder such as schizophrenia. The author's group has been investigating the etiologic and neuropathologic associations of EGFR signaling with schizophrenia. There are significant molecular associations between schizophrenia and EGFR ligand levels in blood as well as in the brain. In addition, perinatal challenges of EGFR ligands and intraventricular administration of EGF to rodents and monkeys both resulted in severe behavioral and/or electroencephalographic endophenotypes relevant to this disorder. These animal models also display postpubertal abnormality in soliloquy-like self-vocalization as well as in intercortical functional connectivity. Here, we discuss neuropsychiatric implication of coronavirus infection and its interaction with the EGFR system, by searching related literatures in PubMed database as of the end of 2023.
Collapse
Affiliation(s)
- Hiroyuki Nawa
- Department of Physiological Sciences, School of Pharmaceutical SciencesWakayama Medical UniversityWakayamaJapan
| | - Masaaki Murakami
- Molecular Psychoneuroimmunology, Institute for Genetic MedicineHokkaido UniversitySapporoHokkaidoJapan
| |
Collapse
|
29
|
de Oliveira Silva Pinto M, de Paula Pereira L, de Mendonça Angelo ALP, Xavier MAP, de Magalhães Vieira Machado A, Russo RC. Dissecting the COVID-19 Immune Response: Unraveling the Pathways of Innate Sensing and Response to SARS-CoV-2 Structural Proteins. J Mol Recognit 2025; 38:e70002. [PMID: 39905998 DOI: 10.1002/jmr.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV), the virus responsible for COVID-19, interacts with the host immune system through complex mechanisms that significantly influence disease outcomes, affecting both innate and adaptive immunity. These interactions are crucial in determining the disease's severity and the host's ability to clear the virus. Given the virus's substantial socioeconomic impact, high morbidity and mortality rates, and public health importance, understanding these mechanisms is essential. This article examines the diverse innate immune responses triggered by SARS-CoV-2's structural proteins, including the spike (S), membrane (M), envelope (E), and nucleocapsid (N) proteins, along with nonstructural proteins (NSPs) and open reading frames. These proteins play pivotal roles in immune modulation, facilitating viral replication, evading immune detection, and contributing to severe inflammatory responses such as cytokine storms and acute respiratory distress syndrome (ARDS). The virus employs strategies like suppressing type I interferon production and disrupting key antiviral pathways, including MAVS, OAS-RNase-L, and PKR. This study also explores the immune pathways that govern the activation and suppression of immune responses throughout COVID-19. By analyzing immune sensing receptors and the responses initiated upon recognizing SARS-CoV-2 structural proteins, this review elucidates the complex pathways associated with the innate immune response in COVID-19. Understanding these mechanisms offers valuable insights for therapeutic interventions and informs public health strategies, contributing to a deeper understanding of COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Matheus de Oliveira Silva Pinto
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Viral Disease Immunology Group, Fundação Osvaldo Cruz, Instituto René Rachou, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo de Paula Pereira
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Viral Disease Immunology Group, Fundação Osvaldo Cruz, Instituto René Rachou, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
30
|
Augustus AR, Radhakrishnan Y, Bhaskar JP, Ramamurthi S, Shunmugiah KP. Tannic acid modulates SARS-CoV-2 pathogenesis by curbing key host receptors and oxidative stress. Toxicol In Vitro 2025; 103:105971. [PMID: 39551113 DOI: 10.1016/j.tiv.2024.105971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 10/23/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
The novel coronavirus SARS-CoV-2, which wrecked havoc around the world in the recent years through COVID-19, gains entry into the host cell through various receptors. Development of therapies targeting host-pathogen interaction will be a key to curb the infection as it potentially suppresses viral attachment and entry into the host. Boundless bioactives abundant in natural resources are the important source of new as well as safer alternatives. Tannic acid, a polyphenolic compound found abundantly in various plant sources, has gained much attention owing to its multifaceted pharmacological properties. This research paper presents a comprehensive investigation on antioxidant, anti-inflammatory and anti-viral abilities of tannic acid, substantiated through a triad of methodologies: in silico, in vitro and in vivo approaches. In vitro experiments, confirmed the antioxidant and anti-inflammatory efficacy as well as the host receptor modulating potential of tannic acid. In silico docking analyses elucidated the molecular interactions between tannic acid and key host receptors involved in inflammation and viral pathogenesis. Furthermore, the in vivo studies involving Danio rerio provided a holistic understanding of the systemic impact of tannic acid, including its antioxidant effects by mitigating the oxidative stress.
Collapse
Affiliation(s)
- Akshaya Rani Augustus
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
31
|
Ana-Sosa-Batiz F, Verma SK, Shafee N, Miller R, Conner C, Hastie KM, Timis J, Maule E, Nguyen MN, Tran L, Varghese K, Madany H, Street AE, Zandonatti M, Moi ML, Jarnagin K, Webb DR, Saphire EO, Kim K, Shresta S. A humanised ACE2, TMPRSS2, and FCGRT mouse model reveals the protective efficacy of anti-receptor binding domain antibodies elicited by SARS-CoV-2 hybrid immunity. EBioMedicine 2025; 113:105619. [PMID: 40020261 PMCID: PMC11910679 DOI: 10.1016/j.ebiom.2025.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Despite the importance of vaccination- and infection-elicited antibodies (Abs) to SARS-CoV-2 immunity, current mouse models do not fully capture the dynamics of Ab-mediated immunity in vivo, including potential contributions of the neonatal Fc receptor, encoded by FCGRT. METHODS We generated triple knock-in (TKI) mice expressing human ACE2, TMPRSS2, and FCGRT; and evaluated the protective efficacy of anti-SARS-CoV-2 monoclonal Abs (mAbs) and plasma from individuals with immunity elicited by vaccination alone plus SARS-CoV-2 infection-induced (hybrid) immunity. FINDINGS A human anti-SARS-CoV-2 mAb harbouring a half-life-extending mutation, but not the wild-type mAb, exhibited prolonged half-life in TKI mice and protected against lung infection with Omicron BA.2, validating the utility of these mice for evaluating therapeutic Abs. Pooled plasma from individuals with hybrid immunity to Delta, but not from vaccinated-only individuals, cleared infectious Delta from the lungs of TKI mice (P < 0.01), even though the two plasma pools had similar Delta-binding and -neutralising Ab titres in vitro. Similarly, plasma from individuals with hybrid Omicron BA.1/2 immunity, but not hybrid Delta immunity, decreased lung infection (P < 0.05) with BA.5 in TKI mice, despite the plasma pools having comparable BA.5-binding and -neutralising titres in vitro. Depletion of receptor-binding domain-targeting Abs from hybrid immune plasma abrogated their protection against infection. INTERPRETATION These results demonstrate the utility of TKI mice as a tool for the development of anti-SARS-CoV-2 mAb therapeutics, show that in vitro neutralisation assays do not accurately predict in vivo protection, and highlight the importance of hybrid immunity for eliciting protective anti-receptor-binding domain Abs. FUNDING This work was funded by grants from the e-Asia Joint Research Program (N10A650706 and N10A660577 to MLM, in collaboration with SS); the NIH (U19 AI142790-02S1 to EOS and SS and R44 AI157900 to KJ); the GHR Foundation (to SS and EOS); the Overton family (to SS and EOS); the Arvin Gottlieb Foundation (to SS and EOS), the Prebys Foundation (to SS); and the American Association of Immunologists Fellowship Program for Career Reentry (to FASB).
Collapse
Affiliation(s)
| | - Shailendra Kumar Verma
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Norazizah Shafee
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Robyn Miller
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Chris Conner
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Julia Timis
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Erin Maule
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Michael N Nguyen
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Linda Tran
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Krithik Varghese
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Henry Madany
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Michelle Zandonatti
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Meng Ling Moi
- School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Kurt Jarnagin
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - David R Webb
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA, 92037, USA.
| |
Collapse
|
32
|
Didkowska A, Martín-Santander V, Wojciechowska M, Olech W, Anusz K, Fernández A, Davies JE, Gómez Á, Peña-Fresneda N, Arias M, Lacasta D, Ortín A, Pérez MD, Villanueva-Saz S, Marteles D. Presence of anti-SARS-CoV-2 antibodies in European bison (Bison bonasus) in Poland, 2019-2023. BMC Vet Res 2025; 21:120. [PMID: 40022124 PMCID: PMC11869555 DOI: 10.1186/s12917-025-04593-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 02/11/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND The origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains unknown. However, it is likely that the virus spillover occurred from an animal reservoir to humans. Identifying animal species susceptible to SARS-CoV-2 is crucial for understanding cross-species transmission to humans. This study distinguishes itself by focusing on the susceptibility of the European bison (Bison bonasus), an endangered species, to SARS-CoV-2. The objective of this study was to investigate the occurrence of SARS-CoV-2 antibodies in a substantial number (n = 238) of both free-living and captive Polish European bison using an in-house ELISA method and virus neutralization test (VNT). RESULTS The seroprevalence of SARS-CoV-2 infection was found to be 1.29% (3/232). None of the seropositive European bison tested positive in the virus neutralization test. All seropositive animals were part of captive herds. CONCLUSIONS This study represents the first report of SARS-CoV-2 seroprevalence in both free-ranging and captive European bison in Poland. Based on these findings, the European bison appears to be a less susceptible species to SARS-CoV-2. The most probable route of transmission was from humans to European bison, as all seropositive animals belonged to captive herds with contact with indirect human sources, such as tourists and keepers.
Collapse
Affiliation(s)
- Anna Didkowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166, Warsaw, 02-787, Poland.
| | - Víctor Martín-Santander
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, 50013, Spain
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, Zaragoza, 50013, Spain
| | - Marlena Wojciechowska
- Department of Animal Genetics and Conservation, Warsaw University of Life Sciences (SGGW), Ciszewskiego 8, Warsaw, 02-786, Poland
| | - Wanda Olech
- Department of Animal Genetics and Conservation, Warsaw University of Life Sciences (SGGW), Ciszewskiego 8, Warsaw, 02-786, Poland
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166, Warsaw, 02-787, Poland
| | - Antonio Fernández
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, 50013, Spain
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, Zaragoza, 50013, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, 50013, Spain
| | - Janine E Davies
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, Zaragoza, 50013, Spain
| | - Álex Gómez
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, 50013, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, 50013, Spain
| | | | - Maykel Arias
- Aragon Health Research Institute (IIS Aragón), Zaragoza, 50009, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Delia Lacasta
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, 50013, Spain
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, Zaragoza, 50013, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, 50013, Spain
| | - Aurora Ortín
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, 50013, Spain
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, Zaragoza, 50013, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, 50013, Spain
| | - María Dolores Pérez
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, 50013, Spain
- Department of Animal Production and Sciences of the Food, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Sergio Villanueva-Saz
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, 50013, Spain.
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, Zaragoza, 50013, Spain.
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, 50013, Spain.
| | - Diana Marteles
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, 50013, Spain
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, Zaragoza, 50013, Spain
| |
Collapse
|
33
|
Wang Y, Xia B, Gao Z. A comprehensive review of current insights into the virulence factors of SARS-CoV-2. J Virol 2025; 99:e0204924. [PMID: 39878471 PMCID: PMC11852741 DOI: 10.1128/jvi.02049-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The evolution of SARS-CoV-2 pathogenicity has been a major focus of attention. However, the determinants of pathogenicity are still unclear. Various hypotheses have attempted to elucidate the mechanisms underlying the evolution of viral pathogenicity, but a definitive conclusion has yet to be reached. Here, we review the potential impact of all proteins in SARS-CoV-2 on the viral pathogenic process and analyze the effects of their mutations on pathogenicity evolution. We aim to summarize which virus-encoded proteins are crucial in influencing viral pathogenicity, defined as disease severity following infection. Mutations in these key proteins, which are the virulence factors in SARS-CoV-2, may be the driving forces behind the evolution of viral pathogenicity. Mutations in the S protein can impact viral entry and fusogenicity. Mutations in proteins such as NSP2, NSP5, NSP14, and ORF7a can alter the virus's ability to suppress host protein synthesis and innate immunity. Mutations in NSP3, NSP4, NSP6, N protein, NSP5, and NSP12 may alter viral replication efficiency. The combined effects of mutations in the S protein and NSP6 can significantly reduce viral replication. In addition, various viral proteins, including ORF3a, ORF8, NSP4, Spike protein, N protein, and E protein, directly participate in the inflammatory process. Mutations in these proteins can modulate the levels of inflammation following infection. Collectively, these viral protein mutations can influence SARS-CoV-2 pathogenicity by impacting viral immune evasion, replication capacity, and the level of inflammation mediated by infection. In conclusion, the evolution of SARS-CoV-2 pathogenicity is likely determined by multiple virulence factors.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Ruch K, MacDonald KD, Parkhotyuk K, Schilling D, Olson M, Mehess S, Milner K, McEvoy CT. Neonatal pulmonary function tests in infants born to COVID-19 positive mothers. J Perinatol 2025:10.1038/s41372-025-02237-w. [PMID: 39984719 DOI: 10.1038/s41372-025-02237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/26/2024] [Accepted: 02/11/2025] [Indexed: 02/23/2025]
Abstract
OBJECTIVE To compare pulmonary function tests (PFTs), specifically passive respiratory system compliance (Crs), in infants of mothers positive for COVID-19 during pregnancy compared to PFTs from a historical cohort of matched, healthy reference infants. STUDY DESIGN A prospective cohort study of infants born to COVID-19 positive mothers. Crs was measured with the single breath occlusion technique. Historical cohort data was obtained from a pre-COVID-19 data repository. Respiratory questionnaires were done at 1-year postnatal age. RESULTS Twenty-four PFTs in the COVID-19 cohort were compared with PFTs from 24 reference subjects. Infants of the COVID-19 positive mothers had a Crs of 3.57 ml/cmH2O versus 3.76 mL/cmH2O in the reference group (p > 0.05). The remaining PFT outcomes were comparable between groups. The COVID-19 infants reported more allergic symptoms and conditions through 1-year. CONCLUSION We found no difference in Crs in infants of mothers with COVID-19 during pregnancy compared to a historical pre-COVID reference cohort.
Collapse
Affiliation(s)
- Katy Ruch
- Division of Neonatology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Kelvin D MacDonald
- Division of Pediatric Pulmonology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Kseniya Parkhotyuk
- Division of Neonatology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Diane Schilling
- Division of Neonatology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Mathew Olson
- Division of Neonatology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Shawn Mehess
- Department of Psychology, Portland State University, Portland, OR, USA
| | - Kristin Milner
- Division of Neonatology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Cindy T McEvoy
- Division of Neonatology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
35
|
Wang E, Cohen AA, Caldera LF, Keeffe JR, Rorick AV, Adia YM, Gnanapragasam PNP, Bjorkman PJ, Chakraborty AK. Designed mosaic nanoparticles enhance cross-reactive immune responses in mice. Cell 2025; 188:1036-1050.e11. [PMID: 39855201 PMCID: PMC11845252 DOI: 10.1016/j.cell.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/27/2024] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Nanoparticle vaccines displaying combinations of SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs) could protect against SARS-CoV-2 variants and spillover of zoonotic sarbecoviruses into humans. Using a computational approach, we designed variants of SARS-CoV-2 RBDs and selected 7 natural sarbecovirus RBDs, each predicted to fold properly and abrogate antibody responses to variable epitopes. RBDs were attached to 60-mer nanoparticles to make immunogens displaying two (mosaic-2COMs), five (mosaic-5COM), or seven (mosaic-7COM) different RBDs for comparisons with mosaic-8b, which elicited cross-reactive antibodies and protected animals from sarbecovirus challenges. Naive and COVID-19 pre-vaccinated mice immunized with mosaic-7COM elicited antibodies targeting conserved RBD epitopes, and their sera exhibited higher binding and neutralization titers against sarbecoviruses than mosaic-8b. Mosaic-2COMs and mosaic-5COM elicited higher antibody potencies against some SARS-CoV-2 variants than mosaic-7COM. However, mosaic-7COM elicited more potent responses against zoonotic sarbecoviruses and highly mutated Omicrons, supporting its use to protect against SARS-CoV-2 variants and zoonotic sarbecoviruses.
Collapse
Affiliation(s)
- Eric Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Luis F Caldera
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Annie V Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yusuf M Adia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Arup K Chakraborty
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
36
|
Acioglu C, Elkabes S. Innate immune sensors and regulators at the blood brain barrier: focus on toll-like receptors and inflammasomes as mediators of neuro-immune crosstalk and inflammation. J Neuroinflammation 2025; 22:39. [PMID: 39955600 PMCID: PMC11829548 DOI: 10.1186/s12974-025-03360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025] Open
Abstract
Cerebral endothelial cells (CEC) that form the brain capillaries are the principal constituents of the blood brain barrier (BBB), the main active interface between the blood and the brain which plays a protective role by restricting the infiltration of pathogens, harmful substances and immune cells into the brain while allowing the entry of essential nutrients. Aberrant CEC function often leads to increased permeability of the BBB altering the bidirectional communication between the brain and the bloodstream and facilitating the extravasation of immune cells into the brain. In addition to their role as essential gatekeepers of the BBB, CEC exhibit immune cell properties as they can receive and transmit signals between the blood and the brain partly via release of inflammatory effectors in pathological conditions. Cerebral endothelial cells express innate immune receptors, including toll like receptors (TLRs) and inflammasomes which are the first sensors of exogenous or endogenous dangers and initiators of immune and inflammatory responses which drive neural dysfunction and degeneration. Accumulating evidence indicates that activation of TLRs and inflammasomes in CEC compromises BBB integrity, promotes aberrant neuroimmune interactions and modulates both systemic and neuroinflammation, common pathological features of neurodegenerative and psychiatric diseases and central nervous system (CNS) infections and injuries. The goal of the present review is to provide an overview of the pivotal roles played by TLRs and inflammasomes in CEC function and discuss the molecular and cellular mechanisms by which they contribute to BBB disruption and neuroinflammation especially in the context of traumatic and ischemic brain injuries and brain infections. We will especially focus on the most recent advances and literature reports in the field to highlight the knowledge gaps. We will discuss future research directions that can advance our understanding of the central contribution of innate immune receptors to CEC and BBB dysfunction and the potential of innate immune receptors at the BBB as promising therapeutic targets in a wide variety of pathological conditions of the brain.
Collapse
Affiliation(s)
- Cigdem Acioglu
- New Jersey Medical School, The Genomics Center, Rutgers the State University of New Jersey, Newark, NJ, USA
| | - Stella Elkabes
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue MSB F-667, Newark, NJ, 07103, USA.
| |
Collapse
|
37
|
Burkova EE, Bakhno IA. Sequences in the Cytoplasmic Tail Contribute to the Intracellular Trafficking and the Cell Surface Localization of SARS-CoV-2 Spike Protein. Biomolecules 2025; 15:280. [PMID: 40001583 PMCID: PMC11853650 DOI: 10.3390/biom15020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Spike protein is a surface glycoprotein of the SARS-CoV-2 coronavirus, providing interaction of the coronavirus with angiotensin-converting enzyme 2 (ACE2) on the host cell. The cytoplasmic tail of the S protein plays an important role in an intracellular transport and translocation of the glycoprotein to the plasma membrane. The cytoplasmic domain of the S protein contains binding sites for COPI, COPII, and SNX27, which are required for the intracellular trafficking of this glycoprotein. In addition, the cytoplasmic domain of the S protein contains S-palmitoylation sites. S-palmitoylation increases the hydrophobicity of the S protein by regulating its transport to the plasma membrane. The cytoplasmic tail of the S protein has a signaling sequence that provides interaction with the ERM family proteins, which may mediate communication between the cell membrane and the actin cytoskeleton. This review examines the role of the cytoplasmic tail of the SARS-CoV-2 S protein in its intracellular transport and translocation to the plasma membrane. Understanding these processes is necessary not only for the development of vaccines based on mRNA or adenovirus vectors encoding the full-length spike (S) protein, but also for the therapy of the new coronavirus infection (COVID-19).
Collapse
Affiliation(s)
- Evgeniya E. Burkova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
| | | |
Collapse
|
38
|
Naiditch H, Betts MR, Larman HB, Levi M, Rosenberg AZ. Immunologic and inflammatory consequences of SARS-CoV-2 infection and its implications in renal disease. Front Immunol 2025; 15:1376654. [PMID: 40012912 PMCID: PMC11861071 DOI: 10.3389/fimmu.2024.1376654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/23/2024] [Indexed: 02/28/2025] Open
Abstract
The emergence of the COVID-19 pandemic made it critical to understand the immune and inflammatory responses to the SARS-CoV-2 virus. It became increasingly recognized that the immune response was a key mediator of illness severity and that its mechanisms needed to be better understood. Early infection of both tissue and immune cells, such as macrophages, leading to pyroptosis-mediated inflammasome production in an organ system critical for systemic oxygenation likely plays a central role in the morbidity wrought by SARS-CoV-2. Delayed transcription of Type I and Type III interferons by SARS-CoV-2 may lead to early disinhibition of viral replication. Cytokines such as interleukin-1 (IL-1), IL-6, IL-12, and tumor necrosis factor α (TNFα), some of which may be produced through mechanisms involving nuclear factor kappa B (NF-κB), likely contribute to the hyperinflammatory state in patients with severe COVID-19. Lymphopenia, more apparent among natural killer (NK) cells, CD8+ T-cells, and B-cells, can contribute to disease severity and may reflect direct cytopathic effects of SARS-CoV-2 or end-organ sequestration. Direct infection and immune activation of endothelial cells by SARS-CoV-2 may be a critical mechanism through which end-organ systems are impacted. In this context, endovascular neutrophil extracellular trap (NET) formation and microthrombi development can be seen in the lungs and other critical organs throughout the body, such as the heart, gut, and brain. The kidney may be among the most impacted extrapulmonary organ by SARS-CoV-2 infection owing to a high concentration of ACE2 and exposure to systemic SARS-CoV-2. In the kidney, acute tubular injury, early myofibroblast activation, and collapsing glomerulopathy in select populations likely account for COVID-19-related AKI and CKD development. The development of COVID-19-associated nephropathy (COVAN), in particular, may be mediated through IL-6 and signal transducer and activator of transcription 3 (STAT3) signaling, suggesting a direct connection between the COVID-19-related immune response and the development of chronic disease. Chronic manifestations of COVID-19 also include systemic conditions like Multisystem Inflammatory Syndrome in Children (MIS-C) and Adults (MIS-A) and post-acute sequelae of COVID-19 (PASC), which may reflect a spectrum of clinical presentations of persistent immune dysregulation. The lessons learned and those undergoing continued study likely have broad implications for understanding viral infections' immunologic and inflammatory consequences beyond coronaviruses.
Collapse
Affiliation(s)
- Hiam Naiditch
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael R. Betts
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - H. Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
39
|
Buhre JS, Pongracz T, Geisen UM, Schubert M, Wang W, Nouta J, Obara M, Lehrian S, Rahmöller J, Petry J, Tran F, Schreiber S, Sümbül M, Berner D, Gerdes S, Schirmer J, Longardt AC, Hoff P, Kalinke U, Ludwig RJ, Bartsch YC, Hoyer BF, Wuhrer M, Ehlers M. Anti-TNF therapy impairs both short- and long-term IgG responses after repeated vaccination. Allergy 2025; 80:423-439. [PMID: 39049686 PMCID: PMC11804311 DOI: 10.1111/all.16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/29/2024] [Accepted: 06/01/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Recently, it has been questioned whether vaccination of patients with inflammatory (auto)immune diseases under anti-tumor necrosis factor (TNF) treatment leads to impaired vaccine-induced immune responses and protection against breakthrough infections. However, the effects of TNF blockade on short- and long-term immune responses after repeated vaccination remain unclear. Vaccination studies have shown that initial short-term IgG antibodies (Abs) carry highly galactosylated and sialylated Fc glycans, whilst long-term IgG Abs have low levels of galactosylation and sialylation and are most likely generated by long-lived plasma cells (PCs) derived primarily from the germinal center (GC) response. Thus, IgG Fc glycosylation patterns may be applicable to distinguish short- and long-term vaccine responses after repeated vaccination under the influence of anti-TNF treatment. METHODS We used COVID-19 vaccination as a model to investigate vaccine-induced IgG subclass levels and Fc glycosylation patterns, B cell subsets, and effector functions of short- and long-term Ab responses after up to three vaccinations in patients on anti-TNF or other immunosuppressive treatments and in healthy individuals. Using TriNetX, a global healthcare database, we determined the risk of SARS-CoV-2 breakthrough infections in vaccinated patients treated with anti-TNF or other immunosuppressive drugs. RESULTS Anti-TNF treatment reduced the long-term abundance of all anti-S IgG subclasses with low levels of galactosylation and sialylation. Re-activation of potential memory B cells initially generated highly galactosylated and sialylated IgG antibodies, which were progressively reduced after each booster dose in anti-TNF-treated patients, especially in the elderly. The reduced short- and long-term IgG (1) levels in anti-TNF-treated patients correlated with diminished functional activity and an increased risk for the development of COVID-19. CONCLUSIONS The data suggest that anti-TNF treatment reduces both GC-dependent long-lived PCs and GC-dependent memory B cell-derived short-lived PCs, hence both the long- and short-term IgG subclass responses, respectively, after repeated vaccination. We propose that anti-TNF therapy, especially in the elderly, reduces the benefit of booster vaccination.
Collapse
Affiliation(s)
- Jana Sophia Buhre
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional MedicineUniversity of Lübeck and University Medical Center Schleswig‐HolsteinLübeckGermany
| | - Tamas Pongracz
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| | - Ulf Martin Geisen
- Medical Department 1, Rheumatology and Clinical ImmunologyUniversity Medical Center Schleswig‐HolsteinKielGermany
| | - Mareike Schubert
- Laboratory of Anti‐viral antibody‐omicsTWINCORE—Institute for Experimental Infection Research, Helmholtz Center for Infection Research (HZI) and Medical School Hannover (MHH)HannoverGermany
| | - Wenjun Wang
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| | - Jan Nouta
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| | - Maureen Obara
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical SchoolHannoverGermany
| | - Selina Lehrian
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional MedicineUniversity of Lübeck and University Medical Center Schleswig‐HolsteinLübeckGermany
| | - Johann Rahmöller
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional MedicineUniversity of Lübeck and University Medical Center Schleswig‐HolsteinLübeckGermany
| | - Janina Petry
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional MedicineUniversity of Lübeck and University Medical Center Schleswig‐HolsteinLübeckGermany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian‐Albrecht University of KielKielGermany
- Department for Internal Medicine IUniversity Medical Center Schleswig‐HolsteinKielGermany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian‐Albrecht University of KielKielGermany
- Department for Internal Medicine IUniversity Medical Center Schleswig‐HolsteinKielGermany
| | - Melike Sümbül
- Department for DermatologyUniversity Medical Center Schleswig‐HolsteinKielGermany
| | - Dennis Berner
- Medical Department 1, Rheumatology and Clinical ImmunologyUniversity Medical Center Schleswig‐HolsteinKielGermany
| | - Sascha Gerdes
- Department for DermatologyUniversity Medical Center Schleswig‐HolsteinKielGermany
| | - Jan Schirmer
- Medical Department 1, Rheumatology and Clinical ImmunologyUniversity Medical Center Schleswig‐HolsteinKielGermany
| | | | - Paula Hoff
- Department of RheumatologyEndokrinologikum‐GruppeBerlinGermany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical SchoolHannoverGermany
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental DermatologyUniversity of LübeckLübeckGermany
- Department of DermatologyUniversity Medical Center Schleswig‐HolsteinLübeckGermany
| | - Yannic C. Bartsch
- Laboratory of Anti‐viral antibody‐omicsTWINCORE—Institute for Experimental Infection Research, Helmholtz Center for Infection Research (HZI) and Medical School Hannover (MHH)HannoverGermany
| | - Bimba F. Hoyer
- Medical Department 1, Rheumatology and Clinical ImmunologyUniversity Medical Center Schleswig‐HolsteinKielGermany
| | - Manfred Wuhrer
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional MedicineUniversity of Lübeck and University Medical Center Schleswig‐HolsteinLübeckGermany
- Airway Research Center North (ARCN)University of Lübeck, German Center for Lung Research (DZL)LübeckGermany
| |
Collapse
|
40
|
Simpson J, Kasson PM. Structural prediction of chimeric immunogen candidates to elicit targeted antibodies against betacoronaviruses. PLoS Comput Biol 2025; 21:e1012812. [PMID: 39908344 PMCID: PMC11809852 DOI: 10.1371/journal.pcbi.1012812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/10/2025] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Betacoronaviruses pose an ongoing pandemic threat. Antigenic evolution of the SARS-CoV-2 virus has shown that much of the spontaneous antibody response is narrowly focused rather than broadly neutralizing against even SARS-CoV-2 variants, let alone future threats. One way to overcome this is by focusing the antibody response against better-conserved regions of the viral spike protein. This has been demonstrated empirically in prior work, but we posit that systematic design tools will further potentiate antigenic focusing approaches. Here, we present a design approach to predict stable chimeras between SARS-CoV-2 and other coronaviruses, creating synthetic spike proteins that display a desired conserved region, in this case S2, and vary other regions. We leverage AlphaFold to predict chimeric structures and create a new metric for scoring chimera stability based on AlphaFold outputs. We evaluated 114 candidate spike chimeras using this approach. Top chimeras were further evaluated using molecular dynamics simulation as an intermediate validation technique, showing good stability compared to low-scoring controls. Experimental testing of five predicted-stable and two predicted-unstable chimeras confirmed 5/7 predictions, with one intermediate result. This demonstrates the feasibility of the underlying approach, which can be used to design custom immunogens to focus the immune response against a desired viral glycoprotein epitope.
Collapse
Affiliation(s)
- Jamel Simpson
- Program in Biophysics and Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Peter M. Kasson
- Program in Biophysics and Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Departments of Chemistry and Biochemistry and Biomedical Engineering, Georgia Institute of Technology, Atlanta, GeorgiaUnited States of America
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
41
|
Dufloo J, Andreu-Moreno I, Moreno-García J, Valero-Rello A, Sanjuán R. Receptor-binding proteins from animal viruses are broadly compatible with human cell entry factors. Nat Microbiol 2025; 10:405-419. [PMID: 39747691 PMCID: PMC11790484 DOI: 10.1038/s41564-024-01879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025]
Abstract
Cross-species transmission of animal viruses poses a threat to human health. However, systematic experimental assessments of these risks remain scarce. A critical step in viral infection is cellular internalization mediated by viral receptor-binding proteins (RBPs). Here we constructed viral pseudotypes bearing the RBPs of 102 enveloped RNA viruses and assayed their infectivity across 5,202 RBP-cell combinations. This showed that most of the tested viruses have the potential to enter human cells. Pseudotype infectivity varied widely among the 14 viral families examined and was influenced by RBP characteristics, host of origin and target cell type. Cellular gene expression data revealed that the availability of specific cell-surface receptors is not necessarily the main factor limiting viral entry and that additional host factors must be considered. Altogether, these results suggest weak interspecies barriers in the early stages of infection and advance our understanding of the molecular interactions driving viral zoonosis.
Collapse
Affiliation(s)
- Jérémy Dufloo
- Institute for Integrative Systems Biology, Universitat de València - Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Iván Andreu-Moreno
- Institute for Integrative Systems Biology, Universitat de València - Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Jorge Moreno-García
- Institute for Integrative Systems Biology, Universitat de València - Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Ana Valero-Rello
- Institute for Integrative Systems Biology, Universitat de València - Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, Universitat de València - Consejo Superior de Investigaciones Científicas, Paterna, Spain.
| |
Collapse
|
42
|
Wang D, Li L, Ren Z, Yu Y, Zhang Z, Zhou J, Zhao H, Zhao Z, Shi P, Mi X, Jin X, Deng Z, Li J, Chen J. Host Specificity and Geographic Dispersion Shape Virome Diversity in Rhinolophus Bats. Mol Ecol 2025; 34:e17645. [PMID: 39825599 DOI: 10.1111/mec.17645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/15/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025]
Abstract
Rhinolophus bats have been identified as natural reservoirs for viruses with global health implications, including severe acute respiratory syndrome-related coronaviruses (SARSr-CoV) and swine acute diarrhoea syndrome-related coronavirus (SADSr-CoV). In this study, we characterised the individual viromes of 603 bats to systematically investigate the diversity, abundance and geographic distribution of viral communities within R. affinis, R. sinicus and 11 other bat species. The massive metatranscriptomic data revealed substantial viral genome resources of 133 vertebrate-infecting viral clusters, which contain occasional cross-species transmission across mammalian orders and especially across bat families. Notably, those viruses included nine clusters closely related to human and/or livestock pathogens, such as SARS-CoVs and SADS-CoVs. The investigation also highlighted distinct features of viral diversity between and within bat colonies, which appear to be influenced by the distinct host population genetics of R. affinis and R. sinicus species. The comparison of SARSr-CoVs further showed varied impact of host specificity along genome-wide diversification and modular viral evolution among Rhinolophus species. Overall, the findings point to a complex interaction between host genetic diversity, and the way viruses spread and structure within natural populations, calling for continued surveillance efforts to understand factors driving viral transmission and emergence in human populations. These results present the underestimated spillover risk of bat viruses, highlighting the importance of enhancing preparedness and surveillance for emerging zoonotic viruses.
Collapse
Affiliation(s)
- Daxi Wang
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zirui Ren
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Yepin Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zhipeng Zhang
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Jiabin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Hailong Zhao
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Zhiwen Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Peibo Shi
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinrui Mi
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Jin
- BGI Research, Shenzhen, China
| | - Ziqing Deng
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Junhua Li
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
- BGI Research, Shenzhen, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
43
|
Alvarez PA, Tang A, Winters DM, Kaushal P, Medina A, Kaczor-Urbanowicz KE, Reyes BR, Kaake RM, Fregoso OI, Pyle AD, Bouhaddou M, Tang H, Li MMH. Old World alphaviruses use distinct mechanisms to infect brain microvascular endothelial cells for neuroinvasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634395. [PMID: 39896450 PMCID: PMC11785202 DOI: 10.1101/2025.01.22.634395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Several alphaviruses bypass the blood-brain barrier (BBB), causing debilitating or fatal encephalitis. Sindbis virus (SINV) has been extensively studied in vivo to understand alphavirus neuropathogenesis; yet the molecular details of neuroinvasion at the BBB remain poorly understood. We investigated alphavirus-BBB interactions by pairing a physiologically relevant, human pluripotent stem cell derived model of brain microvascular endothelial cells (BMECs) with SINV strains of opposite neuroinvasiveness. Our system demonstrates that SINV neuroinvasion correlates with robust infection of the BBB. Specifically, SINV genetic determinants of neuroinvasion enhance viral entry into BMECs. We also identify solute carrier family 2 member 3 (SLC2A3, also named GLUT3) as a potential BMEC-specific entry factor exploited for neuroinvasion. Strikingly, efficient BBB infection is a conserved phenotype that correlates with the neuroinvasive capacity of several Old World alphaviruses, including chikungunya virus. Here, we reveal BBB infection as a shared pathway for alphavirus neuroinvasion that can be targeted for preventing alphavirus-induced encephalitis.
Collapse
Affiliation(s)
- Pablo A Alvarez
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Ashley Tang
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Declan M Winters
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Prashant Kaushal
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Angelica Medina
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Karolina E Kaczor-Urbanowicz
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
- Center of Oral and Head/Neck Oncology Research, Biosystems and Function, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Bryan Ramirez Reyes
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Robyn M Kaake
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, CA 94158, USA
| | - Oliver I Fregoso
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - April D Pyle
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Mehdi Bouhaddou
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Melody M H Li
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
44
|
Liu WB, Cai Y, Zhou M, Kinji H, Zhao MW, Shi X. Purtscher-like retinopathy associated with COVID-19: a case report. Int J Ophthalmol 2025; 18:187-189. [PMID: 39829625 PMCID: PMC11672090 DOI: 10.18240/ijo.2025.01.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 01/22/2025] Open
Affiliation(s)
- Wen-Bo Liu
- Department of Ophthalmology, Peking University People's Hospital; Eye Disease and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing 100044, China
| | - Yi Cai
- Department of Ophthalmology, Peking University People's Hospital; Eye Disease and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing 100044, China
| | - Miao Zhou
- Department of Ophthalmology, Peking University People's Hospital; Eye Disease and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing 100044, China
| | - Hashimoto Kinji
- Department of Ophthalmology, Peking University People's Hospital; Eye Disease and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing 100044, China
| | - Ming-Wei Zhao
- Department of Ophthalmology, Peking University People's Hospital; Eye Disease and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing 100044, China
| | - Xuan Shi
- Department of Ophthalmology, Peking University People's Hospital; Eye Disease and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing 100044, China
| |
Collapse
|
45
|
Ren J, Zhang Z, Xia Y, Zhao D, Li D, Zhang S. Research Progress on the Structure and Function, Immune Escape Mechanism, Antiviral Drug Development Methods, and Clinical Use of SARS-CoV-2 M pro. Molecules 2025; 30:351. [PMID: 39860219 PMCID: PMC11767629 DOI: 10.3390/molecules30020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The three-year COVID-19 pandemic 'has' caused a wide range of medical, social, political, and financial implications. Since the end of 2020, various mutations and variations in SARS-CoV-2 strains, along with the immune escape phenomenon, have emerged. There is an urgent need to identify a relatively stable target for the development of universal vaccines and drugs that can effectively combat both SARS-CoV-2 strains and their mutants. Currently, the main focus in treating SARS-CoV-2 lies in disrupting the virus's life cycle. The main protease (Mpro) is closely associated with virus replication and maturation and plays a crucial role in the early stages of infection. Consequently, it has become an important target for the development of SARS-CoV-2-specific drugs. This review summarizes the recent research progress on the novel coronavirus's main proteases, including the pivotal role of Mpro in the virus's life cycle, the structure and catalytic mechanism of Mpro, the self-maturation mechanism of Mpro, the role of Mpro in virus immune escape, the current methods of developing antiviral drugs targeting Mpro, and the key drugs that have successfully entered clinical trials. The aim is to provide researchers involved in the development of antiviral drugs targeting Mpro with systematic and comprehensive information.
Collapse
Affiliation(s)
| | | | | | | | - Dingqin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.R.); (Z.Z.); (Y.X.); (D.Z.)
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.R.); (Z.Z.); (Y.X.); (D.Z.)
| |
Collapse
|
46
|
Adha SA, Afifah NN, Latarissa IR, Iftinan GN, Kusuma ASW, Febriyanti RM, Barliana MI, Lestari K. Herbal Medicines as Complementary Therapy for Managing Complications in COVID-19 Patients with Diabetes Mellitus. Diabetes Metab Syndr Obes 2025; 18:135-146. [PMID: 39840393 PMCID: PMC11746946 DOI: 10.2147/dmso.s498774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025] Open
Abstract
Diabetes mellitus (DM) is recognized and classified as a group of conditions marked by persistent high blood glucose levels. It is also an inflammatory condition that may influence concurrent disease states, including Coronavirus Disease 2019 (COVID-19). Currently, no effective drug has been found to treat COVID-19, especially in DM patients. Many herbal medicines, such as the well-known Andrographis paniculata, have been explored as drugs and complementary therapies due to their antidiabetic, antibacterial, antiviral, anti-inflammatory, and immunomodulatory effects. This study aimed to examine the potential of herbal medicines as complementary therapy in DM patients with COVID-19 complications, drawing from in-vitro and in-vivo investigations. This study analyzed articles published within the last 15 years using keywords including "herbal medicines", "COVID-19", "Diabetes Mellitus", "antidiabetics", "antiviral", and "anti-inflammatory". The results showed that several herbal medicines could serve as complementary therapy for DM patients with COVID-19 complications. These include Andrographis paniculata, Ageratum conyzoides, Artocarpus altilis, Centella asiatica, Momordica charantia, Persea gratissima, Phyllanthus urinaria, Physalis angulata, Tinospora cordifolia, and Zingiber zerumbet. Herbal medicines may serve as a complementary therapy for DM patients with COVID-19, but these claims need experimental validation in infection models and among affected patients.
Collapse
Affiliation(s)
- Syah Akbarul Adha
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Nadiya Nurul Afifah
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia
| | - Irma Rahayu Latarissa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Medication Therapy Adherence Clinic (MTAC), Universitas Padjadjaran, Sumedang, Indonesia
| | - Ghina Nadhifah Iftinan
- Medication Therapy Adherence Clinic (MTAC), Universitas Padjadjaran, Sumedang, Indonesia
| | - Arif Satria Wira Kusuma
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia
| | - Raden Maya Febriyanti
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia
| | - Keri Lestari
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Medication Therapy Adherence Clinic (MTAC), Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
47
|
Olebo DF, Igwe MC. Comparative Analysis of Virology and Pathogenesis of SARS-CoV-2 and HIV Infections: Implications for Public Health and Treatment Strategies. Infect Drug Resist 2025; 18:269-283. [PMID: 39835166 PMCID: PMC11742764 DOI: 10.2147/idr.s498430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Introduction Coronavirus Disease 19 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and Human Immunodeficiency Virus (HIV) are significant 21st-century pandemics with distinct virological and clinical characteristics. COVID-19 primarily presents as an acute respiratory illness, while HIV leads to chronic immune suppression. Understanding their differences can enhance public health strategies and treatment approaches. Purpose This narrative review compares the virology, transmission, immune responses, and clinical outcomes of SARS-CoV-2 and HIV to inform treatment strategies and public health interventions. Methods A narrative review was conducted, synthesizing data from peer-reviewed literature and expert commentary from 2010 to 2024. Databases such as PubMed, Cochrane Library, and Google Scholar were searched for relevant studies. Results SARS-CoV-2 primarily spreads through airborne droplets and contaminated surfaces, while HIV transmits through direct contact with infected bodily fluids. The immune response to SARS-CoV-2 involves both innate and adaptive systems, potentially leading to a cytokine storm in severe cases. In contrast, HIV evades the immune system by integrating into host cells, resulting in chronic infection and progressive immune deterioration. Treatment for SARS-CoV-2 focuses on symptom management and prevention, with antiviral medications and vaccines playing crucial roles. Conversely, HIV treatment relies on antiretroviral therapy (ART) to suppress viral replication and maintain immune function. Conclusion The review highlights the acute nature of SARS-CoV-2 versus the chronic progression of HIV. Tailored prevention and treatment strategies are essential for effective disease management. Recommendations Public health strategies should address the unique transmission routes and progression of both viruses. Further research into vaccine development and therapeutic interventions is critical for improving disease management.
Collapse
Affiliation(s)
- David Francis Olebo
- Department of Public Health, School of Allied Health Sciences, Kampala International University, Western Campus, Uganda
- Komase Ebenezer Research Centre, Fort Portal City, Uganda
- Makerere University Walter Reed Program, Kampala City, Uganda
| | - Matthew Chibunna Igwe
- Department of Public Health, School of Allied Health Sciences, Kampala International University, Western Campus, Uganda
| |
Collapse
|
48
|
Wickenhagen A, Flagg M, Port JR, Yinda CK, Goldin K, Gallogly S, Schulz JE, Lutterman T, Williamson BN, Kaiser F, Mukesh RK, van Tol S, Smith B, van Doremalen N, Russell CA, de Wit E, Munster VJ. Evolution of Omicron lineage towards increased fitness in the upper respiratory tract in the absence of severe lung pathology. Nat Commun 2025; 16:594. [PMID: 39799119 PMCID: PMC11724920 DOI: 10.1038/s41467-025-55938-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
The emergence of the Omicron lineage represented a major genetic drift in SARS-CoV-2 evolution. This was associated with phenotypic changes including evasion of pre-existing immunity and decreased disease severity. Continuous evolution within the Omicron lineage raised concerns of potential increased transmissibility and/or disease severity. To address this, we evaluate the fitness and pathogenesis of contemporary Omicron variants XBB.1.5, XBB.1.16, EG.5.1, and JN.1 in the upper (URT) and lower respiratory tract (LRT). We compare in vivo infection in Syrian hamsters with infection in primary human nasal and lung epithelium cells and assess differences in transmissibility, antigenicity, and innate immune activation. Omicron variants replicate efficiently in the URT but display limited pathology in the lungs compared to previous variants and fail to replicate in human lung organoids. JN.1 is attenuated in both URT and LRT compared to other Omicron variants and fails to transmit in the male hamster model. Our data demonstrate that Omicron lineage evolution has favored increased fitness in the URT.
Collapse
Affiliation(s)
- Arthur Wickenhagen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Meaghan Flagg
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Julia R Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Laboratory of Transmission Immunology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kerry Goldin
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Shane Gallogly
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Tessa Lutterman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brandi N Williamson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Franziska Kaiser
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Reshma K Mukesh
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Sarah van Tol
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brian Smith
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Colin A Russell
- Laboratory of Applied Evolutionary Biology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
49
|
Huang J, Fan Y, Wang Y, Liu J. The effects of enhanced external counter-pulsation on post-acute sequelae of COVID-19: A narrative review. Open Med (Wars) 2025; 20:20241067. [PMID: 39802655 PMCID: PMC11716443 DOI: 10.1515/med-2024-1067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 01/16/2025] Open
Abstract
Some of the millions of patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have developed new sequelae after recovering from the initial disease, termed post-acute sequelae of coronavirus disease 2019 (PASC). One symptom is anxiety, which is likely due to three etiologies: brain structural changes, neuroendocrine disruption, and neurotransmitter alterations. This review provides an overview of the current literature on the pathophysiological pathways linking coronavirus disease 2019 to anxiety, as well as the possible mechanisms of action in which an increasingly scrutinized treatment method, enhanced external counter-pulsation (EECP), is able to alleviate anxiety. SARS-CoV-2 triggers increased inflammatory cytokine production, as well as oxidative stress; these processes contribute to the aforementioned three etiologies. The potential treatment approach of EECP, involving sequenced inflation and deflation of specifically-placed airbags, has become of increasing interest, as it has been found to alleviate PASC-associated anxiety by improving patient cardiovascular function. These functional improvements were achieved by EECP stimulating anti-inflammatory and pro-angiogenic processes, as well as improving endothelial cell function and coronary blood flow, partially via counteracting against the negative effects of SARS-CoV-2 infection on the renin-angiotensin-aldosterone system. Therefore, EECP could promote both psychosomatic and cardiac rehabilitation. Further research, though, is still needed to fully determine its benefits and mechanism of action.
Collapse
Affiliation(s)
- Jiecheng Huang
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Yuxuan Fan
- Department of Rehabilitation, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Yongshun Wang
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Cardiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jingjin Liu
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Cardiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
50
|
Liu J, Luo S, Xu X, Zhang E, Liang H, Zhang JZH, Duan L. Evaluating the Synergistic Effects of Multi-Epitope Nanobodies on BA.2.86 Variant Immune Escape. J Phys Chem Lett 2025; 16:396-405. [PMID: 39780712 DOI: 10.1021/acs.jpclett.4c03028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Addressing the frequent emergence of SARS-CoV-2 mutant strains requires therapeutic approaches with innovative neutralization mechanisms. The targeting of multivalent nanobodies can enhance potency and reduce the risk of viral escape, positioning them as promising drug candidates. Here, the synergistic mechanisms of the two types of nanobodies are investigated deeply. Our research revealed that the Fu2-1-Fu2-2 system exhibited significant synergy, whereas the Sb#15-Sb#68 system demonstrated antagonism, in which entropy was the dominant contributor to antagonism. Conformational analysis further demonstrated that the presence of a monomeric nanobody influenced the flexibility of residues near other epitopes, thereby affecting the overall synergy of the systems. Moreover, we identified that changes in the hydrogen bond network and the charge of residues played a critical role in the binding between nanobodies and spike. We hope this study will provide novel insights into the development of multivalent nanobody combinations.
Collapse
Affiliation(s)
- Jinxin Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiaole Xu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Enhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Houde Liang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - John Z H Zhang
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
- NYU-ECNU Center for Computational Chemistry and Shanghai Frontiers Science Center of AI and DL, NYU Shanghai, Shanghai 200124, China
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| |
Collapse
|