1
|
Ramou I, Janvier S, Druwé S, Sys C, Dekeyzer L, Claes P, Pardon E, Menet C, Steyaert J. Expression and purification of an activated orexin receptor 1- G-protein complex. Protein Expr Purif 2025; 228:106660. [PMID: 39761735 DOI: 10.1016/j.pep.2025.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Orexin receptors constitute a family of class A G-protein coupled receptors. There are two subtypes of orexin receptors, namely OX1R and OX2R. OX1R and OX2R are widely distributed in the central nervous system and are the targets for the peptide neurotransmitters orexin-A and orexin-B. Orexins are involved in a plethora of key physiological functions such as regulation of the sleep/wake cycle, feeding behavior, energy homeostasis, and cognition. Dysfunction of the orexin system has been linked to various pathological conditions, such as narcolepsy, insomnia, obesity, addiction, cognitive impairment, and depression. The active state structure of OX2R has been elucidated, while the active state structure of OX1R remains unresolved. Here, we describe a method for the expression and purification of an activated OX1R bound to its native peptide ligand, orexin-A, in complex with a Dominant Negative Gsq protein and Nb35. The proteins were expressed in Hi5 insect cells and subsequently purified via two consecutive affinity chromatography steps, followed by a final polishing Size Exclusion Chromatography step. This study could stimulate further research into the activation mechanisms of OX1R and the structural determination of its active state structure.
Collapse
Affiliation(s)
- Ioanna Ramou
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium
| | - Steven Janvier
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium
| | | | | | | | | | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium
| | | | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium.
| |
Collapse
|
2
|
Ackle F, Thavarasah S, Earp JC, Seeger MA. Rigid enlargement of sybodies with antibody fragments for cryo-EM analyses of small membrane proteins. Sci Rep 2025; 15:9460. [PMID: 40108246 PMCID: PMC11923154 DOI: 10.1038/s41598-025-92950-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
Single particle cryo-electron microscopy (cryo-EM) has become the method of choice to determine experimental structures of integral membrane proteins. However, high-resolution structure determination by cryo-EM remains a challenge for membrane proteins that are too small or lack distinctive structural elements for particle alignment. To address this problem, single-domain antibodies called nanobodies and their synthetic variants called sybodies are widely used tools to trap membrane transporters in defined conformations, to enlarge particle sizes and to act as fiducial markers enabling reliable particle alignment. Recently, antibody fragments (Fabs) enlarging nanobodies at their backside in a rigid fashion, called Legobody and NabFab, have been developed. Here, we investigated how Legobodies and NabFabs can be harmonized with sybodies. We show that any sybody can be adapted to the Legobody approach with minimal effort, while only a subset of sybodies belonging to the loop library can be converted into a format recognized by the NabFab without complementarity-determining region-grafting. This technical note will facilitate the usage of Legobodies and NabFabs in the context of sybodies targeting membrane proteins and other small proteins for high-resolution structure determination by cryo-EM.
Collapse
Affiliation(s)
- Fabian Ackle
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Sujani Thavarasah
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Jennifer C Earp
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Skiba MA, Canavan C, Nemeth GR, Liu J, Kanso A, Kruse AC. Epitope-directed selection of GPCR nanobody ligands with evolvable function. Proc Natl Acad Sci U S A 2025; 122:e2423931122. [PMID: 40067891 PMCID: PMC11929449 DOI: 10.1073/pnas.2423931122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
Antibodies have the potential to target G protein-coupled receptors (GPCRs) with high receptor, cellular, and tissue selectivity; however, few antibody ligands for GPCRs exist. Here, we describe a generalizable selection method to enrich for GPCR ligands from a synthetic camelid antibody fragment (nanobody) library. Our strategy yielded multiple nanobody ligands for the angiotensin II type I receptor (AT1R), a prototypical GPCR and important drug target. We found that nanobodies readily act as allosteric modulators, encoding selectivity for both the receptor and chemical features of GPCR ligands. We then used structure-guided design to convert two nanobodies from allosteric ligands to competitive AT1R inhibitors through simple mutations. This work demonstrates that nanobodies can encode multiple pharmacological behaviors and have great potential as evolvable scaffolds for the development of next-generation GPCR therapeutics.
Collapse
Affiliation(s)
- Meredith A. Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Clare Canavan
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Genevieve R. Nemeth
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Jinghan Liu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Ali Kanso
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| |
Collapse
|
4
|
Saha S, Sano FK, Sharma S, Ganguly M, Mishra S, Dalal A, Akasaka H, Kobayashi TA, Zaidi N, Tiwari D, Roy N, Yadav MK, Banerjee N, Saha S, Mohapatra S, Itoh Y, Chevigné A, Banerjee R, Shihoya W, Nureki O, Shukla AK. Molecular basis of promiscuous chemokine binding and structural mimicry at the C-X-C chemokine receptor, CXCR2. Mol Cell 2025; 85:976-988.e9. [PMID: 39978339 DOI: 10.1016/j.molcel.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/11/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025]
Abstract
Selectivity of natural agonists for their cognate receptors is a hallmark of G-protein-coupled receptors (GPCRs); however, this selectivity often breaks down at the chemokine receptors. Chemokines often display promiscuous binding to chemokine receptors, but the underlying molecular determinants remain mostly elusive. Here, we perform a comprehensive transducer-coupling analysis, testing all known C-X-C chemokines on every C-X-C type chemokine receptor to generate a global fingerprint of the selectivity and promiscuity encoded within this system. Taking lead from this, we determine cryoelectron microscopy (cryo-EM) structures of the most promiscuous receptor, C-X-C chemokine receptor 2 (CXCR2), in complex with several chemokines. These structural snapshots elucidate the details of ligand-receptor interactions, including structural motifs, which are validated using mutagenesis and functional experiments. We also observe that most chemokines position themselves on CXCR2 as a dimer while CXCL6 exhibits a monomeric binding pose. Taken together, our findings provide the molecular basis of chemokine promiscuity at CXCR2 with potential implications for developing therapeutic molecules.
Collapse
Affiliation(s)
- Shirsha Saha
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Saloni Sharma
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Manisankar Ganguly
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sudha Mishra
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Annu Dalal
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Hiroaki Akasaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takaaki A Kobayashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Nashrah Zaidi
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Divyanshu Tiwari
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nabarun Roy
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Manish K Yadav
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nilanjana Banerjee
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sayantan Saha
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Samanwita Mohapatra
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Yuzuru Itoh
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Ramanuj Banerjee
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India.
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Arun K Shukla
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India.
| |
Collapse
|
5
|
Dolezal R. Computational Analysis of the Fully Activated Orexin Receptor 2 across Various Thermodynamic Ensembles with Surface Tension Monitoring and Markov State Modeling. J Phys Chem B 2025; 129:1976-1996. [PMID: 39935320 DOI: 10.1021/acs.jpcb.4c06767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
In this study, we investigated the stability of the fully activated conformation of the orexin receptor 2 (OX2R) embedded in a pure POPC bilayer using MD simulations. Various thermodynamic ensembles (i.e., NPT, NVT, NVE, NPAT, μVT, and NPγT) were employed to explore the dynamical heterogeneity of the system in a comprehensive way. In addition, informational similarity metrics (e.g., Jensen-Shannon divergence) as well as Markov state modeling approaches were utilized to elucidate the receptor kinetics. Special attention was paid to assessing surface tension within the simulation box, particularly under NPγT conditions, where 21 nominal surface tension constants were evaluated. Our findings suggest that traditional thermodynamic ensembles such as NPT may not adequately control physical properties of the POPC membrane, impacting the plausibility of the OX2R model. In general, the performed study underscores the importance of employing the NPγT ensemble for computational investigations of membrane-embedded receptors, as it effectively maintains zero surface tension in the simulated system. These results offer valuable insights for future research aimed at understanding receptor dynamics and designing targeted therapeutics.
Collapse
Affiliation(s)
- Rafael Dolezal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 03 Hradec Kralove, Czech Republic
- Department of Epidemiology, Second Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic
| |
Collapse
|
6
|
Gratio V, Dragan P, Garcia L, Saveanu L, Nicole P, Voisin T, Latek D, Couvineau A. Pharmacodynamics of the orexin type 1 (OX 1) receptor in colon cancer cell models: A two-sided nature of antagonistic ligands resulting from partial dissociation of Gq. Br J Pharmacol 2024. [PMID: 39675769 DOI: 10.1111/bph.17422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/24/2024] [Accepted: 11/10/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND AND PURPOSE Orexins have important biological effects on the central and peripheral nervous systems. Their primary ability is to regulate the sleep-wake cycle. Orexins and their antagonists, via OX1 receptor have been shown to have proapoptotic and antitumor effects on various digestive cancers cell models. We investigated, (1) the ability of orexin-A and its antagonists to regulate OX1 receptor expression at the cell surface and (2), how OX1 antagonists induced proapoptotic effect in cancer cells models. EXPERIMENTAL APPROACH The OX1 receptor internalisation is determined by imaging flow cytometry in colon cancer cell models and the OX1 receptor coupling to G proteins via bioluminescence resonance energy transfer and molecular dynamic simulation. KEY RESULTS Orexin-A induced rapid receptor internalisation within 15 min via β-arrestin 2 recruitment, whereas antagonists had no effect. Furthermore, Gq is critical for receptor internalisation and signalling pathways, and no other G proteins appear to be recruited. Surprisingly, antagonists induced recruitment and conformational changes in Gq protein. Simulated molecular dynamics of agonists/orexin receptor/Gq complexes show that antagonists exhibits a similar binding mode, stable at the binding site and show conformational changes of ECL2, similar to that of the agonists. CONCLUSION AND IMPLICATIONS OX1 receptor activation induced orexin/β-arrestin-dependent internalisation, which was independent of the apoptotic pathway induced by orexins and antagonists. In addition, antagonists activate the Gq protein, suggesting its putative partial dissociation. These results suggest that the development of OX1 receptor targeting molecules, including orexin antagonists with antitumor properties, may pave the way for innovative cancer therapies.
Collapse
Affiliation(s)
- Valérie Gratio
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From Inflammation to Cancer in Digestive diseases (INDiD)", DHU UNITY, Université Paris Cité, Paris, France
- INSERM UMR1149/Inflammation Research Center (CRI), Flow Cytometry Platform (CytoCRI), DHU UNITY, Université Paris Cité, Paris, France
| | - Paulina Dragan
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Laurine Garcia
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From Inflammation to Cancer in Digestive diseases (INDiD)", DHU UNITY, Université Paris Cité, Paris, France
| | - Loredana Saveanu
- INSERM UMR1149/Inflammation Research Center (CRI), Team "Antigen Presentation by Dendritic Cells to T cells (APreT)", DHU UNITY, Université Paris Cité, Paris, France
| | - Pascal Nicole
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From Inflammation to Cancer in Digestive diseases (INDiD)", DHU UNITY, Université Paris Cité, Paris, France
| | - Thierry Voisin
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From Inflammation to Cancer in Digestive diseases (INDiD)", DHU UNITY, Université Paris Cité, Paris, France
| | - Dorota Latek
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Alain Couvineau
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From Inflammation to Cancer in Digestive diseases (INDiD)", DHU UNITY, Université Paris Cité, Paris, France
| |
Collapse
|
7
|
Skiba MA, Sterling SM, Rawson S, Zhang S, Xu H, Jiang H, Nemeth GR, Gilman MSA, Hurley JD, Shen P, Staus DP, Kim J, McMahon C, Lehtinen MK, Rockman HA, Barth P, Wingler LM, Kruse AC. Antibodies expand the scope of angiotensin receptor pharmacology. Nat Chem Biol 2024; 20:1577-1585. [PMID: 38744986 PMCID: PMC11561159 DOI: 10.1038/s41589-024-01620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
G-protein-coupled receptors (GPCRs) are key regulators of human physiology and are the targets of many small-molecule research compounds and therapeutic drugs. While most of these ligands bind to their target GPCR with high affinity, selectivity is often limited at the receptor, tissue and cellular levels. Antibodies have the potential to address these limitations but their properties as GPCR ligands remain poorly characterized. Here, using protein engineering, pharmacological assays and structural studies, we develop maternally selective heavy-chain-only antibody ('nanobody') antagonists against the angiotensin II type I receptor and uncover the unusual molecular basis of their receptor antagonism. We further show that our nanobodies can simultaneously bind to angiotensin II type I receptor with specific small-molecule antagonists and demonstrate that ligand selectivity can be readily tuned. Our work illustrates that antibody fragments can exhibit rich and evolvable pharmacology, attesting to their potential as next-generation GPCR modulators.
Collapse
Affiliation(s)
- Meredith A Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sarah M Sterling
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Cryo-EM Facility at MIT.nano, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shaun Rawson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Shuhao Zhang
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Huixin Xu
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Haoran Jiang
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Genevieve R Nemeth
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Morgan S A Gilman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Joseph D Hurley
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Pengxiang Shen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Dean P Staus
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
- Septerna, South San Francisco, CA, USA
| | - Jihee Kim
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | - Conor McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Sanofi, Large Molecule Research, Cambridge, MA, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Patrick Barth
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Epalinges, Switzerland
| | - Laura M Wingler
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Yu J, Kumar A, Zhang X, Martin C, Van Holsbeeck K, Raia P, Koehl A, Laeremans T, Steyaert J, Manglik A, Ballet S, Boland A, Stoeber M. Structural basis of μ-opioid receptor targeting by a nanobody antagonist. Nat Commun 2024; 15:8687. [PMID: 39384768 PMCID: PMC11464722 DOI: 10.1038/s41467-024-52947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 09/24/2024] [Indexed: 10/11/2024] Open
Abstract
The μ-opioid receptor (μOR), a prototypical G protein-coupled receptor (GPCR), is the target of opioid analgesics such as morphine and fentanyl. Due to the severe side effects of current opioid drugs, there is considerable interest in developing novel modulators of μOR function. Most GPCR ligands today are small molecules, however biologics, including antibodies and nanobodies, represent alternative therapeutics with clear advantages such as affinity and target selectivity. Here, we describe the nanobody NbE, which selectively binds to the μOR and acts as an antagonist. We functionally characterize NbE as an extracellular and genetically encoded μOR ligand and uncover the molecular basis for μOR antagonism by determining the cryo-EM structure of the NbE-μOR complex. NbE displays a unique ligand binding mode and achieves μOR selectivity by interactions with the orthosteric pocket and extracellular receptor loops. Based on a β-hairpin loop formed by NbE that deeply protrudes into the μOR, we design linear and cyclic peptide analogs that recapitulate NbE's antagonism. The work illustrates the potential of nanobodies to uniquely engage with GPCRs and describes lower molecular weight μOR ligands that can serve as a basis for therapeutic developments.
Collapse
MESH Headings
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/antagonists & inhibitors
- Single-Domain Antibodies/chemistry
- Single-Domain Antibodies/metabolism
- Single-Domain Antibodies/pharmacology
- Humans
- Cryoelectron Microscopy
- Ligands
- HEK293 Cells
- Animals
- Protein Binding
- Binding Sites
- Models, Molecular
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/metabolism
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/metabolism
- Peptides, Cyclic/pharmacology
Collapse
Affiliation(s)
- Jun Yu
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Amit Kumar
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Xuefeng Zhang
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Charlotte Martin
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kevin Van Holsbeeck
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pierre Raia
- Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Antoine Koehl
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | | | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Steven Ballet
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andreas Boland
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Fontaine T, Busch A, Laeremans T, De Cesco S, Liang YL, Jaakola VP, Sands Z, Triest S, Masiulis S, Dekeyzer L, Samyn N, Loeys N, Perneel L, Debaere M, Martini M, Vantieghem C, Virmani R, Skieterska K, Staelens S, Barroco R, Van Roy M, Menet C. Structure elucidation of a human melanocortin-4 receptor specific orthosteric nanobody agonist. Nat Commun 2024; 15:7029. [PMID: 39353917 PMCID: PMC11445563 DOI: 10.1038/s41467-024-50827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 07/23/2024] [Indexed: 10/03/2024] Open
Abstract
The melanocortin receptor 4 (MC4R) belongs to the melanocortin receptor family of G-protein coupled receptors and is a key switch in the leptin-melanocortin molecular axis that controls hunger and satiety. Brain-produced hormones such as α-melanocyte-stimulating hormone (agonist) and agouti-related peptide (inverse agonist) regulate the molecular communication of the MC4R axis but are promiscuous for melanocortin receptor subtypes and induce a wide array of biological effects. Here, we use a chimeric construct of conformation-selective, nanobody-based binding domain (a ConfoBody Cb80) and active state-stabilized MC4R-β2AR hybrid for efficient de novo discovery of a sequence diverse panel of MC4R-specific, potent and full agonistic nanobodies. We solve the active state MC4R structure in complex with the full agonistic nanobody pN162 at 3.4 Å resolution. The structure shows a distinct interaction with pN162 binding deeply in the orthosteric pocket. MC4R peptide agonists, such as the marketed setmelanotide, lack receptor selectivity and show off-target effects. In contrast, the agonistic nanobody is highly specific and hence can be a more suitable agent for anti-obesity therapeutic intervention via MC4R.
Collapse
MESH Headings
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/metabolism
- Receptor, Melanocortin, Type 4/chemistry
- Receptor, Melanocortin, Type 4/genetics
- Humans
- Single-Domain Antibodies/chemistry
- Single-Domain Antibodies/pharmacology
- Single-Domain Antibodies/metabolism
- alpha-MSH/chemistry
- alpha-MSH/pharmacology
- alpha-MSH/metabolism
- HEK293 Cells
- Protein Binding
- Binding Sites
- Crystallography, X-Ray
- Models, Molecular
- Animals
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Simonas Masiulis
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Salom D, Wu A, Liu CC, Palczewski K. The Impact of Nanobodies on G Protein-Coupled Receptor Structural Biology and Their Potential as Therapeutic Agents. Mol Pharmacol 2024; 106:155-163. [PMID: 39107078 PMCID: PMC11413913 DOI: 10.1124/molpharm.124.000974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024] Open
Abstract
The family of human G protein-coupled receptors (GPCRs) comprises about 800 different members, with about 35% of current pharmaceutical drugs targeting GPCRs. However, GPCR structural biology, necessary for structure-guided drug design, has lagged behind that of other membrane proteins, and it was not until the year 2000 when the first crystal structure of a GPCR (rhodopsin) was solved. Starting in 2007, the determination of additional GPCR structures was facilitated by protein engineering, new crystallization techniques, complexation with antibody fragments, and other strategies. More recently, the use of camelid heavy-chain-only antibody fragments (nanobodies) as crystallographic chaperones has revolutionized the field of GPCR structural biology, aiding in the determination of more than 340 GPCR structures to date. In most cases, the GPCR structures solved as complexes with nanobodies (Nbs) have revealed the binding mode of cognate or non-natural ligands; in a few cases, the same Nb has acted as an orthosteric or allosteric modulator of GPCR signaling. In this review, we summarize the multiple ingenious strategies that have been conceived and implemented in the last decade to capitalize on the discovery of nanobodies to study GPCRs from a structural perspective. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) are major pharmacological targets, and the determination of their structures at high resolution has been essential for structure-guided drug design and for insights about their functions. Single-domain antibodies (nanobodies) have greatly facilitated the structural determination of GPCRs by forming complexes directly with the receptors or indirectly through protein partners.
Collapse
Affiliation(s)
- David Salom
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology (D.S., A.W., K.P.) and Department of Biomedical Engineering (C.C.L.), University of California, Irvine, Irvine, California
| | - Arum Wu
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology (D.S., A.W., K.P.) and Department of Biomedical Engineering (C.C.L.), University of California, Irvine, Irvine, California
| | - Chang C Liu
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology (D.S., A.W., K.P.) and Department of Biomedical Engineering (C.C.L.), University of California, Irvine, Irvine, California
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology (D.S., A.W., K.P.) and Department of Biomedical Engineering (C.C.L.), University of California, Irvine, Irvine, California
| |
Collapse
|
11
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
12
|
Prischich D, Sortino R, Gomila-Juaneda A, Matera C, Guardiola S, Nepomuceno D, Varese M, Bonaventure P, de Lecea L, Giralt E, Gorostiza P. In vivo photocontrol of orexin receptors with a nanomolar light-regulated analogue of orexin-B. Cell Mol Life Sci 2024; 81:288. [PMID: 38970689 PMCID: PMC11335211 DOI: 10.1007/s00018-024-05308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/08/2024]
Abstract
Orexinergic neurons are critically involved in regulating arousal, wakefulness, and appetite. Their dysfunction has been associated with sleeping disorders, and non-peptide drugs are currently being developed to treat insomnia and narcolepsy. Yet, no light-regulated agents are available to reversibly control their activity. To meet this need, a photoswitchable peptide analogue of the endogenous neuroexcitatory peptide orexin-B was designed, synthesized, and tested in vitro and in vivo. This compound - photorexin - is the first photo-reversible ligand reported for orexin receptors. It allows dynamic control of activity in vitro (including almost the same efficacy as orexin-B, high nanomolar potency, and subtype selectivity to human OX2 receptors) and in vivo in zebrafish larvae by direct application in water. Photorexin induces dose- and light-dependent changes in locomotion and a reduction in the successive induction reflex that is associated with sleep behavior. Molecular dynamics calculations indicate that trans and cis photorexin adopt similar bent conformations and that the only discriminant between their structures and activities is the positioning of the N-terminus. This, in the case of the more active trans isomer, points towards the OX2 N-terminus and extra-cellular loop 2, a region of the receptor known to be involved in ligand binding and recognition consistent with a "message-address" system. Thus, our approach could be extended to several important families of endogenous peptides, such as endothelins, nociceptin, and dynorphins among others, that bind to their cognate receptors through a similar mechanism: a "message" domain involved in receptor activation and signal transduction, and an "address" sequence for receptor occupation and improved binding affinity.
Collapse
Affiliation(s)
- Davia Prischich
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Rosalba Sortino
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Alexandre Gomila-Juaneda
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Salvador Guardiola
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- ONA Therapeutics, Barcelona, Spain
| | | | - Monica Varese
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- OMAKASE Consulting, Barcelona, Spain
| | | | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Inorganic and Organic Chemistry, University of Barcelona (UB), Barcelona, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
13
|
Shen S, Deng Y, Shen C, Chen H, Cheng L, Wu C, Zhao C, Yang Z, Hou H, Wang K, Shao Z, Deng C, Ye F, Yan W. Structural basis of neuropeptide Y signaling through Y 1 and Y 2 receptors. MedComm (Beijing) 2024; 5:e565. [PMID: 38882210 PMCID: PMC11179954 DOI: 10.1002/mco2.565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 03/02/2024] [Indexed: 06/18/2024] Open
Abstract
Neuropeptide Y (NPY), a 36-amino-acid peptide, functions as a neurotransmitter in both the central and peripheral nervous systems by activating the NPY receptor subfamily. Notably, NPY analogs display varying selectivity and exert diverse physiological effects through their interactions with this receptor family. [Pro34]-NPY and [Leu31, Pro34]-NPY, mainly acting on Y1R, reportedly increases blood pressure and postsynaptically potentiates the effect of other vasoactive substances above all, while N-terminal cleaved NPY variants in human body primary mediates angiogenesis and neurotransmitter release inhibition through Y2R. However, the recognition mechanisms of Y1R and Y2R with specific agonists remain elusive, thereby hindering subtype receptor-selective drug development. In this study, we report three cryo-electron microscopy (cryo-EM) structures of Gi2-coupled Y1R and Y2R in complexes with NPY, as well as Y1R bound to a selective agonist [Leu31, Pro34]-NPY. Combined with cell-based assays, our study not only reveals the conserved peptide-binding mode of NPY receptors but also identifies an additional sub-pocket that confers ligand selectivity. Moreover, our analysis of Y1R evolutionary dynamics suggests that this sub-pocket has undergone functional adaptive evolution across different species. Collectively, our findings shed light on the molecular underpinnings of neuropeptide recognition and receptor activation, and they present a promising avenue for the design of selective drugs targeting the NPY receptor family.
Collapse
Affiliation(s)
- Siyuan Shen
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
- Frontiers Medical Center Tianfu Jincheng Laboratory Chengdu China
| | - Yue Deng
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
| | - Chenglong Shen
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
| | - Haidi Chen
- Institutes for Systems Genetics Frontiers Science Centre for Disease‑Related Molecular Network West China Hospital Sichuan University Chengdu Sichuan China
| | - Lin Cheng
- Department of Otolaryngology Head and Neck Surgery Sichuan Provincial People's Hospital University of Electronic Science and Technology of China Chengdu China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
| | - Chang Zhao
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
| | - Zhiqian Yang
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
| | - Hanlin Hou
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
| | - Kexin Wang
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
- Frontiers Medical Center Tianfu Jincheng Laboratory Chengdu China
| | - Cheng Deng
- Institutes for Systems Genetics Frontiers Science Centre for Disease‑Related Molecular Network West China Hospital Sichuan University Chengdu Sichuan China
| | - Feng Ye
- Department of Pathology Institute of Clinical Pathology Frontiers Science Center for Disease-related Molecular Network West China Hospital of Sichuan University Chengdu China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
14
|
Yokoi S, Suno R, Mitsutake A. Structural and Computational Insights into Dynamics and Intermediate States of Orexin 2 Receptor Signaling. J Phys Chem B 2024; 128:6082-6096. [PMID: 38722794 DOI: 10.1021/acs.jpcb.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Orexin 2 receptor (OX2R) is a G protein-coupled receptor (GPCR) whose activation is crucial to regulation of the sleep-wake cycle. Recently, inactive and active state structures were determined from X-ray crystallography and cryo-electron microscopy single particle analysis, and the activation mechanisms have been discussed based on these static data. GPCRs have multiscale intermediate states during activation, and insights into these dynamics and intermediate states may aid the precise control of intracellular signaling by ligands in drug discovery. Molecular dynamics (MD) simulations are used to investigate dynamics induced in response to thermal perturbations, such as structural fluctuations of main and side chains. In this study, we proposed collective motions of the TM domain during activation by performing 30 independent microsecond-scale MD simulations for various OX2R systems and applying relaxation mode analysis. The analysis results suggested that TM3 had a vertical structural movement relative to the membrane surface during activation. In addition, we extracted three characteristic amino acid residues on TM3, i.e., Q1343.32, V1423.40, and R1523.50, which exhibited large conformational fluctuations. We quantitatively evaluated the changes in their equilibrium during activation in relation to the movement of TM3. We also discuss the regulation of ligand binding recognition and intracellular signal selectivity by changes in the equilibrium of Q1343.32 and R1523.50, respectively, according to MD simulations and GPCR database. Additionally, the OX2R-Gi signaling complex is stabilized in the conformation resembling a non-canonical (NC) state, which was previously proposed as an intermediate state during activation of neurotensin 1 receptor. Insights into the dynamics and intermediate states during activation gained from this study may be useful for developing biased agonists for OX2R.
Collapse
Affiliation(s)
- Shun Yokoi
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ryoji Suno
- Department of Medical Chemistry, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka 573-1010, Japan
| | - Ayori Mitsutake
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
15
|
Szwabowski GL, Griffing M, Mugabe EJ, O’Malley D, Baker LN, Baker DL, Parrill AL. G Protein-Coupled Receptor-Ligand Pose and Functional Class Prediction. Int J Mol Sci 2024; 25:6876. [PMID: 38999982 PMCID: PMC11241240 DOI: 10.3390/ijms25136876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
G protein-coupled receptor (GPCR) transmembrane protein family members play essential roles in physiology. Numerous pharmaceuticals target GPCRs, and many drug discovery programs utilize virtual screening (VS) against GPCR targets. Improvements in the accuracy of predicting new molecules that bind to and either activate or inhibit GPCR function would accelerate such drug discovery programs. This work addresses two significant research questions. First, do ligand interaction fingerprints provide a substantial advantage over automated methods of binding site selection for classical docking? Second, can the functional status of prospective screening candidates be predicted from ligand interaction fingerprints using a random forest classifier? Ligand interaction fingerprints were found to offer modest advantages in sampling accurate poses, but no substantial advantage in the final set of top-ranked poses after scoring, and, thus, were not used in the generation of the ligand-receptor complexes used to train and test the random forest classifier. A binary classifier which treated agonists, antagonists, and inverse agonists as active and all other ligands as inactive proved highly effective in ligand function prediction in an external test set of GPR31 and TAAR2 candidate ligands with a hit rate of 82.6% actual actives within the set of predicted actives.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel L. Baker
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (G.L.S.); (M.G.); (E.J.M.); (D.O.); (L.N.B.)
| | - Abby L. Parrill
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (G.L.S.); (M.G.); (E.J.M.); (D.O.); (L.N.B.)
| |
Collapse
|
16
|
Iwama A, Kise R, Akasaka H, Sano FK, Oshima HS, Inoue A, Shihoya W, Nureki O. Structure and dynamics of the pyroglutamylated RF-amide peptide QRFP receptor GPR103. Nat Commun 2024; 15:4769. [PMID: 38897996 PMCID: PMC11187126 DOI: 10.1038/s41467-024-49030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Pyroglutamylated RF-amide peptide (QRFP) is a peptide hormone with a C-terminal RF-amide motif. QRFP selectively activates a class A G-protein-coupled receptor (GPCR) GPR103 to exert various physiological functions such as energy metabolism and appetite regulation. Here, we report the cryo-electron microscopy structure of the QRFP26-GPR103-Gq complex at 3.19 Å resolution. QRFP26 adopts an extended structure bearing no secondary structure, with its N-terminal and C-terminal sides recognized by extracellular and transmembrane domains of GPR103 respectively. This movement, reminiscent of class B1 GPCRs except for orientation and structure of the ligand, is critical for the high-affinity binding and receptor specificity of QRFP26. Mutagenesis experiments validate the functional importance of the binding mode of QRFP26 by GPR103. Structural comparisons with closely related receptors, including RY-amide peptide-recognizing GPCRs, revealed conserved and diversified peptide recognition mechanisms, providing profound insights into the biological significance of RF-amide peptides. Collectively, this study not only advances our understanding of GPCR-ligand interactions, but also paves the way for the development of novel therapeutics targeting metabolic and appetite disorders and emergency medical care.
Collapse
Affiliation(s)
- Aika Iwama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Hiroaki Akasaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Hidetaka S Oshima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
17
|
Sachdev S, Creemer BA, Gardella TJ, Cheloha RW. Highly biased agonism for GPCR ligands via nanobody tethering. Nat Commun 2024; 15:4687. [PMID: 38824166 PMCID: PMC11144202 DOI: 10.1038/s41467-024-49068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
Ligand-induced activation of G protein-coupled receptors (GPCRs) can initiate signaling through multiple distinct pathways with differing biological and physiological outcomes. There is intense interest in understanding how variation in GPCR ligand structure can be used to promote pathway selective signaling ("biased agonism") with the goal of promoting desirable responses and avoiding deleterious side effects. Here we present an approach in which a conventional peptide ligand for the type 1 parathyroid hormone receptor (PTHR1) is converted from an agonist which induces signaling through all relevant pathways to a compound that is highly selective for a single pathway. This is achieved not through variation in the core structure of the agonist, but rather by linking it to a nanobody tethering agent that binds with high affinity to a separate site on the receptor not involved in signal transduction. The resulting conjugate represents the most biased agonist of PTHR1 reported to date. This approach holds promise for facile generation of pathway selective ligands for other GPCRs.
Collapse
Affiliation(s)
- Shivani Sachdev
- Laboratory of Bioorganic Chemistry, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bathesda, MD, USA
| | - Brendan A Creemer
- Laboratory of Bioorganic Chemistry, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bathesda, MD, USA
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ross W Cheloha
- Laboratory of Bioorganic Chemistry, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bathesda, MD, USA.
| |
Collapse
|
18
|
Schlimgen RR, Peterson FC, Heukers R, Smit MJ, McCorvy JD, Volkman BF. Structural basis for selectivity and antagonism in extracellular GPCR-nanobodies. Nat Commun 2024; 15:4611. [PMID: 38816420 PMCID: PMC11139983 DOI: 10.1038/s41467-024-49000-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal therapeutic targets, but their complex structure poses challenges for effective drug design. Nanobodies, or single-domain antibodies, have emerged as a promising therapeutic strategy to target GPCRs, offering advantages over traditional small molecules and antibodies. However, an incomplete understanding of the structural features enabling GPCR-nanobody interactions has limited their development. In this study, we investigate VUN701, a nanobody antagonist targeting the atypical chemokine receptor 3 (ACKR3). We determine that an extended CDR3 loop is required for ACKR3 binding. Uncommon in most nanobodies, an extended CDR3 is prevalent in GPCR-targeting nanobodies. Combining experimental and computational approaches, we map an inhibitory ACKR3-VUN701 interface and define a distinct conformational mechanism for GPCR inactivation. Our results provide insights into class A GPCR-nanobody selectivity and suggest a strategy for the development of these new therapeutic tools.
Collapse
Affiliation(s)
- Roman R Schlimgen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Raimond Heukers
- Amsterdam Institute of Molecular and Life Sciences, Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, 1081 HZ, Amsterdam, The Netherlands
| | - Martine J Smit
- Amsterdam Institute of Molecular and Life Sciences, Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit, 1081 HZ, Amsterdam, The Netherlands
| | - John D McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
19
|
Mavanji V, Pomonis BL, Shekels L, Kotz CM. Interactions between Lateral Hypothalamic Orexin and Dorsal Raphe Circuitry in Energy Balance. Brain Sci 2024; 14:464. [PMID: 38790443 PMCID: PMC11117928 DOI: 10.3390/brainsci14050464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Orexin/hypocretin terminals innervate the dorsal raphe nucleus (DRN), which projects to motor control areas important for spontaneous physical activity (SPA) and energy expenditure (EE). Orexin receptors are expressed in the DRN, and obesity-resistant (OR) rats show higher expression of these receptors in the DRN and elevated SPA/EE. We hypothesized that orexin-A in the DRN enhances SPA/EE and that DRN-GABA modulates the effect of orexin-A on SPA/EE. We manipulated orexin tone in the DRN either through direct injection of orexin-A or through the chemogenetic activation of lateral-hypothalamic (LH) orexin neurons. In the orexin neuron activation experiment, fifteen minutes prior to the chemogenetic activation of orexin neurons, the mice received either the GABA-agonist muscimol or antagonist bicuculline injected into the DRN, and SPA/EE was monitored for 24 h. In a separate experiment, orexin-A was injected into the DRN to study the direct effect of DRN orexin on SPA/EE. We found that the activation of orexin neurons elevates SPA/EE, and manipulation of GABA in the DRN does not alter the SPA response to orexin neuron activation. Similarly, intra-DRN orexin-A enhanced SPA and EE in the mice. These results suggest that orexin-A in the DRN facilitates negative energy balance by increasing physical activity-induced EE, and that modulation of DRN orexin-A is a potential strategy to promote SPA and EE.
Collapse
Affiliation(s)
- Vijayakumar Mavanji
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; (V.M.); (B.L.P.); (L.S.)
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brianna L. Pomonis
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; (V.M.); (B.L.P.); (L.S.)
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurie Shekels
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; (V.M.); (B.L.P.); (L.S.)
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Catherine M. Kotz
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; (V.M.); (B.L.P.); (L.S.)
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
- Geriatric Research, Education and Clinical Center, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| |
Collapse
|
20
|
Rinne MK, Urvas L, Mandrika I, Fridmanis D, Riddy DM, Langmead CJ, Kukkonen JP, Xhaard H. Characterization of a putative orexin receptor in Ciona intestinalis sheds light on the evolution of the orexin/hypocretin system in chordates. Sci Rep 2024; 14:7690. [PMID: 38565870 PMCID: PMC10987541 DOI: 10.1038/s41598-024-56508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Tunicates are evolutionary model organisms bridging the gap between vertebrates and invertebrates. A genomic sequence in Ciona intestinalis (CiOX) shows high similarity to vertebrate orexin receptors and protostome allatotropin receptors (ATR). Here, molecular phylogeny suggested that CiOX is divergent from ATRs and human orexin receptors (hOX1/2). However, CiOX appears closer to hOX1/2 than to ATR both in terms of sequence percent identity and in its modelled binding cavity, as suggested by molecular modelling. CiOX was heterologously expressed in a recombinant HEK293 cell system. Human orexins weakly but concentration-dependently activated its Gq signalling (Ca2+ elevation), and the responses were inhibited by the non-selective orexin receptor antagonists TCS 1102 and almorexant, but only weakly by the OX1-selective antagonist SB-334867. Furthermore, the 5-/6-carboxytetramethylrhodamine (TAMRA)-labelled human orexin-A was able to bind to CiOX. Database mining was used to predict a potential endogenous C. intestinalis orexin peptide (Ci-orexin-A). Ci-orexin-A was able to displace TAMRA-orexin-A, but not to induce any calcium response at the CiOX. Consequently, we suggested that the orexin signalling system is conserved in Ciona intestinalis, although the relevant peptide-receptor interaction was not fully elucidated.
Collapse
Affiliation(s)
- Maiju K Rinne
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, POB 56, 00014, Helsinki, Finland
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, POB 66, 00014, Helsinki, Finland
- Department of Pharmacology, Medicum, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Lauri Urvas
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, POB 56, 00014, Helsinki, Finland
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Ilona Mandrika
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Darren M Riddy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jyrki P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, POB 66, 00014, Helsinki, Finland.
- Department of Pharmacology, Medicum, University of Helsinki, POB 63, 00014, Helsinki, Finland.
| | - Henri Xhaard
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, POB 56, 00014, Helsinki, Finland.
| |
Collapse
|
21
|
Pal S, Nare Z, Rao VA, Smith BO, Morrison I, Fitzgerald EA, Scott A, Bingham MJ, Pesnot T. Accelerating BRPF1b hit identification with BioPhysical and Active Learning Screening (BioPALS). ChemMedChem 2024; 19:e202300590. [PMID: 38372199 DOI: 10.1002/cmdc.202300590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
We report the development of BioPhysical and Active Learning Screening (BioPALS); a rapid and versatile hit identification protocol combining AI-powered virtual screening with a GCI-driven biophysical confirmation workflow. Its application to the BRPF1b bromodomain afforded a range of novel micromolar binders with favorable ADMET properties. In addition to the excellent in silico/in vitro confirmation rate demonstrated with BRPF1b, binding kinetics were determined, and binding topologies predicted for all hits. BioPALS is a lean, data-rich, and standardized approach to hit identification applicable to a wide range of biological targets.
Collapse
Affiliation(s)
- Sandeep Pal
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Zandile Nare
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Vincenzo A Rao
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Brian O Smith
- University of Glasgow, School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, G12 8QQ, Glasgow, UK
| | - Ian Morrison
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | | | - Andrew Scott
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Matilda J Bingham
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Thomas Pesnot
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| |
Collapse
|
22
|
Imamura K, Akagi KI, Miyanoiri Y, Tsujimoto H, Hirokawa T, Ashida H, Murakami K, Inoue A, Suno R, Ikegami T, Sekiyama N, Iwata S, Kobayashi T, Tochio H. Interaction modes of human orexin 2 receptor with selective and nonselective antagonists studied by NMR spectroscopy. Structure 2024; 32:352-361.e5. [PMID: 38194963 DOI: 10.1016/j.str.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/17/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024]
Abstract
Orexin neuropeptides have many physiological roles in the sleep-wake cycle, feeding behavior, reward demands, and stress responses by activating cognitive receptors, the orexin receptors (OX1R and OX2R), distributed in the brain. There are only subtle differences between OX1R and OX2R in the orthosteric site, which has hindered the rational development of subtype-selective antagonists. In this study, we utilized solution-state NMR to capture the structural plasticity of OX2R labeled with 13CH3-ε-methionine in complex with antagonists. Mutations in the orthosteric site allosterically affected the intracellular tip of TM6. Ligand exchange experiments with the subtype-selective EMPA and the nonselective suvorexant identified three methionine residues that were substantially perturbed. The NMR spectra suggested that the suvorexant-bound state exhibited more structural plasticity than the EMPA-bound state, which has not been foreseen from the close similarity of their crystal structures, providing insights into dynamic features to be considered in understanding the ligand recognition mode.
Collapse
Affiliation(s)
- Kayo Imamura
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ken-Ichi Akagi
- Section of Laboratory Equipment, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567-0085, Japan
| | - Yohei Miyanoiri
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirokazu Tsujimoto
- Department of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takatsugu Hirokawa
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hideo Ashida
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kaori Murakami
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Ryoji Suno
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Naotaka Sekiyama
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - So Iwata
- Department of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takuya Kobayashi
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan
| | - Hidehito Tochio
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
23
|
Yadav MK, Sarma P, Maharana J, Ganguly M, Mishra S, Zaidi N, Dalal A, Singh V, Saha S, Mahajan G, Sharma S, Chami M, Banerjee R, Shukla AK. Structure-guided engineering of biased-agonism in the human niacin receptor via single amino acid substitution. Nat Commun 2024; 15:1939. [PMID: 38431681 PMCID: PMC10908815 DOI: 10.1038/s41467-024-46239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
The Hydroxycarboxylic acid receptor 2 (HCA2), also known as the niacin receptor or GPR109A, is a prototypical GPCR that plays a central role in the inhibition of lipolytic and atherogenic activities. Its activation also results in vasodilation that is linked to the side-effect of flushing associated with dyslipidemia drugs such as niacin. GPR109A continues to be a target for developing potential therapeutics in dyslipidemia with minimized flushing response. Here, we present cryo-EM structures of the GPR109A in complex with dyslipidemia drugs, niacin or acipimox, non-flushing agonists, MK6892 or GSK256073, and recently approved psoriasis drug, monomethyl fumarate (MMF). These structures elucidate the binding mechanism of agonists, molecular basis of receptor activation, and insights into biased signaling elicited by some of the agonists. The structural framework also allows us to engineer receptor mutants that exhibit G-protein signaling bias, and therefore, our study may help in structure-guided drug discovery efforts targeting this receptor.
Collapse
Affiliation(s)
- Manish K Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Parishmita Sarma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Manisankar Ganguly
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Sudha Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Nashrah Zaidi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Annu Dalal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Vinay Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Sayantan Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Gargi Mahajan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Saloni Sharma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Mohamed Chami
- BioEM Lab, Biozentrum, Universität Basel, Basel, Switzerland
| | - Ramanuj Banerjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India.
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India.
| |
Collapse
|
24
|
Wang W, Ranjan A, Zhang W, Liang Q, MacMillan KS, Chapman K, Wang X, Chandrasekaran P, Williams NS, Rosenbaum DM, De Brabander JK. Novel orexin receptor agonists based on arene- or pyridine-fused 1,3-dihydro-2H-imidazole-2-imines. Bioorg Med Chem Lett 2024; 99:129624. [PMID: 38272190 DOI: 10.1016/j.bmcl.2024.129624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/15/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
A structurally novel class of benzo- or pyrido-fused 1,3-dihydro-2H-imidazole-2-imines was designed and evaluated in an inositol phosphate accumulation assay for Gq signaling to measure agonistic activation of the orexin receptor type 2 (OX2R). These compounds were synthesized in 4-9 steps overall from readily available starting materials. Analogs that contain a stereogenic methyl or cyclopropyl substituent at the benzylic center, and a correctly configured alkyl ether, alkoxyalkyl ether, cyanoalkyl ether, or α-hydroxyacetamido substituted homobenzylic sidechain were identified as the most potent activators of OX2R coupled Gq signaling. Our results also indicate that agonistic activity was stereospecific at both the benzylic and homobenzylic stereogenic centra. We identified methoxyethoxy-substituted pyrido-fused dihydroimidazolimine analog 63c containing a stereogenic benzylic methyl group was the most potent agonist, registering a respectable EC50 of 339 nM and a maximal response (Emax) of 96 % in this assay. In vivo pharmacokinetic analysis indicated good brain exposure for several analogs. Our combined results provide important information towards a structurally novel class of orexin receptor agonists distinct from current chemotypes.
Collapse
Affiliation(s)
- Wentian Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA
| | - Alok Ranjan
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA
| | - Wei Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA
| | - Qiren Liang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA
| | - Karen S MacMillan
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA
| | - Karen Chapman
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390-9041, USA
| | - Xiaoyu Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA
| | - Preethi Chandrasekaran
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390-9041, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA
| | - Daniel M Rosenbaum
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390-9041, USA.
| | - Jef K De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA.
| |
Collapse
|
25
|
Farajzadeh-Dehkordi M, Mafakher L, Harifi A, Haghdoost-Yazdi H, Piri H, Rahmani B. Unraveling the function and structure impact of deleterious missense SNPs in the human OX1R receptor by computational analysis. Sci Rep 2024; 14:833. [PMID: 38191899 PMCID: PMC10774445 DOI: 10.1038/s41598-023-49809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
The orexin/hypocretin receptor type 1 (OX1R) plays a crucial role in regulating various physiological functions, especially feeding behavior, addiction, and reward. Genetic variations in the OX1R have been associated with several neurological disorders. In this study, we utilized a combination of sequence and structure-based computational tools to identify the most deleterious missense single nucleotide polymorphisms (SNPs) in the OX1R gene. Our findings revealed four highly conserved and structurally destabilizing missense SNPs, namely R144C, I148N, S172W, and A297D, located in the GTP-binding domain. Molecular dynamics simulations analysis demonstrated that all four most detrimental mutant proteins altered the overall structural flexibility and dynamics of OX1R protein, resulting in significant changes in the structural organization and motion of the protein. These findings provide valuable insights into the impact of missense SNPs on OX1R function loss and their potential contribution to the development of neurological disorders, thereby guiding future research in this field.
Collapse
Affiliation(s)
- Mahvash Farajzadeh-Dehkordi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Harifi
- Department of Electrical and Computer Engineering, University of Hormozgan, Bandar Abbas, Hormozgan, Iran
| | - Hashem Haghdoost-Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Piri
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Babak Rahmani
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran.
- Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
26
|
Yu J, Kumar A, Zhang X, Martin C, Raia P, Koehl A, Laeremans T, Steyaert J, Manglik A, Ballet S, Boland A, Stoeber M. Structural Basis of μ-Opioid Receptor-Targeting by a Nanobody Antagonist. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570395. [PMID: 38106026 PMCID: PMC10723425 DOI: 10.1101/2023.12.06.570395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The μ-opioid receptor (μOR), a prototypical member of the G protein-coupled receptor (GPCR) family, is the molecular target of opioid analgesics such as morphine and fentanyl. Due to the limitations and severe side effects of currently available opioid drugs, there is considerable interest in developing novel modulators of μOR function. Most GPCR ligands today are small molecules, however biologics, including antibodies and nanobodies, are emerging as alternative therapeutics with clear advantages such as affinity and target selectivity. Here, we describe the nanobody NbE, which selectively binds to the μOR and acts as an antagonist. We functionally characterize NbE as an extracellular and genetically encoded μOR ligand and uncover the molecular basis for μOR antagonism by solving the cryo-EM structure of the NbE-μOR complex. NbE displays a unique ligand binding mode and achieves μOR selectivity by interactions with the orthosteric pocket and extracellular receptor loops. Based on a β-hairpin loop formed by NbE that deeply inserts into the μOR and centers most binding contacts, we design short peptide analogues that retain μOR antagonism. The work illustrates the potential of nanobodies to uniquely engage with GPCRs and describes novel μOR ligands that can serve as a basis for therapeutic developments.
Collapse
Affiliation(s)
- Jun Yu
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Amit Kumar
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Xuefeng Zhang
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Charlotte Martin
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pierre Raia
- Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Antoine Koehl
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | | | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Steven Ballet
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andreas Boland
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
27
|
Morales-Salazar I, Garduño-Albino CE, Montes-Enríquez FP, Nava-Tapia DA, Navarro-Tito N, Herrera-Zúñiga LD, González-Zamora E, Islas-Jácome A. Synthesis of Pyrrolo[3,4- b]pyridin-5-ones via Ugi-Zhu Reaction and In Vitro-In Silico Studies against Breast Carcinoma. Pharmaceuticals (Basel) 2023; 16:1562. [PMID: 38004428 PMCID: PMC10674953 DOI: 10.3390/ph16111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
An Ugi-Zhu three-component reaction (UZ-3CR) coupled in a one-pot manner to a cascade process (N-acylation/aza Diels-Alder cycloaddition/decarboxylation/dehydration) was performed to synthesize a series of pyrrolo[3,4-b]pyridin-5-ones in 20% to 92% overall yields using ytterbium triflate as a catalyst, toluene as a solvent, and microwaves as a heat source. The synthesized molecules were evaluated in vitro against breast cancer cell lines MDA-MB-231 and MCF-7, finding that compound 1f, at a concentration of 6.25 μM, exhibited a potential cytotoxic effect. Then, to understand the interactions between synthesized compounds and the main proteins related to the cancer cell lines, docking studies were performed on the serine/threonine kinase 1 (AKT1) and Orexetine type 2 receptor (Ox2R), finding moderate to strong binding energies, which matched accurately with the in vitro results. Additionally, molecular dynamics were performed between proteins related to the studied cell lines and the three best ligands.
Collapse
Affiliation(s)
- Ivette Morales-Salazar
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Ciudad de México 09340, Mexico; (I.M.-S.); (C.E.G.-A.); (F.P.M.-E.); (E.G.-Z.)
| | - Carlos E. Garduño-Albino
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Ciudad de México 09340, Mexico; (I.M.-S.); (C.E.G.-A.); (F.P.M.-E.); (E.G.-Z.)
| | - Flora P. Montes-Enríquez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Ciudad de México 09340, Mexico; (I.M.-S.); (C.E.G.-A.); (F.P.M.-E.); (E.G.-Z.)
| | - Dania A. Nava-Tapia
- Laboratorio de Biología Celular del Cáncer, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico;
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico;
| | - Leonardo David Herrera-Zúñiga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Ciudad de México 09340, Mexico; (I.M.-S.); (C.E.G.-A.); (F.P.M.-E.); (E.G.-Z.)
| | - Eduardo González-Zamora
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Ciudad de México 09340, Mexico; (I.M.-S.); (C.E.G.-A.); (F.P.M.-E.); (E.G.-Z.)
| | - Alejandro Islas-Jácome
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Ciudad de México 09340, Mexico; (I.M.-S.); (C.E.G.-A.); (F.P.M.-E.); (E.G.-Z.)
| |
Collapse
|
28
|
Yadav MK, Maharana J, Yadav R, Saha S, Sarma P, Soni C, Singh V, Saha S, Ganguly M, Li XX, Mohapatra S, Mishra S, Khant HA, Chami M, Woodruff TM, Banerjee R, Shukla AK, Gati C. Molecular basis of anaphylatoxin binding, activation, and signaling bias at complement receptors. Cell 2023; 186:4956-4973.e21. [PMID: 37852260 PMCID: PMC7615941 DOI: 10.1016/j.cell.2023.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
The complement system is a critical part of our innate immune response, and the terminal products of this cascade, anaphylatoxins C3a and C5a, exert their physiological and pathophysiological responses primarily via two GPCRs, C3aR and C5aR1. However, the molecular mechanism of ligand recognition, activation, and signaling bias of these receptors remains mostly elusive. Here, we present nine cryo-EM structures of C3aR and C5aR1 activated by their natural and synthetic agonists, which reveal distinct binding pocket topologies of complement anaphylatoxins and provide key insights into receptor activation and transducer coupling. We also uncover the structural basis of a naturally occurring mechanism to dampen the inflammatory response of C5a via proteolytic cleavage of the terminal arginine and the G-protein signaling bias elicited by a peptide agonist of C3aR identified here. In summary, our study elucidates the innerworkings of the complement anaphylatoxin receptors and should facilitate structure-guided drug discovery to target these receptors in a spectrum of disorders.
Collapse
Affiliation(s)
- Manish K Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ravi Yadav
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Shirsha Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Parishmita Sarma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Chahat Soni
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Vinay Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sayantan Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Manisankar Ganguly
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Xaria X Li
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samanwita Mohapatra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sudha Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Htet A Khant
- USC Center of Excellence for Nano-Imaging, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Mohamed Chami
- BioEM Lab, Biozentrum, Universität Basel, Basel, Switzerland
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ramanuj Banerjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Cornelius Gati
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA; Department of Chemistry, Department of Quantitative and Computational Biology, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Sachdev S, Creemer BA, Gardella TJ, Cheloha RW. Highly biased agonism for GPCR ligands via nanobody tethering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561766. [PMID: 37873435 PMCID: PMC10592785 DOI: 10.1101/2023.10.10.561766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Ligand-induced activation of G protein-coupled receptors (GPCRs) can initiate signaling through multiple distinct pathways with differing biological and physiological outcomes. There is intense interest in understanding how variation in GPCR ligand structure can be used to promote pathway selective signaling ("biased agonism") with the goal of promoting desirable responses and avoiding deleterious side effects. Here we present a new approach in which a conventional peptide ligand for the type 1 parathyroid hormone receptor (PTHR1) is converted from an agonist which induces signaling through all relevant pathways to a compound that is highly selective for a single pathway. This is achieved not through variation in the core structure of the agonist, but rather by linking it to a nanobody tethering agent that binds with high affinity to a separate site on the receptor not involved in signal transduction. The resulting conjugate represents the most biased agonist of PTHR1 reported to date. This approach holds promise for facile generation of pathway selective ligands for other GPCRs.
Collapse
|
30
|
Layden A, Ma X, Johnson CA, He XJ, Buczynski SA, Banghart MR. A Biomimetic C-Terminal Extension Strategy for Photocaging Amidated Neuropeptides. J Am Chem Soc 2023; 145:19611-19621. [PMID: 37649440 PMCID: PMC10510324 DOI: 10.1021/jacs.3c03913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 09/01/2023]
Abstract
Photoactivatable neuropeptides offer a robust stimulus-response relationship that can drive mechanistic studies into the physiological mechanisms of neuropeptidergic transmission. The majority of neuropeptides contain a C-terminal amide, which offers a potentially general site for installation of a C-terminal caging group. Here, we report a biomimetic caging strategy in which the neuropeptide C-terminus is extended via a photocleavable amino acid to mimic the proneuropeptides found in large dense-core vesicles. We explored this approach with four prominent neuropeptides: gastrin-releasing peptide (GRP), oxytocin (OT), substance P (SP), and cholecystokinin (CCK). C-terminus extension greatly reduced the activity of all four peptides at heterologously expressed receptors. In cell type-specific electrophysiological recordings from acute brain slices, subsecond flashes of ultraviolet light produced rapidly activating membrane currents via activation of endogenous G protein-coupled receptors. Subsequent mechanistic studies with caged CCK revealed a role for extracellular proteases in shaping the temporal dynamics of CCK signaling, and a striking switch-like, cell-autonomous anti-opioid effect of transient CCK signaling in hippocampal parvalbumin interneurons. These results suggest that C-terminus extension with a photocleavable linker may be a general strategy for photocaging amidated neuropeptides and demonstrate how photocaged neuropeptides can provide mechanistic insights into neuropeptide signaling that are inaccessible using conventional approaches.
Collapse
Affiliation(s)
| | | | - Caroline A. Johnson
- Department of Neurobiology,
School of Biological Sciences, University
of California San Diego, La Jolla, California 92093, United States
| | | | - Stanley A. Buczynski
- Department of Neurobiology,
School of Biological Sciences, University
of California San Diego, La Jolla, California 92093, United States
| | - Matthew R. Banghart
- Department of Neurobiology,
School of Biological Sciences, University
of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
31
|
Bonifazi A, Del Bello F, Giorgioni G, Piergentili A, Saab E, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Quaglia W. Targeting orexin receptors: Recent advances in the development of subtype selective or dual ligands for the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:1607-1667. [PMID: 37036052 DOI: 10.1002/med.21959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Orexin-A and orexin-B, also named hypocretin-1 and hypocretin-2, are two hypothalamic neuropeptides highly conserved across mammalian species. Their effects are mediated by two distinct G protein-coupled receptors, namely orexin receptor type 1 (OX1-R) and type 2 (OX2-R), which share 64% amino acid identity. Given the wide expression of OX-Rs in different central nervous system and peripheral areas and the several pathophysiological functions in which they are involved, including sleep-wake cycle regulation (mainly mediated by OX2-R), emotion, panic-like behaviors, anxiety/stress, food intake, and energy homeostasis (mainly mediated by OX1-R), both subtypes represent targets of interest for many structure-activity relationship (SAR) campaigns carried out by pharmaceutical companies and academies. However, before 2017 the research was predominantly directed towards dual-orexin ligands, and limited chemotypes were investigated. Analytical characterizations, including resolved structures for both OX1-R and OX2-R in complex with agonists and antagonists, have improved the understanding of the molecular basis of receptor recognition and are assets for medicinal chemists in the design of subtype-selective ligands. This review is focused on the medicinal chemistry aspects of small molecules acting as dual or subtype selective OX1-R/OX2-R agonists and antagonists belonging to different chemotypes and developed in the last years, including radiolabeled OX-R ligands for molecular imaging. Moreover, the pharmacological effects of the most studied ligands in different neuropsychiatric diseases, such as sleep, mood, substance use, and eating disorders, as well as pain, have been discussed. Poly-pharmacology applications and multitarget ligands have also been considered.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | | | - Elizabeth Saab
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | | | | | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
32
|
Wu A, Salom D, Hong JD, Tworak A, Watanabe K, Pardon E, Steyaert J, Kandori H, Katayama K, Kiser PD, Palczewski K. Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain. Nat Commun 2023; 14:5209. [PMID: 37626045 PMCID: PMC10457330 DOI: 10.1038/s41467-023-40911-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Rhodopsin is a prototypical G protein-coupled receptor (GPCR) critical for vertebrate vision. Research on GPCR signaling states has been facilitated using llama-derived nanobodies (Nbs), some of which bind to the intracellular surface to allosterically modulate the receptor. Extracellularly binding allosteric nanobodies have also been investigated, but the structural basis for their activity has not been resolved to date. Here, we report a library of Nbs that bind to the extracellular surface of rhodopsin and allosterically modulate the thermodynamics of its activation process. Crystal structures of Nb2 in complex with native rhodopsin reveal a mechanism of allosteric modulation involving extracellular loop 2 and native glycans. Nb2 binding suppresses Schiff base deprotonation and hydrolysis and prevents intracellular outward movement of helices five and six - a universal activation event for GPCRs. Nb2 also mitigates protein misfolding in a disease-associated mutant rhodopsin. Our data show the power of nanobodies to modulate the photoactivation of rhodopsin and potentially serve as therapeutic agents for disease-associated rhodopsin misfolding.
Collapse
Affiliation(s)
- Arum Wu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - John D Hong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - Kohei Watanabe
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan.
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA.
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
- Department of Clinical Pharmacy Practice, University of California, Irvine, CA, USA.
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, USA.
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California, Irvine, CA, 92697, USA.
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
33
|
Skiba MA, Sterling SM, Rawson S, Gilman MS, Xu H, Nemeth GR, Hurley JD, Shen P, Staus DP, Kim J, McMahon C, Lehtinen MK, Wingler LM, Kruse AC. Antibodies Expand the Scope of Angiotensin Receptor Pharmacology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554128. [PMID: 37662341 PMCID: PMC10473732 DOI: 10.1101/2023.08.23.554128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
G protein-coupled receptors (GPCRs) are key regulators of human physiology and are the targets of many small molecule research compounds and therapeutic drugs. While most of these ligands bind to their target GPCR with high affinity, selectivity is often limited at the receptor, tissue, and cellular level. Antibodies have the potential to address these limitations but their properties as GPCR ligands remain poorly characterized. Here, using protein engineering, pharmacological assays, and structural studies, we develop maternally selective heavy chain-only antibody ("nanobody") antagonists against the angiotensin II type I receptor (AT1R) and uncover the unusual molecular basis of their receptor antagonism. We further show that our nanobodies can simultaneously bind to AT1R with specific small-molecule antagonists and demonstrate that ligand selectivity can be readily tuned. Our work illustrates that antibody fragments can exhibit rich and evolvable pharmacology, attesting to their potential as next-generation GPCR modulators.
Collapse
Affiliation(s)
- Meredith A. Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah M. Sterling
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shaun Rawson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Morgan S.A. Gilman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Huixin Xu
- Department of Pathology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Genevieve R. Nemeth
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph D. Hurley
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Pengxiang Shen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Dean P. Staus
- Department of Medicine and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Jihee Kim
- Department of Medicine and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Conor McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Maria K. Lehtinen
- Department of Pathology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Laura M. Wingler
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
34
|
Saitoh T, Sakurai T. The Present and Future of Synthetic Orexin Receptor Agonists. Peptides 2023:171051. [PMID: 37422012 DOI: 10.1016/j.peptides.2023.171051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/16/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
The neuropeptide orexin/hypocretin plays a crucial role in various physiological processes, including the regulation of sleep/wakefulness, appetite, emotion and the reward system. Dysregulation of orexin signaling has been implicated in hypersomnia, especially in narcolepsy, which is a chronic neurological disorder characterized by excessive daytime sleepiness (EDS), sudden loss of muscle tone while awake (cataplexy), sleep paralysis, and hallucinations. Small-molecule orexin receptor agonists have emerged as promising therapeutics for these disorders, and significant progress has been made in this field in the past decade. This review summarizes recent advances in the design and synthesis of orexin receptor agonists, with a focus on peptidic and small-molecule OX2R-selective, dual, and OX1R-selective agonists. The review discusses the key structural features and pharmacological properties of these agonists, as well as their potential therapeutic applications. DATA AVAILABILITY: No data was used for the research described in the article.
Collapse
Affiliation(s)
- Tsuyoshi Saitoh
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takeshi Sakurai
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
35
|
Toyoda Y, Zhu A, Kong F, Shan S, Zhao J, Wang N, Sun X, Zhang L, Yan C, Kobilka BK, Liu X. Structural basis of α 1A-adrenergic receptor activation and recognition by an extracellular nanobody. Nat Commun 2023; 14:3655. [PMID: 37339967 DOI: 10.1038/s41467-023-39310-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
The α1A-adrenergic receptor (α1AAR) belongs to the family of G protein-coupled receptors that respond to adrenaline and noradrenaline. α1AAR is involved in smooth muscle contraction and cognitive function. Here, we present three cryo-electron microscopy structures of human α1AAR bound to the endogenous agonist noradrenaline, its selective agonist oxymetazoline, and the antagonist tamsulosin, with resolutions range from 2.9 Å to 3.5 Å. Our active and inactive α1AAR structures reveal the activation mechanism and distinct ligand binding modes for noradrenaline compared with other adrenergic receptor subtypes. In addition, we identified a nanobody that preferentially binds to the extracellular vestibule of α1AAR when bound to the selective agonist oxymetazoline. These results should facilitate the design of more selective therapeutic drugs targeting both orthosteric and allosteric sites in this receptor family.
Collapse
Affiliation(s)
- Yosuke Toyoda
- School of Medicine, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan.
| | - Angqi Zhu
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fang Kong
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sisi Shan
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Tsinghua University, Beijing, 100084, China
| | - Jiawei Zhao
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Nan Wang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaoou Sun
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
| | - Linqi Zhang
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Disease Research, Tsinghua University, Beijing, 100084, China
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Xiangyu Liu
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
36
|
Guerrib F, Ning C, Mateos-Hernandéz L, Rakotobe S, Park Y, Hajdusek O, Perner J, Vancová M, Valdés JJ, Šimo L. Dual SIFamide receptors in Ixodes salivary glands. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023:103963. [PMID: 37257628 DOI: 10.1016/j.ibmb.2023.103963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/02/2023]
Abstract
Salivary glands are vital to tick feeding success and also play a crucial role in tick-borne pathogen transmission. In previous studies of Ixodes scapularis salivary glands, we demonstrated that saliva-producing type II and III acini are innervated by neuropeptidergic axons which release different classes of neuropeptides via their terminals (Šimo et al., 2009b, 2013). Among these, the neuropeptide SIFamide-along with its cognate receptor-were postulated to control the basally located acinar valve via basal epithelial and myoepithelial cells (Vancová et al., 2019). Here, we functionally characterized a second SIFamide receptor (SIFa_R2) from the I. scapularis genome and proved that it senses a low nanomolar level of its corresponding ligand. Insect SIFamide paralogs, SMYamides, also activated the receptor but less effectively compared to SIFamide. Bioinformatic and molecular dynamic analyses suggested that I. scapularis SIFamide receptors are class A GPCRs where the peptide amidated carboxy-terminus is oriented within the receptor binding cavity. The receptor was found to be expressed in Ixodes ricinus salivary glands, synganglia, midguts, trachea, and ovaries, but not in Malpighian tubules. Investigation of the temporal expression patterns suggests that the receptor transcript is highly expressed in unfed I. ricinus female salivary glands and then decreases during feeding. In synganglia, a significant transcript increase was detected in replete ticks. In salivary gland acini, an antibody targeting the second SIFamide receptor recognized basal epithelial cells, myoepithelial cells, and basal granular cells in close proximity to the SIFamide-releasing axon terminals. Immunoreactivity was also detected in specific neurons distributed throughout various I. ricinus synganglion locations. The current findings, alongside previous reports from our group, indicate that the neuropeptide SIFamide acts via two different receptors that regulate distinct or common cell types in the basal region of type II and III acini in I. ricinus salivary glands. The current study investigates the peptidergic regulation of the I. ricinus salivary gland in detail, emphasizing the complexity of this system.
Collapse
Affiliation(s)
- Fetta Guerrib
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Caina Ning
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Lourdes Mateos-Hernandéz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Sabine Rakotobe
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Yoonseong Park
- Entomolgy department, Kansas State University, 123 Waters Hall, 66506-4004, Manhattan, KS, USA
| | - Ondrej Hajdusek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, 37005, Czech Republic
| | - James J Valdés
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Ladislav Šimo
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
| |
Collapse
|
37
|
Leino TO, Turku A, Urvas L, Adhikari K, Oksanen J, Steynen Y, Yli-Kauhaluoma J, Xhaard H, Kukkonen JP, Wallén EAA. Azulene as a biphenyl mimetic in orexin/hypocretin receptor agonists. Bioorg Med Chem 2023; 88-89:117325. [PMID: 37209639 DOI: 10.1016/j.bmc.2023.117325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
Azulene is a rare ring structure in drugs, and we investigated whether it could be used as a biphenyl mimetic in known orexin receptor agonist Nag 26, which is binding to both orexin receptors OX1 and OX2 with preference towards OX2. The most potent azulene-based compound was identified as an OX1 orexin receptor agonist (pEC50 = 5.79 ± 0.07, maximum response = 81 ± 8% (s.e.m. of five independent experiments) of the maximum response to orexin-A in Ca2+ elevation assay). However, the azulene ring and the biphenyl scaffold are not identical in their spatial shape and electron distribution, and their derivatives may adopt different binding modes in the binding site.
Collapse
Affiliation(s)
- Teppo O Leino
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland; Department of Chemistry and NanoScience Center, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland.
| | - Ainoleena Turku
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland; Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014 University of Helsinki, Finland
| | - Lauri Urvas
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FI-00014 University of Helsinki, Finland
| | - Karuna Adhikari
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Jouni Oksanen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Yana Steynen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Henri Xhaard
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Jyrki P Kukkonen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014 University of Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FI-00014 University of Helsinki, Finland
| | - Erik A A Wallén
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland
| |
Collapse
|
38
|
Ten-Blanco M, Flores Á, Cristino L, Pereda-Pérez I, Berrendero F. Targeting the orexin/hypocretin system for the treatment of neuropsychiatric and neurodegenerative diseases: from animal to clinical studies. Front Neuroendocrinol 2023; 69:101066. [PMID: 37015302 DOI: 10.1016/j.yfrne.2023.101066] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
Orexins (also known as hypocretins) are neuropeptides located exclusively in hypothalamic neurons that have extensive projections throughout the central nervous system and bind two different G protein-coupled receptors (OX1R and OX2R). Since its discovery in 1998, the orexin system has gained the interest of the scientific community as a potential therapeutic target for the treatment of different pathological conditions. Considering previous basic science research, a dual orexin receptor antagonist, suvorexant, was the first orexin agent to be approved by the US Food and Drug Administration to treat insomnia. In this review, we discuss and update the main preclinical and human studies involving the orexin system with several psychiatric and neurodegenerative diseases. This system constitutes a nice example of how basic scientific research driven by curiosity can be the best route to the generation of new and powerful pharmacological treatments.
Collapse
Affiliation(s)
- Marc Ten-Blanco
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - África Flores
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona and Bellvitge University Hospital-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Berrendero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
39
|
Beckenstrom AC, Coloma PM, Dawson GR, Finlayson AK, Malik A, Post A, Steiner MA, Potenza MN. Use of experimental medicine approaches for the development of novel psychiatric treatments based on orexin receptor modulation. Neurosci Biobehav Rev 2023; 147:105107. [PMID: 36828161 PMCID: PMC10165155 DOI: 10.1016/j.neubiorev.2023.105107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Despite progress in understanding the pathological mechanisms underlying psychiatric disorders, translation from animal models into clinical use remains a significant bottleneck. Preclinical studies have implicated the orexin neuropeptide system as a potential target for psychiatric disorders through its role in regulating emotional, cognitive, and behavioral processes. Clinical studies are investigating orexin modulation in addiction and mood disorders. Here we review performance-outcome measures (POMs) arising from experimental medicine research methods which may show promise as markers of efficacy of orexin receptor modulators in humans. POMs provide objective measures of brain function, complementing patient-reported or clinician-observed symptom evaluation, and aid the translation from preclinical to clinical research. Significant challenges include the development, validation, and operationalization of these measures. We suggest that collaborative networks comprising clinical practitioners, academics, individuals working in the pharmaceutical industry, drug regulators, patients, patient advocacy groups, and other relevant stakeholders may provide infrastructure to facilitate validation of experimental medicine approaches in translational research and in the implementation of these approaches in real-world clinical practice.
Collapse
Affiliation(s)
- Amy C Beckenstrom
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK.
| | - Preciosa M Coloma
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Switzerland
| | - Gerard R Dawson
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK
| | - Ailidh K Finlayson
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK; Department of Psychology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Asad Malik
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK
| | - Anke Post
- Corlieve Therapeutics, Swiss Innovation Park, Hegenheimermattweg 167A, 4123 Allschwil, Switzerland
| | | | - Marc N Potenza
- Departments of Psychiatry and Neuroscience and the Child Study Center, Yale School of Medicine, 1 Church Street, Room 726, New Haven, CT 06510, USA; Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, USA; Connecticut Council on Problem Gambling, Wethersfield, CT, USA; The Wu Tsai Institute, Yale University, 100 College St, New Haven, CT 06510, USA
| |
Collapse
|
40
|
Ball HL, Said H, Chapman K, Fu R, Xiong Y, Burk JA, Rosenbaum D, Veneziano R, Cotten ML. Orexin A, an amphipathic α-helical neuropeptide involved in pleiotropic functions in the nervous and immune systems: Synthetic approach and biophysical studies of the membrane-bound state. Biophys Chem 2023; 297:107007. [PMID: 37037119 DOI: 10.1016/j.bpc.2023.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
This research reports on the membrane interactions of orexin A (OXA), an α-helical and amphipathic neuropeptide that contains 33 residues and two disulfide bonds in the N-terminal region. OXA, which activates the orexins 1 and 2 receptors in neural and immune cell membranes, has essential pleiotropic physiological effects, including at the levels of arousal, sleep/wakefulness, energy balance, neuroprotection, lipid signaling, the inflammatory response, and pain. As a result, the orexin system has become a prominent target to treat diseases such as sleep disorders, drug addiction, and inflammation. While the high-resolution structure of OXA has been investigated in water and bound to micelles, there is a lack of information about its conformation bound to phospholipid membranes and its receptors. NMR is a powerful method to investigate peptide structures in a membrane environment. To facilitate the NMR structural studies of OXA exposed to membranes, we present a novel synthetic scheme, leading to the production of isotopically-labeled material at high purity. A receptor activation assay shows that the 15N-labeled peptide is biologically active. Biophysical studies are performed using surface plasmon resonance, circular dichroism, and NMR to investigate the interactions of OXA with phospholipid bilayers. The results demonstrate a strong interaction between the peptide and phospholipids, an increase in α-helical content upon membrane binding, and an in-plane orientation of the C-terminal region critical to function. This new knowledge about structure-activity relationships in OXA could inspire the design of novel therapeutics that leverage the anti-inflammatory and neuro-protective functions of OXA, and therefore could help address neuroinflammation, a major issue associated with neurological disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Haydn L Ball
- Department of Chemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hooda Said
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Fairfax, VA 22030, USA
| | - Karen Chapman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Yawei Xiong
- Department of Applied Science, William & Mary, Williamsburg, VA 23185, USA
| | - Joshua A Burk
- Department of Psychological Sciences, William & Mary, Williamsburg, VA 23185, USA
| | - Daniel Rosenbaum
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Remi Veneziano
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Fairfax, VA 22030, USA
| | - Myriam L Cotten
- Department of Applied Science, William & Mary, Williamsburg, VA 23185, USA.
| |
Collapse
|
41
|
Amezawa M, Yamamoto N, Nagumo Y, Kutsumura N, Ishikawa Y, Yanagisawa M, Nagase H, Saitoh T. Design and synthesis of novel orexin 2 receptor agonists with a 1,3,5‑trioxazatriquinane skeleton. Bioorg Med Chem Lett 2023; 82:129151. [PMID: 36690040 DOI: 10.1016/j.bmcl.2023.129151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
A novel series of 1,3,5‑trioxazatriquinane with multiple effective residues (TriMER) derivatives with amino-methylene side chains was designed and synthesized based on the docking-simulation results between orexin receptors (OXRs) and TriMER-type OXR antagonists. In vitro screening against orexin receptors identified six TriMER derivatives with a cis side-chain configuration, and, among these, 20d and 28d showed full agonist activity against OX2R at a concentration of 10 µM. To determine the absolute stereochemistry of these hit compounds, we also conducted the first asymmetric synthesis of a 1,3,5‑trioxazatriquinane skeleton using a Katsuki-Sharpless asymmetric epoxidation as the key reaction and obtained a set of the individual stereoisomers. After evaluating their activity, (+)-20d (EC50 = 3.87 μM for OX2R) and (+)-28d (EC50 = 1.62 μM for OX2R) were determined as eutomers for OX2R agonist activity. Our results provide a new class of skeleton consisting of an (R)-1,3,5‑trioxazatriquinane core with flexible methylene linkers and hydrophobic substituents at the terminals of the side chains via carbamates/sulfonamides as OX2R agonists.
Collapse
Affiliation(s)
- Mao Amezawa
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Naoshi Yamamoto
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuyuki Nagumo
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Noriki Kutsumura
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan; International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yukiko Ishikawa
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, US
| | - Hiroshi Nagase
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan; International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
42
|
Shi Y, Chen Y, Deng L, Du K, Lu S, Chen T. Structural Understanding of Peptide-Bound G Protein-Coupled Receptors: Peptide-Target Interactions. J Med Chem 2023; 66:1083-1111. [PMID: 36625741 DOI: 10.1021/acs.jmedchem.2c01309] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The activation of G protein-coupled receptors (GPCRs) is triggered by ligand binding to their orthosteric sites, which induces ligand-specific conformational changes. Agonists and antagonists bound to GPCR orthosteric sites provide detailed information on ligand-binding modes. Among these, peptide ligands play an instrumental role in GPCR pharmacology and have attracted increased attention as therapeutic drugs. The recent breakthrough in GPCR structural biology has resulted in the remarkable availability of peptide-bound GPCR complexes. Despite the several structural similarities shared by these receptors, they exhibit distinct features in terms of peptide recognition and receptor activation. From this perspective, we have summarized the current status of peptide-bound GPCR structural complexes, largely focusing on the interactions between the receptor and its peptide ligand at the orthosteric site. In-depth structural investigations have yielded valuable insights into the molecular mechanisms underlying peptide recognition. This study would contribute to the discovery of GPCR peptide drugs with improved therapeutic effects.
Collapse
Affiliation(s)
- Yuxin Shi
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yi Chen
- Department of Ultrasound Interventional, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200433, China
| | - Liping Deng
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
43
|
Xu J, Wang Q, Hübner H, Hu Y, Niu X, Wang H, Maeda S, Inoue A, Tao Y, Gmeiner P, Du Y, Jin C, Kobilka BK. Structural and dynamic insights into supra-physiological activation and allosteric modulation of a muscarinic acetylcholine receptor. Nat Commun 2023; 14:376. [PMID: 36690613 PMCID: PMC9870890 DOI: 10.1038/s41467-022-35726-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023] Open
Abstract
The M2 muscarinic receptor (M2R) is a prototypical G-protein-coupled receptor (GPCR) that serves as a model system for understanding GPCR regulation by both orthosteric and allosteric ligands. Here, we investigate the mechanisms governing M2R signaling versatility using cryo-electron microscopy (cryo-EM) and NMR spectroscopy, focusing on the physiological agonist acetylcholine and a supra-physiological agonist iperoxo, as well as a positive allosteric modulator LY2119620. These studies reveal that acetylcholine stabilizes a more heterogeneous M2R-G-protein complex than iperoxo, where two conformers with distinctive G-protein orientations were determined. We find that LY2119620 increases the affinity for both agonists, but differentially modulates agonists efficacy in G-protein and β-arrestin pathways. Structural and spectroscopic analysis suggest that LY211620 stabilizes distinct intracellular conformational ensembles from agonist-bound M2R, which may enhance β-arrestin recruitment while impairing G-protein activation. These results highlight the role of conformational dynamics in the complex signaling behavior of GPCRs, and could facilitate design of better drugs.
Collapse
Affiliation(s)
- Jun Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Qinggong Wang
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, 518172, Shenzhen, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, 91058, Erlangen, Germany
| | - Yunfei Hu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China
- Innovation Academy for Precision Measurement Science and Technology, CAS, 430071, Wuhan, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shoji Maeda
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pharmacology, Medical School, University of Michigan 1150 Medical Center Dr., 1315 Medical Science Research Bldg III, Ann Arbor, MI, 48109, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yuyong Tao
- Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, 91058, Erlangen, Germany
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, 518172, Shenzhen, China.
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
44
|
Kang H, Park C, Choi YK, Bae J, Kwon S, Kim J, Choi C, Seok C, Im W, Choi HJ. Structural basis for Y2 receptor-mediated neuropeptide Y and peptide YY signaling. Structure 2023; 31:44-57.e6. [PMID: 36525977 DOI: 10.1016/j.str.2022.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Neuropeptide Y (NPY) and its receptors are expressed in various human tissues including the brain where they regulate appetite and emotion. Upon NPY stimulation, the neuropeptide Y1 and Y2 receptors (Y1R and Y2R, respectively) activate GI signaling, but their physiological responses to food intake are different. In addition, deletion of the two N-terminal amino acids of peptide YY (PYY(3-36)), the endogenous form found in circulation, can stimulate Y2R but not Y1R, suggesting that Y1R and Y2R may have distinct ligand-binding modes. Here, we report the cryo-electron microscopy structures of the PYY(3-36)‒Y2R‒Gi and NPY‒Y2R‒Gi complexes. Using cell-based assays, molecular dynamics simulations, and structural analysis, we revealed the molecular basis of the exclusive binding of PYY(3-36) to Y2R. Furthermore, we demonstrated that Y2R favors G protein signaling over β-arrestin signaling upon activation, whereas Y1R does not show a preference between these two pathways.
Collapse
Affiliation(s)
- Hyunook Kang
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chaehee Park
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeol Kyo Choi
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Jungnam Bae
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sohee Kwon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinuk Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chulwon Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
45
|
A photocaged orexin-B for spatiotemporally precise control of orexin signaling. Cell Chem Biol 2022; 29:1729-1738.e8. [PMID: 36481097 PMCID: PMC9794195 DOI: 10.1016/j.chembiol.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/04/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Orexin neuropeptides carry out important neuromodulatory functions in the brain, yet tools to precisely control the activation of endogenous orexin signaling are lacking. Here, we developed a photocaged orexin-B (photo-OXB) through a C-terminal photocaging strategy. We show that photo-OXB is unable to activate its cognate receptors in the dark but releases functionally active native orexin-B upon uncaging by illumination with UV-visible (UV-vis) light (370-405 nm). We established an all-optical assay combining photo-OXB with a genetically encoded orexin biosensor and used it to characterize the efficiency and spatial profile of photo-OXB uncaging. Finally, we demonstrated that photo-OXB enables optical control over orexin signaling with fine temporal precision both in vitro and ex vivo. Thus, our photocaging strategy and photo-OXB advance the chemical biological toolkit by introducing a method for the optical control of peptide signaling and physiological function.
Collapse
|
46
|
Chen J, Chen Z, Chen R, Feng D, Li T, Han H, Bi X, Wang Z, Li K, Li Y, Li X, Wang L, Li J. HCDT: an integrated highly confident drug-target resource. Database (Oxford) 2022; 2022:6843794. [PMID: 36420558 PMCID: PMC9684616 DOI: 10.1093/database/baac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022]
Abstract
Drug-target association plays an important role in drug discovery, drug repositioning, drug synergy prediction, etc. Currently, a lot of drug-related databases, such as DrugBank and BindingDB, have emerged. However, these databases are separate, incomplete and non-uniform with different criteria. Here, we integrated eight drug-related databases; collected, filtered and supplemented drugs, target genes and experimentally validated (highly confident) associations and built a highly confident drug-target (HCDT: http://hainmu-biobigdata.com/hcdt) database. HCDT database includes 500 681 HCDT associations between 299 458 drugs and 5618 target genes. Compared to individual databases, HCDT database contains 1.1 to 254.2 times drugs, 1.8-5.5 times target genes and 1.4-27.7 times drug-target associations. It is normative, publicly available and easy for searching, browsing and downloading. Together with multi-omics data, it will be a good resource in analyzing the drug functional mechanism, mining drug-related biological pathways, predicting drug synergy, etc. Database URL: http://hainmu-biobigdata.com/hcdt.
Collapse
Affiliation(s)
| | | | - Rufei Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Bioinformatics for Major Diseases Science Innovation Group, College of Biomedical Informatics and Engineering, Hainan Medical University, Haikou 571199, China
| | - Dehua Feng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Bioinformatics for Major Diseases Science Innovation Group, College of Biomedical Informatics and Engineering, Hainan Medical University, Haikou 571199, China
| | - Tianyi Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Bioinformatics for Major Diseases Science Innovation Group, College of Biomedical Informatics and Engineering, Hainan Medical University, Haikou 571199, China
| | - Huirui Han
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Bioinformatics for Major Diseases Science Innovation Group, College of Biomedical Informatics and Engineering, Hainan Medical University, Haikou 571199, China
| | - Xiaoman Bi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Bioinformatics for Major Diseases Science Innovation Group, College of Biomedical Informatics and Engineering, Hainan Medical University, Haikou 571199, China
| | - Zhenzhen Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Bioinformatics for Major Diseases Science Innovation Group, College of Biomedical Informatics and Engineering, Hainan Medical University, Haikou 571199, China
| | - Kongning Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Bioinformatics for Major Diseases Science Innovation Group, College of Biomedical Informatics and Engineering, Hainan Medical University, Haikou 571199, China
| | - Yongsheng Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Bioinformatics for Major Diseases Science Innovation Group, College of Biomedical Informatics and Engineering, Hainan Medical University, Haikou 571199, China
| | - Xia Li
- *Corresponding author: Tel: +86-451-86615922; Fax: +86-451-86615922; Correspondence may also be addressed to Limei Wang. Tel: +86-898-66893770; Fax: +86-898-66893770; and Jin Li. Tel: +86-898-66893770; Fax: +86-898-66893770;
| | - Limei Wang
- *Corresponding author: Tel: +86-451-86615922; Fax: +86-451-86615922; Correspondence may also be addressed to Limei Wang. Tel: +86-898-66893770; Fax: +86-898-66893770; and Jin Li. Tel: +86-898-66893770; Fax: +86-898-66893770;
| | - Jin Li
- *Corresponding author: Tel: +86-451-86615922; Fax: +86-451-86615922; Correspondence may also be addressed to Limei Wang. Tel: +86-898-66893770; Fax: +86-898-66893770; and Jin Li. Tel: +86-898-66893770; Fax: +86-898-66893770;
| |
Collapse
|
47
|
Molecular basis for anti-insomnia drug design from structure of lemborexant-bound orexin 2 receptor. Structure 2022; 30:1582-1589.e4. [DOI: 10.1016/j.str.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/24/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
|
48
|
Raïch I, Rebassa JB, Lillo J, Cordomi A, Rivas-Santisteban R, Lillo A, Reyes-Resina I, Franco R, Navarro G. Antagonization of OX 1 Receptor Potentiates CB 2 Receptor Function in Microglia from APP Sw/Ind Mice Model. Int J Mol Sci 2022; 23:12801. [PMID: 36361598 PMCID: PMC9656664 DOI: 10.3390/ijms232112801] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 08/01/2023] Open
Abstract
Microdialysis assays demonstrated a possible role of orexin in the regulation of amyloid beta peptide (Aß) levels in the hippocampal interstitial fluid in the APP transgenic model. CB2R is overexpressed in activated microglia, showing a neuroprotective effect. These two receptors may interact, forming CB2-OX1-Hets and becoming a new target to combat Alzheimer's disease. Aims: Demonstrate the potential role of CB2-OX1-Hets expression and function in microglia from animal models of Alzheimer's disease. Receptor heteromer expression was detected by immunocytochemistry, bioluminescence resonance energy transfer (BRET) and proximity ligation assay (PLA) in transfected HEK-293T cells and microglia primary cultures. Quantitation of signal transduction events in a heterologous system and in microglia cells was performed using the AlphaScreen® SureFire® kit, western blot, the GCaMP6 calcium sensor and the Lance Ultra cAMP kit (PerkinElmer). The formation of CB2-OX1 receptor complexes in transfected HEK-293T cells has been demonstrated. The tetrameric complex is constituted by one CB2R homodimer, one OX1R homodimer and two G proteins, a Gi and a Gq. The use of TAT interfering peptides showed that the CB2-OX1 receptor complex interface is TM4-TM5. At the functional level it has been observed that the OX1R antagonist, SB334867, potentiates the action induced by CB2R agonist JWH133. This effect is observed in transfected HEK-293T cells and microglia, and it is stronger in the Alzheimer's disease (AD) animal model APPSw/Ind where the expression of the complex assessed by the proximity ligation assay indicates an increase in the number of complexes compared to resting microglia. The CB2-OX1 receptor complex is overexpressed in microglia from AD animal models where OX1R antagonists potentiate the neuroprotective actions of CB2R activation. Taken together, these results point to OX1R antagonists as drugs with therapeutic potential to combat AD. Data access statement: Raw data will be provided by the corresponding author upon reasonable requirement.
Collapse
Affiliation(s)
- Iu Raïch
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Joan Biel Rebassa
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Jaume Lillo
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | | | - Rafael Rivas-Santisteban
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Alejandro Lillo
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Irene Reyes-Resina
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Rafael Franco
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Gemma Navarro
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| |
Collapse
|
49
|
Pardon M, Claes P, Druwé S, Martini M, Siekierska A, Menet C, de Witte PAM, Copmans D. Modulation of sleep behavior in zebrafish larvae by pharmacological targeting of the orexin receptor. Front Pharmacol 2022; 13:1012622. [PMID: 36339591 PMCID: PMC9632972 DOI: 10.3389/fphar.2022.1012622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/23/2022] [Indexed: 06/21/2024] Open
Abstract
New pharmacological approaches that target orexin receptors (OXRs) are being developed to treat sleep disorders such as insomnia and narcolepsy, with fewer side effects than existing treatments. Orexins are neuropeptides that exert excitatory effects on postsynaptic neurons via the OXRs, and are important in regulating sleep/wake states. To date, there are three FDA-approved dual orexin receptor antagonists for the treatment of insomnia, and several small molecule oral OX2R (OXR type 2) agonists are in the pipeline for addressing the orexin deficiency in narcolepsy. To find new hypnotics and psychostimulants, rodents have been the model of choice, but they are costly and have substantially different sleep patterns to humans. As an alternative model, zebrafish larvae that like humans are diurnal and show peak daytime activity and rest at night offer several potential advantages including the ability for high throughput screening. To pharmacologically validate the use of a zebrafish model in the discovery of new compounds, we aimed in this study to evaluate the functionality of a set of known small molecule OX2R agonists and antagonists on human and zebrafish OXRs and to probe their effects on the behavior of zebrafish larvae. To this end, we developed an in vitro IP-One Homogeneous Time Resolved Fluorescence (HTRF) immunoassay, and in vivo locomotor assays that record the locomotor activity of zebrafish larvae under physiological light conditions as well as under dark-light triggers. We demonstrate that the functional IP-One test is a good predictor of biological activity in vivo. Moreover, the behavioral data show that a high-throughput assay that records the locomotor activity of zebrafish throughout the evening, night and morning is able to distinguish between OXR agonists and antagonists active on the zebrafish OXR. Conversely, a locomotor assay with alternating 30 min dark-light transitions throughout the day is not able to distinguish between the two sets of compounds, indicating the importance of circadian rhythm to their pharmacological activity. Overall, the results show that a functional IP-one test in combination with a behavioral assay using zebrafish is well-suited as a discovery platform to find novel compounds that target OXRs for the treatment of sleep disorders.
Collapse
Affiliation(s)
- Marie Pardon
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | | | | | - Aleksandra Siekierska
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | - Peter A. M. de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniëlle Copmans
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Chen M, Zhu Z, Wisniewski T, Zhang X, McLaren DG, Weinglass A, Saldanha SA. Label-free LC-MS based assay to characterize small molecule compound binding to cells. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:405-412. [PMID: 36064100 DOI: 10.1016/j.slasd.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Study of small molecule binding to live cells provides important information on the characterization of ligands pharmacologically. Here we developed and validated a label-free, liquid chromatography-mass spectrometry (LC-MS) based cell binding assay, using centrifugation to separate binders from non-binders. This assay was applied to various target classes, with particular emphasis on those for which protein-based binding assay can be difficult to achieve. In one example, to study a G protein coupled receptor (GPCR), we used one antagonist as probe and multiple other antagonists as competitor ligands. Binding of the probe was confirmed to be specific and saturable, reaching a fast equilibrium. Competition binding analysis by titration of five known ligands suggested a good correlation with their inhibition potency. In another example, this assay was applied to an ion channel target with its agonists, of which the determined binding affinity was consistent with functional assays. This versatile method allows quantitative characterization of ligand binding to cell surface expressed targets in a physiologically relevant environment.
Collapse
|