1
|
Ren C, Zhang Z, Dou Y, Sun Y, Fu Z, Wang L, Wang K, Gao C, Fan Y, Sun S, Yue X, Li C, Gao L, Liang X, Ma C, Wu Z. DNA Sensor ABCF1 Phase Separates With cccDNA to Inhibit Hepatitis B Virus Replication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409485. [PMID: 39498874 DOI: 10.1002/advs.202409485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/25/2024] [Indexed: 11/07/2024]
Abstract
Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) contributes to viral persistence and recurrence, however, how the host innate immune system responds to cccDNA is still less known. Here, based on cccDNA-hepatic proteins interaction profiling, DNA sensor ATP-binding cassette subfamily F member 1 (ABCF1) is identified as a novel cccDNA-binding protein and host restriction factor for HBV replication. Mechanistically, ABCF1 recognizes cccDNA by KKx4 motif and forms phase-separated condensates by the poly-glutamine (PolyQ) region of the N-terminal intrinsically disordered low-complexity domain (LCD). Subsequently, ABCF1-cccDNA phase separation not only activates the type I/III interferon (IFN-I/III) pathway but also prevents Pol II accumulation on cccDNA to inhibit HBV transcription. In turn, to sustain viral replication, HBV reduces ABCF1 expression by HBx-mediated ubiquitination and degradation of SRY-box transcription factor 4(SOX4), leading to defects in SOX4-mediated upregulation of ABCF1 transcription. Taken together, the study shows that ABCF1 interacts with cccDNA to form phase separation that dually drives innate immune signaling and HBV transcriptional inhibition. These findings shed new light on the understanding of host defense against cccDNA and provide a novel promising therapeutic strategy for HBV infection.
Collapse
Affiliation(s)
- Caiyue Ren
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Zhaoying Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Yutong Dou
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Yang Sun
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Zhendong Fu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Liyuan Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Kai Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Chengjiang Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xuetian Yue
- Department of Cellular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
2
|
He Q, Liu C, Liu Q, Wang L, Song L. CgADAR1 involved in regulating the synthesis of interferon-like protein in Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109620. [PMID: 38740229 DOI: 10.1016/j.fsi.2024.109620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Adenosine deaminases acting on RNA 1 (ADAR1) is a dsRNA adenosine (A)-to-inosine (I) editing enzyme that regulates the innate immune response against virus invasion. In the present study, a novel CgADAR1 was identified from the oyster Crassostrea gigas. The open reading frame (ORF) of CgADAR1 was of 3444 bp encoding a peptide of 1147 amino acid residues with two Zα domains, one dsRNA binding motif (DSRM) and one RNA adenosine deaminase domain (ADEAMc). The mRNA transcripts of CgADAR1 were detected in all the examined tissues, with higher expression levels in mantle and gill, which were 7.11-fold and 4.90-fold (p < 0.05) of that in labial palp, respectively. The mRNA transcripts of CgADAR1 in haemocytes were significantly induced at 24 h and 36 h after Poly (A: U) stimulation, which were 6.03-fold (p < 0.01) and 1.37-fold (p < 0.001) of that in control group, respectively. At 48 h after Poly (A:U) stimulation, the mRNA expression of CgRIG-Ⅰ, CgIRF8 and CgIFNLP significantly increased, which were 4.36-fold (p < 0.001), 1.82-fold (p < 0.05) and 1.92-fold (p < 0.05) of that in control group. After CgADAR1 expression was inhibited by RNA interference (RNAi), the mRNA expression levels of CgMDA5, CgRIG-Ⅰ, CgTBK1, CgIRF8 and CgIFNLP were significantly increased, which were 11.88-fold, 11.51-fold, 2.22-fold, 2.85-fold and 2.52-fold of that in control group (p < 0.001), and the phosphorylation level of CgTBK1 was also significantly increased. These results suggested that CgADAR1 played a regulation role in the early stages of viral infection by inhibiting the synthesis of interferon-like protein.
Collapse
Affiliation(s)
- Qianqian He
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Qian Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China.
| |
Collapse
|
3
|
Yan W, Rao D, Fan F, Liang H, Zhang Z, Dong H. Hepatitis B virus X protein and TGF-β: partners in the carcinogenic journey of hepatocellular carcinoma. Front Oncol 2024; 14:1407434. [PMID: 38962270 PMCID: PMC11220127 DOI: 10.3389/fonc.2024.1407434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Hepatitis B infection is substantially associated with the development of liver cancer globally, with the prevalence of hepatocellular carcinoma (HCC) cases exceeding 50%. Hepatitis B virus (HBV) encodes the Hepatitis B virus X (HBx) protein, a pleiotropic regulatory protein necessary for the transcription of the HBV covalently closed circular DNA (cccDNA) microchromosome. In previous studies, HBV-associated HCC was revealed to be affected by HBx in multiple signaling pathways, resulting in genetic mutations and epigenetic modifications in proto-oncogenes and tumor suppressor genes. In addition, transforming growth factor-β (TGF-β) has dichotomous potentials at various phases of malignancy as it is a crucial signaling pathway that regulates multiple cellular and physiological processes. In early HCC, TGF-β has a significant antitumor effect, whereas in advanced HCC, it promotes malignant progression. TGF-β interacts with the HBx protein in HCC, regulating the pathogenesis of HCC. This review summarizes the respective and combined functions of HBx and TGB-β in HCC occurrence and development.
Collapse
Affiliation(s)
- Wei Yan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Dean Rao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Feimu Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Zunyi Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Hanhua Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| |
Collapse
|
4
|
Ashley CN, Broni E, Miller WA. ADAR Family Proteins: A Structural Review. Curr Issues Mol Biol 2024; 46:3919-3945. [PMID: 38785511 PMCID: PMC11120146 DOI: 10.3390/cimb46050243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
This review aims to highlight the structures of ADAR proteins that have been crucial in the discernment of their functions and are relevant to future therapeutic development. ADAR proteins can correct or diversify genetic information, underscoring their pivotal contribution to protein diversity and the sophistication of neuronal networks. ADAR proteins have numerous functions in RNA editing independent roles and through the mechanisms of A-I RNA editing that continue to be revealed. Provided is a detailed examination of the ADAR family members-ADAR1, ADAR2, and ADAR3-each characterized by distinct isoforms that offer both structural diversity and functional variability, significantly affecting RNA editing mechanisms and exhibiting tissue-specific regulatory patterns, highlighting their shared features, such as double-stranded RNA binding domains (dsRBD) and a catalytic deaminase domain (CDD). Moreover, it explores ADARs' extensive roles in immunity, RNA interference, and disease modulation, demonstrating their ambivalent nature in both the advancement and inhibition of diseases. Through this comprehensive analysis, the review seeks to underline the potential of targeting ADAR proteins in therapeutic strategies, urging continued investigation into their biological mechanisms and health implications.
Collapse
Affiliation(s)
- Carolyn N. Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
| | - Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA; (C.N.A.); (E.B.)
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
5
|
Deng R, Tian R, Li X, Xu Y, Li Y, Wang X, Li H, Wang L, Xu B, Yang D, Tang S, Xue B, Zuo C, Zhu H. ISG12a promotes immunotherapy of HBV-associated hepatocellular carcinoma through blocking TRIM21/AKT/β-catenin/PD-L1 axis. iScience 2024; 27:109533. [PMID: 38591006 PMCID: PMC11000115 DOI: 10.1016/j.isci.2024.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/16/2024] [Accepted: 03/16/2024] [Indexed: 04/10/2024] Open
Abstract
Hepatitis B virus (HBV) infection generally elicits weak type-I interferon (IFN) immune response in hepatocytes, covering the regulatory effect of IFN-stimulated genes. In this study, low level of IFN-stimulated gene 12a (ISG12a) predicted malignant transformation and poor prognosis of HBV-associated hepatocellular carcinoma (HCC), whereas high level of ISG12a indicated active NK cell phenotypes. ISG12a interacts with TRIM21 to inhibit the phosphorylation activation of protein kinase B (PKB, also known as AKT) and β-catenin, suppressing PD-L1 expression to block PD-1/PD-L1 signaling, thereby enhancing the anticancer effect of NK cells. The suppression of PD-1-deficient NK-92 cells on HBV-associated tumors was independent of ISG12a expression, whereas the anticancer effect of PD-1-expressed NK-92 cells on HBV-associated tumors was enhanced by ISG12a and treatments of atezolizumab and nivolumab. Thus, tumor intrinsic ISG12a promotes the anticancer effect of NK cells by regulating PD-1/PD-L1 signaling, presenting the significant role of innate immunity in defending against HBV-associated HCC.
Collapse
Affiliation(s)
- Rilin Deng
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
- Hunan Normal University School of Medicine, Changsha 410013, Hunan, China
| | - Renyun Tian
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| | - Xinran Li
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Yan Xu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Yongqi Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Xintao Wang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| | - Luoling Wang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Biaoming Xu
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Tumor of Pancreaticobiliary Duodenal Junction In Hunan Province, Changsha 410013, Hunan, China
| | - Di Yang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Songqing Tang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Binbin Xue
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Tumor of Pancreaticobiliary Duodenal Junction In Hunan Province, Changsha 410013, Hunan, China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| |
Collapse
|
6
|
Zhang D, Zhu L, Gao Y, Wang Y, Li P. RNA editing enzymes: structure, biological functions and applications. Cell Biosci 2024; 14:34. [PMID: 38493171 PMCID: PMC10944622 DOI: 10.1186/s13578-024-01216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
With the advancement of sequencing technologies and bioinformatics, over than 170 different RNA modifications have been identified. However, only a few of these modifications can lead to base pair changes, which are called RNA editing. RNA editing is a ubiquitous modification in mammalian transcriptomes and is an important co/posttranscriptional modification that plays a crucial role in various cellular processes. There are two main types of RNA editing events: adenosine to inosine (A-to-I) editing, catalyzed by ADARs on double-stranded RNA or ADATs on tRNA, and cytosine to uridine (C-to-U) editing catalyzed by APOBECs. This article provides an overview of the structure, function, and applications of RNA editing enzymes. We discuss the structural characteristics of three RNA editing enzyme families and their catalytic mechanisms in RNA editing. We also explain the biological role of RNA editing, particularly in innate immunity, cancer biogenesis, and antiviral activity. Additionally, this article describes RNA editing tools for manipulating RNA to correct disease-causing mutations, as well as the potential applications of RNA editing enzymes in the field of biotechnology and therapy.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Ma H, Yan QZ, Ma JR, Li DF, Yang JL. Overview of the immunological mechanisms in hepatitis B virus reactivation: Implications for disease progression and management strategies. World J Gastroenterol 2024; 30:1295-1312. [PMID: 38596493 PMCID: PMC11000084 DOI: 10.3748/wjg.v30.i10.1295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatitis B virus (HBV) reactivation is a clinically significant challenge in disease management. This review explores the immunological mechanisms underlying HBV reactivation, emphasizing disease progression and management. It delves into host immune responses and reactivation's delicate balance, spanning innate and adaptive immunity. Viral factors' disruption of this balance, as are interactions between viral antigens, immune cells, cytokine networks, and immune checkpoint pathways, are examined. Notably, the roles of T cells, natural killer cells, and antigen-presenting cells are discussed, highlighting their influence on disease progression. HBV reactivation's impact on disease severity, hepatic flares, liver fibrosis progression, and hepatocellular carcinoma is detailed. Management strategies, including anti-viral and immunomodulatory approaches, are critically analyzed. The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation. In conclusion, this comprehensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation. With a dedicated focus on understanding its implications for disease progression and the prospects of efficient management strategies, this article contributes significantly to the knowledge base. The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches, ultimately enhancing disease management and elevating patient outcomes. The dynamic landscape of management strategies is critically scrutinized, spanning anti-viral and immunomodulatory approaches. The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.
Collapse
Affiliation(s)
- Hui Ma
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Qing-Zhu Yan
- Department of Ultrasound Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jing-Ru Ma
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Dong-Fu Li
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jun-Ling Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
8
|
Tian R, Yang D, Xu B, Deng R, Xue B, Wang L, Li H, Liu Q, Wang X, Tang S, Wan M, Pei H, Zhu H. Establishment of cell culture model and humanized mouse model of chronic hepatitis B virus infection. Microbiol Spectr 2024; 12:e0274523. [PMID: 38018998 PMCID: PMC10783038 DOI: 10.1128/spectrum.02745-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Approximately 257 million people worldwide have been infected with hepatitis B virus (HBV), and HBV infection can cause chronic hepatitis, cirrhosis, and even liver cancer. The lack of suitable and effective infection models has greatly limited research in HBV-related fields for a long time, and it is still not possible to discover a method to completely and effectively remove the HBV genome. We have constructed a hepatocellular carcinoma cell line, HLCZ01, that can support the complete life cycle of HBV. This model can mimic the long-term stable infection of HBV in the natural state and can replace primary human hepatocytes for the development of human liver chimeric mice. This model will be a powerful tool for research in the field of HBV.
Collapse
Affiliation(s)
- Renyun Tian
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Di Yang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Biaoming Xu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Rilin Deng
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Binbin Xue
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Luoling Wang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Qian Liu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Xiaohong Wang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Songqing Tang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Mengyu Wan
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Hua Pei
- Department of Pathogen Biology and Immunology, Department of Clinical Laboratory of the Second Affiliated Hospital, Key Laboratory of Tropical Translational Medicine of Ministry of Education,Institute of Pathogen Biology and Immunology,School of Basic Medicine and Life Science, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Department of Pathogen Biology and Immunology, Department of Clinical Laboratory of the Second Affiliated Hospital, Key Laboratory of Tropical Translational Medicine of Ministry of Education,Institute of Pathogen Biology and Immunology,School of Basic Medicine and Life Science, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China
| |
Collapse
|
9
|
Zhang J, Li Y, Zhang J, Liu L, Chen Y, Yang X, Liao X, He M, Jia Z, Fan J, Bian JS, Nie X. ADAR1 regulates vascular remodeling in hypoxic pulmonary hypertension through N1-methyladenosine modification of circCDK17. Acta Pharm Sin B 2023; 13:4840-4855. [PMID: 38045055 PMCID: PMC10692360 DOI: 10.1016/j.apsb.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Accepted: 07/05/2023] [Indexed: 12/05/2023] Open
Abstract
Pulmonary hypertension (PH) is an extremely malignant pulmonary vascular disease of unknown etiology. ADAR1 is an RNA editing enzyme that converts adenosine in RNA to inosine, thereby affecting RNA expression. However, the role of ADAR1 in PH development remains unclear. In the present study, we investigated the biological role and molecular mechanism of ADAR1 in PH pulmonary vascular remodeling. Overexpression of ADAR1 aggravated PH progression and promoted the proliferation of pulmonary artery smooth muscle cells (PASMCs). Conversely, inhibition of ADAR1 produced opposite effects. High-throughput whole transcriptome sequencing showed that ADAR1 was an important regulator of circRNAs in PH. CircCDK17 level was significantly lowered in the serum of PH patients. The effects of ADAR1 on cell cycle progression and proliferation were mediated by circCDK17. ADAR1 affects the stability of circCDK17 by mediating A-to-I modification at the A5 and A293 sites of circCDK17 to prevent it from m1A modification. We demonstrate for the first time that ADAR1 contributes to the PH development, at least partially, through m1A modification of circCDK17 and the subsequent PASMCs proliferation. Our study provides a novel therapeutic strategy for treatment of PH and the evidence for circCDK17 as a potential novel marker for the diagnosis of this disease.
Collapse
Affiliation(s)
- Junting Zhang
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Yiying Li
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Jianchao Zhang
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Lu Liu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuan Chen
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 211103, China
| | - Xusheng Yang
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 211103, China
| | - Xueyi Liao
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Muhua He
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zihui Jia
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 211103, China
| | - Jun Fan
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaowei Nie
- Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Wang M, Zhang J, Dou Y, Liang M, Xie Y, Xue P, Liu L, Li C, Wang Y, Tao F, Zhang X, Hu H, Feng K, Zhang L, Wu Z, Chen Y, Zhan P, Jia H. Design, Synthesis, and Biological Evaluation of Novel Thioureidobenzamide (TBA) Derivatives as HBV Capsid Assembly Modulators. J Med Chem 2023; 66:13968-13990. [PMID: 37839070 DOI: 10.1021/acs.jmedchem.3c01022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Hepatitis B virus (HBV) capsid assembly modulators (CAMs) represent a promising therapeutic approach for the treatment of HBV infection. In this study, we designed and synthesized five series of benzamide derivatives based on a multisite-binding strategy at the tolerant region and diversity modification in the solvent-exposed region. Among them, thioureidobenzamide compound 17i exhibited significantly increased anti-HBV activity in HepAD38 (EC50 = 0.012 μM) and HBV-infected HLCZ01 cells (EC50 = 0.033 μM). Moreover, 17i displayed a better inhibitory effect on the assembly of HBV capsid protein compared with NVR 3-778 and a inhibitory effect similar to the clinical drug GLS4. In addition, 17i showed moderate metabolic stability in human microsomes, had excellent oral bioavailability in Sprague-Dawley (SD) rats, and inhibited HBV replication in the HBV carrier mice model, which could be considered as a promising candidate drug for further development.
Collapse
Affiliation(s)
- Mei Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Jian Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Yutong Dou
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Dept. Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, Jinan 250012, Shandong, P. R. China
| | - Minghui Liang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Yong Xie
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd, Dongguan 523871, P. R. China
| | - Peng Xue
- School of Public Health, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Linyue Liu
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Chuanju Li
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong, P. R. China
| | - Yuanze Wang
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510000, Guangdong, P. R. China
| | - Feiyan Tao
- School of Public Health, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Xiaohui Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, Jinan 250012, P. R. China
- The Research Center of Stem Cell and Regenerative Medicine, Department of Systems Biomedicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Huili Hu
- Key Laboratory of Experimental Teratology, Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, Jinan 250012, P. R. China
- The Research Center of Stem Cell and Regenerative Medicine, Department of Systems Biomedicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Kairui Feng
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Lei Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Dept. Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, Jinan 250012, Shandong, P. R. China
| | - Yunfu Chen
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd, Dongguan 523871, P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Haiyong Jia
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P. R. China
| |
Collapse
|
11
|
Shen S, Zhang LS. The regulation of antiviral innate immunity through non-m 6A RNA modifications. Front Immunol 2023; 14:1286820. [PMID: 37915585 PMCID: PMC10616867 DOI: 10.3389/fimmu.2023.1286820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
The post-transcriptional RNA modifications impact the dynamic regulation of gene expression in diverse biological and physiological processes. Host RNA modifications play an indispensable role in regulating innate immune responses against virus infection in mammals. Meanwhile, the viral RNAs can be deposited with RNA modifications to interfere with the host immune responses. The N6-methyladenosine (m6A) has boosted the recent emergence of RNA epigenetics, due to its high abundance and a transcriptome-wide widespread distribution in mammalian cells, proven to impact antiviral innate immunity. However, the other types of RNA modifications are also involved in regulating antiviral responses, and the functional roles of these non-m6A RNA modifications have not been comprehensively summarized. In this Review, we conclude the regulatory roles of 2'-O-methylation (Nm), 5-methylcytidine (m5C), adenosine-inosine editing (A-to-I editing), pseudouridine (Ψ), N1-methyladenosine (m1A), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), and N4-acetylcytidine (ac4C) in antiviral innate immunity. We provide a systematic introduction to the biogenesis and functions of these non-m6A RNA modifications in viral RNA, host RNA, and during virus-host interactions, emphasizing the biological functions of RNA modification regulators in antiviral responses. Furthermore, we discussed the recent research progress in the development of antiviral drugs through non-m6A RNA modifications. Collectively, this Review conveys knowledge and inspiration to researchers in multiple disciplines, highlighting the challenges and future directions in RNA epitranscriptome, immunology, and virology.
Collapse
Affiliation(s)
- Shenghai Shen
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| | - Li-Sheng Zhang
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| |
Collapse
|
12
|
Bao Z, Chen X, Li Y, Jiang W, Pan D, Ma L, Wu Y, Chen Y, Chen C, Wang L, Zhao S, Wang T, Lu WY, Ma C, Wang S. The hepatic GABAergic system promotes liver macrophage M2 polarization and mediates HBV replication in mice. Antiviral Res 2023; 217:105680. [PMID: 37494980 DOI: 10.1016/j.antiviral.2023.105680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Macrophages display functional phenotypic plasticity. Hepatitis B virus (HBV) infection induces polarizations of liver macrophages either to M1-like pro-inflammatory phenotype or to M2-like anti-inflammatory phenotype. Gamma-aminobutyric acid (GABA) signaling exists in various non-neuronal cells including hepatocytes and some immune cells. Here we report that macrophages express functional GABAergic signaling components and activation of type A GABA receptors (GABAARs) promotes M2-polarization thus advancing HBV replication. Notably, intraperitoneal injection of GABA or the GABAAR agonist muscimol increased HBV replication in HBV-carrier mice that were generated by hydrodynamical injection of adeno-associated virus/HBV1.2 plasmids (pAAV/HBV1.2). The GABA-augmented HBV replication in HBV-carrier mice was significantly reduced by the GABAAR inhibitor picrotoxin although picrotoxin had no significant effect on serum HBsAg levels in control HBV-carrier mice. Depletion of liver macrophages by liposomal clodronate treatment also significantly reduced the GABA-augmented HBV replication. Yet adoptive transfer of liver macrophages isolated from GABA-treated donor HBV-carrier mice into the liposomal clodronate-pretreated recipient HBV-carrier mice restored HBV replication. Moreover, GABA or muscimol treatment increased the expression of "M2" cytokines in macrophages, but had no direct effect on HBV replication in the HepG2.2.15 cells, HBV1.3-transfected Huh7, HepG2, or HepaRG cells, or HBV-infected Huh7-NTCP cells. Taken together, these results suggest that increasing GABA signaling in the liver promotes HBV replication in HBV-carrier mice by suppressing the immunity of liver macrophages, but not by increasing the susceptibility of hepatocytes to HBV infection. Our study shows that a previously unknown GABAergic system in liver macrophage has an essential role in HBV replication.
Collapse
Affiliation(s)
- Ziyou Bao
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Xiaotong Chen
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, China
| | - Yan Li
- Translational Medical Research Centre, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Wenshan Jiang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Di Pan
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Science, Shandong University, Jinan, China; Department of Physiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Lushun Ma
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China; Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yunxiao Wu
- Department of Physiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yunling Chen
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Science, Shandong University, Jinan, China; Department of Physiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Chaojia Chen
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Liyuan Wang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Songbo Zhao
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Tixiao Wang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Wei-Yang Lu
- Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, Canada.
| | - Chunhong Ma
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Science, Shandong University, Jinan, China.
| | - Shuanglian Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
13
|
Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:25. [PMID: 37612540 PMCID: PMC10447785 DOI: 10.1186/s43556-023-00139-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
RNA modifications are dynamic and reversible chemical modifications on substrate RNA that are regulated by specific modifying enzymes. They play important roles in the regulation of many biological processes in various diseases, such as the development of cancer and other diseases. With the help of advanced sequencing technologies, the role of RNA modifications has caught increasing attention in human diseases in scientific research. In this review, we briefly summarized the basic mechanisms of several common RNA modifications, including m6A, m5C, m1A, m7G, Ψ, A-to-I editing and ac4C. Importantly, we discussed their potential functions in human diseases, including cancer, neurological disorders, cardiovascular diseases, metabolic diseases, genetic and developmental diseases, as well as immune disorders. Through the "writing-erasing-reading" mechanisms, RNA modifications regulate the stability, translation, and localization of pivotal disease-related mRNAs to manipulate disease development. Moreover, we also highlighted in this review all currently available RNA-modifier-targeting small molecular inhibitors or activators, most of which are designed against m6A-related enzymes, such as METTL3, FTO and ALKBH5. This review provides clues for potential clinical therapy as well as future study directions in the RNA modification field. More in-depth studies on RNA modifications, their roles in human diseases and further development of their inhibitors or activators are needed for a thorough understanding of epitranscriptomics as well as diagnosis, treatment, and prognosis of human diseases.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Qian Jing
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yanbo Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
14
|
Ghufran SM, Sharma P, Roy B, Jaiswal S, Aftab M, Sengupta S, Ghose S, Biswas S. Transcriptome wide functional analysis of HBx expressing human hepatocytes stimulated with endothelial cell cross-talk. Genomics 2023; 115:110642. [PMID: 37209778 PMCID: PMC7615065 DOI: 10.1016/j.ygeno.2023.110642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Identification of genes dysregulated during the hepatitis B virus (HBV)-host cell interaction adds to the understanding of underlying molecular mechanisms and aids in discovering effective therapies to improve prognosis in hepatitis B virus (HBV)-infected individuals. Through bioinformatics analyses of transcriptomics data, this study aimed to identify potential genes involved in the cross-talk of human hepatocytes expressing the HBV viral protein HBx with endothelial cells. Transient transfection of HBV viral gene X (HBx) was performed in THLE2 cells using pcDNA3 constructs. Through mRNA Sequencing (RNA Seq) analysis, differentially expressed genes (DEGs) were identified. THLE2 cells transfected with HBx (THLE2x) were further treated with conditioned medium from cultured human umbilical vein derived endothelial cells (HUVEC-CM). Gene Ontology (GO) enrichment analysis revealed that interferon and cytokine signaling pathways were primarily enriched for the downregulated DEGs in THLE2x cells treated with HUVEC-CM. One significant module was selected following protein-protein interaction (PPI) network generation, and thirteen hub genes were identified from the module. The prognostic values of the hub genes were evaluated using Kaplan-Meier (KM) plotter, and three genes (IRF7, IFIT1, and IFITM1) correlated with poor disease specific survival (DSS) in HCC patients with chronic hepatitis. A comparison of the DEGs identified in HUVEC-stimulated THLE2x cells with four publicly available HBV-related HCC microarray datasets revealed that PLAC8 was consistently downregulated in all four HCC datasets as well as in HUVEC-CM treated THLE2x cells. KM plots revealed that PLAC8 correlated with worse relapse free survival and progression free survival in HCC patients with hepatitis B virus infection. This study provided molecular insights which may help develop a deeper understanding of HBV-host stromal cell interaction and open avenues for future research.
Collapse
Affiliation(s)
| | - Prachi Sharma
- Amity Institute of Molecular Medicine & Stem Cell Research, AUUP, Noida, India
| | - Bornika Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, AUUP, Noida, India
| | - Shivani Jaiswal
- Amity Institute of Molecular Medicine & Stem Cell Research, AUUP, Noida, India
| | - Mehreen Aftab
- Division of Cellular and Molecular Oncology, National Institute of Cancer Prevention and Research, Noida, India
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine & Stem Cell Research, AUUP, Noida, India
| | - Sampa Ghose
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India.
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine & Stem Cell Research, AUUP, Noida, India.
| |
Collapse
|
15
|
Wu J, You Q, Lyu R, Qian Y, Tao H, Zhang F, Cai Y, Jiang N, Zheng N, Chen D, Wu Z. Folate metabolism negatively regulates OAS-mediated antiviral innate immunity via ADAR3/endogenous dsRNA pathway. Metabolism 2023; 143:155526. [PMID: 36822494 DOI: 10.1016/j.metabol.2023.155526] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Folate (FA) is an essential cofactor in the one-carbon (1C) metabolic pathway and participates in amino acid metabolism, purine and thymidylate synthesis, and DNA methylation. FA metabolism has been reported to play an important role in viral replications; however, the roles of FA metabolism in the antiviral innate immune response are unclear. OBJECTIVE To evaluate the potential regulatory role of FA metabolism in antiviral innate immune response, we establish the model of FA deficiency (FAD) in vitro and in vivo. The molecular and functional effects of FAD on 2'-5'-oligoadenylate synthetases (OAS)-associated antiviral innate immunity pathways were assessed; and the potential relationship between FA metabolism and the axis of adenosine deaminases acting on RNA 3 (ADAR3)/endogenous double-stranded RNA (dsRNA)/OAS was further explored in the present study, as well as the potential translatability of these findings in vivo. METHODS FA-free RPMI 1640 medium and FA-free feed were used to establish the model of FAD in vitro and in vivo. And FA and homocysteine (Hcy) concentrations in cell culture supernatants and serum were used for FAD model evaluation. Ribonucleoprotein immunoprecipitation assay was used to enrich endogenous dsRNA, and dot-blot was further used for quantitative analysis of endogenous dsRNA. Western-blot assay, RNA isolation and quantitative real-time PCR, immunofluorescence assay, and other molecular biology techniques were used for exploring the potential mechanisms. RESULTS In this study, we observed that FA metabolism negatively regulated OAS-mediated antiviral innate immune response. Mechanistically, FAD induced ADAR3, which interacted with endogenous dsRNA, to inhibit deaminated adenosine (A) being converted into inosine (I), leading to the cytoplasmic accumulation of dsRNA. Furthermore, endogenous dsRNA accumulated in cytoplasm triggered the host immune activation, thus promoting the expression of OAS2 to suppress the replication of viruses. Additionally, injection of 8-Azaadenosine to experimental animals, an A-to-I editing inhibitor, efficiently enhanced OAS-mediated antiviral innate immune response to reduce the viral burden in vivo. CONCLUSIONS Taken together, our present study provided a new perspective to illustrate a relationship between FA metabolism and the axis of ADAR3/endogenous dsRNA/OAS, and a new insight for the treatment of RNA viral infectious diseases by targeting the axis of ADAR3/endogenous dsRNA/OAS.
Collapse
Affiliation(s)
- Jing Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Qiao You
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Ruining Lyu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Yajie Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Hongji Tao
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Fang Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Yurong Cai
- School of life science, Ningxia University, Yinchuan, People's Republic of China
| | - Na Jiang
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Nan Zheng
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China.
| | - Zhiwei Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, People's Republic of China; School of life science, Ningxia University, Yinchuan, People's Republic of China.
| |
Collapse
|
16
|
Zhang K, Wang S, Chen T, Tu Z, Huang X, Zang G, Wu C, Fan X, Liu J, Tian Y, Cheng Y, Lu N, Zhang G. ADAR1p110 promotes Enterovirus D68 replication through its deaminase domain and inhibition of PKR pathway. Virol J 2022; 19:222. [PMID: 36550502 PMCID: PMC9773460 DOI: 10.1186/s12985-022-01952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Severe respiratory and neurological diseases caused by human enterovirus D68 (EV-D68) pose a serious threat to public health, and there are currently no effective drugs and vaccines. Adenosine deaminase acting on RNA1 (ADAR1) has diverse biological functions in various viral infections, but its role in EV-D68 infections remains undetermined. METHODS Rhabdomyosarcoma (RD) and human embryonic kidney 293 T (293 T) cells, and HeLa cells were used to evaluate the expression level of ADAR1 upon EV-D68 (Fermon strain) and human parainfluenza virus type 3 (HPIV3; NIH47885) infection, respectively. Knockdown through silencing RNA (siRNA) and overexpression of either ADAR1p110 or ADAR1p150 in cells were used to determine the function of the two proteins after viral infection. ADAR1p110 double-stranded RNA binding domains (dsRBDs) deletion mutation was generated using a seamless clone kit. The expression of ADAR1, EV-D68 VP1, and HPIV3 hemagglutinin-neuraminidase (HN) proteins was identified using western blotting. The median tissue culture infectious dose (TCID50) was applied to detect viral titers. The transcription level of EV-D68 mRNA was analyzed using reverse transcription-quantitative PCR (RT-qPCR) and the viral 5'-untranslated region (5'-UTR)-mediated translation was analyzed using a dual luciferase reporter system. CONCLUSION We found that the transcription and expression of ADAR1 was inhibited upon EV-D68 infection. RNA interference of endogenous ADAR1 decreased VP1 protein expression and viral titers, while overexpression of ADAR1p110, but not ADAR1p150, facilitated viral replication. Immunofluorescence assays showed that ADAR1p110 migrated from the nucleus to the cytoplasm after EV-D68 infection. Further, ADAR1p110 lost its pro-viral ability after mutations of the active sites in the deaminase domain, and 5'-UTR sequencing of the viral genome revealed that ADAR1p110 likely plays a role in EV-D68 RNA editing. In addition, after ADAR1 knockdown, the levels of both phosphorylated double-stranded RNA dependent protein kinase (p-PKR) and phosphorylated eukaryotic initiation factor 2α (p-eIF2α) increased. Attenuated translation activity of the viral genome 5'-UTR was also observed in the dual-luciferase reporter assay. Lastly, the deletion of ADAR1p110 dsRBDs increased the level of p-PKR, which correlated with a decreased VP1 expression, indicating that the promotion of EV-D68 replication by ADAR1p110 is also related to the inhibition of PKR activation by its dsRBDs. Our study illustrates that ADAR1p110 is a novel pro-viral factor of EV-D68 replication and provides a theoretical basis for EV-D68 antiviral research.
Collapse
Affiliation(s)
- Kehan Zhang
- grid.203458.80000 0000 8653 0555Pathogen Biology and Immunology Laboratory and Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China ,grid.203458.80000 0000 8653 0555Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Siyuan Wang
- grid.203458.80000 0000 8653 0555Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Tingting Chen
- grid.203458.80000 0000 8653 0555Pathogen Biology and Immunology Laboratory and Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
| | - Zeng Tu
- grid.203458.80000 0000 8653 0555Department of Pathogen Biology, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Xia Huang
- grid.203458.80000 0000 8653 0555Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Guangchao Zang
- grid.203458.80000 0000 8653 0555Pathogen Biology and Immunology Laboratory and Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
| | - Chun Wu
- Chongqing Better Biotechnology LLC, Chongqing, China
| | - Xinyue Fan
- grid.203458.80000 0000 8653 0555Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Jia Liu
- grid.203458.80000 0000 8653 0555Pathogen Biology and Immunology Laboratory and Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
| | - Yunbo Tian
- Quality Management Section, Chongqing Blood Center, Chongqing, China
| | - Yong Cheng
- Monitoring On Terrestrial Wildlife-Borne Infectious Diseases, Jinggangshan National Nature Reserve of Jiangxi Province, Ji’an, Jiangxi China
| | - Nan Lu
- grid.203458.80000 0000 8653 0555Department of Pathogen Biology, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Guangyuan Zhang
- grid.203458.80000 0000 8653 0555Pathogen Biology and Immunology Laboratory and Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Jin X, Bi J. Prospects for NK-based immunotherapy of chronic HBV infection. Front Immunol 2022; 13:1084109. [PMID: 36591230 PMCID: PMC9797727 DOI: 10.3389/fimmu.2022.1084109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/01/2022] [Indexed: 12/16/2022] Open
Abstract
Effective and long-term treatment is required for controlling chronic Hepatitis B Virus (HBV) infection. Natural killer (NK) cells are antiviral innate lymphocytes and represent an essential arm of current immunotherapy. In chronic HBV (CHB), NK cells display altered changes in phenotypes and functions, but preserve antiviral activity, especially for cytolytic activity. On the other hand, NK cells might also cause liver injury in the disease. NK -based immunotherapy, including adoptive NK cell therapy and NK -based checkpoint inhibition, could potentially exploit the antiviral aspect of NK cells for controlling CHB infection while preventing liver tissue damage. Here, we review recent progress in NK cell biology under the context of CHB infection, and discuss potential NK -based immunotherapy strategies for the disease.
Collapse
|
18
|
You H, Ma L, Wang X, Zhang F, Han Y, Yao J, Pan X, Zheng K, Kong F, Tang R. The emerging role of DEAD/H-box helicases in hepatitis B virus infection. Front Cell Infect Microbiol 2022; 12:1062553. [PMID: 36506030 PMCID: PMC9732268 DOI: 10.3389/fcimb.2022.1062553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
DEAD/H-box helicases are an essential protein family with a conserved motif containing unique amino acid sequences (Asp-Glu-Ala-Asp/His). Current evidence indicates that DEAD/H-box helicases regulate RNA metabolism and innate immune responses. In recent years, DEAD/H-box helicases have been reported to participate in the development of a variety of diseases, including hepatitis B virus (HBV) infection, which is a significant risk factor for hepatic fibrosis, cirrhosis, and liver cancer. Furthermore, emerging evidence suggests that different DEAD/H-box helicases play vital roles in the regulation of viral replication, based on the interaction of DEAD/H-box helicases with HBV and the modulation of innate signaling pathways mediated by DEAD/H-box helicases. Besides these, HBV can alter the expression and activity of DEAD/H-box helicases to facilitate its biosynthesis. More importantly, current investigation suggests that targeting DEAD/H-box helicases with appropriate compounds is an attractive treatment strategy for the virus infection. In this review, we delineate recent advances in molecular mechanisms relevant to the interplay of DEAD/H-box helicase and HBV and the potential of targeting DEAD/H-box helicase to eliminate HBV infection.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lihong Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xing Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Yiran Han
- First School of Clinical Medical, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaqi Yao
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Renxian Tang, ; Fanyun Kong,
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Renxian Tang, ; Fanyun Kong,
| |
Collapse
|
19
|
Zhang Q, Xiu B, Zhang L, Chen M, Chi W, Li L, Guo R, Xue J, Yang B, Huang X, Shao ZM, Huang S, Chi Y, Wu J. Immunosuppressive lncRNA LINC00624 promotes tumor progression and therapy resistance through ADAR1 stabilization. J Immunother Cancer 2022; 10:jitc-2022-004666. [PMID: 36252997 PMCID: PMC9577936 DOI: 10.1136/jitc-2022-004666] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Despite the success of HER2-targeted therapy in achieving prolonged survival in approximately 50% of treated individuals, treatment resistance is still an important challenge for HER2+ breast cancer (BC) patients. The influence of both adaptive and innate immune responses on the therapeutic outcomes of HER2+BC patients has been extensively demonstrated. METHODS Long non-coding RNAs expressed in non-pathological complete response (pCR) HER2 positive BC were screened and validated by RNA-seq. Survival analysis were made by Kaplan-Meier method. Cell death assay and proliferation assay were performed to confirm the phenotype of LINC00624. RT-qPCR and western blot were used to assay the IFN response. Xenograft mouse model were used for in vivo confirmation of anti-neu treatment resistance. RNA pull-down and immunoblot were used to confirm the interaction of ADAR1 and LINC00624. ADAR1 recombinant protein were purified from baculovirus expression system. B16-OVA cells were used to study antigen presentation both in vitro and in vivo. Flow cytometry was used to determine the tumor infiltrated immune cells of xenograft model. Antisense oligonucleotides (ASOs) were used for in vivo treatment. RESULTS In this study, we found that LINC00624 blocked the antitumor effect of HER2- targeted therapy both in vitro and in vivo by inhibiting type I interferon (IFN) pathway activation. The double-stranded RNA-like structure of LINC00624 can bind and be edited by the adenosine (A) to inosine (I) RNA-editing enzyme adenosine deaminase RNA specific 1 (ADAR1), and this editing has been shown to release the growth inhibition and attenuate the innate immune response caused by the IFN response. Notably, LINC00624 promoted the stabilization of ADAR1 by inhibiting its ubiquitination-induced degradation triggered by β-TrCP. In contrast, LINC00624 inhibited major histocompatibility complex (MHC) class I antigen presentation and limited CD8+T cell infiltration in the cancer microenvironment, resulting in immune checkpoint blockade inhibition and anti-HER2 treatment resistance mediated through ADAR1. CONCLUSIONS In summary, these results suggest that LINC00624 is a cancer immunosuppressive lncRNA and targeting LINC00624 through ASOs in tumors expressing high levels of LINC00624 has great therapeutic potential in future clinical applications.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bingqiu Xiu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liyi Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiru Chi
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lun Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rong Guo
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jingyan Xue
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Benlong Yang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoyan Huang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglin Huang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yayun Chi
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiong Wu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,Collaborative Innovation Center for Cancer Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Yang G, Wan P, Zhang Y, Tan Q, Qudus MS, Yue Z, Luo W, Zhang W, Ouyang J, Li Y, Wu J. Innate Immunity, Inflammation, and Intervention in HBV Infection. Viruses 2022; 14:2275. [PMID: 36298831 PMCID: PMC9609328 DOI: 10.3390/v14102275] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 07/30/2023] Open
Abstract
Hepatitis B virus (HBV) infection is still one of the most dangerous viral illnesses. HBV infects around 257 million individuals worldwide. Hepatitis B in many individuals ultimately develops hepatocellular carcinoma (HCC), which is the sixth most common cancer and the third leading cause of cancer-related deaths worldwide. The innate immunity acts as the first line of defense against HBV infection through activating antiviral genes. Along with the immune responses, pro-inflammatory cytokines are triggered to enhance the antiviral responses, but this may result in acute or chronic liver inflammation, especially when the clearance of virus is unsuccessful. To a degree, the host innate immune and inflammatory responses dominate the HBV infection and liver pathogenesis. Thus, it is crucial to figure out the signaling pathways involved in the activation of antiviral factors and inflammatory cytokines. Here, we review the interplay between HBV and the signal pathways that mediates innate immune responses and inflammation. In addition, we summarize current therapeutic strategies for HBV infection via modulating innate immunity or inflammation. Characterizing the mechanisms that underlie these HBV-host interplays might provide new approaches for the cure of chronic HBV infection.
Collapse
Affiliation(s)
- Ge Yang
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Yaru Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Qiaoru Tan
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhaoyang Yue
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Wei Luo
- Clinical Research Institute, The First People’s Hospital, Foshan 528000, China
| | - Wen Zhang
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Jianhua Ouyang
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Yongkui Li
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Jianguo Wu
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
21
|
Epremyan KK, Goleva TN, Rogov AG, Lavrushkina SV, Zinovkin RA, Zvyagilskaya RA. The First Yarrowia lipolytica Yeast Models Expressing Hepatitis B Virus X Protein: Changes in Mitochondrial Morphology and Functions. Microorganisms 2022; 10:microorganisms10091817. [PMID: 36144419 PMCID: PMC9501646 DOI: 10.3390/microorganisms10091817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic hepatitis B virus infection is the dominant cause of hepatocellular carcinoma, the main cause of cancer death. HBx protein, a multifunctional protein, is essential for pathogenesis development; however, the underlying mechanisms are not fully understood. The complexity of the system itself, and the intricate interplay of many factors make it difficult to advance in understanding the mechanisms underlying these processes. The most obvious solution is to use simpler systems by reducing the number of interacting factors. Yeast cells are particularly suitable for studying the relationships between oxidative stress, mitochondrial dynamics (mitochondrial fusion and fragmentation), and mitochondrial dysfunction involved in HBx-mediated pathogenesis. For the first time, genetically modified yeast, Y. lipolytica, was created, expressing the hepatitis B virus core protein HBx, as well as a variant fused with eGFP at the C-end. It was found that cells expressing HBx experienced stronger oxidative stress than the control cells. Oxidative stress was alleviated by preincubation with the mitochondria-targeted antioxidant SkQThy. Consistent with these data, in contrast to the control cells (pZ-0) containing numerous mitochondrial forming a mitochondrial reticulum, in cells expressing HBx protein, mitochondria were fragmented, and preincubation with SkQThy partially restored the mitochondrial reticulum. Expression of HBx had a significant influence on the bioenergetic function of mitochondria, making them loosely coupled with decreased respiratory rate and reduced ATP formation. In sum, the first highly promising yeast model for studying the impact of HBx on bioenergy, redox-state, and dynamics of mitochondria in the cell and cross-talk between these parameters was offered. This fairly simple model can be used as a platform for rapid screening of potential therapeutic agents, mitigating the harmful effects of HBx.
Collapse
Affiliation(s)
- Khoren K. Epremyan
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
- Correspondence: (K.K.E.); (R.A.Z.); Tel.: +7-(917)-575-3560 (K.K.E.)
| | - Tatyana N. Goleva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Anton G. Rogov
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia
| | - Svetlana V. Lavrushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1/40, 119992 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskye Gory 1/73, 119234 Moscow, Russia
| | - Roman A. Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1/40, 119992 Moscow, Russia
| | - Renata A. Zvyagilskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
- Correspondence: (K.K.E.); (R.A.Z.); Tel.: +7-(917)-575-3560 (K.K.E.)
| |
Collapse
|
22
|
Wu Z, Wang L, Wang X, Sun Y, Li H, Zhang Z, Ren C, Zhang X, Li S, Lu J, Xu L, Yue X, Hong Y, Li Q, Zhu H, Gong Y, Gao C, Hu H, Gao L, Liang X, Ma C. cccDNA Surrogate MC-HBV-Based Screen Identifies Cohesin Complex as a Novel HBV Restriction Factor. Cell Mol Gastroenterol Hepatol 2022; 14:1177-1198. [PMID: 35987451 PMCID: PMC9579331 DOI: 10.1016/j.jcmgh.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV), existing as a stable minichromosome in the hepatocyte, is responsible for persistent HBV infection. Maintenance and sustained replication of cccDNA require its interaction with both viral and host proteins. However, the cccDNA-interacting host factors that limit HBV replication remain elusive. METHODS Minicircle HBV (MC-HBV), a recombinant cccDNA, was constructed based on chimeric intron and minicircle DNA technology. By mass spectrometry based on pull-down with biotinylated MC-HBV, the cccDNA-hepatocyte interaction profile was mapped. HBV replication was assessed in different cell models that support cccDNA formation. RESULTS MC-HBV supports persistent HBV replication and mimics the cccDNA minichromosome. The MC-HBV-based screen identified cohesin complex as a cccDNA binding host factor, leading to reduced HBV replication. Mechanistically, with the help of CCCTC-binding factor (CTCF), which has specific binding sites on cccDNA, cohesin loads on cccDNA and reshapes cccDNA confirmation to prevent RNA polymerase II enrichment. Interestingly, HBV X protein transcriptionally reduces structural maintenance of chromosomes complex expression to partially relieve the inhibitory role of the cohesin complex on HBV replication. CONCLUSIONS Our data not only provide a feasible approach to explore cccDNA-binding factors, but also identify cohesin/CTCF complex as a critical host restriction factor for cccDNA-driven HBV replication. These findings provide a novel insight into cccDNA-host interaction and targeted therapeutic intervention for HBV infection.
Collapse
Affiliation(s)
- Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Liyuan Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Xin Wang
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong, China
| | - Yang Sun
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Haoran Li
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong, China
| | - Zhaoying Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Caiyue Ren
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Xiaohui Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Genetics, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Shuangjie Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Jinghui Lu
- Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Leiqi Xu
- Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Yue Hong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, China
| | - Qiang Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Yaoqin Gong
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Genetics, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Chengjiang Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Huili Hu
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Genetics, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China,Correspondence Address correspondence to: Chunhong Ma, PhD, Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012 China.
| |
Collapse
|
23
|
Rajendren S, Karijolich J. The Impact of RNA modifications on the Biology of DNA Virus Infection. Eur J Cell Biol 2022; 101:151239. [PMID: 35623231 PMCID: PMC9549750 DOI: 10.1016/j.ejcb.2022.151239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022] Open
Abstract
Approximately 170 RNA modifications have been identified and these are critical for determining the fate and function of cellular RNAs. Similar to human transcripts, viral RNAs possess an extensive RNA modification landscape. While initial efforts largely focused on investigating the RNA modification landscape in the context of RNA virus infection, a growing body of work has explored the impact of RNA modifications on DNA virus biology. These studies have revealed roles for RNA modifications in DNA virus infection, including gene regulation and viral pathogenesis. In this review, we will discuss the current knowledge on how RNA modifications impact DNA virus biology.
Collapse
|
24
|
Sun Y, Teng Y, Wang L, Zhang Z, Chen C, Wang Y, Zhang X, Xiang P, Song X, Lu J, Li N, Gao L, Liang X, Xia Y, Wu Z, Ma C. LINC01431 Promotes Histone H4R3 Methylation to Impede HBV Covalently Closed Circular DNA Transcription by Stabilizing PRMT1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103135. [PMID: 35398991 PMCID: PMC9165498 DOI: 10.1002/advs.202103135] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Covalently closed circular DNA (cccDNA) is the transcriptional template of hepatitis B virus (HBV), which interacts with both host and viral proteins to form minichromosome in the nucleus and is resistant to antiviral agents. Identification of host factors involved in cccDNA transcriptional regulation is expected to prove a new venue for HBV therapy. Recent evidence suggests the involvement of long noncoding RNAs (lncRNAs) in mediating the interaction of host factors with various viruses, however, lncRNAs that HBV targets and represses cccDNA transcription have not been fully elucidated. Here, the authors identified LINC01431 as a novel host restriction factor for HBV transcription. Mechanically, LINC01431 competitively bound with type I protein arginine methyltransferase (PRMT1) to block the HBx-mediated PRMT1 ubiquitination and degradation. Consequently, LINC01431 increased the occupancy of PRMT1 on cccDNA, leading to enhanced H4R3me2a modification and reduced acetylation of cccDNA-bound histones, thereby repressing cccDNA transcription. In turn, to facilitate viral replication, HBV transcriptionally repressed LINC01431 expression by HBx-mediated repression of transcription factor Zinc fingers and homeoboxes 2 (ZHX2). Collectively, the study demonstrates LINC01431 as a novel epigenetic regulator of cccDNA minichromosome and highlights a feedback loop of HBx-LINC01431-PRMT1 in HBV replication, which provides potential therapeutic targets for HBV treatment.
Collapse
Affiliation(s)
- Yang Sun
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Yan Teng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and ImmunologyInstitute of Medical VirologySchool of Basic Medical SciencesWuhan UniversityWuhanHubei430072China
| | - Liyuan Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Zhaoying Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - ChaoJia Chen
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Xiaodong Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Peng Xiang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Xiaojia Song
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Jinghui Lu
- Department of Hepatobiliary SurgeryQilu Hospital of Shandong University, JinanShandong250012China
| | - Nailin Li
- Karolinska InstituteDepartment of Medicine‐SolnaClinical Pharmacology GroupStockholm17176Sweden
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and ImmunologyInstitute of Medical VirologySchool of Basic Medical SciencesWuhan UniversityWuhanHubei430072China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| |
Collapse
|
25
|
Hepatitis B Viral Protein HBx and the Molecular Mechanisms Modulating the Hallmarks of Hepatocellular Carcinoma: A Comprehensive Review. Cells 2022; 11:cells11040741. [PMID: 35203390 PMCID: PMC8870387 DOI: 10.3390/cells11040741] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
With 296 million cases estimated worldwide, chronic hepatitis B virus (HBV) infection is the most common risk factor for hepatocellular carcinoma (HCC). HBV-encoded oncogene X protein (HBx), a key multifunctional regulatory protein, drives viral replication and interferes with several cellular signalling pathways that drive virus-associated hepatocarcinogenesis. This review article provides a comprehensive overview of the role of HBx in modulating the various hallmarks of HCC by supporting tumour initiation, progression, invasion and metastasis. Understanding HBx-mediated dimensions of complexity in driving liver malignancies could provide the key to unlocking novel and repurposed combinatorial therapies to combat HCC.
Collapse
|
26
|
You H, Qin S, Zhang F, Hu W, Li X, Liu D, Kong F, Pan X, Zheng K, Tang R. Regulation of Pattern-Recognition Receptor Signaling by HBX During Hepatitis B Virus Infection. Front Immunol 2022; 13:829923. [PMID: 35251017 PMCID: PMC8891514 DOI: 10.3389/fimmu.2022.829923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
As a small DNA virus, hepatitis B virus (HBV) plays a pivotal role in the development of various liver diseases, including hepatitis, cirrhosis, and liver cancer. Among the molecules encoded by this virus, the HBV X protein (HBX) is a viral transactivator that plays a vital role in HBV replication and virus-associated diseases. Accumulating evidence so far indicates that pattern recognition receptors (PRRs) are at the front-line of the host defense responses to restrict the virus by inducing the expression of interferons and various inflammatory factors. However, depending on HBX, the virus can control PRR signaling by modulating the expression and activity of essential molecules involved in the toll-like receptor (TLR), retinoic acid inducible gene I (RIG-I)-like receptor (RLR), and NOD-like receptor (NLR) signaling pathways, to not only facilitate HBV replication, but also promote the development of viral diseases. In this review, we provide an overview of the mechanisms that are linked to the regulation of PRR signaling mediated by HBX to inhibit innate immunity, regulation of viral propagation, virus-induced inflammation, and hepatocarcinogenesis. Given the importance of PRRs in the control of HBV replication, we propose that a comprehensive understanding of the modulation of cellular factors involved in PRR signaling induced by the viral protein may open new avenues for the treatment of HBV infection.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Suping Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Wei Hu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Dongsheng Liu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
27
|
Pan Y, Li M, Huang J, Pan W, Shi T, Guo Q, Yang G, Nie X. Genome-Wide Identification and Characterization of RNA/DNA Differences Associated with Drought Response in Wheat. Int J Mol Sci 2022; 23:1405. [PMID: 35163325 PMCID: PMC8836135 DOI: 10.3390/ijms23031405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
RNA/DNA difference (RDD) is a post-transcriptional RNA modification to enrich genetic information, widely involved in regulating diverse biological processes in eukaryotes. RDDs in the wheat nuclear genome, especially those associated with drought response or tolerance, were not well studied up to now. In this study, we investigated the RDDs related to drought response based on the RNA-seq data of drought-stressed and control samples in wheat. In total, 21,782 unique RDDs were identified, of which 265 were found to be drought-induced, representing the first drought-responsive RDD landscape in the wheat nuclear genome. The drought-responsive RDDs were located in 69 genes, of which 35 were differentially expressed under drought stress. Furthermore, the effects of RNA/DNA differences were investigated, showing that they could result in changes of RNA secondary structure, miRNA-target binding as well as protein conserved domains in the RDD-containing genes. In particular, the A to C mutation in TraesCS2A02G053100 (orthology to OsRLCK) led to the loss of tae-miR9657b-5p targeting, indicating that RNA/DNA difference might mediate miRNA to regulate the drought-response process. This study reported the first drought-responsive RDDs in the wheat nuclear genome. It sheds light on the roles of RDD in drought tolerance, and may also contribute to wheat genetic improvement based on epi-transcriptome methods.
Collapse
Affiliation(s)
- Yan Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.P.); (M.L.); (J.H.); (W.P.); (T.S.); (Q.G.); (G.Y.)
| | - Mengqi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.P.); (M.L.); (J.H.); (W.P.); (T.S.); (Q.G.); (G.Y.)
| | - Jiaqian Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.P.); (M.L.); (J.H.); (W.P.); (T.S.); (Q.G.); (G.Y.)
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.P.); (M.L.); (J.H.); (W.P.); (T.S.); (Q.G.); (G.Y.)
| | - Tingrui Shi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.P.); (M.L.); (J.H.); (W.P.); (T.S.); (Q.G.); (G.Y.)
| | - Qifan Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.P.); (M.L.); (J.H.); (W.P.); (T.S.); (Q.G.); (G.Y.)
| | - Guang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.P.); (M.L.); (J.H.); (W.P.); (T.S.); (Q.G.); (G.Y.)
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.P.); (M.L.); (J.H.); (W.P.); (T.S.); (Q.G.); (G.Y.)
- ICARDA-NWSUAF Joint Research Center, Yangling 712100, China
| |
Collapse
|
28
|
Yang H, Rui F, Li R, Yin S, Xue Q, Hu X, Xu Y, Wu C, Shi J, Li J. ADAR1 Inhibits HBV DNA Replication via Regulating miR-122-5p in Palmitic Acid Treated HepG2.2.15 Cells. Diabetes Metab Syndr Obes 2022; 15:4035-4047. [PMID: 36582505 PMCID: PMC9793725 DOI: 10.2147/dmso.s373385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND AIMS Changes in living standards and diet structure, non-alcoholic fatty liver disease (NAFLD) is prevalent globally, including in Asia, where chronic hepatitis B (CHB) is endemic. As such, cooccurrence of NAFLD with CHB is common in Asia. However, the pathogenesis underlying the onset of fatty liver in CHB prognosis has not been fully elucidated. Therefore, we aimed to investigate the effects and mechanisms of lipotoxicity on hepatitis B virus (HBV) DNA replication. METHODS The expression of adenosine deaminase acting on RNA-1 (ADAR1) and miR-122 was evaluated in liver tissues from patients with CHB concurrent NAFLD. Palmitic acid-treated HepG2.2.15 cells were used as the cell model. The effect of lipotoxicity on HBV DNA replication was evaluated in vitro by transfecting the ADAR1 overexpression or knockdown lentiviral vector into HepG2.2.15 cells, respectively. qRT-PCR, western blotting and immunofluorescence were performed to determine ADAR1 expression. RESULTS The expression of ADAR1 in the liver tissues of CHB patients with concurrent NAFLD was significantly down-regulated compared with that in CHB patients. Enforced expression of ADAR1 inhibited the HBV DNA replication, whereas ADAR1 knockdown resulted in increased HBV DNA expression in palmitic acid - treated HepG2.2.15 cells. Additionally, ADAR1 inhibited the HBV DNA replication by upregulating miR-122, which is most abundant in the liver and mainly inhibits HBV DNA replication. CONCLUSIONS ADAR1 may act as a suppressor of HBV replication in palmitic acid -treated HepG2.2.15 cells by increasing miR-122 levels. Thus, ADAR1 may serve as a potential biomarker and therapeutic target for CHB with concurrent NAFLD.
Collapse
Affiliation(s)
- Hongli Yang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan, People’s Republic of China
| | - Fajuan Rui
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing, People’s Republic of China
| | - Rui Li
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, People’s Republic of China
| | - Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Qi Xue
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan, People’s Republic of China
| | - Xinyu Hu
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, People’s Republic of China
| | - Yayun Xu
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, People’s Republic of China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Junping Shi
- Department of Infectious Disease, The Affiliated Hospital of Hangzhou Normal University, Wenzhou Road, Hangzhou, People’s Republic of China
- Junping Shi, Department of Infectious Disease, The Affiliated Hospital of Hangzhou Normal University, Wenzhou Road, Hangzhou, Zhejiang, People’s Republic of China, Email
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing, People’s Republic of China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
- Correspondence: Jie Li, Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China, Email
| |
Collapse
|
29
|
Masumoto J, Zhou W, Morikawa S, Hosokawa S, Taguchi H, Yamamoto T, Kurata M, Kaneko N. Molecular biology of autoinflammatory diseases. Inflamm Regen 2021; 41:33. [PMID: 34635190 PMCID: PMC8507398 DOI: 10.1186/s41232-021-00181-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
The long battle between humans and various physical, chemical, and biological insults that cause cell injury (e.g., products of tissue damage, metabolites, and/or infections) have led to the evolution of various adaptive responses. These responses are triggered by recognition of damage-associated molecular patterns (DAMPs) and/or pathogen-associated molecular patterns (PAMPs), usually by cells of the innate immune system. DAMPs and PAMPs are recognized by pattern recognition receptors (PRRs) expressed by innate immune cells; this recognition triggers inflammation. Autoinflammatory diseases are strongly associated with dysregulation of PRR interactomes, which include inflammasomes, NF-κB-activating signalosomes, type I interferon-inducing signalosomes, and immuno-proteasome; disruptions of regulation of these interactomes leads to inflammasomopathies, relopathies, interferonopathies, and proteasome-associated autoinflammatory syndromes, respectively. In this review, we discuss the currently accepted molecular mechanisms underlying several autoinflammatory diseases.
Collapse
Affiliation(s)
- Junya Masumoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan.
| | - Wei Zhou
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Shinnosuke Morikawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Sho Hosokawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Haruka Taguchi
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Toshihiro Yamamoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Mie Kurata
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Naoe Kaneko
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
30
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Toll-Like Receptor Response to Hepatitis B Virus Infection and Potential of TLR Agonists as Immunomodulators for Treating Chronic Hepatitis B: An Overview. Int J Mol Sci 2021; 22:10462. [PMID: 34638802 PMCID: PMC8508807 DOI: 10.3390/ijms221910462] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major global health problem. The immunopathology of the disease, especially the interplay between HBV and host innate immunity, is poorly understood. Moreover, inconsistent literature on HBV and host innate immunity has led to controversies. However, recently, there has been an increase in the number of studies that have highlighted the link between innate immune responses, including Toll-like receptors (TLRs), and chronic HBV infection. TLRs are the key sensing molecules that detect pathogen-associated molecular patterns and regulate the induction of pro- and anti-inflammatory cytokines, thereby shaping the adaptive immunity. The suppression of TLR response has been reported in patients with chronic hepatitis B (CHB), as well as in other models, including tree shrews, suggesting an association of TLR response in HBV chronicity. Additionally, TLR agonists have been reported to improve the host innate immune response against HBV infection, highlighting the potential of these agonists as immunomodulators for enhancing CHB treatment. In this study, we discuss the current understanding of host innate immune responses during HBV infection, particularly focusing on the TLR response and TLR agonists as immunomodulators.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
| |
Collapse
|