1
|
Yousef EH, El Gayar AM, El-Magd NFA. Insights into Sorafenib resistance in hepatocellular carcinoma: Mechanisms and therapeutic aspects. Crit Rev Oncol Hematol 2025; 212:104765. [PMID: 40389183 DOI: 10.1016/j.critrevonc.2025.104765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/07/2025] [Accepted: 05/11/2025] [Indexed: 05/21/2025] Open
Abstract
The most prevalent primary hepatic cancer, hepatocellular carcinoma (HCC), has a bad prognosis. HCC prevalence and related deaths have increased in recent decades. Food and Drug Administration (FDA) has licensed Sorafenib as a first-line treatment for individuals with advanced HCC. Despite this, some clinical studies indicate that a significant percentage of liver cancer patients exhibit insensitivity to sorafenib. Furthermore, the overall effectiveness of sorafenib is far from adequate, and the number of patients who benefit from therapy is low. In recent years, many researchers have focused on the mechanisms underlying sorafenib resistance. Acquired resistance to sorafenib in HCC cells has been reported to be facilitated by dysregulation of signal transducer and activator of transcription 3 (STAT3) activation, angiogenesis, autophagy, hypoxia-induced pathways, epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), ferroptosis, and non-coding RNAs (ncRNAs). Recent clinical trials, including comparisons of sorafenib with immune checkpoint inhibitors like tislelizumab, have shown promise in improving patient outcomes. Additionally, combination therapies targeting complementary pathways are under investigation to overcome resistance and enhance treatment efficacy. The limitation of Sorafenib's effectiveness has been partially but not completely clarified. Furthermore, while certain regimens have demonstrated positive results, more clinical trials are required to confirm them. Future research should focus on identifying predictive biomarkers for therapy response, targeting the tumor microenvironment, and exploring novel therapeutic agents and personalized medicine strategies. A deeper understanding of these mechanisms will be essential for developing more effective therapeutic approaches and improving the prognosis of patients with advanced HCC. This article discusses strategies that may be employed to enhance the success of treatment and summarizes new research on the possible pathways that lead to sorafenib resistance.
Collapse
Affiliation(s)
- Eman H Yousef
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Pharmacology and Biochemistry department, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34511, Egypt.
| | - Amal M El Gayar
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nada F Abo El-Magd
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Attanasio S. Autophagy in cancer and protein conformational disorders. FEBS Lett 2025. [PMID: 40342093 DOI: 10.1002/1873-3468.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 05/11/2025]
Abstract
Autophagy is a catabolic process by which cells maintain cellular homeostasis through the degradation of dysfunctional cytoplasmic components, such as toxic misfolded proteins and damaged organelles, within the lysosome. It is a multistep process that is tightly regulated by nutrient, energy, and stress-sensing mechanisms. Autophagy plays a pivotal role in various biological processes, including protein and organelle quality control, defense against pathogen infections, cell metabolism, and immune surveillance. As a result, autophagy dysfunction is linked to a variety of pathological conditions. The role of autophagy in cancer is complex and dynamic. Depending on the context, autophagy can have both tumor-suppressive and pro-tumorigenic effects. In contrast, its role is more clearly defined in protein conformational disorders, where autophagy serves as a mechanism to reduce toxic protein aggregation, thereby improving cellular homeostasis. Because autophagy-based therapies hold promising potential for the treatment of cancer and protein conformational disorders, this review will highlight the latest findings and advancements in these areas.
Collapse
Affiliation(s)
- Sergio Attanasio
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Zhang W, Hong X, Xiao Y, Wang H, Zeng X. Sorafenib resistance and therapeutic strategies in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2025; 1880:189310. [PMID: 40187502 DOI: 10.1016/j.bbcan.2025.189310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/30/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most prevalent and lethal cancers globally. While surgical resection and liver transplantation offer potential cures for early-stage HCC, the majority of patients are diagnosed at advanced stages where such interventions are not viable. Sorafenib, a multi-target kinase inhibitor, has been a cornerstone in the treatment of advanced HCC since its approval in 2007. Despite its significant clinical impact, less than half of the treated patients derive long-term benefits due to the emergence of resistance and associated side effects. This review focuses on the role of sorafenib, an FDA-approved multi-target kinase inhibitor, in treating advanced HCC, discusses the mechanisms underlying its therapeutic effects and associated resistance, and explores additional therapeutic strategies being investigated to improve patient outcomes.
Collapse
Affiliation(s)
- Weijing Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xuechuan Hong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuling Xiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Xiaodong Zeng
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China.
| |
Collapse
|
4
|
Wang J, Zhang HM, Zhu GH, Zhao LL, Shi J, Dai ZT, Li JP, Li XR, Sun F, Wu Y, Chen SY, Li HN, Liao XH, Xiang Y. STT3-mediated aberrant N-glycosylation of CD24 inhibits paclitaxel sensitivity in triple-negative breast cancer. Acta Pharmacol Sin 2025; 46:1097-1110. [PMID: 39668180 PMCID: PMC11950364 DOI: 10.1038/s41401-024-01419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/27/2024] [Indexed: 12/14/2024]
Abstract
Paclitaxel is one of the main chemotherapic medicines against triple-negative breast cancer (TNBC) in clinic. However, it has been perplexed by paclitaxel resistance in TNBC patients, resulting in a poor prognosis. Abnormal protein glycosylation is closely related to the occurrence and progression of tumors and malignant phenotypes such as chemotherapy resistance. CD24 is a highly glycosylated membrane protein that is highly expressed in TNBC, leading to tumorigenesis and poor prognosis. In this study we investigated the relationship between abnormal glycosylation of CD24 and paclitaxel susceptibility in TNBC and the molecular mechanisms. We showed that CD24 protein levels were significantly up-regulated in both TNBC tissues and cells, and CD24 protein was highly glycosylated. Genetic and pharmacological inhibition of N-glycosylation of CD24 enhances the anticancer activity of paclitaxel in vitro and tumor xenograft models. We revealed that the molecular mechanism of N-glycosylation of CD24 in paclitaxel resistance involved inhibition of ferroptosis, a new form that regulates cell death. Inhibition of N-glycosylation of CD24 increased glutathione consumption, iron content, and lipid peroxidation, resulting in paclitaxel-induced ferroptosis. We demonstrated that endoplasmic reticulum (ER)-associated glycosyltransferase STT3 isoforms (including both STT3A and STT3B isoforms) enable N-glycosylation of the L-asparagine (N) site. Knockout of the endogenous STT3 isoform in TNBC cells partially reduced the glycosylation status of CD24. Our results demonstrate the critical role of N-glycosylation of CD24 in weakening drug sensitivity by inhibiting ferroptosis, highlighting new insights that targeting N-glycosylation of CD24 has great potential to promote chemotherapy sensitivity and efficacy.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
- Department of Materials Science, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Hui-Min Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
- Department of Human Anatomy&Histoembryology, School of Basic Medical sciences, Xinxiang Medical University, Xinxiang, 453000, China
| | - Guan-Hua Zhu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Li-Li Zhao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Ji Shi
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zhou-Tong Dai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Peng Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xing-Rui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan Sun
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yuan Wu
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Shao-Yong Chen
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Han-Ning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Yuan Xiang
- Department of Medical Laboratory, Tongji Medical College, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, 430014, China.
| |
Collapse
|
5
|
Kim B. MicroRNA Profiling of PRELI-Modulated Exosomes and Effects on Hepatic Cancer Stem Cells. Int J Mol Sci 2024; 25:13299. [PMID: 39769068 PMCID: PMC11678812 DOI: 10.3390/ijms252413299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The increasing incidence and mortality rates of liver cancer have heightened the demand for the development of effective anticancer drugs with minimal side effects. In this study, the roles of exosomes derived from liver cancer stem cells (LCSCs) with PRELI (Protein of Relevant Evolutionary and Lymphoid Interest) modulation and their miRNAs were investigated to explore their therapeutic properties for liver cancer. Various techniques, such as miRNA profiling, microRNA transfection, overexpression, flow cytometry, Western blotting, and immunocytochemistry, were used to evaluate the effects of exosomes under PRELI up- and downregulation. Downregulated PRELI cellular exosomes (DPEs) reduced the levels of five markers-CD133, CD90, CD24, CD13, and EpCAM-in LCSCs, with the exception of OV-6. Conversely, upregulated PRELI cellular exosomes (UPEs) significantly increased the expression of CD90, CD24, and CD133 in NHs, with the maximum increase in CD24. PRELI upregulation altered expression levels of miRNAs, including hsa-miR-378a-3p (involved in stem-like properties), hsa-miR-25-3p (contributing to cell proliferation), and hsa-miR-423-3p (driving invasiveness). Exosomes with downregulated PRELI inhibited the AKT/mTORC1 signaling pathway, whereas LCSCs transfected with the candidate miRNAs activated it. Additionally, under PRELI upregulation, exosomes showed increased surface marker expression, promoting cancer progression. The modulation of PRELI in LCSCs affected miRNA expression significantly, revealing candidate miRNA targets for liver cancer treatment. Exosomes with PRELI downregulation show potential as a novel therapeutic strategy. Consequently, this study proposes the potential of PRELI-induced exosomes and the three miRNAs as a liver anticancer therapeutic candidate.
Collapse
Affiliation(s)
- Boyong Kim
- EVERBIO, 131, Jukhyeon-gil, Gwanghyewon-myeon, Jincheon-gun 27809, Republic of Korea
| |
Collapse
|
6
|
Vij P, Hussain MS, Satapathy SK, Cobos E, Tripathi MK. The Emerging Role of Long Noncoding RNAs in Sorafenib Resistance Within Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:3904. [PMID: 39682093 PMCID: PMC11639815 DOI: 10.3390/cancers16233904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a liver cancer originating from hepatocytes, is a major health concern and among the most common malignancies worldwide. Sorafenib, approved by the U.S. F.D.A., is the primary first-line treatment for patients with advanced HCC. While the preferred first-line systemic regimen for HCC is immunotherapy with Atezolizumab plus bevacizumab or Tremelimumab-actl + durvalumab, Sorafenib is still an alternative recommended regimen. While some patients with advanced HCC may benefit from Sorafenib treatment, most eventually develop resistance, leading to poor prognosis. Long noncoding RNAs (lncRNAs) have been found to play a critical role in tumorigenesis and the development of HCC, as well as other cancers. They are also key players in tumor drug resistance, though the mechanisms of lncRNAs in Sorafenib resistance in HCC remain poorly understood. This review summarizes the molecular mechanisms contributing to Sorafenib resistance in HCC with their potential correlation with lncRNAs, including the roles of transporters, receptors, cell death regulation, and other influencing factors.
Collapse
Affiliation(s)
- Puneet Vij
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA;
| | - Mohammad Shabir Hussain
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.H.); (E.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sanjaya K. Satapathy
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell Health Center for Liver Diseases & Transplantation, Northshore University Hospital, Manhasset, NY 11030, USA;
| | - Everardo Cobos
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.H.); (E.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Manish K. Tripathi
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.H.); (E.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
7
|
Yang X, Zhang Q, Li D, Hu L, Wang Y, Yan X, Li Y, Wang Y, Zhang F, Shen J. A Multifunctional Nanodrug Increases the Therapeutic Sensitivity of Lenvatinib to Hepatocellular Carcinoma by Inhibiting the Stemness of Hepatic Cancer Stem Cells. Adv Healthc Mater 2024; 13:e2401398. [PMID: 39359011 DOI: 10.1002/adhm.202401398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/17/2024] [Indexed: 10/04/2024]
Abstract
Drug resistance resulting from diverse mechanisms including the presence of cancer stem cells (CSCs) is the main obstacle for improving therapeutic efficacy of lenvatinib in hepatocellular carcinoma (HCC). Herein, a nanomedicine (siCD24-Len-MnO@PLAP) is developed by incorporating manganese oxide (MnO), lenvatinib (Len), and siRNA against CD24 (siCD24) into micelles composed of methoxypolyethylene glycol (mPEG), poly-L-lysine (PLLys), and polyasparagyl(N-(2-Aminoethyl)piperidine) (PAsp(PIP)) triblock copolymer. The nanomedicine can respond to the tumor microenvironment (TME) to release lenvatinib, and produce Mn2+ and O2, accompanied by changes in nanoparticle charge, which facilitates cellular endocytosis of siCD24-loaded nanoparticles. The released siCD24 and lenvatinib synergistically reduces CD24 expression, resulting in a more pronounced inhibition of stemness of CSCs. In the mouse models of HCC using Huh7-derived CSCs and Hepa1-6-derived CSCs, the nanomedicine shows remarkable anti-cancer effect by enhancing the therapeutic effects of lenvatinib against HCC via reducing the expression level of CD24 and decreasing the expression of hypoxia inducible factor-1α (HIF-1α). Moreover, in situ production of paramagnetic Mn2+ from the nanomedicine serves as an excellent contrast agent for magnetic resonance imaging (MRI) to monitor the therapeutic process. This study demonstrates that this multifunctional MRI-visible siCD24- and lenvatinib-loaded nanodrug holds great potential in enhancing therapeutic sensitivity for HCC lenvatinib therapy.
Collapse
Affiliation(s)
- Xieqing Yang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiaoyun Zhang
- College of Chemistry and Materials Science, Jinan University, No.855 Xingye Road East, Guangzhou, Guangdong, 510632, China
| | - Dongye Li
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lanxin Hu
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yu Wang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xinyu Yan
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yunhua Li
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, No.855 Xingye Road East, Guangzhou, Guangdong, 510632, China
| | - Fang Zhang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jun Shen
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
8
|
Hazra R, Chattopadhyay S, Mallick A, Gayen S, Roy S. Unravelling CD24-Siglec-10 pathway: Cancer immunotherapy from basic science to clinical studies. Immunology 2024; 173:442-469. [PMID: 39129256 DOI: 10.1111/imm.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer immunotherapy has revolutionized the treatment landscape by harnessing the power of the immune system to combat malignancies. Two of the most promising players in this field are cluster of differentiation 24 (CD24) and sialic acid-binding Ig-like lectin 10 (Siglec-10), and both of them play pivotal roles in modulating immune responses. CD24, a cell surface glycoprotein, emerges as a convincing fundamental signal transducer for therapeutic intervention, given its significant implication in the processes related to tumour progression and immunogenic evasion. Additionally, the immunomodulatory functions of Siglec-10, a prominent member within the Siglec family of immune receptors, have recently become a crucial point of interest, particularly in the context of the tumour microenvironment. Hence, the intricate interplay of both CD24 and Siglec-10 assumes a critical role in fostering tumour growth, facilitating metastasis and also orchestrating immune evasion. Recent studies have found multiple evidences supporting the therapeutic potential of targeting CD24 in cancer treatment. Siglec-10, on the other hand, exhibits immunosuppressive properties that contribute to immune tolerance within the tumour microenvironment. Therefore, we delve into the complex mechanisms through which Siglec-10 modulates immune responses and facilitates immune escape in cancer. Siglec-10 also acts as a viable target for cancer immunotherapy and presents novel avenues for the development of therapeutic interventions. Furthermore, we examine the synergy between CD24 and Siglec-10 in shaping the immunosuppressive tumour microenvironment and discuss the implications for combination therapies. Therefore, understanding the roles of CD24 and Siglec-10 in cancer immunotherapy opens exciting possibilities for the development of novel therapeutics.
Collapse
Affiliation(s)
- Rudradeep Hazra
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| |
Collapse
|
9
|
Wu J, Zhou Z, Huang Y, Deng X, Zheng S, He S, Huang G, Hu B, Shi M, Liao W, Huang N. Radiofrequency ablation: mechanisms and clinical applications. MedComm (Beijing) 2024; 5:e746. [PMID: 39359691 PMCID: PMC11445673 DOI: 10.1002/mco2.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Radiofrequency ablation (RFA), a form of thermal ablation, employs localized heat to induce protein denaturation in tissue cells, resulting in cell death. It has emerged as a viable treatment option for patients who are ineligible for surgery in various diseases, particularly liver cancer and other tumor-related conditions. In addition to directly eliminating tumor cells, RFA also induces alterations in the infiltrating cells within the tumor microenvironment (TME), which can significantly impact treatment outcomes. Moreover, incomplete RFA (iRFA) may lead to tumor recurrence and metastasis. The current challenge is to enhance the efficacy of RFA by elucidating its underlying mechanisms. This review discusses the clinical applications of RFA in treating various diseases and the mechanisms that contribute to the survival and invasion of tumor cells following iRFA, including the roles of heat shock proteins, hypoxia, and autophagy. Additionally, we analyze the changes occurring in infiltrating cells within the TME after iRFA. Finally, we provide a comprehensive summary of clinical trials involving RFA in conjunction with other treatment modalities in the field of cancer therapy, aiming to offer novel insights and references for improving the effectiveness of RFA.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhiyuan Zhou
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yuanwen Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xinyue Deng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Siting Zheng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Shangwen He
- Department of Respiratory and Critical Care MedicineChronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
| | - Genjie Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Binghui Hu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Min Shi
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wangjun Liao
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Na Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
10
|
Liu B, Liu L, Liu Y. Targeting cell death mechanisms: the potential of autophagy and ferroptosis in hepatocellular carcinoma therapy. Front Immunol 2024; 15:1450487. [PMID: 39315094 PMCID: PMC11416969 DOI: 10.3389/fimmu.2024.1450487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a type of cell death that plays a remarkable role in the growth and advancement of malignancies including hepatocellular carcinoma (HCC). Non-coding RNAs (ncRNAs) have a considerable impact on HCC by functioning as either oncogenes or suppressors. Recent research has demonstrated that non-coding RNAs (ncRNAs) have the ability to control ferroptosis in HCC cells, hence impacting the advancement of tumors and the resistance of these cells to drugs. Autophagy is a mechanism that is conserved throughout evolution and plays a role in maintaining balance in the body under normal settings. Nevertheless, the occurrence of dysregulation of autophagy is evident in the progression of various human disorders, specifically cancer. Autophagy plays dual roles in cancer, potentially influencing both cell survival and cell death. HCC is a prevalent kind of liver cancer, and genetic mutations and changes in molecular pathways might worsen its advancement. The role of autophagy in HCC is a subject of debate, as it has the capacity to both repress and promote tumor growth. Autophagy activation can impact apoptosis, control proliferation and glucose metabolism, and facilitate tumor spread through EMT. Inhibiting autophagy can hinder the growth and spread of HCC and enhance the ability of tumor cells to respond to treatment. Autophagy in HCC is regulated by several signaling pathways, such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs. Utilizing anticancer drugs to target autophagy may have advantageous implications for the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Liu
- Day Surgery Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Zhao LY, Li SY, Zhou ZY, Han XY, Li K, Xue ST, Jiang JD. Substituted indole derivatives as UNC-51-like kinase 1 inhibitors: Design, synthesis and anti-hepatocellular carcinoma activity. Biomed Pharmacother 2024; 178:117260. [PMID: 39116788 DOI: 10.1016/j.biopha.2024.117260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The five-year survival rate for patients with hepatocellular carcinoma (HCC) is only 20 %, highlighting the urgent need to identify new therapeutic targets and develop potential therapeutic options to improve patient prognosis. One promising approach is inhibiting autophagy as a strategy for HCC treatment. In this study, we established a virtual docking conformation of the autophagy promoter ULK1 binding XST-14 derivatives. Based on this conformation, we designed and synthesized four series of derivatives. By evaluating their affinity and anti-HCC effects, we confirmed that these compounds exert anti-HCC activity by inhibiting ULK1. The structure-activity relationship was summarized, with derivative A4 showing 10 times higher activity than XST-14 and superior efficacy to sorafenib against HCC. A4 has excellent effect on reducing tumor growth and enhancing sorafenib activity in HepG2 and HCCLM3 cells. Moreover, we verified the therapeutic effect of A4 in sorafenib-resistant HCC cells both in vivo and in vitro. These results suggest that inhibiting ULK1 to regulate autophagy may become a new treatment method for HCC and that A4 will be used as a lead drug for HCC in further research. Overall, A4 shows good drug safety and efficacy, offering hope for prolonging the survival of HCC patients.
Collapse
Affiliation(s)
- Lu-Yao Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Si-Yan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zi-Ying Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-Yang Han
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Si-Tu Xue
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
12
|
Hong P, Xu T, Xu J, Chen W, Hu H, Chen J, Li L, Zheng C, Li B, Liu J, Dai W, Li E, Zhang F, Xu W. CD24 promotes metastasis and chemoresistance by directly targeting Arf6-ERK pathway in esophageal squamous cell carcinoma. Cancer Lett 2024; 594:216994. [PMID: 38801885 DOI: 10.1016/j.canlet.2024.216994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Increasing evidence suggests the importance of CD24 in tumor progression, but its role and mechanism in esophageal squamous cell carcinoma (ESCC) remain unclear. The present study aims to explore the potential of CD24 as a novel predictive biomarker in ESCC, as well as its mechanism and therapeutic implications in metastasis and 5-FU chemoresistance. By using tissue microarray and immunohistochemistry, we found that CD24 expression was higher in ESCC tumor tissues than paired non-tumor tissues, further indicating that CD24 was markedly associated with poor prognosis. CD24 significantly promoted metastasis and 5-FU chemoresistance in vitro and in vivo. Mechanistically, CD24 competes with GIT2 to bind to Arf6, and stabilizes Arf6-GTP to activate the subsequent ERK pathway, thus promoting cancer progression. In addition, a significant positive correlation between CD24 and p-ERK was observed in clinical ESCC tissues. In summary, this study not only reveals CD24 as a regulatory factor for Arf6 activity, but also uncovers CD24-Arf6-ERK signaling axis as a novel mechanism of ESCC progression. Our findings suggest CD24 as a promising biomarker and therapeutic target in ESCC.
Collapse
Affiliation(s)
- Pan Hong
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Taoyang Xu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiaojiao Xu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenyou Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huifang Hu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Jindong Chen
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lan Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cancan Zheng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Li
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jun Liu
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Dai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Enmin Li
- The Key Laboratory of Molecular Biology for the High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Fan Zhang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Wenwen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China; State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Walweel N, Aydin O. Enhancing Therapeutic Efficacy in Cancer Treatment: Integrating Nanomedicine with Autophagy Inhibition Strategies. ACS OMEGA 2024; 9:27832-27852. [PMID: 38973850 PMCID: PMC11223161 DOI: 10.1021/acsomega.4c02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024]
Abstract
The complicated stepwise lysosomal degradation process known as autophagy is in charge of destroying and eliminating damaged organelles and defective cytoplasmic components. This mechanism promotes metabolic adaptability and nutrition recycling. Autophagy functions as a quality control mechanism in cells that support homeostasis and redox balance under normal circumstances. However, the role of autophagy in cancer is controversial because, mostly depending on the stage of the tumor, it may either suppress or support the disease. While autophagy delays the onset of tumors and slows the dissemination of cancer in the early stages of tumorigenesis, numerous studies demonstrate that autophagy promotes the development and spread of tumors as well as the evolution and development of resistance to several anticancer drugs in advanced cancer stages. In this Review, we primarily emphasize the therapeutic role of autophagy inhibition in improving the treatment of multiple cancers and give a broad overview of how its inhibition modulates cancer responses. There have been various attempts to inhibit autophagy, including the use of autophagy inhibitor drugs, gene silencing therapy (RNA interference), and nanoparticles. In this Review, all these topics are thoroughly covered and illustrated by recent studies and field investigations.
Collapse
Affiliation(s)
- Nada Walweel
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera
Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
| | - Omer Aydin
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera
Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
- ERNAM-Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- ERKAM-Clinical-Engineering
Research and Implementation Center, Erciyes
University, Kayseri 38030, Turkey
| |
Collapse
|
14
|
Wu H, Liu Y, Liu Q, Li Z, Wan Y, Cao C, Wu B, Liu M, Liang R, Hu L, Zhang W, Lan M, Yao Q, Zhou H, Lan H, Chen L, Zhang Y, Zhang X, Bian XW, Xu C. HMMR triggers immune evasion of hepatocellular carcinoma by inactivation of phagocyte killing. SCIENCE ADVANCES 2024; 10:eadl6083. [PMID: 38838151 PMCID: PMC11152120 DOI: 10.1126/sciadv.adl6083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/16/2024] [Indexed: 06/07/2024]
Abstract
Hepatocellular carcinoma (HCC) acquires an immunosuppressive microenvironment, leading to unbeneficial therapeutic outcomes. Hyaluronan-mediated motility receptor (HMMR) plays a crucial role in tumor progression. Here, we found that aberrant expression of HMMR could be a predictive biomarker for the immune suppressive microenvironment of HCC, but the mechanism remains unclear. We established an HMMR-/- liver cancer mouse model to elucidate the HMMR-mediated mechanism of the dysregulated "don't eat me" signal. HMMR knockout inhibited liver cancer growth and induced phagocytosis. HMMRhigh liver cancer cells escaped from phagocytosis via sustaining CD47 signaling. Patients with HMMRhighCD47high expression showed a worse prognosis than those with HMMRlowCD47low expression. HMMR formed a complex with FAK/SRC in the cytoplasm to activate NF-κB signaling, which could be independent of membrane interaction with CD44. Notably, targeting HMMR could enhance anti-PD-1 treatment efficiency by recruiting CD8+ T cells. Overall, our data revealed a regulatory mechanism of the "don't eat me" signal and knockdown of HMMR for enhancing anti-PD-1 treatment.
Collapse
Affiliation(s)
- Hong Wu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Yiqiang Liu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Qianshi Liu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Zhaoshen Li
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Yejian Wan
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Chenhui Cao
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Binghuo Wu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - MingXin Liu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Renchuan Liang
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Lanlin Hu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Wenyi Zhang
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
| | - Mei Lan
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Quan Yao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Hang Zhou
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Haitao Lan
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Yu Zhang
- The Department of Hepatobiliary and Pancreatic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
- Jinfeng Laboratory, Chongqing 400039, P. R. China
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, P. R. China
- Jinfeng Laboratory, Chongqing 400039, P. R. China
| |
Collapse
|
15
|
Cheng T, Xie J, Yuan X, Guo M, Wu J, Wang M, Huang Z, Zhang J. Site-specific Antibody-Nitric Oxide Conjugate HN02 Possesses Improved Antineoplastic and Safety Properties. J Immunother 2024; 47:149-159. [PMID: 38557756 DOI: 10.1097/cji.0000000000000507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/11/2024] [Indexed: 04/04/2024]
Abstract
Antibody-drug conjugates (ADCs) combine the high specificity of antibodies with the cytotoxicity of payloads and have great potential in pan-cancer immunotherapy. However, the current payloads for clinical uses have limited the therapeutic window due to their uncontrollable off-site toxicity. There is unmet needs to develop more potent ADC payloads with better safety and efficacy profiles. Nitric oxide (NO) is a special molecule that has low toxicity itself, which can kill tumor cells effectively when highly concentrated, has broad application prospects. Previously, we prepared for the first time an antibody-nitric oxide conjugate (ANC)-HN01, which showed inhibitory activity against hepatocellular carcinoma. However, the random conjugation method made HN01 highly heterogeneous and unstable. Here, we used site-specific conjugation-based engineered cysteine sites (CL-V211C) of anti-CD24 antibody to prepare a second-generation ANC with a drug-to-antibody ratio of 2. The homogeneous ANC, HN02 was stable in human plasma, shown in vitro bystander effect to neighboring cells and antiproliferative activity to CD24-targeted tumor cells. Compared with HN01, HN02 significantly prolonged the survival of tumor-bearing mice. In summary, we developed a stable and homogeneous site-specific conjugated ANC, which showed good antitumor activity and improved safety profile both in vitro and in vivo. This study provides new insight into the development of next generation of ADC candidates.
Collapse
Affiliation(s)
- Tianyue Cheng
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Jiajun Xie
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Xun Yuan
- State Key Laboratory of Natural Medicines, Nanjing, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Minji Guo
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Nanjing, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Min Wang
- School Infirmary, China Pharmaceutical University, Nanjing, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Nanjing, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Juan Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Chan HY, Ramasamy TS, Chung FFL, Teow SY. Role of sirtuin 1 (SIRT1) in regulation of autophagy and nuclear factor-kappa Beta (NF-ĸβ) pathways in sorafenib-resistant hepatocellular carcinoma (HCC). Cell Biochem Biophys 2024; 82:959-968. [PMID: 38466472 DOI: 10.1007/s12013-024-01247-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Hepatocellular carcinoma (HCC) remains a major global health problem with high incidence and mortality. Diagnosis of HCC at late stages and tumour heterogeneity in patients with different genetic profiles are known factors that complicate the disease treatment. HCC therapy becomes even more challenging in patients with drug resistance such as resistance to sorafenib, which is a common drug used in HCC patients. Sorafenib resistance can further aggravate HCC by regulating various oncogenic pathways such as autophagy and nuclear factor-kappa Beta (NF-ĸβ) signalling. Sirtuin 1 (SIRT1), is a nicotinamide adenosine dinucleotide (NAD)-dependent histone deacetylases that regulates various metabolic and oncogenic events such as cell survival, apoptosis, autophagy, tumourigenesis, metastasis and drug resistance in various cancers, but its role in HCC, particularly in sorafenib resistance is underexplored. In this study, we generated sorafenib-resistant HepG2 and Huh-7 liver cancer cell models to investigate the role of SIRT1 and its effect on autophagy and nuclear factor-kappa Beta (NF-ĸβ) signalling pathways. Western blot analysis showed increased SIRT1, altered autophagy pathway and activated NF-ĸβ signalling in sorafenib-resistant cells. SIRT1-silenced HCC cells demonstrated down-regulated autophagy in both parental and chemoresistant cells. This may occur through the deacetylation of key autophagy molecules such as FOXO3, beclin 1, ATGs and LC3 by SIRT1, highlighting the role of SIRT1 in autophagy induction. Silencing of SIRT1 also resulted in activated NF-ĸβ signalling. This is because SIRT1 failed to deacetylate p65 subunit of NF-κB, translocate the NF-κB from nucleus to cytoplasm, and suppress NF-κB activity due to the silencing. Hence, the NF-κB transcriptional activity was restored. These findings summarize the role of SIRT1 in autophagy/NF-ĸβ regulatory axis, with a similar trend observed in both parental and sorafenib-resistant cells. The present work promotes a better understanding of the role of SIRT1 in autophagy and NF-ĸβ signalling in HCC and sorafenib-resistant HCC. As some key proteins in these pathways are potential therapeutic targets, a better understanding of SIRT1/autophagy/NF-ĸβ axis could further improve the therapeutic strategies against HCC.
Collapse
Affiliation(s)
- Hui-Yin Chan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, 47500 Subang Jaya, Bandar, Sunway, Selangor Darul Ehsan, Malaysia
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, 47500 Subang Jaya, Bandar, Sunway, Selangor Darul Ehsan, Malaysia
| | - Sin-Yeang Teow
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, 325060, Zhejiang Provinve, China.
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, 325060, Zhejiang Province, China.
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, 325060, Zhejiang Province, China.
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morries Ave, Union, NJ, 07083, USA.
| |
Collapse
|
17
|
Zhao K, Wu C, Li X, Niu M, Wu D, Cui X, Zhao H. From mechanism to therapy: the journey of CD24 in cancer. Front Immunol 2024; 15:1401528. [PMID: 38881902 PMCID: PMC11176514 DOI: 10.3389/fimmu.2024.1401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024] Open
Abstract
CD24 is a glycosylphosphatidylinositol-anchored protein that is expressed in a wide range of tissues and cell types. It is involved in a variety of physiological and pathological processes, including cell adhesion, migration, differentiation, and apoptosis. Additionally, CD24 has been studied extensively in the context of cancer, where it has been found to play a role in tumor growth, invasion, and metastasis. In recent years, there has been growing interest in CD24 as a potential therapeutic target for cancer treatment. This review summarizes the current knowledge of CD24, including its structure, function, and its role in cancer. Finally, we provide insights into potential clinical application of CD24 and discuss possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caifeng Wu
- Department of Hand and Foot, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangjun Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Niu
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Wu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofeng Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Muliawan GK, Lee TKW. The roles of cancer stem cell-derived secretory factors in shaping the immunosuppressive tumor microenvironment in hepatocellular carcinoma. Front Immunol 2024; 15:1400112. [PMID: 38868769 PMCID: PMC11167126 DOI: 10.3389/fimmu.2024.1400112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide and has a poor prognosis. Although immune checkpoint inhibitors have entered a new era of HCC treatment, their response rates are modest, which can be attributed to the immunosuppressive tumor microenvironment within HCC tumors. Accumulating evidence has shown that tumor growth is fueled by cancer stem cells (CSCs), which contribute to therapeutic resistance to the above treatments. Given that CSCs can regulate cellular and physical factors within the tumor niche by secreting various soluble factors in a paracrine manner, there have been increasing efforts toward understanding the roles of CSC-derived secretory factors in creating an immunosuppressive tumor microenvironment. In this review, we provide an update on how these secretory factors, including growth factors, cytokines, chemokines, and exosomes, contribute to the immunosuppressive TME, which leads to immune resistance. In addition, we present current therapeutic strategies targeting CSC-derived secretory factors and describe future perspectives. In summary, a better understanding of CSC biology in the TME provides a rational therapeutic basis for combination therapy with ICIs for effective HCC treatment.
Collapse
Affiliation(s)
- Gregory Kenneth Muliawan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Terence Kin-Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
He T, Zou J, Sun K, Yang J. Global research status and frontiers on autophagy in hepatocellular carcinoma: a comprehensive bibliometric and visualized analysis. Int J Surg 2024; 110:2788-2802. [PMID: 38376850 PMCID: PMC11093451 DOI: 10.1097/js9.0000000000001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND An extensive body of research has explored the role of autophagy in hepatocellular carcinoma (HCC), revealing its critical involvement in the disease's pathogenesis, progression, and therapeutic targeting. However, there is a discernible deficit in quantitative, analytical studies concerning autophagy in the context of HCC. Accordingly, this investigation endeavored to meticulously assess the evolution of autophagy research, employing bibliometric citation analysis to offer a comprehensive evaluation of the findings in this field. METHODS The authors conducted a literature search on 2 August 2023, to extract relevant publications spanning from 2013 to 2022, indexed in the Science Citation Index-Expanded (SCIE) of the Web of Science Core Collection (WOSCC). Subsequently, the authors performed a bibliometric assessment of the compiled documents using visualization tools such as CiteSpace and VOSviewer. RESULTS The search yielded 734 publications penned by 4699 authors, encompassing contributions from 41 countries and 909 institutions, disseminated across 272 journals, and comprising 26 295 co-cited references from 2667 journals. Notably, China led in publication volume with 264 articles (amounting to 35.9%) and exhibited the most robust collaboration with the United States. The mechanisms underlying autophagy's influence on the emergence and advancement of HCC, as well as the implicated proteins and genes, have garnered significant attention. In recent years, investigations of targeting autophagy and the resistance to sorafenib have surfaced as pivotal themes and emerging frontiers in this domain. CONCLUSIONS This study rigorously collated and distilled the prevailing research narratives and novel insights on autophagy in HCC. The resultant synthesis provides a substantive foundation for medical professionals and researchers, as well as pivotal implications for future investigative endeavors in this arena.
Collapse
Affiliation(s)
- Tao He
- Department of Hepatobiliary Surgery
| | - Jieyu Zou
- Department of Oncology, Chengdu Second People’s Hospital, Chengdu, Sichuan, People’s Republic of China
| | - Ke Sun
- Department of Hepatobiliary Surgery
| | | |
Collapse
|
20
|
Wang G, Jiang X, Torabian P, Yang Z. Investigating autophagy and intricate cellular mechanisms in hepatocellular carcinoma: Emphasis on cell death mechanism crosstalk. Cancer Lett 2024; 588:216744. [PMID: 38431037 DOI: 10.1016/j.canlet.2024.216744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as a formidable global health challenge due to its prevalence, marked by high mortality and morbidity rates. This cancer type exhibits a multifaceted etiology, prominently linked to viral infections, non-alcoholic fatty liver disease, and genomic mutations. The inherent heterogeneity of HCC, coupled with its proclivity for developing drug resistance, presents formidable obstacles to effective therapeutic interventions. Autophagy, a fundamental catabolic process, plays a pivotal role in maintaining cellular homeostasis, responding to stressors such as nutrient deprivation. In the context of HCC, tumor cells exploit autophagy, either augmenting or impeding its activity, thereby influencing tumorigenesis. This comprehensive review underscores the dualistic role of autophagy in HCC, acting as both a pro-survival and pro-death mechanism, impacting the trajectory of tumorigenesis. The anti-carcinogenic potential of autophagy is evident in its ability to enhance apoptosis and ferroptosis in HCC cells. Pertinently, dysregulated autophagy fosters drug resistance in the carcinogenic context. Both genomic and epigenetic factors can regulate autophagy in HCC progression. Recognizing the paramount importance of autophagy in HCC progression, this review introduces pharmacological compounds capable of modulating autophagy-either inducing or inhibiting it, as promising avenues in HCC therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Interventional, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Xiaodi Jiang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, 110020, PR China
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada.
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China.
| |
Collapse
|
21
|
Zhang W, Du D, Lu H, Zhang D, Liu L, Li J, Chen Z, Yu X, Ye M, Wang W, Chen L, Shao J. FAT10 mediates the sorafenib-resistance of hepatocellular carcinoma cells by stabilizing E3 ligase NEDD4 to enhance PTEN/AKT pathway-induced autophagy. Am J Cancer Res 2024; 14:1523-1544. [PMID: 38726263 PMCID: PMC11076247 DOI: 10.62347/epit4481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/31/2024] [Indexed: 05/12/2024] Open
Abstract
Although sorafenib is the first-line therapeutic agent for advanced hepatocellular carcinoma (HCC), the development of drug resistance in HCC cells limits its clinical efficacy. However, the key factors involved in mediating the sorafenib resistance of HCC cells and the underlying mechanisms have not been elucidated. In this study, we generated sorafenib-resistant HCC cell lines, and our data demonstrate that HLA-F locus-adjacent transcript 10 (FAT10), a ubiquitin-like protein, is markedly upregulated in sorafenib-resistant HCC cells and that reducing the expression of FAT10 in sorafenib-resistant HCC cells increases sensitivity to sorafenib. Mechanistically, FAT10 stabilizes the expression of the PTEN-specific E3 ubiquitin ligase NEDD4 that causes downregulation of PTEN, thereby inducing AKT-mediated autophagy and promoting the resistance of HCC cells to sorafenib. Moreover, we screened the small molecule Compound 7695-0983, which increases the sensitivity of sorafenib-resistant HCC cells to sorafenib by inhibiting the expression of FAT10 to inhibit NEDD4-PTEN/AKT axis-mediated autophagy. Collectively, our preclinical findings identify FAT10 as a key factor in the sorafenib resistance of HCC cells and elucidate its underlying mechanism. This study provides new mechanistic insight for the exploitation of novel sorafenib-based tyrosine kinase inhibitor (TKI)-targeted drugs for treating advanced HCC.
Collapse
Affiliation(s)
- Wenming Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Dongnian Du
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Hongcheng Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Dandan Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Lingpeng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Jiajuan Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Zehao Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Xuzhe Yu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Miao Ye
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Wei Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Leifeng Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Jianghua Shao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| |
Collapse
|
22
|
Tan XL, Wang Z, Liao S, Yi M, Tao D, Zhang X, Leng X, Shi J, Xie S, Yang Y, Liu YQ. NR0B1 augments sorafenib resistance in hepatocellular carcinoma through promoting autophagy and inhibiting apoptosis. Cancer Sci 2024; 115:465-476. [PMID: 37991109 PMCID: PMC10859617 DOI: 10.1111/cas.16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
NR0B1 is frequently activated in hepatocellular carcinoma (HCC). However, the role of NR0B1 is controversial in HCC. In this study, we observed that NR0B1 was an independent poor prognostic factor, negatively correlated with the overall survival of HCC and the relapse-free survival of patients treated with sorafenib. Meanwhile, NR0B1 promoted the proliferation, migration, and invasion of HCC cells, inhibited sorafenib-induced apoptosis, and elevated the IC50 of sorafenib in HCC cells. NR0B1 was further displayed to increase sorafenib-induced autophagic vesicles and activate Beclin1/LC3-II-dependent autophagy pathway. Finally, NR0B1 was revealed to transcriptionally suppress GSK3β that restrains AMPK/mTOR-driven autophagy and increases BAX-mediated apoptosis. Collectively, our study uncovered that the ectopic expression of NR0B1 augmented sorafenib-resistance in HCC cells by activating autophagy and inhibiting apoptosis. Our findings supported that NR0B1 was a detrimental factor for HCC prognosis.
Collapse
Affiliation(s)
- Xiao lan Tan
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhaokun Wang
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Shunyao Liao
- Institute of Gerontology and Center for Geriatrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ming Yi
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Dachang Tao
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Xinyue Zhang
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Xiangyou Leng
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Jiaying Shi
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Shengyu Xie
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Yuan Yang
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Yun qiang Liu
- Department of Medical Genetics and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
23
|
Huang L, Shao J, Xu X, Hong W, Yu W, Zheng S, Ge X. WTAP regulates autophagy in colon cancer cells by inhibiting FLNA through N6-methyladenosine. Cell Adh Migr 2023; 17:1-13. [PMID: 36849408 PMCID: PMC9980444 DOI: 10.1080/19336918.2023.2180196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Our study investigated the role of WTAP in colon cancer. We employed experiments including m6A dot blot hybridization, methylated RNA immunoprecipitation, dual-luciferase, and RNA immunoprecipitation to investigate the regulatory mechanism of WTAP. Western blot was performed to analyze the expression of WTAP, FLNA and autophagy-related proteins in cells. Our results confirmed the up-regulation of WTAP in colon cancer and its promoting effect on proliferation and inhibiting effect on apoptosis. FLNA was the downstream gene of WTAP and WTAP-regulated m6A modification led to post-transcriptional repression of FLNA. The rescue experiments showed that WTAP/FLNA could inhibit autophagy. WTAP-mediated m6A modification was confirmed to be crucial in colon cancer development, providing new insights into colon cancer therapy.
Collapse
Affiliation(s)
- Liang Huang
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Jinfan Shao
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Xijuan Xu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Weiwen Hong
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Wenfeng Yu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Shuang Zheng
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Xiaogang Ge
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China,CONTACT Xiaogang Ge Department of General Surgery, Taizhou First People’s Hospital, No. 218 Hengjie Road, Huangyan District, Taizhou, Zhejiang, 318020, China
| |
Collapse
|
24
|
Chen W, Hu Z, Guo Z. Targeting CD24 in Cancer Immunotherapy. Biomedicines 2023; 11:3159. [PMID: 38137380 PMCID: PMC10740697 DOI: 10.3390/biomedicines11123159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Immunotherapy is a hot area in cancer treatment, and one of the keys to this therapy is the identification of the right tumour-associated or tumour-specific antigen. Cluster of differentiation 24 (CD24) is an emerging tumour-associated antigen that is commonly and highly expressed in various tumours. In addition, CD24 is associated with several cancer-related signalling pathways and closely interacts with other molecules and immune cells to influence tumour progression. Monoclonal antibodies, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, and CAR-NK cell therapy are currently available for the treatment of CD24. In this review, we summarise the existing therapeutic approaches and possible future directions targeting CD24.
Collapse
Affiliation(s)
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China;
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China;
| |
Collapse
|
25
|
Jing F, Li X, Jiang H, Sun J, Guo Q. Combating drug resistance in hepatocellular carcinoma: No awareness today, no action tomorrow. Biomed Pharmacother 2023; 167:115561. [PMID: 37757493 DOI: 10.1016/j.biopha.2023.115561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the sixth most common cancer worldwide, is associated with a high degree of malignancy and poor prognosis. Patients with early HCC may benefit from surgical resection to remove tumor tissue and a margin of healthy tissue surrounding it. Unfortunately, most patients with HCC are diagnosed at an advanced or distant stage, at which point resection is not feasible. Systemic therapy is now routinely prescribed to patients with advanced HCC; however, drug resistance has become a major obstacle to the treatment of HCC and exploring purported mechanisms promoting drug resistance remains a challenge. Here, we focus on the determinants of drug resistance from the perspective of non-coding RNAs (ncRNAs), liver cancer stem cells (LCSCs), autophagy, epithelial-mesenchymal transition (EMT), exosomes, ferroptosis, and the tumor microenvironment (TME), with the aim to provide new insights into HCC treatment.
Collapse
Affiliation(s)
- Fanbo Jing
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Li
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Jiang
- Qingdao Haici Hospital, Qingdao 266000, China
| | - Jialin Sun
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
26
|
Bi QC, Deng ZQ, Lv YF, Liu Y, Xie CS, He YQ, Tang Q. Low Pi stress enhances the sensitivity of hepatocellular carcinoma to sorafenib. Biochem Pharmacol 2023; 213:115593. [PMID: 37196682 DOI: 10.1016/j.bcp.2023.115593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Sorafenib is a tyrosine kinase inhibitor for the treatment of advanced-stage HCC; however, clinical trials of sorafenib failed to demonstrate long-term survival benefits due to drug resistance. Low Pi stress has been shown to inhibit tumor growth and the expression of multidrug resistance-associated proteins. In this study, we investigated the sensitivity of HCC to sorafenib under conditions of low Pi stress. As a result, we found that low Pi stress facilitated sorafenib-mediated suppression of migration and invasion of HepG-2 and Hepa1-6 cells by decreasing the phosphorylation or expression of AKT, Erk and MMP-9. Angiogenesis was inhibited due to decreased expression of PDGFR under low Pi stress. Low Pi stress also decreased the viability of sorafenib-resistant cells by directly regulating the expression of AKT, HIF-1a and P62. In vivo drug sensitivity analysis in the four animal models showed a similar tendency that low Pi stress enhances sorafenib sensitivity in both the normal and drug-resistant models. Altogether, low Pi stress enhances the sensitivity of hepatocellular carcinoma to sorafenib and expands the indications for sevelamer.
Collapse
Affiliation(s)
- Qiu-Chen Bi
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China; Institute for Advanced Study, Nanchang University, Nanchang, China
| | - Zhi-Qiang Deng
- Department of Oncology, The First People's Hospital of Fuzhou, Fuzhou, China
| | - Yang-Feng Lv
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China; Institute for Advanced Study, Nanchang University, Nanchang, China
| | - Yue Liu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Chuan-Sheng Xie
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Yuan-Qiao He
- Department of Laboratory Animal Science, Nanchang University, Nanchang, China
| | - Qun Tang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China; Institute for Advanced Study, Nanchang University, Nanchang, China.
| |
Collapse
|
27
|
Wang Y, Yu H, Yu M, Liu H, Zhang B, Wang Y, Zhao S, Xia Q. CD24 blockade as a novel strategy for cancer treatment. Int Immunopharmacol 2023; 121:110557. [PMID: 37379708 DOI: 10.1016/j.intimp.2023.110557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/22/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
The CD24 protein is a heat-stable protein with a small core that undergoes extensive glycosylation. It is expressed on the surface of various normal cells, including lymphocytes, epithelial cells, and inflammatory cells. CD24 exerts its function by binding to different ligands. Numerous studies have demonstrated the close association of CD24 with tumor occurrence and progression. CD24 not only facilitates tumor cell proliferation, metastasis, and immune evasion but also plays a role in tumor initiation, thus, serving as a marker on the surface of cancer stem cells (CSCs). Additionally, CD24 induces drug resistance in various tumor cells following chemotherapy. To counteract the tumor-promoting effects of CD24, several treatment strategies targeting CD24 have been explored, such as the use of CD24 monoclonal antibodies (mAb) alone, the combination of CD24 and chemotoxic drugs, or the combination of these drugs with other targeted immunotherapeutic techniques. Regardless of the approach, targeting CD24 has demonstrated significant anti-tumor effects. Therefore, the present study focuses on anti-tumor therapy and provides a comprehensive review of the structure and fundamental physiological function of CD24 and its impact on tumor development, and suggests that targeting CD24 may represent an effective strategy for treating malignant tumors.
Collapse
Affiliation(s)
- Yawen Wang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China; Henan Engineering Research Center of Pathological Diagnostic Antibody, Zhengzhou 450008, China
| | - Haoran Yu
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China; Henan Engineering Research Center of Pathological Diagnostic Antibody, Zhengzhou 450008, China
| | - Mengyuan Yu
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China; Henan Engineering Research Center of Pathological Diagnostic Antibody, Zhengzhou 450008, China
| | - Hui Liu
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Bing Zhang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China
| | - Yuanyuan Wang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China
| | - Simin Zhao
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China.
| | - Qingxin Xia
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China; Henan Engineering Research Center of Pathological Diagnostic Antibody, Zhengzhou 450008, China.
| |
Collapse
|
28
|
Hu Z, Zhao Y, Mang Y, Zhu J, Yu L, Li L, Ran J. MiR-21-5p promotes sorafenib resistance and hepatocellular carcinoma progression by regulating SIRT7 ubiquitination through USP24. Life Sci 2023; 325:121773. [PMID: 37187452 DOI: 10.1016/j.lfs.2023.121773] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE To validate the mechanism by which miR-21-5p mediates autophagy in drug-resistant cells in hepatocellular carcinoma (HCC), aggravating sorafenib resistance and progression of HCC. METHODS HCC cells were treated with sorafenib to establish sorafenib-resistant cells, and nude mice were subcutaneously injected with hepatoma cells to establish animal models. RT-qPCR was used to determine the level of miR-21-5p, and Western blotting was used to determine the level of related proteins. Cell apoptosis, cell migration, the level of LC3 were accessed. Immunohistochemical staining was used for detection of Ki-67 and LC3. A dual-luciferase reporter assay certified that miR-21-5p targets USP42, and a co-immunoprecipitation assay validated the mutual effect between USP24 and SIRT7. RESULTS miR-21-5p and USP42 were highly expressed in HCC tissue and cells. Inhibition of miR-21-5p or knockdown of USP42 inhibited cell proliferation and cell migration, upregulated the level of E-cadherin, and downregulated the level of vimentin, fibronectin and N-cadherin. Overexpression of miR-21-5p reversed the knockdown of USP42. Inhibition of miR-21-5p downregulated the ubiquitination level of SIRT7, downregulated the levels of LC3II/I ratio and Beclin1, and upregulated the expression of p62. The tumor size in the miR-21-5p inhibitor group was smaller, and Ki-67 and LC3 in tumor tissue were reduced, while the overexpression of USP42 reversed the effect of the miR-21-5p inhibitor. CONCLUSION miR-21-5p promotes deterioration and sorafenib resistance in hepatocellular carcinoma by upregulating autophagy levels. Knockdown of miR-21-5p inhibits the development of sorafenib-resistant tumors by USP24-mediated SIRT7 ubiquitination.
Collapse
Affiliation(s)
- Zongqiang Hu
- First People's Hospital of Kunming City, Kunming, Yunnan 650032, China; The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yingpeng Zhao
- First People's Hospital of Kunming City, Kunming, Yunnan 650032, China; The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yuanyi Mang
- First People's Hospital of Kunming City, Kunming, Yunnan 650032, China; The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jiashun Zhu
- First People's Hospital of Kunming City, Kunming, Yunnan 650032, China; The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Lu Yu
- First People's Hospital of Kunming City, Kunming, Yunnan 650032, China; The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Li Li
- First People's Hospital of Kunming City, Kunming, Yunnan 650032, China; The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| | - Jianghua Ran
- First People's Hospital of Kunming City, Kunming, Yunnan 650032, China; The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| |
Collapse
|
29
|
Wang K, Yu A, Liu K, Feng C, Hou Y, Chen J, Ma S, Huang L, Dai X. Nano-LYTACs for Degradation of Membrane Proteins and Inhibition of CD24/Siglec-10 Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300288. [PMID: 36866919 PMCID: PMC10161071 DOI: 10.1002/advs.202300288] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Indexed: 05/06/2023]
Abstract
Lysosome-targeting chimeras (LYTACs) are an emerging therapeutic modality that effectively degrade cancer cell membranes and extracellular target proteins. In this study, a nanosphere-based LYTAC degradation system is developed. The amphiphilic peptide-modified N-acetylgalactosamine (GalNAc) can self-assemble into nanospheres with a strong affinity for asialoglycoprotein receptor targets. They can degrade different membranes and extracellular proteins by linking with the relevant antibodies. CD24, a heavily glycosylated glycosylphosphatidylinositol-anchored surface protein, interacts with Siglec-10 to modulate the tumor immune response. The novel Nanosphere-AntiCD24, synthesized by linking nanospheres with CD24 antibody, accurately regulates the degradation of CD24 protein and partially restores the phagocytic function of macrophages toward tumor cells by blocking the CD24/Siglec-10 signaling pathway. When Nanosphere-AntiCD24 is combined with glucose oxidase, an enzyme promoting the oxidative decomposition of glucose, the combination not only effectively restores the function of macrophages in vitro but also suppresses tumor growth in xenograft mouse models without detectable toxicity to normal tissues. The results indicate that GalNAc-modified nanospheres, as a part of LYTACs, can be successfully internalized and are an effective drug-loading platform and a modular degradation strategy for the lysosomal degradation of cell membrane and extracellular proteins, which can be broadly applied in the fields of biochemistry and tumor therapeutics.
Collapse
Affiliation(s)
- Kun Wang
- Institute of Biopharmaceutical and Health EngineeringShenzhen Key Laboratory of Gene and Antibody TherapyState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
- School of Life SciencesTsinghua UniversityBeijing100084China
| | - Albert Yu
- Institute of Biopharmaceutical and Health EngineeringShenzhen Key Laboratory of Gene and Antibody TherapyState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
| | - Kewei Liu
- Institute of Biopharmaceutical and Health EngineeringShenzhen Key Laboratory of Gene and Antibody TherapyState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
| | - Chunyan Feng
- Institute of Biopharmaceutical and Health EngineeringShenzhen Key Laboratory of Gene and Antibody TherapyState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
| | - Yibo Hou
- Institute of Biopharmaceutical and Health EngineeringShenzhen Key Laboratory of Gene and Antibody TherapyState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
| | - Jiawei Chen
- Institute of Biopharmaceutical and Health EngineeringShenzhen Key Laboratory of Gene and Antibody TherapyState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health EngineeringShenzhen Key Laboratory of Gene and Antibody TherapyState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
| | - Laiqiang Huang
- Institute of Biopharmaceutical and Health EngineeringShenzhen Key Laboratory of Gene and Antibody TherapyState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
- School of Life SciencesTsinghua UniversityBeijing100084China
| | - Xiaoyong Dai
- Institute of Biopharmaceutical and Health EngineeringShenzhen Key Laboratory of Gene and Antibody TherapyState Key Laboratory of Chemical OncogenomicsShenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
| |
Collapse
|
30
|
Erratum: Drug resistance mechanism of kinase inhibitors in the treatment of hepatocellular carcinoma. Front Pharmacol 2023; 14:1188062. [PMID: 37077813 PMCID: PMC10107049 DOI: 10.3389/fphar.2023.1188062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
[This corrects the article DOI: 10.3389/fphar.2023.1097277.].
Collapse
|
31
|
Yin Q, Huang X, Yang Q, Lin S, Song Q, Fan W, Li W, Li Z, Gao L. LncRNA model predicts liver cancer drug resistance and validate in vitro experiments. Front Cell Dev Biol 2023; 11:1174183. [PMID: 37077416 PMCID: PMC10106610 DOI: 10.3389/fcell.2023.1174183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Introduction: Hepatocellular carcinoma (HCC) patients may benefit from chemotherapy, but drug resistance is an important obstacle to favorable prognoses. Overcoming drug resistance is an urgent problem to be solved.Methods: Differential expression analysis was used to identify long non-coding RNAs (LncRNAs) that differed in chemotherapy-sensitive and chemotherapy-resistant patients. Machine learning algorithms including random forest (RF), lasso regression (LR), and support vector machines (SVMs) were used to identify important chemotherapy-related LncRNAs. A back propagation (BP) network was then used to validate the predictive capacity of important LncRNAs. The molecular functions of hub LncRNAs were investigated via qRT-PCR and cell proliferation assay. Molecular-docking technique was used to explore candidate drug of targets of hub LncRNA in the model.Results: A total of 125 differentially expressed LncRNAs between sensitive and resistant patients. Seventeen important LncRNAs were identified via RF, and seven factors were identified via LR. With respect to SVM, the top 15 LncRNAs of AvgRank were selected. Five merge chemotherapy-related LncRNAs were used to predict chemotherapy resistance with high accuracy. CAHM was a hub LncRNA of model and expression high in sorafenib resistance cell lines. In addition, the results of CCK8 showed that the sensitivity of HepG2-sorafenib cells to sorafenib was significantly lower than that of HepG2; and the sensitivity of HepG2-sorafenib cells transfected with sh-CAHM was significantly higher than that of Sorafenib. In the non-transfection group, the results of clone formation experiments showed that the number of clones formed by HepG2-sorafenib cells treated with sorafenib was significantly more than that of HepG2; after HepG2-sorafenib cells were transfected with sh-CAHM, the number of clones formed by Sorafenib treatment was significantly higher than that of HepG2 cells. The number was significantly less than that of HepG2-s + sh-NC group. Molecular Docking results indicate that Moschus was candidate drug for target protein of CAHM.Conclusion: Five chemotherapy-related LncRNAs could predict drug resistance in HCC with high accuracy, and the hub LncRNA CAHM has potential as a new biomarker for HCC chemotherapy resistance.
Collapse
Affiliation(s)
- Qiushi Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Xiaolong Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Qiuxi Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Shibu Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Qifeng Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Weiqiang Fan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Wang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Zhongyi Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lianghui Gao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- *Correspondence: Lianghui Gao,
| |
Collapse
|
32
|
Seydi H, Nouri K, Rezaei N, Tamimi A, Hassan M, Mirzaei H, Vosough M. Autophagy orchestrates resistance in hepatocellular carcinoma cells. Biomed Pharmacother 2023; 161:114487. [PMID: 36963361 DOI: 10.1016/j.biopha.2023.114487] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/26/2023] Open
Abstract
Treatment resistance is one of the major barriers for therapeutic strategies in hepatocellular carcinoma (HCC). Many studies have indicated that chemotherapy and radiotherapy induce autophagy machinery (cell protective autophagy) in HCC cells. In addition, many experiments report a remarkable crosstalk between treatment resistance and autophagy pathways. Thus, autophagy could be one of the key factors enabling tumor cells to hinder induced cell death after medical interventions. Therefore, extensive research on the molecular pathways involved in resistance induction and autophagy have been conducted to achieve the desired therapeutic response. The key molecular pathways related to the therapy resistance are TGF-β, MAPK, NRF2, NF-κB, and non-coding RNAs. In addition, EMT, drug transports, apoptosis evasion, DNA repair, cancer stem cells, and hypoxia could have considerable impact on the hepatoma cell's response to therapies. These mechanisms protect tumor cells against various treatments and many studies have shown that each of them is connected to the molecular pathways of autophagy induction in HCC. Hence, autophagy inhibition may be an effective strategy to improve therapeutic outcome in HCC patients. In this review, we further highlight how autophagy leads to poor response during treatment through a complex molecular network and how it enhances resistance in primary liver cancer. We propose that combinational regimens of approved HCC therapeutic protocols plus autophagy inhibitors may overcome drug resistance in HCC therapy.
Collapse
Affiliation(s)
- Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Kosar Nouri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Islamic Republic of Iran
| | - Atena Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
33
|
Samavarchi Tehrani S, Esmaeili F, Shirzad M, Goodarzi G, Yousefi T, Maniati M, Taheri-Anganeh M, Anushiravani A. The critical role of circular RNAs in drug resistance in gastrointestinal cancers. Med Oncol 2023; 40:116. [PMID: 36917431 DOI: 10.1007/s12032-023-01980-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Nowadays, drug resistance (DR) in gastrointestinal (GI) cancers, as the main reason for cancer-related mortality worldwide, has become a serious problem in the management of patients. Several mechanisms have been proposed for resistance to anticancer drugs, including altered transport and metabolism of drugs, mutation of drug targets, altered DNA repair system, inhibited apoptosis and autophagy, cancer stem cells, tumor heterogeneity, and epithelial-mesenchymal transition. Compelling evidence has revealed that genetic and epigenetic factors are strongly linked to DR. Non-coding RNA (ncRNA) interferences are the most crucial epigenetic alterations explored so far, and among these ncRNAs, circular RNAs (circRNAs) are the most emerging members known to have unique properties. Due to the absence of 5' and 3' ends in these novel RNAs, the two ends are covalently bonded together and are generated from pre-mRNA in a process known as back-splicing, which makes them more stable than other RNAs. As far as the unique structure and function of circRNAs is concerned, they are implicated in proliferation, migration, invasion, angiogenesis, metastasis, and DR. A clear understanding of the molecular mechanisms responsible for circRNAs-mediated DR in the GI cancers will open a new window to the management of GI cancers. Hence, in the present review, we will describe briefly the biogenesis, multiple features, and different biological functions of circRNAs. Then, we will summarize current mechanisms of DR, and finally, discuss molecular mechanisms through which circRNAs regulate DR development in esophageal cancer, pancreatic cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- Department of English, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Amir Anushiravani
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Huang PS, Wang LY, Wang YW, Tsai MM, Lin TK, Liao CJ, Yeh CT, Lin KH. Evaluation and Application of Drug Resistance by Biomarkers in the Clinical Treatment of Liver Cancer. Cells 2023; 12:869. [PMID: 36980210 PMCID: PMC10047572 DOI: 10.3390/cells12060869] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
Liver cancer is one of the most lethal cancers in the world, mainly owing to the lack of effective means for early monitoring and treatment. Accordingly, there is considerable research interest in various clinically applicable methods for addressing these unmet needs. At present, the most commonly used biomarker for the early diagnosis of liver cancer is alpha-fetoprotein (AFP), but AFP is sensitive to interference from other factors and cannot really be used as the basis for determining liver cancer. Treatment options in addition to liver surgery (resection, transplantation) include radiation therapy, chemotherapy, and targeted therapy. However, even more expensive targeted drug therapies have a limited impact on the clinical outcome of liver cancer. One of the big reasons is the rapid emergence of drug resistance. Therefore, in addition to finding effective biomarkers for early diagnosis, an important focus of current discussions is on how to effectively adjust and select drug strategies and guidelines for the treatment of liver cancer patients. In this review, we bring this thought process to the drug resistance problem faced by different treatment strategies, approaching it from the perspective of gene expression and molecular biology and the possibility of finding effective solutions.
Collapse
Affiliation(s)
- Po-Shuan Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
| | - Ling-Yu Wang
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan 333, Taiwan;
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Yi-Wen Wang
- School of Nursing, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ming-Ming Tsai
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan;
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of General Surgery, New Taipei Municipal Tu Cheng Hospital, New Taipei 236, Taiwan
| | - Tzu-Kang Lin
- Neurosurgery, School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- Neurosurgery, Department of Surgery, Fu Jen Catholic University Hospital, New Taipei City 24352, Taiwan
| | - Chia-Jung Liao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
| | - Kwang-Huei Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
| |
Collapse
|
35
|
Autophagy-Related Gene WD Repeat Domain 45B Promotes Tumor Proliferation and Migration of Hepatocellular Carcinoma through the Akt/mTOR Signaling Pathway. Diagnostics (Basel) 2023; 13:diagnostics13050906. [PMID: 36900050 PMCID: PMC10001097 DOI: 10.3390/diagnostics13050906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor. It has been found that autophagy plays a role both as a tumor promoter and inhibitor in HCC carcinogenesis. However, the mechanism behind is still unveiled. This study aims to explore the functions and mechanism of the key autophagy-related proteins, to shed light on novel clinical diagnoses and treatment targets of HCC. Bioinformation analyses were performed by using data from public databases including TCGA, ICGC, and UCSC Xena. The upregulated autophagy-related gene WDR45B was identified and validated in human liver cell line LO2, human HCC cell line HepG2 and Huh-7. Immunohistochemical assay (IHC) was also performed on formalin-fixed paraffin-embedded (FFPE) tissues of 56 HCC patients from our pathology archives. By using qRT-PCR and Western blots we found that high expression of WDR45B influenced the Akt/mTOR signaling pathway. Autophagy marker LC3- II/LC3-I was downregulated, and p62/SQSTM1 was upregulated after knockdown of WDR45B. The effects of WDR45B knockdown on autophagy and Akt/mTOR signaling pathways can be reversed by the autophagy inducer rapamycin. Moreover, proliferation and migration of HCC can be inhibited after the knockdown of WDR45B through the CCK8 assay, wound-healing assay and Transwell cell migration and invasion assay. Therefore, WDR45B may become a novel biomarker for HCC prognosis assessment and potential target for molecular therapy.
Collapse
|
36
|
Jiang L, Li L, Liu Y, Zhan M, Lu L, Yuan S, Liu Y. Drug resistance mechanism of kinase inhibitors in the treatment of hepatocellular carcinoma. Front Pharmacol 2023; 14:1097277. [PMID: 36891274 PMCID: PMC9987615 DOI: 10.3389/fphar.2023.1097277] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, and it usually occurs following chronic liver disease. Although some progress has been made in the treatment of HCC, the prognosis of patients with advanced HCC is not optimistic, mainly because of the inevitable development of drug resistance. Therefore, multi-target kinase inhibitors for the treatment of HCC, such as sorafenib, lenvatinib, cabozantinib, and regorafenib, produce small clinical benefits for patients with HCC. It is necessary to study the mechanism of kinase inhibitor resistance and explore possible solutions to overcome this resistance to improve clinical benefits. In this study, we reviewed the mechanisms of resistance to multi-target kinase inhibitors in HCC and discussed strategies that can be used to improve treatment outcomes.
Collapse
Affiliation(s)
- Lei Jiang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital AffiliatedWith Jinan University), Zhuhai, Guangdong, China
| | - Luan Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yongzhuang Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Liaoning Province, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital AffiliatedWith Jinan University), Zhuhai, Guangdong, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital AffiliatedWith Jinan University), Zhuhai, Guangdong, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Liaoning Province, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital AffiliatedWith Jinan University), Zhuhai, Guangdong, China
| |
Collapse
|
37
|
Hashemi M, Nadafzadeh N, Imani MH, Rajabi R, Ziaolhagh S, Bayanzadeh SD, Norouzi R, Rafiei R, Koohpar ZK, Raei B, Zandieh MA, Salimimoghadam S, Entezari M, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Targeting and regulation of autophagy in hepatocellular carcinoma: revisiting the molecular interactions and mechanisms for new therapy approaches. Cell Commun Signal 2023; 21:32. [PMID: 36759819 PMCID: PMC9912665 DOI: 10.1186/s12964-023-01053-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/15/2023] [Indexed: 02/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved process that plays a role in regulating homeostasis under physiological conditions. However, dysregulation of autophagy is observed in the development of human diseases, especially cancer. Autophagy has reciprocal functions in cancer and may be responsible for either survival or death. Hepatocellular carcinoma (HCC) is one of the most lethal and common malignancies of the liver, and smoking, infection, and alcohol consumption can lead to its development. Genetic mutations and alterations in molecular processes can exacerbate the progression of HCC. The function of autophagy in HCC is controversial and may be both tumor suppressive and tumor promoting. Activation of autophagy may affect apoptosis in HCC and is a regulator of proliferation and glucose metabolism. Induction of autophagy may promote tumor metastasis via induction of EMT. In addition, autophagy is a regulator of stem cell formation in HCC, and pro-survival autophagy leads to cancer cell resistance to chemotherapy and radiotherapy. Targeting autophagy impairs growth and metastasis in HCC and improves tumor cell response to therapy. Of note, a large number of signaling pathways such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs regulate autophagy in HCC. Moreover, regulation of autophagy (induction or inhibition) by antitumor agents could be suggested for effective treatment of HCC. In this paper, we comprehensively review the role and mechanisms of autophagy in HCC and discuss the potential benefit of targeting this process in the treatment of the cancer. Video Abstract.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloufar Nadafzadeh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahr-E Kord Branch, Islamic Azad University, Tehran, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Raheleh Norouzi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reihaneh Rafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Chen C, Zhang L, Ruan Z. GATA3 Encapsulated by Tumor-Associated Macrophage-Derived Extracellular Vesicles Promotes Immune Escape and Chemotherapy Resistance of Ovarian Cancer Cells by Upregulating the CD24/Siglec-10 Axis. Mol Pharm 2023; 20:971-986. [PMID: 36547230 DOI: 10.1021/acs.molpharmaceut.2c00557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor-associated macrophages (TAMs) possess great potential in the development of ovarian cancer (OC). Aberrant GATA-binding protein-3 (GATA3) expression has been found in TAM-derived extracellular vesicles (EVs). This study is intended to investigate the regulatory mechanism of TAM-derived EVs, expressing GATA3 in immune escape and chemotherapy resistance of OC cells. In silico analysis was employed to identify differentially expressed genes. The expression of GATA3, CD24, and sialic acid-binding igg-like lectin 10 (Siglec-10) in OC tissues and cells was characterized, with their correlation verified. OC cells were co-cultured with TAM-derived EVs and CD8+T cells. The functional significance of GATA3/CD24/Siglec-10 in immune escape and chemotherapy resistance of OC cells was assayed by the gain and loss of function experiments. In vivo experiments were also performed for further validation. High expressions of GATA3, CD24, and Siglec-10 were observed in OC tissues and cells. GATA3 could be transferred by TAM-derived EVs into OC cells, which facilitated immune escape and resistance to cisplatin of OC cells. GATA3 up-regulated CD24 to increase Siglec-10 expression. The in vivo assay confirmed the promoting effect of GATA3 delivered by TAM-derived EVs on OC through activation of the CD24/Siglec-10 axis. Collectively, TAM-derived EVs harboring GATA3 played a tumor-promoting role in immune escape and chemotherapy resistance of OC cells via the CD24/Siglec-10 axis.
Collapse
Affiliation(s)
- Chao Chen
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, P.R. China
| | - Li Zhang
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, P.R. China
| | - Zhengyi Ruan
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, P.R. China
| |
Collapse
|
39
|
Li X, Yin X, Bao H, Liu C. Circular RNA ITCH increases sorafenib-sensitivity in hepatocellular carcinoma via sequestering miR-20b-5p and modulating the downstream PTEN-PI3K/Akt pathway. Mol Cell Probes 2023; 67:101877. [PMID: 36442661 DOI: 10.1016/j.mcp.2022.101877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUNDS Sorafenib-resistance leads to poor prognosis and high mortality in advanced hepatocellular carcinoma (HCC), and this study aims to investigate the functional role of a circular RNA ITCH (circITCH) in regulating the sorafenib-resistance of HCC and its underlying mechanisms. METHODS The expression of circITCH in HCC tissues and cell lines were detected by performing quantitative real-time polymerase chain reaction. Sorafenib-resistant HCC cells were transfected with PLCDH-circITCH to upregulate circITCH and intervened with sorafenib, and MTT assay, flow cytometry and transwell assay were used to test the cell viability, apoptosis and migration ability, respectively. The downstream target of circITCH were explored by using bioinformatic analysis, dual luciferase reporter system and Western blot. RESULTS CircITCH was significantly down-regulated in HCC tissues and cell lines, compared with their normal counterparts. Especially, in contrast with the sorafenib-sensitive HCC cells, continuous sorafenib treatment decreased the expression levels of circITCH in the sorafenib-resistant HCC cells. Overexpression of circITCH increased sorafenib-sensitivity, promoted cell apoptosis and reduced cell migration abilities in the sorafenib-resistant HCC cells. Mechanically, circITCH elevated PTEN expression to inactivate the PI3K/Akt signals through negatively regulating miR-20b-5p in HCC, and upregulating miR-20b-5p or inhibiting PTEN abolished the enhancing effect of circITCH overexpression on sorafenib-induced cytotoxicity in sorafenib-resistant HCC cells. CONCLUSION Taken together, this study proves that circITCH enhances sorafenib-sensitivity in sorafenib-resistant HCC cells via regulating the miR-20b-5p/PTEN/PI3K/Akt signaling cascade, which highlights the potential value of circITCH as a target for enhancing the sorafenib-sensitivity in HCC.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Xuedong Yin
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Heyi Bao
- Department of General Surgery, Qiqihar First Hospital, Qiqihar, 161005, China.
| | - Chang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
40
|
Zhou XH, Li JR, Zheng TH, Chen H, Cai C, Ye SL, Gao B, Xue TC. Portal vein tumor thrombosis in hepatocellular carcinoma: molecular mechanism and therapy. Clin Exp Metastasis 2023; 40:5-32. [PMID: 36318440 DOI: 10.1007/s10585-022-10188-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Portal vein tumor thrombosis (PVTT), a common complication of advanced hepatocellular carcinoma (HCC), remains the bottleneck of the treatments. Liver cancer cells potentially experienced multi-steps during PVTT process, including cancer cells leave from cancer nest, migrate in extracellular matrix, invade the vascular barrier, and colonize in the portal vein. Accumulated evidences have revealed numerous of molecular mechanisms including genetic and epigenetic regulation, cancer stem cells, immunosuppressive microenvironment, hypoxia, et al. contributed to the PVTT formation. In this review, we discuss state-of-the-art PVTT research on the potential molecular mechanisms and experimental models. In addition, we summarize PVTT-associated clinical trials and current treatments for PVTT and suppose perspectives exploring the molecular mechanisms and improving PVTT-related treatment for the future.
Collapse
Affiliation(s)
- Xing-Hao Zhou
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Jing-Ru Li
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Tang-Hui Zheng
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Department of Hepatic Oncology, Xiamen Branch, Fudan University, Zhongshan Hospital, Xiamen, 361015, China
| | - Hong Chen
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Department of Hepatic Oncology, Xiamen Branch, Fudan University, Zhongshan Hospital, Xiamen, 361015, China
| | - Chen Cai
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Sheng-Long Ye
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Bo Gao
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai Medical College, Shanghai, 200032, China.
| | - Tong-Chun Xue
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China. .,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China. .,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
41
|
Yang C, Jin X, Liu X, Wu G, Yang W, Pang B, Jiang J, Liao D, Zhang Y. TRIM15 forms a regulatory loop with the AKT/FOXO1 axis and LASP1 to modulate the sensitivity of HCC cells to TKIs. Cell Death Dis 2023; 14:47. [PMID: 36670097 PMCID: PMC9859813 DOI: 10.1038/s41419-023-05577-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
For patients with advanced or metastatic Hepatocellular carcinoma (HCC) who are not suitable for surgical resection, systemic therapy has been considered to be the standard treatment. In recent years, a small subset of patients with unresectable HCC have been benefit from tyrosine kinase inhibitors (TKIs), and the overall survival time of these patients is significantly increased. However, all responders ultimately develop resistance to TKI treatment. The tripartite motif (TRIM) family member TRIM15 acts as an E3 ligase to mediate the polyubiquitination of substrates in cells. However, the biological role of TRIM15 in HCC is still an enigma. In our study, our results demonstrated that TRIM15 was abnormally upregulated in liver cancer cells after treated with TKIs and that this upregulation of TRIM15 contributed to TKI resistance in liver cancer cells. Then, we demonstrated that the upregulation of TRIM15 after TKI treatment was mediated by the AKT/FOXO1 axis. Moreover, we demonstrated that TRIM15 induced the nuclear translocation of LASP1 by mediating its K63-linked polyubiquitination, which modulated sensitivity to TKIs by increasing the phosphorylation of AKT and the expression of Snail in liver cancer cells. Collectively, we identified a novel AKT/FOXO1/TRIM15/LASP1 loop in cells, which provided potential candidates for overcoming TKI resistance in HCC.
Collapse
Affiliation(s)
- Chong Yang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xingchao Liu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Gang Wu
- Hepatobiliary and Pancreatic Surgery Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Wenhao Yang
- Hepatobiliary and Pancreatic Surgery Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Beichuan Pang
- Hepatobiliary and Pancreatic Surgery Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Jipeng Jiang
- Hepatobiliary and Pancreatic Surgery Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Dongxu Liao
- Hepatobiliary and Pancreatic Surgery Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Yu Zhang
- Hepatobiliary and Pancreatic Surgery Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
42
|
Martelli A, Omrani M, Zarghooni M, Citi V, Brogi S, Calderone V, Sureda A, Lorzadeh S, da Silva Rosa SC, Grabarek BO, Staszkiewicz R, Los MJ, Nabavi SF, Nabavi SM, Mehrbod P, Klionsky DJ, Ghavami S. New Visions on Natural Products and Cancer Therapy: Autophagy and Related Regulatory Pathways. Cancers (Basel) 2022; 14:5839. [PMID: 36497321 PMCID: PMC9738256 DOI: 10.3390/cancers14235839] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Macroautophagy (autophagy) has been a highly conserved process throughout evolution and allows cells to degrade aggregated/misfolded proteins, dysfunctional or superfluous organelles and damaged macromolecules, in order to recycle them for biosynthetic and/or energetic purposes to preserve cellular homeostasis and health. Changes in autophagy are indeed correlated with several pathological disorders such as neurodegenerative and cardiovascular diseases, infections, cancer and inflammatory diseases. Conversely, autophagy controls both apoptosis and the unfolded protein response (UPR) in the cells. Therefore, any changes in the autophagy pathway will affect both the UPR and apoptosis. Recent evidence has shown that several natural products can modulate (induce or inhibit) the autophagy pathway. Natural products may target different regulatory components of the autophagy pathway, including specific kinases or phosphatases. In this review, we evaluated ~100 natural compounds and plant species and their impact on different types of cancers via the autophagy pathway. We also discuss the impact of these compounds on the UPR and apoptosis via the autophagy pathway. A multitude of preclinical findings have shown the function of botanicals in regulating cell autophagy and its potential impact on cancer therapy; however, the number of related clinical trials to date remains low. In this regard, further pre-clinical and clinical studies are warranted to better clarify the utility of natural compounds and their modulatory effects on autophagy, as fine-tuning of autophagy could be translated into therapeutic applications for several cancers.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Marzieh Omrani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Maryam Zarghooni
- Department of Laboratory Medicine & Pathobiology, University of Toronto Alumna, Toronto, ON M5S 3J3, Canada
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Antoni Sureda
- Research Group in Community Nutrition, Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands, 07122 Palma de Mallorca, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Simone C. da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Beniamin Oscar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- GynCentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
| | - Rafał Staszkiewicz
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Krakow, Poland
| | - Marek J. Los
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Seyed Fazel Nabavi
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite 62760-000, Brazil
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030 San Salvatore Telesino, Italy
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
43
|
MiR-371a-5p Positively Associates with Hepatocellular Carcinoma Malignancy but Sensitizes Cancer Cells to Oxaliplatin by Suppressing BECN1-Dependent Autophagy. Life (Basel) 2022; 12:life12101651. [DOI: 10.3390/life12101651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 01/27/2023] Open
Abstract
Oxaliplatin (OXA)-based chemotherapy demonstrates active efficacy in advanced hepatocellular carcinoma (HCC), while resistance development limits its clinical efficacy. Thus, identifying resistance-related molecules and underlying mechanisms contributes to improving the therapeutic efficacy of HCC patients. MicroRNA-371a-5p (MiR-371a-5p) fulfills an important function in tumor progression. However, little is known about the effect of miR-371a-5p on chemotherapy response. In this study, quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry were used to determine the expression levels of miR-371a-5p, BECN1 and autophagy-related proteins in HCC cells, tissues and serum. The luciferase reporter assay was used to assess the directly suppressive effect of miR-371a-5p on BECN1 mRNA translation. Moreover, gain- and loss-of-function assays and rescue assays were used to evaluate the mediated effect of BECN1-dependent autophagy on the role of miR-371a-5p in the response of HCC cells to OXA. We found that miR-371a-5p was significantly up-regulated in HCC tissues and serum from patients, whereas BECN1 protein was down-regulated in HCC tissues compared to the corresponding controls. We also found that there was a negative correlation between the two molecules in HCC tissues. In addition, we found that miR-371a-5p expression was positively associated with malignant characteristics of HCC and BECN1 protein expression is negatively associated. Contrary to this, we found that miR-371a-5p enhances and BECN1 attenuates the response of HCC cells to OXA. Importantly, the enhanced effect of miR-371a-5p on the response of HCC cells to OXA could be reduced by re-expression of non-targetable BECN1, and then the reduced effect was restored following bafilomycin A treatment. Taken together, we identified a dual role of miR-371a-5p in HCC malignant characteristics and the response of HCC cells to oxaliplatin. Importantly, we reveal that miR-371a-5p enhances oxaliplatin response by target suppression of BECN1-dependent autophagy.
Collapse
|
44
|
miR-559 Inhibits Proliferation, Autophagy, and Angiogenesis of Hepatocellular Carcinoma Cells by Targeting PARD3. Mediators Inflamm 2022; 2022:3121492. [PMID: 36105681 PMCID: PMC9467804 DOI: 10.1155/2022/3121492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in the world and has a high mortality rate. Although prevention and treatment of HCC has improved, it still faces poor prognosis and high mortality. miRNAs play a critical role in the tumorigenesis of HCC, but the underlying mechanism has not been well investigated. Here, the functions and interaction between miR-559 and PARD3 were investigated in HCC cells. Increased PARD3 and decreased miR-559 expression were observed in HCC cells compared with those in normal liver cells, especially in Huh-7 cells. Studies further demonstrated that PARD3 silencing or miR-559 overexpression impaired the proliferation, autophagy, and angiogenesis in Huh-7 cells. Mechanistically, PARD3 represents a target of miR-559. Furthermore, investigations revealed that miR-559 inhibition induced the expression of PARD3, thereby enhancing cell proliferation, autophagy, and angiogenesis in Huh-7 cells. These results reveal the interaction between miR-559 and PARD3 in HCC cells and provide new insights into their potential targets as therapeutic treatment against HCC.
Collapse
|
45
|
Liu ZY, Zhang DY, Lin XH, Sun JL, Abuduwaili W, Zhang GC, Xu RC, Wang F, Yu XN, Shi X, Deng B, Dong L, Weng SQ, Zhu JM, Shen XZ, Liu TT. Nalidixic acid potentiates the antitumor activity in sorafenib-resistant hepatocellular carcinoma via the tumor immune microenvironment analysis. Front Pharmacol 2022; 13:952482. [PMID: 36071851 PMCID: PMC9441713 DOI: 10.3389/fphar.2022.952482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Sorafenib resistance is often developed and impedes the benefits of clinical therapy in hepatocellular carcinoma (HCC) patients. However, the relationship between sorafenib resistance and tumor immune environment and adjuvant drugs for sorafenib-resistant HCC are not systemically identified. This study first analyzed the expression profiles of sorafenib-resistant HCC cells to explore immune cell infiltration levels and differentially expressed immune-related genes (DEIRGs). The prognostic value of DEIRGs was analyzed using Cox regression and Kaplan-Meier analysis based on The Cancer Genome Atlas. The primary immune cells infiltrated in sorafenib-resistant HCC mice were explored using flow cytometry (FCM). Finally, small-molecule drugs for sorafenib-resistant HCC treatment were screened and validated by experiments. The CIBERSORT algorithm and mice model showed that macrophages and neutrophils are highly infiltrated, while CD8+ T cells are downregulated in sorafenib-resistant HCC. Totally, 34 DEIRGs were obtained from sorafenib-resistant and control groups, which were highly enriched in immune-associated biological processes and pathways. NR6A1, CXCL5, C3, and TGFB1 were further identified as prognostic markers for HCC patients. Finally, nalidixic acid was identified as a promising antagonist for sorafenib-resistant HCC treatment. Collectively, our study reveals the tumor immune microenvironment changes and explores a promising adjuvant drug to overcome sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Zhi-Yong Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
| | - Dan-Ying Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
| | - Xia-Hui Lin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
| | - Jia-Lei Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
| | - Weinire Abuduwaili
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
| | - Guang-Cong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
| | - Ru-Chen Xu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
| | - Fu Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
| | - Xiang-Nan Yu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
| | - Xuan Shi
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
| | - Bin Deng
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
| | - Shu-Qiang Weng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Tao-Tao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Disease, Shanghai, China
| |
Collapse
|
46
|
Tian X, Yan T, Liu F, Liu Q, Zhao J, Xiong H, Jiang S. Link of sorafenib resistance with the tumor microenvironment in hepatocellular carcinoma: Mechanistic insights. Front Pharmacol 2022; 13:991052. [PMID: 36071839 PMCID: PMC9441942 DOI: 10.3389/fphar.2022.991052] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022] Open
Abstract
Sorafenib, a multi-kinase inhibitor with antiangiogenic, antiproliferative, and proapoptotic properties, is the first-line treatment for patients with late-stage hepatocellular carcinoma (HCC). However, the therapeutic effect remains limited due to sorafenib resistance. Only about 30% of HCC patients respond well to the treatment, and the resistance almost inevitably happens within 6 months. Thus, it is critical to elucidate the underlying mechanisms and identify effective approaches to improve the therapeutic outcome. According to recent studies, tumor microenvironment (TME) and immune escape play critical roles in tumor occurrence, metastasis and anti-cancer drug resistance. The relevant mechanisms were focusing on hypoxia, tumor-associated immune-suppressive cells, and immunosuppressive molecules. In this review, we focus on sorafenib resistance and its relationship with liver cancer immune microenvironment, highlighting the importance of breaking sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Xinchen Tian
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Jing Zhao
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, China
- *Correspondence: Huabao Xiong, ; Shulong Jiang,
| | - Shulong Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Huabao Xiong, ; Shulong Jiang,
| |
Collapse
|
47
|
Tan XP, Xiong BH, Zhang YX, Wang SL, Zuo Q, Li J. FXYD5 promotes sorafenib resistance through the Akt/mTOR signaling pathway in hepatocellular carcinoma. Eur J Pharmacol 2022; 931:175186. [PMID: 35977595 DOI: 10.1016/j.ejphar.2022.175186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/03/2022]
Abstract
Tumor chemoresistance is often a major cause for the failure of chemotherapy. The resistance of hepatocellular carcinoma (HCC) cells to sorafenib significantly limits its therapeutic effect in HCC patients. For the first time, we found that FXYD domain-containing ion transport regulator 5 (FXYD5) is highly expressed in sorafenib-resistant HCC cells. In addition, the protein expression level of FXYD5 was markedly higher in HCC tissues than in paracancerous tissues. Remarkably, downregulation of FXYD5 expression in Huh7/sora cells reversed their resistance to sorafenib. Moreover, overexpression of FXYD5 reduced the sensitivity of HCC cells to sorafenib, while the downregulation of its expression in HCC cells had the opposite effect. We also found abnormal activation of the Akt/mTOR signaling pathway in Huh7/sora cells. Furthermore, MK2206, an Akt inhibitor, was found to significantly increase the sensitivity of HCC cells to sorafenib. More importantly, the expression level of p-Akt was positively correlated with the expression of FXYD5 in HCC tissues. Therefore, mechanistically, FXYD5 enhances the resistance of HCC cells to sorafenib by activating the Akt/mTOR signaling pathway. In conclusion, this study showed that the activation of the FXYD5/Akt/mTOR signaling axis plays key role in the resistance of HCC cells to sorafenib, and FXYD5 may represent a new potential target for HCC therapy.
Collapse
Affiliation(s)
- Xiang-Peng Tan
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ben-Han Xiong
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuan-Xu Zhang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shen-Li Wang
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Qian Zuo
- Department of Breast Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Jing Li
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
48
|
Zhang Y, Xing Z, Liu T, Tang M, Mi L, Zhu J, Wu W, Wei T. Targeted therapy and drug resistance in thyroid cancer. Eur J Med Chem 2022; 238:114500. [DOI: 10.1016/j.ejmech.2022.114500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022]
|
49
|
Panagiotou E, Syrigos NK, Charpidou A, Kotteas E, Vathiotis IA. CD24: A Novel Target for Cancer Immunotherapy. J Pers Med 2022; 12:jpm12081235. [PMID: 36013184 PMCID: PMC9409925 DOI: 10.3390/jpm12081235] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/31/2022] Open
Abstract
Cluster of differentiation 24 (CD24) is a small, highly glycosylated cell adhesion protein that is normally expressed by immune as well as epithelial, neural, and muscle cells. Tumor CD24 expression has been linked with alterations in several oncogenic signaling pathways. In addition, the CD24/Siglec-10 interaction has been implicated in tumor immune evasion, inhibiting macrophage-mediated phagocytosis as well as natural killer (NK) cell cytotoxicity. CD24 blockade has shown promising results in preclinical studies. Although there are limited data on efficacy, monoclonal antibodies against CD24 have demonstrated clinical safety and tolerability in two clinical trials. Other treatment modalities evaluated in the preclinical setting include antibody–drug conjugates and chimeric antigen receptor (CAR) T cell therapy. In this review, we summarize current evidence and future perspectives on CD24 as a potential target for cancer immunotherapy.
Collapse
|
50
|
Mechanisms of resistance to tyrosine kinase inhibitors in liver cancer stem cells and potential therapeutic approaches. Essays Biochem 2022; 66:371-386. [PMID: 35818992 DOI: 10.1042/ebc20220001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
The administration of tyrosine kinase inhibitors (TKIs) for the treatment of advanced-stage patients is common in hepatocellular carcinoma (HCC). However, therapy resistance is often encountered, and its emergence eventually curtails long-term clinical benefits. Cancer stem cells (CSCs) are essential drivers of tumor recurrence and therapy resistance; thus, the elucidation of key hallmarks of resistance mechanisms of liver CSC-driven HCC may help improve patient outcomes and reduce relapse. The present review provides a comprehensive summary of the intrinsic and extrinsic mechanisms of TKI resistance in liver CSCs, which mediate treatment failure, and discusses potential strategies to overcome TKI resistance from a preclinical perspective.
Collapse
|