1
|
Kowalski S, Wityk P, Raczak-Gutknecht J, Olszewska A, Żmijewski M, Kocić I. The imidazoline I 2 receptor agonist 2-BFI enhances cytotoxic activity of hydroxychloroquine by modulating oxidative stress, energy-related metabolism and autophagic influx in human colorectal adenocarcinoma cell lines. Eur J Pharmacol 2025; 996:177590. [PMID: 40185322 DOI: 10.1016/j.ejphar.2025.177590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Recently, interest in imidazoline receptors (IRs) has been increasing. Over the years, a growing number of studies have highlighted the therapeutic potential of ligands targeting these receptors, however, the potential role of imidazoline I2 receptor agonists in cancer treatment has not been thoroughly investigated. Colorectal cancer (CRC) is among the most prevalent and lethal forms of cancer worldwide. The complexity of CRC necessitates individualized approaches. One promising area of research within CRC therapy is the regulation of autophagy. Recent studies have explored the relationship between autophagy and cancer progression, revealing that autophagy modulation could be a potential strategy for CRC treatment. However, the mechanisms underlying autophagy regulation remain poorly understood. This study aimed to evaluate the effect of the imidazoline I2 receptor agonist, namely 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI), on colorectal cancer cells, HT-29 and HCT-116 cell lines, particularly its impact when co-incubated with the autophagy inhibitor, hydroxychloroquine (HCQ). The results showed that 2-BFI synergistically increased the cytotoxic effect of HCQ by inducing oxidative stress and apoptosis. Furthermore, our investigation indicated impairment autophagic influx in colon cancer cells treated by 2-BFI. The comprehensive metabolomic analysis revealed significant alterations in key metabolic pathways including MAO activity, oxidative stress responses, energy-related metabolites and amino acids metabolism. Altogether, these findings demonstrate potential a new therapeutic strategy based on autophagy regulation and the selective induction of oxidative stress in colorectal cancer cells. Moreover, this study provides a foundation for further investigation into the therapeutic potential of imidazoline receptor agonists in cancer therapy.
Collapse
Affiliation(s)
- Szymon Kowalski
- Department of Pharmacology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland.
| | - Paweł Wityk
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland; Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdańsk, Gdansk, Poland; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joanna Raczak-Gutknecht
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdańsk, Gdansk, Poland
| | - Anna Olszewska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Ivan Kocić
- Department of Pharmacology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
2
|
Sharma RK, Sahai R, Singh NC, Maheshwari M, Yadav N, Sarkar J, Mitra K. Ormeloxifene induces mitochondrial fission-mediated pro-death autophagy in colon cancer cells. Biochem Biophys Res Commun 2025; 759:151698. [PMID: 40153998 DOI: 10.1016/j.bbrc.2025.151698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Ormeloxifene (ORM) is a nonsteroidal selective estrogen receptor modulator (SERM), developed by the CSIR-Central Drug Research Institute that is approved as an oral contraceptive. However, it has also shown promising anti-cancer activity, especially in breast cancer. Here, we have investigated the anti-cancer effect of ORM on colon cancer cells and show that its antiproliferative activity is mediated through mitochondrial fission and autophagy-associated cell death. We observed that ORM treatment led to an elevation in autophagy markers like LC3II, Beclin1, and Atg7. Autophagy induction and LC3II turnover were monitored by immunofluorescence staining and confocal microscopy. Transmission electron microscopy results confirmed the formation of autophagosomes and autophagolysosomes. Autophagic flux was confirmed by the increased expression of LC3II in cells co-treated with BafilomycinA1(autophagy inhibitor) and ORM. This was further corroborated using tandem mRFP-GFP-LC3 (tfLC3) transfection in DLD-1 cells. Interestingly, we observed that inhibition of autophagy reduced the apoptotic cell population, suggesting pro-death autophagy. ORM treatment caused notable ultrastructural alterations indicative of cellular stress. Notably, ORM triggered the generation of mitochondrial ROS, associated with increased levels of mitochondrial fission and a decrease in mitochondrial fusion proteins. Changes in mitochondrial dynamics were observed under the TEM, which included reduced mitochondrial size and increased mitochondrial number. Inhibition of mitochondrial fission resulted in enhanced cell survival and a concomitant decrease in the autophagic markers, implying that ORM-induced autophagy depends on mitochondrial fission. Taken together, our findings bring to light a novel mechanism where Ormeloxifene targets mitochondrial dynamics to promote autophagy-associated cell death in colon cancer cells.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rohit Sahai
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India
| | - Nishakumari Chentunarayan Singh
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India
| | - Mayank Maheshwari
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Nisha Yadav
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jayanta Sarkar
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kalyan Mitra
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Yu YS, Kim IS, Baek SH. Decoding the dual role of autophagy in cancer through transcriptional and epigenetic regulation. FEBS Lett 2025. [PMID: 40346781 DOI: 10.1002/1873-3468.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/12/2025]
Abstract
Autophagy is a conserved catabolic process that is essential for maintaining cellular homeostasis by degrading and recycling damaged organelles and misfolded proteins. In cancer, autophagy exhibits a context-dependent dual role: In early stages, autophagy acts as a tumor suppressor by preserving genomic integrity and limiting oxidative stress. In advanced stages, autophagy supports tumor progression by facilitating metabolic adaptation, therapy resistance, immune evasion, and metastasis. This review highlights the molecular mechanisms underlying this dual function and focuses on the transcriptional and epigenetic regulation of autophagy in cancer cells. Key transcription factors, including the MiT/TFE family, FOXO family, and p53, as well as additional regulators, are discussed in the context of stress-responsive pathways mediated by mTORC1 and AMPK. A deeper understanding of the transcriptional and epigenetic regulation of autophagy in cancer is crucial for developing context-specific therapeutic strategies to either promote or inhibit autophagy depending on the cancer stage, thereby improving clinical outcomes in cancer treatment.
Collapse
Affiliation(s)
- Young Suk Yu
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Ik Soo Kim
- Department of Microbiology, Gachon University College of Medicine, Incheon, South Korea
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
4
|
Zheng H, Fan S, Zang H, Luo J, Shu L, Peng J. A comprehensive analysis identified an autophagy-related risk model for predicting recurrence and immunotherapy response in stage I lung adenocarcinoma. PeerJ 2025; 13:e19366. [PMID: 40330698 PMCID: PMC12051938 DOI: 10.7717/peerj.19366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Background Lung adenocarcinoma (LUAD) is characterized by early recurrence and poor prognosis. Autophagy is a double-edged sword in tumor development and anti-tumor therapy resistance. However, the prediction of relapse and therapeutic response in LUAD patients with stage I based on the signature of autophagy remains unclear. Methods Gene expression data were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database. Autophagy-associated genes were extracted from the Human Autophagy Moderator Database. The autophagy score was established by Least Absolute Shrinkage and Selection Operator (LASSO) regression. Real-time PCR was used to detect gene expression of hub genes in LUAD patients. Protein-protein interaction (PPI) was analyzed to identify crucial genes. Gene set enrichment analysis (GSEA) was used to reveal the molecular features of patients. ESTIMATE algorithm was applied to estimate the tumor immune infiltration. TIDE score and Genomics of Drug Sensitivity in Cancer (GDSC) database were used to assess therapeutic response. Results We established an autophagy score based on 19 autophagy genes. Among these genes, MAP1LC3B played a crucial role in PPI network and was down-regulated in tumor tissues both in TCGA and local cohort. Receiver operating characteristic (ROC) curve showed that the risk model effectively predict RFS of stage I LUAD (area under the curve (AUC) at 1, 2, 3 years = 0.701, 0.836, and 0.818, respectively). Multivariate regression analysis indicated that the autophagy score was an independent predictor for relapse (P < 0.001, HR = 4.8, 95% CI [3.25-7.2]). The autophagy score also showed great predictive efficacy in the external validation GEO cohorts. GSEA revealed gene sets significantly enriched in immunity, cell cycle, and adhesion, etc. Meanwhile, we found the autophagy score was negatively related to KRAS mutation (P = 0.017) but positively associated with TP53 mutation (P = 6.4e-11). The autophagy score had a negative relationship with CD8+, CD4+ T cell, and dendritic cell, and positively correlated with immune checkpoint molecule CD276. Patients with a high autophagy score were sensitive to chemotherapy and targeted therapy, while resistant to immune checkpoint inhibitors. Conclusion We constructed an effective recurrence risk predictive model for stage I LUAD patients based on autophagy related genes. High autophagy score predicted a higher recurrence risk and suppressing tumor immune microenvironment.
Collapse
Affiliation(s)
- Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Long Shu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Liu M, Wang Y, Ren F, Zhang W, Zheng H, Zhang R, Gao C, Luo L, Nie C, Gu J. Simulated microgravity activates autophagy expression in the rat retina. LIFE SCIENCES IN SPACE RESEARCH 2025; 45:107-116. [PMID: 40280632 DOI: 10.1016/j.lssr.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 04/29/2025]
Abstract
OBJECTIVE This study aims to investigate the expression and possible role of autophagy in the retina of rats under microgravity. METHODS Adult Sprague-Dawley (SD) rats were randomly allocated to either the tail suspension group (TS) or the control group (CTRL). To simulate microgravity-induced redistribution of cephalad fluid observed in space, the rats in the TS group underwent tail suspension for a duration of 4 weeks. Optical coherence tomography angiography (OCTA) was applied to assess the ocular blood flow and thickness of the retina. Hematoxylin and eosin (H&E) staining, along with transmission electron microscopy (TEM), were used to investigate morphological changes and autophagosomes in the retina. Endoplasmic reticulum autophagy (ER-phagy) related proteins (ATF4, CHOP, and GRP78) in the rat retina were detected using an immunofluorescence assay (IFA). The levels of autophagy-related proteins (Beclin1, P62, LC3B, ATF4, CHOP, and GRP78) were quantified by Western blot (WB). The expression of ATG5 and ATG7 genes was examined via real-time quantitative PCR (qPCR). RESULTS In fundus imaging signs, microgravity increases retinal thickness and the retinal vascular perfusion area. Moreover, microgravity also upregulates Beclin1, LC3B, ATF4, CHOP, and GRP78 while downregulating P62 in retina. It elevates the number of autophagosomes and activates autophagy and ER-phagy signaling pathways in retina. CONCLUSION Simulated microgravity can trigger the organism's intrinsic protective mechanisms, inducing the activation of autophagy (ER-phagy) in the retina, which may represent a self-defense mechanism against adverse conditions of microgravity-related stressors.
Collapse
Affiliation(s)
- Meng Liu
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuyu Wang
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Ren
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China
| | - Wenqian Zhang
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China
| | - Hanwen Zheng
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China
| | - Rong Zhang
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China
| | - Caiyun Gao
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China
| | - Ling Luo
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China
| | - Chuang Nie
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China.
| | - Jianwen Gu
- The Ninth Medical Center of PLA General Hospital, Beijing, 100101, China.
| |
Collapse
|
6
|
Lei X, Zheng Y, Su W. RNA-binding proteins and autophagy in lung cancer: mechanistic insights and therapeutic perspectives. Discov Oncol 2025; 16:599. [PMID: 40272614 PMCID: PMC12022210 DOI: 10.1007/s12672-025-02413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/16/2025] [Indexed: 04/27/2025] Open
Abstract
BACKGROUND Lung cancer remains a leading cause of cancer-related mortality worldwide. Its progression is intricately associated with the dynamic regulation of autophagy and RNA-binding proteins (RBPs), which play crucial roles in mRNA stability, alternative splicing, and cellular stress responses. OBJECTIVES This review aims to systematically analyze the mechanisms through which RBPs and autophagy contribute to lung cancer progression and explore potential therapeutic strategies targeting these pathways. METHODS We reviewed recent studies on the molecular mechanisms by which RBPs regulate tumor proliferation, metabolic adaptation, and their interaction with autophagy. The review also examines the dual roles of autophagy in lung cancer, highlighting its context-dependent effects on cell survival and death. RESULTS The interactions and regulatory networks between RBPs and autophagy involve multiple levels of regulation. RBPs can directly influence autophagy processes and act as microRNA (miRNA) sponges to regulate mRNA stability. The modulation of RBPs affects the expression of autophagy-related genes (ATGs) and autophagosome formation. Additionally, RBPs participate in complex regulatory interactions with non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and other proteins. CONCLUSIONS This review proposes innovative therapeutic strategies that combine RBP-targeting approaches (e.g., small molecule inhibitors, CRISPR gene editing) with autophagy modulators (e.g., mTOR inhibitors, chloroquine) to enhance treatment efficacy. Nanoparticle drug delivery systems and epigenetic regulation offer further opportunities for targeted interventions. This review lays a theoretical foundation for advancing lung cancer research and provides novel insights into synergistic therapies that target both RBPs and autophagy to improve treatment outcomes for lung cancer.
Collapse
Affiliation(s)
- Xiao Lei
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
- Zhanjiang Key Laboratory of Tumor Microenvironment and Organoid Research, Zhanjiang, 524001, China
- Department of Guangdong Medical University, Zhanjiang, 524023, China
| | - Yuexin Zheng
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
- Zhanjiang Key Laboratory of Tumor Microenvironment and Organoid Research, Zhanjiang, 524001, China
- Department of Guangdong Medical University, Zhanjiang, 524023, China
| | - Wenmei Su
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
- Zhanjiang Key Laboratory of Tumor Microenvironment and Organoid Research, Zhanjiang, 524001, China.
- Department of Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
7
|
Zhao K, Chan ITC, Tse EHY, Xie Z, Cheung TH, Zeng YA. Autophagy in adult stem cell homeostasis, aging, and disease therapy. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:14. [PMID: 40208372 PMCID: PMC11985830 DOI: 10.1186/s13619-025-00224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 04/11/2025]
Abstract
Autophagy is a crucial cellular process that facilitates the degradation of damaged organelles and protein aggregates, and the recycling of cellular components for the energy production and macromolecule synthesis. It plays an indispensable role in maintaining cellular homeostasis. Over recent decades, research has increasingly focused on the role of autophagy in regulating adult stem cells (SCs). Studies suggest that autophagy modulates various cellular processes and states of adult SCs, including quiescence, proliferation, self-renewal, and differentiation. The primary role of autophagy in these contexts is to sustain homeostasis, withstand stressors, and supply energy. Notably, the dysfunction of adult SCs during aging is correlated with a decline in autophagic activity, suggesting that autophagy is also involved in SC- and aging-associated disorders. Given the diverse cellular processes mediated by autophagy and the intricate mechanisms governing adult SCs, further research is essential to elucidate both universal and cell type-specific regulatory pathways of autophagy. This review discusses the role of autophagy in regulating adult SCs during quiescence, proliferation, self-renewal, and differentiation. Additionally, it summarizes the relationship between SC aging and autophagy, providing therapeutical insights into treating and ameliorating aging-associated diseases and cancers, and ultimately promoting longevity.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Indigo T C Chan
- Division of Life Science, Center for Stem Cell Research, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, HKUST-Nan Fung Life Sciences Joint Laboratory, the Hong Kong University of Science and Technology, Hong Kong, China
| | - Erin H Y Tse
- Division of Life Science, Center for Stem Cell Research, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, HKUST-Nan Fung Life Sciences Joint Laboratory, the Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Zhiyao Xie
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, HKUST-Nan Fung Life Sciences Joint Laboratory, the Hong Kong University of Science and Technology, Hong Kong, China.
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.
| | - Yi Arial Zeng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
8
|
Li X, Yin J, Song Q, Yang Q, Li C, Gao H. The novel ginseng Rh2 derivative 2-deoxy-Rh2, exhibits potent anticancer effect via the AMPK/mTOR/autophagy signaling pathway against breast cancer. Chem Biol Interact 2025; 409:111422. [PMID: 39961461 DOI: 10.1016/j.cbi.2025.111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/15/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Breast cancer is the most prevalent cancer and the second leading cause of cancer-related mortality among women globally, resulting in considerable psychological and physical distress for patients. Our previous study synthesized a novel derivative, 2-Deoxy-Rh2, which exhibited anticancer properties by influencing glycolysis and mitochondrial respiration. The objective of the current study was to investigate the anti-proliferative effects and underlying mechanisms of 2-Deoxy-Rh2 on human breast cancer cell lines MCF-7 and MDA-MB-231. In our experiments, we observed that 2-Deoxy-Rh2 reduced cell viability and induced cell cycle arrest, reactive oxygen species accumulation, and mitochondrial dysfunction. Furthermore, treatment with 2-Deoxy-Rh2 affected autophagic flux and induction, leading to increased expression of microtubule-associated protein light chain 3B (LC3B) and decreased expression of sequestosome 1 (P62) expression in both two breast cancer cell lines, which could be reversed by 3-Methyladenine (3-MA). Additionally, the AMPK signaling pathway plays a crucial role in 2-Deoxy-Rh2-induced autophagy. 2-Deoxy-Rh2 modulated the expression levels of mTOR and AMPK in MCF-7 and MDA-MB-231 cells, resulting in the cellular homeostasis disruption, autophagy and apoptosis, which was further corroborated by compound C (CC). Finally, the study validated the antitumor activity and mechanism of 2-Deoxy-Rh2 in vivo using Balb/c mice bearing 4T1 tumor cells. Overall, the results suggest that 2-Deoxy-Rh2 can induce apoptosis and autophagic cell death through the AMPK/mTOR signaling pathway, positioning it as a promising candidate for an antitumor agent against breast cancer.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jianyuan Yin
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Qing Song
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Qi Yang
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Chenchen Li
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China; State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510180, China.
| | - Huan Gao
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, China; Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
9
|
Niu Y, Tang S, Li J, Huang C, Yang Y, Zhou L, Liu Y, Zeng X. Induction of ferroptosis of iridium(III) complexes localizing at the mitochondria and lysosome by photodynamic therapy. J Inorg Biochem 2025; 264:112808. [PMID: 39671743 DOI: 10.1016/j.jinorgbio.2024.112808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
In this study, [Ir(ppy)2(DMHBT)](PF6) (ppy = deprotonated 1-phenylpyridine, DMHBT = 10,12-dimethylpteridino[6,7-f][1,10]phenanthroline-11,13-(10,12H)-dione, 8a), [Ir(bzq)2(DMHBT)](PF6) (bzq = deprotonated benzo[h]quinoline, 8b) and [Ir(piq)2(DMHBT)](PF6) (piq = deprotonated 1-phenylisoquinoline, 8c) were synthesized and characterized by HRMS, 13C NMR and 1H NMR. In vitro cytotoxicity experiments showed that 8a, 8b, 8c show moderate cytotoxicity against B16 cells, while the cytotoxicity of the complexes 8a, 8b and 8c toward B16 cells was greatly improved upon light irradiation, which can be used as photosensitizers to exert anticancer efficacy in photodynamic therapy (PDT). After being taken up by cells, 8a, 8b, 8c were localized in the mitochondria, resulting in a large amount of Ca2+ in-flux, a burst release of ROS, a sustained opening of mitochondrial permeability transition pore, and a decrease of the mitochondrial membrane potential, which led to mitochondrial dysfunction and further activation of caspase 3 and Bcl-2 family proteins to induce apoptosis. Overloaded ROS reacted with polyunsaturated fatty acids on the cell membrane, and initiated lipid peroxidation, inhibited the xc--system-glutathione (GSH)-glutathione peroxidase 4 (GPX4) antioxidant defense system, and upregulated the expression of the damage-associated molecules, HMGB1, CRT, and HSP70. The presence of Fer-1 was effective on increasing the cell survival, which demonstrates that the complexes possess the potential to induce ferroptosis and immunogenic cell death. In addition, 8a, 8b and 8c induced autophagy by inhibiting the AKT/PI3K/mTOR signaling pathway, downregulating p62 and promoting Beclin-1 expression upon light irradiation.
Collapse
Affiliation(s)
- Yajie Niu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shuanghui Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jiongbang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yan Yang
- Department of Pharmacy, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China.
| | - Lin Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Xiandong Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
10
|
Haynes J, Manogaran P. Mechanisms and Strategies to Overcome Drug Resistance in Colorectal Cancer. Int J Mol Sci 2025; 26:1988. [PMID: 40076613 PMCID: PMC11901061 DOI: 10.3390/ijms26051988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related mortality worldwide, with a significant impact on public health. Current treatment options include surgery, chemotherapy, radiotherapy, molecular-targeted therapy, and immunotherapy. Despite advancements in these therapeutic modalities, resistance remains a significant challenge, often leading to treatment failure, poor progression-free survival, and cancer recurrence. Mechanisms of resistance in CRC are multifaceted, involving genetic mutations, epigenetic alterations, tumor heterogeneity, and the tumor microenvironment. Understanding these mechanisms at the molecular level is crucial for identifying novel therapeutic targets and developing strategies to overcome resistance. This review provides an overview of the diverse mechanisms driving drug resistance in sporadic CRC and discusses strategies currently under investigation to counteract this resistance. Several promising strategies are being explored, including targeting drug transport, key signaling pathways, DNA damage response, cell death pathways, epigenetic modifications, cancer stem cells, and the tumor microenvironment. The integration of emerging therapeutic approaches that target resistance mechanisms aims to enhance the efficacy of current CRC treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Jennifer Haynes
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA;
| | | |
Collapse
|
11
|
Leal MRS, Lima LRA, Rodrigues NER, Soares PAG, Carneiro-da-Cunha MG, Albuquerque PBS. A review on the biological activities and the nutraceutical potential of chitooligosaccharides. Carbohydr Res 2025; 548:109336. [PMID: 39637700 DOI: 10.1016/j.carres.2024.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Chitooligosaccharides (CHOS) or chitosan oligosaccharides (COS) are oligomers mainly composed of d-glucosamine (GlcN) units and structured in a positively charged, basic, amino molecule obtained from the degradation of chitin/chitosan through physical, chemical, or enzymatic methods. CHOS display physicochemical properties attractive to applications from the food to the biomedical field, such as non-toxicity to humans, high water solubility, low viscosity, biocompatibility, and biodegradability. These properties also allow CHOS to exert important biological activities, for example, antioxidant, antimicrobial, anti-inflammatory, immunomodulatory, antitumor, and hypocholesterolemic ones, besides to exhibit applications in food systems, technological, and nutraceutical potential. Therefore, this study summarized the synthesis and chemical structure, biological functions, and mechanisms of action of CHOS; with this, we aimed to contribute to the knowledge about the application of CHOS from the food to the biomedical industries.
Collapse
Affiliation(s)
- Makyson R S Leal
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA), Universidade de Pernambuco (UPE), Garanhuns, PE, Brazil
| | - Luiza R A Lima
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco (UPE), R. Capitão Pedro Rodrigues, 105, São José, CEP 55.295-110, Garanhuns, PE, Brazil
| | - Natalie E R Rodrigues
- Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA), Universidade de Pernambuco (UPE), Garanhuns, PE, Brazil
| | - Paulo A G Soares
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Departamento de Bioquímica, Centro de Biociências, UFPE, Recife, PE, Brazil
| | - Maria G Carneiro-da-Cunha
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Departamento de Bioquímica, Centro de Biociências, UFPE, Recife, PE, Brazil
| | - Priscilla B S Albuquerque
- Programa de Pós-Graduação em Biologia Aplicada à Saúde (PPGBAS), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-900, Recife, PE, Brazil; Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco (UPE), R. Capitão Pedro Rodrigues, 105, São José, CEP 55.295-110, Garanhuns, PE, Brazil; Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA), Universidade de Pernambuco (UPE), Garanhuns, PE, Brazil.
| |
Collapse
|
12
|
Nagaraju GP, Saddala MS, Foote JB, Khaliq AM, Masood A, Golivi Y, Bandi DSR, Sarvesh S, Reddy SP, Switchenko J, Carstens JL, Akce M, Herting C, Alese OB, Yoon KJ, Manne U, Bhasin MK, Lesinski GB, Sukhatme VP, El-Rayes BF. Mechanism of enhancing chemotherapy efficacy in pancreatic ductal adenocarcinoma with paricalcitol and hydroxychloroquine. Cell Rep Med 2025; 6:101881. [PMID: 39730001 PMCID: PMC11866435 DOI: 10.1016/j.xcrm.2024.101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/26/2024] [Accepted: 11/28/2024] [Indexed: 12/29/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a minimal (<15%) 5-year existence, in part due to resistance to chemoradiotherapy. Previous research reveals the impact of paricalcitol (P) and hydroxychloroquine (H) on altering the lysosomal fusion, decreasing stromal burden, and triggering PDAC to chemotherapies. This investigation aims to elucidate the molecular properties of the H and P combination and their potential in sensitizing PDAC to gemcitabine (G). PH potentiates the effects of G in in vitro, orthotopic mouse models, and a patient-derived xenograft model of PDAC. Proteomic and single-cell RNA sequencing (RNA-seq) analyses reveal that GPH treatment upregulates autophagy and endoplasmic reticulum (ER) stress-related transcripts. GPH treatment decreases the number of Ki67, fibroblast-associated protein (FAP), and alpha-smooth muscle actin (SMA)-expressing fibroblasts with a decrease in autophagy-related transcripts. The GPH treatment increases M1 polarization and CD4+ and CD8+ T cells and reduces CD4+ and CD8+ regulatory T cells (Tregs). These effects of GPH were confirmed in paired biopsies obtained from patients treated in a clinical trial (NCT04524702).
Collapse
Affiliation(s)
| | - Madhu Sudhana Saddala
- Bioinformatics, Genomics and Proteomics, University of California, Irvine, Irvine, CA 92697, USA
| | - Jeremy B Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ateeq M Khaliq
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ashiq Masood
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yuvasri Golivi
- Department of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Dhana Sekhar Reddy Bandi
- Department of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sujith Sarvesh
- Department of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sudhir Putty Reddy
- Department of Protein Sciences & Mass Spectrometry, Translational Medicine, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Jeffrey Switchenko
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Julienne L Carstens
- Department of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Mehmet Akce
- Department of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Cameron Herting
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Olatunji B Alese
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Manoj K Bhasin
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Vikas P Sukhatme
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
13
|
Zhou XH, Luo YX, Yao XQ. Exercise-driven cellular autophagy: A bridge to systematic wellness. J Adv Res 2025:S2090-1232(24)00613-1. [PMID: 39756575 DOI: 10.1016/j.jare.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/28/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Exercise enhances health by supporting homeostasis, bolstering defenses, and aiding disease recovery. It activates autophagy, a conserved cellular process essential for maintaining balance, while dysregulated autophagy contributes to disease progression. Despite extensive research on exercise and autophagy independently, their interplay remains insufficiently understood. AIM OF REVIEW This review explores the molecular mechanisms of exercise-induced autophagy in various tissues, focusing on key transduction pathways. It examines how different types of exercise trigger specific autophagic responses, supporting cellular balance and addressing systemic dysfunctions. The review also highlights the signaling pathways involved, their roles in protecting organ function, reducing disease risk, and promoting longevity, offering a clear understanding of the link between exercise and autophagy. KEY SCIENTIFIC CONCEPTS OF REVIEW Exercise-induced autophagy is governed by highly coordinated and dynamic pathways integrating direct and indirect mechanical forces and biochemical signals, linking physical activity to cellular and systemic health across multiple organ systems. Its activation is influenced by exercise modality, intensity, duration, and individual biological characteristics, including age, sex, and muscle fiber composition. Aerobic exercises primarily engage AMPK and mTOR pathways, supporting mitochondrial quality and cellular homeostasis. Anaerobic training activates PI3K/Akt signaling, modulating molecules like FOXO3a and Beclin1 to drive muscle autophagy and repair. In pathological contexts, exercise-induced autophagy enhances mitochondrial function, proteostasis, and tissue regeneration, benefiting conditions like sarcopenia, neurodegeneration, myocardial ischemia, metabolic disorders, and cancer. However, excessive exercise may lead to autophagic overactivation, leading to muscle atrophy or pathological cardiac remodeling. This underscores the critical need for balanced exercise regimens to maximize therapeutic efficacy while minimizing risks. Future research should prioritize identifying reliable biomarkers, optimizing exercise protocols, and integrating exercise with pharmacological strategies to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Xiao-Han Zhou
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, PR China; Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
14
|
Pizzimenti C, Curcio A, Fiorentino V, Germanò A, Martini M, Ieni A, Tuccari G. Immunoexpression of autophagy‑related proteins in a single‑center series of sporadic adult conventional clival chordomas. Oncol Lett 2025; 29:32. [PMID: 39512506 PMCID: PMC11542148 DOI: 10.3892/ol.2024.14778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024] Open
Abstract
Autophagy is a biological process that facilitates the degradation and removal of damaged structures and macromolecules. In neoplasms, autophagy has been proposed to play a dual role, functioning either as a tumor promoter or a tumor suppressor. To date, no comprehensive analysis of autophagy, primarily through immunohistochemical investigation of autophagy-related proteins (ATGs), has been conducted in chordomas (CHs), which are rare bone tumors that arise from remnants of the notochord. The present study aimed to investigate the immunoexpression of several ATGs, including microtubule-associated protein 1 light chain 3 (LC3A/B), Sequestosome-1 (p62) and autophagy and Beclin 1 regulator 1 (AMBRA-1) in a series of sporadic adult conventional clival CHs collected from a single neuropathological center in southern Italy. Immunohistochemical analysis revealed that LC3A/B, p62 and AMBRA-1 were exclusively found in neoplastic cells, with no expression detected in the surrounding stromal cells. Both LC3A/B and p62 were expressed in the cytoplasm and nucleus of neoplastic cells, while AMBRA-1 was predominantly localized in the cytoplasm. In all cases of CHs, p62 was consistently and highly expressed, whereas a similarly high expression of LC3A/B was observed in five cases, four of which were characterized by neoplastic recurrence and partial resection. Low immunoreactivity was noted in seven out of 10 cases (70%), while three recurrent cases exhibited high levels of AMBRA-1 immunostaining. Statistical analysis using Fisher's exact test revealed significant P-values for LC3A/B (P=0.048), AMBRA-1 (P=0.033), Ki-67 (P=0.048) and surgical treatment (P=0.048). Consequently, a negative prognostic role for these two ATGs may be hypothesized in the development of CHs.
Collapse
Affiliation(s)
- Cristina Pizzimenti
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’ Section of Pathology, University of Messina, I-98125 Messina, Italy
| | - Antonello Curcio
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, I-98125 Messina, Italy
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’ Section of Pathology, University of Messina, I-98125 Messina, Italy
| | - Antonino Germanò
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, I-98125 Messina, Italy
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’ Section of Pathology, University of Messina, I-98125 Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’ Section of Pathology, University of Messina, I-98125 Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’ Section of Pathology, University of Messina, I-98125 Messina, Italy
| |
Collapse
|
15
|
Raza S, Siddiqui JA, Srivastava A, Chattopadhyay N, Sinha RA, Chakravarti B. Autophagy as a Therapeutic Target in Breast Tumors: The Cancer stem cell perspective. AUTOPHAGY REPORTS 2024; 3:27694127.2024.2358648. [PMID: 39006309 PMCID: PMC7616179 DOI: 10.1080/27694127.2024.2358648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 07/16/2024]
Abstract
Breast cancer is a heterogeneous disease, with a subpopulation of tumor cells known as breast cancer stem cells (BCSCs) with self-renewal and differentiation abilities that play a critical role in tumor initiation, progression, and therapy resistance. The tumor microenvironment (TME) is a complex area where diverse cancer cells reside creating a highly interactive environment with secreted factors, and the extracellular matrix. Autophagy, a cellular self-digestion process, influences dynamic cellular processes in the tumor TME integrating diverse signals that regulate tumor development and heterogeneity. Autophagy acts as a double-edged sword in the breast TME, with both tumor-promoting and tumor-suppressing roles. Autophagy promotes breast tumorigenesis by regulating tumor cell survival, migration and invasion, metabolic reprogramming, and epithelial-mesenchymal transition (EMT). BCSCs harness autophagy to maintain stemness properties, evade immune surveillance, and resist therapeutic interventions. Conversely, excessive, or dysregulated autophagy may lead to BCSC differentiation or cell death, offering a potential avenue for therapeutic exploration. The molecular mechanisms that regulate autophagy in BCSCs including the mammalian target of rapamycin (mTOR), AMPK, and Beclin-1 signaling pathways may be potential targets for pharmacological intervention in breast cancer. This review provides a comprehensive overview of the relationship between autophagy and BCSCs, highlighting recent advancements in our understanding of their interplay. We also discuss the current state of autophagy-targeting agents and their preclinical and clinical development in BCSCs.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Anubhav Srivastava
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| |
Collapse
|
16
|
Singh A, Perez ML, Kirsanov O, Padilla-Banks E, Guardia CM. Autophagy in reproduction and pregnancy-associated diseases. iScience 2024; 27:111268. [PMID: 39628569 PMCID: PMC11613427 DOI: 10.1016/j.isci.2024.111268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
As advantageous as sexual reproduction is during progeny generation, it is also an expensive and treacherous reproductive strategy. The viviparous eukaryote has evolved to survive stress before, during, and after pregnancy. An important and conserved intracellular pathway for the control of metabolic stress is autophagy. The autophagy process occurs in multiple stages through the coordinated action of autophagy-related genes. This review summarizes the evidence that autophagy is an integral component of reproduction. Additionally, we discuss emerging in vitro techniques that will enable cellular and molecular studies of autophagy and its associated pathways in reproduction. Finally, we discuss the role of autophagy in the pathogenesis and progression of several pregnancy-related disorders such as preterm birth, preeclampsia, and intra-uterine growth restriction, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Asmita Singh
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Maira L. Perez
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Oleksandr Kirsanov
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Elizabeth Padilla-Banks
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Carlos M. Guardia
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| |
Collapse
|
17
|
Lian H, Wang J, Yan S, Chen K, Jin L. An integrative analysis based on multiple cell death patterns identifies an immunosuppressive subtype and establishes a prognostic signature in lower-grade glioma. Ann Med 2024; 56:2412831. [PMID: 39387560 PMCID: PMC11469432 DOI: 10.1080/07853890.2024.2412831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/19/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Cell death modulates the biological behaviors of tumors. However, the comprehensive role of the multiple forms of cell death in lower-grade glioma (LGG) is unknown. METHODS We collected the transcriptional data of LGG patients from public repositories to comprehensively examine six cell death patterns (autophagy, apoptosis, cuproptosis, necroptosis, ferroptosis, and pyroptosis) in LGG samples and systematically correlated these patterns with patient survival, underlying biological processes, and drug sensitivity using serial bioinformatics analysis, clinical sample validation and in vitro assays. RESULTS We identified and independently validated three reproducible cell death-based clusters associated with distinct clinical outcomes and tumor microenvironment characteristics. The Tumor Immune Dysfunction and Exclusion algorithm was applied for predicting how these three clusters would respond to immune checkpoint blockade (ICB) therapy; we found potential resistance of cluster B to ICB therapy. We also performed drug screening to identify cluster-specific drugs. Furthermore, a scoring system, designated as the CDPM score, was developed to estimate the cell death patterns of patients with LGG; this system could predict both LGG patients' prognosis and immunotherapy efficacy. By performing multiplex immunofluorescence staining, we validated the correlations of GNAL expression with the molecular and clinical features of LGG in an independent LGG cohort. Finally, in vitro assays showed that GNAL promoted apoptosis and inhibited the proliferation of LGG cells. CONCLUSION The new cell death-based subtype system indicates several features of LGG biology and reveals novel insights into the use of precision medicine for treating LGG. The CDPM score could be used to predict the immunotherapy response and prognosis of LGG patients; moreover, it could indicate a novel direction for improving LGG management.
Collapse
Affiliation(s)
- Hao Lian
- Department of Traditional Chinese Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Yan
- Pudong New District, Huamu Community Health Service Center, Shanghai, P.R. China
| | - Kui Chen
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lilun Jin
- Department of Traditional Chinese Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Taha M, Abdelbagi O, Baokbah TAS, Bagadood RM, Jalal NA, Obaid R, Al-Hazmi NE, Qusty NF. Insights into the protective effect of omega-3 nanoemulsion against colistin-induced nephrotoxicity in experimental rats: regulation of autophagy and necroptosis via AMPK/mTOR and RIPK1/RIPK3/MLKL signaling pathways. Ren Fail 2024; 46:2429686. [PMID: 39584420 PMCID: PMC11590192 DOI: 10.1080/0886022x.2024.2429686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/24/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024] Open
Abstract
Colistin is considered one of the most effective antibiotics against gram-negative bacteria. However, nephrotoxicity is one of the dose-limiting factors in its treatment. This study aimed to evaluate the outcome of omega-3 nanoemulsion against colistin-induced nephrotoxicity and its possible underlying mechanism. Four rat groups were involved in the present research; each group containing ten rats was divided as follows: Group I (control) rats received normal saline; Group II (omega-3 nanoemulsion) rats received a dose of 500 mg/kg/body weight orally; Group III (colistin) rats received colistin intraperitoneally (300.000 IU/kg/day); and Group IV (colistin/omega-3 nanoemulsion) rats were treated for six days. The results revealed that colistin administration caused deterioration in renal functions such as creatinine, blood urea nitrogen, 24 h proteinuria, and kidney injury molecule-1 with decrease in creatinine clearance, resulting in histological alternation and tubular damage with diffuse interstitial inflammation. Additionally, colistin significantly increased the lipid peroxidation marker malonaldehyde, proinflammatory cytokines tumor necrosis alpha, interleukin-6, interleukin-1 beta. Also, autophagy influx marker microtubule-associated protein light chain 3B, Beclin-1, and necroptotic related proteins, receptor-interacting protein kinase-3 (RIPK-3), RIPK-1, mixed lineage kinase domain-like protein, and autophagy pathway regulatory kinase AMP-activated protein kinase, with a decrease in antioxidant enzymes catalase, superoxide dismutase, and total antioxidant capacity, autophagic marker ubiquitin-binding protein (p62), and regulator Mammalian target of rapamycin. Interestingly, omega-3 nanoemulsion reversed the results above, dramatically improving renal function and histological picture. Thus, omega-3 nanoemulsion provided a notable method for suppressing colistin-induced nephrotoxicity via its antioxidant and anti-inflammatory power, inhibiting pathological autophagy and necroptosis.
Collapse
Affiliation(s)
- Medhat Taha
- Department of Anatomy, Al-Qunfudah Medical College, Umm Al-Qura University, Al-Qunfudhah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Omer Abdelbagi
- Department of Pathology, Qunfudah Faculty of Medicine, Umm-Al-Qura University, Al-Qunfudhah, Saudi Arabia
| | - Tourki A. S. Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Al-Qunfudhah, Saudi Arabia
| | - Rehab M. Bagadood
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al–Qura University, Makkah, Saudi Arabia
| | - Naif A. Jalal
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al‐Qura University, Makkah, Saudi Arabia
| | - Rami Obaid
- Department of Medical Genetics, Faculty of Medicine at Al-Qunfudah, Umm Al-Qura University, Al-Qunfudhah, Saudi Arabia
| | - Nawal E. Al-Hazmi
- Department of Chemistry, Division of Biology (Microbiology), University College of Qunfudah, Umm Al-Qura University, Al-Qunfudhah, Saudi Arabia
| | - Naeem F. Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al–Qura University, Makkah, Saudi Arabia
| |
Collapse
|
19
|
Rajendran D, Oon CE. Navigating therapeutic prospects by modulating autophagy in colorectal cancer. Life Sci 2024; 358:123121. [PMID: 39389340 DOI: 10.1016/j.lfs.2024.123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Colorectal cancer (CRC) remains a leading cause of death globally despite the improvements in cancer treatment. Autophagy is an evolutionarily conserved lysosomal-dependent degradation pathway that is critical in maintaining cellular homeostasis. However, in cancer, autophagy may have conflicting functions in preventing early tumour formation versus the maintenance of advanced-stage tumours. Defective autophagy has a broad and dynamic effect not just on cancer cells, but also on the tumour microenvironment which influences tumour progression and response to treatment. To add to the layer of complexity, somatic mutations in CRC including tumour protein p53 (TP53), v-raf murine sarcoma viral oncogene homolog B1 (BRAF), Kirsten rat sarcoma viral oncogene homolog (KRAS), and phosphatase and tensin homolog (PTEN) can render chemoresistance by promoting a pro-survival advantage through autophagy. Recent studies have also reported autophagy-related cell deaths that are distinct from classical autophagy by employing parts of the autophagic machinery, which impacts strategies for autophagy regulation in cancer therapy. This review discusses the molecular processes of autophagy in the evolution of CRC and its role in the tumour microenvironment, as well as prospective therapeutic methods based on autophagy suppression or promotion. It also highlights clinical trials using autophagy modulators for treating CRC, underscoring the importance of autophagy regulation in CRC therapy.
Collapse
Affiliation(s)
- Deepa Rajendran
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| |
Collapse
|
20
|
Gao S, Wang X, Huang Y, You L. Calreticulin-driven autophagy enhances cell proliferation in laryngeal squamous cell carcinoma. Tissue Cell 2024; 91:102603. [PMID: 39550898 DOI: 10.1016/j.tice.2024.102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Calreticulin (CALR) is a multifunctional calcium-binding protein. Recent studies have revealed that CALR contributes to tumor development and promotes cancer cell proliferation. However, how CALR affects the development of laryngeal squamous cell carcinoma (LSCC) remains mysterious. Thus, this study aimed to explore the effect of CALR on LSCC development and uncover its underlying mechanisms. METHODS CALR expression in LSCC cell lines and tissues was examined by qRT-PCR and western blot analysis and its functional role was detected via in vivo and in vitro assays. Cell proliferation was discriminated with CCK-8 and colony formation assays, while apoptosis was analyzed using flow cytometry. Autophagy levels were measured via LC3 immunofluorescence, and western blot assay was conducted to assess apoptosis- and autophagy-related proteins. Additionally, a mouse xenograft model was employed to determine the impact of CALR knockdown on tumor growth. RESULTS We found that CALR knockdown reduced LSCC cell viability and proliferation while enhancing apoptosis, whereas CALR overexpression showed opposite effects. In vivo experiments verified that CALR knockdown suppressed tumor growth. In addition, elevated CALR expression induced autophagy in LSCC cells, while autophagy inhibitor 3-MA (2.5 mM) reversed the anti-apoptosis effects of CALR overexpression. CONCLUSION Our study identifies CALR as an oncogene in LSCC, where it promotes tumor progression by inducing autophagy and inhibiting apoptosis. Targeting CALR or modulating autophagy may represent novel therapeutic strategies for LSCC.
Collapse
Affiliation(s)
- Shufeng Gao
- Department of ENT & HN Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China.
| | - Xintao Wang
- Department of ENT & HN Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Yun Huang
- Department of ENT & HN Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Longgui You
- Department of ENT & HN Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
21
|
Chen XQ, Yang Q, Chen WM, Chen ZW, Guo GH, Zhang X, Sun XM, Shen T, Xiao FH, Li YF. Dual Role of Lysosome in Cancer Development and Progression. FRONT BIOSCI-LANDMRK 2024; 29:393. [PMID: 39614447 DOI: 10.31083/j.fbl2911393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 12/01/2024]
Abstract
Lysosomes are essential intracellular catabolic organelles that contain digestive enzymes involved in the degradation and recycle of damaged proteins, organelles, etc. Thus, they play an important role in various biological processes, including autophagy regulation, ion homeostasis, cell death, cell senescence. A myriad of studies has shown that the dysfunction of lysosome is implicated in human aging and various age-related diseases, including cancer. However, what is noteworthy is that the modulation of lysosome-based signaling and degradation has both the cancer-suppressive and cancer-promotive functions in diverse cancers depending on stage, biology, or tumor microenvironment. This dual role limits their application as targets in cancer therapy. In this review, we provide an overview of lysosome and autophagy-lysosomal pathway and outline their critical roles in many cellular processes, including cell death. We highlight the different functions of autophagy-lysosomal pathway in cancer development and progression, underscoring its potential as a target for effective cancer therapies.
Collapse
Affiliation(s)
- Xiao-Qiong Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Quan Yang
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Wei-Min Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Zi-Wei Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Guang-Hui Guo
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Xuan Zhang
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Xiao-Ming Sun
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Tao Shen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650000 Kunming, Yunnan, China
| | - Yun-Feng Li
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| |
Collapse
|
22
|
Luo Y, Liu R, Zhang H, Wang H, Yin H, Tian G, Wang B, Yan Y, Ding Z, Dai J, Niu L, Yuan G, Pan Y. Amantadine against glioma via ROS-mediated apoptosis and autophagy arrest. Cell Death Dis 2024; 15:834. [PMID: 39548081 PMCID: PMC11568115 DOI: 10.1038/s41419-024-07228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Glioma is a common primary nervous system malignant tumor with poor overall cure rate and low survival rate, yet successful treatment still remains a challenge. Here, we demonstrated that amantadine (AMT) exhibits the powerful anti-glioma effect by promoting apoptosis and autophagy in vivo and in vitro. Mechanistically, amantadine induces a large amount of reactive oxygen species (ROS) accumulation in glioma cells, and then triggers apoptosis by destroying mitochondria. In addition, amantadine induces the initiation of autophagy and inhibits the fusion of autophagosome and lysosome, consequently performing an anti-glioma role. Taken together, our findings suggest that amantadine could be a promising anti-glioma drug that inhibits glioma cells by inducing apoptosis and autophagy, which may provide a novel potential treatment option for patients.
Collapse
Affiliation(s)
- Yusong Luo
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Ruolan Liu
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - He Zhang
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Hongyu Wang
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Hang Yin
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Guopeng Tian
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Bo Wang
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yunji Yan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zilin Ding
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Junqiang Dai
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Liang Niu
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Guoqiang Yuan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| | - Yawen Pan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
- Academician Workstation, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
23
|
Wang F, Liao Q, Qin Z, Li J, Wei Q, Li M, Deng H, Xiong W, Tan M, Zhou M. Autophagy: a critical mechanism of N 6-methyladenosine modification involved in tumor progression and therapy resistance. Cell Death Dis 2024; 15:783. [PMID: 39468015 PMCID: PMC11519594 DOI: 10.1038/s41419-024-07148-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
N6-Methyladenosine (m6A) is an evolutionarily highly conserved epigenetic modification that affects eukaryotic RNAs, especially mRNAs, and m6A modification is commonly linked to tumor proliferation, progression, and therapeutic resistance by participating in RNA metabolism. Autophagy is an intracellular degradation and recycling biological process by which cells remove damaged organelles, protein aggregates, and other intracellular wastes, and release nutrients to maintain cell survival when energy is scarce. Recent studies have shown that m6A modification plays a critical role in the regulation of autophagy, affecting the initiation of autophagy, the formation and assembly of autophagosomes, and lysosomal function by regulating critical regulatory molecules involved in the process of autophagy. Moreover, autophagy can also affect the expression of the three types of regulators related to m6A, which in turn affects the levels of their target genes via m6A modification. Thus, m6A modification and autophagy form a sophisticated regulatory network through mutual regulation, which plays an important role in tumor progression and therapeutic resistance. In this manuscript, we reviewed the effects of m6A modification on autophagy as well as the effects of autophagy on m6A modification and the roles of the m6A-autophagy axis in tumor progression and therapy resistance. Additionally, we summarized the value and application prospects of key molecules in the m6A-autophagy axis in tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Feiyang Wang
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qiudi Liao
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zihao Qin
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jingyi Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qingqing Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Ming Tan
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China.
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China.
| |
Collapse
|
24
|
Cao J, Wu S, Zhao S, Wang L, Wu Y, Song L, Sun C, Liu Y, Liu Z, Zhu R, Liang R, Wang W, Sun Y. USP24 promotes autophagy-dependent ferroptosis in hepatocellular carcinoma by reducing the K48-linked ubiquitination of Beclin1. Commun Biol 2024; 7:1279. [PMID: 39379617 PMCID: PMC11461744 DOI: 10.1038/s42003-024-06999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
Ubiquitination is a post-translational modification (PTM), which is critical to maintain cell homeostasis. Ubiquitin-specific protease 24 (USP24) plays roles in various diseases, the mechanisms by which USP24 regulates hepatocellular carcinoma (HCC) remain poorly understood. In this study, USP24 is found to be significantly downregulated in HCC. Knocking down USP24 promotes HCC proliferation and migration, whereas USP24 overexpression inhibits HCC in vitro and in vivo. The endogenous interaction between USP24 and Beclin1 is confirmed. Mechanically, USP24 delays Beclin1 degradation by reducing its K48-linked ubiquitination, the effects of overexpressing USP24 on HCC proliferation can be partially reversed by silencing Beclin1. We find that increased autophagy is accompanied by ferroptosis in USP24 overexpressed HCC cells and USP24 increases the susceptibility of HCC to sorafenib. Collectively, this study highlights the critical role of USP24 in regulating autophagy-dependent ferroptosis by decreasing Beclin1 ubiquitination, suggesting that targeting USP24 may be a strategy for treating HCC.
Collapse
Affiliation(s)
- Jiahui Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shitao Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Senfeng Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yahui Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liming Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chenguang Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yin Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhipu Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China.
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China.
| |
Collapse
|
25
|
Varol A, Boulos JC, Jin C, Klauck SM, Zhitkovich A, Efferth T. Inhibition of MSH6 augments the antineoplastic efficacy of cisplatin in non-small cell lung cancer as autophagy modulator. Chem Biol Interact 2024; 402:111193. [PMID: 39168426 DOI: 10.1016/j.cbi.2024.111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
The altered response to chemotherapeutic agents predominantly stems from heightened single-point mutations within coding regions and dysregulated expression levels of genes implicated in drug resistance mechanisms. The identification of biomarkers based on mutation profiles and expression levels is pivotal for elucidating the underlying mechanisms of altered drug responses and for refining combinatorial therapeutic strategies in the field of oncology. Utilizing comprehensive bioinformatic analyses, we investigated the impact of eight mismatch repair (MMR) genes on overall survival across 23 cancer types, encompassing more than 7500 tumors, by integrating their mutation profiles. Among these genes, MSH6 emerged as the most predictive biomarker, characterized by a pronounced mutation frequency and elevated expression levels, which correlated with poorer patient survival outcomes. The wet lab experiments disclosed the impact of MSH6 in mediating altered drug responses. Cytotoxic assays conducted revealed that the depletion of MSH6 in H460 non-small lung cancer cells augmented the efficacy of cisplatin, carboplatin, and gemcitabine. Pathway analyses further delineated the involvement of MSH6 as a modulator, influencing the delicate equilibrium between the pro-survival and pro-death functions of autophagy. Our study elucidates the intricate interplay between MSH6, autophagy, and cisplatin efficacy, highlighting MSH6 as a potential therapeutic target to overcome cisplatin resistance. By revealing the modulation of autophagy pathways by MSH6 inhibition, our findings offer insights into novel approaches for enhancing the efficacy of cisplatin-based cancer therapy through targeted interventions.
Collapse
Affiliation(s)
- Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany
| | - Joelle C Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany
| | - Chunmei Jin
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02903, USA
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany.
| |
Collapse
|
26
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
27
|
McMann E, Gorski SM. Last but not least: emerging roles of the autophagy-related protein ATG4D. Autophagy 2024; 20:1916-1927. [PMID: 38920354 PMCID: PMC11346562 DOI: 10.1080/15548627.2024.2369436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
The evolutionarily conserved ATG4 cysteine proteases regulate macroautophagy/autophagy through the priming and deconjugation of the Atg8-family proteins. In mammals there are four ATG4 family members (ATG4A, ATG4B, ATG4C, ATG4D) but ATG4D has been relatively understudied. Heightened interest in ATG4D has been stimulated by recent links to human disease. Notably, genetic variations in human ATG4D were implicated in a heritable neurodevelopmental disorder. Genetic analyses in dogs, along with loss-of-function zebrafish and mouse models, further support a neuroprotective role for ATG4D. Here we discuss the evidence connecting ATG4D to neurological diseases and other pathologies and summarize its roles in both autophagy-dependent and autophagy-independent cellular processes.Abbrevation: ATG: autophagy related; BafA1: bafilomycin A1; BCL2: BCL2 apoptosis regulator; BH3: BCL2 homology region 3; CASP3: caspase 3; EV: extracellular vesicle; GABA: gamma aminobutyric acid; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GFP: green fluorescent protein; LIR: LC3-interacting region; MAP1LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; MYC: MYC proto-oncogene, bHLH transcription factor; PE: phosphatidylethanolamine; PS: phosphatidylserine; QKO: quadruple knockout; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel; SQSTM1: sequestosome 1.
Collapse
Affiliation(s)
- Emily McMann
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
28
|
Zhou J, Zhang H, Ma L, Chen Y, He Z, Xu B. Identification and validation of autophagy-related genes influenced by paris polyphylla in tongue cancer using network pharmacology. BMC Oral Health 2024; 24:1022. [PMID: 39215239 PMCID: PMC11365180 DOI: 10.1186/s12903-024-04784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Tongue squamous cell carcinoma (TSCC) represents the most prevalent form of head and neck squamous cell carcinomas, comprising approximately one-third of all oral cancers. Paris polyphylla(PP) exhibit promising anti-tumor properties, yet their underlying mechanisms remain elusive. This study offers novel insights into the molecular mechanisms underlying TSCC treatment with PP and establishes a theoretical basis for their clinical application. METHODS Employing transcriptomics and network pharmacology methodologies, we identified autophagy-related key genes associated with the effects of PP. These genes were subjected to KEGG and GO enrichment analyses to determine their related functions. In vitro, CAL-27 cells were treated with 10, 30, and 60 μg/ml of PP for 24 h to assess tumor cell proliferation, apoptosis, and autophagy-related markers. KEY FINDINGS Molecular docking of MAPK3 and PSEN1 with PP revealed stable hydrogen bond interactions, indicating the therapeutic potential of these saponins in TSCC through the autophagy pathway. In vitro experiments demonstrated significant inhibition of proliferative activity in tongue squamous carcinoma CAL-27 cells and promotion of tumor cell apoptosis by PP. Western blot analysis confirmed alterations in the expression of autophagy markers P62, LC3B, and Beclin1 following treatment, suggesting activation of the autophagy pathway. CONCLUSIONS Our results suggest that PP inhibits tumor cells through the autophagy pathway, in which MAPK3 and PSEN1 play a role as potential functional molecules.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, 650106, China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China
- Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, 245 Renmin East Road, Kunming, 650106, China
| | - Hongrong Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, 650106, China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China
| | - Lingzhi Ma
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, 650106, China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China
| | - Yanyan Chen
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China
| | - Zhongshun He
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, 650106, China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China
- Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, 245 Renmin East Road, Kunming, 650106, China
| | - Biao Xu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, 650106, China.
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China.
| |
Collapse
|
29
|
Rao Q, Guo M, Sun J, Yang B, Cao X, Xia J. Sulfiredoxin-1 promotes the growth of hepatocellular carcinoma by inhibiting TFEB-mediated autophagy and lysosome biogenesis. Exp Cell Res 2024; 441:114169. [PMID: 39029574 DOI: 10.1016/j.yexcr.2024.114169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Advanced hepatocellular carcinoma (HCC) patients have poor prognosis. As an endogenous antioxidant enzyme involved in a variety of bioprocesses, sulfiredoxin-1 (SRXN1) plays an irreplaceable role in promoting the development of tumors. However, the role and working mechanism of SRXN1 in HCC remain unclear. In this study, we confirmed that SRXN1 promoted the cell proliferation of HCC at genetic and pharmacological level, respectively. Transcriptome sequencing analysis revealed SRXN1 knockdown had a significant effect on the expression of lysosome biogenesis related genes. Further experiments validated that lysosome biogenesis and autophagic flux were enhanced after SRXN1 inhibition and reduced as SRXN1 overexpression. Mechanism study revealed that ROS accumulation induced TFEB nuclear translocation, followed by increased autophagy. Following this rationale, the combination of SRXN1 inhibitor and sorafenib demonstrated noticeable synergistic antitumor effect through the boost of ROS both in vivo and in vitro. Taken together, SRXN1 could be a potential therapeutic target for HCC therapy.
Collapse
Affiliation(s)
- Qianwen Rao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China; Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mengzhou Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jialei Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
30
|
Li N, Zuo R, He Y, Gong W, Wang Y, Chen L, Luo Y, Zhang C, Liu Z, Chen P, Guo H. PD-L1 induces autophagy and primary resistance to EGFR-TKIs in EGFR-mutant lung adenocarcinoma via the MAPK signaling pathway. Cell Death Dis 2024; 15:555. [PMID: 39090096 PMCID: PMC11294607 DOI: 10.1038/s41419-024-06945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Resistance to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is a significant cause of treatment failure and cancer recurrence in non-small cell lung cancer (NSCLC). Approximately 30% of patients with EGFR-activating mutations exhibit primary resistance to EGFR-TKIs. However, the potential mechanisms of primary resistance to EGFR-TKIs remain poorly understood. Recent studies have shown that increased expression of programmed death ligand-1 (PD-L1) is associated with EGFR-TKIs resistance. Therefore, the present study aimed to investigate the mechanism of PD-L1 in primary resistance to EGFR-TKIs in EGFR-mutant lung adenocarcinoma (LUAD) cells. We found that PD-L1 was associated with poor prognosis in patients with EGFR-mutant LUAD, while the combination of EGFR-TKIs with chemotherapy could improve its therapeutic efficacy. In vitro and in vivo experiments revealed that PD-L1 promoted the proliferation and autophagy and inhibited the apoptosis of LUAD cells. Mechanistic studies demonstrated that upregulation of PD-L1 was critical in inducing autophagy through the mitogen-activated protein kinase (MAPK) signaling pathway, which was beneficial for tumor progression and the development of gefitinib resistance. Furthermore, we found that gefitinib combined with pemetrexed could synergistically enhance antitumor efficacy in PD-L1-overexpression LUAD cells. Overall, our study demonstrated that PD-L1 contributed to primary resistance to EGFR-TKIs in EGFR-mutant LUAD cells, which may be mediated by inducing autophagy via the MAPK signaling pathway. These findings not only help improve the prognosis of patients with EGFR-mutant LUAD but also provide a reference for the research of other cancer types.
Collapse
Affiliation(s)
- Na Li
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Oncology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| | - Ran Zuo
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yuchao He
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Wenchen Gong
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yu Wang
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Liwei Chen
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yi Luo
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Cuicui Zhang
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Zhiyong Liu
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| | - Peng Chen
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Hua Guo
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| |
Collapse
|
31
|
Ren B, Li X, Zhang Z, Tai S, Yu S. Exosomes: a significant medium for regulating drug resistance through cargo delivery. Front Mol Biosci 2024; 11:1379822. [PMID: 39135913 PMCID: PMC11317298 DOI: 10.3389/fmolb.2024.1379822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/17/2024] [Indexed: 08/15/2024] Open
Abstract
Exosomes are small lipid nanovesicles with a diameter of 30-150 nm. They are present in all body fluids and are actively secreted by the majority of cells through the process of exocytosis. Exosomes play an essential role in intercellular communication and act as significant molecular carriers in regulating various physiological and pathological processes, such as the emergence of drug resistance in tumors. Tumor-associated exosomes transfer drug resistance to other tumor cells by releasing substances such as multidrug resistance proteins and miRNAs through exosomes. These substances change the cell phenotype, making it resistant to drugs. Tumor-associated exosomes also play a role in impacting drug resistance in other cells, like immune cells and stromal cells. Exosomes alter the behavior and function of these cells to help tumor cells evade immune surveillance and form a tumor niche. In addition, exosomes also export substances such as tumoricidal drugs and neutralizing antibody drugs to help tumor cells resist drug therapy. In this review, we summarize the mechanisms of exosomes in promoting drug resistance by delivering cargo in the context of the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Bixuan Ren
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqing Li
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihua Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng Tai
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
32
|
Bhuker S, Kaur A, Rajauria K, Tuli HS, Saini AK, Saini RV, Gupta M. Allicin: a promising modulator of apoptosis and survival signaling in cancer. Med Oncol 2024; 41:210. [PMID: 39060753 DOI: 10.1007/s12032-024-02459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
According to the World Health Organization, cancer is the foremost cause of mortality globally. Various phytochemicals from natural sources have been extensively studied for their anticancer properties. Allicin, a powerful organosulfur compound derived from garlic, exhibits anticancer, antioxidant, anti-inflammatory, antifungal, and antibacterial properties. This review aims to update and evaluate the chemistry, composition, mechanisms of action, and pharmacokinetics Allicin. Allicin has garnered significant attention for its potential role in modulating Fas-FasL, Bcl2-Bax, PI3K-Akt-mTOR, autophagy, and miRNA pathways. At the molecular level, allicin induces the release of cytochrome c from the mitochondria and enhances the activation of caspases-3, -8, and -9. This is accompanied by the simultaneous upregulation of Bax and Fas expression in tumor cells. Allicin can inhibit excessive autophagy by activating the PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways. Allicin-loaded nano-formulations efficiently induce apoptosis in cancer cells while minimizing toxicity to normal cells. Safety and clinical aspects are meticulously scrutinized, providing insights into the tolerability and adverse effects associated with allicin administration, along with an overview of current clinical trials evaluating its therapeutic potential. In conclusion, this review underscores the promising prospects of allicin as a dietary-derived medicinal compound for cancer therapy. It emphasizes the need for further research to elucidate its precise mechanisms of action, optimize delivery strategies, and validate its efficacy in clinical settings.
Collapse
Affiliation(s)
- Sunaina Bhuker
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Avneet Kaur
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Kanitha Rajauria
- SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Tamil Nadu, 603203, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Adesh K Saini
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
- Central Research Laboratory, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Reena V Saini
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India.
- Central Research Laboratory, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India.
- Central Research Laboratory and Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India.
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| |
Collapse
|
33
|
Hassan AMIA, Zhao Y, Chen X, He C. Blockage of Autophagy for Cancer Therapy: A Comprehensive Review. Int J Mol Sci 2024; 25:7459. [PMID: 39000565 PMCID: PMC11242824 DOI: 10.3390/ijms25137459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The incidence and mortality of cancer are increasing, making it a leading cause of death worldwide. Conventional treatments such as surgery, radiotherapy, and chemotherapy face significant limitations due to therapeutic resistance. Autophagy, a cellular self-degradation mechanism, plays a crucial role in cancer development, drug resistance, and treatment. This review investigates the potential of autophagy inhibition as a therapeutic strategy for cancer. A systematic search was conducted on Embase, PubMed, and Google Scholar databases from 1967 to 2024 to identify studies on autophagy inhibitors and their mechanisms in cancer therapy. The review includes original articles utilizing in vitro and in vivo experimental methods, literature reviews, and clinical trials. Key terms used were "Autophagy", "Inhibitors", "Molecular mechanism", "Cancer therapy", and "Clinical trials". Autophagy inhibitors such as chloroquine (CQ) and hydroxychloroquine (HCQ) have shown promise in preclinical studies by inhibiting lysosomal acidification and preventing autophagosome degradation. Other inhibitors like wortmannin and SAR405 target specific components of the autophagy pathway. Combining these inhibitors with chemotherapy has demonstrated enhanced efficacy, making cancer cells more susceptible to cytotoxic agents. Clinical trials involving CQ and HCQ have shown encouraging results, although further investigation is needed to optimize their use in cancer therapy. Autophagy exhibits a dual role in cancer, functioning as both a survival mechanism and a cell death pathway. Targeting autophagy presents a viable strategy for cancer therapy, particularly when integrated with existing treatments. However, the complexity of autophagy regulation and the potential side effects necessitate further research to develop precise and context-specific therapeutic approaches.
Collapse
Affiliation(s)
| | - Yuxin Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
- Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
- Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| |
Collapse
|
34
|
Guo S, Wang X, Wang Y, Bai J, Liu Y, Shao Z. The potential therapeutic targets of glutamine metabolism in head and neck squamous cell carcinoma. Biomed Pharmacother 2024; 176:116906. [PMID: 38876051 DOI: 10.1016/j.biopha.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
Targeting metabolic reprogramming may be an effective strategy to enhance cancer treatment efficacy. Glutamine serves as a vital nutrient for cancer cells. Inhibiting glutamine metabolism has shown promise in preventing tumor growth both in vivo and in vitro through various mechanisms. Therefore, this review collates recent scientific literature concerning the correlation between glutamine metabolism and cancer treatment. Novel treatment modalities based on amino acid transporters, metabolites, and glutaminase are discussed. Moreover, we demonstrate the relationship between glutamine metabolism and tumor proliferation, drug resistance, and the tumor immune microenvironment, offering new perspectives for the clinical treatment of head and neck squamous cell carcinoma, particularly for combined therapies. Identifying innovative approaches for enhancing the efficacy of glutamine-based metabolic therapy is crucial to improving HNSCC treatment.
Collapse
Affiliation(s)
- Shutian Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinmiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yifan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Liu
- Department of stomatology, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Huangshi 435000, China.
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Day Surgery Center, School and Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
35
|
Liu Y, Wang Y, Zhang J, Peng Q, Wang X, Xiao X, Shi K. Nanotherapeutics targeting autophagy regulation for improved cancer therapy. Acta Pharm Sin B 2024; 14:2447-2474. [PMID: 38828133 PMCID: PMC11143539 DOI: 10.1016/j.apsb.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 06/05/2024] Open
Abstract
The clinical efficacy of current cancer therapies falls short, and there is a pressing demand to integrate new targets with conventional therapies. Autophagy, a highly conserved self-degradation process, has received considerable attention as an emerging therapeutic target for cancer. With the rapid development of nanomedicine, nanomaterials have been widely utilized in cancer therapy due to their unrivaled delivery performance. Hence, considering the potential benefits of integrating autophagy and nanotechnology in cancer therapy, we outline the latest advances in autophagy-based nanotherapeutics. Based on a brief background related to autophagy and nanotherapeutics and their impact on tumor progression, the feasibility of autophagy-based nanotherapeutics for cancer treatment is demonstrated. Further, emerging nanotherapeutics developed to modulate autophagy are reviewed from the perspective of cell signaling pathways, including modulation of the mammalian target of rapamycin (mTOR) pathway, autophagy-related (ATG) and its complex expression, reactive oxygen species (ROS) and mitophagy, interference with autophagosome-lysosome fusion, and inhibition of hypoxia-mediated autophagy. In addition, combination therapies in which nano-autophagy modulation is combined with chemotherapy, phototherapy, and immunotherapy are also described. Finally, the prospects and challenges of autophagy-based nanotherapeutics for efficient cancer treatment are envisioned.
Collapse
Affiliation(s)
- Yunmeng Liu
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yaxin Wang
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Jincheng Zhang
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Qikai Peng
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Xingdong Wang
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Xiyue Xiao
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Kai Shi
- College of Pharmacy, Nankai University, Tianjin 300350, China
| |
Collapse
|
36
|
Wen W, Ertas YN, Erdem A, Zhang Y. Dysregulation of autophagy in gastric carcinoma: Pathways to tumor progression and resistance to therapy. Cancer Lett 2024; 591:216857. [PMID: 38583648 DOI: 10.1016/j.canlet.2024.216857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The considerable death rates and lack of symptoms in early stages of gastric cancer (GC) make it a major health problem worldwide. One of the most prominent risk factors is infection with Helicobacter pylori. Many biological processes, including those linked with cell death, are disrupted in GC. The cellular "self-digestion" mechanism necessary for regular balance maintenance, autophagy, is at the center of this disturbance. Misregulation of autophagy, however, plays a role in the development of GC. In this review, we will examine how autophagy interacts with other cell death processes, such as apoptosis and ferroptosis, and how it affects the progression of GC. In addition to wonderful its role in the epithelial-mesenchymal transition, it is engaged in GC metastasis. The role of autophagy in GC in promoting drug resistance stands out. There is growing interest in modulating autophagy for GC treatment, with research focusing on natural compounds, small-molecule inhibitors, and nanoparticles. These approaches could lead to breakthroughs in GC therapy, offering new hope in the fight against this challenging disease.
Collapse
Affiliation(s)
- Wen Wen
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| | - Ahmet Erdem
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, College of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA; Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41001 Turkey.
| | - Yao Zhang
- Department of Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
37
|
Chen P, Zhang X, Fang Q, Zhao Z, Lin C, Zhou Y, Liu F, Zhu C, Wu A. Betulinic acid induces apoptosis of HeLa cells via ROS-dependent ER stress and autophagy in vitro and in vivo. J Nat Med 2024; 78:677-692. [PMID: 38403724 DOI: 10.1007/s11418-024-01782-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
Betulinic acid (BA), a naturally occurring lupane-type triterpenoid, possesses a wide range of potential activities against different types of cancer. However, the molecular mechanisms involved in anti-cervical cancer about BA were rarely investigated. Herein, the role of BA in cervical cancer suppression by ROS-mediated endoplasmic reticulum stress (ERS) and autophagy was deeply discussed. The findings revealed that BA activated Keap1/Nrf2 pathway and triggered mitochondria-dependent apoptosis due to ROS production. Furthermore, BA increased the intracellular Ca2+ levels, inhibited the expression of Beclin1 and promoted the expression of GRP78, LC3-II, and p62 associated with ERS and autophagy. Besides, BA initiated the formation of autophagosomes and inhibited autophagic flux by the co-administration of BA with 3-methyladenine (3-MA) and chloroquine (CQ), respectively. The in vivo experiment manifested that hydroxychloroquine (HCQ) enhanced the apoptosis induced by BA. For the first time, we demonstrated that BA could initiate early autophagy, inhibit autophagy flux, and induce protective autophagy in HeLa cells. Thus, BA could be a potential chemotherapy drug for cervical cancer, and inhibition of autophagy could enhance the anti-tumor effect of BA. However, the interactions of signaling factors between ERS-mediated and autophagy-mediated apoptosis deserve further attention.
Collapse
Affiliation(s)
- Ping Chen
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Xueer Zhang
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Qiaomiao Fang
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yuan Zhou
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Fangle Liu
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Aizhi Wu
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
38
|
Wang XY, Wang YJ, Guo BW, Hou ZL, Zhang GX, Han Z, Liu Q, Yao GD, Song SJ. 13-Oxyingenol-dodecanoate inhibits the growth of non-small cell lung cancer cells by targeting ULK1. Bioorg Chem 2024; 147:107367. [PMID: 38626492 DOI: 10.1016/j.bioorg.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for 80-85% of all lung cancers. Euphorbia kansui yielded 13-oxyingenol-dodecanoate (13OD), an ingenane-type diterpenoid, which had a strong cytotoxic effect on NSCLC cells. The underlying mechanism and potential target, however, remained unknown. The study found that 13OD effectively inhibited the cell proliferation and colony formation of NSCLC cells (A549 and H460 cells), with less toxicity in normal human lung epithelial BEAS-2B cells. Moreover, 13OD can cause mitochondrial dysfunction, and apoptosis in NSCLC cells. Mechanistically, the transcriptomics results showed that differential genes were mainly enriched in the mTOR and AMPK signaling pathways, which are closely related to cellular autophagy, the related indicators were subsequently validated. Additionally, bafilomycin A1 (Baf A1), an autophagy inhibitor, reversed the mitochondrial damage caused by 13OD. Furthermore, the Omics and Text-based Target Enrichment and Ranking (OTTER) method predicted ULK1 as a potential target of 13OD against NSCLC cells. This hypothesis was further confirmed using molecular docking, the cellular thermal shift assay (CETSA), and Western blot analysis. Remarkably, ULK1 siRNA inhibited 13OD's toxic activity in NSCLC cells. In line with these findings, 13OD was potent and non-toxic in the tumor xenograft model. Our findings suggested a possible mechanism for 13OD's role as a tumor suppressor and laid the groundwork for identifying targets for ingenane-type diterpenoids.
Collapse
Affiliation(s)
- Xin-Ye Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yu-Jue Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Bo-Wen Guo
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zi-Lin Hou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Gu-Xue Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zheng Han
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
39
|
Dowaidar M. Guidelines for the role of autophagy in drug delivery vectors uptake pathways. Heliyon 2024; 10:e30238. [PMID: 38707383 PMCID: PMC11066435 DOI: 10.1016/j.heliyon.2024.e30238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
The process of autophagy refers to the intracellular absorption of cytoplasm (such as proteins, nucleic acids, tiny molecules, complete organelles, and so on) into the lysosome, followed by the breakdown of that cytoplasm. The majority of cellular proteins are degraded by a process called autophagy, which is both a naturally occurring activity and one that may be induced by cellular stress. Autophagy is a system that can save cells' integrity in stressful situations by restoring metabolic basics and getting rid of subcellular junk. This happens as a component of an endurance response. This mechanism may have an effect on disease, in addition to its contribution to the homeostasis of individual cells and tissues as well as the control of development in higher species. The main aim of this study is to discuss the guidelines for the role of autophagy in drug delivery vector uptake pathways. In this paper, we discuss the meaning and concept of autophagy, the mechanism of autophagy, the role of autophagy in drug delivery vectors, autophagy-modulating drugs, nanostructures for delivery systems of autophagy modulators, etc. Later in this paper, we talk about how to deliver chemotherapeutics, siRNA, and autophagy inducers and inhibitors. We also talk about how hard it is to make a drug delivery system that takes nanocarriers' roles as autophagy modulators into account.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
40
|
Ahmed KR, Rahman MM, Islam MN, Fahim MMH, Rahman MA, Kim B. Antioxidants activities of phytochemicals perspective modulation of autophagy and apoptosis to treating cancer. Biomed Pharmacother 2024; 174:116497. [PMID: 38552443 DOI: 10.1016/j.biopha.2024.116497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
The study of chemicals extracted from natural sources should be encouraged due to the significant number of cancer deaths each year and the financial burden imposed by this disease on society. The causes of almost all cancers involve a combination of lifestyle, environmental factors, and genetic and inherited factors. Modern medicine researchers are increasingly interested in traditional phytochemicals as they hold potential for new bioactive compounds with medical applications. Recent publications have provided evidence of the antitumor properties of phytochemicals, a key component of traditional Chinese medicine, thereby opening new avenues for their use in modern medicine. Various studies have demonstrated a strong correlation between apoptosis and autophagy, two critical mechanisms involved in cancer formation and regulation, indicating diverse forms of crosstalk between them. Phytochemicals have the ability to activate both pro-apoptotic and pro-autophagic pathways. Therefore, understanding how phytochemicals influence the relationship between apoptosis and autophagy is crucial for developing a new cancer treatment strategy that targets these molecular mechanisms. This review aims to explore natural phytochemicals that have demonstrated anticancer effects, focusing on their role in regulating the crosstalk between apoptosis and autophagy, which contributes to uncontrolled tumor cell growth. Additionally, the review highlights the limitations and challenges of current research methodologies while suggesting potential avenues for future research in this field.
Collapse
Affiliation(s)
- Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, South Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Md Masudur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Md Nahidul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Md Maharub Hossain Fahim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, South Korea
| | - Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, South Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
41
|
Liu R, Zhang B, Zou S, Cui L, Lin L, Li L. Ginsenoside Rg1 Induces Autophagy in Colorectal Cancer through Inhibition of the Akt/mTOR/p70S6K Pathway. J Microbiol Biotechnol 2024; 34:774-782. [PMID: 38668684 DOI: 10.4014/jmb.2310.10043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 04/30/2024]
Abstract
This study aimed to elucidate the anti-colon cancer mechanism of ginsenoside Rg1 in vitro and in vivo. Cell viability rate was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tetrazolium assay. The inhibitory effect of ginsenoside Rg1 against CT26 cell proliferation gradually increased with increasing concentration. The in vivo experiments also demonstrated an antitumor effect. The monodansylcadaverine (MDC), transmission electron microscopy (TEM), and expression of autophagy marker proteins confirmed that ginsenoside Rg1 induced autophagy in vitro. Ginsenoside Rg1 induced autophagy death of CT26 cells, but this effect could be diminished by autophagy inhibitor (3-methyladenine, 3-MA). Additionally, in a xenograft model, immunohistochemical analysis of tumor tissues showed that the LC3 and Beclin-1 proteins were highly expressed in the tumors from the ginsenoside Rg1-treated nude mice, confirming that ginsenoside Rg1 also induced autophagy in vivo. Furthermoer, both in vivo and in vitro, the protein expressions of p-Akt, p-mTOR, and p-p70S6K were inhibited by ginsenoside Rg1, which was verified by Akt inhibitors. These results indicated that the mechanism of ginsenoside Rg1 against colon cancer was associated with autophagy through inhibition of the Akt/mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Ruiqi Liu
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, Jiangsu Province, P.R. China
| | - Bin Zhang
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, 211200 Nanjing, Jiangsu Province, P.R. China
| | - Shuting Zou
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, Jiangsu Province, P.R. China
| | - Li Cui
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, Jiangsu Province, P.R. China
| | - Lin Lin
- Gastroenterology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, 518000 Shenzhen, Guangdong Province, P.R. China
| | - Lingchang Li
- Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, Jiangsu Province, P.R. China
| |
Collapse
|
42
|
Florance I, Cordani M, Pashootan P, Moosavi MA, Zarrabi A, Chandrasekaran N. The impact of nanomaterials on autophagy across health and disease conditions. Cell Mol Life Sci 2024; 81:184. [PMID: 38630152 PMCID: PMC11024050 DOI: 10.1007/s00018-024-05199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
Autophagy, a catabolic process integral to cellular homeostasis, is constitutively active under physiological and stress conditions. The role of autophagy as a cellular defense response becomes particularly evident upon exposure to nanomaterials (NMs), especially environmental nanoparticles (NPs) and nanoplastics (nPs). This has positioned autophagy modulation at the forefront of nanotechnology-based therapeutic interventions. While NMs can exploit autophagy to enhance therapeutic outcomes, they can also trigger it as a pro-survival response against NP-induced toxicity. Conversely, a heightened autophagy response may also lead to regulated cell death (RCD), in particular autophagic cell death, upon NP exposure. Thus, the relationship between NMs and autophagy exhibits a dual nature with therapeutic and environmental interventions. Recognizing and decoding these intricate patterns are essential for pioneering next-generation autophagy-regulating NMs. This review delves into the present-day therapeutic potential of autophagy-modulating NMs, shedding light on their status in clinical trials, intervention of autophagy in the therapeutic applications of NMs, discusses the potency of autophagy for application as early indicator of NM toxicity.
Collapse
Affiliation(s)
- Ida Florance
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Parya Pashootan
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
43
|
Chen T, Zheng L, Luo P, Zou J, Li W, Chen Q, Zou J, Qian B. Crosstalk between m6A modification and autophagy in cancer. Cell Biosci 2024; 14:44. [PMID: 38576024 PMCID: PMC10996158 DOI: 10.1186/s13578-024-01225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/24/2024] [Indexed: 04/06/2024] Open
Abstract
Autophagy is a cellular self-degradation process that plays a crucial role in maintaining metabolic functions in cells and organisms. Dysfunctional autophagy has been linked to various diseases, including cancer. In cancer, dysregulated autophagy is closely associated with the development of cancer and drug resistance, and it can have both oncogenic and oncostatic effects. Research evidence supports the connection between m6A modification and human diseases, particularly cancer. Abnormalities in m6A modification are involved in the initiation and progression of cancer by regulating the expression of oncogenes and oncostatic genes. There is an interaction between m6A modification and autophagy, both of which play significant roles in cancer. However, the molecular mechanisms underlying this relationship are still unclear. m6A modification can either directly inhibit autophagy or promote its initiation, but the complex relationship between m6A modification, autophagy, and cancer remains poorly understood. Therefore, this paper aims to review the dual role of m6A and autophagy in cancer, explore the impact of m6A modification on autophagy regulation, and discuss the crucial role of the m6A modification-autophagy axis in cancer progression and treatment resistance.
Collapse
Affiliation(s)
- Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China.
| |
Collapse
|
44
|
Chen RX, Xu SD, Deng MH, Hao SH, Chen JW, Ma XD, Zhuang WT, Cao JH, Lv YR, Lin JL, Li SY, Qiao GB, Xie D, Wang FW. Mex-3 RNA binding family member A (MEX3A)/circMPP6 complex promotes colorectal cancer progression by inhibiting autophagy. Signal Transduct Target Ther 2024; 9:80. [PMID: 38565536 PMCID: PMC10987644 DOI: 10.1038/s41392-024-01787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 01/30/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
RNA-binding proteins (RBPs)-RNA networks have contributed to cancer development. Circular RNAs (circRNAs) are considered as protein recruiters; nevertheless, the patterns of circRNA-protein interactions in colorectal cancer (CRC) are still lacking. Processing bodies (PBs) formed through liquid-liquid phase separation (LLPS) are membrane-less organelles (MLOs) consisting of RBPs and RNA. Previous evidence suggests a connection between PBs dynamics and cancer progression. Despite the increasingly acknowledged crucial role of RBPs and RNA in the accumulation and maintenance of MLOs, there remains a lack of specific research on the interactions between PBs-related RBPs and circRNAs in CRC. Herein, we identify that MEX-3 RNA binding family member A (MEX3A), frequently upregulated in CRC tissues, predicts poorer patient survival. Elevated MEX3A accelerates malignance and inhibits autophagy of CRC cells. Importantly, MEX3A undergoes intrinsically disordered regions (IDRs)-dependent LLPS in the cytoplasm. Specifically, circMPP6 acts as a scaffold to facilitate the interaction between MEX3A and PBs proteins. The MEX3A/circMPP6 complex modulates PBs dynamic and promotes UPF-mediated phosphodiesterase 5A (PDE5A) mRNA degradation, consequently leading to the aggressive properties of CRC cells. Clinically, CRC patients exhibiting high MEX3A expression and low PDE5A expression have the poorest overall survival. Our findings reveal a collaboration between MEX3A and circMPP6 in the regulation of mRNA decay through triggering the PBs aggregation, which provides prognostic markers and/or therapeutic targets for CRC.
Collapse
Affiliation(s)
- Ri-Xin Chen
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shui-Dan Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Min-Hua Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shi-Hui Hao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jie-Wei Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiao-Dan Ma
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wei-Tao Zhuang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jing-Hua Cao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yong-Rui Lv
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jin-Long Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Si-Yu Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Gui-Bin Qiao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Feng-Wei Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
45
|
Pagani A, Duscher D, Geis S, Klein S, Knoedler L, Panayi AC, Oliinyk D, Felthaus O, Prantl L. The Triple Adipose-Derived Stem Cell Exosome Technology as a Potential Tool for Treating Triple-Negative Breast Cancer. Cells 2024; 13:614. [PMID: 38607053 PMCID: PMC11011929 DOI: 10.3390/cells13070614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Extracellular vesicles are pivotal mediators in intercellular communication, facilitating the exchange of biological information among healthy, pathological and tumor cells. Between the diverse subtypes of extracellular vesicles, exosomes have unique properties and clinical and therapeutical applications. Breast cancer ranks as one of the most prevalent malignancies across the globe. Both the tumor core and its surrounding microenvironment engage in a complex, orchestrated interaction that facilitates cancer's growth and spread. METHODS The most significant PubMed literature about extracellular vesicles and Adipose-Derived Stem Cell Exosomes and breast cancer was selected in order to report their biological properties and potential applications, in particular in treating triple-negative breast cancer. RESULTS Adipose-Derived Stem Cell Exosomes represent a potential tool in targeting triple-negative breast cancer cells at three main levels: the tumor core, the tumor microenvironment and surrounding tissues, including metastases. CONCLUSIONS The possibility of impacting triple-negative breast cancer cells with engineered Adipose-Derived Stem Cell Exosomes is real. The opportunity to translate our current in vitro analyses into a future in vivo scenario is even more challenging.
Collapse
Affiliation(s)
- Andrea Pagani
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany (S.K.); (O.F.); (L.P.)
| | - Dominik Duscher
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany (S.K.); (O.F.); (L.P.)
| | - Sebastian Geis
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany (S.K.); (O.F.); (L.P.)
| | - Silvan Klein
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany (S.K.); (O.F.); (L.P.)
| | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany (S.K.); (O.F.); (L.P.)
| | - Adriana C. Panayi
- Department of Plastic, Hand and Reconstructive Surgery, BG Klinik Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Straße 13, 67071 Ludwigshafen, Germany
| | - Dmytro Oliinyk
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany (S.K.); (O.F.); (L.P.)
| | - Oliver Felthaus
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany (S.K.); (O.F.); (L.P.)
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany (S.K.); (O.F.); (L.P.)
| |
Collapse
|
46
|
Lopes RM, Souza ACS, Otręba M, Rzepecka-Stojko A, Tersariol ILS, Rodrigues T. Targeting autophagy by antipsychotic phenothiazines: potential drug repurposing for cancer therapy. Biochem Pharmacol 2024; 222:116075. [PMID: 38395266 DOI: 10.1016/j.bcp.2024.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/14/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Cancer is recognized as the major cause of death worldwide and the most challenging public health issues. Tumor cells exhibit molecular adaptations and metabolic reprograming to sustain their high proliferative rate and autophagy plays a pivotal role to supply the high demand for metabolic substrates and for recycling cellular components, which has attracted the attention of the researchers. The modulation of the autophagic process sensitizes tumor cells to chemotherapy-induced cell death and reverts drug resistance. In this regard, many in vitro and in vivo studies having shown the anticancer activity of phenothiazine (PTZ) derivatives due to their potent cytotoxicity in tumor cells. Interestingly, PTZ have been used as antiemetics in antitumor chemotherapy-induced vomiting, maybe exerting a combined antitumor effect. Among the mechanisms of cytotoxicity, the modulation of autophagy by these drugs has been highlighted. Therefore, the use of PTZ derivatives can be considered as a repurposing strategy in antitumor chemotherapy. Here, we provided an overview of the effects of antipsychotic PTZ on autophagy in tumor cells, evidencing the molecular targets and discussing the underlying mechanisms. The modulation of autophagy by PTZ in tumor cells have been consistently related to their cytotoxic action. These effects depend on the derivative, their concentration, and also the type of cancer. Most data have shown the impairment of autophagic flux by PTZ, probably due to the blockade of lysosome-autophagosome fusion, but some studies have also suggested the induction of autophagy. These data highlight the therapeutic potential of targeting autophagy by PTZ in cancer chemotherapy.
Collapse
Affiliation(s)
- Rayssa M Lopes
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, SP, Brazil.
| | - Ana Carolina S Souza
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, SP, Brazil.
| | - Michał Otręba
- Department of Drug and Cosmetics Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Poland.
| | - Anna Rzepecka-Stojko
- Department of Drug and Cosmetics Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Poland.
| | - Ivarne L S Tersariol
- Departament of Molecular Biology, Federal University of São Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - Tiago Rodrigues
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, SP, Brazil.
| |
Collapse
|
47
|
Li L, Fu S, Wang J, Lu J, Tao Y, Zhao L, Fu B, Lu L, Xiang C, Sun X, Liu S, Wang D, Wang Z. SRT1720 inhibits bladder cancer cell progression by impairing autophagic flux. Biochem Pharmacol 2024; 222:116111. [PMID: 38458329 DOI: 10.1016/j.bcp.2024.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Bladder cancer (BC) is the most common cancer of the urinary tract, with poor survival, high recurrence rates, and lacking of targeted drugs. In this study, we constructed a library to screen compounds inhibiting bladder cancer cells growth. Among them, SRT1720 was identified to inhibit bladder cancer cell proliferation in vitro and in vivo. SRT1720 treatment also suppressed bladder cancer cells migration, invasion and induced apoptosis. Mechanism studies shown that SRT1720 promoted autophagosomes accumulation by inducing early-stage autophagy but disturbed the late-stage of autophagy by blocking fusion of autophagosomes and lysosomes. SRT1720 appears to induce autophagy related proteins expression and alter autophagy-related proteins acetylation to impede the autophagy flux. LAMP2, an important lysosomal associated membrane protein, may mediate SRT1720-inhibited autophagy flux as SRT1720 treatment significantly deacetylated LAMP2 which may influence its activity. Taken together, our results demonstrated that SRT1720 mediated apoptosis and autophagy flux inhibition may be a novel therapeutic strategy for bladder cancer treatment.
Collapse
Affiliation(s)
- Lanlan Li
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Shengjun Fu
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Jianliang Wang
- Department of Pharmacy, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730035, Gansu, China
| | - Jianzhong Lu
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Yan Tao
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Liangtao Zhao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China
| | - Beitang Fu
- The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi 830000, China
| | - Lanpeng Lu
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Caifei Xiang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xince Sun
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Shanhui Liu
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Zhiping Wang
- Institute of Urology, Key Laboratory of Urological Disease in Gansu Province, Clinical Research Center for Urology in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, Gansu, China.
| |
Collapse
|
48
|
Biswas U, Roy R, Ghosh S, Chakrabarti G. The interplay between autophagy and apoptosis: its implication in lung cancer and therapeutics. Cancer Lett 2024; 585:216662. [PMID: 38309614 DOI: 10.1016/j.canlet.2024.216662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Maintaining cellular homeostasis relies on the interplay between apoptosis and autophagy, and disruption in either of these processes can contribute to the development of cancer. Autophagy can hinder the apoptotic process, and when autophagy is inhibited in such instances, it can enhance the rate of apoptosis. However, evidence suggests that excessive autophagy can also lead to apoptotic cell death. Also, excess autophagy can cause excessive digestion of cellular organelles, causing autophagic cell death. Targeting autophagy in non-small cell lung cancer (NSCLC), the most common form of lung cancer, can be very tricky due to the dual nature of autophagy. According to genetic analysis, various mutations in p53 and EGFR, G:C to A:T transversions seem responsible for the development of lung cancer in smokers and non-smokers. These events trigger cytoprotective autophagy or induce apoptotic cell death through different but interconnected signalling pathways. Lung cancer being the leading cause of death worldwide, calls for more attention to disease prognosis and new therapeutics in the market. However, molecules responsible for autophagy to apoptosis transition are yet to be studied elaborately. Also, the role of effector caspases during this shift needs to be elucidated in future. To comprehend how therapeutics operate through the modulation of autophagy and apoptosis and to target such pathways, it is crucial to emphasize these intricate connections. Many therapeutics discussed in this review targeting both apoptosis and autophagy have shown promising results in vitro and in vivo, however, few have crossed the hurdles of clinical trial. Nevertheless, the quest for safer and better efficacious agents is still alive, with the sole aim to develop novel cancer chemotherapeutic(s).
Collapse
Affiliation(s)
- Urmita Biswas
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, India
| | - Ranita Roy
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, India
| | - Swarnasree Ghosh
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, India
| | - Gopal Chakrabarti
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, India.
| |
Collapse
|
49
|
Shalhoub H, Gonzalez P, Dos Santos A, Guillermet-Guibert J, Moniaux N, Dupont N, Faivre J. Simultaneous activation and blockade of autophagy to fight hepatocellular carcinoma. AUTOPHAGY REPORTS 2024; 3:2326241. [PMID: 40395533 PMCID: PMC11864649 DOI: 10.1080/27694127.2024.2326241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/02/2024] [Accepted: 02/27/2024] [Indexed: 05/22/2025]
Abstract
Autophagy is considered a target for cancer treatment, although few compounds manipulating this process have been added to the anticancer arsenal in humans. Pharmacological manipulation of autophagy has therefore been considered in the treatment and chemosensitization of hepatocellular carcinoma (HCC), a heterogeneous malignancy that remains difficult to treat (limited impact of genomic discoveries for the implementation of personalized precision medicine). We analyzed the autophagy marker proteins p62 and LC3 in paired tumor and adjacent cirrhotic non-tumor tissues of human HCC. We show strong variability in p62 and LC3-II levels between tumor parts of different HCC patients and between tumor and non-tumor HCC in the same patient, suggesting heterogeneity in autophagy flux. This diversity in flux led us to consider a non-personalized method of autophagy targeting, combining simultaneous activation and blockade of autophagy, which could, in theory, benefit a substantial number of HCC patients, irrespective of tumor autophagic flux. We show that the combination of sodium butyrate (NaB, autophagy inducer) and chloroquine (CQ, autophagy blocker) has a marked and synergistic cytotoxic effect in vitro on all human liver cancer cell lines studied, compared with the cellular effect of each product separately, and with no deleterious effect on normal hepatocytes in culture. Cancer cell death was associated with accumulation of autophagosomes, induction of lysosome membrane permeabilization and increased oxidative stress. Our results suggest that simultaneous activation and blockade of autophagy may be a valuable approach against HCC, and that microbiota-derived products improve the sensitivity of HCC cells to antitumor agents. Abbreviations AV: annexin V; CI: combination index; CTSB: Cathepsin B; CTSD: Cathepsin D; CTSF: Cathepsin F; CQ: chloroquine; DEN: N-diethylnitrosamine; DMEM: Dulbecco's modified eagle medium; FBS: fetal bovine serum; FSC: forward scatter; GNS: N-acetylglucosamine-6-sulfatase; HCC: hepatocellular carcinoma; HDACi: histone deacetylase inhibitor; HCQ: hydroxychloroquine; LMP: lysosomal membrane permeabilization; LAMP1: lysosome-associated membrane protein; LIPA: Lysosomal acid lipase; LSR: Lysosomal staining cells; MAP1LC3A: microtubule associated protein 1 light chain 3 alpha; NaB: sodium butyrate; NASH: non-alcoholic steatohepatitis; NRF2: nuclear factor erythroid 2-related factor 2; PI: propidium iodide; PMSF: phenylmethanesulfonyl fluoride; ROS: reactive oxygen species; SCARB2: Scavenger receptor class B member 2; SQSTM1/p62: sequestosome 1; SMPD1: Sphingomyelin phosphodiesterase 1; SSC: side scatter; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Hala Shalhoub
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Patrick Gonzalez
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Julie Guillermet-Guibert
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm U1037, CNRS, Université Toulouse III, Toulouse, France
| | - Nicolas Moniaux
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nicolas Dupont
- Institut Necker Enfants-Malades (INEM), INSERM U1151/CNRS UMR 8253, Université de Paris, Paris, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Gif-sur-Yvette, France
- Assistance Publique-Hôpitaux de Paris (AP-HP). Université Paris Saclay, Medical-University. Paul-Brousse Hospital, Villejuif, France
| |
Collapse
|
50
|
Núñez FJ, Banerjee K, Mujeeb AA, Mauser A, Tronrud CE, Zhu Z, Taher A, Kadiyala P, Carney SV, Garcia-Fabiani MB, Comba A, Alghamri MS, McClellan BL, Faisal SM, Nwosu ZC, Hong HS, Qin T, Sartor MA, Ljungman M, Cheng SY, Appelman HD, Lowenstein PR, Lahann J, Lyssiotis CA, Castro MG. Epigenetic Reprogramming of Autophagy Drives Mutant IDH1 Glioma Progression and Response to Radiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584091. [PMID: 38559270 PMCID: PMC10979892 DOI: 10.1101/2024.03.08.584091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mutant isocitrate dehydrogenase 1 (mIDH1; IDH1 R132H ) exhibits a gain of function mutation enabling 2-hydroxyglutarate (2HG) production. 2HG inhibits DNA and histone demethylases, inducing epigenetic reprogramming and corresponding changes to the transcriptome. We previously demonstrated 2HG-mediated epigenetic reprogramming enhances DNA-damage response and confers radioresistance in mIDH1 gliomas harboring p53 and ATRX loss of function mutations. In this study, RNA-seq and ChIP-seq data revealed human and mouse mIDH1 glioma neurospheres have downregulated gene ontologies related to mitochondrial metabolism and upregulated autophagy. Further analysis revealed that the decreased mitochondrial metabolism was paralleled by a decrease in glycolysis, rendering autophagy as a source of energy in mIDH1 glioma cells. Analysis of autophagy pathways showed that mIDH1 glioma cells exhibited increased expression of pULK1-S555 and enhanced LC3 I/II conversion, indicating augmented autophagy activity. This dependence is reflected by increased sensitivity of mIDH1 glioma cells to autophagy inhibition. Blocking autophagy selectively impairs the growth of cultured mIDH1 glioma cells but not wild-type IDH1 (wtIDH1) glioma cells. Targeting autophagy by systemic administration of synthetic protein nanoparticles packaged with siRNA targeting Atg7 (SPNP-siRNA-Atg7) sensitized mIDH1 glioma cells to radiation-induced cell death, resulting in tumor regression, long-term survival, and immunological memory, when used in combination with IR. Our results indicate autophagy as a critical pathway for survival and maintenance of mIDH1 glioma cells, a strategy that has significant potential for future clinical translation. One Sentence Summary The inhibition of autophagy sensitizes mIDH1 glioma cells to radiation, thus creating a promising therapeutic strategy for mIDH1 glioma patients. Graphical abstract Our genetically engineered mIDH1 mouse glioma model harbors IDH1 R132H in the context of ATRX and TP53 knockdown. The production of 2-HG elicited an epigenetic reprogramming associated with a disruption in mitochondrial activity and an enhancement of autophagy in mIDH1 glioma cells. Autophagy is a mechanism involved in cell homeostasis related with cell survival under energetic stress and DNA damage protection. Autophagy has been associated with radio resistance. The inhibition of autophagy thus radio sensitizes mIDH1 glioma cells and enhances survival of mIDH1 glioma-bearing mice, representing a novel therapeutic target for this glioma subtype with potential applicability in combined clinical strategies.
Collapse
|