1
|
Tolue Ghasaban F, Ghanei M, Mahmoudian RA, Taghehchian N, Abbaszadegan MR, Moghbeli M. MicroRNAs as the critical regulators of epithelial mesenchymal transition in pancreatic tumor cells. Heliyon 2024; 10:e30599. [PMID: 38726188 PMCID: PMC11079401 DOI: 10.1016/j.heliyon.2024.e30599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Pancreatic cancer (PC), as one of the main endocrine and digestive systems malignancies has the highest cancer related mortality in the world. Lack of the evident clinical symptoms and appropriate diagnostic markers in the early stages of tumor progression are the main reasons of the high mortality rate among PC patients. Therefore, it is necessary to investigate the molecular pathways involved in the PC progression, in order to introduce novel early diagnostic methods. Epithelial mesenchymal transition (EMT) is a critical cellular process associated with pancreatic tumor cells invasion and distant metastasis. MicroRNAs (miRNAs) are also important regulators of EMT process. In the present review, we discussed the role of miRNAs in regulation of EMT process during PC progression. It has been reported that the miRNAs mainly regulate the EMT process in pancreatic tumor cells through the regulation of EMT-specific transcription factors and several signaling pathways such as WNT, NOTCH, TGF-β, JAK/STAT, and PI3K/AKT. Considering the high stability of miRNAs in body fluids and their role in regulation of EMT process, they can be introduced as the non-invasive diagnostic markers in the early stages of malignant pancreatic tumors. This review paves the way to introduce a non-invasive EMT based panel marker for the early tumor detection among PC patients.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Wang J, Yu Z, Ma H, Zhang G. Suppression of miR-661 inhibits the metastasis of hepatocellular carcinoma. Asian J Surg 2024; 47:2491-2493. [PMID: 38281832 DOI: 10.1016/j.asjsur.2024.01.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Affiliation(s)
- Jie Wang
- Laboratory of Cytobiology & Molecular Biology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang Province, China
| | - Ze Yu
- Laboratory of Cytobiology & Molecular Biology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang Province, China; Department of General Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang Province, China
| | - Haijie Ma
- Laboratory of Cytobiology & Molecular Biology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang Province, China.
| | - Guoqiang Zhang
- Department of General Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang Province, China.
| |
Collapse
|
3
|
Chakraborty S, Banerjee S. Understanding crosstalk of organ tropism, tumor microenvironment and noncoding RNAs in breast cancer metastasis. Mol Biol Rep 2023; 50:9601-9623. [PMID: 37792172 DOI: 10.1007/s11033-023-08852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
Cancer metastasis is one of the major clinical challenges worldwide due to limited existing effective treatments. Metastasis roots from the host organ of origin and gradually migrates to different regional and distant organs. In different breast cancer subtypes, different organs like bones, liver, lungs and brain are targeted by the metastatic tumor cells. Cancer renders mortality to their respective metastasizing sites like bones, brain, liver, and lungs. Metastatic breast cancers are best treated and managed if detected at an early stage. Metastasis is regulated by various molecular activators and suppressors. The conventional theory of 'seed and soil' states that metastatic tumor cells move to tumor microenvironment that has favorable conditions like blood flow for them to grow just like seeds grows when planted in fertile land. Additionally, different coding as well as non-coding RNAs play a very significant role in the process of metastasis by modulating their expression levels leading to a crosstalk of various tumorigenic cascades. Treatments for metastasis is also very critical in controlling this lethal process. Detecting breast cancer metastasis at an early stage is crucial for managing and predicting metastatic progression. In this review, we have compiled several factors that can be targeted to manage the onset and gradual stages of breast cancer metastasis.
Collapse
Affiliation(s)
- Sohini Chakraborty
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Saha S, Pradhan N, B N, Mahadevappa R, Minocha S, Kumar S. Cancer plasticity: Investigating the causes for this agility. Semin Cancer Biol 2023; 88:138-156. [PMID: 36584960 DOI: 10.1016/j.semcancer.2022.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Cancer is not a hard-wired phenomenon but an evolutionary disease. From the onset of carcinogenesis, cancer cells continuously adapt and evolve to satiate their ever-growing proliferation demands. This results in the formation of multiple subtypes of cancer cells with different phenotypes, cellular compositions, and consequently displaying varying degrees of tumorigenic identity and function. This phenomenon is referred to as cancer plasticity, during which the cancer cells exist in a plethora of cellular states having distinct phenotypes. With the advent of modern technologies equipped with enhanced resolution and depth, for example, single-cell RNA-sequencing and advanced computational tools, unbiased cancer profiling at a single-cell resolution are leading the way in understanding cancer cell rewiring both spatially and temporally. In this review, the processes and mechanisms that give rise to cancer plasticity include both intrinsic genetic factors such as epigenetic changes, differential expression due to changes in DNA, RNA, or protein content within the cancer cell, as well as extrinsic environmental factors such as tissue perfusion, extracellular milieu are detailed and their influence on key cancer plasticity hallmarks such as epithelial-mesenchymal transition (EMT) and cancer cell stemness (CSCs) are discussed. Due to therapy evasion and drug resistance, tumor heterogeneity caused by cancer plasticity has major therapeutic ramifications. Hence, it is crucial to comprehend all the cellular and molecular mechanisms that control cellular plasticity. How this process evades therapy, and the therapeutic avenue of targeting cancer plasticity must be diligently investigated.
Collapse
Affiliation(s)
- Shubhraneel Saha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nikita Pradhan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neha B
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ravikiran Mahadevappa
- Department of Biotechnology, School of Science, Gandhi Institute of Technology and Management, Deemed to be University, Bengaluru, Karnataka 562163, India
| | - Shilpi Minocha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Saran Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
5
|
Cheng HY, Hsieh CH, Lin PH, Chen YT, Hsu DSS, Tai SK, Chu PY, Yang MH. Snail-regulated exosomal microRNA-21 suppresses NLRP3 inflammasome activity to enhance cisplatin resistance. J Immunother Cancer 2022; 10:jitc-2022-004832. [PMID: 36002186 PMCID: PMC9413180 DOI: 10.1136/jitc-2022-004832] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Compared with the precise targeting of drug-resistant mutant cancer cells, strategies for eliminating non-genetic adaptation-mediated resistance are limited. The pros and cons of the existence of inflammasomes in cancer have been reported. Nevertheless, the dynamic response of inflammasomes to therapies should be addressed. METHODS Tumor-derived exosomes were purified by differential ultracentrifugation and validated by nanoparticle tracking analysis and transmission electron microscopy. A proximity ligation assay and interleukin-1β (IL-1β) level were used for detecting activation of NLRP3 inflammasomes. RNA sequencing was used to analyze the exosomal RNAs. MIR21 knocked out human monocytic THP cells and mir21 knocked out murine oral cancer MTCQ1 cells were generated for confirming the exosomal delivery of microRNA (miR)-21. Syngeneic murine models for head and neck cancer (C57BLJ/6J), breast cancer (BALB/C) and lung cancer (C57BL/6J) were applied for examining the impact of Snail-miR21 axis on inflammasome activation in vivo. Single-cell RNA sequencing was used for analyzing the tumor-infiltrated immune cells. Head and neck patient samples were used for validating the findings in clinical samples. RESULTS We demonstrated that in cancer cells undergoing Snail-induced epithelial-mesenchymal transition (EMT), tumor cells suppress NLRP3 inflammasome activities of tumor-associated macrophages (TAMs) in response to chemotherapy through the delivery of exosomal miR-21. Mechanistically, miR-21 represses PTEN and BRCC3 to facilitate NLRP3 phosphorylation and lysine-63 ubiquitination, inhibiting NLRP3 inflammasome assembly. Furthermore, the Snail-miR-21 axis shapes the post-chemotherapy tumor microenvironment (TME) by repopulating TAMs and by activating CD8+ T cells. In patients with head and neck cancer, the Snail-high cases lacked post-chemotherapy IL-1β surge and were correlated with a worse response. CONCLUSIONS This finding reveals the mechanism of EMT-mediated resistance beyond cancer stemness through modulation of post-treatment inflammasome activity. It also highlights the dynamic remodeling of the TME throughout metastatic evolution.
Collapse
Affiliation(s)
- Han-Ying Cheng
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Hsin Hsieh
- Institute of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Han Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Tung Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Shyh-Kuan Tai
- Department of Otolaryngology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pen-Yuan Chu
- Department of Otolaryngology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan .,Institute of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Divsion of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
The Role of MicroRNA in the Regulation of Tumor Epithelial–Mesenchymal Transition. Cells 2022; 11:cells11131981. [PMID: 35805066 PMCID: PMC9265548 DOI: 10.3390/cells11131981] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Consistently, the high metastasis of cancer cells is the bottleneck in the process of tumor treatment. In this process of metastasis, a pivotal role is executed by epithelial–mesenchymal transition (EMT). The epithelial-to-mesenchymal transformation was first proposed to occur during embryonic development. Later, its important role in explaining embryonic developmental processes was widely reported. Recently, EMT and its intermediate state were also identified as crucial drivers in tumor progression with the gradual deepening of research. To gain insights into the potential mechanism, increasing attention has been focused on the EMT-related transcription factors. Correspondingly, miRNAs target transcription factors to control the EMT process of tumor cells in different types of cancers, while there are still many exciting and challenging questions about the phenomenon of microRNA regulation of cancer EMT. We describe the relevant mechanisms of miRNAs regulating EMT, and trace the regulatory roles and functions of major EMT-related transcription factors, including Snail, Twist, zinc finger E-box-binding homeobox (ZEB), and other families. In addition, on the basis of the complex regulatory network, we hope that the exploration of the regulatory relationship of non-transcription factors will provide a better understanding of EMT and cancer metastasis. The identification of the mechanism leading to the activation of EMT programs during diverse disease processes also provides a new protocol for the plasticity of distinct cellular phenotypes and possible therapeutic interventions. Here, we summarize the recent progress in this direction, with a promising path for further insight into this fast-moving field.
Collapse
|
7
|
Oghbaei F, Zarezadeh R, Jafari-Gharabaghlou D, Ranjbar M, Nouri M, Fattahi A, Imakawa K. Epithelial-mesenchymal transition process during embryo implantation. Cell Tissue Res 2022; 388:1-17. [PMID: 35024964 DOI: 10.1007/s00441-021-03574-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/29/2021] [Indexed: 03/01/2023]
Abstract
The epithelial to mesenchymal transition (EMT) in endometrial epithelial and trophectoderm cells is essential for the progression of embryo implantation and its impairment could cause implantation failure. Therefore, EMT should be tightly regulated in both embryonic and endometrial cells during implantation. Studies reported the involvement of numerous factors in EMT regulation, including hormones, growth factors, transcription factors, microRNAs, aquaporins (AQPs), and ion channels. These factors act through different signaling pathways to affect the expression of epithelial and mesenchymal markers as well as the cellular cytoskeleton. Although the mechanisms involved in cancer cell EMT have been well studied, little is known about EMT during embryo implantation. Therefore, we comprehensively reviewed different factors that regulate the EMT, a key event required for the conceptus implantation to the endometrium.Summary sentence: Abnormal epithelial-mesenchymal transition (EMT) process within endometrial epithelial cells (EECs) or trophoblast cells can cause implantation failure. This process is regulated by various factors. Thus, the objective of this review was to summarize the effective factors on the EMT process during implantation.
Collapse
Affiliation(s)
- Farnaz Oghbaei
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Reza Zarezadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Minoo Ranjbar
- Department of Midwifery, Bonab Branch, Islamic Azad University, Bonab, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Kazuhiko Imakawa
- Laboratory of Molecular Reproduction, Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| |
Collapse
|
8
|
Matboli M, Hassan MK, Ali MA, Mansour MT, Elsayed W, Atteya R, Aly HS, Meteini ME, Elghazaly H, El-Khamisy S, Agwa SHA. Impact of circ-0000221 in the Pathogenesis of Hepatocellular via Modulation of miR-661-PTPN11 mRNA Axis. Pharmaceutics 2022; 14:pharmaceutics14010138. [PMID: 35057034 PMCID: PMC8778063 DOI: 10.3390/pharmaceutics14010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death in Egypt. A deep understanding of the molecular events occurring in HCC can facilitate the development of novel diagnostic and/or therapeutic approaches. In the present study, we describe a novel axis of hsa-circ-0000221–miR-661–PTPN11 mRNA proposed by in silico and in vitro analysis and its role in HCC pathogenesis. We observe a reduction in the expression levels of hsa-circ-0000221 and PTPN11 mRNA in HCC patients’ sera tested compared with control subjects. The reduction occurs with a concomitant increase in the expression of miR-661. Furthermore, the introduction of exogenous hsa-circ-0000221 into Hep-G2 or SNU449 cell lines results in detectable decrease in cellular viability and an increase in apoptotic manifestations that is associated with G1 accumulation and CCDN1 overexpression. Altogether, these findings indicate the tumor-suppressive role of hsa-circ-0000221 in HCC, which acts through miR-661 inhibition, along with a subsequent PTPN11 mRNA increase, where PTPN11 is known to inhibit cell proliferation in many forms of cancer. Our study encourages further investigation of the role of circRNAs in cancer and their potential use as molecular biomarkers.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo 11381, Egypt;
- Correspondence: (M.M.); (S.H.A.A.)
| | - Mohmed Kamal Hassan
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City for Science and Technology, Giza 12578, Egypt; (M.K.H.); (W.E.); (R.A.)
- Biotechnology Program, Biology Division, Zoology Department, Faculty of Science, Port Said University, Port Said 42526, Egypt
| | - Mahmoud A. Ali
- Department of Biomedical Research, Armed Forces College of Medicine (AFCM), Cairo 11774, Egypt; (M.A.A.); or (M.T.M.)
| | - Mohamed Tarek Mansour
- Department of Biomedical Research, Armed Forces College of Medicine (AFCM), Cairo 11774, Egypt; (M.A.A.); or (M.T.M.)
| | - Waheba Elsayed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City for Science and Technology, Giza 12578, Egypt; (M.K.H.); (W.E.); (R.A.)
| | - Reham Atteya
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City for Science and Technology, Giza 12578, Egypt; (M.K.H.); (W.E.); (R.A.)
| | - Hebatallah Said Aly
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo 11381, Egypt;
| | - Mahmoud El Meteini
- Department of General Surgery, The School of Medicine, University of Ain Shams, Abbassia, Cairo 11382, Egypt;
| | - Hesham Elghazaly
- Oncology Department, Faculty of Medicine, Medical Ain Shams Research Institute (MASRI), Ain Shams University, Cairo 11382, Egypt;
| | - Sherif El-Khamisy
- The Healthy Lifespan Institute, The Institute of Neuroscience, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK;
- The Institute of Cancer Therapeutics, West Yorkshire BD7 1DP, UK
| | - Sara H. A. Agwa
- Clinical pathology and Molecular Genomics Unit, Faculty of Medicine, Medical Ain Shams Research Institute (MASRI), Ain Shams University, Cairo 11382, Egypt
- Correspondence: (M.M.); (S.H.A.A.)
| |
Collapse
|
9
|
VatanIman R, Malekpour SH, Afshari A, Zare M. MiR-770-5p, miR-661 and miR-571 expression level in serum and tissue samples of foot ulcer caused by diabetes mellitus type II in Iranian population. Mol Biol Rep 2021; 48:7811-7818. [PMID: 34643918 DOI: 10.1007/s11033-021-06798-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/01/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Microvascular complications related to diabetes mellitus type II such as foot ulcers are the reason of many mortalities among T2DM patients. The role of microRNAs (miRNAs, miRs) as potent regulators of gene expression is studied in different diseases such as diabetes mellitus and primary studies revealed their importance as early detecting biomarkers. Therefore, in this study it is tried to evaluate the expression level of some miRNAs (miR-770-5p, miR-661 and miR-571) in serum and tissue samples of T2DM related foot ulcer among Iranian patients. METHODS 30 samples of blood and 30 muscle tissue were collected from T2DM patients suffering foot ulcer (T2DM + FU), 30 blood samples collected from T2DM patients without foot ulcer (T2DM-FU). 30 tissue samples collected from patients with trauma and 30 blood samples were selected as healthy controls. RESULTS The three studied miRNAs were statistically significant in all groups in comparison to control blood group. Also, comparison between other groups showed a significant increase of all studied miRNAs especially in the blood and tissues of T2DM + FU patients. The only significant correlation detected between the FBS level and miR-571 expression pattern in blood samples of T2DM + FU group. Finally, the results showed that miR-571, -661, and -770 has a statistically significant discriminative character for differentiating T2DM + FU patients from T2DM-FU both in tissue and blood samples. CONCLUSION Although more studies are essential for certifying these findings, our results showed that miR-770-5p, miR-661 and miR-571 are correlated with the microvascular complications related with T2DM such as foot ulcer.
Collapse
Affiliation(s)
- Rashin VatanIman
- Department of Biology, Faculty of Sciences, Payame Noor University, Tehran, Iran
| | | | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Maryam Zare
- Department of Biology, Faculty of Sciences, Payame Noor University, Tehran, Iran
| |
Collapse
|
10
|
Huskey ALW, McNeely I, Merner ND. CEACAM Gene Family Mutations Associated With Inherited Breast Cancer Risk - A Comparative Oncology Approach to Discovery. Front Genet 2021; 12:702889. [PMID: 34447411 PMCID: PMC8383343 DOI: 10.3389/fgene.2021.702889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/05/2021] [Indexed: 01/11/2023] Open
Abstract
Introduction Recent studies comparing canine mammary tumors (CMTs) and human breast cancers have revealed remarkable tumor similarities, identifying shared expression profiles and acquired mutations. CMTs can also provide a model of inherited breast cancer susceptibility in humans; thus, we investigated breed-specific whole genome sequencing (WGS) data in search for novel CMT risk factors that could subsequently explain inherited breast cancer risk in humans. Methods WGS was carried out on five CMT-affected Gold Retrievers from a large pedigree of 18 CMT-affected dogs. Protein truncating variants (PTVs) detected in all five samples (within human orthlogs) were validated and then genotyped in the 13 remaining CMT-affected Golden Retrievers. Allele frequencies were compared to canine controls. Subsequently, human blood-derived exomes from The Cancer Genome Atlas breast cancer cases were analyzed and allele frequencies were compared to Exome Variant Server ethnic-matched controls. Results Carcinoembryonic Antigen-related Cell Adhesion Molecule 24 (CEACAM24) c.247dupG;p.(Val83Glyfs∗48) was the only validated variant and had a frequency of 66.7% amongst the 18 Golden Retrievers with CMT. This was significant compared to the European Variation Archive (p-value 1.52 × 10–8) and non-Golden Retriever American Kennel Club breeds (p-value 2.48 × 10–5). With no direct ortholog of CEACAM24 in humans but high homology to all CEACAM gene family proteins, all human CEACAM genes were investigated for PTVs. A total of six and sixteen rare PTVs were identified in African and European American breast cancer cases, respectively. Single variant assessment revealed five PTVs associated with breast cancer risk. Gene-based aggregation analyses revealed that rare PTVs in CEACAM6, CEACAM7, and CEACAM8 are associated with European American breast cancer risk, and rare PTVs in CEACAM7 are associated with breast cancer risk in African Americans. Ultimately, rare PTVs in the entire CEACAM gene family are associated with breast cancer risk in both European and African Americans with respective p-values of 1.75 × 10–13 and 1.87 × 10–04. Conclusion This study reports the first association of inherited CEACAM mutations and breast cancer risk, and potentially implicates the whole gene family in genetic risk. Precisely how these mutations contribute to breast cancer needs to be determined; especially considering our current knowledge on the role that the CEACAM gene family plays in tumor development, progression, and metastasis.
Collapse
Affiliation(s)
- Anna L W Huskey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.,Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Isaac McNeely
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Nancy D Merner
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
11
|
Razmara E, Bitaraf A, Karimi B, Babashah S. Functions of the SNAI family in chondrocyte-to-osteocyte development. Ann N Y Acad Sci 2021; 1503:5-22. [PMID: 34403146 DOI: 10.1111/nyas.14668] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Different cellular mechanisms contribute to osteocyte development. And while critical roles for members of the zinc finger protein SNAI family (SNAIs) have been discussed in cancer-related models, there are few reviews summarizing their importance for chondrocyte-to-osteocyte development. To help fill this gap, we review the roles of SNAIs in the development of mature osteocytes from chondrocytes, including the regulation of chondro- and osteogenesis through different signaling pathways and in programmed cell death. We also discuss how epigenetic factors-including DNA methylation, histone methylation and acetylation, and noncoding RNAs-contribute differently to both chondrocyte and osteocyte development. To better grasp the important roles of SNAIs in bone development, we also review genotype-phenotype correlations in different animal models. We end with comments about the possible importance of the SNAI family in cartilage/bone development and the potential applications for therapeutic goals.
Collapse
Affiliation(s)
- Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnaz Karimi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Jayachandran J, Srinivasan H, Mani KP. Molecular mechanism involved in epithelial to mesenchymal transition. Arch Biochem Biophys 2021; 710:108984. [PMID: 34252392 DOI: 10.1016/j.abb.2021.108984] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/07/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a biological process that plays an important role during embryonic development. During this process, the epithelial cells lose their polarity and acquire mesenchymal properties. In addition to embryonic development, EMT is also well-known to participate in tissue repair, inflammation, fibrosis, and tumor metastasis. In the present review, we address the basics of epithelial to mesenchymal transition during both development and disease conditions and emphasize the role of various transcription factors and miRNAs involved in the process.
Collapse
Affiliation(s)
| | - Harini Srinivasan
- ASK-II, 212, Vascular Research Lab, SASTRA Deemed University, Thanjavur, India
| | - Krishna Priya Mani
- ASK-II, 212, Vascular Research Lab, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
13
|
Circ_0049447 acts as a tumor suppressor in gastric cancer through reducing proliferation, migration, invasion, and epithelial-mesenchymal transition. Chin Med J (Engl) 2021; 134:1345-1355. [PMID: 33883408 PMCID: PMC8183756 DOI: 10.1097/cm9.0000000000001494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although increasing abnormal expression of circular RNAs (circRNAs) has been revealed in various cancers, there were a small number of studies about circRNAs in gastric cancer (GC). Here, we explored the expression and function of a novel circRNA, circ_0049447, in GC. METHODS A total of 80 GC tissues and non-tumorous tissues were collected from the First Affiliated Hospital of China Medical University. And all cells were cultured with 10% fetal bovine serum and incubated at 37°C and 5% CO2. The expression of circ_0049447 was quantified by real-time polymerase chain reaction. The biological function of circ_0049447 on proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) was evaluated by cell counting kit-8 (CCK-8), colony formation assay, transwell migration and invasion assay, and Western blotting. Luciferase report assay was used to verify the direct binding between circ_0049447 and predicted microRNA (miRNA). Furthermore, a xenograft mouse model was used to validate the function of circ_0049447 in vivo. RESULTS We demonstrated that circ_0049447 was downregulated in GC (P < 0.001). The area under the receiver operating characteristic curve reached 0.838, while sensitivity was 82.3% and specificity was 77.2%. CCK-8 and colony formation assay showed that overexpression of circ_0049447 could inhibit the proliferation (P < 0.05). Transwell migration and invasion assay showed upregulated circ_0049447 could impede migration in GC cells (P < 0.05). In addition, overexpression of circ_0049447 could impede GC cell EMT. Upregulation of miR-324-5p in GC specimens and direct binding between miR-324-5p with circ_0049447 proven by luciferase reporter assay indicated that circ_0049447 may inhibit GC by sponging certain miRNA. CONCLUSION Circ_0049447 acts as a tumor suppressor in GC through reducing proliferation, migration, invasion, and EMT, and it is a promising biomarker for diagnosis.
Collapse
|
14
|
Ciernikova S, Earl J, García Bermejo ML, Stevurkova V, Carrato A, Smolkova B. Epigenetic Landscape in Pancreatic Ductal Adenocarcinoma: On the Way to Overcoming Drug Resistance? Int J Mol Sci 2020; 21:ijms21114091. [PMID: 32521716 PMCID: PMC7311973 DOI: 10.3390/ijms21114091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid malignancies due to the rapid rate of metastasis and high resistance to currently applied cancer therapies. The complex mechanism underlying the development and progression of PDAC includes interactions between genomic, epigenomic, and signaling pathway alterations. In this review, we summarize the current research findings on the deregulation of epigenetic mechanisms in PDAC and the influence of the epigenome on the dynamics of the gene expression changes underlying epithelial–mesenchymal transition (EMT), which is responsible for the invasive phenotype of cancer cells and, therefore, their metastatic potential. More importantly, we provide an overview of the studies that uncover potentially actionable pathways. These studies provide a scientific basis to test epigenetic drug efficacy in synergy with other anticancer therapies in future clinical trials, in order to reverse acquired therapy resistance. Thus, epigenomics has the potential to generate relevant new knowledge of both a biological and clinical impact. Moreover, the potential, hurdles, and challenges of predictive biomarker discoveries will be discussed, with a special focus on the promise of liquid biopsies.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
- Correspondence: ; Tel.: +421-2-3229-5198
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; (J.E.); (A.C.)
| | - María Laura García Bermejo
- Biomarkers and Therapeutic Targets Group, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain;
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
| | - Alfredo Carrato
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; (J.E.); (A.C.)
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
| |
Collapse
|
15
|
Li Z, Sun X. Non-Coding RNAs Operate in the Crosstalk Between Cancer Metabolic Reprogramming and Metastasis. Front Oncol 2020; 10:810. [PMID: 32547948 PMCID: PMC7273922 DOI: 10.3389/fonc.2020.00810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/24/2020] [Indexed: 01/10/2023] Open
Abstract
Metastasis, the spread of cancer cells from a primary tumor to a secondary site, represents one of the hallmarks of malignancies and the leading cause of cancer-related death. The process of metastasis is a result of the interaction of genetic heterogeneity, abnormal metabolism, and tumor microenvironments. On the other hand, metabolic reprogramming, another malignancy hallmark, refers to the ability of cancer cells to alter metabolic and nutrient acquisition modes in order to support the energy demands for accomplishing the rapid growth, dissemination, and colonization. Cancer cells remodel metabolic patterns to supplement nutrients for their metastasis and also undergo metabolic adjustments at different stages of metastasis. Genes and signaling pathways involved in tumor metabolic reprogramming crosstalk with those participating in metastasis. Non-coding RNAs are a group of RNA molecules that do not code proteins but have pivotal biological functions. Some of microRNAs and lncRNAs, which are the two most extensively studied non-coding RNAs, have been identified to participate in regulating metabolic remodeling of glucose, lipid, glutamine, oxidative phosphorylation, and mitochondrial respiration, as well as the process of metastasis involving cell motility, transit in the circulation and growth at a new site. This article reviews recent progress on non-coding RNAs operating in the crosstalk between tumor metabolic reprogramming and metastasis, particularly those influencing metastasis through regulating metabolism, and the underlying mechanisms of how they exert their regulatory functions.
Collapse
Affiliation(s)
- Ziyi Li
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueying Sun
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Clark BJ. The START-domain proteins in intracellular lipid transport and beyond. Mol Cell Endocrinol 2020; 504:110704. [PMID: 31927098 DOI: 10.1016/j.mce.2020.110704] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
The Steroidogenic Acute Regulatory Protein-related Lipid Transfer (START) domain is a ~210 amino acid sequence that folds into an α/β helix-grip structure forming a hydrophobic pocket for lipid binding. The helix-grip fold structure defines a large superfamily of proteins, and this review focuses on the mammalian START domain family members that include single START domain proteins with identified ligands, and larger multi-domain proteins that may have novel roles in metabolism. Much of our understanding of the mammalian START domain proteins in lipid transport and changes in metabolism has advanced through studies using knockout mouse models, although for some of these proteins the identity and/or physiological role of ligand binding remains unknown. The findings that helped define START domain lipid-binding specificity, lipid transport, and changes in metabolism are presented to highlight that fundamental questions remain regarding the biological function(s) for START domain-containing proteins.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
17
|
MicroRNAs Contribute to Breast Cancer Invasiveness. Cells 2019; 8:cells8111361. [PMID: 31683635 PMCID: PMC6912645 DOI: 10.3390/cells8111361] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer statistics in 2018 highlight an 8.6 million incidence in female cancers, and 4.2 million cancer deaths globally. Moreover, breast cancer is the most frequent malignancy in females and twenty percent of these develop metastasis. This provides only a small chance for successful therapy, and identification of new molecular markers for the diagnosis and prognostic prediction of metastatic disease and development of innovative therapeutic molecules are therefore urgently required. Differentially expressed microRNAs (miRNAs) in cancers cause multiple changes in the expression of the tumorigenesis-promoting genes which have mostly been investigated in breast cancers. Herein, we summarize recent data on breast cancer-specific miRNA expression profiles and their participation in regulating invasive processes, in association with changes in cytoskeletal structure, cell-cell adhesion junctions, cancer cell-extracellular matrix interactions, tumor microenvironments, epithelial-to-mesenchymal transitions and cancer cell stem abilities. We then focused on the epigenetic regulation of individual miRNAs and their modified interactions with other regulatory genes, and reviewed the function of miRNA isoforms and exosome-mediated miRNA transfer in cancer invasiveness. Although research into miRNA’s function in cancer is still ongoing, results herein contribute to improved metastatic cancer management.
Collapse
|
18
|
Platel V, Faure S, Corre I, Clere N. Endothelial-to-Mesenchymal Transition (EndoMT): Roles in Tumorigenesis, Metastatic Extravasation and Therapy Resistance. JOURNAL OF ONCOLOGY 2019; 2019:8361945. [PMID: 31467544 PMCID: PMC6701373 DOI: 10.1155/2019/8361945] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
Cancer cells evolve in a very complex tumor microenvironment, composed of several cell types, among which the endothelial cells are the major actors of the tumor angiogenesis. Today, these cells are also characterized for their plasticity, as endothelial cells have demonstrated their potential to modify their phenotype to differentiate into mesenchymal cells through the endothelial-to-mesenchymal transition (EndoMT). This cellular plasticity is mediated by various stimuli including transforming growth factor-β (TGF-β) and is modulated dependently of experimental conditions. Recently, emerging evidences have shown that EndoMT is involved in the development and dissemination of cancer and also in cancer cell to escape from therapeutic treatment. In this review, we summarize current updates on EndoMT and its main induction pathways. In addition, we discuss the role of EndoMT in tumorigenesis, metastasis, and its potential implication in cancer therapy resistance.
Collapse
Affiliation(s)
- Valentin Platel
- Micro & Nanomédecines Translationnelles-MINT, Univ Angers, INSERM U1066, CNRS UMR 6021, Angers, France
| | - Sébastien Faure
- Micro & Nanomédecines Translationnelles-MINT, Univ Angers, INSERM U1066, CNRS UMR 6021, Angers, France
| | - Isabelle Corre
- Sarcomes Osseux et Remodelage des Tissus Calcifiés Phy-OS, Université de Nantes INSERM UMR U1238, Faculté de Médecine, F-44035 Nantes, France
| | - Nicolas Clere
- Micro & Nanomédecines Translationnelles-MINT, Univ Angers, INSERM U1066, CNRS UMR 6021, Angers, France
| |
Collapse
|
19
|
López-Huertas MR, Morín M, Madrid-Elena N, Gutiérrez C, Jiménez-Tormo L, Santoyo J, Sanz-Rodríguez F, Moreno Pelayo MÁ, Bermejo LG, Moreno S. Selective miRNA Modulation Fails to Activate HIV Replication in In Vitro Latency Models. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:323-336. [PMID: 31288207 PMCID: PMC6614709 DOI: 10.1016/j.omtn.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
Abstract
HIV remains incurable because of viral persistence in latent reservoirs that are inaccessible to antiretroviral therapy. A potential curative strategy is to reactivate viral gene expression in latently infected cells. However, no drug so far has proven to be successful in vivo in reducing the reservoir, and therefore new anti-latency compounds are needed. We explored the role of microRNAs (miRNAs) in latency maintenance and their modulation as a potential anti-latency strategy. Latency models based on treating resting CD4 T cells with chemokine (C-C motif) ligand 19 (CCL19) or interleukin-7 (IL7) before HIV infection and next-generation sequencing were used to identify the miRNAs involved in HIV latency. We detected four upregulated miRNAs (miRNA-98, miRNA-4516, miRNA-4488, and miRNA-7974). Individual or combined inhibition of these miRNAs was performed by transfection into cells latently infected with HIV. Viral replication, assessed 72 h after transfection, did not increase after miRNA modulation, despite miRNA inhibition and lack of toxicity. Furthermore, the combined modulation of five miRNAs previously associated with HIV latency was not effective in these models. Our results do not support the modulation of miRNAs as a useful strategy for the reversal of HIV latency. As shown with other drugs, the potential of miRNA modulation as an HIV reactivation strategy could be dependent on the latency model used.
Collapse
Affiliation(s)
- María Rosa López-Huertas
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain.
| | - Matías Morín
- Servicio de Genética, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, CIBERER, 28034 Madrid, Spain
| | - Nadia Madrid-Elena
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Carolina Gutiérrez
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Laura Jiménez-Tormo
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Javier Santoyo
- Edinburgh Genomics, The Roslin Institute, University of Edinburgh, Scotland, UK
| | - Francisco Sanz-Rodríguez
- Fluorescence Imaging Group, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Miguel Ángel Moreno Pelayo
- Servicio de Genética, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, CIBERER, 28034 Madrid, Spain
| | - Laura García Bermejo
- Grupo de Biomarcadores y Dianas Terapéuticas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain.
| | - Santiago Moreno
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá de Henares, 28871 Alcalá de Henares, Spain
| |
Collapse
|
20
|
Yang Z, Zhang Y, Wang X, Huang J, Guo W, Wei P, Li G, Wang Z, Huang Z, Zhang L. Putative biomarkers of malignant transformation of sinonasal inverted papilloma into squamous cell carcinoma. J Int Med Res 2019; 47:2371-2380. [PMID: 30991875 PMCID: PMC6567723 DOI: 10.1177/0300060519838385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To compare genome-wide DNA methylation between samples of sinonasal inverted papilloma (SNIP) and squamous cell carcinoma (SCC) samples in order to identify aberrantly methylated genes that might be involved in malignant transformation. METHODS Tissue samples were collected from patients. DNA methylation in C-phosphate-G islands and gene promoters was analysed using a DNA methylation microarray kit. The levels of mRNA or protein from aberrantly methylated genes were measured using real-time polymerase chain reaction or Western blot analysis. RESULTS A total of 27 tissue samples were included in this study; 15 SNIP samples and 12 SCCs arising in SNIPs. A total of 11 201 nominally differentially methylated sites were observed between SNIP and SCC arising in SNIPs. Six sites were significantly different at P < 0.01 and contained three genes ( MIR661, PLEC and OPA3). These three genes were hypermethylated. In addition, the levels of mature miR-661 mRNA and PLEC protein were significantly upregulated in SCC tissues compared with SNIP samples. The levels of OPA3 protein were downregulated in SCC tissues compared with SNIP samples. CONCLUSIONS This study demonstrated hypermethylation and abnormal expression of the MIR661, PLEC and OPA3 genes, suggesting a role for their involvement in the malignant transformation of SNIP.
Collapse
Affiliation(s)
- Zheng Yang
- 1 Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 Key Laboratory of Otolaryngology Head and Neck Surgery of the Ministry of Education, Beijing, China
| | - Yang Zhang
- 1 Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 Key Laboratory of Otolaryngology Head and Neck Surgery of the Ministry of Education, Beijing, China
| | - Xiangdong Wang
- 1 Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 Key Laboratory of Otolaryngology Head and Neck Surgery of the Ministry of Education, Beijing, China
| | - Junwei Huang
- 1 Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 Key Laboratory of Otolaryngology Head and Neck Surgery of the Ministry of Education, Beijing, China
| | - Wei Guo
- 1 Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 Key Laboratory of Otolaryngology Head and Neck Surgery of the Ministry of Education, Beijing, China
| | - Peng Wei
- 3 Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guojun Li
- 4 Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,5 Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziqiao Wang
- 3 Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhigang Huang
- 1 Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 Key Laboratory of Otolaryngology Head and Neck Surgery of the Ministry of Education, Beijing, China
| | - Luo Zhang
- 1 Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 Key Laboratory of Otolaryngology Head and Neck Surgery of the Ministry of Education, Beijing, China
| |
Collapse
|
21
|
Biranvand AS, Khosravi M, Esfandiari G, Poursaleh A, Hosseini-Fard SR, Amirfarhangi A, Najafi M. Associations between miR-661, miR-1202, lncRNA-HOTAIR, lncRNA-GAS5 and MMP9 in differentiated M2-macrophages of patients with varicose veins. INT ANGIOL 2019; 37:451-456. [PMID: 30558403 DOI: 10.23736/s0392-9590.18.04022-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The venous hypertension is suggested as the main cause of varicose disease. Some mediators and growth factors are known as the responsible of cellular events for the progression of venous perturbations. The aim of this study was to investigate non-coding (nc) RNA and MMP9 expression levels in macrophages differentiated from monocytes of patients with varicose veins. METHODS The monocytes were isolated from the whole blood samples by RosetteSep kit and were differentiated to macrophages M2 using M-CSF factor. The based on ncRNA-gene network, lncRNA-GAS5, lncRNA-HOTAIR, miRNA-661, miRNA-1202, and MMP9 were selected. The gene expression levels were measured by RT-qPCR technique. RESULTS Data showed that the MMP9 gene expression increased (P=0.003) while the GAS5, miRNA-661, and miRNA-1202 expression levels reduced significantly in the differentiated macrophages of patients (P=0.035, P=0.009, and P=0.015, respectively). Furthermore, the MMP9 gene expression levels were conversely related to the GAS5, HOTAIR, miRNA-661 and miRNA-1202 expression levels. CONCLUSIONS The results suggested that the lncRNA-GAS5, miRNA-661, miRNA-1202 and MMP9 are involved in varicose disease.
Collapse
Affiliation(s)
- Azin S Biranvand
- Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Khosravi
- Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| | - Golnaz Esfandiari
- Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| | - Adeleh Poursaleh
- Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| | - Sayed R Hosseini-Fard
- Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Najafi
- Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran - .,Firoozabadi Hospital, Tehran, Iran
| |
Collapse
|
22
|
Tampakis A, Tampaki EC, Nonni A, Droeser R, Posabella A, Tsourouflis G, Kontzoglou K, Patsouris E, von Flüe M, Kouraklis G. Nectin-1 Expression in Colorectal Cancer: Is There a Group of Patients with High Risk for Early Disease Recurrence? Oncology 2019; 96:318-325. [PMID: 30917374 DOI: 10.1159/000499569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/07/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Despite improvements in therapy of colorectal cancer, some patients will present occurrence of recurrence either locally or distantly. Tumor metastasis constitutes the major cause of cancer-associated morbidity and mortality. Nectin-1 belongs to the family of immunoglobulin-like cell adhesion molecules that contribute to the formation of cell-cell adhesions and regulate a series of cellular activities including cell polarization, differentiation, movement, proliferation, and survival. Expression of Nectin-1 in malignant tumors has been associated with aggressive tumor phenotypes. OBJECTIVES The aim of the present study was to assess Nectin-1 expression patterns in colorectal cancer and to investigate its clinical significance. METHODS Nectin-1 expression was assessed via immunohistochemistry in surgical specimens of a cohort comprised of 111 patients with primary resectable colorectal cancer. Results were correlated with clinicopathological characteristics and survival data. Progression-free survival was defined as the primary outcome of the present study. RESULTS Nectin-1 was strongly expressed in the cytoplasm of colorectal cancer cells. High Nectin-1 expression was associated with advanced stage of disease (p = 0.012) and lymph node metastasis (p = 0.007). Progression-free survival of patients exhibiting high expression of Nectin-1 in the first 36 months after surgery was significantly worse compared to patients with low expression of Nectin-1 (55.7%, 95% CI = 47-70, vs. 82.1%, 95% CI = 69-93, p = 0.014) and independent of other clinicopathological characteristics (HR = 0.389, 95% CI = 0.156-0.972, p = 0.043). CONCLUSION Nectin-1 expression in colorectal cancer is associated with a significantly worse 3-year progression-free survival identifying therefore a group of patients with high risk for early disease recurrence.
Collapse
Affiliation(s)
- Athanasios Tampakis
- Clarunis University Center of Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital Basel, Basel, Switzerland, .,2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece,
| | - Ekaterini Christina Tampaki
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Afroditi Nonni
- 1st Department of Pathology, School of Medicine, National University of Athens, Athens, Greece
| | - Raoul Droeser
- Clarunis University Center of Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital Basel, Basel, Switzerland
| | - Alberto Posabella
- Clarunis University Center of Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital Basel, Basel, Switzerland
| | - Gerasimos Tsourouflis
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Konstantinos Kontzoglou
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Efstratios Patsouris
- 1st Department of Pathology, School of Medicine, National University of Athens, Athens, Greece
| | - Markus von Flüe
- Clarunis University Center of Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital Basel, Basel, Switzerland
| | - Gregory Kouraklis
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| |
Collapse
|
23
|
Roy R, Chatterjee A, Das D, Ray A, Singh R, Chattopadhyay E, Sarkar ND, Eccles M, Pal M, Maitra A, Roy B. Genome-wide miRNA methylome analysis in oral cancer: possible biomarkers associated with patient survival. Epigenomics 2019; 11:473-487. [PMID: 30875235 DOI: 10.2217/epi-2018-0078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM The methylome associated with miRNA loci was investigated in oral cancer to explore tobacco specific methylation and potential biomarkers for patient survival. METHODS Methylome data was generated from 16 pairs of cancer-normal tissues by reduced representation bisulfite sequencing method. Differentially methylated regions were identified using the DMAP pipeline. In silico validation and Kaplan-Meier survival analyses were performed on The Cancer Genome Atlas data based on our miRNA methylome data. RESULTS A total of 4310 unique differentially methylated regions, mapping to 144 miRNA loci, were identified. Three distinct groups of miRNAs were differentially methylated in cancer tissues from smokers, chewers and mixed habitués. Hypermethylation of miR-503, miR-200a/b, miR-320b and miR-489 was associated with worse 5-year survival. CONCLUSION Differential methylation patterns in miRNA loci are associated with poor survival underscoring their potential as predictive and prognostic biomarkers in oral cancer.
Collapse
Affiliation(s)
- Roshni Roy
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand
| | - Aniruddha Chatterjee
- HB Division, Fred Hutchinson Cancer Research Centre, Seattle, WA 98109-1024, USA
| | - Debasis Das
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand
| | - Anindita Ray
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand
| | - Richa Singh
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand
| | - Esita Chattopadhyay
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand
| | - Navonil De Sarkar
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand.,Department of Oral & Maxillofacial Pathology, Guru Nanak Institute of Dental Science & Research, Kolkata, India
| | - Michael Eccles
- HB Division, Fred Hutchinson Cancer Research Centre, Seattle, WA 98109-1024, USA
| | - Mousumi Pal
- National Institute of Biomedical Genomics, Kalyani, 741251, India
| | - Arindam Maitra
- Human Genetics Unit, Indian Statistical Institute, 205 B.T. Road, Kolkata 700108, India
| | - Bidyut Roy
- Department of Pathology, Division of Health Science, University of Otago, Dunedin, Otago, MD 20892, New Zealand
| |
Collapse
|
24
|
MiR-374b-5p-FOXP1 feedback loop regulates cell migration, epithelial-mesenchymal transition and chemosensitivity in ovarian cancer. Biochem Biophys Res Commun 2018; 505:554-560. [DOI: 10.1016/j.bbrc.2018.09.161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
|
25
|
Lv F, Zheng K, Yu J, Huang Z. MicroRNA-661 expression is upregulated in pancreatic ductal adenocarcinoma and promotes cell proliferation. Oncol Lett 2018; 16:6293-6298. [PMID: 30405764 PMCID: PMC6202501 DOI: 10.3892/ol.2018.9454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 06/13/2018] [Indexed: 12/14/2022] Open
Abstract
Deregulation of microRNA (miRNA/miR) expression has been implicated in the development of pancreatic ductal adenocarcinoma (PDAC). However, the role of miR-661 in PDAC remains unknown. In the present study, it was revealed that miR-661 expression was significantly upregulated in PDAC tissues compared with that in adjacent normal tissues by using reverse transcription-quantitative polymerase chain reaction assays. Higher miR-661 expression revealed a positive association with lymph node metastasis, an advanced T stage and a poor prognosis in patients with PDAC. Furthermore, ectopic expression of miR-661 significantly promoted the cell proliferation ability in PDAC cell lines, and simultaneously promoted Wnt signaling pathway-related protein expression of β-catenin, transcription factor 4 and cyclin D1 in vitro. However, the downregulation of miR-661 revealed reverse effects. Thus, the results of the present study indicated that miR-661 may function as a prognostic marker and provide insight for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Feifei Lv
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China.,Department of General Surgery, The First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010020, P.R. China
| | - Kehong Zheng
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jinlong Yu
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Zonghai Huang
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
26
|
Sheedy P, Medarova Z. The fundamental role of miR-10b in metastatic cancer. Am J Cancer Res 2018; 8:1674-1688. [PMID: 30323962 PMCID: PMC6176190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023] Open
Abstract
Small, non-coding strands of RNA have been identified as a significant player in the pathology of cancer. One of the first miRNAs to be shown as having aberrant expression in cancer was miR-10b. Since the inaugural study on miR-10b, its role as a metastasis promoting factor has been extensively validated. To date, more than 100 studies have been completed on miR-10b and metastasis across 18 cancer types. This immense set of information holds possibilities for novel methods to improve the lives of many. This review outlines what is currently understood of miR-10b's clinical significance, its molecular regulation, and the possible diagnostic and therapeutic methods leveraging miR-10b as a fundamental target in metastatic cancer. Such methods would move us closer to developing a truly individualized therapeutic strategy against cancer and will likely provide unique information about cancer staging, disease outcome, metastatic potential, and ultimately survival.
Collapse
Affiliation(s)
- Patrick Sheedy
- Department of Health Sciences, CaNCURE Program, Northeastern UniversityBoston, MA 02115, USA
| | - Zdravka Medarova
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBoston, MA 02129, USA
| |
Collapse
|
27
|
Li N, Wang C, Zhang P, You S. Emodin inhibits pancreatic cancer EMT and invasion by up‑regulating microRNA‑1271. Mol Med Rep 2018; 18:3366-3374. [PMID: 30066876 PMCID: PMC6102704 DOI: 10.3892/mmr.2018.9304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
Emodin has a direct inhibitory effect on the growth and metastasis of a variety of malignant tumor cells. MicroRNA-1271 (miR-1271) has an extensive tumor-suppression effect by inhibiting epithelial mesenchymal transition (EMT) in tumor cells and induces tumor cell apoptosis. Proceeding with the EMT regulatory mechanism of pancreatic carcinoma, the present study aimed to examine the inhibitory effect of miR-1271 and emodin against invasion and metastasis of pancreatic carcinoma. The expression of EMT-related markers (E-cadherin, ZEB1 and TWIST1) was analyzed by western blotting. mRNA levels of miR-1271, E-cadherin, ZEB1 and TWIST1 in pancreatic tumor cells (SW1990) were measured through reverse transcription-quantitative polymerase chain reaction and cell invasiveness was detected using Transwell assays. In addition, a liver metastatic model was established with an implantation of pancreatic tumor tissue into the spleens of nude mice to study the effect of emodin on pancreatic cancer liver metastasis. In the present study, it was demonstrated that miR-1271 significantly decreased in pancreatic cancer cells and tissues. Twist1 may be a target gene of miR-1271. Emodin could inhibit the proliferation ability of pancreatic cancer cells and increased miR-1271 expression level. Further, we found that miR-1271 significantly inhibited SW1990 cell EMT and invasive ability. We also provided the evidence that emodin inhibited SW1990 cell EMT by raising the level of miR-1271. Moreover, the in vivo experiments have verified the inhibiting effect of emodin against liver metastasis of pancreatic cancer. The data in the present study indicated that emodin inhibited pancreatic cancer EMT and invasion by increasing the content of miR-1271.
Collapse
Affiliation(s)
- Nan Li
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China
| | - Chunli Wang
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China
| | - Peng Zhang
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China
| | - Shengyi You
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China
| |
Collapse
|
28
|
|
29
|
ADAMTS6 suppresses tumor progression via the ERK signaling pathway and serves as a prognostic marker in human breast cancer. Oncotarget 2018; 7:61273-61283. [PMID: 27542224 PMCID: PMC5308650 DOI: 10.18632/oncotarget.11341] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 07/27/2016] [Indexed: 02/05/2023] Open
Abstract
A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family is involved in tumor development. However, how ADAMTS6 influences cancer remains unknown. We investigated the biological function and clinical implications of ADAMTs6 in breast cancer (BC). Its functional significance in BC cell lines was confirmed by ADAMTs6 overexpression or downregulation both in vitro and in vivo studies. Enhanced ADAMTS6 expression suppressed cell migration, invasion, and tumorigenesis, whereas knockdown promoted these characteristics. The extracellular signal-regulated kinase (ERK) pathway was partially involved in ADAMTS6-mediated inhibition of BC development, and miR-221-3p was identified as a predicted target for ADAMTS6. Results from the luciferase assay confirmed that miR-221-3p directly inhibited ADAMTS6 expression by binding its 3′-untranslated region. In addition, immunohistochemistry data from specimens from 182 BC patients showed that high ADAMTS6 expression was significantly correlated with favorable disease-free survival (DFS, p = 0.045). Subgroup analysis of patients with ER positive, PR positive or HER-2 negative tumors revealed that high ADAMTS6 expression more strongly extended DFS compared to low expression (p = 0.004, p = 0.009, p = 0.017). Multivariate analyses confirmed that ADAMTS6 expression was an independent risk factor for DFS (p = 0.011). Together, these data demonstrate that ADAMTS6 inhibits tumor development by regulating the ERK pathway via binding of miR-221-3p. Thus, its expression may be a potential prognostic biomarker for BC.
Collapse
|
30
|
Huang Y, Feng Y, Ren H, Zhang M, Li H, Qiao Y, Feng T, Yang J, Wang W, Wang S, Liu Y, Song Y, Li Y, Jin J, Tan W, Lin D. Associations of Genetic Variations in MicroRNA Seed Regions With Acute Adverse Events and Survival in Patients With Rectal Cancer Receiving Postoperative Chemoradiation Therapy. Int J Radiat Oncol Biol Phys 2018; 100:1026-1033. [PMID: 29485044 DOI: 10.1016/j.ijrobp.2017.12.256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023]
Abstract
PURPOSE The aim of this study was to investigate the associations between single nucleotide polymorphisms (SNPs) in the seed regions of microRNAs and acute adverse events (AEs) and survival in patients with rectal cancer receiving postoperative chemoradiation therapy. METHODS AND MATERIALS Eighteen SNPs were genotyped in 365 patients with rectal cancer receiving postoperative chemoradiation therapy. The associations between genotypes and AEs were estimated by odds ratios and 95% confidence intervals (CIs), which were computed by using multivariate logistic regression models. The hazard ratios and 95% CIs to assess the death of patients for different genotypes were calculated by Cox proportional regression models. Overall survival and disease-free survival of patients with different genotypes were estimated by Kaplan-Meier plots, and the statistical significance was determined by using the log-rank test. RESULTS In these patients, the most common grade ≥2 AEs were diarrhea (44.1%), leukopenia (29.6%), and dermatitis (18.9%). With false discovery rate correction, SNP rs2273626 was significantly associated with a decreased risk of grade ≥2 leukopenia (odds ratio, 0.48; 95% CI, 0.31-0.74; P = .0009). In addition, SNP rs202195689 was associated with overall survival and disease-free survival in patients receiving postoperative chemoradiation therapy, with the hazard ratios for death being 2.02 (95% CI, 1.36-3.01; P = .0006) and 1.91 (95% CI, 1.36-2.70; P = .0002), respectively. However, no significant association between these SNPs and diarrhea and dermatitis was observed. CONCLUSIONS These results suggest that rs2273626 and rs202195689 in microRNA seed regions might serve as independent biomarkers for predicting AEs and prognosis in patients with rectal cancer receiving postoperative chemoradiation therapy. Independent replication of these findings is required to confirm these results.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanru Feng
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Ren
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongmin Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Qiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Feng
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihu Wang
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shulian Wang
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueping Liu
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongwen Song
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yexiong Li
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jin
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wen Tan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Dongxin Lin
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Sugita B, Gill M, Mahajan A, Duttargi A, Kirolikar S, Almeida R, Regis K, Oluwasanmi OL, Marchi F, Marian C, Makambi K, Kallakury B, Sheahan L, Cavalli IJ, Ribeiro EM, Madhavan S, Boca S, Gusev Y, Cavalli LR. Differentially expressed miRNAs in triple negative breast cancer between African-American and non-Hispanic white women. Oncotarget 2018; 7:79274-79291. [PMID: 27813494 PMCID: PMC5346713 DOI: 10.18632/oncotarget.13024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/25/2016] [Indexed: 01/09/2023] Open
Abstract
Triple Negative Breast Cancer (TNBC), a clinically aggressive subtype of breast cancer, disproportionately affects African American (AA) women when compared to non-Hispanic Whites (NHW). MiRNAs(miRNAs) play a critical role in these tumors, through the regulation of cancer driver genes. In this study, our goal was to characterize and compare the patterns of miRNA expression in TNBC of AA (n = 27) and NHW women (n = 30). A total of 256 miRNAs were differentially expressed between these groups, and distinct from the ones observed in their respective non-TNBC subtypes. Fifty-five of these miRNAs were mapped in cytobands carrying copy number alterations (CNAs); 26 of them presented expression levels concordant with the observed CNAs. Receiving operating characteristic (ROC) analysis showed a good power (AUC ≥ 0.80; 95% CI) for over 65% of the individual miRNAs and a high combined power with superior sensitivity and specificity (AUC = 0.88 (0.78−0.99); 95% CI) of the 26 miRNA panel in discriminating TNBC between these populations. Subsequent miRNA target analysis revealed their involvement in the interconnected PI3K/AKT, MAPK and insulin signaling pathways. Additionally, three miRNAs of this panel were associated with early age at diagnosis. Altogether, these findings indicated that there are different patterns of miRNA expression between TNBC of AA and NHW women and that their mapping in genomic regions with high levels of CNAs is not merely physical, but biologically relevant to the TNBC phenotype. Once validated in distinct cohorts of AA women, this panel can potentially represent their intrinsic TNBC genome signature.
Collapse
Affiliation(s)
- Bruna Sugita
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Mandeep Gill
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Akanskha Mahajan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Anju Duttargi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Saurabh Kirolikar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Rodrigo Almeida
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Kenny Regis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Olusayo L Oluwasanmi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Fabio Marchi
- International Research Center-CIPE, A. C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Catalin Marian
- The Ohio State University Comprehensive Cancer Center, Division of Cancer Prevention and Control, College of Medicine, The Ohio State University, Columbus, Ohio.,The University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Kepher Makambi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Departments of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC USA
| | - Bhaskar Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
| | - Laura Sheahan
- Innovation Center for Biomedical Informatics, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Iglenir J Cavalli
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Enilze M Ribeiro
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Subha Madhavan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Innovation Center for Biomedical Informatics, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Simina Boca
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Innovation Center for Biomedical Informatics, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Yuriy Gusev
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Innovation Center for Biomedical Informatics, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Luciane R Cavalli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
32
|
Ali MA, Matboli M, El-Khazragy N, Saber O, El-Nakeep S, Abdelzaher HM, Shafei AES, Mostafa R. Investigating miRNA-661 and ATG4-B mRNA expression as potential biomarkers for hepatocellular carcinoma. Biomark Med 2018; 12:245-256. [PMID: 29441798 DOI: 10.2217/bmm-2017-0273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM We aimed to examine the statistical association between serum expression of miRNA 661 (miR-661) and ATG-4B mRNA and hepatocellular carcinoma (HCC) based on in silico data analysis followed by clinical validation. PATIENTS & METHODS Quantitative reverse-transcriptase real-time PCR was used to examine the expression of miR-661 and ATG-4B mRNA in the sera of HCC patients versus control. RESULTS The expression of miR-661 and ATG-4B mRNA was positive in 97.14 and 77.14%, respectively, in HCC patients. The survival analysis showed that ATG-4B mRNA was an independent prognostic factor. CONCLUSION Our data are the first report of its kind regarding the considerable clinical significance of miR-661 and ATG-4B mRNA in HCC patients.
Collapse
Affiliation(s)
- Mahmoud A Ali
- Department of Biomedical Research, Armed Forces College of Medicine (AFCM), Cairo, 11774, Egypt
| | - Marwa Matboli
- Department of Medical Biochemistry & Molecular Biology, Ain Shams Faculty of Medicine Research Center (Masri), 11778, Eygpt
| | - Nashwa El-Khazragy
- Department of Clinical Pathology, Oncology Diagnostic Unit, Faculty of Medicine, Ain Shams University, Cairo, 11778, Egypt
| | - Osama Saber
- Armed Forces College of Medicine (AFCM), Cairo, 11774, Egypt
| | - Sarah El-Nakeep
- Hepatology & Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, 11778, Egypt
| | - Hana M Abdelzaher
- Faculty of Biotechnology, October University for Modern Sciences & Arts, Cairo, 12585, Egypt
| | - Ayman El-Sayed Shafei
- Department of Biomedical Research, Armed Forces College of Medicine (AFCM), Cairo, 11774, Egypt
| | - Randa Mostafa
- Department of Biomedical Research, Armed Forces College of Medicine (AFCM), Cairo, 11774, Egypt
| |
Collapse
|
33
|
Zhang X, Ren D, Wu X, Lin X, Ye L, Lin C, Wu S, Zhu J, Peng X, Song L. miR-1266 Contributes to Pancreatic Cancer Progression and Chemoresistance by the STAT3 and NF-κB Signaling Pathways. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:142-158. [PMID: 29858050 PMCID: PMC5842289 DOI: 10.1016/j.omtn.2018.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/28/2022]
Abstract
Pancreatic cancer is characterized by chemoresistance after several cycles of chemotherapy, which is a major issue responsible for treatment failure of pancreatic cancer. Therefore, it is necessary to explore the specific mechanism underlying chemotherapeutic resistance to overcome this issue. Here we report that miR-1266 is dramatically elevated and correlates with poor survival and chemotherapy response in pancreatic cancer patients. Upregulation of miR-1266 enhanced the chemoresistance of pancreatic cancer cells to gemcitabine (GEM) in vitro and in vivo; conversely, inhibition of miR-1266 yielded the opposite effect. Importantly, silencing of miR-1266 restored the sensitivity of pancreatic cancer cells to GEM in a dose-dependent manner in vivo. Furthermore, our results demonstrate that miR-1266 promotes resistance of pancreatic cancer cells to GEM by targeting multiple negative regulators of the STAT3 and NF-κB pathways, including SOCS3, PTPN11, ITCH, and TNIP1, leading to constitutive activation of STAT3 and NF-κB signaling. Thus, our findings clarify a novel mechanism by which miR-1266 induces chemotherapeutic resistance in pancreatic cancer, indicating that miR-1266 may be used as chemotherapeutic response indicator. Antagomir-1266 as a chemotherapeutic sensitizer, in combination with GEM, may serve as a rational regimen in the treatment of chemotherapy-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Xin Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
| | - Dong Ren
- Department of Orthopaedic Surgery/Orthopaedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Xianqiu Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xi Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Liping Ye
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Chuyong Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shu Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jinrong Zhu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery/Orthopaedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Libing Song
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
34
|
Chang CW, Yu JC, Hsieh YH, Yao CC, Chao JI, Chen PM, Hsieh HY, Hsiung CN, Chu HW, Shen CY, Cheng CW. MicroRNA-30a increases tight junction protein expression to suppress the epithelial-mesenchymal transition and metastasis by targeting Slug in breast cancer. Oncotarget 2017; 7:16462-78. [PMID: 26918943 PMCID: PMC4941328 DOI: 10.18632/oncotarget.7656] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/05/2016] [Indexed: 01/05/2023] Open
Abstract
The epithelial-to-mesenchymal (EMT) transition is a prerequisite for conferring metastatic potential during tumor progression. microRNA-30a (miR-30a) expression was significantly lower in aggressive breast cancer cell lines compared with non-invasive breast cancer and non-malignant mammary epithelial cell lines. In contrast, miR-30a overexpression reversed the mesenchymal appearance of cancer cells to result in a cobblestone-like epithelial phenotype. We identified Slug, one of the master regulators of EMT, as a target of miR-30a using in silico prediction. Reporter assays indicated that miR-30a could bind to the 3'-untranslted region of Slug mRNA. Furthermore, we linked miR-30a to increased expression of claudins, a family of tight junction transmembrane proteins. An interaction between Slug and E-box in the claudin promoter sequences was reduced upon miR-30a overexpression, further leading to reduction of filopodia formation and decreased invasiveness/metastasis capabilities of breast cancer cells. Consistently, delivery of miR-30a in xenografted mice decreased tumor invasion and migration. In patients with breast cancer, a significantly elevated risk of the miR-30alow/CLDN2low/FSCNhigh genotype was observed, linking to a phenotypic manifestation of larger tumor size, lymph node metastasis, and advanced tumor stage among patients. In conclusion, the miR-30a/Slug axis inhibits mesenchymal tumor development by interfering with metastatic cancer cell programming and may be a potential target for therapy in breast cancer.
Collapse
Affiliation(s)
- Chia-Wei Chang
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Jyh-Cherng Yu
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chung-Chin Yao
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jui-I Chao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Po-Ming Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiao-Yen Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Ni Hsiung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hou-Wei Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,College of Public Health, China Medical University, Taichung, Taiwan
| | - Chun-Wen Cheng
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan, Taiwan
| |
Collapse
|
35
|
Gómez de Cedrón M, Acín Pérez R, Sánchez-Martínez R, Molina S, Herranz J, Feliu J, Reglero G, Enríquez JA, Ramírez de Molina A. MicroRNA-661 modulates redox and metabolic homeostasis in colon cancer. Mol Oncol 2017; 11:1768-1787. [PMID: 28981199 PMCID: PMC5709620 DOI: 10.1002/1878-0261.12142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 12/31/2022] Open
Abstract
Cancer cell survival and metastasis are dependent on metabolic reprogramming that is capable of increasing resistance to oxidative and energetic stress. Targeting these two processes can be crucial for cancer progression. Herein, we describe the role of microRNA‐661 (miR661) as epigenetic regulator of colon cancer (CC) cell metabolism. MicroR661 induces a global increase in reactive oxygen species, specifically in mitochondrial superoxide anions, which appears to be mediated by decreased carbohydrate metabolism and pentose phosphate pathway, and by a higher dependency on mitochondrial respiration. MicroR661 overexpression in non‐metastatic human CC cells induces an epithelial‐to‐mesenchymal transition phenotype, and a reduced tolerance to metabolic stress. This seems to be a general effect of miR661 in CC, since metastatic CC cell metabolism is also compromised upon miR661 overexpression. We propose hexose‐6‐phosphate dehydrogenase and pyruvate kinase M2 as two key players related to the observed metabolic reprogramming. Finally, the clinical relevance of miR661 expression levels in stage‐II and III CC patients is discussed. In conclusion, we propose miR661 as a potential modulator of redox and metabolic homeostasis in CC.
Collapse
Affiliation(s)
- Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Rebeca Acín Pérez
- Functional Genetics of the Oxidative Phosphorylation System, Spanish National Cardiovascular Research Centre (CNIC), Madrid, Spain
| | - Ruth Sánchez-Martínez
- Precision Nutrition and Cancer Program, Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Susana Molina
- Precision Nutrition and Cancer Program, Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Jesús Herranz
- Precision Nutrition and Cancer Program, Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Jaime Feliu
- Medical Oncology, La Paz University Hospital (IdiPAZ-UAM), Madrid, Spain
| | - Guillermo Reglero
- Precision Nutrition and Cancer Program, Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Jose Antonio Enríquez
- Functional Genetics of the Oxidative Phosphorylation System, Spanish National Cardiovascular Research Centre (CNIC), Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
36
|
Wu G, Li Z, Jiang P, Zhang X, Xu Y, Chen K, Li X. MicroRNA-23a promotes pancreatic cancer metastasis by targeting epithelial splicing regulator protein 1. Oncotarget 2017; 8:82854-82871. [PMID: 29137308 PMCID: PMC5669934 DOI: 10.18632/oncotarget.20692] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/29/2017] [Indexed: 01/09/2023] Open
Abstract
miR-23a plays vital roles in various cancer metastases. Here, we found that miR-23a expression was significantly up-regulated in pancreatic cancer tissues compared with adjacent normal tissues. miR-23a up-regulation was significantly associated with differentiated degree, lymphoid nodal status, tumor invasion and poor survival rate in pancreatic cancer patients. We also found that miR-23a expression was significantly up-regulated in lymph node metastatic tissues and in pancreatic cancer cells that underwent epithelial-mesenchymal transition (EMT). miR-23a down-regulation blocked TGF-β1-induced EMT and reversed the phenotype of EMT in Panc-1 cells. Furthermore, miR-23a down-regulation inhibited Panc-1 cells migration and invasion in vitro and liver metastases in vivo. But the effect of miR-23a up-regulation in Aspc-1 cells was opposite to that of miR-23a down-regulation in Panc-1 cells. Epithelial splicing regulatory protein 1 (ESRP1) was identified as a direct target of miR-23a. Restoration of ESRP1 rescued the effect of miR-23a on pancreatic cancer cell progression. Moreover, miR-23a up-regulation in Aspc-1 cells induced a shift in CD44 expression from variant isoforms (CD44v) to the standard isoform (CD44s) together with increased FGFR2 IIIc mRNA levels, and decreased FGFR2 IIIb expression during EMT. But the effect of miR-23a down-regulation in Panc-1 cells was opposite to that of miR-23a up-regulation in Aspc-1 cells. In addition, the effect of miR-23a up-regulation was partly reversed by ESRP1 over-expression. Taken together, our findings indicated that miR-23a functions as an oncogene by regulating ESRP1 in pancreatic cancer.
Collapse
Affiliation(s)
- Guo Wu
- Department of Hepatobiliary Surgery Institute, South Western Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhonghu Li
- Department of Hepatobiliary Surgery Institute, South Western Hospital, Third Military Medical University, Chongqing 400038, China
| | - Peng Jiang
- Department of Hepatobiliary Surgery Institute, South Western Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xi Zhang
- Department of Hepatobiliary Surgery Institute, South Western Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yingqiang Xu
- Department of Hepatobiliary Surgery Institute, South Western Hospital, Third Military Medical University, Chongqing 400038, China
| | - Kai Chen
- Department of Hepatobiliary Surgery Institute, South Western Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery Institute, South Western Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
37
|
Klymenko Y, Kim O, Stack MS. Complex Determinants of Epithelial: Mesenchymal Phenotypic Plasticity in Ovarian Cancer. Cancers (Basel) 2017; 9:cancers9080104. [PMID: 28792442 PMCID: PMC5575607 DOI: 10.3390/cancers9080104] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/02/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023] Open
Abstract
Unlike most epithelial malignancies which metastasize hematogenously, metastasis of epithelial ovarian cancer (EOC) occurs primarily via transcoelomic dissemination, characterized by exfoliation of cells from the primary tumor, avoidance of detachment-induced cell death (anoikis), movement throughout the peritoneal cavity as individual cells and multi-cellular aggregates (MCAs), adhesion to and disruption of the mesothelial lining of the peritoneum, and submesothelial matrix anchoring and proliferation to generate widely disseminated metastases. This exceptional microenvironment is highly permissive for phenotypic plasticity, enabling mesenchymal-to-epithelial (MET) and epithelial-to-mesenchymal (EMT) transitions. In this review, we summarize current knowledge on EOC heterogeneity in an EMT context, outline major regulators of EMT in ovarian cancer, address controversies in EMT and EOC chemoresistance, and highlight computational modeling approaches toward understanding EMT/MET in EOC.
Collapse
Affiliation(s)
- Yuliya Klymenko
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA.
| | - Oleg Kim
- Department of Applied and Computational Mathematics and Statistics, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
- Department of Mathematics, University of California Riverside, Riverside, CA 92521, USA.
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
| |
Collapse
|
38
|
Modeling miRNA-mRNA interactions that cause phenotypic abnormality in breast cancer patients. PLoS One 2017; 12:e0182666. [PMID: 28793339 PMCID: PMC5549916 DOI: 10.1371/journal.pone.0182666] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/13/2017] [Indexed: 01/04/2023] Open
Abstract
Background The dysregulation of microRNAs (miRNAs) alters expression level of pro-oncogenic or tumor suppressive mRNAs in breast cancer, and in the long run, causes multiple biological abnormalities. Identification of such interactions of miRNA-mRNA requires integrative analysis of miRNA-mRNA expression profile data. However, current approaches have limitations to consider the regulatory relationship between miRNAs and mRNAs and to implicate the relationship with phenotypic abnormality and cancer pathogenesis. Methodology/Findings We modeled causal relationships between genomic expression and clinical data using a Bayesian Network (BN), with the goal of discovering miRNA-mRNA interactions that are associated with cancer pathogenesis. The Multiple Beam Search (MBS) algorithm learned interactions from data and discovered that hsa-miR-21, hsa-miR-10b, hsa-miR-448, and hsa-miR-96 interact with oncogenes, such as, CCND2, ESR1, MET, NOTCH1, TGFBR2 and TGFB1 that promote tumor metastasis, invasion, and cell proliferation. We also calculated Bayesian network posterior probability (BNPP) for the models discovered by the MBS algorithm to validate true models with high likelihood. Conclusion/Significance The MBS algorithm successfully learned miRNA and mRNA expression profile data using a BN, and identified miRNA-mRNA interactions that probabilistically affect breast cancer pathogenesis. The MBS algorithm is a potentially useful tool for identifying interacting gene pairs implicated by the deregulation of expression.
Collapse
|
39
|
Liu F, Cai Y, Rong X, Chen J, Zheng D, Chen L, Zhang J, Luo R, Zhao P, Ruan J. MiR-661 promotes tumor invasion and metastasis by directly inhibiting RB1 in non small cell lung cancer. Mol Cancer 2017; 16:122. [PMID: 28716024 PMCID: PMC5514511 DOI: 10.1186/s12943-017-0698-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/11/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Aberrant microRNA expression has been implicated in metastasis of cancers. MiR-661 accelerates proliferation and invasion of breast cancer and ovarian cancer, while impedes that of glioma. Its role in non small cell lung cancer (NSCLC) and underlying mechanism are worthy elucidation. METHODS Expression of miR-661 was measured with real-time PCR in both NSCLC tissues and cell lines. The effects of miR-661 on migration, invasion and metastasis capacity of NSCLC were evaluated using wound healing, transwell assay and animal models. Dual reporter luciferase assay and complementary experiments were performed to validate RB1 as a direct target of miR-661 for participation in the progression of NSCLC. RESULTS MiR-661 was upregulated in NSCLC tissues as compared to paired adjacent tissues and associated with shorter overall survival. Furthermore, miR-661 promoted proliferation, migration and metastasis of NSCLC. Then, we identified RB1 as a direct target of miR-661 through which miR-661 affected EMT process and metastasis of NSCLC. RB1 interacted with E2F1 and both could mediate EMT process in NSCLC. CONCLUSION MiR-661 promotes metastasis of NSCLC through RB/E2F1 signaling and EMT events, thus may serves as a negative prognostic factor and possible target for treatment of NSCLC patient.
Collapse
Affiliation(s)
- Feiye Liu
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315, China
| | - Yanjun Cai
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315, China.,Center for Geriatrics, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangdong, 510010, China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern medical University, Guangdong, 510515, China
| | - Jinzhang Chen
- Department of Oncology, Nanfang Hospital, Southern medical University, Guangdong, 510515, China
| | - Dayong Zheng
- Department of Oncology, Nanfang Hospital, Southern medical University, Guangdong, 510515, China
| | - Lu Chen
- Center for Geriatrics, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangdong, 510010, China
| | - Junyi Zhang
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315, China
| | - Rongcheng Luo
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315, China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003, China
| | - Jian Ruan
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315, China.
| |
Collapse
|
40
|
Yang F, Lu J, Yu Y, Gong Y. Epithelial to mesenchymal transition in Cyclosporine A-induced rat gingival overgrowth. Arch Oral Biol 2017; 81:48-55. [PMID: 28472720 DOI: 10.1016/j.archoralbio.2017.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/27/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Epithelial-mesenchymal transition (EMT) has been proved to occur in drug-induced gingival overgrowth. However, the specific pathogenic mechanism remains uncertain. The aim of this study is to examine the expression of EMT markers in cyclosporine A (CsA)-induced gingival overgrowth in rat models. MATERIAL AND METHODS Thirty-six rats were randomly divided into two groups. The experimental group received CsA therapy subcutaneously in a daily dose of 10mg/kg, and the other group was used as a control. Six rats per group were sacrificed at 20, 40 and 60days, and the gingivae were obtained. The expression of TGF-β1, E-Cadherin, ZEB1, ZEB2, and Snail1 were examined by quantitative real time PCR (qRT-PCR), western blotting, and immunohistochemistry. In addition, a group of microRNAs associated with EMT and fibrosis were also detected in gingival tissue by qRT-PCR. RESULTS The mRNA and protein levels of TGF-β1, ZEB1, and ZEB2 in gingivae were significantly upregulated after 40 and 60days of CsA administration. Conversely, the levels of E-cadherin were significantly downregulated in overgrowth sample at day 40 and 60. Intense immunohistochemmical staining for TGF-β1 were observed in the samples from CsA group at day 40 and 60. Concomitantly, the densities of E-cadherin were gradually decreased in the basal layers of epithelium with time. Three members of miR-200s (miR-200a, miR-200b and miR-200c) were significantly downregulated in CsA-treated rats at 40 and 60days, while miR-9, miR-23a and miR-155 were significantly upregulated when compared with those of the control group. CONCLUSIONS The process of EMT in CsA-induced rat gingival overgrowth is associated with increased expression of TGF-β1, ZEB1, and ZEB2, and decreased expression of E-cadherin.
Collapse
Affiliation(s)
- Fei Yang
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Lu
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology. Shanghai, China
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yiming Gong
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Zhao G, Li Y, Wang T. Potentiation of docetaxel sensitivity by miR-638 via regulation of STARD10 pathway in human breast cancer cells. Biochem Biophys Res Commun 2017; 487:255-261. [PMID: 28412359 DOI: 10.1016/j.bbrc.2017.04.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022]
Abstract
Acquired resistance to classical chemotherapeutics such as docetaxel (DTX) remains a critical challenge in breast cancer (BCa) treatment. Epigenetic modification by microRNAs (miRNAs) has been shown to play a crucial role in cancer drug resistance. Previous study, using human drug-resistant BCa tissues, has identified miR-638 as one of the most down-regulated miRNAs, but its exact roles and underlying mechanisms during the pathogenesis of chemoresistance remain to be determined. In the current study, we found that miR-638 expression was significantly down-regulated in clinical DTX-resistant BCa tissues compared to that in DTX-sensitive BCa tissues. By using the previously established DTX-resistant MCF-7 cells (MCF-7/R), we also confirmed that chemoresistant cells displayed decreased levels of miR-638. To provide the direct functional evidence, we inhibited and overexpressed miR-638 in different cell lines. Thereby, the cells were rendered more resistant or susceptible to DTX treatment. Mechanistically, the lipid-binding protein STARD10 was identified as a miR-638 target mediating the DTX-resistance. Hence, we provide a molecular explanation for acquired resistance to DTX that is caused by the miR-638 deficiency and subsequent STARD10 upregulation. In consequence, alteration of miR-638/STARD10 cascade may represent an attractive strategy in future adjuvant therapy along with DTX chemotherapy.
Collapse
Affiliation(s)
- Ge Zhao
- Department of Thyroid Gland and Breast Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, PR China
| | - Ying Li
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, PR China
| | - Ting Wang
- Department of Thyroid Gland and Breast Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, PR China.
| |
Collapse
|
42
|
Takano M, Nekomoto C, Kawami M, Yumoto R. Role of miR-34a in TGF-β1- and Drug-Induced Epithelial-Mesenchymal Transition in Alveolar Type II Epithelial Cells. J Pharm Sci 2017; 106:2868-2872. [PMID: 28408209 DOI: 10.1016/j.xphs.2017.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/17/2017] [Accepted: 04/03/2017] [Indexed: 11/28/2022]
Abstract
Epithelial-mesenchymal transition (EMT) of alveolar type II epithelial cells may play an important role in the pulmonary fibrosis induced by drugs such as bleomycin (BLM) and methotrexate (MTX). In this study, we examined the role of microRNAs (miRNAs) in drug-induced EMT using RLE/Abca3, a cell line having alveolar type II cell-like phenotype. Based on the screening using miRNA microarray analysis, it was found that the expression of some miRNAs, such as miR-34a, was increased by transforming growth factor (TGF)-β1 and BLM. An increase in miR-34a expression due to TGF-β1, BLM, and MTX was also observed in real-time PCR analysis. Therefore, miR-34a was focused upon in further studies. The expression of nectin-1 mRNA and protein, a possible target of miR-34a, was decreased by the treatment with TGF-β1, BLM, and MTX. In addition, when RLE/Abca3 cells were transfected with miR-34a mimic, the expression of nectin-1 mRNA and Abca3 mRNA, another target of miR34a, decreased significantly. Furthermore, the mRNA expression of cytokeratin 19, an epithelial marker, decreased, whereas that of α-smooth muscle actin, a mesenchymal marker, increased in the cells transfected with miR-34a mimic. These results suggest that miR-34a is involved in drug-induced EMT in alveolar epithelial cells, and possibly in lung fibrosis.
Collapse
Affiliation(s)
- Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Chinami Nekomoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Masashi Kawami
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ryoko Yumoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
43
|
O'Bryan S, Dong S, Mathis JM, Alahari SK. The roles of oncogenic miRNAs and their therapeutic importance in breast cancer. Eur J Cancer 2016; 72:1-11. [PMID: 27997852 DOI: 10.1016/j.ejca.2016.11.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022]
Abstract
Since the discovery of tumour suppressive miRNA in 2002, the dysregulation of miRNAs was implicated in many cancers, exhibiting both tumour suppressive and oncogenic roles. Dysregulation of miRNAs was found to be involved in the initiation of oncogenesis, as well as the progression, invasion and metastasis of cancers. While normal miRNA inhibitory functions help regulate gene expression in the cell, oncogenic miRNA, when dysregulated can lead to suppression of critical pathways that control apoptosis, cell cycle progression, growth and proliferation. This suppression allows for the upregulation of pro-oncogenic factors that drive cell survival, growth and proliferation. Due to emerging discoveries, oncogenic miRNAs are proving to be a critical component in cancers, such as breast cancer, and may provide novel avenues for cancer treatment. In this article, we discuss the roles of the most studied oncogenic miRNAs in breast cancer including clusters and families involved as well as the less studied and recently discovered oncogenic miRNAs. These miRNAs provide valuable information into the complexity of regulatory elements affected by their overexpression and the overall impact in the progression of breast cancer. Also, identifying miRNAs causing or leading to resistance or sensitivity to current anti-cancer drugs prior to treatment may lead to an improvement in treatment selection and overall patient response. This review summarizes known and recently discovered miRNAs in literature found to have oncogenic roles in breast cancer initiation and the progression, invasion and metastasis of the disease.
Collapse
Affiliation(s)
- Samia O'Bryan
- Department of Comparative Biomedical Science, School of Veterinary Science, Louisiana State University, Baton Rouge, LA, USA
| | - Shengli Dong
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, LSU School of Medicine, New Orleans, LA 70112, USA
| | - J Michael Mathis
- Department of Comparative Biomedical Science, School of Veterinary Science, Louisiana State University, Baton Rouge, LA, USA.
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, LSU School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
44
|
Nectins and nectin-like molecules (Necls): Recent findings and their role and regulation in spermatogenesis. Semin Cell Dev Biol 2016; 59:54-61. [DOI: 10.1016/j.semcdb.2016.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 12/29/2022]
|
45
|
Pandey AK, Zhang Y, Zhang S, Li Y, Tucker-Kellogg G, Yang H, Jha S. TIP60-miR-22 axis as a prognostic marker of breast cancer progression. Oncotarget 2016; 6:41290-306. [PMID: 26512777 PMCID: PMC4747406 DOI: 10.18632/oncotarget.5636] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/12/2015] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are 22- to 24-nucleotide, small, non-coding RNAs that bind to the 3′UTR of target genes to control gene expression. Consequently, their dysregulation contributes to many diseases, including diabetes and cancer. miR-22 is up-regulated in numerous metastatic cancers and recent studies have suggested a role for miR-22 in promoting stemness and metastasis. TIP60 is a lysine acetyl-transferase reported to be down-regulated in cancer but the molecular mechanism of this reduction is still unclear. In this study, we identify TIP60 as a target of miR-22. We show a negative correlation in the expression of TIP60 and miR-22 in breast cancer patients, and show that low levels of TIP60 and high levels of miR-22 are associated with poor overall survival. Furthermore, pathway analysis using high miR-22/low TIP60 and low miR-22/high TIP60 breast cancer patient datasets suggests association of TIP60/miR-22 with epithelial-mesenchymal transition (EMT), a key alteration in progression of cancer cells. We show that blocking endogenous miR-22 can restore TIP60 levels, which in turn decreases the migration and invasion capacity of metastatic breast cancer cell line. These results provide mechanistic insight into TIP60 regulation and evidence for the utility of the combination of TIP60 and miR-22 as prognostic indicator of breast cancer progression.
Collapse
Affiliation(s)
- Amit Kumar Pandey
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yanzhou Zhang
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Siting Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Ying Li
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Greg Tucker-Kellogg
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
46
|
Peng F, Xiong L, Tang H, Peng C, Chen J. Regulation of epithelial-mesenchymal transition through microRNAs: clinical and biological significance of microRNAs in breast cancer. Tumour Biol 2016; 37:14463-14477. [DOI: 10.1007/s13277-016-5334-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 09/06/2016] [Indexed: 12/16/2022] Open
|
47
|
Sung WJ, Kim H, Park KK. The biological role of epithelial-mesenchymal transition in lung cancer (Review). Oncol Rep 2016; 36:1199-206. [PMID: 27460444 DOI: 10.3892/or.2016.4964] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/22/2016] [Indexed: 11/06/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells gradually transform into mesenchymal-like cells losing their epithelial functionality and characteristics. EMT is thought to be involved in the pathogenesis of numerous lung diseases ranging from developmental disorders and fibrotic tissue remodeling to lung cancer. Lung cancer is the most lethal form of cancer worldwide, and despite significant therapeutic improvements, the patient survival rate still remains low. Activation of EMT endows invasive and metastatic properties upon cancer cells that favor successful colonization of distal target organs. The present review provides a brief insight into the mechanism and biological assessment methods of EMT in lung cancer and summarizes the recent literature highlighting the controversial experimental data and conclusions.
Collapse
Affiliation(s)
- Woo Jung Sung
- Department of Pathology, Catholic University of Daegu College of Medicine, Nam-gu, Daegu 42472, Republic of Korea
| | - Hongtae Kim
- Department of Anatomy, Catholic University of Daegu College of Medicine, Nam-gu, Daegu 42472, Republic of Korea
| | - Kwan-Kyu Park
- Department of Pathology, Catholic University of Daegu College of Medicine, Nam-gu, Daegu 42472, Republic of Korea
| |
Collapse
|
48
|
Heiler S, Wang Z, Zöller M. Pancreatic cancer stem cell markers and exosomes - the incentive push. World J Gastroenterol 2016; 22:5971-6007. [PMID: 27468191 PMCID: PMC4948278 DOI: 10.3748/wjg.v22.i26.5971] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/03/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX.
Collapse
|
49
|
Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Sci Rep 2016; 6:20032. [PMID: 26831044 PMCID: PMC4735518 DOI: 10.1038/srep20032] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022] Open
Abstract
Circulating microRNAs (miRNAs) are emerging biomarkers for type 2 diabetes mellitus (T2DM). However, a comprehensive characterization of the serum miRNA profile in patients with T2DM-associated microvascular disease (T2DMC) has rarely been reported. In this study, we obtained serum samples from 184 T2DM patients (92 with microvascular complications and 92 free of complications) and 92 age/gender-matched controls. The levels of 754 miRNAs were initially analyzed using a TaqMan Low Density Array (TLDA) in three pooled samples from 24 T2DM patients, 24 T2DMC patients and 24 controls. Markedly upregulated miRNAs in the patients' groups were subsequently validated individually by quantitative reverse-transcription PCR (RT-qPCR) in the same samples used for TLDA and further confirmed in another larger cohort consisting of 68 patients with T2DM, 68 patients with T2DMC and 68 controls. Five miRNAs were significantly upregulated in T2DM patients (p < 0.05) including miR-661, miR-571, miR-770-5p, miR-892b and miR-1303. Moreover, the levels of the five miRNAs were higher in patients with complications than in those without complications. Regression analyses revealed the five miRNAs were significantly correlated with microvascular complications (p < 0.05). The five serum miRNAs identified in our study hold potential as auxiliary biomarkers and novel risk factors for T2DM-associated microvascular complications.
Collapse
|
50
|
Molecular mechanisms of microRNAs in regulating epithelial-mesenchymal transitions in human cancers. Cancer Lett 2015; 371:301-13. [PMID: 26683775 DOI: 10.1016/j.canlet.2015.11.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022]
Abstract
The epithelial-mesenchymal transition (EMT) provides a strong driving force in the progression of various human cancers and the development of chemoresistance. Recently, numbers of studies have demonstrated that microRNAs (miRNAs), by post-transcriptionally silencing EMT-related molecules, can promote or inhibit the EMT process and play pivotal roles in effectively manipulating the occurrence, development, invasion, and metastasis of cancers. MiRNAs can also control the EMT or be controlled by genetic modification and mutual regulation, especially negative feedback. Therefore, miRNAs can be viewed as either oncogenes or tumor suppressor genes to facilitate or retard the EMT, resulting in far-reaching impact on tumor metastasis and effective diagnosis, treatment, and prognosis.
Collapse
|