1
|
Miao H, Wang L, Wu Q, Huang Z. Antimicrobial Peptides: Mechanism, Expressions, and Optimization Strategies. Probiotics Antimicrob Proteins 2025; 17:857-872. [PMID: 39528853 DOI: 10.1007/s12602-024-10391-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Antimicrobial peptides (AMPs) are favoured because of their broad-spectrum antimicrobial properties and because they do not easily develop microbial resistance. However, the low yield and difficult extraction processes of AMPs have become bottlenecks in large-scale industrial applications and scientific research. Microbial recombinant production may be the most economical and effective method of obtaining AMPs in large quantities. In this paper, we review the mechanism, summarize the current status of microbial recombinant production, and focus on strategies to improve the yield and activity of AMPs, in order to provide a reference for their large-scale production.
Collapse
Affiliation(s)
- Huabiao Miao
- School of Life Science, Yunnan Normal University, Kunming, 650500, China
- Engineering Research Center for Efficient Utilization of Characteristic Biological Resources in Yunnan, Ministry of Education, Kunming, 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China
| | - Lu Wang
- School of Life Science, Yunnan Normal University, Kunming, 650500, China
| | - Qian Wu
- School of Life Science, Yunnan Normal University, Kunming, 650500, China
- Engineering Research Center for Efficient Utilization of Characteristic Biological Resources in Yunnan, Ministry of Education, Kunming, 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China
| | - Zunxi Huang
- School of Life Science, Yunnan Normal University, Kunming, 650500, China.
- Engineering Research Center for Efficient Utilization of Characteristic Biological Resources in Yunnan, Ministry of Education, Kunming, 650500, China.
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China.
| |
Collapse
|
2
|
Dermawan D, Alotaiq N. Computational analysis of antimicrobial peptides targeting key receptors in infection-related cardiovascular diseases: molecular docking and dynamics insights. Sci Rep 2025; 15:8896. [PMID: 40087360 PMCID: PMC11909139 DOI: 10.1038/s41598-025-93683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/10/2025] [Indexed: 03/17/2025] Open
Abstract
Infection-related cardiovascular diseases (CVDs) pose a significant health challenge, driving the need for novel therapeutic strategies to target key receptors involved in inflammation and infection. Antimicrobial peptides (AMPs) show the potential to disrupt pathogenic processes and offer a promising approach to CVD treatment. This study investigates the binding potential of selected AMPs with critical receptors implicated in CVDs, aiming to explore their therapeutic potential. A comprehensive computational approach was employed to assess AMP interactions with CVD-related receptors, including ACE2, CRP, MMP9, NLRP3, and TLR4. Molecular docking studies identified AMPs with high binding affinities to these targets, notably Tachystatin, Pleurocidin, and Subtilisin A, which showed strong interactions with ACE2, CRP, and MMP9. Following docking, 100 ns molecular dynamics (MD) simulations confirmed the stability of AMP-receptor complexes, and MM/PBSA calculations provided quantitative insights into binding energies, underscoring the potential of these AMPs to modulate receptor activity in infection and inflammation contexts. The study highlights the therapeutic potential of Tachystatin, Pleurocidin, and Subtilisin A in targeting infection-related pathways in CVDs. These AMPs demonstrate promising receptor binding properties and stability in computational models. Future research should focus on in vitro and in vivo studies to confirm their efficacy and safety, paving the way for potential clinical applications in managing infection-related cardiovascular conditions.
Collapse
Affiliation(s)
- Doni Dermawan
- Applied Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, 00-661, Poland
| | - Nasser Alotaiq
- Health Sciences Research Center (HSRC), Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317, Saudi Arabia.
| |
Collapse
|
3
|
Zhao CY, Li X, Zhao T, Liu Y, Xia XS, Wu XM. Functional analysis of the Escherichia coli mrdA gene in melittin resistance. Front Microbiol 2025; 15:1516808. [PMID: 40110189 PMCID: PMC11920165 DOI: 10.3389/fmicb.2024.1516808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/16/2024] [Indexed: 03/22/2025] Open
Abstract
Objective The aim of this study is to examine the functional role and resistance mechanisms of the Escherichia coli (E. coli) peptidoglycan transpeptidase gene, mrdA, in resistance to melittin. Methods The resistance of E. coli strains with either knockout or overexpression of the mrdA gene to melittin was initially assessed. The differences in melittin absorption between these two strains were evaluated following depletion and heterologous expression of the mrdA gene. Subsequently, peptidoglycan was extracted from the strains to determine its capacity to adsorb melittin. Finally, the morphological changes in different strains induced by melittin exposure were examined under scanning electron microscopy. These analyses served to validate the role of peptidoglycan transpeptidase mrdA in melittin resistance and to hypothesize its potential resistance mechanism. Results The results clearly indicated a direct correlation between the degree of peptidoglycan cross-linking in E. coli and its enhanced resistance to melittin. Specifically, we found that increased cross-linking of peptidoglycan led to a thickening of the bacterial cell wall and a reduction in pore size. These structural changes potentially decrease the damage to the cell wall caused by melittin, as the thicker cell wall and smaller pores reduce the ability of melittin to penetrate and access the interior of bacterial cells. This mechanism effectively limits the contact between melittin and bacterial components, minimizing its destructive effects, and thereby conferring resistance to melittin in the bacteria. Conclusion This study is the first to elucidate the role of peptidoglycan in the cell wall of E. coli in the context of antimicrobial peptide resistance. Novel ideas have been proposed for the development of antibacterial drugs targeting the peptidoglycan of Gram-negative bacteria.
Collapse
Affiliation(s)
- Chong-Yi Zhao
- Department of Gynecology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiao Li
- Department of Gynecology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ting Zhao
- Department of Gynecology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ying Liu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xue-Shan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiao-Mei Wu
- Department of Gynecology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
4
|
Davani-Davari D, Tiwari RK, Parang K. Future applications of cyclic antimicrobial peptides in drug delivery. Expert Opin Drug Deliv 2025; 22:383-404. [PMID: 39876578 DOI: 10.1080/17425247.2025.2460661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/12/2025] [Accepted: 01/27/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Cyclic antimicrobial peptides (CAMPs) are gaining attention as promising candidates in advanced drug delivery systems due to their structural stability, resistance to proteolytic degradation, and versatile therapeutic potential. Their unique properties enable applications that extend beyond combating multidrug-resistant (MDR) pathogens. Their amphipathic and cell-penetrating properties allow them to efficiently transport drugs across cellular membranes. AREAS COVERED This review explores the structural advantages and mechanisms of action of CAMPs, emphasizing their role in drug delivery. The literature analysis (2010-2024) from PubMed, Scopus, and Web of Science highlights developments in CAMP-conjugated therapies, liposomal formulations, and encapsulation systems. The review also examines their antimicrobial potency, amphipathic and cell-penetrating properties, and integration into nanocarrier technologies to enhance drug stability, bioavailability, and precision targeting. Challenges such as toxicity, scalability, and cost are also discussed. CAMPs have the potential to revolutionize drug delivery through their robustness and multifunctionality, particularly in precision medicine. EXPERT OPINION Future advancements in peptide engineering, nanotechnology, and AI-driven design are expected to enhance CAMPs' therapeutic specificity, reduce toxicity, and broaden their applications, including oncology and gene therapy, paving the way for their integration into next-generation therapeutics.
Collapse
Affiliation(s)
- Dorna Davani-Davari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, USA
| | - Rakesh Kumar Tiwari
- Department of Biomedical Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, OR, USA
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, USA
| |
Collapse
|
5
|
Williams MD, Smith L. Streptococcus salivarius and Ligilactobacillus salivarius: Paragons of Probiotic Potential and Reservoirs of Novel Antimicrobials. Microorganisms 2025; 13:555. [PMID: 40142448 PMCID: PMC11944278 DOI: 10.3390/microorganisms13030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
This review highlights several basic problems associated with bacterial drug resistance, including the decreasing efficacy of commercially available antimicrobials as well as the related problem of microbiome irregularity and dysbiosis. The article explains that this present situation is addressable through LAB species, such as Streptococcus salivarius and Ligilactobacillus salivarius, which are well established synthesizers of both broad- and narrow-spectrum antimicrobials. The sheer number of antimicrobials produced by LAB species and the breadth of their biological effects, both in terms of their bacteriostatic/bactericidal abilities and their immunomodulation, make them prime candidates for new probiotics and antibiotics. Given the ease with which several of the molecules can be biochemically engineered and the fact that many of these compounds target evolutionarily constrained target sites, it seems apparent that these compounds and their producing organisms ought to be looked at as the next generation of robust dual action symbiotic drugs.
Collapse
Affiliation(s)
| | - Leif Smith
- Department of Biology, Texas A&M University, College Station, TX 77843, USA;
- Antimicrobial Division, Sano Chemicals Inc., Bryan, TX 77808, USA
| |
Collapse
|
6
|
O’Connor PM, Cotter PD, Hill C, Ross RP. Bactofencin A Displays a Delayed Killing Effect on a Clinical Strain of Staphylococcus aureus Which Is Greatly Accelerated in the Presence of Nisin. Antibiotics (Basel) 2025; 14:184. [PMID: 40001428 PMCID: PMC11851555 DOI: 10.3390/antibiotics14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background/objectives: Bacteriocins can be considered a novel source of natural alternatives to antibiotics or chemical food additives with the potential to fight against clinical and food pathogens. A number have already been commercialised as food preservatives, but they also have the potential to treat drug-resistant clinical pathogens and can play a role in immune modulation. To achieve their full potential, an understanding of their mode of action is required. Methods: Bactofencin A and nisin A were purified to homogeneity by reversed-phase HPLC and their effect on the mastitis pathogen Staphylococcus aureus DPC5246 was assessed by cell viability assays and flow cytometry. Results: We report that bactofencin A displays a delayed inhibitory effect against the mastitis pathogen, Staphylococcus aureus DPC5246, suggesting an unusual mode of action. This characteristic was clearly visible on BHI plate media, where formation of inhibition zones against the staphylococcal strain took 23 h compared to 6 h for the well-characterised nisin. This delayed killing and injury was also demonstrated using flow cytometry, where damage was evident 4 h after bacteriocin addition. Treatment with 2 μM bactofencin A resulted in approximately 20-fold higher numbers of injured and 50-fold higher numbers of dead cells when compared to untreated cells. Combining bactofencin A with the lantibiotic nisin A resulted in faster killing at lower bacteriocin concentrations. When combined in an equal ratio, the combination exhibited a 4-fold increase in inhibition compared to nisin A alone. These results demonstrate that the combination may be very effective in therapeutic applications against pathogenic staphylococci.
Collapse
Affiliation(s)
- Paula M. O’Connor
- Teagasc Food Research Centre, Moorepark, Co. Cork, P61 C996 Fermoy, Ireland; (P.M.O.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Co. Cork, P61 C996 Fermoy, Ireland; (P.M.O.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
7
|
Gani Z, Kumar A, Raje M, Raje CI. Antimicrobial peptides: An alternative strategy to combat antimicrobial resistance. Drug Discov Today 2025; 30:104305. [PMID: 39900281 DOI: 10.1016/j.drudis.2025.104305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
Antimicrobial peptides (AMPs) are a diverse group of naturally occurring molecules produced by eukaryotes and prokaryotes. They have an important role in innate immunity via their direct microbicidal properties or immunomodulatory activities against pathogens. With the widespread occurrence of antimicrobial resistance (AMR), AMPs are considered as viable alternatives for the treatment of multidrug-resistant microbes, inflammation, and, wound healing. The broad-spectrum antibacterial activity of AMPs is predominantly attributed to membrane disruption, leading to the formation of transmembrane pores and, eventually, cell lysis. However, mechanisms related to inhibition of cell wall synthesis, nucleic acid synthesis, protein synthesis, or enzymatic activity are also associated with these peptides. In this review, we discuss our current understanding, therapeutic uses and challenges associated with the clinical applications of AMPs.
Collapse
Affiliation(s)
- Zahid Gani
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Phase X, Sector 67, SAS Nagar, Punjab 160067, India; Center of Microbial Pathogenesis, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Ajay Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Phase X, Sector 67, SAS Nagar, Punjab 160067, India; Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manoj Raje
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Chaaya Iyengar Raje
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Phase X, Sector 67, SAS Nagar, Punjab 160067, India.
| |
Collapse
|
8
|
Joseph T, Smith L. Approach advancements for engineering novel peptide analogs of existing lantibiotics: where are we today? Expert Opin Drug Discov 2025; 20:17-30. [PMID: 39667922 DOI: 10.1080/17460441.2024.2441351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION The emergence of antibiotic resistance among the clinically important bacterial pathogens has increased healthcare costs and reduced patient safety and quality of life. Lantibiotics is a large class of ribosomally synthesized, and posttranslationally modified peptides have been the primary focus of numerous research aimed at discovering compounds for treating bacterial infections. AREAS COVERED The article explains the most up to date hierarchy of methods followed in the field for high throughput screening of lantibiotics/analogs with improved therapeutic properties. Herein, we explain how the structure and the biosynthesis of lantibiotics can be manipulated for the expansion of the horizon of lantibiotic potency. Furthermore, we discuss the lantibiotic analogs that have demonstrated the efficacy against bacterial pathogens of interest in animal models. EXPERT OPINION In this current age of rapidly advancing antimicrobial resistance, there is a dire need for the development of therapeutic agents that possess distinct mechanisms of action to existing modes of treatment. Recent advances in the understanding of many of the lantibiotic biosynthesis systems and the discovery of new analogs with superior properties to the native compound may have paved the way for the development of a much-needed novel potent class of antibiotic.
Collapse
Affiliation(s)
- Thushinari Joseph
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Leif Smith
- Department of Biology, Texas A&M University, College Station, TX, United States
- Antimicrobial Division, Sano Chemicals Inc, Bryan, TX, United States
| |
Collapse
|
9
|
Martian PC, Tertis M, Leonte D, Hadade N, Cristea C, Crisan O. Cyclic peptides: A powerful instrument for advancing biomedical nanotechnologies and drug development. J Pharm Biomed Anal 2025; 252:116488. [PMID: 39388867 DOI: 10.1016/j.jpba.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Cyclic peptides have emerged as an essential tool in the advancement of biomedical nanotechnologies, offering unique structural and functional advantages over linear peptides. This review article aims to highlight the roles of cyclic peptides in the development of biomedical fields, with a particular focus on their application in drug discovery and delivery. Cyclic peptides exhibit exceptional stability, bioavailability, and binding specificity, making them ideal candidates for therapeutic and diagnostic applications. We explore the synthesis and design strategies that enable the precise control of cyclic peptide structures, leading to enhanced performance in targeting specific cellular pathways. The article also highlights recent breakthroughs in the use of cyclic peptides for creating innovative drug delivery systems, including nanoparticle conjugates and peptide-drug conjugates, which have shown promise in improving the efficacy and safety profiles of existing traditional treatments. The integration of cyclic peptides into nanotechnological frameworks holds significant promise for addressing unmet medical needs, providing a foundation for future advancements in personalized medicine and targeted drug delivery.
Collapse
Affiliation(s)
- Paul Cristian Martian
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Denisa Leonte
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| | - Niculina Hadade
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania.
| | - Ovidiu Crisan
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| |
Collapse
|
10
|
Fernandes N, Achemchem F, Gonzales-Barron U, Cadavez V. Biopreservation strategies using bacteriocins to control meat spoilage and foodborne outbreaks. Ital J Food Saf 2024; 13:12558. [PMID: 39749182 PMCID: PMC11694622 DOI: 10.4081/ijfs.2024.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/09/2024] [Indexed: 01/04/2025] Open
Abstract
Fresh meat is highly perishable, presenting challenges in spoilage mitigation and waste reduction globally. Despite the efforts, foodborne outbreaks from meat consumption persist. Biopreservation offers a natural solution to extend shelf life by managing microbial communities. However, challenges include the effective diffusion of bacteriocins through the meat matrix and the potential inhibition of starter cultures by bacteriocins targeting closely related lactic acid bacteria (LAB). LAB, predominant in meat, produce bacteriocins - small, stable peptides with broad antimicrobial properties effective across varying pH and temperature conditions. This review highlights the recent advances in the optimization of bacteriocin use, considering its structure and mode of action. Moreover, the strengths and weaknesses of different techniques for bacteriocin screening, including novel bioengineering methods, are described. Finally, we discuss the advantages and limitations of the modes of application of bacteriocins toward the preservation of fresh, cured, and novel meat products.
Collapse
Affiliation(s)
- Nathália Fernandes
- Mountain Research Center, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
- Laboratory for Sustainability and Technology in Mountain Regions, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
| | - Fouad Achemchem
- LASIME Laboratory, Agadir Superior School of Technology, Ibn Zohr University, Agadir, Morocco
| | - Ursula Gonzales-Barron
- Mountain Research Center, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
- Laboratory for Sustainability and Technology in Mountain Regions, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
| | - Vasco Cadavez
- Mountain Research Center, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
- Laboratory for Sustainability and Technology in Mountain Regions, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
| |
Collapse
|
11
|
He Y, Deng J, Zhong X, Dai S, Song X, Zou Y, Ye G, Zhou X, Yin Z, Wan H, Zhao X. Engineered Hybrid Lantibiotic that Selectively Combats Infections Caused by Staphylococcus aureus. ACS Infect Dis 2024; 10:3891-3901. [PMID: 39512095 DOI: 10.1021/acsinfecdis.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The rapid emergence of antibiotic-resistant strains of Staphylococcus aureus presents a substantial challenge to global public health, underscoring the urgent need for novel antibiotics with diverse mechanisms of action. In this study, we conducted mutagenesis on the C-terminal region of the lantibiotic ripcin C to enhance its antimicrobial efficacy against S. aureus. The resulting optimized variant, ripcin CP23A, demonstrated potent and selective antimicrobial activity, with a minimal inhibitory concentration of 2-4 mg/L against S. aureus. Beyond its strong antimicrobial properties, ripcin CP23A exhibited significant antibiofilm activity against methicillin-resistant S. aureus (MRSA). Mechanistic studies revealed that, in addition to targeting lipid II, ripcin CP23A disrupts bacterial membranes, a capability absent in ripcin C, which may contribute to its superior antimicrobial and antibiofilm effects. Moreover, ripcin CP23A displayed favorable biosafety and plasma stability profiles. Notably, in a mouse model of MRSA-induced mastitis, ripcin CP23A effectively reduced bacterial load, alleviated inflammation, and preserved the normal histomorphology of mammary glands. This study introduces ripcin CP23A as a promising antibiotic candidate for the treatment of MRSA-related infections.
Collapse
Affiliation(s)
- Yongcheng He
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiarong Deng
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinyi Zhong
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shujun Dai
- Xinjiang Tycoon Group, Xinjiang, Changji 831199, China
| | - Xu Song
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanfeng Zou
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Ye
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Zhou
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongqiong Yin
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Wan
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinghong Zhao
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
12
|
Perez HA, Wang Z, Gerstman BS, He J, Chapagain PP. Simulation-Guided Molecular Modeling of Nisin and Lipid II Assembly and Membrane Pore Formation. J Chem Inf Model 2024; 64:7977-7986. [PMID: 39370850 DOI: 10.1021/acs.jcim.4c01050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The lantibiotic pore-forming peptide nisin is a promising candidate in the fight against multidrug-resistant bacteria due to its unique structure, which allows it to disrupt bacteria in two distinct ways─Lipid II trafficking and transmembrane pore formation. However, exactly how nisin and Lipid II assemble into oligomeric pore structures in the bacterial membrane is not known. Spontaneous peptide assembly into pores is difficult to observe in even the very long-time scale molecular dynamics (MD) simulations. In this study, we adopted an MD-guided modeling approach to investigate the nisin-nisin and nisin-Lipid II associations in the membrane environment. Through extensive microsecond-time scale all-atom MD simulations, we established that nisin monomers dimerize by forming β-sheets in a POPE:POPG lipid bilayer and oligomerize further to form stable transmembrane channels. We determined that these nisin dimers use Lipid II as a dimer interface to incur enhanced stability. Our results provide a clearer understanding of the self-assembly of nisin monomers within the membrane and insights into the role of Lipid II in the structural integrity of oligomeric structures.
Collapse
Affiliation(s)
- Hugo A Perez
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Zhe Wang
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Bernard S Gerstman
- Department of Physics, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Jin He
- Department of Physics, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
13
|
Fu Y, Pateri E, Kuipers OP. Discovery, Biosynthesis, and Characterization of Rodencin, a Two-Component Lanthipeptide, Harboring d-Amino Acids Introduced by the Unusual Dehydrogenase RodJ A. JOURNAL OF NATURAL PRODUCTS 2024; 87:2344-2354. [PMID: 39302883 PMCID: PMC11519912 DOI: 10.1021/acs.jnatprod.4c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Lanthipeptides, a group of ribosomally synthesized and post-translationally modified peptides (RiPPs), exhibit diverse structures and bioactivities. Their biosynthetic enzymes serve as valuable tools for peptide bioengineering. Here, we report a class II lanthipeptide biosynthetic gene cluster in a Bacillus strain, driving the biosynthesis of a two-component lanthipeptide, termed rodencin, featured by the presence of two different d-amino acids, i.e., d-Ala and d-Abu. Rodencin displays synergistic antimicrobial activity against food-borne pathogens such as Bacillus cereus, Staphylococcus aureus, and Listeria monocytogenes. The α-peptide of rodencin contains one d-Ala and the β-peptide features both d-Ala and d-Abu. These are installed by dehydratases RodM1 and RodM2 and dehydrogenase RodJA, the activities of which were successfully reconstituted using a dedicated E. coli expression system. To illustrate the unusual d-Abu incorporation potential of the enzymes, analogous to the d-amino acid-containing β peptide of lacticin 3147, was successfully produced with the rodencin heterologous expression system, by employing RodM2 and the dehydrogenase RodJA.
Collapse
Affiliation(s)
- Yuxin Fu
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG The Netherlands
| | - Eleftheria Pateri
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG The Netherlands
| | - Oscar P. Kuipers
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG The Netherlands
| |
Collapse
|
14
|
K R G, Balenahalli Narasingappa R, Vishnu Vyas G. Unveiling mechanisms of antimicrobial peptide: Actions beyond the membranes disruption. Heliyon 2024; 10:e38079. [PMID: 39386776 PMCID: PMC11462253 DOI: 10.1016/j.heliyon.2024.e38079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Antimicrobial peptides (AMPs) are a critical component of the innate immune system, playing a key role in defending against a variety of pathogenic microorganisms. While many AMPs act primarily on the cell membrane of target pathogens, leading to lysis and subsequent cell death, less is known about their nonlytic membrane activity. This nonlytic activity allows AMPs to target and disrupt bacterial cells without causing lysis, leading to bacterial death through alternative mechanisms.Understanding these nonlytic properties of AMPs is crucial, as they present a promising alternative to traditional antibiotics, which can induce bacterial resistance and have adverse effects on human health and the environment. The mechanisms by which AMPs exhibit nonlytic membrane activity are still being explored. However, it is believed that AMPs penetrate the bacterial membrane and interact directly with internal cellular components such as DNA, RNA, and various enzymes essential for microbial survival and replication. This interaction disrupts metabolic homeostasis, ultimately resulting in bacterial death.The nonlytic activity of AMPs also results in minimal damage to host cells and tissues, making them attractive candidates for the development of new, more effective antibiotics. This review emphasizes the mechanisms by which AMPs nonlytically target cellular components, including DNA, proteins, RNA, and other biomolecules, and discusses their clinical significance. Understanding these mechanisms may pave the way for developing alternatives to conventional antibiotics, offering a solution to the growing issue of antibiotic resistance.
Collapse
Affiliation(s)
- Gagandeep K R
- Department of Plant Biotechnology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, Karnataka, 560065, India
| | - Ramesh Balenahalli Narasingappa
- Department of Plant Biotechnology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, Karnataka, 560065, India
| | - Gatta Vishnu Vyas
- Department of Plant Biotechnology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, Karnataka, 560065, India
- ICAR-AICRP On Post Harvest Engineering and Technology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, 560065, India
| |
Collapse
|
15
|
Yuan L, Wu S, Tian K, Wang S, Wu H, Qiao J. Nisin-relevant antimicrobial peptides: synthesis strategies and applications. Food Funct 2024; 15:9662-9677. [PMID: 39246095 DOI: 10.1039/d3fo05619h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Small pentacyclic peptides, represented by nisin, have been successfully utilized as preservatives in the food industry and have evolved into a paradigm for understanding the genetic structure, expression, and control of genes created by lantibiotics. Due to the ever-increasing antibiotic resistance, nisin-relevant antimicrobial peptides have received much attention, which calls for a summarization of their synthesis, modification and applications. In this review, we first provided a timeline of select highlights in nisin biosynthesis and engineering. Then, we outlined the current developments in nisin synthesis. We also provided an overview of the engineering, screening, and production of nisin-relevant antimicrobial peptides based on enzyme alteration, substrate modification, and sequence mining. Furthermore, an updated summary of applications of nisin-relevant antimicrobial peptides has been developed for food applications. Finally, this study offers insights into emerging technologies, limitations and the future development of nisin-relevant antimicrobial peptides for pathogen inhibition, food preservatives, and improved health.
Collapse
Affiliation(s)
- Lin Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Agricultural University, Tianjin 300072, China
| | - Shengbo Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Kairen Tian
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shengli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
16
|
Ratrey P, Bhattacharya S, Coffey L, Thompson D, Hudson SP. Solid lipid nanoparticle formulation maximizes membrane-damaging efficiency of antimicrobial nisin Z peptide. Colloids Surf B Biointerfaces 2024; 245:114255. [PMID: 39303385 DOI: 10.1016/j.colsurfb.2024.114255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Solid lipid nanoparticles (SLNs) can protect and deliver naturally derived or synthetic biologically active products to target sites in vivo. Here, an SLN formulation produces a measured four-fold reduction in inhibitory concentration of an antimicrobial peptide nisin Z against S. aureus as compared to the free peptide, indicating the successful delivery and enhanced effectiveness of the SLN-encapsulated bacteriocin. Spherical SLNs of size 79.47 ± 2.01 nm and zeta potential of -9.8 ± 0.3 mV were synthesised. The lipid formulation maximizes the membrane-damaging mode of action of the free peptide with more and larger-sized pores formed on bacterial membranes treated with nisin Z SLNs as measured from scanning electron microscopy and transmission electron microscopy. Flow cytometry measurements precisely quantified an enhanced dye leakage from pre-labeled bacterial cells when treated with nisin Z-loaded SLNs compared to free peptide. The lipid formulation accelerated cell death by killing all the cells within half an hour compared to the equivalent concentration of free peptide which was not bactericidal. Molecular dynamics simulations revealed a mechanism of SLN facilitated binding to the lipid II bacterial cell wall precursor via enhanced adsorption of nisin Z at the inner bacterial cell membrane bilayer. These findings confirmed the potential of SLN formulations for the effective delivery of therapeutic peptides for next-generation antibiotics that are active at low concentrations with the potential to mitigate antimicrobial resistance.
Collapse
Affiliation(s)
- Poonam Ratrey
- Department of Chemical Sciences, SSPC the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Shayon Bhattacharya
- Department of Physics, SSPC the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Laura Coffey
- Department of Chemical Sciences, SSPC the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Damien Thompson
- Department of Physics, SSPC the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Sarah P Hudson
- Department of Chemical Sciences, SSPC the SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
| |
Collapse
|
17
|
George NL, Bennett EC, Orlando BJ. Guarding the walls: the multifaceted roles of Bce modules in cell envelope stress sensing and antimicrobial resistance. J Bacteriol 2024; 206:e0012324. [PMID: 38869304 PMCID: PMC11270860 DOI: 10.1128/jb.00123-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Bacteria have developed diverse strategies for defending their cell envelopes from external threats. In Firmicutes, one widespread strategy is to use Bce modules-membrane protein complexes that unite a peptide-detoxifying ABC transporter with a stress response coordinating two-component system. These modules provide specific, front-line defense for a wide variety of antimicrobial peptides and small molecule antibiotics as well as coordinate responses for heat, acid, and oxidative stress. Because of these abilities, Bce modules play important roles in virulence and the development of antibiotic resistance in a variety of pathogens, including Staphylococcus, Streptococcus, and Enterococcus species. Despite their importance, Bce modules are still poorly understood, with scattered functional data in only a small number of species. In this review, we will discuss Bce module structure in light of recent cryo-electron microscopy structures of the B. subtilis BceABRS module and explore the common threads and variations-on-a-theme in Bce module mechanisms across species. We also highlight the many remaining questions about Bce module function. Understanding these multifunctional membrane complexes will enhance our understanding of bacterial stress sensing and may point toward new therapeutic targets for highly resistant pathogens.
Collapse
Affiliation(s)
- Natasha L. George
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Ellen C. Bennett
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Benjamin J. Orlando
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
18
|
Vermeulen RR, van Staden ADP, Ollewagen T, van Zyl LJ, Luo Y, van der Donk WA, Dicks LMT, Smith C, Trindade M. Initial Characterization of the Viridisins' Biological Properties. ACS OMEGA 2024; 9:31832-31841. [PMID: 39072090 PMCID: PMC11270710 DOI: 10.1021/acsomega.4c03149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024]
Abstract
Viridisin A1 and A2 were previously heterologously expressed, purified, and characterized as ribosomally produced and post-translationally modified lanthipeptides. Such lanthipeptide operons are surprisingly common in Gram-negative bacteria, although their expression seems to be predominantly cryptic under laboratory conditions. However, the bioactivity and biological role of most lanthipeptide operons originating from marine-associated Pseudomonadota, such asThalassomonas viridans XOM25T, have not been described. Therefore, marine-associated Gram-negative lanthipeptide operons represent an untapped resource for novel structures, biochemistries, and bioactivities. Here, the upscaled production of viridisin A1 and A2 was performed for (methyl)lanthionine stereochemistry characterization, antibacterial, antifungal, and larval zebrafish behavioral screening. While antimicrobial activity was not observed, the VirBC modification machinery was found to install both dl- and ll-lanthionine stereoisomers. The VdsA1 and VdsA2 peptides induced sedative and stimulatory effects in zebrafish larvae, respectively, which is a bioactivity not previously reported from lanthipeptides. When combined, VdsA1 and VdsA2 counteracted the sedative and stimulatory effects observed when used individually.
Collapse
Affiliation(s)
- Ross Rayne Vermeulen
- Department
of Microbiology, Stellenbosch University, Matieland 7602, South Africa
- Institute
for Microbial Biotechnology and Metagenomics, University of the Western Cape, Level 2 New Life Sciences Building, Robert Sobukwe Rd, Bellville 7535, South Africa
| | - Anton Du Preez van Staden
- Experimental
Research Group, Faculty of Medicine and Health Sciences, Department
of Medicine, Stellenbosch University, Francie van Zijl Drive, Parow 7499, South Africa
| | - Tracey Ollewagen
- Experimental
Research Group, Faculty of Medicine and Health Sciences, Department
of Medicine, Stellenbosch University, Francie van Zijl Drive, Parow 7499, South Africa
| | - Leonardo Joaquim van Zyl
- Institute
for Microbial Biotechnology and Metagenomics, University of the Western Cape, Level 2 New Life Sciences Building, Robert Sobukwe Rd, Bellville 7535, South Africa
| | - Youran Luo
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | | | - Carine Smith
- Experimental
Research Group, Faculty of Medicine and Health Sciences, Department
of Medicine, Stellenbosch University, Francie van Zijl Drive, Parow 7499, South Africa
| | - Marla Trindade
- Institute
for Microbial Biotechnology and Metagenomics, University of the Western Cape, Level 2 New Life Sciences Building, Robert Sobukwe Rd, Bellville 7535, South Africa
| |
Collapse
|
19
|
Sheridan MS, Pandey P, Hansmann UHE. In Bacterial Membranes Lipid II Changes the Stability of Pores Formed by the Antimicrobial Peptide Nisin. J Phys Chem B 2024; 128:4741-4750. [PMID: 38696215 PMCID: PMC11104519 DOI: 10.1021/acs.jpcb.4c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Resistance to available antibiotics poses a growing challenge to modern medicine, as this often disallows infections to be controlled. This problem can only be alleviated by the development of new drugs. Nisin, a natural lantibiotic with broad antimicrobial activity, has shown promise as a potential candidate for combating antibiotic-resistant bacteria. However, nisin is poorly soluble and barely stable at physiological pH, which despite attempts to address these issues through mutant design has restricted its use as an antibacterial drug. Therefore, gaining a deeper understanding of the antimicrobial effectiveness, which relies in part on its ability to form pores, is crucial for finding innovative ways to manage infections caused by resistant bacteria. Using large-scale molecular dynamics simulations, we find that the bacterial membrane-specific lipid II increases the stability of pores formed by nisin and that the interplay of nisin and lipid II reduces the overall integrity of bacterial membranes by changing the local thickness and viscosity.
Collapse
Affiliation(s)
- Miranda S. Sheridan
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Preeti Pandey
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Ulrich H. E. Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
20
|
Zhang ZJ, Wu C, Moreira R, Dorantes D, Pappas T, Sundararajan A, Lin H, Pamer EG, van der Donk WA. Activity of Gut-Derived Nisin-like Lantibiotics against Human Gut Pathogens and Commensals. ACS Chem Biol 2024; 19:357-369. [PMID: 38293740 PMCID: PMC10877564 DOI: 10.1021/acschembio.3c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Recent advances in sequencing techniques unveiled the vast potential of ribosomally synthesized and post-translationally modified peptides (RiPPs) encoded in microbiomes. Class I lantibiotics such as nisin A, widely used as a food preservative, have been investigated for their efficacy in killing pathogens. However, the impact of nisin and nisin-like class I lantibiotics on commensal bacteria residing in the human gut remains unclear. Here, we report six gut-derived class I lantibiotics that are close homologues of nisin, four of which are novel. We applied an improved lantibiotic expression platform to produce and purify these lantibiotics for antimicrobial assays. We determined their minimal inhibitory concentration (MIC) against both Gram-positive human pathogens and gut commensals and profiled the lantibiotic resistance genes in these pathogens and commensals. Structure-activity relationship (SAR) studies with analogs revealed key regions and residues that impact their antimicrobial properties. Our characterization and SAR studies of nisin-like lantibiotics against both pathogens and human gut commensals could shed light on the future development of lantibiotic-based therapeutics and food preservatives.
Collapse
Affiliation(s)
- Zhenrun J. Zhang
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
- Department
of Microbiology, University of Chicago, Chicago, Illinois 60637, United States
| | - Chunyu Wu
- Department
of Biochemistry, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Ryan Moreira
- Department
of Chemistry, The Howard Hughes Medical
Institute, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Darian Dorantes
- Department
of Biochemistry, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Téa Pappas
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Anitha Sundararajan
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Huaiying Lin
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Eric G. Pamer
- Duchossois
Family Institute, University of Chicago, Chicago, Illinois 60637, United States
- Departments
of Medicine and Pathology, University of
Chicago, Chicago, Illinois 60637, United States
| | - Wilfred A. van der Donk
- Department
of Biochemistry, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United States
- Department
of Chemistry, The Howard Hughes Medical
Institute, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Elkhalifa ME, Ashraf M, Ahmed A, Usman A, Hamdoon AA, Elawad MA, Almalki MG, Mosa OF, Niyazov LN, Ayaz M. Polyphenols and their nanoformulations as potential antibiofilm agents against multidrug-resistant pathogens. Future Microbiol 2024; 19:255-279. [PMID: 38305223 DOI: 10.2217/fmb-2023-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/13/2023] [Indexed: 02/03/2024] Open
Abstract
The emergence of multidrug-resistant (MDR) pathogens is a major problem in the therapeutic management of infectious diseases. Among the bacterial resistance mechanisms is the development of an enveloped protein and polysaccharide-hydrated matrix called a biofilm. Polyphenolics have demonstrated beneficial antibacterial effects. Phenolic compounds mediate their antibiofilm effects via disruption of the bacterial membrane, deprivation of substrate, protein binding, binding to adhesion complex, viral fusion blockage and interactions with eukaryotic DNA. However, these compounds have limitations of chemical instability, low bioavailability, poor water solubility and short half-lives. Nanoformulations offer a promising solution to overcome these challenges by enhancing their antibacterial potential. This review summarizes the antibiofilm role of polyphenolics, their underlying mechanisms and their potential role as resistance-modifying agents.
Collapse
Affiliation(s)
- Modawy Em Elkhalifa
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Muhammad Ashraf
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan
| | - Alshebli Ahmed
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Assad Usman
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan
| | - Alashary Ae Hamdoon
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Mohammed A Elawad
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Meshari G Almalki
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
| | - Osama F Mosa
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
| | - Laziz N Niyazov
- Medical Chemistry Department, Bukhara State Medical Institute Named After Abu Ali Ibn Sino, Bukhara, Uzbekistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan
| |
Collapse
|
22
|
Guo L, Wambui J, Wang C, Broos J, Stephan R, Kuipers OP. Rombocin, a Short Stable Natural Nisin Variant, Displays Selective Antimicrobial Activity against Listeria monocytogenes and Employs a Dual Mode of Action to Kill Target Bacterial Strains. ACS Synth Biol 2024; 13:370-383. [PMID: 38194633 PMCID: PMC10804407 DOI: 10.1021/acssynbio.3c00612] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Nisin, with its unique mode of action and potent antimicrobial activity, serves as a remarkable inspiration for the design of novel antibiotics. However, peptides possess inherent weaknesses, particularly their susceptibility to proteolytic degradation, such as by trypsin, which limits their broader applications. This led us to speculate that natural variants of nisin produced by underexplored bacterial species can potentially overcome these limitations. We carried out genome mining of two Romboutsia sedimentorum strains, RC001 and RC002, leading to the discovery of rombocin A, which is a 25 amino acid residue short nisin variant that is predicted to have only four macrocycles compared to the known 31-35 amino acids long nisin variants with five macrocycles. Using the nisin-controlled expression system, we heterologously expressed fully modified and functional rombocin A in Lactococcus lactis and demonstrated its selective antimicrobial activity against Listeria monocytogenes. Rombocin A uses a dual mode of action involving lipid II binding activity and dissipation of the membrane potential to kill target bacteria. Stability tests confirmed its high stability at different pH values, temperatures, and in particular, against enzymatic degradation. With its gene-encoded characteristic, rombocin A is amenable to bioengineering to generate novel derivatives. Further mutation studies led to the identification of rombocin K, a mutant with enhanced bioactivity against L. monocytogenes. Our findings suggest that rombocin A and its bioengineered variant, rombocin K, are promising candidates for development as food preservatives or antibiotics against L. monocytogenes.
Collapse
Affiliation(s)
- Longcheng Guo
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Joseph Wambui
- Institute
for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Chenhui Wang
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Jaap Broos
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Roger Stephan
- Institute
for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Oscar P. Kuipers
- Department
of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
23
|
Puls JS, Winnerling B, Power JJ, Krüger AM, Brajtenbach D, Johnson M, Bilici K, Camus L, Fließwasser T, Schneider T, Sahl HG, Ghosal D, Kubitscheck U, Heilbronner S, Grein F. Staphylococcus epidermidis bacteriocin A37 kills natural competitors with a unique mechanism of action. THE ISME JOURNAL 2024; 18:wrae044. [PMID: 38470311 PMCID: PMC10988021 DOI: 10.1093/ismejo/wrae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Many bacteria produce antimicrobial compounds such as lantibiotics to gain advantage in the competitive natural environments of microbiomes. Epilancins constitute an until now underexplored family of lantibiotics with an unknown ecological role and unresolved mode of action. We discovered production of an epilancin in the nasal isolate Staphylococcus epidermidis A37. Using bioinformatic tools, we found that epilancins are frequently encoded within staphylococcal genomes, highlighting their ecological relevance. We demonstrate that production of epilancin A37 contributes to Staphylococcus epidermidis competition specifically against natural corynebacterial competitors. Combining microbiological approaches with quantitative in vivo and in vitro fluorescence microscopy and cryo-electron tomography, we show that A37 enters the corynebacterial cytoplasm through a partially transmembrane-potential-driven uptake without impairing the cell membrane function. Upon intracellular aggregation, A37 induces the formation of intracellular membrane vesicles, which are heavily loaded with the compound and are essential for the antibacterial activity of the epilancin. Our work sheds light on the ecological role of epilancins for staphylococci mediated by a mode of action previously unknown for lantibiotics.
Collapse
Affiliation(s)
- Jan-Samuel Puls
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
| | - Benjamin Winnerling
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany
| | - Jeffrey J Power
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Annika M Krüger
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Dominik Brajtenbach
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Matthew Johnson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kevser Bilici
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Laura Camus
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Fließwasser
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany
| | - Hans-Georg Sahl
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ulrich Kubitscheck
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, 72076 Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Present address: Faculty of Biology, Microbiology, Ludwig-Maximilians-University of Munich, 82152 München, Germany
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany
| |
Collapse
|
24
|
Son Y, Kim B, Kim P, Min J, Park Y, Yang J, Kim W, Toyofuku M, Park W. Unexpected vulnerability of Enterococcus faecium to polymyxin B under anaerobic condition. Gut Microbes 2024; 16:2438465. [PMID: 39663231 DOI: 10.1080/19490976.2024.2438465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 10/14/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024] Open
Abstract
Gram-positive Enterococcus faecium exhibited higher susceptibility (>4-fold) to polymyxin B (PMB), the canonical antimicrobial peptide against Gram-negative bacteria, under anaerobic condition than aerobic condition. Anaerobically grown E. faecium exhibited high vulnerability to PMB, leading to alteration of cell surface and morphology, as observed based on their high dansyl-PMB affinity (>2.9-fold), a proportion (>8.5-fold) of propidium iodide-stained cells, and observation of scanning electron microscopy results. Interestingly, our transcriptomic and chemical analyses revealed that enterocin B, produced anaerobically, imposes a burden on the cellular envelope when cells are exposed to PMB. This scenario was also supported by PMB susceptibility tests and killing curves, which showed that ΔentB knockout mutant cells were more resistant to PMB (32 µg/mL) compared to wild-type cells (4 µg/mL) under anaerobic condition. Fluorescent D-amino acid and BOCILLIN™-fluorescent profiling of transpeptidase activities in ΔentB mutant cells under anaerobic condition revealed similar levels of activity to those observed in WT cells under aerobic condition. The high level of secreted bacteriocins in WT under anaerobic condition likely led to significant membrane depolarization and loosening of the peptidoglycan layer, making the cells more permeable to PMB. Overall, our findings suggest that anaerobically produced bacteriocins, in conjunction with PMB, contribute to the killing of E. faecium by destabilizing its cell envelope.
Collapse
Affiliation(s)
- Yongjun Son
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea
| | - Bitnara Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Pureun Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Jihyeon Min
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Jihye Yang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea
| | - Masanori Toyofuku
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Thakur A, Ganesan R, Ray Dutta J. Antimicrobial Peptide-Based Nanomaterials in Combating Multidrug-Resistant Bacteria. NANOTECHNOLOGY BASED STRATEGIES FOR COMBATING ANTIMICROBIAL RESISTANCE 2024:177-201. [DOI: 10.1007/978-981-97-2023-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Wu C, Lower BA, Moreira R, Dorantes D, Le T, Giurgiu C, Shi Y, van der Donk WA. Investigation into the mechanism of action of the antimicrobial peptide epilancin 15X. Front Microbiol 2023; 14:1247222. [PMID: 38029153 PMCID: PMC10652874 DOI: 10.3389/fmicb.2023.1247222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Addressing the current antibiotic-resistance challenge would be aided by the identification of compounds with novel mechanisms of action. Epilancin 15X, a lantibiotic produced by Staphylococcus epidermidis 15 × 154, displays antimicrobial activity in the submicromolar range against a subset of pathogenic Gram-positive bacteria. S. epidermidis is a common member of the human skin or mucosal microbiota. We here investigated the mechanism of action of epilancin 15X. The compound is bactericidal against Staphylococcus carnosus as well as Bacillus subtilis and appears to kill these bacteria by membrane disruption. Structure-activity relationship studies using engineered analogs show that its conserved positively charged residues and dehydroamino acids are important for bioactivity, but the N-terminal lactyl group is tolerant of changes. Epilancin 15X treatment negatively affects fatty acid synthesis, RNA translation, and DNA replication and transcription without affecting cell wall biosynthesis. The compound appears localized to the surface of bacteria and is most potent in disrupting the membranes of liposomes composed of negatively charged membrane lipids in a lipid II independent manner. Epilancin 15X does not elicit a LiaRS response in B. subtilis but did upregulate VraRS in S. carnosus. Treatment of S. carnosus or B. subtilis with epilancin 15X resulted in an aggregation phenotype in microscopy experiments. Collectively these studies provide new information on epilancin 15X activity.
Collapse
Affiliation(s)
- Chunyu Wu
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Champaign, IL, United States
| | - B. Alexis Lower
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Champaign, IL, United States
| | - Ryan Moreira
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Champaign, IL, United States
| | - Darian Dorantes
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Champaign, IL, United States
| | - Tung Le
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Champaign, IL, United States
| | - Constantin Giurgiu
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Champaign, IL, United States
| | - Yanxiang Shi
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Champaign, IL, United States
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Champaign, IL, United States
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Champaign, IL, United States
| |
Collapse
|
27
|
Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol Adv 2023; 67:108210. [PMID: 37460047 DOI: 10.1016/j.biotechadv.2023.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.
Collapse
Affiliation(s)
- Melania Pilz
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Farah Qoura
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| |
Collapse
|
28
|
Guo L, Wambui J, Wang C, Muchaamba F, Fernandez-Cantos MV, Broos J, Tasara T, Kuipers OP, Stephan R. Cesin, a short natural variant of nisin, displays potent antimicrobial activity against major pathogens despite lacking two C-terminal macrocycles. Microbiol Spectr 2023; 11:e0531922. [PMID: 37754751 PMCID: PMC10581189 DOI: 10.1128/spectrum.05319-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/06/2023] [Indexed: 09/28/2023] Open
Abstract
Nisin is a widely used lantibiotic owing to its potent antimicrobial activity and its food-grade status. Its mode of action includes cell wall synthesis inhibition and pore formation, which are attributed to the lipid II binding and pore-forming domains, respectively. We discovered cesin, a short natural variant of nisin, produced by the psychrophilic anaerobe Clostridium estertheticum. Unlike other natural nisin variants, cesin lacks the two terminal macrocycles constituting the pore-forming domain. The current study aimed at heterologous expression and characterization of the antimicrobial activity and physicochemical properties of cesin. Following the successful heterologous expression of cesin in Lactococcus lactis, the lantibiotic demonstrated a broad and potent antimicrobial profile comparable to that of nisin. Determination of its mode of action using lipid II and lipoteichoic acid binding assays linked the potent antimicrobial activity to lipid II binding and electrostatic interactions with teichoic acids. Fluorescence microscopy showed that cesin lacks pore-forming ability in its natural form. Stability tests have shown the lantibiotic is highly stable at different pH values and temperature conditions, but that it can be degraded by trypsin. However, a bioengineered analog, cesin R15G, overcame the trypsin degradation, while keeping full antimicrobial activity. This study shows that cesin is a novel (small) nisin variant that efficiently kills target bacteria by inhibiting cell wall synthesis without pore formation. IMPORTANCE The current increase in antibiotic-resistant pathogens necessitates the discovery and application of novel antimicrobials. In this regard, we recently discovered cesin, which is a short natural variant of nisin produced by the psychrophilic Clostridium estertheticum. However, its suitability as an antimicrobial compound was in doubt due to its structural resemblance to nisin(1-22), a bioengineered short variant of nisin with low antimicrobial activity. Here, we show by heterologous expression, purification, and characterization that the potency of cesin is not only much higher than that of nisin(1-22), but that it is even comparable to the full-length nisin, despite lacking two C-terminal rings that are essential for nisin's activity. We show that cesin is a suitable scaffold for bioengineering to improve its applicability, such as resistance to trypsin. This study demonstrates the suitability of cesin for future application in food and/or for health as a potent and stable antimicrobial compound.
Collapse
Affiliation(s)
- Longcheng Guo
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Chenhui Wang
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Maria Victoria Fernandez-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Jaap Broos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Shukla R, Peoples AJ, Ludwig KC, Maity S, Derks MGN, De Benedetti S, Krueger AM, Vermeulen BJA, Harbig T, Lavore F, Kumar R, Honorato RV, Grein F, Nieselt K, Liu Y, Bonvin AMJJ, Baldus M, Kubitscheck U, Breukink E, Achorn C, Nitti A, Schwalen CJ, Spoering AL, Ling LL, Hughes D, Lelli M, Roos WH, Lewis K, Schneider T, Weingarth M. An antibiotic from an uncultured bacterium binds to an immutable target. Cell 2023; 186:4059-4073.e27. [PMID: 37611581 DOI: 10.1016/j.cell.2023.07.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/01/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Antimicrobial resistance is a leading mortality factor worldwide. Here, we report the discovery of clovibactin, an antibiotic isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant Gram-positive bacterial pathogens without detectable resistance. Using biochemical assays, solid-state nuclear magnetic resonance, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C55PP, lipid II, and lipid IIIWTA). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. This potent antibiotic holds the promise of enabling the design of improved therapeutics that kill bacterial pathogens without resistance development.
Collapse
Affiliation(s)
- Rhythm Shukla
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | | | - Kevin C Ludwig
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Maik G N Derks
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Stefania De Benedetti
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Annika M Krueger
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Bram J A Vermeulen
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Theresa Harbig
- Integrative Transcriptomics, Center for Bioinformatics, University of Tübingen, 72070 Tübingen, Germany
| | - Francesca Lavore
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Raj Kumar
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Rodrigo V Honorato
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Kay Nieselt
- Integrative Transcriptomics, Center for Bioinformatics, University of Tübingen, 72070 Tübingen, Germany
| | - Yangping Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Alexandre M J J Bonvin
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Ulrich Kubitscheck
- Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | | | - Anthony Nitti
- NovoBiotic Pharmaceuticals, Cambridge, MA 02138, USA
| | | | | | | | - Dallas Hughes
- NovoBiotic Pharmaceuticals, Cambridge, MA 02138, USA
| | - Moreno Lelli
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Kim Lewis
- Antimicrobial Discovery Center, Northeastern University, Department of Biology, Boston, MA 02115, USA
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany.
| | - Markus Weingarth
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
30
|
Kumar SR, Hu CC, Vi TTT, Chen DW, Lue SJ. Antimicrobial Peptide Conjugated on Graphene Oxide-Containing Sulfonated Polyetheretherketone Substrate for Effective Antibacterial Activities against Staphylococcus aureus. Antibiotics (Basel) 2023; 12:1407. [PMID: 37760704 PMCID: PMC10525520 DOI: 10.3390/antibiotics12091407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
In the present study, the antimicrobial peptide nisin was successfully conjugated onto the surface of sulfonated polyetheretherketone (SPEEK), which was decorated with graphene oxide (GO) to investigate its biofilm resistance and antibacterial properties. The PEEK was activated with sulfuric acid, resulting in a porous structure. The GO deposition fully covered the porous SPEEK specimen. The nisin conjugation was accomplished using the crosslinker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) through a dip-coating method. The surface micrographs of the SPEEK-GO-nisin sample indicated that nisin formed discrete islets on the flat GO surface, allowing both the GO and nisin to perform a bactericidal effect. The developed materials were tested for bactericidal efficacy against Staphylococcus aureus (S. aureus). The SPEEK-GO-nisin sample had the highest antibacterial activity with an inhibition zone diameter of 27 mm, which was larger than those of the SPEEK-nisin (19 mm) and SPEEK-GO (10 mm) samples. Conversely, no inhibitory zone was observed for the PEEK and SPEEK samples. The surface micrographs of the bacteria-loaded SPEEK-GO-nisin sample demonstrated no bacterial adhesion and no biofilm formation. The SPEEK-nisin and SPEEK-GO samples showed some bacterial attachment, whereas the pure PEEK and SPEEK samples had abundant bacterial colonies and thick biofilm formation. These results confirmed the good biofilm resistance and antibacterial efficacy of the SPEEK-GO-nisin sample, which is promising for implantable orthopedic applications.
Collapse
Affiliation(s)
- Selvaraj Rajesh Kumar
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (S.R.K.); (T.T.T.V.)
| | - Chih-Chien Hu
- Department of Orthopedics, Chang Gung Memorial Hospital, Linkou, Taoyuan City 333, Taiwan;
| | - Truong Thi Tuong Vi
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (S.R.K.); (T.T.T.V.)
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City 333, Taiwan
| | - Dave W. Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung City 204, Taiwan
| | - Shingjiang Jessie Lue
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (S.R.K.); (T.T.T.V.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung City 204, Taiwan
- Department of Safety, Health and Environment Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| |
Collapse
|
31
|
Heinzinger LR, Pugh AR, Wagner JA, Otto M. Evaluating the Translational Potential of Bacteriocins as an Alternative Treatment for Staphylococcus aureus Infections in Animals and Humans. Antibiotics (Basel) 2023; 12:1256. [PMID: 37627676 PMCID: PMC10451987 DOI: 10.3390/antibiotics12081256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance remains a global threat to human and animal health. Staphylococcus aureus is an opportunistic pathogen that causes minor to life-threatening infections. The widespread use of antibiotics in the clinical, veterinary, and agricultural setting combined with the increasing prevalence of antibiotic-resistant S. aureus strains makes it abundantly clear that alternatives to antibiotics are urgently needed. Bacteriocins represent one potential alternative therapeutic. They are antimicrobial peptides that are produced by bacteria that are generally nontoxic and have a relatively narrow target spectrum, and they leave many commensals and most mammalian cells unperturbed. Multiple studies involving bacteriocins (e.g., nisin, epidermicin, mersacidin, and lysostaphin) have demonstrated their efficacy at eliminating or treating a wide variety of S. aureus infections in animal models. This review provides a comprehensive and updated evaluation of animal studies involving bacteriocins and highlights their translational potential. The strengths and limitations associated with bacteriocin treatments compared with traditional antibiotic therapies are evaluated, and the challenges that are involved with implementing novel therapeutics are discussed.
Collapse
Affiliation(s)
| | | | | | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA; (L.R.H.); (A.R.P.); (J.A.W.)
| |
Collapse
|
32
|
Musiejuk M, Kafarski P. Engineering of Nisin as a Means for Improvement of Its Pharmacological Properties: A Review. Pharmaceuticals (Basel) 2023; 16:1058. [PMID: 37630973 PMCID: PMC10459688 DOI: 10.3390/ph16081058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Lantibiotics are believed to have a conceivable potential to be used as therapeutics, especially against clinically resistant bacterial strains. However, their low solubility and poor stability under physiological conditions limit their availability for clinical studies and further pharmaceutical commercialization. Nisin is a readily available and cheap lanthipeptide and thus serves as a good model in the search for the tools to engineer lantibiotics with improved pharmacological properties. This review aims to address technologies that can be applied to alter and enhance the antimicrobial activity, antibacterial spectrum and physicochemical properties (solubility, solution stability and protease resistance) of nisin. There are basically two general means to obtain nisin analogs-protein engineering and chemical functionalization of this antibiotic. Although bioengineering techniques have been well developed and enable the creation of nisin mutants of variable structures and properties, they are lacking spectacular effects so far. Chemical modifications of nisin based on utilization of the reactivity of its free amino and carboxylic moieties, as well as reactivity of the double bonds of its dehydroamino acids, are in their infancy.
Collapse
Affiliation(s)
| | - Paweł Kafarski
- Faculty of Agriculture and Forestry, University of Warmia and Mazury, pl. Łódzki 4, 10-957 Olsztyn, Poland;
| |
Collapse
|
33
|
Shleeva MO, Kondratieva DA, Kaprelyants AS. Bacillus licheniformis: A Producer of Antimicrobial Substances, including Antimycobacterials, Which Are Feasible for Medical Applications. Pharmaceutics 2023; 15:1893. [PMID: 37514078 PMCID: PMC10383908 DOI: 10.3390/pharmaceutics15071893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Bacillus licheniformis produces several classes of antimicrobial substances, including bacteriocins, which are peptides or proteins with different structural composition and molecular mass: ribosomally synthesized by bacteria (1.4-20 kDa), non-ribosomally synthesized peptides and cyclic lipopeptides (0.8-42 kDa) and exopolysaccharides (>1000 kDa). Different bacteriocins act against Gram-positive or Gram-negative bacteria, fungal pathogens and amoeba cells. The main mechanisms of bacteriocin lytic activity include interaction of peptides with membranes of target cells resulting in structural alterations, pore-forming, and inhibition of cell wall biosynthesis. DNase and RNase activity for some bacteriocines are also postulated. Non-ribosomal peptides are synthesized by special non-ribosomal multimodular peptide synthetases and contain unnatural amino acids or fatty acids. Their harmful effect is due to their ability to form pores in biological membranes, destabilize lipid packaging, and disrupt the peptidoglycan layer. Lipopeptides, as biosurfactants, are able to destroy bacterial biofilms. Secreted polysaccharides are high molecular weight compounds, composed of repeated units of sugar moieties attached to a carrier lipid. Their antagonistic action was revealed in relation to bacteria, viruses, and fungi. Exopolysaccharides also inhibit the formation of biofilms by pathogenic bacteria and prevent their colonization on various surfaces. However, mechanism of the harmful effect for many secreted antibacterial substances remains unknown. The antimicrobial activity for most substances has been studied in vitro only, but some substances have been characterized in vivo and they have found practical applications in medicine and veterinary. The cyclic lipopeptides that have surfactant properties are used in some industries. In this review, special attention is paid to the antimycobacterials produced by B. licheniformis as a possible approach to combat multidrug-resistant and latent tuberculosis. In particular, licheniformins and bacitracins have shown strong antimycobacterial activity. However, the medical application of some antibacterials with promising in vitro antimycobacterial activity has been limited by their toxicity to animals and humans. As such, similar to the enhancement in the antimycobacterial activity of natural bacteriocins achieved using genetic engineering, the reduction in toxicity using the same approach appears feasible. The unique capability of B. licheniformis to synthesize and produce a range of different antibacterial compounds means that this organism can act as a natural universal vehicle for antibiotic substances in the form of probiotic cultures and strains to combat various types of pathogens, including mycobacteria.
Collapse
Affiliation(s)
- Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| | - Daria A Kondratieva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| | - Arseny S Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
34
|
Chen N, Jiang C. Antimicrobial peptides: Structure, mechanism, and modification. Eur J Med Chem 2023; 255:115377. [PMID: 37099837 DOI: 10.1016/j.ejmech.2023.115377] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023]
Affiliation(s)
- Na Chen
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Cheng Jiang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
35
|
Guo L, Wang C, Broos J, Kuipers OP. Lipidated variants of the antimicrobial peptide nisin produced via incorporation of methionine analogs for click chemistry show improved bioactivity. J Biol Chem 2023; 299:104845. [PMID: 37209826 PMCID: PMC10404616 DOI: 10.1016/j.jbc.2023.104845] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/22/2023] Open
Abstract
The increase in antibiotic resistance calls for accelerated molecular engineering strategies to diversify natural products for drug discovery. The incorporation of non-canonical amino acids (ncAAs) is an elegant strategy for this purpose, offering a diverse pool of building blocks to introduce desired properties into antimicrobial lanthipeptides. We here report an expression system using Lactococcus lactis as a host for non-canonical amino acid incorporation with high efficiency and yield. We show that incorporating the more hydrophobic analog ethionine (instead of methionine) into nisin improves its bioactivity against several Gram-positive strains we tested. New-to-nature variants were further created by click chemistry. By azidohomoalanine (Aha) incorporation and subsequent click chemistry, we obtained lipidated variants at different positions in nisin or in truncated nisin variants. Some of them show improved bioactivity and specificity against several pathogenic bacterial strains. These results highlight the ability of this methodology for lanthipeptide multi-site lipidation, to create new-to-nature antimicrobial products with diverse features, and extend the toolbox for (lanthi)peptide drug improvement and discovery.
Collapse
Affiliation(s)
- Longcheng Guo
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Chenhui Wang
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Jaap Broos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
36
|
Field D, Fernandez de Ullivarri M, Ross RP, Hill C. After a century of nisin research - where are we now? FEMS Microbiol Rev 2023; 47:fuad023. [PMID: 37300874 PMCID: PMC10257480 DOI: 10.1093/femsre/fuad023] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/13/2023] Open
Abstract
It is almost a century since nisin was discovered in fermented milk cultures, coincidentally in the same year that penicillin was first described. Over the last 100 years this small, highly modified pentacyclic peptide has not only found success in the food industry as a preservative but has also served as the paradigm for our understanding of the genetic organization, expression, and regulation of genes involved in lantibiotic biosynthesis-one of the few cases of extensive post-translation modification in prokaryotes. Recent developments in understanding the complex biosynthesis of nisin have shed light on the cellular location of the modification and transport machinery and the co-ordinated series of spatio-temporal events required to produce active nisin and provide resistance and immunity. The continued unearthing of new natural variants from within human and animal gastrointestinal tracts has sparked interest in the potential application of nisin to influence the microbiome, given the growing recognition of the role the gastrointestinal microbiota plays in health and disease. Moreover, interdisciplinary approaches have taken advantage of biotechnological advancements to bioengineer nisin to produce novel variants and expand nisin functionality for applications in the biomedical field. This review will discuss the latest progress in these aspects of nisin research.
Collapse
Affiliation(s)
- Des Field
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| | | | - R Paul Ross
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| |
Collapse
|
37
|
Shukla R, Peoples AJ, Ludwig KC, Maity S, Derks MG, de Benedetti S, Krueger AM, Vermeulen BJ, Lavore F, Honorato RV, Grein F, Bonvin A, Kubitscheck U, Breukink E, Achorn C, Nitti A, Schwalen CJ, Spoering AL, Ling LL, Hughes D, Lelli M, Roos WH, Lewis K, Schneider T, Weingarth M. A new antibiotic from an uncultured bacterium binds to an immutable target. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540765. [PMID: 37292624 PMCID: PMC10245560 DOI: 10.1101/2023.05.15.540765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antimicrobial resistance is a leading mortality factor worldwide. Here we report the discovery of clovibactin, a new antibiotic, isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant bacterial pathogens without detectable resistance. Using biochemical assays, solid-state NMR, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C 55 PP, Lipid II, Lipid WTA ). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate, but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the irreversible sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. Uncultured bacteria offer a rich reservoir of antibiotics with new mechanisms of action that could replenish the antimicrobial discovery pipeline.
Collapse
Affiliation(s)
- Rhythm Shukla
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | - Kevin C. Ludwig
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maik G.N. Derks
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Stefania de Benedetti
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Annika M Krueger
- Institute for Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Bram J.A. Vermeulen
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Francesca Lavore
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Rodrigo V. Honorato
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Alexandre Bonvin
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ulrich Kubitscheck
- Institute for Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | - Anthony Nitti
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | | | - Amy L. Spoering
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | - Losee Lucy Ling
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | - Dallas Hughes
- NovoBiotic Pharmaceuticals, Cambridge, Massachusetts 02138, USA
| | - Moreno Lelli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, via Sacconi 6, Sesto Fiorentino, 50019 Italy
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019 Italy
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kim Lewis
- Antimicrobial Discovery Center, Northeastern University, Department of Biology, Boston, Massachusetts 02115, USA
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Markus Weingarth
- NMR Spectroscopy, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
38
|
Wu J, Zang M, Wang S, Qiao X, Zhao B, Bai J, Zhao Y, Shi Y. Lactoferricin, an antimicrobial motif derived from lactoferrin with food preservation potential. Crit Rev Food Sci Nutr 2023; 64:9032-9044. [PMID: 37158176 DOI: 10.1080/10408398.2023.2207650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The growth of bacteria and fungi may cause disease inf human or spoilage of food. New antimicrobial substances need to be discovered. Lactoferricin (LFcin) is a group of antimicrobial peptides derived from the N-terminal region of the milk protein lactoferrin (LF). LFcin has antimicrobial ability against a variety of microorganisms, which is significantly better than that of its parent version. Here, we review the sequences, structures, and antimicrobial activities of this family and elucidated the motifs of structural and functional significance, as well as its application in food. Using sequence and structural similarity searches, we identified 43 new LFcins from the mammalian LFs deposited in the protein databases, which are grouped into six families according to their origins (Primates, Rodentia, Artiodactyla, Perissodactyla, Pholidota, and Carnivora). This work expands the LFcin family and will facilitate further characterization of novel peptides with antimicrobial potential. Considering the antimicrobial effect of LFcin on foodborne pathogens, we describe the application of these peptides from the prospective of food preservation.
Collapse
Affiliation(s)
- Jiajia Wu
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing, China
| | - Mingwu Zang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing, China
| | - Shouwei Wang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing, China
| | - Xiaoling Qiao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing, China
| | - Bing Zhao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing, China
| | - Jing Bai
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing, China
| | - Yan Zhao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing, China
| | - Yuxuan Shi
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing, China
| |
Collapse
|
39
|
Wu J, Zang M, Wang S, Zhao B, Bai J, Xu C, Shi Y, Qiao X. Nisin: From a structural and meat preservation perspective. Food Microbiol 2023; 111:104207. [PMID: 36681394 DOI: 10.1016/j.fm.2022.104207] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Nisin is a posttranslationally modified antimicrobial peptide that is widely used as a food preservative. It contains five cyclic thioethers of varying sizes. Nisin activity and stability are closely related to its primary and three dimensional structures. It has nine reported natural variants. Nisin A is the most studied nisin as it was the first one purified. Here, we review the sequence feature of nisin A and its natural variants, and their biosynthesis pathway, mode of action and application as a meat preservative. We systematically illustrate the functional domains of the main enzymes (NisB, NisC, and NisP) involved in nisin synthesis. NisB was shown to dehydrate its substrate NisA via a tRNA associated glutamylation mechanism. NisC catalysed the cyclization of the didehydro amino acids with the neighboring cysteine residues. After cyclization, the leader peptide is removed by the protease NisP. According to multiple sequence alignments, we detected five conserved sites Dha5, Pro9, Gly14, Leu16, and Lys22. These residues are probably the structural and functional important ones that can be modified to produce peptides versions with enhanced antimicrobial activity. Through comparing various application methods of nisin in different meats, the antimicrobial effects of nisin used individually or in combination with other natural substances were clarified.
Collapse
Affiliation(s)
- Jiajia Wu
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068, Beijing, China
| | - Mingwu Zang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068, Beijing, China.
| | - Shouwei Wang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068, Beijing, China
| | - Bing Zhao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068, Beijing, China
| | - Jing Bai
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068, Beijing, China
| | - Chenchen Xu
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068, Beijing, China
| | - Yuxuan Shi
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068, Beijing, China
| | - Xiaoling Qiao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068, Beijing, China.
| |
Collapse
|
40
|
Srisuphanunt M, Wilairatana P, Kooltheat N, Duangchan T, Katzenmeier G, Rose JB. Molecular Mechanisms of Antibiotic Resistance and Novel Treatment Strategies for Helicobacter pylori Infections. Trop Med Infect Dis 2023; 8:163. [PMID: 36977164 PMCID: PMC10057134 DOI: 10.3390/tropicalmed8030163] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Helicobacter pylori infects approximately 50% of the world's population and is considered the major etiological agent of severe gastric diseases, such as peptic ulcers and gastric carcinoma. Increasing resistance to standard antibiotics has now led to an ever-decreasing efficacy of eradication therapies and the development of novel and improved regimens for treatment is urgently required. Substantial progress has been made over the past few years in the identification of molecular mechanisms which are conducive to resistant phenotypes as well as for efficient strategies to counteract strain resistance and to avoid the use of ineffective antibiotics. These involve molecular testing methods, improved salvage therapies, and the discovery of novel and potent antimicrobial compounds. High rates of prevalence and gastric cancer are currently observed in Asian countries, including Japan, China, Korea, and Taiwan, where concomitantly intensive research efforts were initiated to explore advanced eradication regimens aimed at reducing the risk of gastric cancer. In this review, we present an overview of the known molecular mechanisms of antibiotic resistance and discuss recent intervention strategies for H. pylori diseases, with a view of the research progress in Asian countries.
Collapse
Affiliation(s)
- Mayuna Srisuphanunt
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Excellent Center for Dengue and Community Public Health, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nateelak Kooltheat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Hematology and Transfusion Science Research Center, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Thitinat Duangchan
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Hematology and Transfusion Science Research Center, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Gerd Katzenmeier
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Joan B. Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
41
|
Kuraji R, Shiba T, Dong TS, Numabe Y, Kapila YL. Periodontal treatment and microbiome-targeted therapy in management of periodontitis-related nonalcoholic fatty liver disease with oral and gut dysbiosis. World J Gastroenterol 2023; 29:967-996. [PMID: 36844143 PMCID: PMC9950865 DOI: 10.3748/wjg.v29.i6.967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
A growing body of evidence from multiple areas proposes that periodontal disease, accompanied by oral inflammation and pathological changes in the microbiome, induces gut dysbiosis and is involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). A subgroup of NAFLD patients have a severely progressive form, namely nonalcoholic steatohepatitis (NASH), which is characterized by histological findings that include inflammatory cell infiltration and fibrosis. NASH has a high risk of further progression to cirrhosis and hepatocellular carcinoma. The oral microbiota may serve as an endogenous reservoir for gut microbiota, and transport of oral bacteria through the gastro-intestinal tract can set up a gut microbiome dysbiosis. Gut dysbiosis increases the production of potential hepatotoxins, including lipopolysaccharide, ethanol, and other volatile organic compounds such as acetone, phenol and cyclopentane. Moreover, gut dysbiosis increases intestinal permeability by disrupting tight junctions in the intestinal wall, leading to enhanced translocation of these hepatotoxins and enteric bacteria into the liver through the portal circulation. In particular, many animal studies support that oral administration of Porphyromonas gingivalis, a typical periodontopathic bacterium, induces disturbances in glycolipid metabolism and inflammation in the liver with gut dysbiosis. NAFLD, also known as the hepatic phenotype of metabolic syndrome, is strongly associated with metabolic complications, such as obesity and diabetes. Periodontal disease also has a bidirectional relationship with metabolic syndrome, and both diseases may induce oral and gut microbiome dysbiosis with insulin resistance and systemic chronic inflammation cooperatively. In this review, we will describe the link between periodontal disease and NAFLD with a focus on basic, epidemiological, and clinical studies, and discuss potential mechanisms linking the two diseases and possible therapeutic approaches focused on the microbiome. In conclusion, it is presumed that the pathogenesis of NAFLD involves a complex crosstalk between periodontal disease, gut microbiota, and metabolic syndrome. Thus, the conventional periodontal treatment and novel microbiome-targeted therapies that include probiotics, prebiotics and bacteriocins would hold great promise for preventing the onset and progression of NAFLD and subsequent complications in patients with periodontal disease.
Collapse
Affiliation(s)
- Ryutaro Kuraji
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo 102-0071, Japan
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Takahiko Shiba
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States
- Department of Periodontology, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Tien S Dong
- The Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Department of Medicine, University of California David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo 102-8159, Japan
| | - Yvonne L Kapila
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143, United States
- Sections of Biosystems and Function and Periodontics, Professor and Associate Dean of Research, Felix and Mildred Yip Endowed Chair in Dentistry, University of California Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
42
|
Antibacterial natural products from microbial and fungal sources: a decade of advances. Mol Divers 2023; 27:517-541. [PMID: 35301633 DOI: 10.1007/s11030-022-10417-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 02/08/2023]
Abstract
Throughout the ages the world has witnessed the outbreak of many infectious diseases. Emerging microbial diseases pose a serious threat to public health. Increasing resistance of microorganisms towards the existing drugs makes them ineffective. In fact, anti-microbial resistance is declared as one of the top public health threats by WHO. Hence, there is an urge for the discovery of novel antimicrobial drugs to combat with this challenge. Structural diversity and unique pharmacological effects make natural products a prime source of novel drugs. Staggeringly, in spite of its extensive biodiversity, a prominent portion of microorganism species remains unexplored for the identification of bioactives. Microorganisms are a predominant source of new chemical entities and there are remarkable number of antimicrobial drugs developed from it. In this review, we discuss the contributions of microorganism based natural products as effective antibacterial agents, studied during the period of 2010-2020. The review encompasses over 140 structures which are either natural products or semi-synthetic derivatives of microbial natural products. 65 of them are identified as newly discovered natural products. All the compounds discussed herein, have exhibited promising efficacy against various bacterial strains.
Collapse
|
43
|
Knospe CV, Kamel M, Spitz O, Hoeppner A, Galle S, Reiners J, Kedrov A, Smits SHJ, Schmitt L. The structure of MadC from Clostridium maddingley reveals new insights into class I lanthipeptide cyclases. Front Microbiol 2023; 13:1057217. [PMID: 36741885 PMCID: PMC9889658 DOI: 10.3389/fmicb.2022.1057217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
The rapid emergence of microbial multi-resistance against antibiotics has led to intense search for alternatives. One of these alternatives are ribosomally synthesized and post-translationally modified peptides (RiPPs), especially lantibiotics. They are active in a low nanomolar range and their high stability is due to the presence of characteristic (methyl-) lanthionine rings, which makes them promising candidates as bacteriocides. However, innate resistance against lantibiotics exists in nature, emphasizing the need for artificial or tailor-made lantibiotics. Obviously, such an approach requires an in-depth mechanistic understanding of the modification enzymes, which catalyze the formation of (methyl-)lanthionine rings. Here, we determined the structure of a class I cyclase (MadC), involved in the modification of maddinglicin (MadA) via X-ray crystallography at a resolution of 1.7 Å, revealing new insights about the structural composition of the catalytical site. These structural features and substrate binding were analyzed by mutational analyses of the leader peptide as well as of the cyclase, shedding light into the mode of action of MadC.
Collapse
Affiliation(s)
- C. Vivien Knospe
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Kamel
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Astrid Hoeppner
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Galle
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jens Reiners
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexej Kedrov
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,*Correspondence: Lutz Schmitt, ✉
| |
Collapse
|
44
|
Panina IS, Balandin SV, Tsarev AV, Chugunov AO, Tagaev AA, Finkina EI, Antoshina DV, Sheremeteva EV, Paramonov AS, Rickmeyer J, Bierbaum G, Efremov RG, Shenkarev ZO, Ovchinnikova TV. Specific Binding of the α-Component of the Lantibiotic Lichenicidin to the Peptidoglycan Precursor Lipid II Predetermines Its Antimicrobial Activity. Int J Mol Sci 2023; 24:ijms24021332. [PMID: 36674846 PMCID: PMC9863751 DOI: 10.3390/ijms24021332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
To date, a number of lantibiotics have been shown to use lipid II-a highly conserved peptidoglycan precursor in the cytoplasmic membrane of bacteria-as their molecular target. The α-component (Lchα) of the two-component lantibiotic lichenicidin, previously isolated from the Bacillus licheniformis VK21 strain, seems to contain two putative lipid II binding sites in its N-terminal and C-terminal domains. Using NMR spectroscopy in DPC micelles, we obtained convincing evidence that the C-terminal mersacidin-like site is involved in the interaction with lipid II. These data were confirmed by the MD simulations. The contact area of lipid II includes pyrophosphate and disaccharide residues along with the first isoprene units of bactoprenol. MD also showed the potential for the formation of a stable N-terminal nisin-like complex; however, the conditions necessary for its implementation in vitro remain unknown. Overall, our results clarify the picture of two component lantibiotics mechanism of antimicrobial action.
Collapse
Affiliation(s)
- Irina S. Panina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sergey V. Balandin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-495-335-0900
| | - Andrey V. Tsarev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Anton O. Chugunov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Andrey A. Tagaev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ekaterina I. Finkina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Daria V. Antoshina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Elvira V. Sheremeteva
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander S. Paramonov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Jasmin Rickmeyer
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, 53117 Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, 53117 Bonn, Germany
| | - Roman G. Efremov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Department of Applied Mathematics, National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Zakhar O. Shenkarev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Department of Bioorganic Chemistry, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
45
|
Shafique B, Ranjha MMAN, Murtaza MA, Walayat N, Nawaz A, Khalid W, Mahmood S, Nadeem M, Manzoor MF, Ameer K, Aadil RM, Ibrahim SA. Recent Trends and Applications of Nanoencapsulated Bacteriocins against Microbes in Food Quality and Safety. Microorganisms 2022; 11:microorganisms11010085. [PMID: 36677377 PMCID: PMC9864013 DOI: 10.3390/microorganisms11010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
Bacteriocins are ribosomal-synthesized peptides or proteins produced by bacterial strains and can inhibit pathogenic bacteria. Numerous factors influence the potential activity of bacteriocins in food matrices. For example, food additives usage, chemical composition, physical conditions of food, and sensitivity of proteolytic enzymes can constrain the application of bacteriocins as beneficial food preservatives. However, novel bacteriocin nanoencapsulation has appeared as an encouraging solution. In this review, we highlight the bacteriocins produced by Gram-negative bacteria and Gram-positive bacteria including lactic acid bacteria that have shown positive results as potential food preservatives. In addition, this review encompasses the major focus on bacteriocins encapsulation with nanotechnology to enhance the antimicrobial action of bacteriocins. Several strategies can be employed to encapsulate bacteriocins; however, the nanotechnological approach is one of the most effective strategies for avoiding limitations. Nanoparticles such as liposomes, chitosan, protein, and polysaccharides have been discussed to show their importance in the nanoencapsulation method. The nanoparticles are combined with bacteriocins to develop the nano-encapsulated bacteriocins from Gram-negative and Gram-positive bacteria including LAB. In food systems, nanoencapsulation enhances the stability and antimicrobial functionality of active peptides. This nanotechnological application provides a formulation of a broad range of antimicrobial peptides at the industry-scale level. Nano-formulated bacteriocins have been discussed along with examples to show a broader antimicrobial spectrum, increase bacteriocins' applicability, extend antimicrobial spectrum and enhance stability.
Collapse
Affiliation(s)
- Bakhtawar Shafique
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | | | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Asad Nawaz
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Waseem Khalid
- Department of Food Science, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shahid Mahmood
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Nadeem
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528011, China
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: (K.A.); (R.M.A.); (S.A.I.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
- Correspondence: (K.A.); (R.M.A.); (S.A.I.)
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Correspondence: (K.A.); (R.M.A.); (S.A.I.)
| |
Collapse
|
46
|
Cardoso MH, Meneguetti BT, Oliveira-Júnior NG, Macedo MLR, Franco OL. Antimicrobial peptide production in response to gut microbiota imbalance. Peptides 2022; 157:170865. [PMID: 36038014 DOI: 10.1016/j.peptides.2022.170865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022]
Abstract
The gut microbiota presents essential functions in the immune response. The gut epithelium acts as a protective barrier and, therefore, can produce several antimicrobial peptides (AMPs) that can act against pathogenic microorganisms, including bacteria. Several factors cause a disturbance in gut microbiota, including the exacerbated and erroneous use of antibiotics. Antibiotic therapy has been closely related to bacterial resistance and is also correlated with undesired side-effects to the host, including the eradication of commensal bacteria. Consequently, this results in gut microbiota imbalance and inflammatory bowel diseases (IBD) development. In this context, AMPs in the gut epithelium play a restructuring role for gut microbiota. Some naturally occurring AMPs are selective for pathogenic bacteria, thus preserving the health microbiota. Therefore, AMPs produced by the host's epithelial cells represent effective molecules in treating gut bacterial infections. Bearing this in mind, this review focused on describing the importance of the host's AMPs in gut microbiota modulation and their role as anti-infective agents against pathogenic bacteria.
Collapse
Affiliation(s)
- Marlon H Cardoso
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790160, Brazil; Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, 79070900 Campo Grande, Mato Grosso do Sul, Brazil.
| | - Beatriz T Meneguetti
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
| | - Nelson G Oliveira-Júnior
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790160, Brazil
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, 79070900 Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790160, Brazil.
| |
Collapse
|
47
|
Banerji R, Karkee A, Saroj SD. Bacteriocins against Foodborne Pathogens (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822050052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Murugan R, Guru A, Haridevamuthu B, Sudhakaran G, Arshad A, Arockiaraj J. Lantibiotics: an antimicrobial asset in combating aquaculture diseases. AQUACULTURE INTERNATIONAL 2022; 30:2365-2387. [DOI: 10.1007/s10499-022-00908-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 10/16/2023]
|
49
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
50
|
Teixobactin kills bacteria by a two-pronged attack on the cell envelope. Nature 2022; 608:390-396. [PMID: 35922513 PMCID: PMC9365693 DOI: 10.1038/s41586-022-05019-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/23/2022] [Indexed: 01/08/2023]
Abstract
Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1–3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a β-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates. Using a combination of methods, the mechanism of the antibiotic teixobactin is revealed.
Collapse
|