1
|
Chen T, Wu T, Hu Y, Zhu Z, Wu J, Lin D, Sun X, Wu Z, Li YP. Evaluation of Enrichment Approaches for the Study of the Viromes in Mollusk Species. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:18. [PMID: 39800839 DOI: 10.1007/s12560-024-09625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025]
Abstract
Invasive alien species such as freshwater snails have significantly affected the food, environment, and the health of humans and animals, which have unfortunately received insufficient attention. To facilitate the study of viromes in snail species, we compared the enrichment effect of cesium chloride (CsCl) and sucrose density gradient ultracentrifugations in the recovery of diverse viruses in Pomacea canaliculata and Achatina fulica. First, we showed that CsCl-based ultracentrifugation enriched more virus contigs and reduced the nucleic acid background of the Pomacea canaliculata and was thus beneficial for virus recovery. Further studies comparing CsCl- and sucrose-based density gradient ultracentrifugations revealed that the former enriched more viral contigs and viral families of RNA viruses, while the latter yielded more DNA viruses from both Pomacea canaliculata and Achatina fulica. Certain RNA virus families, such as Rhabdoviridae, Arenaviridae, Hepeviridae, Astroviridae, and Alphatetraviridae, were exclusively enriched by CsCl-based ultracentrifugation. Conversely, several DNA virus families including Bacilladnaviridae, Nudiviridae, Malacoherpesviridae, and Adintoviridae were solely identified using the sucrose-based method. Therefore, the selection of viral enrichment technique (either CsCl or sucrose density gradient ultracentrifugation) should be carefully considered based on the specific virome (DNA or RNA viruses) being studied in mollusk species.
Collapse
Affiliation(s)
- Tongling Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Tiantian Wu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yunyi Hu
- Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zifeng Zhu
- Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ji Wu
- Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Datao Lin
- Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xi Sun
- Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhongdao Wu
- Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yi-Ping Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Malan-Müller S, Martín-Hernández D, Caso JR, Matthijnssens J, Rodríguez-Urrutia A, Lowry CA, Leza JC. Metagenomic symphony of the intestinal ecosystem: How the composition affects the mind. Brain Behav Immun 2025; 123:510-523. [PMID: 39368785 DOI: 10.1016/j.bbi.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
Mental health disorders and neurodegenerative diseases place a heavy burden on patients and societies, and, although great strides have been made to understand the pathophysiology of these conditions, advancement in drug development is lagging. The importance of gastrointestinal health in maintaining overall health and preventing disease is not a new concept. Hundreds of years ago, healers from various cultures and civilizations recognized the crucial role of the gut in sustaining health. More than a century ago, scientists began exploring the restorative effects of probiotics, marking the early recognition of the importance of gut microbes. The omics era brought more enlightenment and enabled researchers to identify the complexity of the microbial ecosystems we harbour, encompassing bacteria, eukaryotes (including fungi), archaea, viruses, and other microorganisms. The extensive genetic capacity of the microbiota is dynamic and influenced by the environment. The microbiota therefore serves as a significant entity within us, with evolutionarily preserved functions in host metabolism, immunity, development, and behavior. The significant role of the bacterial gut microbiome in mental health and neurodegenerative disorders has been realized and described within the framework of the microbiota-gut-brain axis. However, the bacterial members do not function unaccompanied, but rather in concert, and there is a substantial knowledge gap regarding the involvement of non-bacterial microbiome members in these disorders. In this review, we will explore the current literature that implicates a role for the entire metagenomic ensemble, and how their complex interkingdom relationships could influence CNS functioning in mental health disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Stefanie Malan-Müller
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain.
| | - David Martín-Hernández
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain
| | - Javier R Caso
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Clinical and Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Amanda Rodríguez-Urrutia
- Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain; Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Juan C Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain; Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain
| |
Collapse
|
3
|
Cartledge K, Short FL, Hall A, Lambert K, McDonald MJ, Lithgow T. Ethical bioprospecting and microbial assessments for sustainable solutions to the AMR crisis. IUBMB Life 2025; 77:e2931. [PMID: 39718471 DOI: 10.1002/iub.2931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/01/2024] [Indexed: 12/25/2024]
Abstract
Antimicrobial resistance (AMR) has been declared one of the top 10 global public health challenges of our age by the World Health Organization, and the World Bank describes AMR as a crisis affecting the finance, health, and agriculture sectors and a major threat to the attainment of Sustainable Development Goals. But what is AMR? It is a phenotype that evolves in microbes exposed to antimicrobial molecules and causes dangerous infections. This suggests that scientists and healthcare workers should be on the frontline in the search for sustainable solutions to AMR. Yet AMR is also a societal problem to be understood by everyone. This review aims to explore the need to address the problem of AMR through a coherent, international strategy with buy-in from all sectors of society. As reviewed here, the sustainable solutions to AMR will be driven by better understanding of AMR biology but will require more than this alone to succeed. Some advances on the horizon, such as the use of bacteriophage (phage) to treat AMR infections. However, many of the new technologies and new therapeutics to address AMR require access to biodiversity, where the custodians of that biodiversity-and the traditional knowledge required to access it-are needed as key partners in the scientific, clinical, biotechnological, and international ventures that would treat the problem of AMR and ultimately prevent its further evolution. Many of these advances will be built on microbial assessments to understand the extent of AMR in our environments and bioprospecting to identify microbes that may have beneficial uses. Genuine partnerships for access to this biodiversity and sharing of benefits accrued require a consideration of ethical practice and behavior. Behavior change is needed across all sectors of culturally diverse societies so that rapid deployment of solutions can be implemented for maximum effect against the impacts of AMR.
Collapse
Affiliation(s)
- Kayla Cartledge
- Centre to Impact AMR, Monash University, Melbourne, Australia
| | - Francesca L Short
- Centre to Impact AMR, Monash University, Melbourne, Australia
- Infection Program, Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Australia
| | - Alex Hall
- Centre to Impact AMR, Monash University, Melbourne, Australia
- Infection Program, Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Australia
| | - Karen Lambert
- Centre to Impact AMR, Monash University, Melbourne, Australia
- School of Curriculum, Teaching and Inclusive Education, Monash University, Melbourne, Australia
| | - Michael J McDonald
- Centre to Impact AMR, Monash University, Melbourne, Australia
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Melbourne, Australia
- Infection Program, Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Australia
| |
Collapse
|
4
|
Washizaki A, Sakiyama A, Ando H. Phage-specific antibodies: are they a hurdle for the success of phage therapy? Essays Biochem 2024; 68:633-644. [PMID: 39254211 PMCID: PMC11652166 DOI: 10.1042/ebc20240024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Phage therapy has attracted attention again owing to the increasing number of drug-resistant bacteria. Although the efficacy of phage therapy has been reported, numerous studies have indicated that the generation of phage-specific antibodies resulting from phage administration might have an impact on clinical outcomes. Phage-specific antibodies promote phage uptake by macrophages and contribute to their rapid clearance from the body. In addition, phage-specific neutralizing antibodies bind to the phages and diminish their antibacterial activity. Thus, phage-specific antibody production and its role in phage therapy have been analyzed both in vitro and in vivo. Strategies for prolonging the blood circulation time of phages have also been investigated. However, despite these efforts, the results of clinical trials are still inconsistent, and a consensus on whether phage-specific antibodies influence clinical outcomes has not yet been reached. In this review, we summarize the phage-specific antibody production during phage therapy. In addition, we introduce recently performed clinical trials and discuss whether phage-specific antibodies affect clinical outcomes and what we can do to further improve phage therapy regimens.
Collapse
Affiliation(s)
- Ayaka Washizaki
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1194, Japan
| | - Arata Sakiyama
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1194, Japan
| | - Hiroki Ando
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1194, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1194, Japan
- Venture Unit Engineered Phage Therapy, Discovery Accelerator, Astellas Pharma Inc., Tsukuba City, Ibaraki 305-8585, Japan
| |
Collapse
|
5
|
Shleeva MO, Demina GR, Savitsky AP. A systematic overview of strategies for photosensitizer and light delivery in antibacterial photodynamic therapy for lung infections. Adv Drug Deliv Rev 2024; 215:115472. [PMID: 39549920 DOI: 10.1016/j.addr.2024.115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Antimicrobial photodynamic therapy (aPDT) emerges as a viable treatment strategy for infections resistant to conventional antibiotics. A complex interplay of factors, including intracellular photosensitizer (PS) accumulation, photochemical reaction type, and oxygen levels, determines the efficacy of aPDT. Recent progress includes the development of modified PSs with enhanced lipophilicity and target-specific strategies to improve bacterial cell wall penetration and targeting. Nanotechnology-based approaches, such as using nanomaterials for targeted PS delivery, have shown promise in enhancing aPDT efficacy. Advancements in light delivery methods for aPDT, such as transillumination of large lesions and local light delivery using fiber optic techniques, are also being explored to optimize treatment efficacy in clinical settings. The limited number of animal models and clinical trials specifically designed to assess the efficacy of aPDT for lung infections highlights the need for further research in this critical area. The potential prospects of aPDT for lung tissue infections originating from antibiotic-resistant bacterial infections are also discussed in this review.
Collapse
Affiliation(s)
- Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia.
| | - Galina R Demina
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander P Savitsky
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Zhai X, Gobbi A, Kot W, Krych L, Nielsen DS, Deng L. A single-stranded based library preparation method for virome characterization. MICROBIOME 2024; 12:219. [PMID: 39449043 PMCID: PMC11515303 DOI: 10.1186/s40168-024-01935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND The gut virome is an integral component of the gut microbiome, playing a crucial role in maintaining gut health. However, accurately depicting the entire gut virome is challenging due to the inherent diversity of genome types (dsDNA, ssDNA, dsRNA, and ssRNA) and topologies (linear, circular, or fragments), with subsequently biases associated with current sequencing library preparation methods. To overcome these problems and improve reproducibility and comparability across studies, universal or standardized virome sequencing library construction methods are highly needed in the gut virome study. RESULTS We repurposed the ligation-based single-stranded library (SSLR) preparation method for virome studies. We demonstrate that the SSLR method exhibits exceptional efficiency in quantifying viral DNA genomes (both dsDNA and ssDNA) and outperforms existing double-stranded (Nextera) and single-stranded (xGen, MDA + Nextera) library preparation approaches in terms of minimal amplification bias, evenness of coverage, and integrity of assembling viral genomes. The SSLR method can be utilized for the simultaneous library preparation of both DNA and RNA viral genomes. Furthermore, the SSLR method showed its ability to capture highly modified phage genomes, which were often lost using other library preparation approaches. CONCLUSION We introduce and improve a fast, simple, and efficient ligation-based single-stranded DNA library preparation for gut virome study. This method is compatible with Illumina sequencing platforms and only requires ligation reagents within 3-h library preparation, which is similar or even better than the advanced library preparation method (xGen). We hope this method can be further optimized, validated, and widely used to make gut virome study more comparable and reproducible. Video Abstract.
Collapse
Affiliation(s)
- Xichuan Zhai
- Section for Food Microbiology, Gut Health and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, 1958, Denmark
| | - Alex Gobbi
- Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Department of Agricultural, Forestry, Food Sciences (DISAFA), University of Turin, Largo P. Braccini, 2, Grugliasco, Torino, 10095, Italy
| | - Witold Kot
- Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Lukasz Krych
- Section for Food Microbiology, Gut Health and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, 1958, Denmark
| | - Dennis Sandris Nielsen
- Section for Food Microbiology, Gut Health and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, 1958, Denmark
| | - Ling Deng
- Section for Food Microbiology, Gut Health and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, 1958, Denmark.
| |
Collapse
|
7
|
Zhao F, Wang J. Another piece of puzzle for the human microbiome: the gut virome under dietary modulation. J Genet Genomics 2024; 51:983-996. [PMID: 38710286 DOI: 10.1016/j.jgg.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
The virome is the most abundant and highly variable microbial consortium in the gut. Because of difficulties in isolating and culturing gut viruses and the lack of reference genomes, the virome has remained a relatively elusive aspect of the human microbiome. In recent years, studies on the virome have accumulated growing evidence showing that the virome is diet-modulated and widely involved in regulating health. Here, we review the responses of the gut virome to dietary intake and the potential health implications, presenting changes in the gut viral community and preferences of viral members to particular diets. We further discuss how viral-bacterial interactions and phage lifestyle shifts shape the gut microbiota. We also discuss the specific functions conferred by diet on the gut virome and bacterial community in the context of horizontal gene transfer, as well as the import of new viral members along with the diet. Collating these studies will expand our understanding of the dietary regulation of the gut virome and inspire dietary interventions and health maintenance strategies targeting the gut microbiota.
Collapse
Affiliation(s)
- Fengxiang Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinfeng Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
8
|
Lu X, Gong G, Zhang Q, Yang S, Wu H, Zhao M, Wang X, Shen Q, Ji L, Liu Y, Wang Y, Liu J, Suolang S, Ma X, Shan T, Zhang W. Metagenomic analysis reveals high diversity of gut viromes in yaks (Bos grunniens) from the Qinghai-Tibet Plateau. Commun Biol 2024; 7:1097. [PMID: 39242698 PMCID: PMC11379701 DOI: 10.1038/s42003-024-06798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
The Qinghai-Tibet Plateau (QTP), renowned for its exceptional biological diversity, is home to numerous endemic species. However, research on the virology of vulnerable vertebrates like yaks remains limited. In this study, our objective was to use metagenomics to provide a comprehensive understanding of the diversity and evolution of the gut virome in yak populations across different regions of the QTP. Our findings revealed a remarkably diverse array of viruses in the gut of yaks, including those associated with vertebrates and bacteriophages. Notably, some vertebrate-associated viruses, such as astrovirus and picornavirus, showed significant sequence identity across diverse yak populations. Additionally, we observed differences in the functional profiles of genes carried by the yak gut virome across different regions. Moreover, the virus-bacterium symbiotic network that we discovered holds potential significance in maintaining the health of yaks. Overall, this research expands our understanding of the viral communities in the gut of yaks and highlights the importance of further investigating the interactions between viruses and their hosts. These data will be beneficial for revealing the crucial role that viruses play in the yak gut ecology in future studies.
Collapse
Affiliation(s)
- Xiang Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ga Gong
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
| | - Qing Zhang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haisheng Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Min Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuwei Liu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yongshun Wang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Jia Liu
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Sizhu Suolang
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China.
| | - Xiao Ma
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China.
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
9
|
Howard A, Carroll-Portillo A, Alcock J, Lin HC. Dietary Effects on the Gut Phageome. Int J Mol Sci 2024; 25:8690. [PMID: 39201374 PMCID: PMC11354428 DOI: 10.3390/ijms25168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
As knowledge of the gut microbiome has expanded our understanding of the symbiotic and dysbiotic relationships between the human host and its microbial constituents, the influence of gastrointestinal (GI) microbes both locally and beyond the intestine has become evident. Shifts in bacterial populations have now been associated with several conditions including Crohn's disease (CD), Ulcerative Colitis (UC), irritable bowel syndrome (IBS), Alzheimer's disease, Parkinson's Disease, liver diseases, obesity, metabolic syndrome, anxiety, depression, and cancers. As the bacteria in our gut thrive on the food we eat, diet plays a critical role in the functional aspects of our gut microbiome, influencing not only health but also the development of disease. While the bacterial microbiome in the context of disease is well studied, the associated gut phageome-bacteriophages living amongst and within our bacterial microbiome-is less well understood. With growing evidence that fluctuations in the phageome also correlate with dysbiosis, how diet influences this population needs to be better understood. This review surveys the current understanding of the effects of diet on the gut phageome.
Collapse
Affiliation(s)
- Andrea Howard
- School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
| |
Collapse
|
10
|
Wortelboer K, Herrema H. Opportunities and challenges in phage therapy for cardiometabolic diseases. Trends Endocrinol Metab 2024; 35:687-696. [PMID: 38637223 DOI: 10.1016/j.tem.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
The worldwide prevalence of cardiometabolic diseases (CMD) is increasing, and emerging evidence implicates the gut microbiota in this multifactorial disease development. Bacteriophages (phages) are viruses that selectively target a bacterial host; thus, phage therapy offers a precise means of modulating the gut microbiota, limiting collateral damage on the ecosystem. Several studies demonstrate the potential of phages in human disease, including alcoholic and steatotic liver disease. In this opinion article we discuss the potential of phage therapy as a predefined medicinal product for CMD and discuss its current challenges, including the generation of effective phage combinations, product formulation, and strict manufacturing requirements.
Collapse
Affiliation(s)
- Koen Wortelboer
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Diabetes, and Metabolism, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Diabetes, and Metabolism, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Liu MY, Liu X, Wang CY, Wan QQ, Tian YF, Liu SL, Pang DW, Wang ZG. Inhalable Polymeric Microparticles for Phage and Photothermal Synergistic Therapy of Methicillin-Resistant Staphylococcus aureus Pneumonia. NANO LETTERS 2024; 24:8752-8762. [PMID: 38953881 DOI: 10.1021/acs.nanolett.4c02318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Acute methicillin-resistant Staphylococcus aureus (MRSA) pneumonia is a common and serious lung infection with high morbidity and mortality rates. Due to the increasing antibiotic resistance, toxicity, and pathogenicity of MRSA, there is an urgent need to explore effective antibacterial strategies. In this study, we developed a dry powder inhalable formulation which is composed of porous microspheres prepared from poly(lactic-co-glycolic acid) (PLGA), internally loaded with indocyanine green (ICG)-modified, heat-resistant phages that we screened for their high efficacy against MRSA. This formulation can deliver therapeutic doses of ICG-modified active phages to the deep lung tissue infection sites, avoiding rapid clearance by alveolar macrophages. Combined with the synergistic treatment of phage therapy and photothermal therapy, the formulation demonstrates potent bactericidal effects in acute MRSA pneumonia. With its long-term stability at room temperature and inhalable characteristics, this formulation has the potential to be a promising drug for the clinical treatment of MRSA pneumonia.
Collapse
Affiliation(s)
- Meng-Yao Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Chun-Yu Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Qian-Qian Wan
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yi-Fan Tian
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| |
Collapse
|
12
|
Sun W, Zhou T, Ding P, Guo L, Zhou X, Long K. Bibliometric analysis of intestinal microbiota and lung diseases. Front Cell Infect Microbiol 2024; 14:1347110. [PMID: 38426014 PMCID: PMC10902173 DOI: 10.3389/fcimb.2024.1347110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Background Increasing evidence suggests a close association between the intestinal microbiome and the respiratory system, drawing attention to studying the gut-lung axis. This research employs bibliometric methods to conduct a visual analysis of literature in the field of intestinal microbiota and lung diseases over the past two decades. It offers scientific foundations for research directions and critical issues in this field. Methods We retrieved all articles on intestinal microbiota and lung diseases from the SCI-Expanded of WoSCC on October 25, 2023. The analysis included original articles and reviews published in English from 2011 to 2023. We utilized Python, VOSviewer, and CiteSpace to analyze the retrieved data visually. Results A total of 794 publications were analyzed. China ranked first in the number of publications, while the United States had the highest citations and H-index. Jian Wang was the most prolific author. Zhejiang University was the institution with the highest number of publications. Frontiers in Microbiology was the journal with the most publications. Author keywords appearing more than 100 times included "intestinal microbiota/microbiome", "microbiota/microbiome", and "gut-lung axis". Conclusion The correlation and underlying mechanisms between intestinal microbiota and lung diseases, including asthma, COPD, lung cancer, and respiratory infections, remain hot topics in research. However, understanding the mechanisms involving the gut-lung axis is still in its infancy and requires further elucidation.
Collapse
Affiliation(s)
- Weiting Sun
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tong Zhou
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Ding
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuxue Guo
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiujuan Zhou
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kunlan Long
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Gao SM, Fei HL, Li Q, Lan LY, Huang LN, Fan PF. Eco-evolutionary dynamics of gut phageome in wild gibbons (Hoolock tianxing) with seasonal diet variations. Nat Commun 2024; 15:1254. [PMID: 38341424 PMCID: PMC10858875 DOI: 10.1038/s41467-024-45663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
It has been extensively studied that the gut microbiome provides animals flexibility to adapt to food variability. Yet, how gut phageome responds to diet variation of wild animals remains unexplored. Here, we analyze the eco-evolutionary dynamics of gut phageome in six wild gibbons (Hoolock tianxing) by collecting individually-resolved fresh fecal samples and parallel feeding behavior data for 15 consecutive months. Application of complementary viral and microbial metagenomics recovers 39,198 virulent and temperate phage genomes from the feces. Hierarchical cluster analyses show remarkable seasonal diet variations in gibbons. From high-fruit to high-leaf feeding period, the abundances of phage populations are seasonally fluctuated, especially driven by the increased abundance of virulent phages that kill the Lachnospiraceae hosts, and a decreased abundance of temperate phages that piggyback the Bacteroidaceae hosts. Functional profiling reveals an enrichment through horizontal gene transfers of toxin-antitoxin genes on temperate phage genomes in high-leaf season, potentially conferring benefits to their prokaryotic hosts. The phage-host ecological dynamics are driven by the coevolutionary processes which select for tail fiber and DNA primase genes on virulent and temperate phage genomes, respectively. Our results highlight complex phageome-microbiome interactions as a key feature of the gibbon gut microbial ecosystem responding to the seasonal diet.
Collapse
Affiliation(s)
- Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Han-Lan Fei
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
- College of Life Science, China West Normal University, Nanchong, 637002, PR China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Li-Ying Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
14
|
Bichet MC, Gardette M, Das Neves B, Challant J, Erbs A, Roman V, Robin M, La Carbona S, Gantzer C, Boudaud N, Bertrand I. A new understanding of somatic coliphages belonging to the Microviridae family in urban wastewater. WATER RESEARCH 2024; 249:120916. [PMID: 38043350 DOI: 10.1016/j.watres.2023.120916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Somatic coliphages (SC) and F-specific RNA coliphages (FRNAPH) have been included in regulations or guidelines by several developed countries as a way of monitoring water safety and the microbiological quality of shellfish harvesting waters. SC are highly diverse in their morphology, size and genome. The Microviridae family contains three genera of phages (Alphatrevirus, Gequatrovirus, and Sinsheimervirus), all having a capsid of similar morphology (icosahedral) and size (25-30 nm in diameter) to that of common pathogenic enteric viruses. Three PCR assays specific for each genus of Microviridae were designed to study these phages in raw and treated wastewater (WW) in order to gain knowledge about the diversity and prevalence of Microviridae among SC, as well as their inactivation and removal during WW treatments. Among the four wastewater treatment plants (WWTPs) monitored here, two WWTPs applied disinfection by UV light as tertiary treatment. First, we noticed that Microviridae represented 10 to 30 % of infectious SC in both raw and treated WW. Microviridae appeared to behave in the same way as all SC during these WW treatments. As expected, the highest inactivation, at least 4 log10, was achieved for infectious Microviridae and SC in both WWTPs using UV disinfection. PCR assays showed that the highest removal of Microviridae reached about 4 log10, but the phage removal can vary greatly between WWTPs using similar treatments. This work forms the basis for a broader evaluation of Microviridae as a viral indicator of water treatment efficiency and WW reuse.
Collapse
Affiliation(s)
- Marion C Bichet
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France; Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Marion Gardette
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France; Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | - Julie Challant
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Anaïs Erbs
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France; Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Véronica Roman
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Maëlle Robin
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France
| | | | | | | | | |
Collapse
|
15
|
Ishola OA, Kublik S, Durai Raj AC, Ohnmacht C, Schulz S, Foesel BU, Schloter M. Comparative Metagenomic Analysis of Bacteriophages and Prophages in Gnotobiotic Mouse Models. Microorganisms 2024; 12:255. [PMID: 38399658 PMCID: PMC10892684 DOI: 10.3390/microorganisms12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Gnotobiotic murine models are important to understand microbiota-host interactions. Despite the role of bacteriophages as drivers for microbiome structure and function, there is no information about the structure and function of the gut virome in gnotobiotic models and the link between bacterial and bacteriophage/prophage diversity. We studied the virome of gnotobiotic murine Oligo-MM12 (12 bacterial species) and reduced Altered Schaedler Flora (ASF, three bacterial species). As reference, the virome of Specific Pathogen-Free (SPF) mice was investigated. A metagenomic approach was used to assess prophages and bacteriophages in the guts of 6-week-old female mice. We identified a positive correlation between bacteria diversity, and bacteriophages and prophages. Caudoviricetes (82.4%) were the most prominent class of phages in all samples with differing relative abundance. However, the host specificity of bacteriophages belonging to class Caudoviricetes differed depending on model bacterial diversity. We further studied the role of bacteriophages in horizontal gene transfer and microbial adaptation to the host's environment. Analysis of mobile genetic elements showed the contribution of bacteriophages to the adaptation of bacterial amino acid metabolism. Overall, our results implicate virome "dark matter" and interactions with the host system as factors for microbial community structure and function which determine host health. Taking the importance of the virome in the microbiome diversity and horizontal gene transfer, reductions in the virome might be an important factor driving losses of microbial biodiversity and the subsequent dysbiosis of the gut microbiome.
Collapse
Affiliation(s)
- Oluwaseun A. Ishola
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Abilash Chakravarthy Durai Raj
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Caspar Ohnmacht
- Mucosal Immunology Group, Center of Allery and Environment (ZAUM), Technical University of Munich, Helmholtz Zentrum München, 85764 München, Germany
| | - Stefanie Schulz
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Bärbel U. Foesel
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany; (O.A.I.)
- Chair for Environmental Microbiology, TUM School of Life Science, Technical University of Munich, 85354 Freising, Germany
- Central Institute for Nutrition and Health, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
16
|
Sato Y, Takebe H, Tominaga K, Yasuda J, Kumagai H, Hirooka H, Yoshida T. A rumen virosphere with implications of contribution to fermentation and methane production, and endemism in cattle breeds and individuals. Appl Environ Microbiol 2024; 90:e0158123. [PMID: 38112444 PMCID: PMC10807420 DOI: 10.1128/aem.01581-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/12/2023] [Indexed: 12/21/2023] Open
Abstract
Viruses have a potential to modify the ruminal digestion via infection and cell lysis of prokaryotes, suggesting that viruses are related to animal performance and methane production. This study aimed to elucidate the genome-based diversity of rumen viral communities and the differences in virus structure between individuals and cattle breeds and to understand how viruses influence on the rumen. To these ends, a metagenomic sequencing of virus-like particles in the rumen of 22 Japanese cattle, including Japanese Black (JB, n = 8), Japanese Shorthorn (n = 2), and Japanese Black sires × Holstein dams crossbred steers (F1, n = 12) was conducted. Additionally, the rumen viromes of six JB and six F1 that were fed identical diets and kept in a single barn were compared. A total of 8,232 non-redundant viral genomes (≥5-kb length and ≥50% completeness), including 982 complete genomes, were constructed, and rumen virome exhibited lysogenic signatures. Furthermore, putative hosts of 1,223 viral genomes were predicted using tRNA and clustered regularly interspaced short palindromic repeat (CRISPR)-spacer matching. The genomes included 1 and 10 putative novel complete genomes associated with Fibrobacter and Ruminococcus, respectively, which are the main rumen cellulose-degrading bacteria. Additionally, the hosts of 22 viral genomes, including 2 complete genomes, were predicted as methanogens, such as Methanobrevibacter and Methanomethylophilus. Most rumen viruses were highly rumen and individual specific and related to rumen-specific prokaryotes. Furthermore, the rumen viral community structure was significantly different between JB and F1 steers, indicating that cattle breed is one of the factors influencing the rumen virome composition.IMPORTANCEHere, we investigated the individual and breed differences of the rumen viral community in Japanese cattle. In the process, we reconstructed putative novel complete viral genomes related to rumen fiber-degrading bacteria and methanogen. The finding strongly suggests that rumen viruses contribute to cellulose and hemicellulose digestion and methanogenesis. Notably, this study also found that rumen viruses are highly rumen and individual specific, suggesting that rumen viruses may not be transmitted through environmental exposure. More importantly, we revealed differences of viral communities between JB and F1 cattle, indicating that cattle breed is a factor that influences the establishment of rumen virome. These results suggest the possibility of rumen virus transmission from mother to offspring and its potential to influence beef production traits. These rumen viral genomes and findings provide new insights into the characterizations of the rumen viruses.
Collapse
Affiliation(s)
- Yoshiaki Sato
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Tochigi, Japan
| | - Hiroaki Takebe
- Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kento Tominaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Chiba, Japan
| | - Jumpei Yasuda
- Iwate Agricultural Research Center Animal Industry Research Institute, Iwate, Japan
| | - Hajime Kumagai
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiroyuki Hirooka
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Zhang H, Zhang H, Du H, Yu X, Xu Y. The insights into the phage communities of fermented foods in the age of viral metagenomics. Crit Rev Food Sci Nutr 2024; 65:1656-1668. [PMID: 38214674 DOI: 10.1080/10408398.2023.2299323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Phages play a critical role in the assembly and regulation of fermented food microbiome through lysis and lysogenic lifestyle, which in turn affects the yield and quality of fermented foods. Therefore, it is important to investigate and characterize the diversity and function of phages under complex microbial communities and nutrient substrate conditions to provide novel insights into the regulation of traditional spontaneous fermentation. Viral metagenomics has gradually garnered increasing attention in fermented food research to elucidate phage functions and characterize the interactions between phages and the microbial community. Advances in this technology have uncovered a wide range of phages associated with the production of traditional fermented foods and beverages. This paper reviews the common methods of viral metagenomics applied in fermented food research, and summarizes the ecological functions of phages in traditional fermented foods. In the future, combining viral metagenomics with culturable methods and metagenomics will broaden the scope of research on fermented food systems, revealing the complex role of phages and intricate phage-bacterium interactions.
Collapse
Affiliation(s)
- Huadong Zhang
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongxia Zhang
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaowei Yu
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
18
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Viral Liver Disease and Intestinal Gut–Liver Axis. GASTROINTESTINAL DISORDERS 2024; 6:64-93. [DOI: 10.3390/gidisord6010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The intestinal microbiota is closely related to liver diseases via the intestinal barrier and bile secretion to the gut. Impairment of the barrier can translocate microbes or their components to the liver where they can contribute to liver damage and fibrosis. The components of the barrier are discussed in this review along with the other elements of the so-called gut–liver axis. This bidirectional relation has been widely studied in alcoholic and non-alcoholic liver disease. However, the involvement of microbiota in the pathogenesis and treatment of viral liver diseases have not been extensively studied, and controversial data have been published. Therefore, we reviewed data regarding the integrity and function of the intestinal barrier and the changes of the intestinal microbioma that contribute to progression of Hepatitis B (HBV) and Hepatitis C (HCV) infection. Their consequences, such as cirrhosis and hepatic encephalopathy, were also discussed in connection with therapeutic interventions such as the effects of antiviral eradication and the use of probiotics that may influence the outcome of liver disease. Profound alterations of the microbioma with significant reduction in microbial diversity and changes in the abundance of both beneficial and pathogenic bacteria were found.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Ioannis Tsomidis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| |
Collapse
|
19
|
Yin H, Wu S, Tan J, Guo Q, Li M, Guo J, Wang Y, Jiang X, Zhu H. IPEV: identification of prokaryotic and eukaryotic virus-derived sequences in virome using deep learning. Gigascience 2024; 13:giae018. [PMID: 38649300 PMCID: PMC11034026 DOI: 10.1093/gigascience/giae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The virome obtained through virus-like particle enrichment contains a mixture of prokaryotic and eukaryotic virus-derived fragments. Accurate identification and classification of these elements are crucial to understanding their roles and functions in microbial communities. However, the rapid mutation rates of viral genomes pose challenges in developing high-performance tools for classification, potentially limiting downstream analyses. FINDINGS We present IPEV, a novel method to distinguish prokaryotic and eukaryotic viruses in viromes, with a 2-dimensional convolutional neural network combining trinucleotide pair relative distance and frequency. Cross-validation assessments of IPEV demonstrate its state-of-the-art precision, significantly improving the F1-score by approximately 22% on an independent test set compared to existing methods when query viruses share less than 30% sequence similarity with known viruses. Furthermore, IPEV outperforms other methods in accuracy on marine and gut virome samples based on annotations by sequence alignments. IPEV reduces runtime by at most 1,225 times compared to existing methods under the same computing configuration. We also utilized IPEV to analyze longitudinal samples and found that the gut virome exhibits a higher degree of temporal stability than previously observed in persistent personal viromes, providing novel insights into the resilience of the gut virome in individuals. CONCLUSIONS IPEV is a high-performance, user-friendly tool that assists biologists in identifying and classifying prokaryotic and eukaryotic viruses within viromes. The tool is available at https://github.com/basehc/IPEV.
Collapse
Affiliation(s)
- Hengchuang Yin
- Department of Biomedical Engineering, College of Future Technology, and Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Shufang Wu
- Department of Biomedical Engineering, College of Future Technology, and Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Jie Tan
- Department of Biomedical Engineering, College of Future Technology, and Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Qian Guo
- Department of Biomedical Engineering, College of Future Technology, and Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Mo Li
- Department of Biomedical Engineering, College of Future Technology, and Center for Quantitative Biology, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinyuan Guo
- Department of Biomedical Engineering, College of Future Technology, and Center for Quantitative Biology, Peking University, Beijing 100871, China
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Yaqi Wang
- Department of Biomedical Engineering, College of Future Technology, and Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Xiaoqing Jiang
- Department of Biomedical Engineering, College of Future Technology, and Center for Quantitative Biology, Peking University, Beijing 100871, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China
| | - Huaiqiu Zhu
- Department of Biomedical Engineering, College of Future Technology, and Center for Quantitative Biology, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
20
|
Zurabov F, Petrova M, Zurabov A, Gurkova M, Polyakov P, Cheboksarov D, Chernevskaya E, Yuryev M, Popova V, Kuzovlev A, Yakovlev A, Grechko A. Adaptive Phage Therapy for the Prevention of Recurrent Nosocomial Pneumonia: Novel Protocol Description and Case Series. Antibiotics (Basel) 2023; 12:1734. [PMID: 38136768 PMCID: PMC10741035 DOI: 10.3390/antibiotics12121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Nowadays there is a growing interest worldwide in using bacteriophages for therapeutic purposes to combat antibiotic-resistant bacterial strains, driven by the increasing ineffectiveness of drugs against bacterial infections. Despite this fact, no novel commercially available therapeutic phage products have been developed in the last two decades, as it is extremely difficult to register them under the current legal regulations. This paper presents a description of the interaction between a bacteriophage manufacturer and a clinical institution, the specificity of which is the selection of bacteriophages not for an individual patient, but for the entire spectrum of bacteria circulating in the intensive care unit with continuous clinical and microbiological monitoring of efficacy. The study presents the description of three clinical cases of patients who received bacteriophage complex via inhalation for 28 days according to the protocol without antibiotic use throughout the period. No adverse effects were observed and the elimination of multidrug-resistant microorganisms from the bronchoalveolar lavage contents was detected in all patients. A decrease in such inflammatory markers as C-reactive protein (CRP) and procalcitonin was also noted. The obtained results demonstrate the potential of an adaptive phage therapy protocol in intensive care units for reducing the amount of antibiotics used and preserving their efficacy.
Collapse
Affiliation(s)
- Fedor Zurabov
- Research and Production Center “MicroMir”, 107031 Moscow, Russia; (A.Z.); (M.G.); (V.P.)
| | - Marina Petrova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 10703 Moscow, Russia; (M.P.); (P.P.); (D.C.); (E.C.); (M.Y.); (A.K.); (A.Y.); (A.G.)
| | - Alexander Zurabov
- Research and Production Center “MicroMir”, 107031 Moscow, Russia; (A.Z.); (M.G.); (V.P.)
| | - Marina Gurkova
- Research and Production Center “MicroMir”, 107031 Moscow, Russia; (A.Z.); (M.G.); (V.P.)
| | - Petr Polyakov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 10703 Moscow, Russia; (M.P.); (P.P.); (D.C.); (E.C.); (M.Y.); (A.K.); (A.Y.); (A.G.)
| | - Dmitriy Cheboksarov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 10703 Moscow, Russia; (M.P.); (P.P.); (D.C.); (E.C.); (M.Y.); (A.K.); (A.Y.); (A.G.)
| | - Ekaterina Chernevskaya
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 10703 Moscow, Russia; (M.P.); (P.P.); (D.C.); (E.C.); (M.Y.); (A.K.); (A.Y.); (A.G.)
| | - Mikhail Yuryev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 10703 Moscow, Russia; (M.P.); (P.P.); (D.C.); (E.C.); (M.Y.); (A.K.); (A.Y.); (A.G.)
| | - Valentina Popova
- Research and Production Center “MicroMir”, 107031 Moscow, Russia; (A.Z.); (M.G.); (V.P.)
| | - Artem Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 10703 Moscow, Russia; (M.P.); (P.P.); (D.C.); (E.C.); (M.Y.); (A.K.); (A.Y.); (A.G.)
| | - Alexey Yakovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 10703 Moscow, Russia; (M.P.); (P.P.); (D.C.); (E.C.); (M.Y.); (A.K.); (A.Y.); (A.G.)
| | - Andrey Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 10703 Moscow, Russia; (M.P.); (P.P.); (D.C.); (E.C.); (M.Y.); (A.K.); (A.Y.); (A.G.)
| |
Collapse
|
21
|
Mohammed HT, Mageeney C, Korenberg J, Graham L, Ware VC. Characterization of novel recombinant mycobacteriophages derived from homologous recombination between two temperate phages. G3 (BETHESDA, MD.) 2023; 13:jkad210. [PMID: 37713616 PMCID: PMC10700106 DOI: 10.1093/g3journal/jkad210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
Comparative analyses of mycobacteriophage genomes reveals extensive genetic diversity in genome organization and gene content, contributing to widespread mosaicism. We previously reported that the prophage of mycobacteriophage Butters (cluster N) provides defense against infection by Island3 (subcluster I1). To explore the anti-Island3 defense mechanism, we attempted to isolate Island3 defense escape mutants on a Butters lysogen, but only uncovered phages with recombinant genomes comprised of regions of Butters and Island3 arranged from left arm to right arm as Butters-Island3-Butters (BIBs). Recombination occurs within two distinct homologous regions that encompass lysin A, lysin B, and holin genes in one segment, and RecE and RecT genes in the other. Structural genes of mosaic BIB genomes are contributed by Butters while the immunity cassette is derived from Island3. Consequently, BIBs are morphologically identical to Butters (as shown by transmission electron microscopy) but are homoimmune with Island3. Recombinant phages overcome antiphage defense and silencing of the lytic cycle. We leverage this observation to propose a stratagem to generate novel phages for potential therapeutic use.
Collapse
Affiliation(s)
- Hamidu T Mohammed
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
- Memsel, Inc., 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Catherine Mageeney
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Jamie Korenberg
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
- New York Institute of Technology College of Osteopathic Medicine, 101 Northern Blvd., Glen Head, NY 11545, USA
| | - Lee Graham
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Vassie C Ware
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
22
|
Hu J, Wu Y, Kang L, Liu Y, Ye H, Wang R, Zhao J, Zhang G, Li X, Wang J, Han D. Dietary D-xylose promotes intestinal health by inducing phage production in Escherichia coli. NPJ Biofilms Microbiomes 2023; 9:79. [PMID: 37821428 PMCID: PMC10567762 DOI: 10.1038/s41522-023-00445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Elimination of specific enteropathogenic microorganisms is critical to gut health. However, the complexity of the gut community makes it challenging to target specific bacterial organisms. Accumulating evidence suggests that various foods can change the abundance of intestinal bacteria by modulating prophage induction. By using pathogenic Escherichia coli (E. coli) ATCC 25922 as a model in this research, we explored the potential of dietary modulation of prophage induction and subsequent bacterial survival. Among a panel of sugars tested in vitro, D-xylose was shown to efficiently induce prophages in E. coli ATCC 25922, which depends, in part, upon the production of D-lactic acid. In an enteric mouse model, prophage induction was found to be further enhanced in response to propionic acid. Dietary D-xylose increased the proportion of Clostridia which converted D-lactic acid to propionic acid. Intestinal propionic acid levels were diminished, following either oral gavage with the dehydrogenase gene (ldhA)-deficient E. coli ATCC 25922 or depletion of intestinal Clostridia by administration of streptomycin. D-Xylose metabolism and exposure to propionic acid triggered E. coli ATCC 25922 SOS response that promoted prophage induction. E. coli ATCC 25922 mutant of RecA, a key component of SOS system, exhibited decreased phage production. These findings suggest the potential of using dietary components that can induce prophages as antimicrobial alternatives for disease control and prevention by targeted elimination of harmful gut bacteria.
Collapse
Affiliation(s)
- Jie Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yifan Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Luyuan Kang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yisi Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Ye
- Department of Animal Sciences, Wageningen University & Research, NL-6700, AH, Wageningen, the Netherlands
| | - Ran Wang
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
23
|
Emencheta SC, Olovo CV, Eze OC, Kalu CF, Berebon DP, Onuigbo EB, Vila MMDC, Balcão VM, Attama AA. The Role of Bacteriophages in the Gut Microbiota: Implications for Human Health. Pharmaceutics 2023; 15:2416. [PMID: 37896176 PMCID: PMC10609668 DOI: 10.3390/pharmaceutics15102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteriophages (phages) are nano-sized viruses characterized by their inherent ability to live off bacteria. They utilize diverse mechanisms to absorb and gain entry into the bacterial cell wall via the release of viral genetic material, which uses the replication mechanisms of the host bacteria to produce and release daughter progeny virions that attack the surrounding host cells. They possess specific characteristics, including specificity for particular or closely related bacterial species. They have many applications, including as potential alternatives to antibiotics against multi-resistant bacterial pathogens and as control agents in bacteria-contaminated environments. They are ubiquitously abundant in nature and have diverse biota, including in the gut. Gut microbiota describes the community and interactions of microorganisms within the intestine. As with bacteria, parasitic bacteriophages constantly interact with the host bacterial cells within the gut system and have obvious implications for human health. However, it is imperative to understand these interactions as they open up possible applicable techniques to control gut-implicated bacterial diseases. Thus, this review aims to explore the interactions of bacteriophages with bacterial communities in the gut and their current and potential impacts on human health.
Collapse
Affiliation(s)
- Stephen C. Emencheta
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, Brazil; (M.M.D.C.V.); (V.M.B.)
| | - Chinasa V. Olovo
- Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria;
| | - Osita C. Eze
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Chisom F. Kalu
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Dinebari P. Berebon
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Ebele B. Onuigbo
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Marta M. D. C. Vila
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, Brazil; (M.M.D.C.V.); (V.M.B.)
| | - Victor M. Balcão
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, Brazil; (M.M.D.C.V.); (V.M.B.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| | - Anthony A. Attama
- Department of Pharmaceutics, University of Nigeria, Nsukka 410001, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka 410001, Nigeria
| |
Collapse
|
24
|
Dikareva E, Matharu D, Lahtinen E, Kolho KL, De Vos WM, Salonen A, Ponsero AJ. An extended catalog of integrated prophages in the infant and adult fecal microbiome shows high prevalence of lysogeny. Front Microbiol 2023; 14:1254535. [PMID: 37731926 PMCID: PMC10508911 DOI: 10.3389/fmicb.2023.1254535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
Background and aims The acquisition and gradual maturation of gut microbial communities during early childhood is central to an individual's healthy development. Bacteriophages have the potential to shape the gut bacterial communities. However, the complex ecological interactions between phages and their bacterial host are still poorly characterized. In this study, we investigated the abundance and diversity of integrated prophages in infant and adult gut bacteria by detecting integrated prophages in metagenome assembled genomes (MAGs) of commensal bacteria. Methods Our study included 88 infants sampled at 3 weeks, 3 months, 6 months, and 12 months (n = 323 total samples), and their parents around delivery time (n = 138 total samples). Fecal DNA was extracted and characterized by using shotgun metagenomic sequencing, and a collection of prokaryotic MAGs was generated. The MAG collection was screened for the presence of integrated bacteriophage sequences, allowing their taxonomic and functional characterization. Results A large collection of 6,186 MAGs from infant and adult gut microbiota was obtained and screened for integrated prophages, allowing the identification of 7,165 prophage sequences longer than 10 kb. Strikingly, more than 70% of the near-complete MAGs were identified as lysogens. The prevalence of prophages in MAGs varied across bacterial families, with a lower prevalence observed among Coriobacteriaceae, Eggerthellaceae, Veillonellaceae and Burkholderiaceae, while a very high prevalence of lysogen MAGs were observed in Oscillospiraceae, Enterococcaceae, and Enterobacteriaceae. Interestingly for several bacterial families such as Bifidobacteriaceae and Bacteroidaceae, the prevalence of prophages in MAGs was higher in early infant time point (3 weeks and 3 months) than in later sampling points (6 and 12 months) and in adults. The prophage sequences were clustered into 5,616 species-like vOTUs, 77% of which were novel. Finally, we explored the functional repertoire of the potential auxiliary metabolic genes carried by these prophages, encoding functions involved in carbohydrate metabolism and degradation, amino acid metabolism and carbon metabolism. Conclusion Our study provides an enhanced understanding of the diversity and prevalence of lysogens in infant and adult gut microbiota and suggests a complex interplay between prophages and their bacterial hosts.
Collapse
Affiliation(s)
- Evgenia Dikareva
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Dollwin Matharu
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Emilia Lahtinen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kaija-Leena Kolho
- Children's Hospital, Paediatric Research Centre, University of Helsinki and HUS, Helsinki, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Willem M. De Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alise J. Ponsero
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Mascardi MF, Mazzini FN, Suárez B, Ruda VM, Marciano S, Casciato P, Narvaez A, Haddad L, Anders M, Orozco F, Tamaroff AJ, Cook F, Gounarides J, Gutt S, Gadano A, García CM, Marro ML, Penas Steinhardt A, Trinks J. Integrated analysis of the transcriptome and its interaction with the metabolome in metabolic associated fatty liver disease: Gut microbiome signatures, correlation networks, and effect of PNPLA3 genotype. Proteomics 2023; 23:e2200414. [PMID: 37525333 DOI: 10.1002/pmic.202200414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
Interactions between communities of the gut microbiome and with the host could affect the onset and progression of metabolic associated fatty liver disease (MAFLD), and can be useful as new diagnostic and prognostic biomarkers. In this study, we performed a multi-omics approach to unravel gut microbiome signatures from 32 biopsy-proven patients (10 simple steatosis -SS- and 22 steatohepatitis -SH-) and 19 healthy volunteers (HV). Human and microbial transcripts were differentially identified between groups (MAFLD vs. HV/SH vs. SS), and analyzed for weighted correlation networks together with previously detected metabolites from the same set of samples. We observed that expression of Desulfobacteraceae bacterium, methanogenic archaea, Mushu phage, opportunistic pathogenic fungi Fusarium proliferatum and Candida sorbophila, protozoa Blastocystis spp. and Fonticula alba were upregulated in MAFLD and SH. Desulfobacteraceae bacterium and Mushu phage were hub species in the onset of MAFLD, whereas the activity of Fonticula alba, Faecalibacterium prausnitzii, and Mushu phage act as key regulators of the progression to SH. A combination of clinical, metabolomic, and transcriptomic parameters showed the highest predictive capacity for MAFLD and SH (AUC = 0.96). In conclusion, faecal microbiome markers from several community members contribute to the switch in signatures characteristic of MAFLD and its progression towards SH.
Collapse
Affiliation(s)
- María Florencia Mascardi
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Instituto Universitario del Hospital Italiano (IUHI) - Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Flavia Noelia Mazzini
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Instituto Universitario del Hospital Italiano (IUHI) - Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Bárbara Suárez
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Instituto Universitario del Hospital Italiano (IUHI) - Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Vera M Ruda
- Biotherapeutic and Analytical Technologies, Novartis Institutes for Biomedical Research (NIBR), Cambridge, Massachusetts, USA
| | - Sebastián Marciano
- Liver Unit of Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Paola Casciato
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Liver Unit of Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Adrián Narvaez
- Liver Unit of Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Leila Haddad
- Liver Unit of Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | | | - Ana Jesica Tamaroff
- Nutrition Department of Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Frank Cook
- Analytical Sciences & Imaging Department, NIBR, Cambridge, Massachusetts, USA
| | - John Gounarides
- Analytical Sciences & Imaging Department, NIBR, Cambridge, Massachusetts, USA
| | - Susana Gutt
- Nutrition Department of Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Adrián Gadano
- Liver Unit of Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Celia Méndez García
- Chemical Biology & Therapeutics Department, NIBR, Cambridge, Massachusetts, USA
| | - Martin L Marro
- Cardiovascular and Metabolic Disease Area, NIBR, Cambridge, Massachusetts, USA
| | - Alberto Penas Steinhardt
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Ciencias Básicas, Laboratorio de Genómica Computacional, Universidad Nacional de Luján, Lujan, Buenos Aires, Argentina
| | - Julieta Trinks
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB) - CONICET - Instituto Universitario del Hospital Italiano (IUHI) - Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
26
|
van Dijk B, Buffard P, Farr AD, Giersdorf F, Meijer J, Dutilh BE, Rainey PB. Identifying and tracking mobile elements in evolving compost communities yields insights into the nanobiome. ISME COMMUNICATIONS 2023; 3:90. [PMID: 37640834 PMCID: PMC10462680 DOI: 10.1038/s43705-023-00294-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Microbial evolution is driven by rapid changes in gene content mediated by horizontal gene transfer (HGT). While mobile genetic elements (MGEs) are important drivers of gene flux, the nanobiome-the zoo of Darwinian replicators that depend on microbial hosts-remains poorly characterised. New approaches are necessary to increase our understanding beyond MGEs shaping individual populations, towards their impacts on complex microbial communities. A bioinformatic pipeline (xenoseq) was developed to cross-compare metagenomic samples from microbial consortia evolving in parallel, aimed at identifying MGE dissemination, which was applied to compost communities which underwent periodic mixing of MGEs. We show that xenoseq can distinguish movement of MGEs from demographic changes in community composition that otherwise confounds identification, and furthermore demonstrate the discovery of various unexpected entities. Of particular interest was a nanobacterium of the candidate phylum radiation (CPR) which is closely related to a species identified in groundwater ecosystems (Candidatus Saccharibacterium), and appears to have a parasitic lifestyle. We also highlight another prolific mobile element, a 313 kb plasmid hosted by a Cellvibrio lineage. The host was predicted to be capable of nitrogen fixation, and acquisition of the plasmid coincides with increased ammonia production. Taken together, our data show that new experimental strategies combined with bioinformatic analyses of metagenomic data stand to provide insight into the nanobiome as a driver of microbial community evolution.
Collapse
Affiliation(s)
- Bram van Dijk
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands.
| | - Pauline Buffard
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Andrew D Farr
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Franz Giersdorf
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jeroen Meijer
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Paul B Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.
- Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL CNRS, Paris, France.
| |
Collapse
|
27
|
Frazão N, Gordo I. Ecotype formation and prophage domestication during gut bacterial evolution. Bioessays 2023; 45:e2300063. [PMID: 37353919 DOI: 10.1002/bies.202300063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/25/2023]
Abstract
How much bacterial evolution occurs in our intestines and which factors control it are currently burning questions. The formation of new ecotypes, some of which capable of coexisting for long periods of time, is highly likely in our guts. Horizontal gene transfer driven by temperate phages that can perform lysogeny is also widespread in mammalian intestines. Yet, the roles of mutation and especially lysogeny as key drivers of gut bacterial adaptation remain poorly understood. The mammalian gut contains hundreds of bacterial species, each with many strains and ecotypes, whose abundance varies along the lifetime of a host. A continuous high input of mutations and horizontal gene transfer events mediated by temperate phages drives that diversity. Future experiments to study the interaction between mutations that cause adaptation in microbiomes and lysogenic events with different costs and benefits will be key to understand the dynamic microbiomes of mammals. Also see the video abstract here: https://youtu.be/Zjqsiyb5Pk0.
Collapse
Affiliation(s)
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
28
|
von Strempel A, Weiss AS, Wittmann J, Salvado Silva M, Ring D, Wortmann E, Clavel T, Debarbieux L, Kleigrewe K, Stecher B. Bacteriophages targeting protective commensals impair resistance against Salmonella Typhimurium infection in gnotobiotic mice. PLoS Pathog 2023; 19:e1011600. [PMID: 37603558 PMCID: PMC10470868 DOI: 10.1371/journal.ppat.1011600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/31/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
Gut microbial communities protect the host against a variety of major human gastrointestinal pathogens. Bacteriophages (phages) are ubiquitous in nature and frequently ingested via food and drinking water. Moreover, they are an attractive tool for microbiome engineering due to the lack of known serious adverse effects on the host. However, the functional role of phages within the gastrointestinal microbiome remain poorly understood. Here, we investigated the effects of microbiota-directed phages on infection with the human enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm), using a gnotobiotic mouse model (OMM14) for colonization resistance (CR). We show, that phage cocktails targeting Escherichia coli and Enterococcus faecalis acted in a strain-specific manner. They transiently reduced the population density of their respective target before establishing coexistence for up to 9 days. Infection susceptibility to S. Tm was markedly increased at an early time point after challenge with both phage cocktails. Surprisingly, OMM14 mice were also susceptible 7 days after a single phage inoculation, when the targeted bacterial populations were back to pre-phage administration density. Concluding, our work shows that phages that dynamically modulate the density of protective members of the gut microbiota can provide opportunities for invasion of bacterial pathogens, in particular at early time points after phage application. This suggests, that phages targeting protective members of the microbiota may increase the risk for Salmonella infection.
Collapse
Affiliation(s)
- Alexandra von Strempel
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna S. Weiss
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Marta Salvado Silva
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Diana Ring
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Esther Wortmann
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany
| |
Collapse
|
29
|
Rangel-Pineros G, Almeida A, Beracochea M, Sakharova E, Marz M, Reyes Muñoz A, Hölzer M, Finn RD. VIRify: An integrated detection, annotation and taxonomic classification pipeline using virus-specific protein profile hidden Markov models. PLoS Comput Biol 2023; 19:e1011422. [PMID: 37639475 PMCID: PMC10491390 DOI: 10.1371/journal.pcbi.1011422] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 09/08/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
The study of viral communities has revealed the enormous diversity and impact these biological entities have on various ecosystems. These observations have sparked widespread interest in developing computational strategies that support the comprehensive characterisation of viral communities based on sequencing data. Here we introduce VIRify, a new computational pipeline designed to provide a user-friendly and accurate functional and taxonomic characterisation of viral communities. VIRify identifies viral contigs and prophages from metagenomic assemblies and annotates them using a collection of viral profile hidden Markov models (HMMs). These include our manually-curated profile HMMs, which serve as specific taxonomic markers for a wide range of prokaryotic and eukaryotic viral taxa and are thus used to reliably classify viral contigs. We tested VIRify on assemblies from two microbial mock communities, a large metagenomics study, and a collection of publicly available viral genomic sequences from the human gut. The results showed that VIRify could identify sequences from both prokaryotic and eukaryotic viruses, and provided taxonomic classifications from the genus to the family rank with an average accuracy of 86.6%. In addition, VIRify allowed the detection and taxonomic classification of a range of prokaryotic and eukaryotic viruses present in 243 marine metagenomic assemblies. Finally, the use of VIRify led to a large expansion in the number of taxonomically classified human gut viral sequences and the improvement of outdated and shallow taxonomic classifications. Overall, we demonstrate that VIRify is a novel and powerful resource that offers an enhanced capability to detect a broad range of viral contigs and taxonomically classify them.
Collapse
Affiliation(s)
- Guillermo Rangel-Pineros
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogota, Colombia
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Alexandre Almeida
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Martin Beracochea
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ekaterina Sakharova
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Manja Marz
- RNA Bioinformatics, Friedrich Schiller University, Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University, Jena, Germany
| | - Alejandro Reyes Muñoz
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogota, Colombia
| | - Martin Hölzer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
- European Virus Bioinformatics Center, Friedrich Schiller University, Jena, Germany
- Methodology and Research Infrastructure, Genome Competence Center (MF1), Robert Koch Institute, Berlin, Germany
| | - Robert D. Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
30
|
Brown HA, DeVeaux AL, Juliano BR, Photenhauer AL, Boulinguiez M, Bornschein RE, Wawrzak Z, Ruotolo BT, Terrapon N, Koropatkin NM. BoGH13A Sus from Bacteroides ovatus represents a novel α-amylase used for Bacteroides starch breakdown in the human gut. Cell Mol Life Sci 2023; 80:232. [PMID: 37500984 PMCID: PMC10540511 DOI: 10.1007/s00018-023-04812-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/29/2023]
Abstract
Members of the Bacteroidetes phylum in the human colon deploy an extensive number of proteins to capture and degrade polysaccharides. Operons devoted to glycan breakdown and uptake are termed polysaccharide utilization loci or PUL. The starch utilization system (Sus) is one such PUL and was initially described in Bacteroides thetaiotaomicron (Bt). BtSus is highly conserved across many species, except for its extracellular α-amylase, SusG. In this work, we show that the Bacteroides ovatus (Bo) extracellular α-amylase, BoGH13ASus, is distinguished from SusG in its evolutionary origin and its domain architecture and by being the most prevalent form in Bacteroidetes Sus. BoGH13ASus is the founding member of both a novel subfamily in the glycoside hydrolase family 13, GH13_47, and a novel carbohydrate-binding module, CBM98. The BoGH13ASus CBM98-CBM48-GH13_47 architecture differs from the CBM58 embedded within the GH13_36 of SusG. These domains adopt a distinct spatial orientation and invoke a different association with the outer membrane. The BoCBM98 binding site is required for Bo growth on polysaccharides and optimal enzymatic degradation thereof. Finally, the BoGH13ASus structure features bound Ca2+ and Mn2+ ions, the latter of which is novel for an α-amylase. Little is known about the impact of Mn2+ on gut bacterial function, much less on polysaccharide consumption, but Mn2+ addition to Bt expressing BoGH13ASus specifically enhances growth on starch. Further understanding of bacterial starch degradation signatures will enable more tailored prebiotic and pharmaceutical approaches that increase starch flux to the gut.
Collapse
Affiliation(s)
- Haley A Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Anna L DeVeaux
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amanda L Photenhauer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Matthieu Boulinguiez
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS AMU; USC1408 INRAE, 13288, Marseille, France
| | | | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Lemont, IL, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS AMU; USC1408 INRAE, 13288, Marseille, France
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
31
|
Pérez-Cataluña A, Randazzo W, Martínez-Blanch JF, Codoñer FM, Sánchez G. Sample and library preparation approaches for the analysis of the virome of irrigation water. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4450-4457. [PMID: 36823282 DOI: 10.1002/jsfa.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The virome (i.e. community of mainly RNA and DNA eukaryotic viruses and bacteriophages) of waters is yet to be extensively explored. In particular, the virome of waters used for irrigation could therefore potentially carry viral pathogens that can contaminate fresh produce. One problem in obtaining viral sequences from irrigation waters is the relatively low amount of virus particles, as well as the presence of human, bacterial and protozoan cells. The present aimed study was to compare different processing, amplification, and sequencing approaches for virome characterization in irrigation waters. RESULTS Our analyses considered percentages of viral reads, values for diversity indices and number of families found in sequencing results. The results obtained suggest that enrichment protocols using two (bezonase and microccocal nuclease) or four enzymes at once (bezonase, microccocal nuclease, DNAse and RNase), regardless of an Amicon filtration step, are more appropriate than separated enzymatic treatments for virome characterization in irrigation water. The NetoVIR protocol combined with the ScriptSeq v2 RNA-Seq Library (P0-L20 protocol) showed the highest percentages of RNA viruses and identified the higher number of families. CONCLUSION Although virome characterization applied in irrigation waters is an important tool for protecting public health by informing on circulating human and zoonotic infections, optimized and standardized procedures should be followed to reduce the variability of results related to either the sample itself and the downstream bioinformatics analyses. Our results show that virome characterization can be an important tool in the discovery of pathogenic viruses in the environment and can be used to inform and optimize reference-based detection methods provided that appropriate and rigorous controls are included. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
| | | | - Francisco M Codoñer
- ADM-Lifesequencing - Health and Wellness - Adm Nutrition, Valencia, Spain
- Danone Nutricia Research, Singapore, Singapore
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
| |
Collapse
|
32
|
Bicknell B, Liebert A, Borody T, Herkes G, McLachlan C, Kiat H. Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. Int J Mol Sci 2023; 24:9577. [PMID: 37298527 PMCID: PMC10253993 DOI: 10.3390/ijms24119577] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The human gut microbiome contains the largest number of bacteria in the body and has the potential to greatly influence metabolism, not only locally but also systemically. There is an established link between a healthy, balanced, and diverse microbiome and overall health. When the gut microbiome becomes unbalanced (dysbiosis) through dietary changes, medication use, lifestyle choices, environmental factors, and ageing, this has a profound effect on our health and is linked to many diseases, including lifestyle diseases, metabolic diseases, inflammatory diseases, and neurological diseases. While this link in humans is largely an association of dysbiosis with disease, in animal models, a causative link can be demonstrated. The link between the gut and the brain is particularly important in maintaining brain health, with a strong association between dysbiosis in the gut and neurodegenerative and neurodevelopmental diseases. This link suggests not only that the gut microbiota composition can be used to make an early diagnosis of neurodegenerative and neurodevelopmental diseases but also that modifying the gut microbiome to influence the microbiome-gut-brain axis might present a therapeutic target for diseases that have proved intractable, with the aim of altering the trajectory of neurodegenerative and neurodevelopmental diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, autism spectrum disorder, and attention-deficit hyperactivity disorder, among others. There is also a microbiome-gut-brain link to other potentially reversible neurological diseases, such as migraine, post-operative cognitive dysfunction, and long COVID, which might be considered models of therapy for neurodegenerative disease. The role of traditional methods in altering the microbiome, as well as newer, more novel treatments such as faecal microbiome transplants and photobiomodulation, are discussed.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Thomas Borody
- Centre for Digestive Diseases, Five Dock, NSW 2046, Australia;
| | - Geoffrey Herkes
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Craig McLachlan
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
| | - Hosen Kiat
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- ANU College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
33
|
Pargin E, Roach MJ, Skye A, Papudeshi B, Inglis LK, Mallawaarachchi V, Grigson SR, Harker C, Edwards RA, Giles SK. The human gut virome: composition, colonization, interactions, and impacts on human health. Front Microbiol 2023; 14:963173. [PMID: 37293229 PMCID: PMC10244655 DOI: 10.3389/fmicb.2023.963173] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
The gut virome is an incredibly complex part of the gut ecosystem. Gut viruses play a role in many disease states, but it is unknown to what extent the gut virome impacts everyday human health. New experimental and bioinformatic approaches are required to address this knowledge gap. Gut virome colonization begins at birth and is considered unique and stable in adulthood. The stable virome is highly specific to each individual and is modulated by varying factors such as age, diet, disease state, and use of antibiotics. The gut virome primarily comprises bacteriophages, predominantly order Crassvirales, also referred to as crAss-like phages, in industrialized populations and other Caudoviricetes (formerly Caudovirales). The stability of the virome's regular constituents is disrupted by disease. Transferring the fecal microbiome, including its viruses, from a healthy individual can restore the functionality of the gut. It can alleviate symptoms of chronic illnesses such as colitis caused by Clostridiodes difficile. Investigation of the virome is a relatively novel field, with new genetic sequences being published at an increasing rate. A large percentage of unknown sequences, termed 'viral dark matter', is one of the significant challenges facing virologists and bioinformaticians. To address this challenge, strategies include mining publicly available viral datasets, untargeted metagenomic approaches, and utilizing cutting-edge bioinformatic tools to quantify and classify viral species. Here, we review the literature surrounding the gut virome, its establishment, its impact on human health, the methods used to investigate it, and the viral dark matter veiling our understanding of the gut virome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
34
|
Raeisi H, Noori M, Azimirad M, Mohebbi SR, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Emerging applications of phage therapy and fecal virome transplantation for treatment of Clostridioides difficile infection: challenges and perspectives. Gut Pathog 2023; 15:21. [PMID: 37161478 PMCID: PMC10169144 DOI: 10.1186/s13099-023-00550-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
Clostridioides difficile, which causes life-threatening diarrheal disease, is considered an urgent threat to healthcare setting worldwide. The current standards of care solely rely on conventional antibiotic treatment, however, there is a risk of promoting recurrent C. difficile infection (rCDI) because of the emergence of antibiotic-resistant strains. Globally, the alarming spread of antibiotic-resistant strains of C. difficile has resulted in a quest for alternative therapeutics. The use of fecal microbiota transplantation (FMT), which involves direct infusion of fecal suspension from a healthy donor into a diseased recipient, has been approved as a highly efficient therapeutic option for patients with rCDI. Bacteriophages or phages are a group of viruses that can infect and destroy bacterial hosts, and are recognized as the dominant viral component of the human gut microbiome. Accumulating data has demonstrated that phages play a vital role in microbial balance of the human gut microbiome. Recently, phage therapy and fecal virome transplantation (FVT) have been introduced as promising alternatives for the treatment of C. difficile -related infections, in particular drug-resistant CDI. Herein, we review the latest updates on C. difficile- specific phages, and phage-mediated treatments, and highlight the current and future prospects of phage therapy in the management of CDI.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Jin Y, Li W, Zhang H, Ba X, Li Z, Zhou J. The Post-Antibiotic Era: A New Dawn for Bacteriophages. BIOLOGY 2023; 12:biology12050681. [PMID: 37237494 DOI: 10.3390/biology12050681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
Phages are the most biologically diverse entities in the biosphere, infecting specific bacteria. Lytic phages quickly kill bacteria, while lysogenic phages integrate their genomes into bacteria and reproduce within the bacteria, participating in the evolution of natural populations. Thus, lytic phages are used to treat bacterial infections. However, due to the huge virus invasion, bacteria have also evolved a special immune mechanism (CRISPR-Cas systems, discovered in 1987). Therefore, it is necessary to develop phage cocktails and synthetic biology methods to infect bacteria, especially against multidrug-resistant bacteria infections, which are a major global threat. This review outlines the discovery and classification of phages and the associated achievements in the past century. The main applications of phages, including synthetic biology and PT, are also discussed, in addition to the effects of PT on immunity, intestinal microbes, and potential safety concerns. In the future, combining bioinformatics, synthetic biology, and classic phage research will be the way to deepen our understanding of phages. Overall, whether phages are an important element of the ecosystem or a carrier that mediates synthetic biology, they will greatly promote the progress of human society.
Collapse
Affiliation(s)
- Youshun Jin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Wei Li
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Huaiyu Zhang
- Animal Pathology Laboratory, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Xuli Ba
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Zhaocai Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jizhang Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| |
Collapse
|
36
|
do Socorro Fôro Ramos E, Bahia SL, de Oliveira Ribeiro G, Villanova F, de Pádua Milagres FA, Brustulin R, Pandey RP, Deng X, Delwart E, da Costa AC, Leal É. Characterization of Phietavirus Henu 2 in the virome of individuals with acute gastroenteritis. Virus Genes 2023; 59:464-472. [PMID: 37004601 DOI: 10.1007/s11262-023-01990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/15/2023] [Indexed: 04/04/2023]
Abstract
There is a growing interest in phages as potential biotechnological tools in human health owing to the antibacterial activity of these viruses. In this study, we characterized a new member (named PhiV_005_BRA/2016) of the recently identified phage species Phietavirus Henu 2. PhiV_005_BRA/2016 was detected through metagenomic analysis of stool samples of individuals with acute gastroenteritis. PhiV_005_BRA/2016 contains double-stranded linear DNA (dsDNA), it has a genome of 43,513 base pairs (bp), with a high identity score (99%) with phage of the genus Phietavirus, species of Phietavirus Henu 2. Life style prediction indicated that PhiV_005_BRA/2016 is a lysogenic phage whose the main host is methicillin-resistant Staphylococcus aureus (MRSA). Indeed, we found PhiV_005_BRA/2016 partially integrated in the genome of distinct MRSA strains. Our findings highlights the importance of large-scale screening of bacteriophages to better understand the emergence of multi-drug resistant bacterial.
Collapse
Affiliation(s)
- Endrya do Socorro Fôro Ramos
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicais, Universidade Federal do Pará, Belém, Pará, 66075-000, Brazil
| | - Santana Lobato Bahia
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicais, Universidade Federal do Pará, Belém, Pará, 66075-000, Brazil
| | - Geovani de Oliveira Ribeiro
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicais, Universidade Federal do Pará, Belém, Pará, 66075-000, Brazil
| | - Fabiola Villanova
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicais, Universidade Federal do Pará, Belém, Pará, 66075-000, Brazil
| | - Flávio Augusto de Pádua Milagres
- Secretaria de Saúde do Tocantins, Palmas, Tocantins, 77453-000, Brazil
- Laboratório Central de Saúde Pública do Tocantins (LACEN/TO), Palmas, Tocantins, 77016-330, Brazil
| | - Rafael Brustulin
- Secretaria de Saúde do Tocantins, Palmas, Tocantins, 77453-000, Brazil
- Laboratório Central de Saúde Pública do Tocantins (LACEN/TO), Palmas, Tocantins, 77016-330, Brazil
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, 131029, India
| | - Xutao Deng
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118-4417, USA
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Eric Delwart
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118-4417, USA
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | | | - Élcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicais, Universidade Federal do Pará, Belém, Pará, 66075-000, Brazil.
| |
Collapse
|
37
|
Kann S, Eberhardt K, Hinz R, Schwarz NG, Dib JC, Aristizabal A, Mendoza GAC, Hagen RM, Frickmann H, Barrantes I, Kreikemeyer B. The Gut Microbiome of an Indigenous Agropastoralist Population in a Remote Area of Colombia with High Rates of Gastrointestinal Infections and Dysbiosis. Microorganisms 2023; 11:625. [PMID: 36985199 PMCID: PMC10052337 DOI: 10.3390/microorganisms11030625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
An Indigenous agropastoralist population called the Wiwa from the Sierra Nevada de Santa Marta, in North-East Colombia, shows high rates of gastrointestinal infections. Chronic gut inflammatory processes and dysbiosis could be a reason, suggesting an influence or predisposing potential of the gut microbiome composition. The latter was analyzed by 16S rRNA gene amplicon next generation sequencing from stool samples. Results of the Wiwa population microbiomes were associated with available epidemiological and morphometric data and compared to control samples from a local urban population. Indeed, locational-, age-, and gender-specific differences in the Firmicutes/Bacteriodetes ratio, core microbiome, and overall genera-level microbiome composition were shown. Alpha- and ß-diversity separated the urban site from the Indigenous locations. Urban microbiomes were dominated by Bacteriodetes, whereas Indigenous samples revealed a four times higher abundance of Proteobacteria. Even differences among the two Indigenous villages were noted. PICRUSt analysis identified several enriched location-specific bacterial pathways. Moreover, on a general comparative scale and with a high predictive accuracy, we found Sutterella associated with the abundance of enterohemorrhagic Escherichia coli (EHEC), Faecalibacteria associated with enteropathogenic Escherichia coli (EPEC) and helminth species Hymenolepsis nana and Enterobius vermicularis. Parabacteroides, Prevotella, and Butyrivibrio are enriched in cases of salmonellosis, EPEC, and helminth infections. Presence of Dialister was associated with gastrointestinal symptoms, whereas Clostridia were exclusively found in children under the age of 5 years. Odoribacter and Parabacteroides were exclusively identified in the microbiomes of the urban population of Valledupar. In summary, dysbiotic alterations in the gut microbiome in the Indigenous population with frequent episodes of self-reported gastrointestinal infections were confirmed with epidemiological and pathogen-specific associations. Our data provide strong hints of microbiome alterations associated with the clinical conditions of the Indigenous population.
Collapse
Affiliation(s)
- Simone Kann
- Department for Research and Development, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Kirsten Eberhardt
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Division of Hygiene and Infectious Diseases, Institute of Hygiene and Environment, 20539 Hamburg, Germany
| | - Rebecca Hinz
- SYNLAB Medizinisches Versorgungszentrum Hamburg GmbH, 22083 Hamburg, Germany
| | | | - Juan Carlos Dib
- Department of Medicine, Fundación Universidad de Norte, Baranquilla 080001, Colombia
| | | | | | - Ralf Matthias Hagen
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Israel Barrantes
- Research Group Translational Bioinformatics, Institute for Biostatistics and Informatics in Medicine und Aging Research, University Medicine Rostock, 18057 Rostock, Germany
| | - Bernd Kreikemeyer
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| |
Collapse
|
38
|
Miller-Ensminger T, Johnson G, Banerjee S, Putonti C. When Plaquing Is Not Possible: Computational Methods for Detecting Induced Phages. Viruses 2023; 15:420. [PMID: 36851634 PMCID: PMC9964552 DOI: 10.3390/v15020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
High-throughput sequencing of microbial communities has uncovered a large, diverse population of phages. Frequently, phages found are integrated into their bacterial host genome. Distinguishing between phages in their integrated (lysogenic) and unintegrated (lytic) stage can provide insight into how phages shape bacterial communities. Here we present the Prophage Induction Estimator (PIE) to identify induced phages in genomic and metagenomic sequences. PIE takes raw sequencing reads and phage sequence predictions, performs read quality control, read assembly, and calculation of phage and non-phage sequence abundance and completeness. The distribution of abundances for non-phage sequences is used to predict induced phages with statistical confidence. In silico tests were conducted to benchmark this tool finding that PIE can detect induction events as well as phages with a relatively small burst size (10×). We then examined isolate genome sequencing data as well as a mock community and urinary metagenome data sets and found instances of induced phages in all three data sets. The flexibility of this software enables users to easily include phage predictions from their preferred tool of choice or phage sequences of interest. Thus, genomic and metagenomic sequencing now not only provides a means for discovering and identifying phage sequences but also the detection of induced prophages.
Collapse
Affiliation(s)
| | - Genevieve Johnson
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA
| | - Swarnali Banerjee
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL 60660, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
- Department of Microbiology and Immunology, Stitch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
39
|
Shim H. Three Innovations of Next-Generation Antibiotics: Evolvability, Specificity, and Non-Immunogenicity. Antibiotics (Basel) 2023; 12:antibiotics12020204. [PMID: 36830114 PMCID: PMC9952447 DOI: 10.3390/antibiotics12020204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Antimicrobial resistance is a silent pandemic exacerbated by the uncontrolled use of antibiotics. Since the discovery of penicillin, we have been largely dependent on microbe-derived small molecules to treat bacterial infections. However, the golden era of antibiotics is coming to an end, as the emergence and spread of antimicrobial resistance against these antibacterial compounds are outpacing the discovery and development of new antibiotics. The current antibiotic market suffers from various shortcomings, including the absence of profitability and investment. The most important underlying issue of traditional antibiotics arises from the inherent properties of these small molecules being mostly broad-spectrum and non-programmable. As the scientific knowledge of microbes progresses, the scientific community is starting to explore entirely novel approaches to tackling antimicrobial resistance. One of the most prominent approaches is to develop next-generation antibiotics. In this review, we discuss three innovations of next-generation antibiotics compared to traditional antibiotics as specificity, evolvability, and non-immunogenicity. We present a number of potential antimicrobial agents, including bacteriophage-based therapy, CRISPR-Cas-based antimicrobials, and microbiome-derived antimicrobial agents. These alternative antimicrobial agents possess innovative properties that may overcome the inherent shortcomings of traditional antibiotics, and some of these next-generation antibiotics are not merely far-fetched ideas but are currently in clinical development. We further discuss some related issues and challenges such as infection diagnostics and regulatory frameworks that still need to be addressed to bring these next-generation antibiotics to the antibiotic market as viable products to combat antimicrobial resistance using a diversified set of strategies.
Collapse
Affiliation(s)
- Hyunjin Shim
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon 21985, Republic of Korea
| |
Collapse
|
40
|
Tithi SS, Aylward FO, Jensen RV, Zhang L. FastViromeExplorer-Novel: Recovering Draft Genomes of Novel Viruses and Phages in Metagenomic Data. JOURNAL OF COMPUTATIONAL BIOLOGY : A JOURNAL OF COMPUTATIONAL MOLECULAR CELL BIOLOGY 2023; 30:391-408. [PMID: 36607772 DOI: 10.1089/cmb.2022.0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite the recent surge of viral metagenomic studies, recovering complete virus/phage genomes from metagenomic data is still extremely difficult and most viral contigs generated from de novo assembly programs are highly fragmented, posing serious challenges to downstream analysis and inference. In this study, we develop FastViromeExplorer (FVE)-novel, a computational pipeline for reconstructing complete or near-complete viral draft genomes from metagenomic data. The FVE-novel deploys FVE to efficiently map metagenomic reads to viral reference genomes, performs de novo assembly of the mapped reads to generate contigs, and extends the contigs through iterative assembly to produce final viral scaffolds. We applied FVE-novel to an ocean metagenomic sample and obtained 268 viral scaffolds that potentially come from novel viruses. Through manual examination and validation of the 10 longest scaffolds, we successfully recovered 4 complete viral genomes, 2 are novel as they cannot be found in the existing databases and the other 2 are related to known phages. This hybrid reference-based and de novo assembly approach used by FVE-novel represents a powerful new approach for uncovering near-complete viral genomes in metagenomic data.
Collapse
Affiliation(s)
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Roderick V Jensen
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
41
|
Mangalea MR, Keift K, Duerkop BA, Anantharaman K. Assembly and Annotation of Viral Metagenomes from Short-Read Sequencing Data. Methods Mol Biol 2023; 2649:317-337. [PMID: 37258871 DOI: 10.1007/978-1-0716-3072-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Viral metagenomics enables the detection, characterization, and quantification of viral sequences present in shotgun-sequenced datasets of purified virus-like particles and whole metagenomes. Next generation sequencing (Illumina) derived short single or paired-end read runs are a principal platform for metagenomics, and assembly of short reads allows for the identification of distinguishing viral signatures and complex genomic features for taxonomy and functional annotation. Here we describe the identification and characterization of viral genome sequences, bacteriophages, and eukaryotic viruses, from a cohort of human stool samples, using multiple methods. Following the purification of virus-like particles, sequencing, quality refinement, and genome assembly, we begin the protocol with raw short reads deposited in an open-source nucleotide archive. We highlight the use of VIBRANT, an automated computational tool for the characterization of microbial viruses and their viral community function. Finally, we also describe an alternative assembly-free option of mapping reads to established databases of reference genomes and previously characterized metagenome-assembled viral genomes.
Collapse
Affiliation(s)
- Mihnea R Mangalea
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kristopher Keift
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | | |
Collapse
|
42
|
Li R, Wang Y, Hu H, Tan Y, Ma Y. Metagenomic analysis reveals unexplored diversity of archaeal virome in the human gut. Nat Commun 2022; 13:7978. [PMID: 36581612 PMCID: PMC9800368 DOI: 10.1038/s41467-022-35735-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
The human gut microbiome has been extensively explored, while the archaeal viruses remain largely unknown. Here, we present a comprehensive analysis of the archaeal viruses from the human gut metagenomes and the existing virus collections using the CRISPR spacer and viral signature-based approach. This results in 1279 viral species, of which, 95.2% infect Methanobrevibacteria_A, 56.5% shared high identity (>95%) with the archaeal proviruses, 37.2% have a host range across archaeal species, and 55.7% are highly prevalent in the human population (>1%). A methanogenic archaeal virus-specific gene for pseudomurein endoisopeptidase (PeiW) frequently occurs in the viral sequences (n = 150). Analysis of 33 Caudoviricetes viruses with a complete genome often discovers the genes (integrase, n = 29; mazE, n = 10) regulating the viral lysogenic-lytic cycle, implying the dominance of temperate viruses in the archaeal virome. Together, our work uncovers the unexplored diversity of archaeal viruses, revealing the novel facet of the human gut microbiome.
Collapse
Affiliation(s)
- Ran Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Wang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Han Hu
- Xbiome, Scientific Research Building, Tsinghua High-Tech Park, Shenzhen, China
| | - Yan Tan
- Xbiome, Scientific Research Building, Tsinghua High-Tech Park, Shenzhen, China
| | - Yingfei Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
43
|
Amgarten D, Iha BKV, Piroupo CM, da Silva AM, Setubal JC. vHULK, a New Tool for Bacteriophage Host Prediction Based on Annotated Genomic Features and Neural Networks. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:204-212. [PMID: 36793881 PMCID: PMC9917316 DOI: 10.1089/phage.2021.0016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background The experimental determination of a bacteriophage host is a laborious procedure. Thus, there is a pressing need for reliable computational predictions of bacteriophage hosts. Materials and Methods We developed the program vHULK for phage host prediction based on 9504 phage genome features, which consider alignment significance scores between predicted proteins and a curated database of viral protein families. The features were fed to a neural network, and two models were trained to predict 77 host genera and 118 host species. Results In controlled random test sets with 90% redundancy reduction in terms of protein similarity, vHULK obtained on average 83% precision and 79% recall at the genus level, and 71% precision and 67% recall at the species level. The performance of vHULK was compared against three other tools on a test data set with 2153 phage genomes. On this data set, vHULK achieved better performance at both the genus and the species levels than the other tools. Conclusions Our results suggest that vHULK represents an advance on the state of art in phage host prediction.
Collapse
Affiliation(s)
- Deyvid Amgarten
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Carlos Morais Piroupo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Aline Maria da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
44
|
Characterization of a New Temperate Escherichia coli Phage vB_EcoP_ZX5 and Its Regulatory Protein. Pathogens 2022; 11:pathogens11121445. [PMID: 36558779 PMCID: PMC9782041 DOI: 10.3390/pathogens11121445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The study of the interaction between temperate phages and bacteria is vital to understand their role in the development of human diseases. In this study, a novel temperate Escherichia coli phage, vB_EcoP_ZX5, with a genome size of 39,565 bp, was isolated from human fecal samples. It has a short tail and belongs to the genus Uetakevirus and the family Podoviridae. Phage vB_EcoP_ZX5 encodes three lysogeny-related proteins (ORF12, ORF21, and ORF4) and can be integrated into the 3'-end of guaA of its host E. coli YO1 for stable transmission to offspring bacteria. Phage vB_EcoP_ZX5 in lysogenized E. coli YO1+ was induced spontaneously, with a free phage titer of 107 PFU/mL. The integration of vB_EcoP_ZX5 had no significant effect on growth, biofilm, environmental stress response, antibiotic sensitivity, adherence to HeLa cells, and virulence of E. coli YO1. The ORF4 anti-repressor, ORF12 integrase, and ORF21 repressors that affect the lytic-lysogenic cycle of vB_EcoP_ZX5 were verified by protein overexpression. We could tell from changes of the number of total phages and the transcription level of phage genes that repressor protein is the key determinant of lytic-to-lysogenic conversion, and anti-repressor protein promotes the conversion from lysogenic cycle to lytic cycle.
Collapse
|
45
|
Moltzau Anderson J, Lachnit T, Lipinski S, Falk-Paulsen M, Rosenstiel P. Impact of antibiotic perturbation on fecal viral communities in mice. G3 (BETHESDA, MD.) 2022; 13:6839982. [PMID: 36413074 PMCID: PMC9836353 DOI: 10.1093/g3journal/jkac293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Viruses and bacteriophages have a strong impact on intestinal barrier function and the composition and functional properties of commensal bacterial communities. Shifts of the fecal virome might be involved in human diseases, including inflammatory bowel disease (IBD). Loss-of-function variants in the nucleotide-binding oligomerization domain-containing protein 2 (NOD2) gene are associated with an increased risk of developing Crohn's disease, a subtype of human chronic IBD, where specific changes in fecal viral communities have also been described. To improve our understanding of the dynamics of the enteric virome, we longitudinally characterized the virome in fecal samples from wild-type C57BL/6J and NOD2 knock-out mice in response to an antibiotic perturbation. Sequencing of virus-like particles demonstrated both a high diversity and high interindividual variation of the murine fecal virome composed of eukaryotic viruses and bacteriophages. Antibiotics had a significant impact on the fecal murine virome. Viral community composition only partially recovered in the observation period (10 weeks after cessation of antibiotics) irrespective of genotype. However, compositional shifts in the virome and bacteriome were highly correlated, suggesting that the loss of specific phages may contribute to prolonged dysregulation of the bacterial community composition. We suggest that therapeutic interference with the fecal virome may represent a novel approach in microbiota-targeted therapies.
Collapse
Affiliation(s)
- Jacqueline Moltzau Anderson
- Present address for Jacqueline Moltzau Anderson: Department of Medicine, University of California San Francisco, 94117 San Francisco, CA, USA
| | | | - Simone Lipinski
- Present address for Simone Lipinski: University Cancer Center Schleswig-Holstein, University Medical Center Campus Kiel, 24105 Kiel, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, 24098 Kiel, Germany
| | - Philip Rosenstiel
- Corresponding author: Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University (CAU) Kiel, Rosalind-Franklin-Str. 12, Kiel 24105, Germany.
| |
Collapse
|
46
|
Marquet M, Hölzer M, Pletz MW, Viehweger A, Makarewicz O, Ehricht R, Brandt C. What the Phage: a scalable workflow for the identification and analysis of phage sequences. Gigascience 2022; 11:giac110. [PMID: 36399058 PMCID: PMC9673492 DOI: 10.1093/gigascience/giac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/24/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
Phages are among the most abundant and diverse biological entities on earth. Phage prediction from sequence data is a crucial first step to understanding their impact on the environment. A variety of bacteriophage prediction tools have been developed over the years. They differ in algorithmic approach, results, and ease of use. We, therefore, developed "What the Phage" (WtP), an easy-to-use and parallel multitool approach for phage prediction combined with an annotation and classification downstream strategy, thus supporting the user's decision-making process by summarizing the results of the different prediction tools in charts and tables. WtP is reproducible and scales to thousands of datasets through a workflow manager (Nextflow). WtP is freely available under a GPL-3.0 license (https://github.com/replikation/What_the_Phage).
Collapse
Affiliation(s)
- Mike Marquet
- Institute of Infectious Diseases and Infection Control, Jena-University Hospital/Friedrich Schiller University, Jena 07747, Germany
- Center of Sepsis Control and Care (CSCC), Jena 07747, Germany
- Leibniz Center for Photonics in Infection Research (LPI), Jena 07747, Germany
| | - Martin Hölzer
- Bioinformatics and Systems Biology, Robert Koch Institute, Berlin 13353, Germany
| | - Mathias W Pletz
- Institute of Infectious Diseases and Infection Control, Jena-University Hospital/Friedrich Schiller University, Jena 07747, Germany
- Center of Sepsis Control and Care (CSCC), Jena 07747, Germany
- Leibniz Center for Photonics in Infection Research (LPI), Jena 07747, Germany
- InfectoGnostics Research Campus, Jena 07747, Germany
| | - Adrian Viehweger
- Medical Microbiology and Virology, University Hospital Leipzig, Leipzig 04103, Germany
| | - Oliwia Makarewicz
- Institute of Infectious Diseases and Infection Control, Jena-University Hospital/Friedrich Schiller University, Jena 07747, Germany
- Center of Sepsis Control and Care (CSCC), Jena 07747, Germany
- Leibniz Center for Photonics in Infection Research (LPI), Jena 07747, Germany
- InfectoGnostics Research Campus, Jena 07747, Germany
| | - Ralf Ehricht
- InfectoGnostics Research Campus, Jena 07747, Germany
- Optisch-molekulare Diagnostik und Systemtechnologie, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Jena 07747, Germany
- Institute of Physical Chemistry, Friedrich-Schiller-University Jena, Jena 07747, Germany
| | - Christian Brandt
- Institute of Infectious Diseases and Infection Control, Jena-University Hospital/Friedrich Schiller University, Jena 07747, Germany
- Leibniz Center for Photonics in Infection Research (LPI), Jena 07747, Germany
- InfectoGnostics Research Campus, Jena 07747, Germany
| |
Collapse
|
47
|
Duan J, Wang W, Jiang T, Bai X, Liu C. Viral metagenomics combined with metabolomics reveals the role of gut viruses in mouse model of depression. Front Microbiol 2022; 13:1046894. [PMID: 36458183 PMCID: PMC9706091 DOI: 10.3389/fmicb.2022.1046894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/28/2022] [Indexed: 09/05/2023] Open
Abstract
Depression is a heterogeneous mental disorder that has been linked to disturbances in the gut microbiome. As an essential part of the gut microbiome, gut virome may play critical roles in disease progression and development. However, the relationship between the effect of gut virome on neurotransmitter metabolism and depression is unknown. We evaluated the alterations of gut virome and neurotransmitters in chronic restraint stress (CRS)-induced mouse model of depression based on viral metagenomics and LC-MS/MS metabolomics analyses. The results reveal that the gut virome profile of CRS group differed significantly from CON group. Microviridae was the most abundant differential viral family in both groups, followed by Podoviridae, while Siphoviridae was only enriched in CRS group of the top 100 differential viruses. The differential viruses that predicted to Enterobacteriaceae phage, Gammaproteobacteria phage and Campylobacteraceae phage were enriched in CRS group. Furthermore, 12 differential neurotransmitters primarily involved in the tryptophan metabolism pathway were altered in depressive-like mice. Besides, tryptamine and 5-methoxytryptamine hydrochloride were strongly associated with differential viruses belonging to Podoviridae and Microviridae. Our findings provide new insight into understanding the potential role of the gut virome and metabolites in depression.
Collapse
Affiliation(s)
- Jiajia Duan
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Wei Wang
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Tao Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xiaoyang Bai
- Department of Medical Equipment, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Chuanxin Liu
- Endocrine and Metabolic Disease Center, Medical Key Laboratory of Hereditary Rare Diseases of Henan, Luoyang Sub-Center of National Clinical Research Center for Metabolic Diseases, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
48
|
Han Z, Xiao J, Song Y, Zhao X, Sun Q, Lu H, Zhang K, Li J, Li J, Si F, Zhang G, Zhao H, Jia S, Zhou J, Wang D, Zhu S, Yan D, Xu W, Fu X, Zhang Y. Highly diverse ribonucleic acid viruses in the viromes of eukaryotic host species in Yunnan province, China. Front Microbiol 2022; 13:1019444. [PMID: 36312977 PMCID: PMC9606678 DOI: 10.3389/fmicb.2022.1019444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background The diversity in currently documented viruses and their morphological characteristics indicates the need for understanding the evolutionary characteristics of viruses. Notably, further studies are needed to obtain a comprehensive landscape of virome, the virome of host species in Yunnan province, China. Materials and methods We implemented the metagenomic next-generation sequencing strategy to investigate the viral diversity, which involved in 465 specimens collected from bats, pangolins, monkeys, and other species. The diverse RNA viruses were analyzed, especially focusing on the genome organization, genetic divergence and phylogenetic relationships. Results In this study, we investigated the viral composition of eight libraries from bats, pangolins, monkeys, and other species, and found several diverse RNA viruses, including the Alphacoronavirus from bat specimens. By characterizing the genome organization, genetic divergence, and phylogenetic relationships, we identified five Alphacoronavirus strains, which shared phylogenetic association with Bat-CoV-HKU8-related strains. The pestivirus-like virus related to recently identified Dongyang pangolin virus (DYPV) strains from dead pangolin specimens, suggesting that these viruses are evolving. Some genomes showed higher divergence from known species (e.g., calicivirus CS9-Cali-YN-CHN-2020), and many showed evidence of recombination events with unknown or known strains (e.g., mamastroviruses BF2-astro-YN-CHN-2020 and EV-A122 AKM5-YN-CHN-2020). The newly identified viruses showed extensive changes and could be assigned as new species, or even genus (e.g., calicivirus CS9-Cali-YN-CHN-2020 and iflavirus Ifla-YN-CHN-2020). Moreover, we identified several highly divergent RNA viruses and estimated their evolutionary characteristics among different hosts, providing data for further examination of their evolutionary dynamics. Conclusion Overall, our study emphasizes the close association between emerging viruses and infectious diseases, and the need for more comprehensive surveys.
Collapse
Affiliation(s)
- Zhenzhi Han
- National Laboratory for Poliomyelitis, WHO Western Pacific Region Office (WPRO) Regional Polio Reference Laboratory, National Health Commission (NHC) Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Jinbo Xiao
- National Laboratory for Poliomyelitis, WHO Western Pacific Region Office (WPRO) Regional Polio Reference Laboratory, National Health Commission (NHC) Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Song
- National Laboratory for Poliomyelitis, WHO Western Pacific Region Office (WPRO) Regional Polio Reference Laboratory, National Health Commission (NHC) Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaonan Zhao
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Qiang Sun
- National Laboratory for Poliomyelitis, WHO Western Pacific Region Office (WPRO) Regional Polio Reference Laboratory, National Health Commission (NHC) Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huanhuan Lu
- National Laboratory for Poliomyelitis, WHO Western Pacific Region Office (WPRO) Regional Polio Reference Laboratory, National Health Commission (NHC) Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Keyi Zhang
- National Laboratory for Poliomyelitis, WHO Western Pacific Region Office (WPRO) Regional Polio Reference Laboratory, National Health Commission (NHC) Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jichen Li
- National Laboratory for Poliomyelitis, WHO Western Pacific Region Office (WPRO) Regional Polio Reference Laboratory, National Health Commission (NHC) Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Junhan Li
- National Laboratory for Poliomyelitis, WHO Western Pacific Region Office (WPRO) Regional Polio Reference Laboratory, National Health Commission (NHC) Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fenfen Si
- National Laboratory for Poliomyelitis, WHO Western Pacific Region Office (WPRO) Regional Polio Reference Laboratory, National Health Commission (NHC) Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guoyan Zhang
- National Laboratory for Poliomyelitis, WHO Western Pacific Region Office (WPRO) Regional Polio Reference Laboratory, National Health Commission (NHC) Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hehe Zhao
- National Laboratory for Poliomyelitis, WHO Western Pacific Region Office (WPRO) Regional Polio Reference Laboratory, National Health Commission (NHC) Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Senquan Jia
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Jienan Zhou
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Dongyan Wang
- National Laboratory for Poliomyelitis, WHO Western Pacific Region Office (WPRO) Regional Polio Reference Laboratory, National Health Commission (NHC) Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuangli Zhu
- National Laboratory for Poliomyelitis, WHO Western Pacific Region Office (WPRO) Regional Polio Reference Laboratory, National Health Commission (NHC) Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongmei Yan
- National Laboratory for Poliomyelitis, WHO Western Pacific Region Office (WPRO) Regional Polio Reference Laboratory, National Health Commission (NHC) Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenbo Xu
- National Laboratory for Poliomyelitis, WHO Western Pacific Region Office (WPRO) Regional Polio Reference Laboratory, National Health Commission (NHC) Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoqing Fu
- Yunnan Center for Disease Control and Prevention, Kunming, China
- Xiaoqing Fu,
| | - Yong Zhang
- National Laboratory for Poliomyelitis, WHO Western Pacific Region Office (WPRO) Regional Polio Reference Laboratory, National Health Commission (NHC) Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Yong Zhang,
| |
Collapse
|
49
|
Potapov S, Krasnopeev A, Tikhonova I, Podlesnaya G, Gorshkova A, Belykh O. The Viral Fraction Metatranscriptomes of Lake Baikal. Microorganisms 2022; 10:1937. [PMID: 36296212 PMCID: PMC9611531 DOI: 10.3390/microorganisms10101937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
This article characterises viral fraction metatranscriptomes (smaller than 0.2 µm) from the pelagic zone of oligotrophic Lake Baikal (Russia). The study revealed the dominance of transcripts of DNA viruses: bacteriophages and algal viruses. We identified transcripts similar to Pithovirus sibericum, a nucleocytoplasmic large DNA virus (NCLDV) isolated from the permafrost region of Eastern Siberia. Among the families detected were RNA viruses assigned to Retroviridae, Metaviridae, Potyviridae, Astroviridae, and Closteroviridae. Using the PHROG, SEED subsystems databases, and the VOGDB, we indicated that the bulk of transcripts belong to the functional replication of viruses. In a comparative unweighted pair group method with arithmetic mean (UPGMA) analysis, the transcripts from Lake Baikal formed a separate cluster included in the clade with transcripts from other freshwater lakes, as well as marine and oceanic waters, while there was no separation based on the trophic state of the water bodies, the size of the plankton fraction, or salinity.
Collapse
Affiliation(s)
- Sergey Potapov
- Limnological Institute SB RAS, 3, Ulan-Batorskaya, 664033 Irkutsk, Russia
| | | | | | | | | | | |
Collapse
|
50
|
Boix-Amorós A, Monaco H, Sambataro E, Clemente JC. Novel technologies to characterize and engineer the microbiome in inflammatory bowel disease. Gut Microbes 2022; 14:2107866. [PMID: 36104776 PMCID: PMC9481095 DOI: 10.1080/19490976.2022.2107866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We present an overview of recent experimental and computational advances in technology used to characterize the microbiome, with a focus on how these developments improve our understanding of inflammatory bowel disease (IBD). Specifically, we present studies that make use of flow cytometry and metabolomics assays to provide a functional characterization of microbial communities. We also describe computational methods for strain-level resolution, temporal series, mycobiome and virome data, co-occurrence networks, and compositional data analysis. In addition, we review novel techniques to therapeutically manipulate the microbiome in IBD. We discuss the benefits and drawbacks of these technologies to increase awareness of specific biases, and to facilitate a more rigorous interpretation of results and their potential clinical application. Finally, we present future lines of research to better characterize the relation between microbial communities and IBD pathogenesis and progression.
Collapse
Affiliation(s)
- Alba Boix-Amorós
- Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY, USA
| | - Hilary Monaco
- Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY, USA
| | - Elisa Sambataro
- Department of Biological Sciences, CUNY Hunter College, New York, NY, USA
| | - Jose C. Clemente
- Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY, USA,CONTACT Jose C. Clemente Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY10029USA
| |
Collapse
|