1
|
Li J, Cui J, Li X, Zhu D, Chen Z, Huang X, Wang Y, Wu Q, Tian Y. TMBIM-2 orchestrates systemic mitochondrial stress response via facilitating Ca2+ oscillations. J Cell Biol 2025; 224:e202408050. [PMID: 40100072 PMCID: PMC11917168 DOI: 10.1083/jcb.202408050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/11/2024] [Accepted: 02/09/2025] [Indexed: 03/20/2025] Open
Abstract
Neuronal mitochondrial function is critical for orchestrating inter-tissue communication essential for overall fitness. Despite its significance, the molecular mechanism underlying the impact of prolonged mitochondrial stresses on neuronal activity and how they orchestrate metabolism and aging remains elusive. Here, we identified the evolutionarily conserved transmembrane protein XBX-6/TMBIM-2 as a key mediator in the neuronal-to-intestinal mitochondrial unfolded protein response (UPRmt). Our investigations reveal that intrinsic neuronal mitochondrial stress triggers spatiotemporal Ca2+ oscillations in a TMBIM-2-dependent manner through the Ca2+ efflux pump MCA-3. Notably, persistent Ca2+ oscillations at synapses of ADF neurons are critical for facilitating serotonin release and the subsequent activation of the neuronal-to-intestinal UPRmt. TMBIM2 expression diminishes with age; however, its overexpression counteracts the age-related decline in aversive learning behavior and extends the lifespan of Caenorhabditis elegans. These findings underscore the intricate integration of chronic neuronal mitochondrial stress into neurotransmission processes via TMBIM-2-dependent Ca2+ equilibrium, driving metabolic adaptation and behavioral changes for the regulation of aging.
Collapse
Affiliation(s)
- Jiasheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Jimeng Cui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Xinyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Di Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Qingfeng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| |
Collapse
|
2
|
Lv S, Lian X, Feng H, Yang B, Liu Z, Fu T, Zhao L, Huang D. Three-step crosslinking dependent self-bending transformation of a nano-spherical mineralized collagen laden 4D printed sodium alginate scaffold for bone regeneration. Carbohydr Polym 2025; 355:123422. [PMID: 40037739 DOI: 10.1016/j.carbpol.2025.123422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/06/2025]
Abstract
Although 3D printed scaffolds are widely used in irregularly shaped bone defects, additional steps often need to be introduced when fabricating structures with curvature. In contrast, 4D printing has a unique advantage in the fabrication of scaffolding with a curved structure. Bone defects such as skull is generally curved, so a self-bending scaffold would be more appropriate for the cranial defect site. This paper presents a novel self-bending SAGMA hydrogel was loaded with nano-spherical mineralized collagen, then fabricated by a 4D printing method, which achieves adjustable self-bending through three-step crosslinking. When subjected to UV light irradiation, variations in gradient of photo-crosslinking are induced within the scaffold. This gradient of photo-crosslinking serves as the foundation for the scaffold's self-bending. The scaffold exhibited self-bending after crosslinking with calcium ions and chitosan, respectively, with curvature ranging from 0.05 mm-1 to 0.446 mm-1. In vivo experiments demonstrated the efficacy of the scaffold in enhancing the repair of cranial bone defects and promoting new bone formation in rats, as evidenced by microcomputed tomography and histochemical analysis. Therefore, this self-bending scaffold provides a potentially effective method for the clinical treatment of skull defects with curvature.
Collapse
Affiliation(s)
- Song Lv
- Department of Biomedical Engineering, Research Center for Nano biomaterials and Regenerative Medicine, College of artificial intelligence, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano biomaterials and Regenerative Medicine, College of artificial intelligence, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi Key Laboratory of Functional Proteins, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Haonan Feng
- Department of Biomedical Engineering, Research Center for Nano biomaterials and Regenerative Medicine, College of artificial intelligence, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Bo Yang
- Department of Biomedical Engineering, Research Center for Nano biomaterials and Regenerative Medicine, College of artificial intelligence, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Zehua Liu
- Department of Biomedical Engineering, Research Center for Nano biomaterials and Regenerative Medicine, College of artificial intelligence, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Tong Fu
- Department of Biomedical Engineering, Research Center for Nano biomaterials and Regenerative Medicine, College of artificial intelligence, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano biomaterials and Regenerative Medicine, College of artificial intelligence, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano biomaterials and Regenerative Medicine, College of artificial intelligence, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
3
|
Zhu Y, Li N, Yao K, Wang W, Li J. A novel GJA3 mutation causing autosomal dominant congenital perinuclear cataracts. BMC Ophthalmol 2025; 25:164. [PMID: 40175916 PMCID: PMC11963407 DOI: 10.1186/s12886-025-03978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/12/2025] [Indexed: 04/04/2025] Open
Abstract
OBJECTIVE To identify the cause of congenital perinuclear cataracts in a Chinese family and its underlying mechanism. METHODS Family history and clinical data were recorded, and candidate genes were amplified by polymerase chain reaction (PCR) and screened for mutations using direct bidirectional DNA sequencing. The GJA3 gene was acquired from a human lens cDNA library, and the GJA3 mutant was generated by PCR-based site-directed mutagenesis. Connexin localization and gap junction formation were assessed by fluorescence microscopy, and hemichannel functions were analyzed by dye uptake assay. RESULTS Gene sequencing showed one base pair substitution at position 671 of the GJA3 gene's coding region (c.671A > G), leading to the conversion of the 224th amino acid of the Connexin 46 protein (Cx46), expressed by the GJA3 gene, from histidine to arginine (p.H224R). In stable transfectants, the formation of gap junctions was detected in both wild-type Cx46 (wtCx46) and mutant Cx46H224R transfected HeLa cells, where the Cx46H224R transfected cells exhibited a much higher Propidium Iodide (PI) loading speed than the wtCx46 cells. CONCLUSION This study was the first to identify the c. 671A > G mutation of the GJA3 gene (p.H224R in Cx46), which leads to the generation of congenital perinuclear cataracts. We suggest that the H224R missense mutation of Cx46 may cause alterations in the activity of the hemichannel, leading to cataract development.
Collapse
Affiliation(s)
- Yanan Zhu
- Zhejiang University, Eye Center of Second Affiliated Hospital, School of Medicine, China. Zhejiang Provincial Key Laboratory of Ophthalmology. Zhejiang Provincial Clinical Research Center for Eye Diseases. Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China.
| | - Nanlan Li
- Zhejiang University, Eye Center of Second Affiliated Hospital, School of Medicine, China. Zhejiang Provincial Key Laboratory of Ophthalmology. Zhejiang Provincial Clinical Research Center for Eye Diseases. Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Ke Yao
- Zhejiang University, Eye Center of Second Affiliated Hospital, School of Medicine, China. Zhejiang Provincial Key Laboratory of Ophthalmology. Zhejiang Provincial Clinical Research Center for Eye Diseases. Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Wei Wang
- Zhejiang University, Eye Center of Second Affiliated Hospital, School of Medicine, China. Zhejiang Provincial Key Laboratory of Ophthalmology. Zhejiang Provincial Clinical Research Center for Eye Diseases. Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Jinyu Li
- Zhejiang University, Eye Center of Second Affiliated Hospital, School of Medicine, China. Zhejiang Provincial Key Laboratory of Ophthalmology. Zhejiang Provincial Clinical Research Center for Eye Diseases. Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| |
Collapse
|
4
|
Bhardwaj JK, Siwach A, Sachdeva SN. Nicotine as a female reproductive toxicant-A review. J Appl Toxicol 2025; 45:534-550. [PMID: 39323358 DOI: 10.1002/jat.4702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
The preceding decades have seen an extensive emergence of the harmful effects of tobacco smoke on systemic health. Among the various compounds of tobacco, nicotine is one of the principal, potentially hazardous, and toxic components which is an oxidant agent that can affect both men's and women's fertility. Nicotine exerts its effect by modulating the expression of transmembrane ligand-gated ion channels called nicotinic acetylcholine receptors. The activities of female reproduction might be disrupted by exposure to nicotine at various sites, such as the ovary or reproductive tract. It's been demonstrated that nicotine might cause oxidative stress, apoptosis, hormonal imbalance, abnormalities in chromosomal segregation, impact oocyte development, and disruption in ovarian morphology and functions. This review paper summarizes the findings and provides an updated overview of the evidence on the harmful effects of nicotine use on women's reproductive health and the resulting detrimental impacts on the body. Additionally, it provides the detailed possible mechanisms involved in impairing reproductive processes like folliculogenesis, oocyte maturation, steroidogenesis, and pregnancy in different animal species.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Anshu Siwach
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology, Kurukshetra and Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
5
|
Li Q, Peng Z, Lin L, Zhang Z, Ma J, Chen L, Liu S, Gao S, Jia L, Wang J, Cao Z, Zhao X, Liu Z, Wang Y. HRP2 regulating MICU1-mediated Ca 2+ overload to dictate chemoresistance of multiple myeloma. Neoplasia 2025; 62:101150. [PMID: 40058268 PMCID: PMC11930454 DOI: 10.1016/j.neo.2025.101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/27/2025] [Indexed: 03/18/2025]
Abstract
Despite the efficacy of bortezomib (BTZ)-based chemotherapy in treating multiple myeloma (MM) patients, chemoresistance occurs frequently over time, particularly in individuals exhibiting an initial positive response to BTZ therapy. In this study, we established BTZ-resistant MM cells and identified that suppressed expression of the hepatoma-derived growth factor (HDGF)-related protein-2 (HRP2) was a key determinant of chemoresistance in MM cells. Manipulating HRP2 expression remodeled the chemosensitivity of MM cells in vitro and in vivo. Clinically, lower expression of HRP2 predicted a shorter survival rate in MM patients receiving BTZ-based regimens. Mechanistically, HRP2 depletion resulted in elevated acetylation modifications of histone 3 at lysine 27 (H3K27Ac), and enhanced chromatin accessibility as well as transcriptional elongation of mitochondrial calcium uptake 1(MICU1) gene, thus promoting the expression of MICU1 gene and alleviating calcium (Ca2+) overload and excessive reactive oxygen species (ROS) induced mitochondria damage and apoptosis in MM cells. Thereby, MICU1 suppression improved BTZ sensitivity in vitro and relieved tumor burden in a mouse model of MM. Similarly, elevated MICU1 expression was observed in the B220+CD19+ B cells from HRP2-knockout mice and significantly correlated with poor prognosis in the clinic. Thus, our study elucidates the previously unrecognized epigenetic role of HRP2 in regulating calcium homeostasis of MM cells, providing new theoretical insights into the mechanisms underlying the development of drug resistance in multiple myeloma.
Collapse
Affiliation(s)
- Qian Li
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Ziyi Peng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070 China
| | - Li Lin
- Department of Blood and Marrow Transplantation, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
| | - Zhiying Zhang
- Department of Blood and Marrow Transplantation, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
| | - Jing Ma
- Department of Blood and Marrow Transplantation, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
| | - Lin Chen
- Department of Blood and Marrow Transplantation, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
| | - Su Liu
- Department of Blood and Marrow Transplantation, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
| | - Shuang Gao
- Department of Blood and Marrow Transplantation, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
| | - Linchuang Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070 China
| | - Jingjing Wang
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zeng Cao
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Xingli Zhao
- Department of Hematology, Oncology Center, Tianjin Union Medical Center, Hongqiao, Tianjin, 300122, China.
| | - Zhiqiang Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Yafei Wang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center of Cancer, Tianjin, 300060 China.
| |
Collapse
|
6
|
Zhu M, Zhang H, Zhou Q, Sheng S, Gao Q, Geng Z, Chen X, Lai Y, Jing Y, Xu K, Bai L, Wang G, Wang J, Jiang Y, Su J. Dynamic GelMA/DNA Dual-Network Hydrogels Promote Woven Bone Organoid Formation and Enhance Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501254. [PMID: 40123197 DOI: 10.1002/adma.202501254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Indexed: 03/25/2025]
Abstract
Bone organoids, in vitro models mimicking native bone structure and function, rely on 3D stem cell culture for self-organization, differentiation, ECM secretion, and biomineralization, ultimately forming mineralized collagen hierarchies. However, their development is often limited by the lack of suitable matrices with optimal mechanical properties for sustained cell growth and differentiation. To address this, a dynamic DNA/Gelatin methacryloyl (GelMA) hydrogel (CGDE) is developed to recapitulate key biochemical and mechanical features of the bone ECM, providing a supportive microenvironment for bone organoid formation. This dual-network hydrogel is engineered through hydrogen bonding between DNA and GelMA, combined with GelMA network crosslinking, resulting in appropriate mechanical strength and enhanced viscoelasticity. During a 21-day 3D culture, the CGDE hydrogel facilitates cellular migration and self-organization, promoting woven bone organoid (WBO) formation via intramembranous ossification. These WBOs exhibit spatiotemporal architectures supporting dynamic mineralization and tissue remodeling. In vivo studies demonstrate that CGDE-derived WBOs exhibit self-adaptive properties, enabling rapid osseointegration within 4 weeks. This work highlights the CGDE hydrogel as a robust and scalable platform for bone organoid development, offering new insights into bone biology and innovative strategies for bone tissue regeneration.
Collapse
Affiliation(s)
- Mengru Zhu
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Hao Zhang
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Qirong Zhou
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Shihao Sheng
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Qianmin Gao
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhen Geng
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Yuxiao Lai
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yingying Jing
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Ke Xu
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Jianhua Wang
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Yingying Jiang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- Department of Orthopedics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| |
Collapse
|
7
|
Barber HM, Robbins CG, Cutler Z, Brown RI, Werkman I, Kucenas S. Radial astroglia cooperate with microglia to clear neuronal cell bodies during zebrafish optic tectum development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643334. [PMID: 40161638 PMCID: PMC11952540 DOI: 10.1101/2025.03.14.643334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The clearance of dead cells by phagocytes is an essential component of neural development in many organisms. Microglia are the main phagocytes in the central nervous system (CNS), but the extent of participation by other glial cells remains unclear, especially under homeostatic conditions. During zebrafish optic tectum (OT) development, we observed radial astroglia forming dynamic, spherical projections from their basal processes. These projections, which we call scyllate heads, coincide with a wave of neuronal cell death in the OT. We show that scyllate heads surround the majority of dying neurons soon after phosphatidylserine exposure. However, unlike traditional phagosomes, scyllate heads persist for many hours and are rarely acidified or internalized. Instead, microglia invade scyllate heads and remove their contents for terminal degradation. Our study reveals an active role for radial astroglia in homeostatic cell clearance and cooperation between microglia and radial astroglia during zebrafish OT development. Highlights Optic tectum astroglia form large, dynamic projections called scyllate headsScyllate heads surround the majority of dying neurons during a wave of apoptosisScyllate heads are intermediate containers of dying cells rather than phagosomesMicroglia invade scyllate heads to remove their contents for terminal degradation.
Collapse
|
8
|
Mousavi SE, Yu J, Shin HM. Exploring the neurodegenerative potential of per- and polyfluoroalkyl substances through an adverse outcome pathway network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178972. [PMID: 40022984 DOI: 10.1016/j.scitotenv.2025.178972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
While emerging evidence links per- and polyfluoroalkyl substances (PFAS) to neurotoxicity, their potential role in neurodegeneration remains poorly understood. Moreover, existing neurodegeneration-related adverse outcome pathways (AOPs) available on AOP-Wiki have not yet been integrated into a unified network. To address these gaps, this study aims to develop the first neurodegeneration-related AOP network and utilize it to explore the possible contributions of long-chain legacy PFAS to neurodegeneration, specifically concerning Alzheimer's and Parkinson's diseases. A total of 74 AOPs were screened from AOP-Wiki, of which 13 neurodegeneration-related AOPs met the eligibility criteria and were incorporated into a network. We analyzed the resulting AOP network using topological parameters such as in-degree, out-degree, eccentricity, and betweenness centrality. To elucidate the mechanistic contributions of PFAS exposure to neurodegenerative pathways, we integrated evidence linking PFAS exposure to key events (KEs) within the network. The results highlighted increased intracellular calcium as the network hub with the highest connectivity followed by critical KEs such as neurodegeneration, neuronal apoptosis, oxidative stress, N-methyl-d-aspartate receptor (NMDA-R) overactivation, and mitochondrial dysfunction. Consistent with toxicological evidence, the pathways highlighted by the AOP network indicate that PFAS may adversely affect neurotransmitter systems, particularly through NMDA-R overactivation, leading to excitotoxicity. This may result in calcium dyshomeostasis, mitochondrial dysfunction, inflammatory-oxidative cascades, neuroinflammation, and neuronal cell death. By providing a mechanistic basis for understanding the neurodegenerative potential of PFAS, this study offers a crucial framework for assessing the risks associated with these chemicals which may inform future regulatory measures and public health strategies. Further experimental validation is needed to confirm the mechanistic contributions of PFAS exposure in neurodegeneration, particularly in animal models or human populations.
Collapse
Affiliation(s)
- Sayed Esmaeil Mousavi
- School of Engineering and Built Environment, Griffith University, Nathan Campus, QLD 4111, Australia.
| | - Jimmy Yu
- School of Engineering and Built Environment, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
9
|
Zikaki K, Kiachaki E, Gaitanaki C, Aggeli IK. "Villains" Turning Good: Antimycin A and Rotenone, Mitochondrial Respiratory Chain Inhibitors, Protect H9c2 Cardiac Cells Against Insults Triggering the Intrinsic Apoptotic Pathway. Int J Mol Sci 2025; 26:2435. [PMID: 40141079 PMCID: PMC11942121 DOI: 10.3390/ijms26062435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Mitochondria are the powerhouses of cells, also involved in ROS (reactive oxygen species) generation and cellular death regulation. Thus, several diseases are associated with mitochondrial impairment, including cardiovascular disorders (CVDs). Since CVDs are currently the leading cause of death worldwide, it is very important to evaluate targeting mitochondrial effectors in clinical treatment protocols. Hence, in the present study, antimycin A and rotenone, established inhibitors of the mitochondrial electron transfer chain, were shown to halt apoptotic death induced by curcumin (50 μM) and sorbitol (0.5 M), in H9c2 cardiac cells. In particular, immunoblotting analysis revealed that they totally abolished PARP [poly(ADP-ribose) polymerase] proteolysis, under these conditions. This finding was accompanied by an enhancement of cell viability, recovery of mitochondria networks' integrity, suppression of cytochrome c release into the cytoplasm, and reversal of chromatin condensation. Chelating extracellular calcium (with EGTA) further enhanced the beneficial impact of antimycin A and rotenone on curcumin- or sorbitol-treated H9c2 cells viability. Of interest, the phosphorylation of eIF2α, indicative of the onset of the pro-survival Integrated Stress Response (IRS), was sustained under these conditions. Overall, our data highlight the anti-apoptotic effect of these compounds, unmasking their potential as mediators in novel therapeutic interventions against mitochondria-associated cardiac dysfunction.
Collapse
Affiliation(s)
| | | | | | - Ioanna-Katerina Aggeli
- Section of Animal and Human Physiology, Faculty of Biology, School of Science, National and Kapodistrian University of Athens, University Campus, Ilissia, 15784 Athens, Greece; (K.Z.); (E.K.); (C.G.)
| |
Collapse
|
10
|
Zhang J, Xu S, Fang H, Wu D, Ouyang C, Shi Y, Hu Z, Zhang M, Zhong Y, Zhao J, Gan Y, Zhang S, Liu X, Yin J, Li Y, Tang M, Wang Y, Li L, Chan WC, Horne D, Feng M, Huang W, Gu Y. CAMKIIδ Reinforces Lipid Metabolism and Promotes the Development of B Cell Lymphoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409513. [PMID: 39840457 PMCID: PMC11905072 DOI: 10.1002/advs.202409513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/14/2024] [Indexed: 01/23/2025]
Abstract
The most prevalent types of lymphomas are B cell lymphomas (BCL). Newer therapies for BCL have improved the prognosis for many patients. However, approximately 30% with aggressive BCL either remain refractory or ultimately relapse. These patients urgently need other options. This study shows how calcium/calmodulin-dependent protein kinase II delta (CAMKIIδ) is pivotal for BCL development. In BCL cells, ablation of CAMKIIδ inhibits both lipolysis from lipid droplets and oxidative phosphorylation (OXPHOS). With lipolysis blocked, BCL progression is markedly suppressed in two distinct BCL mouse models: MYC-driven EµMyc mice and Myc/Bcl2 double-expressed mice. When CAMKIIδ is present, it destabilizes transcription factor Forkhead Box O3A (FOXO3A) by phosphorylating it at Ser7 and Ser12. This then permits transcription of downstream gene IRF4 - a master transcription factor of lipid metabolism. The CAMKIIδ/FOXO3A axis bolsters lipid metabolism, mitochondrial respiration, and tumor fitness in BCL under metabolic stress. This study also evaluates Tetrandrine (TET), a small molecule compound, as a potent CAMKIIδ inhibitor. TET attenuates metabolic fitness and elicits therapeutic responses both in vitro and in vivo. Collectively, this study highlights how CAMKIIδ is critical in BCL progression. The results also pave the way for innovative therapeutic strategies for treating aggressive BCL.
Collapse
Affiliation(s)
- Jiawei Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Senlin Xu
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
- Center for Genetic Medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 322000, China
- Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hui Fang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 322000, China
- Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Dehao Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Department of Digestive, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Ching Ouyang
- Integrative Genomic Core, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yunfei Shi
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Zhenkang Hu
- Center for Genetic Medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 322000, China
- Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Mingfeng Zhang
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yaoyao Zhong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Junwei Zhao
- Center for Genetic Medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 322000, China
- Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yichao Gan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shize Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoqian Liu
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
| | - Jie Yin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Mengyue Tang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 322000, China
- Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yingda Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ling Li
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Wing C Chan
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - David Horne
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
- Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Mingye Feng
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
- Department of Immuno-oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Wendong Huang
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Ying Gu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Center for Genetic Medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 322000, China
- Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, 310058, China
| |
Collapse
|
11
|
Yu Z, Zhang Y, Wang G, Song S, Su H, Wu Y, Zhang Y, Liu P, Liu X. The mechanism of all-trans retinoic acid-induced cleft palate may be related to the novel ENSMUST00000159153-miR-137-5p-Wnt7a and ENSMUST000000236086-miR-34b-3p-EphA10/TRPM2 ceRNA crosstalk. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 114:104623. [PMID: 39710122 DOI: 10.1016/j.etap.2024.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/08/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Cleft palate is the most prevalent congenital condition. Cleft palate is brought on by an exogenous chemical called all-trans retinoic acid (atRA). In order to indirectly control gene expression, long chain non-coding RNAs (lncRNAs) act as competitive endogenous RNA (ceRNA) sponges. Its exact mode of action in cleft palate has not yet been determined. The purpose of this study was to determine whether lncRNAs and miRNAs regulated palatal fusion genes during the formation of cleft palate and to offer a possible course for cleft palate target gene therapy. In this work, we created a cleft palate model using atRA, conducted RNA sequencing (RNA-seq) to identify the genes that differed between the atRA-treated group and the control group, and built the lncRNA-miRNA-mRNA ceRNA network based on the projected ceRNA. The results were confirmed using a quantitative real-time polymerase chain reaction (qRT-PCR). ENSMUST00000159153-miR-137-5p-Wnt7a and ENSMUST000000236086-miR-34b-3p-EphA10/TRPM2 may be the main causes of atRA-induced cleft palate, according to the results.
Collapse
Affiliation(s)
- Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China; Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Yaxin Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Guoxu Wang
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Shuaixing Song
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Hexin Su
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Pengfei Liu
- The Sixth People's Hospital of Luoyang, Luoyang 471023, China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
12
|
Nguyen T, Lin Z, Dhanesha N, Patel RB, Lane M, Walters GC, Shutov LP, Strack S, Chauhan AK, Usachev YM. Mitochondrial Ca 2+ uniporter b (MCUb) regulates neuronal Ca 2+ dynamics and resistance to ischemic stroke. Cell Calcium 2025; 128:103013. [PMID: 40058292 DOI: 10.1016/j.ceca.2025.103013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025]
Abstract
Mitochondrial Ca2+ transport regulates many neuronal functions including synaptic transmission, ATP production, gene expression and neuronal survival. The mitochondrial Ca2+ uniporter (MCU) is the core molecular component of the mitochondrial Ca2+ uptake complex in the inner mitochondrial membrane. MCUb is a paralog of MCU that negatively regulates mitochondrial Ca2+ uptake in the heart and the cells of the immune system. However, the function of MCUb in the brain is largely unknown. Here, we report that MCUb knockout (KO) led to enhanced mitochondrial Ca2+ uptake in cortical neurons. By simultaneously monitoring changes in cytosolic and mitochondrial Ca2+ concentrations, [Ca2+]cyt and [Ca2+]mt, respectively, we also found that MCUb KO reduced the [Ca2+]cyt threshold required to induce mitochondrial uptake in cortical neurons during electrical stimulation. Exposure of cortical neurons to toxic concentrations of glutamate led to a collapse of mitochondrial membrane potential (ΔΨmt) and [Ca2+]cyt deregulation, and MCUb deletion accelerated the development of both events. Furthermore, using the middle cerebral artery occlusion (MCAO) as a model of transient ischemic stroke in mice, we found that MCUb KO significantly increased MCAO-induced brain damage in male, but not female mice. These results suggest that MCUb regulates neuronal Ca2+ dynamics and excitotoxicity and reveal a sex-dependent role of MCUb in controlling resistance to brain damage following ischemic stroke.
Collapse
Affiliation(s)
- Tam Nguyen
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Zhihong Lin
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Nirav Dhanesha
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Rakesh B Patel
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Mallorie Lane
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Grant C Walters
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Leonid P Shutov
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Anil K Chauhan
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Yuriy M Usachev
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
13
|
Szewczyk A, Rembiałkowska N, Saczko J, Daczewska M, Novickij V, Kulbacka J. Calcium electroporation induces stress response through upregulation of HSP27, HSP70, aspartate β-hydroxylase, and CD133 in human colon cancer cells. Biol Res 2025; 58:10. [PMID: 39980072 PMCID: PMC11844013 DOI: 10.1186/s40659-025-00591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Electroporation (EP) leverages electric pulses to permeabilize cell membranes, enabling the delivery of therapeutic agents like calcium in cancer treatment. Calcium electroporation (CaEP) induces a rapid influx of calcium ions, disrupting cellular calcium homeostasis and triggering cell death pathways. This study aims to compare the cellular responses between microsecond (µsEP) and nanosecond (nsEP) electroporation, particularly in terms of oxidative stress, immune response activation, and cancer stem cell (CSC) viability in drug-resistant (LoVo Dx) and non-resistant (LoVo) colorectal cancer cell lines. RESULTS Both µsEP and nsEP, particularly when combined with Ca2+, significantly reduced the viability of cancer cells, with nsEP showing greater efficacy. Reactive oxygen species (ROS) levels increased 5-fold in malignant cells following nsEP, correlating with decreased ATP production and mitochondrial dysfunction. Nanosecond CaEP (nsCaEP) also induced significant expression of aspartate-β-hydroxylase (ASPH), a protein linked to calcium homeostasis and tumor progression. Moreover, nsEP led to heightened expression of heat shock proteins (HSP27/70), indicating potential immune activation. Interestingly, nsEP without calcium drastically reduced the expression of CD133, a marker for CSCs, while the addition of Ca2+ preserved CD133 expression. The expression of death effector domain-containing DNA binding protein (DEDD), associated with apoptosis, was significantly elevated in treated cancer cells, especially in the nucleus after nsCaEP. CONCLUSIONS The study confirms that nsEP is more effective than µsEP in disrupting cancer cell viability, enhancing oxidative stress, and triggering immune responses, likely through HSP overexpression and ROS generation. nsEP also appears to reduce CSC viability, offering a promising therapeutic approach. However, preserving CD133 expression in the presence of calcium suggests complex interactions that require further investigation. These findings highlight the potential of nsCaEP as an innovative strategy for targeting both cancer cells and CSCs, potentially improving treatment outcomes in colorectal cancer. Further studies are needed to explore the exact cell death mechanisms and optimize protocols for clinical applications.
Collapse
Affiliation(s)
- Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland.
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania.
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Wrocław, Poland
| | - Vitalij Novickij
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| |
Collapse
|
14
|
Zhang Z, Hu K, Fang Z, Wang S, Chen J, Yin D, Zhang C, Ma G. Acacetin reduces endoplasmic reticulum stress through the P-eNOS/PERK signaling pathway to attenuate MGO-induced vascular endothelial cell dysfunction. FEBS Open Bio 2025. [PMID: 39927486 DOI: 10.1002/2211-5463.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Diabetic macrovascular disease is one of the most morbid and deadly complications of diabetes. Endothelial dysfunction plays a key role in diabetic macrovascular complications and endothelial cell apoptosis is one of the key indicators of endothelial dysfunction. Methylglyoxal (MGO), a highly reactive dicarbonyl compound generated during glycolysis, is related to the pathogenesis of cardiovascular diseases and may also promote endothelial dysfunction. Acacetin (ACA) is a naturally occurring flavonoid that can inhibit apoptosis, oxidative stress and inflammation to slow the progression of coronary heart disease; however, its effects on endothelial dysfunction are unknown. The present study investigated whether ACA may ameliorate MGO-induced endothelial dysfunction in human umbilical vein endothelial cells. The results revealed that the viability and apoptosis of human umbilical vein endothelial cells induced by MGO decreased after ACA treatment, which was reflected in the expression levels of the apoptosis-related proteins b-cell lymphoma 2 (Bcl-2)-associated death, Bcl-2-associated x protein and Bcl-2. Additionally, ACA downregulated the expression of key protein markers of MGO-induced endoplasmic reticulum stress, physical evidence recovery kit, eukaryotic initiation factor 2 alpha, activating transcription factor 4 and C/EBP homologous protein, with which calcium inward currents may be closely related. ACA significantly downregulated the MGO-induced expression of the cytosolic calcium channel proteins stromal interaction molecule 1, transient receptor potential canonical 1, ORAI calcium release-activated calcium modulator 1, transient receptor potential vanilloid 1 and 4, and the trans-endoplasmic reticulum membrane protein, transmembrane and coiled-coil domains 1. Finally, ACA increased the expression of phosphorylated endothelial nitric oxide synthase (Ser1177), thus increasing the expression of nitric oxide in endothelial cells. Overall, acacetin could reduce endoplasmic reticulum stress through the phosphorylated-endothelial nitric oxide/physical evidence recovery kit signaling pathway to attenuate MGO-induced vascular endothelial cell dysfunction. These findings may hold potential for the use of acacetin in diabetic macrovascular complications.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Kaien Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zhaohui Fang
- Department of Endocrine, The First Hospital Affiliated to Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Sihai Wang
- Department of Endocrine, The First Hospital Affiliated to Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jie Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Caiyun Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Gefei Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Qimen Institute of Snakebite, Huangshan, China
| |
Collapse
|
15
|
Liu Z, Liu Y, Kang X, Li L, Xiang Y. Subcellular Organelle Targeting as a Novel Approach to Combat Tumor Metastasis. Pharmaceutics 2025; 17:198. [PMID: 40006565 PMCID: PMC11859411 DOI: 10.3390/pharmaceutics17020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor metastasis, the spread of cancer cells from the primary site to distant organs, remains a formidable challenge in oncology. Central to this process is the involvement of subcellular organelles, which undergo significant functional and structural changes during metastasis. Targeting these specific organelles offers a promising avenue for enhanced drug delivery and metastasis therapeutic efficacy. This precision increases the potency and reduces potential off-target effects. Moreover, by understanding the role of each organelle in metastasis, treatments can be designed to disrupt the metastatic process at multiple stages, from cell migration to the establishment of secondary tumors. This review delves deeply into tumor metastasis processes and their connection with subcellular organelles. In order to target these organelles, biomembranes, cell-penetrating peptides, localization signal peptides, aptamers, specific small molecules, and various other strategies have been developed. In this review, we will elucidate targeting delivery strategies for each subcellular organelle and look forward to prospects in this domain.
Collapse
Affiliation(s)
- Zefan Liu
- Department of General Surgery, First People‘s Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China; (Z.L.); (Y.L.)
| | - Yang Liu
- Department of General Surgery, First People‘s Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China; (Z.L.); (Y.L.)
| | - Xin Kang
- Department of General Surgery, First People‘s Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China; (Z.L.); (Y.L.)
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China;
| | - Yucheng Xiang
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
16
|
You Y, Guo Z, Wolter T, Hu Q. Intracellular metal ion-based chemistry for programmed cell death. Chem Soc Rev 2025; 54:1552-1582. [PMID: 39744985 DOI: 10.1039/d4cs00930d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Intracellular metal ions play essential roles in multiple physiological processes, including catalytic action, diverse cellular processes, intracellular signaling, and electron transfer. It is crucial to maintain intracellular metal ion homeostasis which is achieved by the subtle balance of storage and release of metal ions intracellularly along with the influx and efflux of metal ions at the interface of the cell membrane. Dysregulation of intracellular metal ions has been identified as a key mechanism in triggering programmed cell death (PCD). Despite the importance of metal ions in initiating PCD, the molecular mechanisms of intracellular metal ions within these processes are infrequently discussed. An in-depth understanding and review of the role of metal ions in triggering PCD may better uncover novel tools for cancer diagnosis and therapy. Specifically, the essential roles of calcium (Ca2+), iron (Fe2+/3+), copper (Cu+/2+), and zinc (Zn2+) ions in triggering PCD are primarily explored in this review, and other ions like manganese (Mn2+/3+/4+), cobalt (Co2+/3+) and magnesium ions (Mg2+) are briefly discussed. Further, this review elaborates on the underlying chemical mechanisms and summarizes these metal ions triggering PCD in cancer therapy. This review bridges chemistry, immunology, and biology to foster the rational regulation of metal ions to induce PCD for cancer therapy.
Collapse
Affiliation(s)
- Yawen You
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhaochen Guo
- Department of Biochemistry, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tyler Wolter
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Institute for Clinical and Translational Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
17
|
Whitlock JM, Chernomordik LV. Cell-cell fusion: To lose one life and begin another. Bioessays 2025; 47:e2400206. [PMID: 39506368 PMCID: PMC11755699 DOI: 10.1002/bies.202400206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024]
Abstract
As life extended into eukaryota, a great host of strategies emerged in the pursuit of cellular life. Some cells have been successful in solitude, some moved into cooperatives (i.e., multicellular organisms), but one additional strategy emerged. Throughout eukaryotes, many of the diverse multicellular cooperatives took life in partnership one step further. These cells came together and lost their singularity in the expanse of syncytial life. Recently in our search for this elusive "how", we discovered the intriguing peculiarity of a nuclear, RNA-binding protein living a second life as a fusion manager at the surface of developing osteoclasts, ushering them into syncytia 1. It is from here that we will develop several thoughts about the advantages of multinucleated cells and discuss how these fusing cells pass through several hallmarks of cell death. We will propose that cell fusion shares much with cell death because cell fusion is a death of sorts for the cells that undergo it - a death of the life that was and the beginning of new life in a community without borders.
Collapse
Affiliation(s)
- Jarred M. Whitlock
- Department of Molecular Physiology and Biological PhysicsUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Leonid V. Chernomordik
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
18
|
Liu Q, Wang H, Ge J, Guo L, Tahir R, Luo J, He K, Yan H, Zhang X, Cao Q, Cheng Z, Zhao L, Yang S. Mechanism of acclimation to chronic intermittent hypoxia in the gills of largemouth bass (Micropterus salmoides). FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:22. [PMID: 39648249 DOI: 10.1007/s10695-024-01419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/08/2024] [Indexed: 12/10/2024]
Abstract
The acclimation response of fish gills to chronic intermittent hypoxia (CIH) is an important aspect to understand, as anthropogenically induced hypoxia in water bodies has been a stressor for fish for many years and is expected to persist in the future. In order to investigate the acclimation response of fish gills to CIH stress, we conducted a study using largemouth bass (Micropterus salmoides) exposed to intermittent hypoxia (dissolved oxygen level, 2.0 mg·L-1) for either 1 or 3 h per day, over a period of 8 weeks. Our findings indicate that exposure to CIH induced remodeling of the gills and an increase in gill surface area. This remodeling of the gills may be attributed to changes in cell growth and proliferation, which are influenced by the activation of the MAPK signaling pathway. We also observed significant upregulation of genes related to glycolysis (fba, pgam1, pepck, atp-pfk, pfk-2, g6pi, gapd-1, and pk), while genes associated with cholesterol synthesis (3β-hsd, cyp51, dsdr- × 1, dsdr, and dhcr7) were downregulated following CIH exposure. Furthermore, we observed the presence of elongated megamitochondria in mitochondria-rich cells within the gills of fish exposed to hypoxia. Additionally, numerous genes involved in calcium signaling pathways were upregulated in the gills of largemouth bass, suggesting an enhanced sensitivity of gills to environmental cues in hypoxia conditions. However, the expression levels of certain genes related to innate and adaptive immune responses were inhibited following CIH exposure. Moreover, the number of mucous cells decreased after CIH exposure. This may have made the gills more susceptible to infection by pathogens, although it facilitated oxygen uptake. These findings highlight the potential vulnerability of gills to pathogenic organisms in the presence of CIH. Overall, our study contributes to a better understanding of how fish acclimate to CIH.
Collapse
Affiliation(s)
| | | | | | - Lipeng Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Quanquan Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
19
|
Díaz-Betancourt A, Galicia-Castillo ME, Morales-Tlalpan V, Chávez-Servín JL, Blanco-Labra A, García-Gasca T, Saldaña C. Tepary Bean ( Phaseolus acutifolius) Lectins as Modulators of Intracellular Calcium Mobilization in Breast Cancer and Normal Breast Cells. Int J Mol Sci 2025; 26:1064. [PMID: 39940827 PMCID: PMC11817043 DOI: 10.3390/ijms26031064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Lectins are proteins that specifically recognize carbohydrates on cell membranes, triggering several cellular events such as apoptosis of cancer-transformed cells; however, the mechanisms of action remain incompletely understood. Our research group has reported that a concentrated fraction of Tepary bean lectins (Phaseolus acutifolius; TBLF) exhibits the concentration-dependent induction of apoptosis in colon cancer cells by caspase activation. It is well established that an increase in cytoplasmic calcium ([Ca2+]i) initiates intracellular signals involved in processes such as exocytosis, gene transcription, apoptosis, cell cycle regulation, and muscle contraction, among others. Furthermore, dysregulated calcium signaling has been implicated in various diseases, including certain neurological disorders and cancer. In this study, we aim to demonstrate the effects of native TBLF lectins and a recombinant lectin (rTBL-1) on calcium mobility in breast cancer cells (MCF-7) and non-cancerous cells (MCF-12F). Both TBLF and rTBL-1 increased intracellular calcium concentrations and mobilized calcium from intracellular stores in a concentration-dependent manner; however, the two cell lines exhibited differential responses. While MCF-12F cells restored cytoplasmic calcium concentration, MCF-7 cells maintained a high intracellular calcium concentration. This strongly suggests that lectins can elicit differential cellular responses in cancer and non-cancer cells due to variations in their intrinsic mechanisms of calcium homeostasis. Finally, we demonstrated that TBLF and rTBL-1 can differentially alter Metabolic Cellular Activity (MCA) as a direct measure of cell viability (CVi) in both cell lines. These findings strengthen the evidence of the therapeutic potential of Tepary bean lectins. Undoubtedly, further studies will be necessary to elucidate the mechanisms underlying their applications.
Collapse
Affiliation(s)
- Andrea Díaz-Betancourt
- Laboratorio de Biofísica de Membranas y Nanotecnología, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Av. De las Ciencias s/n, Juriquilla, Queretaro 76230, Queretaro, Mexico; (A.D.-B.); (M.E.G.-C.); (V.M.-T.)
| | - María Elizabeth Galicia-Castillo
- Laboratorio de Biofísica de Membranas y Nanotecnología, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Av. De las Ciencias s/n, Juriquilla, Queretaro 76230, Queretaro, Mexico; (A.D.-B.); (M.E.G.-C.); (V.M.-T.)
| | - Verónica Morales-Tlalpan
- Laboratorio de Biofísica de Membranas y Nanotecnología, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Av. De las Ciencias s/n, Juriquilla, Queretaro 76230, Queretaro, Mexico; (A.D.-B.); (M.E.G.-C.); (V.M.-T.)
- Laboratorio Nacional de Visualización Científica Avanzada, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Av. De las Ciencias s/n, Juriquilla, Queretaro 76230, Queretaro, Mexico
| | - Jorge Luis Chávez-Servín
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Av. De las Ciencias s/n, Juriquilla, Queretaro 76230, Queretaro, Mexico;
| | - Alejandro Blanco-Labra
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, Mexico;
| | - Teresa García-Gasca
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Av. De las Ciencias s/n, Juriquilla, Queretaro 76230, Queretaro, Mexico;
| | - Carlos Saldaña
- Laboratorio de Biofísica de Membranas y Nanotecnología, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Av. De las Ciencias s/n, Juriquilla, Queretaro 76230, Queretaro, Mexico; (A.D.-B.); (M.E.G.-C.); (V.M.-T.)
- Laboratorio Nacional de Visualización Científica Avanzada, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Av. De las Ciencias s/n, Juriquilla, Queretaro 76230, Queretaro, Mexico
| |
Collapse
|
20
|
Zhao Y, Zhang Y, Zhang Y, Zhang Y, Deng Z, Bai T, Zhang M, Zhang M, Song J. Biomimetic Nanoplatform-Mediated Protective Autophagy Blockage Enhancing Sonodynamic and Ca 2+-Overload Combined Therapy for Colon Cancer. SMALL METHODS 2025:e2402091. [PMID: 39865753 DOI: 10.1002/smtd.202402091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/19/2025] [Indexed: 01/28/2025]
Abstract
The application of a multimodal combination therapy based on a targeted nanodelivery system has been demonstrated to be more valuable in the treatment of cancer. In this work, a hollow polydopamine delivery system (CCC@HP@M) was designed to achieve sonodynamic and calcium-overload combined therapy for colon cancer. The CCC@HP@M exhibits both homologous tumour-targeting ability and pH-responsive drug release properties, enabling the simultaneous targeted delivery of CaO2 nanoparticles/sonosensitizer Ce6/autophagy inhibitor CQ. The CaO2 nanoparticles as calcium agents capable of triggering Ca2+ overload in tumor cells. The oxidative stress produced by sonodynamic therapy is facilitated by the disruption of calcium homeostasis to enhance the effect of Ca2+ overload-induced apoptosis. Furthermore, the O2 produced by CaO2 augments the sensitization of sonodynamic therapy. The autophagy inhibitor CQ can inhibit protective cellular autophagy, which is activated by sonodynamic therapy and Ca2+ overload. Consequently, autophagy blockage can ensure the therapeutic effect of sonodynamic and Ca2+-overload combined therapy for colon cancer. The results of experiments in vitro and in vivo demonstrate that the stimulus-responsive targeted delivery system achieves autophagy blockage augmented sonodynamic and Ca2+-overload combined therapy of colon cancer. This work offers a promising theoretical basis for optimizing combined treatment strategies for tumors and clinical translational applications.
Collapse
Affiliation(s)
- Yuanru Zhao
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yan Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhichao Deng
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ting Bai
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710077, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jian Song
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| |
Collapse
|
21
|
Bożek J, Kurchakova O, Michel J, Groß I, Gerhards L, Zhang Y, Brand I, Bräuer AU. Pneumatic conveying inkjet bioprinting for the processing of living cells. Biofabrication 2025; 17:025003. [PMID: 39793206 DOI: 10.1088/1758-5090/ada8e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
Inkjet printing techniques are often used for bioprinting purposes because of their excellent printing characteristics, such as high cell viability and low apoptotic rate, contactlessmodus operandi, commercial availability, and low cost. However, they face some disadvantages, such as the use of bioinks of low viscosity, cell damage due to shear stress caused by drop ejection and jetting velocity, as well as a narrow range of available bioinks that still challenge the inkjet printing technology. New technological solutions are required to overcome these obstacles. Pneumatic conveying printing, a new type of inkjet-based printing technique, was applied for the bioprinting of both acellular and cellular fibrin-hydrogel droplets. Drops of a bioink containing 6 × 106HEK293H cells ml-1were supplied from a sterile nozzle connected to a syringe pump and deposited on a gas stream on a fibrinogen-coated glass slide, here referred to as biopaper. Fibrinogen film is the substrate of the polymerization reaction with thrombin and Ca2+present in the bioink. The pneumatic conveying printing technique operates on a mechanism by which drop ejection and deposition in a stream of gas occurs. The percentage of unprinted and printed dead HEK293H cells was 5 ± 2% and 7 ± 4%, respectively. Thus, compared to normal handling, pneumatic conveying printing causes only little damage to the cells. The velocity of the drop approaching the biopaper surface is below 0.2 m s-1and does not cause any damage to the cells. The cell viability of printed cells was 93%, being an excellent value for inkjet printing technology. The HEK293H cells exhibited approximately a 24 h lag time of proliferation that was preceded by intense migration and aggregation. Control experiments proved that the cell migration and lag time were associated with the chemical nature of the fibrin hydrogel and not with cell stress.
Collapse
Affiliation(s)
- Justyna Bożek
- Department of Chemistry, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Olga Kurchakova
- Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Johanna Michel
- Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Isabel Groß
- Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Lena Gerhards
- Department of Chemistry, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Yanzhen Zhang
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Izabella Brand
- Department of Chemistry, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Anja U Bräuer
- Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
22
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
23
|
Kiraly S, Stanley J, Eden ER. Lysosome-Mitochondrial Crosstalk in Cellular Stress and Disease. Antioxidants (Basel) 2025; 14:125. [PMID: 40002312 PMCID: PMC11852311 DOI: 10.3390/antiox14020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 01/11/2025] [Indexed: 02/27/2025] Open
Abstract
The perception of lysosomes and mitochondria as entirely separate and independent entities that degrade material and produce ATP, respectively, has been challenged in recent years as not only more complex roles for both organelles, but also an unanticipated level of interdependence are being uncovered. Coupled lysosome and mitochondrial function and dysfunction involve complex crosstalk between the two organelles which goes beyond mitochondrial quality control and lysosome-mediated clearance of damaged mitochondria through mitophagy. Our understanding of crosstalk between these two essential metabolic organelles has been transformed by major advances in the field of membrane contact sites biology. We now know that membrane contact sites between lysosomes and mitochondria play central roles in inter-organelle communication. This importance of mitochondria-lysosome contacts (MLCs) in cellular homeostasis, evinced by the growing number of diseases that have been associated with their dysregulation, is starting to be appreciated. How MLCs are regulated and how their coordination with other pathways of lysosome-mitochondria crosstalk is achieved are the subjects of ongoing scrutiny, but this review explores the current understanding of the complex crosstalk governing the function of the two organelles and its impact on cellular stress and disease.
Collapse
Affiliation(s)
| | | | - Emily R. Eden
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (S.K.); (J.S.)
| |
Collapse
|
24
|
Andoh M, Shinoda N, Taira Y, Araki T, Kasahara Y, Takeuchi H, Miura M, Ikegaya Y, Koyama R. Nonapoptotic caspase-3 guides C1q-dependent synaptic phagocytosis by microglia. Nat Commun 2025; 16:918. [PMID: 39843445 PMCID: PMC11754728 DOI: 10.1038/s41467-025-56342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Caspases are known to mediate neuronal apoptosis during brain development. However, here we show that nonapoptotic activation of caspase-3 at presynapses drives microglial synaptic phagocytosis. Real-time observation and spatiotemporal manipulation of synaptic caspase-3 in the newly established, mouse-derived culture system demonstrate that increased neuronal activity triggers localized presynaptic caspase-3 activation, facilitating synaptic tagging by complements. High-resolution live imaging reveals that caspase-3 activation promotes synapse-selective complement-dependent microglial phagocytosis without axonal shearing. Furthermore, activity-dependent caspase-3 activation at inhibitory presynapses induces microglial phagocytosis in mice and increases seizure susceptibility. This increased susceptibility is reversed by genetic depletion of microglial complement receptors. Thus, localized, nonapoptotic caspase activity guides complement-dependent microglial synaptic phagocytosis and remodels neuronal circuits.
Collapse
Affiliation(s)
- Megumi Andoh
- Department of Translational Neurobiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Natsuki Shinoda
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yusuke Taira
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tasuku Araki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuka Kasahara
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Haruki Takeuchi
- Laboratory of Molecular Neurobiology, Department of Biophysics and Biochemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| | - Ryuta Koyama
- Department of Translational Neurobiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan.
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Institute for AI and Beyond, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
25
|
Freppel W, Barragan Torres VA, Uyar O, Anton A, Nouhi Z, Broquière M, Mazeaud C, Sow AA, Léveillé A, Gilbert C, Tremblay N, Owen JE, Bemis CL, Laulhé X, Lamarre A, Neufeldt CJ, Rodrigue-Gervais IG, Pichlmair A, Girard D, Scaturro P, Hulea L, Chatel-Chaix L. Dengue virus and Zika virus alter endoplasmic reticulum-mitochondria contact sites to regulate respiration and apoptosis. iScience 2025; 28:111599. [PMID: 39834870 PMCID: PMC11743106 DOI: 10.1016/j.isci.2024.111599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/17/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
During infection, dengue virus (DENV) and Zika virus (ZIKV), two (ortho)flaviviruses of public health concern worldwide, induce alterations of mitochondria morphology to favor viral replication, suggesting a viral co-opting of mitochondria functions. Here, we performed an extensive transmission electron microscopy-based quantitative analysis to demonstrate that both DENV and ZIKV alter endoplasmic reticulum-mitochondria contact sites (ERMC). This correlated at the molecular level with an impairment of ERMC tethering protein complexes located at the surface of both organelles. Furthermore, virus infection modulated the mitochondrial oxygen consumption rate. Consistently, metabolomic and mitoproteomic analyses revealed a decrease in the abundance of several metabolites of the Krebs cycle and changes in the stoichiometry of the electron transport chain. Most importantly, ERMC destabilization by protein knockdown increased virus replication while dampening ZIKV-induced apoptosis. Overall, our results support the notion that flaviviruses hijack ERMCs to generate a cytoplasmic environment beneficial for sustained and efficient replication.
Collapse
Affiliation(s)
- Wesley Freppel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Viviana Andrea Barragan Torres
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Olus Uyar
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Anaïs Anton
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Zaynab Nouhi
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec H1T 2M4, Canada
| | - Mathilde Broquière
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Clément Mazeaud
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Aïssatou Aïcha Sow
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Alexanne Léveillé
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Claudia Gilbert
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Nicolas Tremblay
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Jonathan Eintrez Owen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cheyanne L. Bemis
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xavier Laulhé
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Alain Lamarre
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Christopher J. Neufeldt
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ian Gaël Rodrigue-Gervais
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, School of Medicine 81675 Munich, Germany
- German Center of Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Denis Girard
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Pietro Scaturro
- Institute of Virology, Technical University of Munich, School of Medicine 81675 Munich, Germany
- Leibniz Institute of Virology 20251 Hamburg, Germany
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec H1T 2M4, Canada
- Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada
| | - Laurent Chatel-Chaix
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
- Center of Excellence in Orphan Diseases Research-Fondation Courtois, Québec, Canada
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec, Québec, Canada
| |
Collapse
|
26
|
Ziegler DV, Parashar K, Leal-Esteban L, López-Alcalá J, Castro W, Zanou N, Martinez-Carreres L, Huber K, Berney XP, Malagón MM, Roger C, Berger MA, Gouriou Y, Paone G, Gallart-Ayala H, Sflomos G, Ronchi C, Ivanisevic J, Brisken C, Rieusset J, Irving M, Fajas L. CDK4 inactivation inhibits apoptosis via mitochondria-ER contact remodeling in triple-negative breast cancer. Nat Commun 2025; 16:541. [PMID: 39788939 PMCID: PMC11718081 DOI: 10.1038/s41467-024-55605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
The energetic demands of proliferating cells during tumorigenesis require close coordination between the cell cycle and metabolism. While CDK4 is known for its role in cell proliferation, its metabolic function in cancer, particularly in triple-negative breast cancer (TNBC), remains unclear. Our study, using genetic and pharmacological approaches, reveals that CDK4 inactivation only modestly impacts TNBC cell proliferation and tumor formation. Notably, CDK4 depletion or long-term CDK4/6 inhibition confers resistance to apoptosis in TNBC cells. Mechanistically, CDK4 enhances mitochondria-endoplasmic reticulum contact (MERCs) formation, promoting mitochondrial fission and ER-mitochondrial calcium signaling, which are crucial for TNBC metabolic flexibility. Phosphoproteomic analysis identified CDK4's role in regulating PKA activity at MERCs. In this work, we highlight CDK4's role in mitochondrial apoptosis inhibition and suggest that targeting MERCs-associated metabolic shifts could enhance TNBC therapy.
Collapse
Affiliation(s)
- Dorian V Ziegler
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Kanishka Parashar
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Lucia Leal-Esteban
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Jaime López-Alcalá
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofía University Hospital, Córdoba, Spain
| | - Wilson Castro
- Ludwig Institute for Cancer Research, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences and Department of Biomedical Sciences, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Laia Martinez-Carreres
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Katharina Huber
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Xavier Pascal Berney
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - María M Malagón
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofía University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Catherine Roger
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Marie-Agnès Berger
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Yves Gouriou
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Giulia Paone
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, University of Lausanne, Faculty of Biology and Medicine, Rue du Bugnon 19, 1005, Lausanne, Switzerland
| | - George Sflomos
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carlos Ronchi
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, University of Lausanne, Faculty of Biology and Medicine, Rue du Bugnon 19, 1005, Lausanne, Switzerland
| | - Cathrin Brisken
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Jennifer Rieusset
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Melita Irving
- Ludwig Institute for Cancer Research, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland.
- Inserm, Occitanie Méditerranée, Montpellier, France.
| |
Collapse
|
27
|
Xiang L, Lou J, Zhao J, Geng Y, Zhang J, Wu Y, Zhao Y, Tao Z, Li Y, Qi J, Chen J, Yang L, Zhou K. Underlying Mechanism of Lysosomal Membrane Permeabilization in CNS Injury: A Literature Review. Mol Neurobiol 2025; 62:626-642. [PMID: 38888836 DOI: 10.1007/s12035-024-04290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Lysosomes play a crucial role in various intracellular pathways as their final destination. Various stressors, whether mild or severe, can induce lysosomal membrane permeabilization (LMP), resulting in the release of lysosomal enzymes into the cytoplasm. LMP not only plays a pivotal role in various cellular events but also significantly contributes to programmed cell death (PCD). Previous research has demonstrated the participation of LMP in central nervous system (CNS) injuries, including traumatic brain injury (TBI), spinal cord injury (SCI), subarachnoid hemorrhage (SAH), and hypoxic-ischemic encephalopathy (HIE). However, the mechanisms underlying LMP in CNS injuries are poorly understood. The occurrence of LMP leads to the activation of inflammatory pathways, increased levels of oxidative stress, and PCD. Herein, we present a comprehensive overview of the latest findings regarding LMP and highlight its functions in cellular events and PCDs (lysosome-dependent cell death, apoptosis, pyroptosis, ferroptosis, and autophagy). In addition, we consolidate the most recent insights into LMP in CNS injury by summarizing and exploring the latest advances. We also review potential therapeutic strategies that aim to preserve LMP or inhibit the release of enzymes from lysosomes to alleviate the consequences of LMP in CNS injury. A better understanding of the role that LMP plays in CNS injury may facilitate the development of strategic treatment options for CNS injury.
Collapse
Affiliation(s)
- Linyi Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Junsheng Lou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiacheng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuzhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yinuo Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Zhichao Tao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianjun Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, China.
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, WenzhouZhejiang, 325035, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
28
|
Wang M, Li Z, Xiong Y, Yuan R, Zhu X, Chen X, Wang T, Li Z, Wu J. Acupuncture Increased the Number of Retrieved Oocytes in a Mouse Model of POR: The Involvement of DNA Methylation in the Oocytes. Comb Chem High Throughput Screen 2025; 28:132-145. [PMID: 39957304 DOI: 10.2174/0113862073264460231113052942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 02/18/2025]
Abstract
BACKGROUND Poor ovarian response (POR) reduces the success rate of in vitro fertilization mainly because of fewer oocytes retrieved. Acupuncture (Ac) therapy can improve the number of retrieved oocytes in the controlled ovarian stimulation program. The role of Ac in the corresponding epigenetic mechanism of POR has not been studied. OBJECTIVE This study was conducted to determine the effect of Ac on the number of retrieved oocytes and its role in DNA methylation in a mouse model of POR. METHODS Forty C57BL/6N female mice with normal estrous cycles were randomly classified into 4 groups of 10 each: control (Con) group, Ac-Con group, POR group, and Ac-POR group. Mice in POR and Ac-POR groups received a gastric gavage of Tripterygium wilfordii polyglycoside suspension of 50 mg/kg-1 once a day for 14 consecutive days. Ac was applied at "Shenting" (DU 24), "Guanyuan" (CV 4), "Zusanli" (ST 36), and "Shenshu" (BL 23) in the Ac-POR group for 10 min per session, once a day for 14 consecutive days. All four groups were stimulated with pregnant mare serum gonadotropin and human chorionic gonadotropin, and the number of retrieved oocytes and proportion of mature oocytes were recorded. The DNA methylation level in a single mouse oocyte in each group was analyzed using single-cell genome-wide bisulfite sequencing (scBSseq), and key pathways were identified using GO and KEGG enrichment analyses. RESULTS A dissecting microscope revealed that the Ac therapy improved the number of retrieved oocytes compared with the POR group (p < 0.05). ScBS-seq showed that there was no significant change in global DNA methylation levels between the POR model and control group mice. However, differences were primarily observed in the differentially methylated regions (DMRs) of each chromosome, and Ac decreased global DNA methylation. DMR analysis identified 13 genes that may be associated with Ac treatment. Cdk5rap2 and Igf1r, which mediate germ cell apoptosis, growth, and development, maybe most closely related to the Ac treatment of POR. KEGG analysis revealed that differentially expressed genes were mainly enriched in Wnt, GnRH, and calcium signaling pathways. The genes were closely related to the regulation of POR via Ac. CONCLUSION The results suggest that DNA methylation in oocytes is related to the development of POR and that the role of Ac in affecting DNA methylation in oocytes is associated with the Wnt, GnRH, and calcium signaling pathways as well as Cdk5rap2 and Igf1r in POR mice.
Collapse
Affiliation(s)
- Mengjing Wang
- Department of Acupuncture and Moxibustion, Chengdu University of Traditional Chinese Medicine, No. 37 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610032, P. R. China
| | - Zimeng Li
- Department of Pain Medicine, The Third People's Hospital of Chengdu, No.19, YangShi Street, QingYang District, Chengdu, Sichuan, 610031, P. R. China
| | - Yueheng Xiong
- Department of Acupuncture and Moxibustion, Chengdu University of Traditional Chinese Medicine, No. 37 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610032, P. R. China
| | - Rongli Yuan
- Department of Acupuncture and Moxibustion, Chengdu University of Traditional Chinese Medicine, No. 37 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610032, P. R. China
| | - Xinyun Zhu
- Traditional Chinese Medicine Department, People's Hospital of Leshan, No. 238, Baita Street, Shizhong District, Leshan city, Sichuan, 614000, P.R. China
| | - Xin Chen
- Department of Acupuncture and Moxibustion, Chengdu University of Traditional Chinese Medicine, No. 37 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610032, P. R. China
| | - Tianyu Wang
- Department of Acupuncture and Moxibustion, Chengdu University of Traditional Chinese Medicine, No. 37 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610032, P. R. China
| | - Zhi Li
- Department of Acupuncture and Moxibustion, Chengdu University of Traditional Chinese Medicine, No. 37 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610032, P. R. China
| | - Jie Wu
- Hospital of Chengdu University of Traditional Chinese Medicine. No. 39 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610072, P. R. China
| |
Collapse
|
29
|
Kim YR, Jun S, Jung S, Lee B, Lee SH, Lee J, Hwang JS, Thoudam T, Lee H, Sinam IS, Jeon JH, Lee KY, Min SJ, Kim UK. Inhibition of the mitochondrial permeability transition pore as a promising target for protecting auditory function in cisplatin-induced hearing loss. Biomed Pharmacother 2025; 182:117767. [PMID: 39708587 DOI: 10.1016/j.biopha.2024.117767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
mPTP is a multi-protein complex that opens in mitochondria during cell death. Cisplatin-induced hearing loss is also known to be caused by mPTP opening. Thus, our study evaluated the protective effect of a novel mPTP inhibitor named DBP-iPT against cisplatin-induced hearing loss. The cell viability result showed that DBP-iPT provided a 40 % protective effect compared to the group treated with cisplatin. In addition, the DBP-iPT treated group exhibited a reduction in intracellular ROS levels, counteracting the excessive ROS accumulation induced by cisplatin at the whole cell level. Intriguingly, mitochondrial ROS levels in the DBP-iPT group were elevated three-fold compared to the cisplatin-treated group. Despite this increase in mitochondrial ROS, the mitochondrial membrane potential in the DBP-iPT group was three times higher than that of the control. These findings present intriguing contradictions to prior studies. Therefore, we investigated whether the mitochondria were damaged or not and found that DBP-iPT treatment maintained an increased portion of elongated mitochondria, suggesting autophagy-mediated removal of damaged mitochondria. This process leads to improved mitochondrial dynamics. Finally, in vivo studies confirmed that the ABR test using a mouse model showed the same pattern of protection against cisplatin-induced hearing loss in the DBP-iPT treatment group. We have identified a new target that has a protective effect against cisplatin-induced hearing loss. Therefore, this study is expected to provide valuable insights as it focuses on targeting mPTP opening to protect against ototoxicity caused by cisplatin. This discovery will serve as a significant foundation for future research.
Collapse
Affiliation(s)
- Ye-Ri Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Sujin Jun
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sunhwa Jung
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Republic of Korea
| | - Byeonghyeon Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDI-Hub), Daegu, Republic of Korea
| | - Sang-Hee Lee
- Center of Research Equipment (104-Dong), Korea Basic Science Institute, Ochang, Cheongju, Chungbuk 28119, Republic of Korea
| | - Jaehyuk Lee
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Su Hwang
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41404, Republic of Korea
| | - Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41404, Republic of Korea
| | - Ibotombi Singh Sinam
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41404, Republic of Korea; Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| | - Sun-Joon Min
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Republic of Korea; Department of Chemical & Molecular Engineering, Hanyang University ERICA, Ansan, Republic of Korea.
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
30
|
Samardak K, Bâcle J, Moriel-Carretero M. Behind the stoNE wall: A fervent activity for nuclear lipids. Biochimie 2024; 227:53-84. [PMID: 39111564 DOI: 10.1016/j.biochi.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/27/2024]
Abstract
The four main types of biomolecules are nucleic acids, proteins, carbohydrates and lipids. The knowledge about their respective interactions is as important as the individual understanding of each of them. However, while, for example, the interaction of proteins with the other three groups is extensively studied, that of nucleic acids and lipids is, in comparison, very poorly explored. An iconic paradigm of physical (and likely functional) proximity between DNA and lipids is the case of the genomic DNA in eukaryotes: enclosed within the nucleus by two concentric lipid bilayers, the wealth of implications of this interaction, for example in genome stability, remains underassessed. Nuclear lipid-related phenotypes have been observed for 50 years, yet in most cases kept as mere anecdotical descriptions. In this review, we will bring together the evidence connecting lipids with both the nuclear envelope and the nucleoplasm, and will make critical analyses of these descriptions. Our exploration establishes a scenario in which lipids irrefutably play a role in nuclear homeostasis.
Collapse
Affiliation(s)
- Kseniya Samardak
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - Janélie Bâcle
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
31
|
Koya T, Otsuka N, Tri JA, Sauer WH, Asirvatham SJ, Nguyen DT. Local calcium chloride infusion after pulsed field ablation enhances acute efficacy of cardiac electroporation. J Cardiovasc Electrophysiol 2024; 35:2354-2360. [PMID: 39363431 DOI: 10.1111/jce.16439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Pulsed field ablation (PFA) has emerged as an innovative therapy for cardiac arrhythmias. Drawing parallels with PFA's application in solid tumors, calcium chloride (CaCl2) as an adjuvant therapy, known as calcium electroporation, may amplify PFA's apoptotic effects. We propose that PFA in the atrium could enhance calcium uptake through PFA-created pores, thereby increasing ablation efficacy even at reduced power levels by exploiting PFA's permeabilization effects. METHODS We conducted in vivo ablations on the atria of seven pigs using low PFA power (250 V, 20 μs for 50 pulses at 200 ms intervals). Post-PFA, we randomly administered an infusion of either 200 mg/2 ml CaCl2 (calcium group) or saline (control) directly to the ablation site via the catheter tip. We evaluated reduction in electrogram voltage amplitude, electrocardiography (ECG) parameters, ablation lesion parameters, and histology after PFA. RESULTS Nineteen lesions from control and calcium groups were examined. Control lesions showed no voltage decrease post-PFA, whereas calcium-treated lesions exhibited a significant voltage reduction. Gross pathology indicated marked differences in maximum lesion surface diameter, depth, and volume between the lesion groups. Histologically, calcium group lesions were characterized by a more severe acute PFA response with contraction band necrosis, myocytolysis and nuclear pyknosis in adjacent myocardium, in addition to microhemorrhages. CONCLUSION Infusing calcium chloride locally after PFA markedly improves the immediate efficacy of electroporation in porcine atria. This study suggests that calcium electroporation could bolster PFA outcomes without higher energy levels, potentially diminishing associated risks. These preliminary findings warrant further research into the long-term efficacy and potential clinical application of calcium electroporation in PFA.
Collapse
Affiliation(s)
- Taro Koya
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Naoto Otsuka
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jason A Tri
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - William H Sauer
- Cardiac Arrhythmia Service, Brigham and Woman's Hospital, Boston, Minnesota, USA
| | | | - Duy T Nguyen
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
32
|
Li W, Xu B, Huang Y, Wang X, Yu D. Rodent models in sensorineural hearing loss research: A comprehensive review. Life Sci 2024; 358:123156. [PMID: 39442868 DOI: 10.1016/j.lfs.2024.123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Sensorineural hearing loss (SNHL) constitutes a major global health challenge, affecting millions of individuals and substantially impairing social integration and quality of life. The complexity of the auditory system and the multifaceted nature of SNHL necessitate advanced methodologies to understand its etiology, progression, and potential therapeutic interventions. This review provides a comprehensive overview of the current animal models used in SNHL research, focusing on their selection based on specific characteristics and their contributions to elucidating pathophysiological mechanisms and evaluating novel treatment strategies. It discusses the most commonly used rodent models in hearing research, including mice, rats, guinea pigs, Mongolian gerbils, and chinchillas. Through a comparative analysis, this review underscores the importance of selecting models that align with specific research objectives in SNHL studies, discussing the advantages and limitations of each model. By advocating for a multidisciplinary approach that leverages the strengths of various animal models with technological advancements, this review aims to facilitate significant advancements in the prevention, diagnosis, and treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
33
|
Wang C, Roeroe KA, Zhou Z, Niu G, Du J, Hu W, Zheng X. Gene expression plasticity governing symbiosis during natural coral bleaching. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176046. [PMID: 39241871 DOI: 10.1016/j.scitotenv.2024.176046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The increasing global frequency and severity of coral bleaching events, driven by the loss of endosymbiotic algae, pose a significant threat to these vital ecosystems. However, gene expression plasticity offers a potential mechanism for rapid and effective acclimatization to environmental changes. We employed dual transcriptomics to examine the gene expression profile of Seriatopora hystrix, an ecologically important scleractinian coral, across healthy, mildly bleached, and severely bleached colonies collected from the waters of Likupang, North Sulawesi, Indonesia. Our analysis revealed that coral bleaching is associated with gene plasticity in calcium signaling and focal adhesion within coral hosts, as well as with endoplasmic reticulum stress in symbionts. Notably, we identified specific genes associated with innate immunity that were predominantly overexpressed in mildly bleached coral hosts. This overexpression implies that high expression plasticity of these key genes might contribute to bleaching resistance and the preservation of the host-symbiont relationship. Our findings offer a detailed insight into the dynamics of bleaching resistance in S. hystrix, shedding light on the variability of bleaching risks in Indonesian reefs and underscoring the coral's ability to utilize gene expression plasticity for immediate survival and potential long-term adaptation to climate changes.
Collapse
Affiliation(s)
- Chenying Wang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | | | - Zhi Zhou
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | - Gaofeng Niu
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jianguo Du
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Wetland Ecosystem in the Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China; Observation and Research Station of Island and Costal Ecosystem in the Western Taiwan Strait, Ministry of Natural Resources, China
| | - Wenjia Hu
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Wetland Ecosystem in the Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China; Observation and Research Station of Island and Costal Ecosystem in the Western Taiwan Strait, Ministry of Natural Resources, China
| | - Xinqing Zheng
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Wetland Ecosystem in the Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China; Observation and Research Station of Island and Costal Ecosystem in the Western Taiwan Strait, Ministry of Natural Resources, China.
| |
Collapse
|
34
|
Liao Q, Zhang Y, Pan T, Sun Y, Liu S, Zhang Z, Li Y, Yu L, Luo Z, Xiao Y, Qi X, Jiang T, Su S, Liu S, Qi X, Li X, Damba T, Batchuluun K, Liang Y, Wei S, Zhou L. Liver knockout of MCU leads to greater dysregulation of lipid metabolism in MAFLD. Sci Rep 2024; 14:28167. [PMID: 39548134 PMCID: PMC11568211 DOI: 10.1038/s41598-024-78935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a common chronic condition that poses a significant threat to human health. Mitochondrial dysfunction, particularly involving the mitochondrial Ca2+ uniporter (MCU), plays a key role in its pathogenesis. This study aimed to investigate the impact of the MCU gene on hepatic lipid metabolism in mice fed a high-fat diet. Using MCU knockout and wild-type mice, subjected to either a high-fat or normal diet for 14 weeks, we observed notable Steatosis and liver weight gain in MCU-deficient mice. Liver function markers, serum triglycerides, very low-density lipoprotein (VLDL) levels, and ApoB protein expression were all significantly elevated. Mechanistic studies revealed that MCU deletion led to mitochondrial dysfunction, increased oxidative stress. These findings highlight the critical role of the MCU gene in maintaining hepatic lipid balance and suggest its potential as a therapeutic target for managing nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Qichao Liao
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yurou Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Tingli Pan
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yu Sun
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Siqi Liu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhiwang Zhang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yixing Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lin Yu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zupeng Luo
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yang Xiao
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xinyi Qi
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Tianyu Jiang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Songtao Su
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shi Liu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xinyu Qi
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiangling Li
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Turtushikh Damba
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulan Bator, 14200, Mongolia
| | - Khongorzul Batchuluun
- Center for Research and Development of Institute of Biomedical Sciences, Mongolian National University of Medical Sciences, Ulan Bator, 14200, Mongolia
| | - Yunxiao Liang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Suosu Wei
- Department of Scientific Cooperation of Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Lei Zhou
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
35
|
Mishra T, Dubey N, Basu S. Small molecules for impairing endoplasmic reticulum in cancer. Org Biomol Chem 2024; 22:8689-8699. [PMID: 39373910 DOI: 10.1039/d4ob01238k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The endoplasmic reticulum plays an important role in maintaining the protein homeostasis of cells as well as regulating Ca2+ storage. An increased load of unfolded proteins in the endoplasmic reticulum due to alterations in the cell's metabolic pathway leads to the activation of the unfolded protein response, also known as ER stress. ER stress plays a major role in maintaining the growth and survival of various cancer cells, but persistent ER stress can also lead to cell death and hence can be a therapeutic pathway in the treatment of cancer. In this review, we focus on different types of small molecules that impair different ER stress sensors, the protein degradation machinery, and chaperone proteins. We also review the metal complexes and other miscellaneous compounds inducing ER stress through multiple mechanisms. Finally, we discuss the challenges in this emerging area of research and the potential direction of research to overcome them towards next-generation ER-targeted cancer therapy.
Collapse
Affiliation(s)
- Tripti Mishra
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Navneet Dubey
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
36
|
Torres-Rico M, García-Calvo V, Gironda-Martínez A, Pascual-Guerra J, García AG, Maneu V. Targeting calciumopathy for neuroprotection: focus on calcium channels Cav1, Orai1 and P2X7. Cell Calcium 2024; 123:102928. [PMID: 39003871 DOI: 10.1016/j.ceca.2024.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
As the uncontrolled entry of calcium ions (Ca2+) through plasmalemmal calcium channels is a cell death trigger, the conjecture is here raised that mitigating such an excess of Ca2+ entry should rescue from death the vulnerable neurons in neurodegenerative diseases (NDDs). However, this supposition has failed in some clinical trials (CTs). Thus, a recent CT tested whether isradipine, a blocker of the Cav1 subtype of voltage-operated calcium channels (VOCCs), exerted a benefit in patients with Parkinson's disease (PD); however, outcomes were negative. This is one more of the hundreds of CTs done under the principle of one-drug-one-target, that have failed in Alzheimer's disease (AD) and other NDDs during the last three decades. As there are myriad calcium channels to let Ca2+ ions gain the cell cytosol, it seems reasonable to predict that blockade of Ca2+ entry through a single channel may not be capable of preventing the Ca2+ flood of cells by the uncontrolled Ca2+ entry. Furthermore, as Ca2+ signaling is involved in the regulation of myriad functions in different cell types, it seems also reasonable to guess that a therapy should be more efficient by targeting different cells with various drugs. Here, we propose to mitigate Ca2+ entry by the simultaneous partial blockade of three quite different subtypes of plasmalemmal calcium channels that is, the Cav1 subtype of VOCCs, the Orai1 store-operated calcium channel (SOCC), and the purinergic P2X7 calcium channel. All three channels are expressed in both microglia and neurons. Thus, by targeting the three channels with a combination of three drug blockers we expect favorable changes in some of the pathogenic features of NDDs, namely (i) to mitigate Ca2+ entry into microglia; (ii) to decrease the Ca2+-dependent microglia activation; (iii) to decrease the sustained neuroinflammation; (iv) to decrease the uncontrolled Ca2+ entry into neurons; (v) to rescue vulnerable neurons from death; and (vi) to delay disease progression. In this review we discuss the arguments underlying our triad hypothesis in the sense that the combination of three repositioned medicines targeting Cav1, Orai1, and P2X7 calcium channels could boost neuroprotection and delay the progression of AD and other NDDs.
Collapse
Affiliation(s)
| | | | - Adrián Gironda-Martínez
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Antonio G García
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain; Facultad de Medicina, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
37
|
Zhang L, Gu H, Li X, Wang Y, Yao S, Chen X, Zheng L, Yang X, Du Q, An J, Wen G, Zhu J, Jin H, Tuo B. Pathophysiological role of ion channels and transporters in hepatocellular carcinoma. Cancer Gene Ther 2024; 31:1611-1618. [PMID: 39048663 PMCID: PMC11567900 DOI: 10.1038/s41417-024-00782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 07/27/2024]
Abstract
The incidence of hepatocellular carcinoma (HCC) has continued to increase annually worldwide, and HCC has become a common cause of cancer-related death. Despite great progress in understanding the molecular mechanisms underlying HCC development, the treatment of HCC remains a considerable challenge. Thus, the survival and prognosis of HCC patients remain extremely poor. In recent years, the role of ion channels in the pathogenesis of diseases has become a hot topic. In normal liver tissue, ion channels and transporters maintain water and electrolyte balance and acid‒base homeostasis. However, dysfunction of these ion channels and transporters can lead to the development and progression of HCC, and thus these ion channels and transporters are expected to become new therapeutic targets. In this review, ion channels and transporters associated with HCC are reviewed, and potential targets for new and effective therapies are proposed.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Hong Gu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
38
|
Liu JY, Liu JX, Li R, Zhang ZQ, Zhang XH, Xing SJ, Sui BD, Jin F, Ma B, Zheng CX. AMPK, a hub for the microenvironmental regulation of bone homeostasis and diseases. J Cell Physiol 2024; 239:e31393. [PMID: 39210747 DOI: 10.1002/jcp.31393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
AMP-activated protein kinase (AMPK), a crucial regulatory kinase, monitors energy levels, conserving ATP and boosting synthesis in low-nutrition, low-energy states. Its sensitivity links microenvironmental changes to cellular responses. As the primary support structure and endocrine organ, the maintenance, and repair of bones are closely associated with the microenvironment. While a series of studies have explored the effects of specific microenvironments on bone, there is lack of angles to comprehensively evaluate the interactions between microenvironment and bone cells, especially for bone marrow mesenchymal stem cells (BMMSCs) which mediate the differentiation of osteogenic lineage. It is noteworthy that accumulating evidence has indicated that AMPK may serve as a hub between BMMSCs and microenvironment factors, thus providing a new perspective for us to understand the biology and pathophysiology of stem cells and bone. In this review, we emphasize AMPK's pivotal role in bone microenvironment modulation via ATP, inflammation, reactive oxygen species (ROS), calcium, and glucose, particularly in BMMSCs. We further explore the use of AMPK-activating drugs in the context of osteoarthritis and osteoporosis. Moreover, building upon the foundation of AMPK, we elucidate a viewpoint that facilitates a comprehensive understanding of the dynamic relationship between the microenvironment and bone homeostasis, offering valuable insights for prospective investigations into stem cell biology and the treatment of bone diseases.
Collapse
Affiliation(s)
- Jin-Yu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Jie-Xi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Rang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Zi-Qi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xiao-Hui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Shu-Juan Xing
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Bo Ma
- State Key Laboratory of National Security Specially Needed Medicines, Academy of Military Medical Sciences, Beijing, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
39
|
Feng Y, Tu SQ, Hou YL, Shao YT, Chen L, Mai ZH, Wang YX, Wei JM, Zhang S, Ai H, Chen Z. Alendronate sodium induces G1 phase arrest and apoptosis in human umbilical vein endothelial cells by inhibiting ROS-mediated ERK1/2 signaling. Toxicology 2024; 508:153917. [PMID: 39137827 DOI: 10.1016/j.tox.2024.153917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Bisphosphonates are potent bone resorption inhibitors, among which alendronate sodium (ALN) is commonly prescribed for most osteoporosis patients, but long-term application of ALN can cause bisphosphonate-related osteonecrosis of jaw (BRONJ), the pathogenesis of which remains unclear. Previous studies have suggested that bisphosphonates cause jaw ischemia by affecting the biological behavior of vascular endothelial cells, leading to BRONJ. However, the impacts of ALN on vascular endothelial cells and its mechanism remain unclear. The purpose of this work is to assess the influence of ALN on human umbilical vein endothelial cells (HUVECs) and clarify the molecular pathways involved. We found that high concentration of ALN induced G1 phase arrest in HUVECs, demonstrated by downregulation of Cyclin D1 and Cyclin D3. Moreover, high concentration of ALN treatment showed pro-apoptotic effect on HUVECs, demonstrated by increased levels of the cleaved caspase-3, the cleaved PARP and Bax, along with decreased levels of anti-apoptotic protein Bcl-2. Further experiments showed that ERK1/2 phosphorylation was decreased. Additionally, ALN provoked the build-up of reactive oxygen species (ROS) in HUVECs, leading to ERK1/2 pathway suppression. N-acetyl-L-cysteine (NAC), a ROS scavenger, efficiently promoted the ERK1/2 phosphorylation and mitigated the G1 phase arrest and apoptosis triggered by ALN in HUVECs. PD0325901, an inhibitor of ERK1/2 that diminishes the ERK1/2 phosphorylation enhanced the ALN-induced G1 phase arrest and apoptosis in HUVECs. These findings show that ALN induces G1 phase arrest and apoptosis through ROS-mediated ERK1/2 pathway inhibition in HUVECs, providing novel insights into the pathogenic process, prevention and treatment of BRONJ in individuals receiving extended use of ALN.
Collapse
Affiliation(s)
- Yi Feng
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shao-Qin Tu
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu-Luan Hou
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi-Ting Shao
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhi-Hui Mai
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu-Xuan Wang
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Stomatology, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Jia-Ming Wei
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sai Zhang
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Ai
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Zheng Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
40
|
Murtha KE, Sese WD, Sleiman K, Halpage J, Padyala P, Yang Y, Hornak AJ, Simmons DD. Absence of oncomodulin increases susceptibility to noise-induced outer hair cell death and alters mitochondrial morphology. Front Neurol 2024; 15:1435749. [PMID: 39507624 PMCID: PMC11537894 DOI: 10.3389/fneur.2024.1435749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Cochlear outer hair cells (OHCs) play a fundamental role in the hearing sensitivity and frequency selectivity of mammalian hearing and are especially vulnerable to noise-induced damage. The OHCs depend on Ca2+ homeostasis, which is a balance between Ca2+ influx and extrusion, as well as Ca2+ buffering by proteins and organelles. Alterations in OHC Ca2+ homeostasis is not only an immediate response to noise, but also associated with impaired auditory function. However, there is little known about the contribution of Ca2+ buffering proteins and organelles to the vulnerability of OHCs to noise. In this study, we used a knockout (KO) mouse model where oncomodulin (Ocm), the major Ca2+ binding protein preferentially expressed in OHCs, is deleted. We show that Ocm KO mice were more susceptible to noise induced hearing loss compared to wildtype (WT) mice. Following noise exposure (106 dB SPL, 2 h), Ocm KO mice had higher threshold shifts and increased OHC loss and TUNEL staining, compared to age-matched WT mice. Mitochondrial morphology was significantly altered in Ocm KO OHCs compared to WT OHCs. Before noise exposure, Ocm KO OHCs showed decreased mitochondrial abundance, volume, and branching compared to WT OHCs, as measured by immunocytochemical staining of outer mitochondrial membrane protein, TOM20. Following noise exposure, mitochondrial proteins were barely visible in Ocm KO OHCs. Using a mammalian cell culture model of prolonged cytosolic Ca2+ overload, we show that OCM has protective effects against changes in mitochondrial morphology and apoptosis. These experiments suggest that disruption of Ca2+ buffering leads to an increase in noise vulnerability and mitochondrial-associated changes in OHCs.
Collapse
|
41
|
Venn AA, Techer N, Segonds N, Tambutté E, Tambutté S. Quantification of cytosolic 'free' calcium in isolated coral cells with confocal microscopy. J Exp Biol 2024; 227:jeb247638. [PMID: 39206669 DOI: 10.1242/jeb.247638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Despite its prominent role as an intracellular messenger in all organisms, cytosolic free calcium ([Ca2+]i) has never been quantified in corals or cnidarians in general. Ratiometric calcium dyes and cell imaging have been key methods in successful research on [Ca2+]i in model systems, and could be applied to corals. Here, we developed a procedure to quantify [Ca2+]i in isolated cells from the model coral species Stylophora pistillata using Indo-1 and confocal microscopy. We quantified [Ca2+]i in coral cells with and without intracellular dinoflagellate symbionts, and verified our procedure on cultured mammalian cells. We then used our procedure to measure changes in [Ca2+]i in coral cells exposed to a classic inhibitor of [Ca2+]i regulation, thapsigargin, and also used it to record elevations in [Ca2+]i in coral cells undergoing apoptosis. Our procedure paves the way for future studies into intracellular calcium in corals and other cnidarians.
Collapse
Affiliation(s)
- Alexander A Venn
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco
| | - Nathalie Techer
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco
| | - Natacha Segonds
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco
| | - Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco
| |
Collapse
|
42
|
Daneshvar A, Farokhi M, Bonakdar S, Vossoughi M. Synthesis and characterization of injectable thermosensitive hydrogel based on Pluronic-grafted silk fibroin copolymer containing hydroxyapatite nanoparticles as potential for bone tissue engineering. Int J Biol Macromol 2024; 277:134412. [PMID: 39097043 DOI: 10.1016/j.ijbiomac.2024.134412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Injectable hydrogels are promising for bone tissue engineering due to their minimally invasive application and adaptability to irregular defects. This study presents the development of pluronic grafted silk fibroin (PF-127-g-SF), a temperature-sensitive graft copolymer synthesized from SF and modified PF-127 via a carbodiimide coupling reaction. The PF-127-g-SF copolymer exhibited a higher sol-gel transition temperature (34 °C at 16 % w/v) compared to PF-127 (23 °C), making it suitable for injectable applications. It also showed improved flexibility and strength, with a yielding point increase from <10 % to nearly 30 %. Unlike PF-127 gel, which degrades within 72 h in aqueous media, the PF-127-g-SF copolymer maintained a stable gel structure for over two weeks due to its robust crosslinked hydrogel network. Incorporating hydroxyapatite nanoparticles (n-HA) into the hydrogel reduced pore size and decreased swelling and degradation rates, extending structural stability to four weeks. Increasing n-HA concentration from 0 % to 20 % reduced porosity from 80 % to 66 %. Rheological studies indicated that n-HA enhanced the scaffold's strength and mechanical properties without altering gelation temperature. Cellular studies with MG-63 cells showed that n-HA concentration influenced cell viability and mineralization, highlighting the scaffold's potential in bone tissue engineering.
Collapse
Affiliation(s)
- Anahita Daneshvar
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Manouchehr Vossoughi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran 14588-89694, Iran; Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
43
|
Zhang L, Liao H, Li Z, Yuan J. Individual and combined effects of noise exposure and diabetes mellitus on hearing. Noise Health 2024; 26:449-460. [PMID: 39787545 PMCID: PMC11813245 DOI: 10.4103/nah.nah_71_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 10/11/2024] [Indexed: 01/12/2025] Open
Abstract
Hearing loss (HL) is a prevalent health concern with a significant impact on society and the economy. Several factors contribute to the development of hearing impairment, with noise overexposure being the primary culprit. Diabetes mellitus (DM) is also a factor in hearing impairment, and studies have shown a positive correlation between DM and HL; however, the exact causal relationship and pathogenesis remain contentious. Given the ubiquity of noise exposure and the high incidence of DM, individuals may develop diabetes while being chronically exposed to noise. It is particularly important to explore the independent and combined effects of noise and DM on hearing, which can help healthcare professionals understand the potential risks posed by these factors and inspire prevention strategies and potential interventions for hearing impairment. This review summarizes the current research advancements in noise-induced HL and diabetes-related HL and discusses their characteristics and potential mechanisms. Furthermore, this review focuses on the combined effects of noise exposure and DM on hearing, setting the stage for further research and development of intervention strategies to address HL.
Collapse
Affiliation(s)
- Lan Zhang
- School of Public Health, Southern Medical University, Guangzhou 510515, China
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518054, Guangdong, China
| | - Hui Liao
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518054, Guangdong, China
| | - Zongnan Li
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518054, Guangdong, China
- School of Public Health, Guangdong Medical University, Dongguan 523000, Guangdong, China
| | - Jianhui Yuan
- School of Public Health, Southern Medical University, Guangzhou 510515, China
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518054, Guangdong, China
- School of Public Health, Guangdong Medical University, Dongguan 523000, Guangdong, China
| |
Collapse
|
44
|
Henn D, Lensink AV, Botha CJ. Ultrastructural changes in cardiac and skeletal myoblasts following in vitro exposure to monensin, salinomycin, and lasalocid. PLoS One 2024; 19:e0311046. [PMID: 39321180 PMCID: PMC11423986 DOI: 10.1371/journal.pone.0311046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
Carboxylic ionophores are polyether antibiotics used in production animals as feed additives, with a wide range of benefits. However, ionophore toxicosis often occurs as a result of food mixing errors or extra-label use and primarily targets the cardiac and skeletal muscles of livestock. The ultrastructural changes induced by 48 hours of exposure to 0.1 μM monensin, salinomycin, and lasalocid in cardiac (H9c2) and skeletal (L6) myoblasts in vitro were investigated using transmission electron microscopy and scanning electron microscopy. Ionophore exposure resulted in condensed mitochondria, dilated Golgi apparatus, and cytoplasmic vacuolization which appeared as indentations on the myoblast surface. Ultrastructurally, it appears that both apoptotic and necrotic myoblasts were present after exposure to the ionophores. Apoptotic myoblasts contained condensed chromatin and apoptotic bodies budding from their surface. Necrotic myoblasts had disrupted plasma membranes and damaged cytoplasmic organelles. Of the three ionophores, monensin induced the most alterations in myoblasts of both cell lines.
Collapse
MESH Headings
- Monensin/pharmacology
- Pyrans/pharmacology
- Animals
- Myoblasts, Skeletal/drug effects
- Myoblasts, Skeletal/ultrastructure
- Myoblasts, Skeletal/metabolism
- Lasalocid/toxicity
- Cell Line
- Ionophores/pharmacology
- Myoblasts, Cardiac/drug effects
- Myoblasts, Cardiac/ultrastructure
- Myoblasts, Cardiac/metabolism
- Rats
- Apoptosis/drug effects
- Necrosis/chemically induced
- Microscopy, Electron, Transmission
- Microscopy, Electron, Scanning
- Polyether Polyketides
Collapse
Affiliation(s)
- Danielle Henn
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Antonia V Lensink
- Electron Microscope Unit, Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christo J Botha
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
45
|
Partyka A, Kostrzewa Susłow E, Dymarska M, Ligocka Z, Smalec B, Kalinin J, Meco M, Niżański W. Flavone and 3-hydroxyflavone supplementation in cryopreservation medium protects canine sperm against apoptosis and lipid peroxidation. Theriogenology 2024; 226:319-327. [PMID: 38959842 DOI: 10.1016/j.theriogenology.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Cryopreservation is a pivotal technique in safeguarding genetic material across diverse species, despite its inherent challenges linked to induced spermatozoa damage, notably apoptosis and lipid peroxidation (LPO). Given the insufficient antioxidant defense of spermatozoa against LPO, there is a rising interest in integrating additional additives into extenders to ameliorate mammalian semen quality. Among these additives, flavonoids have garnered considerable attention due to their potent antioxidative properties. Hence, our study aimed to assess the efficacy of flavone (FL) and 3-hydroxyflavone (3-OH = ) supplementation in the cryopreservation medium to protect canine sperm against the damaging impacts of freezing and ensure the preservation of their reproductive potential. Semen was collected from five Beagle stud dogs and then pooled. Then, the sample was divided into 7 groups, each treated with 1) 0 mM, 2) 0.1 mM FL, 3) 0.2 mM FL, 4) 0.4 mM FL, 5) 0.1 mM 3-OH = , 6) 0.2 mM 3-OH = , 7) 0.4 mM 3-OH = . Semen samples were subjected to cryopreservation in French straws and glycerol as a cryoprotectant. In the frozen thawed semen, sperm motility parameters by CASA system and sperm membrane integrity, acrosome status, mitochondrial activity, DNA fragmentation, early apoptosis with capacitation, and LPO were assessed using flow cytometry just after thawing (0 h) and 4 h post thaw. Results reveal significant increase in the proportion of live spermatozoa with undamaged acrosomes in the FL 0.1 and 3-OH = 0.2 groups at 0 h post thaw. At this time point, 3-OH = 0.1 significantly reduced the DNA fragmentation index (DFI) compared to the FL 0.1 and 0.2 groups. However, after the next 4 h, 3-OH = 0.4 exhibited the lowest (P < 0.05) DFI compared to FL 0.2 and 3-OH = 0.1. Additionally, 3-OH = 0.4 showed the highest (P < 0.05) proportion of non apoptotic and non capacitated spermatozoa compared to FL 0.1 0 h post-thaw. Simultaneously, the same group demonstrated significant reduction in apoptotic and capacitated sperm cells, at 0 h and 4 h post-thaw. Moreover, 3-OH = at 0.1 (0 h and 4 h) and 0.2 mM (4 h) significantly enhances the proportion of live sperm without LPO post thaw. Whitin the FL groups, only 0.4 FL significantly increased the percentage of live sperm without LPO. No significant effect of the tested substances was observed on sperm motility, cell membrane integrity, or mitochondrial activity. These findings highlight the promising role of flavone and 3-hydroxyflavone in enhancing sperm resilience during cryopreservation, suggesting their protective function against acrosome damages, capacitation, apoptosis and lipid peroxidation.
Collapse
Affiliation(s)
- Agnieszka Partyka
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Edyta Kostrzewa Susłow
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Monika Dymarska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Zuzanna Ligocka
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Barbara Smalec
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Jarosław Kalinin
- Group no.148 of the Department of Molecular and Cellular Biology, Wroclaw Medical University, Wrocław, Poland
| | - Michele Meco
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
46
|
Kim WS, Park K, Kim JH, Kwak IS. Effect of endocrine-disrupting chemicals on the expression of a calcium ion channel receptor (ryanodine receptor) in the mud crab (Macrophthalmus japonicus). Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109972. [PMID: 38972622 DOI: 10.1016/j.cbpc.2024.109972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/11/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are toxic pollutants generated by artificial activities. Moreover, their hormone-like structure induces disturbances, such as mimicking or blocking metabolic activity. Previous studies on EDCs have focused on the adverse effect of the endocrine system in vertebrates, with limited investigations conducted on ion channels in invertebrates. Thus, in this study, we investigated the potential adverse effects of exposure to bisphenol-A (BPA) and di-(2-ethylhexyl) phthalate (DEHP) at the molecular level on the ryanodine receptor (RyR), a calcium ion channel receptor in Macrophthalmus japonicus. In the phylogenetic analysis, the RyR amino acid sequences in M. japonicus clustered with those in the Crustacean and formed separated branches for RyR in insects and mammals. When exposed to 1 μg L-1 BPA, a significant increase in RyR mRNA expression was observed in the gills on day 1, although a similar level to the control group was observed from day 4 to day 7. However, the RyR expression due to DEHP exposure decreased on days 1 and 4, although it increased on day 7 following exposure to 10 μg L-1. The RyR expression pattern in the hepatopancreas increased for up to 4 days, depending on the BPA concentration. However, there was a tendency for the expression to decrease gradually after the statistical significance increased during the early stage of DEHP exposure (D1). Hence, the transcriptional alterations in the M. japonicus RyR gene observed in the study suggest that exposure toxicities to EDCs, such as BPA and DEHP, have the potential to disrupt calcium ion channel signaling in the gills and hepatopancreas of M. japonicus crabs.
Collapse
Affiliation(s)
- Won-Seok Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea
| | - Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea
| | - Ji-Hoon Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea; Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea.
| |
Collapse
|
47
|
Brochet L, Thomann C, Chocarro-Wrona C, Abawi A, Nolens G, Marquette C, Dufour A. Three-Dimensionally Printed Biphasic Calcium Phosphate Ceramic Substrates as the Sole Inducer of Osteogenic Differentiation in Stromal Vascular Fraction Cells. J Biomed Mater Res B Appl Biomater 2024; 112:e35482. [PMID: 39269164 DOI: 10.1002/jbm.b.35482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/21/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
The stromal vascular fraction (SVF) is a derivate of fat tissue comprising both adipose-derived mesenchymal stem cells and endothelial cells and serves as a promising cell source for engineering vascularized bone tissues. Its combination with osteoconductive biphasic calcium phosphate (BCP) ceramic may represent a point-of-care agent for bone reconstruction. Here we assessed the proliferation and osteogenic differentiation capacities of SVF on 3D printed BCP implants, in comparison with isolated adipose-derived mesenchymal stem cells (AD-MSCs). AD-MSCs and SVF isolated from human donors were seeded on plastic or 3D printed BCP ceramics with sinusoidal or gyroid macrotopography and cultured in the presence or absence of osteogenic factors. Vascular, hematopoietic and MSC surface markers were assessed by flow cytometry whereas osteogenic activity was investigated through alizarin red staining and alkaline phosphatase activity. Osteogenic factors were necessary to trigger osteogenic activity when cells were cultured on plastic, without significant difference observed between the two cell populations. Interestingly, osteogenic activity was observed on BCP implants in the absence of differentiation factors, without significant difference in level activity between the two cell populations and macrotopography. This study offers supportive data for the use of combined BCP scaffolds with SVF in a perspective of a one-step surgical procedure for bone regeneration.
Collapse
Affiliation(s)
- Louis Brochet
- Maxillo-Facial Surgery, Facial Plastic Surgery, Stomatology and Oral Surgery, Hospices Civils de Lyon, Lyon-Sud Hospital, Lyon, France
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, Villeurbanne, France
- Université Lyon 1, ICBMS, UMR 5246, Villeurbanne, France
| | - Céline Thomann
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, Villeurbanne, France
- Université Lyon 1, ICBMS, UMR 5246, Villeurbanne, France
| | - Carlos Chocarro-Wrona
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, Villeurbanne, France
- Université Lyon 1, ICBMS, UMR 5246, Villeurbanne, France
| | - Ariana Abawi
- Université Lyon 1, ICBMS, UMR 5246, Villeurbanne, France
| | | | - Christophe Marquette
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, Villeurbanne, France
- Université Lyon 1, ICBMS, UMR 5246, Villeurbanne, France
| | - Alexandre Dufour
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, Villeurbanne, France
- Université Lyon 1, ICBMS, UMR 5246, Villeurbanne, France
| |
Collapse
|
48
|
Li YM, Ji Y, Meng YX, Kim YJ, Lee H, Kurian AG, Park JH, Yoon JY, Knowles JC, Choi Y, Kim YS, Yoon BE, Singh RK, Lee HH, Kim HW, Lee JH. Neural Tissue-Like, not Supraphysiological, Electrical Conductivity Stimulates Neuronal Lineage Specification through Calcium Signaling and Epigenetic Modification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400586. [PMID: 38984490 PMCID: PMC11425260 DOI: 10.1002/advs.202400586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Electrical conductivity is a pivotal biophysical factor for neural interfaces, though optimal values remain controversial due to challenges isolating this cue. To address this issue, conductive substrates made of carbon nanotubes and graphene oxide nanoribbons, exhibiting a spectrum of conductivities from 0.02 to 3.2 S m-1, while controlling other surface properties is designed. The focus is to ascertain whether varying conductivity in isolation has any discernable impact on neural lineage specification. Remarkably, neural-tissue-like low conductivity (0.02-0.1 S m-1) prompted neural stem/progenitor cells to exhibit a greater propensity toward neuronal lineage specification (neurons and oligodendrocytes, not astrocytes) compared to high supraphysiological conductivity (3.2 S m-1). High conductivity instigated the apoptotic process, characterized by increased apoptotic fraction and decreased neurogenic morphological features, primarily due to calcium overload. Conversely, cells exposed to physiological conductivity displayed epigenetic changes, specifically increased chromatin openness with H3acetylation (H3ac) and neurogenic-transcription-factor activation, along with a more balanced intracellular calcium response. The pharmacological inhibition of H3ac further supported the idea that such epigenetic changes might play a key role in driving neuronal specification in response to neural-tissue-like, not supraphysiological, conductive cues. These findings underscore the necessity of optimal conductivity when designing neural interfaces and scaffolds to stimulate neuronal differentiation and facilitate the repair process.
Collapse
Affiliation(s)
- Yu-Meng Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Yunseong Ji
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), Daejeon, 34129, Republic of Korea
| | - Yu-Xuan Meng
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Yu-Jin Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Hwalim Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Ji-Young Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Jonathan C Knowles
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Yunkyu Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yoon-Sik Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Bo-Eun Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
49
|
Napierkowska S, Froment P, Kowalczyk A, Pamuła J, Birger M, Niżański W, Partyka A. The neonicotinoid, imidacloprid, disrupt the chicken sperm quality through calcium efflux. Poult Sci 2024; 103:103959. [PMID: 38943803 PMCID: PMC11261453 DOI: 10.1016/j.psj.2024.103959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024] Open
Abstract
Imidacloprid (IMI), an insecticide from the neonicotinoid group widely used in agriculture, has drawn attention due to its potential harmful effects on non-target species, including bird populations. In the present work, we investigated the effect of IMI on avian semen by in vitro exposure of rooster spermatozoa to this pesticide. The semen was collected twice a week. Samples collected on one day were pooled and incubated with the following IMI concentrations: 0 mM, 0.5 mM, 5 mM, 10 mM, and 50 mM at 36°C for 3 h. Comprehensive semen analysis was carried out after 1 h and 3 h of incubation, evaluating sperm motility parameters with the CASA system and using flow cytometry to assess membrane integrity, mitochondrial activity, acrosome integrity, chromatin structure, intracellular calcium level and apoptosis markers such as: early apoptosis and caspase activation and lipid peroxidation. The results of the first experiment suggest that low concentrations of IMI have a different effect on sperm motility compared to higher concentrations. In IMI samples, we also observed a lower percentage of cells with a high level of calcium ions compared to the control, and a lower level of lipid peroxidation. We concluded that IMI may act as a blocker of calcium channels, preventing the influx of these ions into the cell. To confirm this mechanism, we conducted a second experiment with calcium channel blockers: SNX 325, MRS-1845, and Nifedipine. The results of this experiment confirmed that the mechanism of action of IMI largely relies on the blockade of calcium channels in rooster sperm. Blocking the influx of calcium ions into the cell prevents the formation of Ca²⁺-dependent pores, thereby preventing an increase in cell membrane permeability, ultimately blocking early apoptosis and lipid peroxidation in chicken spermatozoa.
Collapse
Affiliation(s)
- Skarlet Napierkowska
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland
| | - Pascal Froment
- INRAE, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Artur Kowalczyk
- Wroclaw University of Environmental and Life Science, Institute of Animal Breeding, Wrocław, Poland
| | - Jędrzej Pamuła
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland
| | - Mariusz Birger
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland
| | - Wojciech Niżański
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland
| | - Agnieszka Partyka
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland.
| |
Collapse
|
50
|
Zhou H, Yang J, Li Z, Feng J, Duan X, Yan C, Wen G, Qiu X, Shen Z. Hollow mesoporous calcium peroxide nanoparticles for drug-free tumor calcicoptosis therapy. Acta Biomater 2024; 185:456-466. [PMID: 39004329 DOI: 10.1016/j.actbio.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Calcium ions (Ca2+) participate in the regulation of cellular apoptosis as a second messenger. Calcium overload, which refers to the abnormal elevation of intracellular Ca2+ concentration, is a factor that can lead to cell death. Here, based on the unique biological effects of Ca2+, hollow mesoporous calcium peroxide nanoparticles (HMCPN) were developed by a facile hydrolysis-precipitation method for drug-free tumor calcicoptosis therapy. The average pore size of the optimized HMCPN17 is 6.4 nm, and the surface area is 81.3 m2/g, which enables HMCPN17 with high drug loading capability. The Ca2+ release from HMCPN17 is much faster at pH 6.8 than that at pH 7.4, which can be ascribed to the acid-triggered conversion of HMCPN17 to Ca2+ and H2O2, indicating a pH-responsive decomposition behavior of HMCPN17. The high drug loading contents of doxorubicin (DOX) and/or sorafenib (SFN) indicate that HMCPN17 can be employed as a generic drug delivery system (DDS). The in vitro and in vivo results reinforce the high calcicoptosis therapeutic efficacy of tumors by our HMCPN17 without drug loading, which can be attributed to the efficient accumulation in tumors and the ability of H2O2 and Ca2+ production at acidic TME. Our HMCPN17 has broad application prospect for construction of multi-drug-loaded composite nanomaterials with diversified functions for the treatment of tumors. STATEMENT OF SIGNIFICANCE: The combination of hollow mesoporous nanomaterials and calcium peroxide nanoparticles has a wide range of applications in the synergistic treatment of tumors. In this study, hollow mesoporous calcium peroxide nanoparticles (HMCPN) were developed based on a simple hydrolysis-precipitation method for tumor calcicoptosis therapy without drug loading. The high drug loading contents of DOX and/or SFN indicate that our HMCPN can serve as a generic DDS. The experimental results demonstrated the high calcicoptosis therapeutic efficacy of HMCPN on tumors even without drug loading.
Collapse
Affiliation(s)
- Huimin Zhou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China; School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
| | - Jing Yang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
| | - Zongheng Li
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
| | - Xiaopin Duan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong 510515, China
| | - Chenggong Yan
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
| | - Ge Wen
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China.
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China.
| | - Zheyu Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China; School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China.
| |
Collapse
|