1
|
Uranbileg B, Hoshino Y, Ezaka M, Kurano M, Uchida K, Yatomi Y, Ito N. Metabolism of sphingolipids in a rat spinal cord stenosis model. Biochem Biophys Rep 2025; 42:102025. [PMID: 40342530 PMCID: PMC12059668 DOI: 10.1016/j.bbrep.2025.102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/07/2025] [Accepted: 04/18/2025] [Indexed: 05/11/2025] Open
Abstract
Background Lumbar spinal canal stenosis (LSCS) plays a crucial role in neurogenic claudication and neuropathic pain. Recent studies suggest that changes in sphingolipid metabolism are linked to neuropathic pain. To explore the association between sphingolipids and LSCS, we measured the levels of sphingolipids and sphingolipid-associated molecules in an animal model of cauda equina compression (CEC), a typical type of LSCS. Methods By placing silicon blocks within the lumbar epidural space, CEC model were constructed in which motor disfunction had already been confirmed in our previous study. Quantitative measurements of various sphingolipids were conducted using LC-MS/MS in spinal cord and cerebrospinal fluid (CSF) samples on days 1, 7, and 28 following insertion of silicon blocks. Additionally, gene expression was analyzed in spinal cord tissue. Results In the CEC model, there was a significant increase ceramide levels in the CSF with upregulation of ceramide synthase 1 in the spinal cord tissue samples on day 1. Further, S1P levels in the CSF increased on day 7 and in the spinal cord significantly increased on day 28, and there was an increase in mRNA expression levels of sphingosine kinases (SphK)1 on days 1,7, and 28, while SphK2 on days 7 and 28. Regarding S1P receptors, there was an increase in mRNA expression levels of S1P1 on days 1,7, and 28 and S1P3 on day1. Conclusion The production and activation of the sphingolipid signaling pathway could play a pivotal role in neuropathic pain related to LSCS.
Collapse
Affiliation(s)
- Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoko Hoshino
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Mariko Ezaka
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kanji Uchida
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuko Ito
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
2
|
von Renesse J, Lin MC, Ho PC. Tumor-draining lymph nodes - friend or foe during immune checkpoint therapy? Trends Cancer 2025:S2405-8033(25)00104-9. [PMID: 40348668 DOI: 10.1016/j.trecan.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025]
Abstract
The pivotal role of tumor-draining lymph nodes (TDLNs) in supporting antitumor immunity and serving as sites for cancer metastasis presents a clinical challenge: eliminate tumors while preserving antitumor immune responses. In this article, we explore the initiation of tumor-specific immune responses within lymph nodes (LNs), the immunocompromised microenvironment induced by tumors within LNs, and the crucial involvement of TDLNs in immunotherapy. Additionally, we examine the clinical prospects of modifying surgical procedures or therapy sequences to enhance the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Janusz von Renesse
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Mei-Chun Lin
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland; Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
3
|
Ben X, Li C, Liu J, Liu T, Tong J, Li Q. Metabolomics-driven exploration of sphingosine 1-phosphate mechanisms in refractory epilepsy. Neurobiol Dis 2025:106953. [PMID: 40349856 DOI: 10.1016/j.nbd.2025.106953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
This study aims to investigate the role of sphingosine 1-phosphate (S1P) in refractory epilepsy (RE) and elucidate its underlying molecular mechanisms. We employed metabolomics technology to analyze serum metabolites and gene expression patterns in individuals with RE. Additional omics analyses were conducted using cellular and animal models to explore the specific functions of S1P and related metabolic pathways. Our findings demonstrated that ACER3/SphK1/S1P play protective roles in maintaining mitochondrial structure and function. These elements were shown to mitigate neuronal hyperexcitability and protect against neuronal damage. By elucidating the dysregulation of metabolic pathways associated with disease onset and progression, our research illuminated the impact of abnormal sphingolipid metabolism and gene expression variances on the manifestation and progression of RE. This research underscores the critical impact of abnormal sphingolipid metabolism on RE development and progression. The insights gained from this study provide a foundation for developing targeted pharmaceutical interventions and symptomatic treatments for individuals with RE.
Collapse
Affiliation(s)
- Xinyu Ben
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China
| | - Chang Li
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China
| | - Jiaqi Liu
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China
| | - Ting Liu
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China
| | - Jingyi Tong
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China.
| | - Qifu Li
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Department of Neurology, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China.
| |
Collapse
|
4
|
Nakagawa Y, Yamada S. Novel hypothesis and therapeutic interventions for irritable bowel syndrome: interplay between metal dyshomeostasis, gastrointestinal dysfunction, and neuropsychiatric symptoms. Mol Cell Biochem 2025; 480:2661-2676. [PMID: 39503802 DOI: 10.1007/s11010-024-05153-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/26/2024] [Indexed: 05/03/2025]
Abstract
Irritable bowel syndrome is a gastrointestinal disorder due to multiple pathologies. While patients with this condition experience anxiety and depressed mood more frequently than healthy individuals, it is unclear how gastrointestinal dysfunction interacts with such neuropsychiatric symptoms. Data suggest that irritable bowel syndrome patients predominantly display a lower zinc intake, which presumably impairs enterochromaffin cells producing 5-hydroxytryptamine, gut bacteria fermenting short-chain fatty acids, and barrier system in the intestine, with the accompanying constipation, diarrhea, low-grade mucosal inflammation, and visceral pain. Dyshomeostasis of copper and zinc concentrations as well as elevated pro-inflammatory cytokine levels in the blood can disrupt blood-cerebrospinal fluid barrier function, leading to locus coeruleus neuroinflammation and hyperactivation with resultant amygdalar overactivation and dorsolateral prefrontal cortex hypoactivation as found in neuropsychiatric disorders. The dysregulation between the dorsolateral prefrontal cortex and amygdala is likely responsible for visceral pain-related anxiety, depressed mood caused by anticipatory anxiety, and visceral pain catastrophizing due to catastrophic thinking or cognitive distortion. Collectively, these events can result in a spiral of gastrointestinal symptoms and neuropsychiatric signs, prompting the progression of irritable bowel syndrome. Given that the negative feedback mechanism in regulation of the hypothalamic-pituitary-adrenal axis is preserved in a subset of neuropsychiatric cases, dorsolateral prefrontal cortex abnormality accompanied by neuropsychiatric symptoms may be a more significant contributing factor in brain-gut axis malfunction than activation of the hypothalamic corticotropin-releasing hormone system. The proposed mechanistic model could predict novel therapeutic interventions for comorbid irritable bowel syndrome and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yutaka Nakagawa
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan.
| | - Shizuo Yamada
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
5
|
Qiu H, Liu J, You J, Zhou O, Hao C, Shu Y, Ma D, Zou W, Zhang L, Liu E, Luo Z, Ren L, Geng G, Zou L, Peng D, Fu Z. Inhibition of sphingosine 1-phosphate receptor 3 ameliorates bleomycin-induced pulmonary fibrosis by suppressing macrophage M2 polarization. Genes Dis 2025; 12:101244. [PMID: 40092491 PMCID: PMC11907442 DOI: 10.1016/j.gendis.2024.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 03/19/2025] Open
Abstract
Pulmonary fibrosis is a devastating lung disease without effective treatment options. Sphingosine-1-phosphate receptor 3 (S1pr3), a receptor for the lipid signaling molecule sphingosine-1-phosphate, has been shown to mediate the development of pulmonary fibrosis, although the underlying mechanism is not fully understood. Here, we found increased expression of S1pr3 in the lung during the process of bleomycin-induced pulmonary fibrosis in mice and specific overexpression of S1pr3 in the infiltrated M2 macrophages. We constructed LysM-Cre + /S1pr3 flox/flox mice, in which S1pr3 was conditionally depleted in myeloid cells, and this depletion protected mice from bleomycin-induced lung injury and fibrosis, with reduced M2 macrophage accumulation in the lung. Increased S1pr3 expression was found in bone marrow-derived macrophages after alternatively activated by IL4 ex vivo, while loss of S1pr3 attenuated IL-4-induced M2 polarization in bone marrow-derived macrophages by repressing the PI3K/Akt-Stat3 signaling pathway. Moreover, the S1pr3 inhibitors CAY10444 and TY52156 exerted protective effects on pulmonary fibrosis in mice. Taken together, our research showed that inhibition of S1pr3 ameliorates bleomycin-induced pulmonary fibrosis by reducing macrophage M2 polarization via the PI3K/Akt-Stat3 signaling pathway, indicating that S1pr3 may be a potential target for pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Huijun Qiu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Jiang Liu
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jingyi You
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Ou Zhou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Chang Hao
- Department of Otolaryngology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yi Shu
- Center of Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Deyu Ma
- Center of Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Wenjing Zou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Linghuan Zhang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Luo Ren
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Gang Geng
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Lin Zou
- Center of Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Clinical Research Unit, Institute of Pediatric Infection, Immunity and Critical Care Medicine, Children's Hospital of Shanghai Jiaotong University Medical School, Shanghai 200062, China
| | - Danyi Peng
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Zhou Fu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| |
Collapse
|
6
|
Hannun YA, Merrill AH, Luberto C. The Bioactive Sphingolipid Playbook. A Primer for the Uninitiated as well as Sphingolipidologists. J Lipid Res 2025:100813. [PMID: 40254066 DOI: 10.1016/j.jlr.2025.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025] Open
Abstract
Sphingolipids and glycosphingolipids are among the most structurally diverse and complex compounds in the mammalian metabolome. They are well known to play important roles in biological architecture, cell-cell communication and cellular regulation, and for many biological processes, multiple sphingolipids are involved. Thus, it is not surprising that untargeted genetic/transcriptomic/pharmacologic/metabolomic screens have uncovered changes in sphingolipids and sphingolipid genes/proteins while studying physiological and pathological processes. Consequently, with increasing frequency, both targeted and untargeted mass spectrometry methodologies are being used to conduct sphingolipidomic analyses. Interpretation of such large data sets and design of follow-up experiments can be daunting for investigators with limited expertise with sphingolipids (and sometimes even for someone well-versed in sphingolipidology). Therefore, this review gives an overview of essential elements of sphingolipid structure and analysis, metabolism, functions, and roles in disease, and discusses some of the items to consider when interpreting lipidomics data and designing follow-up investigations.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Departments of Biochemistry, Medicine, and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Alfred H Merrill
- School of Biological Sciences and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Chiara Luberto
- Department of Physiology and Biophysics, and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
7
|
Vincent V, Thakkar H, Sen A, Bansal A, Das US, Gunasekaran A, Bhatla N, Velpandian T, Singh A. Adiponectin mediated metabolic and sphingolipid alterations in preventing endothelial dysfunction. Mol Cell Biochem 2025:10.1007/s11010-025-05268-1. [PMID: 40140228 DOI: 10.1007/s11010-025-05268-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/22/2025] [Indexed: 03/28/2025]
Abstract
Endothelial dysfunction is an early indicator of atherosclerosis. Adiponectin, a hormone secreted by adipose tissue with insulin-sensitizing and anti-inflammatory properties, offers protection against atherosclerosis. This study investigated the metabolic and sphingolipid alterations in endothelial cells linked to the protective effects of adiponectin against endothelial dysfunction. Human Umbilical Endothelial Cells (HUVECs) were treated with Tumor Necrosis Factor-alpha (TNF-α) to induce endothelial dysfunction. AdipoRon and SKI-I were used to study the effects of adiponectin and sphingosine kinase inhibition in HUVECs. Metabolic changes and sphingolipid alterations were assessed to understand changes in lipid metabolism, and RNA sequencing was used to quantify the transcriptomics changes. TNF-α treatment significantly upregulated glycolysis and downregulated long-chain fatty acid oxidation and mitochondrial ATP production, while AdipoRon co-treatment partially reversed these metabolic effects. In HUVECs, TNF-α treatment increased intracellular C16 and C18 ceramides and Sphingosine 1-Phosphate (S1P) while decreasing extracellular S1P. AdipoRon Co-treatment reversed these effects; AdipoRon also reversed the transcriptional changes induced by TNF-α. Sphingosine kinase inhibition in HUVECs led to mitochondrial dysfunction at the metabolic and transcriptional levels. This study provides insights into potential therapeutic strategies targeting endothelial metabolism while unraveling a novel mitochondrial modulation mediated by sphingosine kinases in endothelial cells.
Collapse
Affiliation(s)
- Vinnyfred Vincent
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Atanu Sen
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ashutosh Bansal
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ujjalkumar Subhash Das
- Ocular Pharmacology and Pharmacy Division, Dr. RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Abishek Gunasekaran
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Bhatla
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Thirumurthy Velpandian
- Ocular Pharmacology and Pharmacy Division, Dr. RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
8
|
Yashima K, Kurumi H, Yamaguchi N, Isomoto H. Progressing advanced therapies for inflammatory bowel disease: Current status including dual biologic therapy and discontinuation of biologics. Expert Rev Gastroenterol Hepatol 2025:1-20. [PMID: 39968880 DOI: 10.1080/17474124.2025.2469832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 02/20/2025]
Abstract
INTRODUCTION Advanced therapies (ADT) that encompass biological agents and small molecules have been approved for the treatment of inflammatory bowel disease (IBD), broadening the spectrum of available treatment options. Nevertheless, a substantial proportion of patients fail to achieve satisfactory responses, necessitating surgical intervention. Treatment objectives have evolved beyond clinical remission, reduction of inflammation, and mucosal healing, shifting focus toward enhancing the quality of life, acknowledging the profound impact of IBD on physical and mental well-being. AREA COVERED This comprehensive review describes the current landscape of ADT for IBD, including dual biologic therapy (DBT), which involves the combination of two biologics or a single biologic with a small-molecule compound, as well as considerations surrounding the discontinuation of biologics. EXPERT OPINION ADT is the standard treatment for moderate to severe IBD, while DBT appears promising for specific subsets of patients, including those with refractory disease or extraintestinal manifestations. However, these approaches may increase the risk of adverse effects, including malignancy. To optimize individualized treatment strategies in patients with refractory IBD, further trials are needed to refine ADT's predictive value, establish DBT's safety and indications, define biologic discontinuation criteria, and evaluate emerging biomarkers, artificial intelligence, and bowel ultrasound in patient management.
Collapse
Affiliation(s)
- Kazuo Yashima
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hiroki Kurumi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Naoyuki Yamaguchi
- Department of Endoscopy, Nagasaki University Hospital, Nagasaki, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
9
|
McKenna S, Jung KI, Wolf JJ, Seo YJ, Hahm B. Multiple sphingolipid-metabolizing enzymes modulate influenza virus replication. Virology 2025; 603:110367. [PMID: 39754863 PMCID: PMC11793951 DOI: 10.1016/j.virol.2024.110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025]
Abstract
The sphingolipid network is sustained principally by the balance of bioactive sphingolipid molecules and their regulation by sphingolipid-metabolizing enzymes. The components in the lipid system display key functions in numerous cellular and disease conditions including virus infections. During the COVID-19 pandemic, there was a fruitful effort to use an inhibitor that blocks the activity of sphingosine kinase (SphK) 2 to cure the devastating disease. Support for the inhibitor came from pre-clinical research on influenza where the inhibitor demonstrated effective protection of mice from influenza-induced morbidity and mortality. This highlights the importance of basic and translational research on the sphingolipid system for improving human health. Multiple sphingolipid-metabolizing enzymes have been reported to regulate influenza virus replication and propagation. In this review, the emphasis is placed on the roles of these enzymes that impact influenza virus life cycle and the conceivable mechanisms for the interplay between influenza virus and the sphingolipid pathway.
Collapse
Affiliation(s)
- Savannah McKenna
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA
| | - Kwang Il Jung
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA
| | - Jennifer J Wolf
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Bumsuk Hahm
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
10
|
Liang X, Tian S, Zhang H, Sun S, Zhang P, Li J, Li Y, Zhang Y, Liu Z. Efferocytosis: A new star of atherosclerotic plaques reversal. Int Immunopharmacol 2025; 146:113904. [PMID: 39724733 DOI: 10.1016/j.intimp.2024.113904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Efferocytosis is considered the key to eliminate apoptotic cells (ACs) under physiological and pathological conditions in vivo, mainly through different types of macrophages to achieve this process. Especially, tissue-resident macrophages (TRMs) are very significant for inflammation regression and maintenance of homeostasis in vivo. Abnormal efferocytosis will lead to the accumulation of ACs and the release of a variety of pro-inflammatory factors, which mediates the occurrence of many inflammatory diseases, including atherosclerosis (AS). AS is a chronic inflammatory vascular disease with the participation of the immune system. Defective efferocytosis will accelerate the progress of AS to a certain extent. Therefore, it is of great significance to understand the mechanism of efferocytosis and realize the prevention and treatment of AS through efferocytosis. In this review, we will briefly describe the specific process of efferocytosis, deeply discuss the possible molecular mechanism of impaired efferocytosis promoting the development of AS, and summarize the ways to prevent and treat AS through efferocytosis intervention therapy.
Collapse
Affiliation(s)
- Xiangyu Liang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| | - Shuoqi Tian
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| | - Han Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| | - Shusen Sun
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| | - Peixiang Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| | - Jiameng Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| | - Yong Li
- Beijing Yongkang Nian Health Technology Co., Ltd., Beijing, China.
| | - Yanfen Zhang
- Technology Transfer Center, Hebei University, Baoding, China.
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China.
| |
Collapse
|
11
|
Mishra S, Swain PS, Pati S, Dehury B. Extracellular domain of TREM2 possess two distinct ligand recognition sites: Insights from machine-learning guided docking and all-atoms molecular dynamics simulations. Heliyon 2025; 11:e41414. [PMID: 39866401 PMCID: PMC11759634 DOI: 10.1016/j.heliyon.2024.e41414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025] Open
Abstract
The myeloid-specific triggering receptors expressed on myeloid cells 2 (TREM2) is a group of class I receptors expressed in brain microglia plays a decisive role in neurodegenerative diseases such as Alzheimer's disease (AD) and Nasu Hakola disease (NHD). The extracellular domain (ECD) of TREM2 interacts with a wide-range of ligands, yet the molecular mechanism underlying recognition of such ligands to this class I receptor remains underexplored. Herein, we undertook a systematic investigation for exploring the mode of ligand recognition in immunoglobulin-like ectodomain by employing both knowledge-based and machine-learning guided molecular docking approach followed by the state-of-the-art all atoms molecular dynamics (MD) simulations. Besides the known binding site formed by complementarity-determining regions (CDR) 1 and CDR2 loops, which enables the binding of different anionic ligands, our study identifies the presence of second binding site formed by β-strands towards the C-terminal end. We observe a dense network of hydrophobic contacts formed between the explored ligands and CDR loops and β-strands, specifically CDR1, CDR2, β-strand C', loop connecting β-strand D and E, and loop connecting β-strand E and F. Ligand binding in immunoglobulin-like ectodomain increases the conformational flexibility of CDR2 loop, thus most frequently observed pathogenic variants i.e. R47H and R62H in TREM2 may affect the development and progression of AD. Our knowledge-based and machine-learning guided docking and physics-based simulations study unveils deep insights into the endogenous ligand recognition by the positive surface ligand binding site and distant core site pave the way for exploration of other small molecules towards development of novel therapeutics against Alzheimer's disease.
Collapse
Affiliation(s)
- Sarbani Mishra
- ICMR-regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India
| | - Preety Sthutika Swain
- ICMR-regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India
| | - Sanghamitra Pati
- ICMR-regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
12
|
Fu Z, Zhong J, Lin L, Yang J, Xiao Y, Li L, Zhang J, Yuan J. Deciphering S1P downregulation and sphingolipid homeostasis disruption in fungal keratitis via multi-omics and MALDI-MSI analysis. Ocul Surf 2025; 35:83-96. [PMID: 39653311 DOI: 10.1016/j.jtos.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/15/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
PURPOSE The absence of effective treatment strategies in Fungal Keratitis (FK) emphasizes the critical need to understand the pathogenic mechanisms to enhance therapeutic outcomes. Sphingolipids have been proved to play a pivotal role in the pathogenesis of fungal infections, but the specific alteration in sphingolipids and regulatory pathways remain elusive. Our aim is to gain insight into the pathophysiological mechanisms of sphingolipid homeostasis in FK through multi-omics analysis. METHODS Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) was performed in FK patients and mouse model. Furthermore, time-course RNA-seq was performed and Weighted gene co-expression network analysis (WGCNA) was used to reveal the driver genes in FK. We further investigated the effect of FTY-720, a mimetic of sphingosine 1-phosphate (S1P), on the progression of FK. RESULTS MALDI-MSI analysis of FK patients revealed a downregulation of sphingolipids, with sphingolipid metabolism identified as the most prominently enriched pathway. These alterations were validated in mouse model, in which S1P, ceramide, ceramide 1-phosphate and sphingomyelin were found to be downregulated. Time-course transcriptomic analysis suggests that degradation of sphingolipids by specific enzymes drives the progression of FK, involving phospholipid degradation, downregulation of TOR pathway, and activation of innate immune response. Consequently, epithelial cell function was inhibited and cell death increased. Importantly, restoring sphingolipid homeostasis by FTY-720 reversed the level of S1P and relieved the progression of FK. CONCLUSION In summary, this study reveals that disruption of sphingolipid homeostasis promotes disease progression in FK. Furthermore, restoring sphingolipid homeostasis emerges as a promising strategy to mitigate the progression of FK.
Collapse
Affiliation(s)
- Zhenyuan Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jing Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lixia Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jiahui Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yichen Xiao
- Eye Institute and Department of Ophthalmology Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Lei Li
- Guangdong MS Institute of Scientific Instrument Innovation, Guangzhou, China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
13
|
Yang BSK, Blackburn SL, Lorenzi PL, Choi HA, Gusdon AM. Metabolomic and lipidomic pathways in aneurysmal subarachnoid hemorrhage. Neurotherapeutics 2025; 22:e00504. [PMID: 39701893 PMCID: PMC11840353 DOI: 10.1016/j.neurot.2024.e00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) results in a complex systemic response that is critical to the pathophysiology of late complications and has important effects on outcomes. Omics techniques have expanded our investigational scope and depth into this phenomenon. In particular, metabolomics-the study of small molecules, such as blood products, carbohydrates, amino acids, and lipids-can provide a snapshot of dynamic subcellular processes and thus broaden our understanding of molecular-level pathologic changes that lead to the systemic response after aSAH. Lipids are especially important due to their abundance in the circulating blood and numerous physiological roles. They are comprised of a wide variety of subspecies and are critical for cellular energy metabolism, the integrity of the blood-brain barrier, the formation of cell membranes, and intercellular signaling including neuroinflammation and ferroptosis. In this review, metabolomic and lipidomic pathways associated with aSAH are summarized, centering on key metabolites from each metabolomic domain.
Collapse
Affiliation(s)
- Bosco Seong Kyu Yang
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States
| | - Spiros L Blackburn
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center (MDACC), United States
| | - Huimahn A Choi
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States
| | - Aaron M Gusdon
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States.
| |
Collapse
|
14
|
Mendes-da-Cruz DA, Lemos JP, Belorio EP, Savino W. Intrathymic Cell Migration: Implications in Thymocyte Development and T Lymphocyte Repertoire Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:139-175. [PMID: 40067586 DOI: 10.1007/978-3-031-77921-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
During the development of T cells in the thymus, differentiating thymocytes move through specific thymic compartments and interact with the cortical and medullary microenvironments of the thymic lobules. This migration is primarily controlled by adhesion molecules, such as extracellular matrix ligands and receptors, and soluble factors like chemokines that are important for thymocyte differentiation. The migration events driven by these molecules include the entry of lymphoid progenitors from the bone marrow, movement within the thymus, and the exit of mature thymocytes. Notably, the migration of developing T cells can also impact the positive and negative selection processes, which are crucial for preventing the development of self-reactive T cells. This chapter will focus on the key molecules involved in thymocyte migration and how their expression patterns may affect T cell development and the formation of T cell repertoires.
Collapse
Affiliation(s)
| | - Julia Pereira Lemos
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Elizabeth Pinto Belorio
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Richards A, Khalil AS, Friesen M, Whitfield TW, Gao X, Lungjangwa T, Kamm RD, Wan Z, Gehrke L, Mooney D, Jaenisch R. SARS-CoV-2 infection of human pluripotent stem cell-derived vascular cells reveals smooth muscle cells as key mediators of vascular pathology during infection. Nat Commun 2024; 15:10754. [PMID: 39737992 PMCID: PMC11685814 DOI: 10.1038/s41467-024-54917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/22/2024] [Indexed: 01/01/2025] Open
Abstract
Although respiratory symptoms are the most prevalent disease manifestation of infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), nearly 20% of hospitalized patients are at risk for thromboembolic events. This prothrombotic state is considered a key factor in the increased risk of stroke, which is observed clinically during both acute infection and long after symptoms clear. Here, we develop a model of SARS-CoV-2 infection using human-induced pluripotent stem cell-derived endothelial cells (ECs), pericytes (PCs), and smooth muscle cells (SMCs) to recapitulate the vascular pathology associated with SARS-CoV-2 exposure. Our results demonstrate that perivascular cells, particularly SMCs, are a susceptible vascular target for SARS-CoV-2 infection. Utilizing RNA sequencing, we characterize the transcriptomic changes accompanying SARS-CoV-2 infection of SMCs, PCs, and ECs. We observe that infected SMCs shift to a pro-inflammatory state and increase the expression of key mediators of the coagulation cascade. Further, we show human ECs exposed to the secretome of infected SMCs produce hemostatic factors that contribute to vascular dysfunction despite not being susceptible to direct infection. The findings here recapitulate observations from patient sera in human COVID-19 patients and provide mechanistic insight into the unique vascular implications of SARS-CoV-2 infection at a cellular level.
Collapse
Affiliation(s)
- Alexsia Richards
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Andrew S Khalil
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Max Friesen
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Troy W Whitfield
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Xinlei Gao
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Tenzin Lungjangwa
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhengpeng Wan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lee Gehrke
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
16
|
Cui Y, Luo S, Wu B, Li Q, Han F, Wang Z. Immunomodulatory Effects of SPHK1 and Its Interaction with TFAP2A in Yellow Drum ( Nibea albiflora). Int J Mol Sci 2024; 25:13641. [PMID: 39769404 PMCID: PMC11728317 DOI: 10.3390/ijms252413641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Sphingosine kinases (SPHKs) are essential enzymes that catalyze the phosphorylation of sphingosine to produce sphingosine-1-phosphate (S1P), which plays pivotal roles in inflammation and immune regulation. In this study, genome-wide association analysis (GWAS) identified the Ydsphk1 gene as closely associated with the resistance of yellow drum (Nibea albiflora) to Vibrio harveyi. Structural prediction showed that YDSPHK1 contains a typical diacylglycerol kinase catalytic (DAGKc) domain (154-291 aa). By constructing and transfecting Ydsphk1 expression plasmids into yellow drum kidney cells, we found that YDSPHK1 is localized in the cytoplasm. Subsequent RNA-Seq analysis of an overexpression plasmid identified 25 differentially expressed genes (DEGs), including 13 upregulated and 12 downregulated. Notably, nsun5 and hsp90aa1 were significantly upregulated, while Nfkbia and hmox1 were downregulated. Promoter analysis indicated that the core regulatory regions of Ydsphk1 are located between -1931~-1679 bp and -419~+92 bp, with two predicted TFAP2A binding sites in the -419~+92 bp region. Further studies demonstrated that varying concentrations of TFAP2A significantly reduced Ydsphk1 promoter activity. These findings underscore the pivotal role of Ydsphk1 in regulating immune responses in yellow drum, particularly through its impact on key immune-related genes and pathways such as NF-κB signaling and ferroptosis. The identification of Ydsphk1 as a mediator of immune regulation provides valuable insights into the molecular mechanisms of immune defense and highlights its potential as a target for enhancing pathogen resistance in aquaculture practices. This study lays a strong foundation for future research aimed at developing innovative strategies for disease management in aquaculture species.
Collapse
Affiliation(s)
- Yu Cui
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China; (Y.C.); (S.L.); (B.W.); (Q.L.)
| | - Shuai Luo
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China; (Y.C.); (S.L.); (B.W.); (Q.L.)
| | - Baolan Wu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China; (Y.C.); (S.L.); (B.W.); (Q.L.)
| | - Qiaoying Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China; (Y.C.); (S.L.); (B.W.); (Q.L.)
| | - Fang Han
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China; (Y.C.); (S.L.); (B.W.); (Q.L.)
| | - Zhiyong Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China; (Y.C.); (S.L.); (B.W.); (Q.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
17
|
Richards A, Khalil A, Friesen M, Whitfield TW, Gao X, Lungjangwa T, Kamm R, Wan Z, Gehrke L, Mooney D, Jaenisch R. SARS-CoV-2 infection of human pluripotent stem cell-derived vascular cells reveals smooth muscle cells as key mediators of vascular pathology during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.06.552160. [PMID: 37609322 PMCID: PMC10441287 DOI: 10.1101/2023.08.06.552160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Although respiratory symptoms are the most prevalent disease manifestation of infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), nearly 20% of hospitalized patients are at risk for thromboembolic events. This prothrombotic state is considered a key factor in the increased risk of stroke, which is observed clinically during both acute infection and long after symptoms clear. Here we develop a model of SARS-CoV-2 infection using human-induced pluripotent stem cell-derived endothelial cells (ECs), pericytes (PCs), and smooth muscle cells (SMCs) to recapitulate the vascular pathology associated with SARS-CoV-2 exposure. Our results demonstrate that perivascular cells, particularly SMCs, are a susceptible vascular target for SARS-CoV-2 infection. Utilizing RNA sequencing, we characterize the transcriptomic changes accompanying SARS-CoV-2 infection of SMCs, PCs, and ECs. We observe that infected SMCs shift to a pro-inflammatory state and increase the expression of key mediators of the coagulation cascade. Further, we show human ECs exposed to the secretome of infected SMCs produce hemostatic factors that contribute to vascular dysfunction, despite not being susceptible to direct infection. The findings here recapitulate observations from patient sera in human COVID-19 patients and provide mechanistic insight into the unique vascular implications of SARS-CoV-2 infection at a cellular level.
Collapse
|
18
|
Lima V, Morais STB, Ferreira VG, Almeida MB, Silva MPB, de A. Lopes T, de Oliveira JM, Raimundo JRS, Furtado DZS, Fonseca FLA, Oliveira RV, Cardoso DR, Carrilho E, Assunção NA. Multiplatform Metabolomics: Enhancing the Severity Risk Prognosis of SARS-CoV-2 Infection. ACS OMEGA 2024; 9:45746-45758. [PMID: 39583673 PMCID: PMC11579725 DOI: 10.1021/acsomega.4c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024]
Abstract
Concerns about the SARS-CoV-2 outbreak (COVID-19) continue to persist even years later, with the emergence of new variants and the risk of disease severity. Common clinical symptoms, like cough, fever, and respiratory symptoms, characterize the noncritical patients, classifying them from mild to moderate. In a more severe and complex scenario, the virus infection can affect vital organs, resulting, for instance, in pneumonia and impaired kidney and heart function. However, it is well-known that subclinical symptoms at a metabolic level can be observed previously but require a proper diagnosis because viral replication on the host leaves a track with a different profile depending on the severity of the illness. Metabolomic profiles of mild, moderate, and severe COVID-19 patients were obtained by multiple platforms (LC-HRMS and MALDI-MS), increasing the chance to elucidate a prognosis for severity risk. A strong link was discovered between phenylalanine metabolism and increased COVID-19 severity symptoms, a pathway linked to cardiac and neurological consequences. Glycerophospholipids and sphingolipid metabolisms were also dysregulated linearly with the increasing symptom severity, which can be related to virus proliferation, immune system avoidance, and apoptosis escaping. Our data, endorsed by other literature, strengthens the notion that these pathways might play a vital role in a patient's prognosis.
Collapse
Affiliation(s)
- Vinicius
S. Lima
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Sinara T. B. Morais
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
| | - Vinicius G. Ferreira
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas 13083-861, Brazil
| | - Mariana B. Almeida
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas 13083-861, Brazil
| | - Manuel Pedro Barros Silva
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Thais de A. Lopes
- Departamento
de Química, Universidade Federal
de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Juliana M. de Oliveira
- Departamento
de Química, Universidade Federal
de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | | | - Danielle Z. S. Furtado
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Fernando L. A. Fonseca
- Faculdade
de Medicina do ABC, Santo André, São Paulo 09060-870, Brazil
- Departamento
de Química, Universidade Federal
de São Paulo, São
Paulo 05508-070, Brazil
| | - Regina V. Oliveira
- Departamento
de Química, Universidade Federal
de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Daniel R. Cardoso
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
| | - Emanuel Carrilho
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas 13083-861, Brazil
| | - Nilson A. Assunção
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
- Departamento
de Química, Universidade Federal
de São Paulo, São
Paulo 05508-070, Brazil
| |
Collapse
|
19
|
Wang T, Tian T, Zhu Z, Fang S, Zhang L, Peng X, Shi R, Li Y, Wu J, Ma Y. Gardenia jasminoides Ellis. Polysaccharides Alleviated Cholestatic Liver Injury by Increasing the Production of Butyric Acid and FXR Activation. Phytother Res 2024; 38:5363-5375. [PMID: 39237123 DOI: 10.1002/ptr.8326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/21/2024] [Accepted: 08/17/2024] [Indexed: 09/07/2024]
Abstract
Gardenia jasminoides Ellis. polysaccharide (GPS) can protect against cholestatic liver injury (CLI) by regulating nuclear farnesoid X receptor (FXR).However, the mechanism via which GPS mediates the FXR pathway remains unclear. The aim of this study was to investigate the mechanism. Firstly, an alpha-naphthylisothiocyanate-induced cholestatic mouse model was administered with GPS to evaluate its hepatoprotective effects. The metabolic pathways influenced by GPS in cholestatic mice were detected by serum metabolomics. The effect of GPS on bile acid (BA) homeostasis, FXR expression, and liver inflammation were investigated. Second, the intestinal bacteria metabolites affected by GPS in vivo and in vitro were determined. The activation of FXR by sodium butyrate (NaB) was measured. Finally, the effects of NaB on cholestatic mice were demonstrated. The main pathways influenced by GPS involved BA biosynthesis. GPS upregulated hepatic FXR expression, improved BA homeostasis, reduced F4/80+ and Ly6G+ positive areas in the liver, and inhibited liver inflammation in cholestatic mice. Butyric acid was the most notable intestinal bacterial metabolite following GPS intervention. NaB activated the transcriptional activity of FXR in vitro, upregulated hepatic FXR and its downstream efflux transporter expression, and ameliorated disordered BA homeostasis in CLI mice. NaB inhibited the toll-like receptor 4/nuclear factor (TLR4/NF-κB) pathway and reduced inflammation and CLI in mice. An FXR antagonist suppressed the effects. In conclusion, GPS increased butyric acid production, which can activate hepatic FXR, reverse BA homeostasis disorder, and inhibit the TLR4/NF-κB inflammatory pathway, exerting protective effects against CLI.
Collapse
Affiliation(s)
- Tianming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian Tian
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenyun Zhu
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Su Fang
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lincong Zhang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaotian Peng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Shi
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiasheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Wang D, Xu R, Wang Z. Protective Role of Sphingosine-1-Phosphate During Radiation-Induced Testicular Injury. Antioxidants (Basel) 2024; 13:1322. [PMID: 39594464 PMCID: PMC11591009 DOI: 10.3390/antiox13111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
The impact of ionizing radiation on the male reproductive system is gaining increasing attention, particularly when it comes to testicular damage, which may result in decreased sperm quality and hormonal imbalances. Finding effective protective measures to mitigate testicular damage caused by radiation has become a focal point in the biomedical field. S1P, an essential biological signaling molecule, has garnered significant interest due to its multiple roles in regulating cellular functions and its protective effects against radiation-induced testicular injury. S1P not only effectively reduces the generation of ROS induced by radiation but also alleviates oxidative stress by enhancing the activity of antioxidant enzymes. Furthermore, S1P inhibits radiation-induced cell apoptosis by regulating the expression of anti-apoptotic and pro-apoptotic proteins. Additionally, S1P alleviates radiation-induced inflammation by inhibiting the production of inflammatory factors, thereby further protecting testicular tissue. In summary, S1P effectively reduces radiation-induced testicular damage through multiple mechanisms, offering a promising therapeutic approach to safeguard male reproductive health. Future research should explore the specific mechanisms of action and clinical application potential of S1P, aiming to contribute significantly to the prevention and treatment of radiation damage.
Collapse
Affiliation(s)
- Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Renfeng Xu
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China;
| | - Zhengchao Wang
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China;
| |
Collapse
|
21
|
Fu F, Li W, Zheng X, Wu Y, Du D, Han C. Role of Sphingosine-1-Phosphate Signaling Pathway in Pancreatic Diseases. Int J Mol Sci 2024; 25:11474. [PMID: 39519028 PMCID: PMC11545938 DOI: 10.3390/ijms252111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Sphingosine-1-phosphate (S1P) is a sphingolipid metabolic product produced via the phosphorylation of sphingosine by sphingosine kinases (SPHKs), serving as a powerful modulator of various cellular processes through its interaction with S1P receptors (S1PRs). Currently, this incompletely understood mechanism in pancreatic diseases including pancreatitis and pancreatic cancer, largely limits therapeutic options for these disorders. Recent evidence indicates that S1P significantly contributes to pancreatic diseases by modulating inflammation, promoting pyroptosis in pancreatic acinar cells, regulating the activation of pancreatic stellate cells, and affecting organelle functions in pancreatic cancer cells. Nevertheless, no review has encapsulated these advancements. Thus, this review compiles information about the involvement of S1P signaling in exocrine pancreatic disorders, including acute pancreatitis, chronic pancreatitis, and pancreatic cancer, as well as prospective treatment strategies to target S1P signaling for these conditions. The insights presented here possess the potential to offer valuable guidance for the implementation of therapies targeting S1P signaling in various pancreatic diseases.
Collapse
Affiliation(s)
- Fei Fu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Wanmeng Li
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Xiaoyin Zheng
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Dan Du
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Chenxia Han
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
22
|
Liu PY, Liaw J, Soutter F, Ortiz JJ, Tomley FM, Werling D, Gundogdu O, Blake DP, Xia D. Multi-omics analysis reveals regime shifts in the gastrointestinal ecosystem in chickens following anticoccidial vaccination and Eimeria tenella challenge. mSystems 2024; 9:e0094724. [PMID: 39287379 PMCID: PMC11494932 DOI: 10.1128/msystems.00947-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Coccidiosis, caused by Eimeria parasites, significantly impacts poultry farm economics and animal welfare. Beyond its direct impact on health, Eimeria infection disrupts enteric microbial populations leading to dysbiosis and increases vulnerability to secondary diseases such as necrotic enteritis, caused by Clostridium perfringens. The impact of Eimeria infection or anticoccidial vaccination on host gastrointestinal phenotypes and enteric microbiota remains understudied. In this study, the metabolomic profiles and microbiota composition of chicken caecal tissue and contents were evaluated concurrently during a controlled experimental vaccination and challenge trial. Cobb500 broilers were vaccinated with a Saccharomyces cerevisiae-vectored anticoccidial vaccine and challenged with 15,000 Eimeria tenella oocysts. Assessment of caecal pathology and quantification of parasite load revealed correlations with alterations to caecal microbiota and caecal metabolome linked to infection and vaccination status. Infection heightened microbiota richness with increases in potentially pathogenic species, while vaccination elevated beneficial Bifidobacterium. Using a multi-omics factor analysis, data on caecal microbiota and metabolome were integrated and distinct profiles for healthy, infected, and recovering chickens were identified. Healthy and recovering chickens exhibited higher vitamin B metabolism linked to short-chain fatty acid-producing bacteria, whereas essential amino acid and cell membrane lipid metabolisms were prominent in infected and vaccinated chickens. Notably, vaccinated chickens showed distinct metabolites related to the enrichment of sphingolipids, important components of nerve cells and cell membranes. Our integrated multi-omics model revealed latent biomarkers indicative of vaccination and infection status, offering potential tools for diagnosing infection, monitoring vaccination efficacy, and guiding the development of novel treatments or controls.IMPORTANCEAdvances in anticoccidial vaccines have garnered significant attention in poultry health management. However, the intricacies of vaccine-induced alterations in the chicken gut microbiome and its subsequent impact on host metabolism remain inadequately explored. This study delves into the metabolic and microbiotic shifts in chickens post-vaccination, employing a multi-omics integration analysis. Our findings highlight a notable synergy between the microbiome composition and host-microbe interacted metabolic pathways in vaccinated chickens, differentiating them from infected or non-vaccinated cohorts. These insights pave the way for more targeted and efficient approaches in poultry disease control, enhancing both the efficacy of vaccines and the overall health of poultry populations.
Collapse
Affiliation(s)
- Po-Yu Liu
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Janie Liaw
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - José Jaramillo Ortiz
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, London, United Kingdom
| | - Fiona M. Tomley
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Dirk Werling
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, London, United Kingdom
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Damer P. Blake
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, London, United Kingdom
| | - Dong Xia
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
23
|
Dhanabalan AK, Devadasan V, Haribabu J, Krishnasamy G. Machine learning models to identify lead compound and substitution optimization to have derived energetics and conformational stability through docking and MD simulations for sphingosine kinase 1. Mol Divers 2024:10.1007/s11030-024-10997-4. [PMID: 39417979 DOI: 10.1007/s11030-024-10997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Sphingosine kinases (SphKs) are a group of important enzymes that circulate at low micromolar concentrations in mammals and have received considerable attention due to the roles they play in a broad array of biological processes including apoptosis, mutagenesis, lymphocyte migration, radio- and chemo-sensitization, and angiogenesis. In the present study, we constructed three classification models by four machine learning (ML) algorithms including naive bayes (NB), support vector machine (SVM), logistic regression, and random forest from 395 compounds. The generated ML models were validated by fivefold cross validation. Five different scaffold hit fragments resulted from SVM model-based virtual screening and docking results indicate that all the five fragments exhibit common hydrogen bond interaction a catalytic residue of SphK1. Further, molecular dynamics (MD) simulations and binding free energy calculation had been carried out with the identified five fragment leads and three cocrystal inhibitors. The best 15 fragments were selected. Molecular dynamics (MD) simulations showed that among these compounds, 7 compounds have favorable binding energy compared with cocrystal inhibitors. Hence, the study showed that the present lead fragments could act as potential inhibitors against therapeutic target of cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
- Anantha Krishnan Dhanabalan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Velmurugan Devadasan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502, Copiapó, Chile
- Chennai Institute of Technology (CIT), Chennai, Tamil Nadu, 600069, India
| | - Gunasekaran Krishnasamy
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600025, India.
| |
Collapse
|
24
|
Yuan N, Su Y, Gao Y, Yang B, Zhang T, Wang Q, Zhang D, Shi L, Jiao A, Lei L, Sun L, Zhang B. Med1 controls thymic T-cell migration into lymph node through enhancer-based Foxo1-Klf2 transcription program. Eur J Immunol 2024; 54:e2350887. [PMID: 39072704 DOI: 10.1002/eji.202350887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
The migration is the key step for thymic T cells to enter circulation and then lymph nodes (LNs), essential for future immune surveillance. Although promoter-based transcriptional regulation through Foxo1, Klf2, Ccr7, and Sell regulates T-cell migration, it remains largely unexplored whether and how enhancers are involved in this process. Here we found that the conditional deletion of Med1, a component of the mediator complex and a mediator between enhancers and RNA polymerase II, caused a reduction of both CD4+ and CD8+ T cells in LNs, as well as a decrease of CD8+ T cells in the spleen. Importantly, Med1 deletion hindered the migration of thymic αβT cells into the circulation and then into LNs, accompanied by the downregulation of KLF2, CCR7, and CD62L. Mechanistically, Med1 promotes Klf2 transcription by facilitating Foxo1 binding to the Klf2 enhancer. Furthermore, forced expression of Klf2 rescued Ccr7 and Sell expression, as well as αβT-cell migration into LNs. Collectively, our study unveils a crucial role for Med1 in regulating the enhancer-based Foxo1-Klf2 transcriptional program and the migration of αβT cells into LNs, providing valuable insights into the molecular mechanisms underlying T-cell migration.
Collapse
Affiliation(s)
- Ning Yuan
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Yang Gao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Biao Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Tianzhe Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Basic and Translational Research Laboratory of Immune Related Diseases, Xi'an, Shaanxi Province, China
| | - Qianhao Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Basic and Translational Research Laboratory of Immune Related Diseases, Xi'an, Shaanxi Province, China
| | - Dan Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Basic and Translational Research Laboratory of Immune Related Diseases, Xi'an, Shaanxi Province, China
| | - Lin Shi
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Basic and Translational Research Laboratory of Immune Related Diseases, Xi'an, Shaanxi Province, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Basic and Translational Research Laboratory of Immune Related Diseases, Xi'an, Shaanxi Province, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Basic and Translational Research Laboratory of Immune Related Diseases, Xi'an, Shaanxi Province, China
| | - Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Basic and Translational Research Laboratory of Immune Related Diseases, Xi'an, Shaanxi Province, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Basic and Translational Research Laboratory of Immune Related Diseases, Xi'an, Shaanxi Province, China
| |
Collapse
|
25
|
Dobersalske C, Rauschenbach L, Hua Y, Berliner C, Steinbach A, Grüneboom A, Kokkaliaris KD, Heiland DH, Berger P, Langer S, Tan CL, Stenzel M, Landolsi S, Weber F, Darkwah Oppong M, Werner RA, Gull H, Schröder T, Linsenmann T, Buck AK, Gunzer M, Stuschke M, Keyvani K, Forsting M, Glas M, Kipnis J, Steindler DA, Reinhardt HC, Green EW, Platten M, Tasdogan A, Herrmann K, Rambow F, Cima I, Sure U, Scheffler B. Cranioencephalic functional lymphoid units in glioblastoma. Nat Med 2024; 30:2947-2956. [PMID: 39085419 PMCID: PMC11485206 DOI: 10.1038/s41591-024-03152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The ecosystem of brain tumors is considered immunosuppressed, but our current knowledge may be incomplete. Here we analyzed clinical cell and tissue specimens derived from patients presenting with glioblastoma or nonmalignant intracranial disease to report that the cranial bone (CB) marrow, in juxtaposition to treatment-naive glioblastoma tumors, harbors active lymphoid populations at the time of initial diagnosis. Clinical and anatomical imaging, single-cell molecular and immune cell profiling and quantification of tumor reactivity identified CD8+ T cell clonotypes in the CB that were also found in the tumor. These were characterized by acute and durable antitumor response rooted in the entire T cell developmental spectrum. In contrast to distal bone marrow, the CB niche proximal to the tumor showed increased frequencies of tumor-reactive CD8+ effector types expressing the lymphoid egress marker S1PR1. In line with this, cranial enhancement of CXCR4 radiolabel may serve as a surrogate marker indicating focal association with improved progression-free survival. The data of this study advocate preservation and further exploitation of these cranioencephalic units for the clinical care of glioblastoma.
Collapse
Affiliation(s)
- Celia Dobersalske
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
| | - Laurèl Rauschenbach
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Yichao Hua
- Department of Applied Computational Cancer Research, IKIM, University Hospital Essen, Essen, Germany
| | - Christoph Berliner
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Anita Steinbach
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Konstantinos D Kokkaliaris
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- DKTK, German Cancer Consortium, partner site Frankfurt/Mainz, Quantitative Spatial Cancer Biology Laboratory, University Hospital Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Dieter H Heiland
- DKTK, German Cancer Consortium, partner site Freiburg, Translational Neurosurgery, Microenvironment and Immunology Research Laboratory, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, University Clinic Erlangen, Erlangen, Germany
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pia Berger
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
| | - Sarah Langer
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
| | - Chin L Tan
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- DKTK, German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
| | - Martin Stenzel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Somaya Landolsi
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- DKTK, German Cancer Consortium, partner site Frankfurt/Mainz, Quantitative Spatial Cancer Biology Laboratory, University Hospital Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Flora Weber
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Marvin Darkwah Oppong
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- University Hospital Frankfurt, Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Frankfurt am Main, Germany
- The Russell H. Morgan Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanah Gull
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Thomas Schröder
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Thomas Linsenmann
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Matthias Gunzer
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Radiation Oncology, University Hospital Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University Hospital Essen, Essen, Germany
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Martin Glas
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
- Department of Neurology, Division of Neurooncology, University Hospital Essen, Essen, Germany
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Dennis A Steindler
- Steindler Consulting, Boston, MA, USA
- The Eshelman Institute for Innovation, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hans Christian Reinhardt
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Essen, Germany
| | - Edward W Green
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- DKTK, German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
| | - Michael Platten
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- DKTK, German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases, Heidelberg, Germany
- Helmholtz Institute for Translational Oncology, Mainz, Germany
- German Cancer Research Center-Hector Cancer Institute at the Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alpaslan Tasdogan
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Essen, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Florian Rambow
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Department of Applied Computational Cancer Research, IKIM, University Hospital Essen, Essen, Germany
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Essen, Germany
| | - Igor Cima
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
| | - Ulrich Sure
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Björn Scheffler
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany.
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany.
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
26
|
Singh SK, Weigel C, Brown RDR, Green CD, Tuck C, Salvemini D, Spiegel S. FTY720/Fingolimod mitigates paclitaxel-induced Sparcl1-driven neuropathic pain and breast cancer progression. FASEB J 2024; 38:e23872. [PMID: 39126272 DOI: 10.1096/fj.202401277r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Paclitaxel is among the most active chemotherapy drugs for the aggressive triple negative breast cancer (TNBC). Unfortunately, it often induces painful peripheral neuropathy (CIPN), a major debilitating side effect. Here we demonstrate that in naive and breast tumor-bearing immunocompetent mice, a clinically relevant dose of FTY720/Fingolimod that targets sphingosine-1-phosphate receptor 1 (S1PR1), alleviated paclitaxel-induced neuropathic pain. FTY720 also significantly attenuated paclitaxel-stimulated glial fibrillary acidic protein (GFAP), a marker for activated astrocytes, and expression of the astrocyte-secreted synaptogenic protein Sparcl1/Hevin, a key regulator of synapse formation. Notably, the formation of excitatory synapses containing VGluT2 in the spinal cord dorsal horn induced by paclitaxel was also inhibited by FTY720 treatment, supporting the involvement of astrocytes and Sparcl1 in CIPN. Furthermore, in this TNBC mouse model that mimics human breast cancer, FTY720 administration also enhanced the anti-tumor effects of paclitaxel, leading to reduced tumor progression and lung metastasis. Taken together, our findings suggest that targeting the S1P/S1PR1 axis with FTY720 is a multipronged approach that holds promise as a therapeutic strategy for alleviating both CIPN and enhancing the efficacy of chemotherapy in TNBC treatment.
Collapse
Affiliation(s)
- Sandeep K Singh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Christopher D Green
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Connor Tuck
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University, St. Louis, Missouri, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
27
|
Rahman ML, Shu XO, Jones DP, Hu W, Ji BT, Blechter B, Wong JYY, Cai Q, Yang G, Gao YT, Zheng W, Rothman N, Walker D, Lan Q. A nested case-control study of untargeted plasma metabolomics and lung cancer among never-smoking women within the prospective Shanghai Women's Health Study. Int J Cancer 2024; 155:508-518. [PMID: 38651675 PMCID: PMC11284831 DOI: 10.1002/ijc.34929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/27/2024] [Accepted: 02/12/2024] [Indexed: 04/25/2024]
Abstract
The etiology of lung cancer in never-smokers remains elusive, despite 15% of lung cancer cases in men and 53% in women worldwide being unrelated to smoking. Here, we aimed to enhance our understanding of lung cancer pathogenesis among never-smokers using untargeted metabolomics. This nested case-control study included 395 never-smoking women who developed lung cancer and 395 matched never-smoking cancer-free women from the prospective Shanghai Women's Health Study with 15,353 metabolic features quantified in pre-diagnostic plasma using liquid chromatography high-resolution mass spectrometry. Recognizing that metabolites often correlate and seldom act independently in biological processes, we utilized a weighted correlation network analysis to agnostically construct 28 network modules of correlated metabolites. Using conditional logistic regression models, we assessed the associations for both metabolic network modules and individual metabolic features with lung cancer, accounting for multiple testing using a false discovery rate (FDR) < 0.20. We identified a network module of 121 features inversely associated with all lung cancer (p = .001, FDR = 0.028) and lung adenocarcinoma (p = .002, FDR = 0.056), where lyso-glycerophospholipids played a key role driving these associations. Another module of 440 features was inversely associated with lung adenocarcinoma (p = .014, FDR = 0.196). Individual metabolites within these network modules were enriched in biological pathways linked to oxidative stress, and energy metabolism. These pathways have been implicated in previous metabolomics studies involving populations exposed to known lung cancer risk factors such as traffic-related air pollution and polycyclic aromatic hydrocarbons. Our results suggest that untargeted plasma metabolomics could provide novel insights into the etiology and risk factors of lung cancer among never-smokers.
Collapse
Affiliation(s)
- Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Qiuyin Cai
- Division of Epidemiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Gong Yang
- Division of Epidemiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Douglas Walker
- Division of Environmental Health, School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Uranbileg B, Isago H, Nakayama H, Jubishi D, Okamoto K, Sakai E, Kubota M, Tsutsumi T, Moriya K, Kurano M. Comprehensive metabolic modulations of sphingolipids are promising severity indicators in COVID-19. FASEB J 2024; 38:e23827. [PMID: 39012295 DOI: 10.1096/fj.202401099r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has had a significant worldwide impact, affecting millions of people. COVID-19 is characterized by a heterogenous clinical phenotype, potentially involving hyperinflammation and prolonged tissue damage, although the exact underlying mechanisms are yet to be fully understood. Sphingolipid metabolites, which govern cell survival and proliferation, have emerged as key players in inflammatory signaling and cytokine responses. Given the complex metabolic pathway of sphingolipids, this study aimed to understand their potential role in the pathogenesis of COVID-19. We conducted a comprehensive examination of sphingolipid modulations across groups classified based on disease severity, incorporating a time-course in serum and urine samples. Several sphingolipids, including sphingosine, lactosylceramide, and hexosylceramide, emerged as promising indicators of COVID-19 severity, as validated by correlation analyses conducted on both serum and urine samples. Other sphingolipids, such as sphingosine 1-phosphate, ceramides, and deoxy-dihydroceramides, decreased in both COVID-19 patients and individuals with non-COVID infectious diseases. This suggests that these sphingolipids are not specifically associated with COVID-19 but rather with pathological conditions caused by infectious diseases. Our analysis of urine samples revealed elevated levels of various sphingolipids, with changes dependent on disease severity, potentially highlighting the acute kidney injury associated with COVID-19. This study illuminates the intricate relationship between disturbed sphingolipid metabolism, COVID-19 severity, and clinical factors. These findings provide valuable insights into the broader landscape of inflammatory diseases.
Collapse
Affiliation(s)
- Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideaki Isago
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Nakayama
- Laboratory of Biochemistry, Faculty of Health Care and Nursing, Juntendo University, Chiba, Japan
- Institute for Environmental and Gender-specific Medicine, Graduate School of Medicine, Juntendo University, Chiba, Japan
| | - Daisuke Jubishi
- Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koh Okamoto
- Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eri Sakai
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Nihon Waters K.K., Tokyo, Japan
| | | | - Takeya Tsutsumi
- Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyoji Moriya
- Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Chen J, Wang Y, Chen C, Song X, Shen X, Cao D, Zhao Z. Integrated network pharmacology and metabolomics reveal vascular protective effects of Ilex pubescens on thromboangiitis obliterans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155720. [PMID: 38763010 DOI: 10.1016/j.phymed.2024.155720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Ilex pubescens Hook. et Arn (IP), traditionally known for its properties of promoting blood circulation, swelling and pain relief, heat clearing, and detoxification, has been used in the treatment of thromboangiitis obliterans (TAO). Despite its traditional applications, the specific mechanisms by which IP exerts its therapeutic effects on TAO remain unclear. AIM OF THE STUDY This study aims to uncover the underlying mechanisms in the therapeutic effects of IP on TAO, employing network pharmacology and metabolomic approaches. METHODS In this study, a rat TAO model was established by injecting sodium laurate through the femoral artery, followed by the oral administration of IP for 7 days. Plasma coagulation parameters were measured to assess the therapeutic effects of IP. The potential influence on the femoral artery and gastrocnemius muscle was histopathologically evaluated. Network pharmacology was employed to predict relevant targets and model pathways for TAO. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) was used for the metabolic profile analysis of rat plasma. Immunohistochemistry (IHC) was used to verify the mechanisms by which IP promotes blood circulation in TAO. RESULTS The study revealed that IP improved blood biochemical function in TAO and played a significant role in vascular protection and maintaining normal blood vessels and gastrocnemius morphologies. Network pharmacology showed that IP compounds play a therapeutic role in modulating lipids and atherosclerosis. Metabolomic analysis revealed that the pathways involved in sphingolipid metabolism and steroid biosynthesis were significantly disrupted. The joint analysis showed a strong correlation between lysophosphatidylcholine and IP components, including triterpenoid and iridoid components, which support the curative action of IP through the modulation of sphingolipid metabolism. Furthermore, decreased expression levels of SPHK1/S1PR1, TNF-α, IL-1β, and IL-6 were observed in the IP-treated group, suggesting that IP exerts a protective effect on the vasculature primarily by regulating of the SPHK1/S1PR1 signaling pathway. CONCLUSION In this study, we found that IP protects the vasculature against injury and treats TAO by regulating the steady-state disturbance of the sphingolipid pathway. These findings suggest that IP promotes vasculature by modulating sphingolipid metabolism and SPHK1/S1PR1 signaling pathway and reduce levels of inflammatory factors, offering new insights into its therapeutic potential.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuanyuan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Caixin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xianshu Song
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiuting Shen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Di Cao
- Wannan Medical College, Wuhu 241002, China
| | - Zhongxiang Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
30
|
AlMalki RH, Al-Nasrallah HK, Aldossry A, Barnawi R, Al-Khaldi S, Almozyan S, Al-Ansari MM, Ghebeh H, Abdel Rahman AM, Al-Alwan M. Comparative Analysis of Breast Cancer Metabolomes Highlights Fascin's Central Role in Regulating Key Pathways Related to Disease Progression. Int J Mol Sci 2024; 25:7891. [PMID: 39063133 PMCID: PMC11277536 DOI: 10.3390/ijms25147891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Omics technologies provide useful tools for the identification of novel biomarkers in many diseases, including breast cancer, which is the most diagnosed cancer in women worldwide. We and others have reported a central role for the actin-bundling protein (fascin) in regulating breast cancer disease progression at different levels. However, whether fascin expression promotes metabolic molecules that could predict disease progression has not been fully elucidated. Here, fascin expression was manipulated via knockdown (fascinKD+NORF) and rescue (fascinKD+FORF) in the naturally fascin-positive (fascinpos+NORF) MDA-MB-231 breast cancer cells. Whether fascin dysregulates metabolic profiles that are associated with disease progression was assessed using untargeted metabolomics analyses via liquid chromatography-mass spectrometry. Overall, 12,226 metabolic features were detected in the tested cell pellets. Fascinpos+NORF cell pellets showed 2510 and 3804 significantly dysregulated metabolites compared to their fascinKD+NORF counterparts. Fascin rescue (fascinKD+FORF) revealed 2710 significantly dysregulated cellular metabolites compared to fascinKD+NORF counterparts. A total of 101 overlapped cellular metabolites between fascinKD+FORF and fascinpos+NORF were significantly dysregulated in the fascinKD+NORF cells. Analysis of the significantly dysregulated metabolites by fascin expression revealed their involvement in the metabolism of sphingolipid, phenylalanine, tyrosine, and tryptophan biosynthesis, and pantothenate and CoA biosynthesis, which are critical pathways for breast cancer progression. Our findings of fascin-mediated alteration of metabolic pathways could be used as putative poor prognostic biomarkers and highlight other underlying mechanisms of fascin contribution to breast cancer progression.
Collapse
Affiliation(s)
- Reem H. AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Huda K. Al-Nasrallah
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (H.K.A.-N.); (A.A.); (R.B.); (S.A.-K.); (S.A.); (H.G.)
| | - Alanoud Aldossry
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (H.K.A.-N.); (A.A.); (R.B.); (S.A.-K.); (S.A.); (H.G.)
| | - Rayanah Barnawi
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (H.K.A.-N.); (A.A.); (R.B.); (S.A.-K.); (S.A.); (H.G.)
| | - Samiyah Al-Khaldi
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (H.K.A.-N.); (A.A.); (R.B.); (S.A.-K.); (S.A.); (H.G.)
- Applied Genomics Technologies Institute, Health Sector, King Abdulaziz City for Sciences and Technology, Riyadh 11442, Saudi Arabia
| | - Sheema Almozyan
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (H.K.A.-N.); (A.A.); (R.B.); (S.A.-K.); (S.A.); (H.G.)
| | - Mysoon M. Al-Ansari
- Department of Molecular Oncology, Cancer Biology & Experimental Therapeutics Section, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hazem Ghebeh
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (H.K.A.-N.); (A.A.); (R.B.); (S.A.-K.); (S.A.); (H.G.)
- College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
- College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | - Monther Al-Alwan
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (H.K.A.-N.); (A.A.); (R.B.); (S.A.-K.); (S.A.); (H.G.)
- College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
31
|
Müller T, Krieg N, Lange-Polovinkin AI, Wissuwa B, Gräler MH, Dennhardt S, Coldewey SM. Deletion of Sphingosine Kinase 2 Attenuates Acute Kidney Injury in Mice with Hemolytic-Uremic Syndrome. Int J Mol Sci 2024; 25:7683. [PMID: 39062926 PMCID: PMC11277509 DOI: 10.3390/ijms25147683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Typical hemolytic uremic syndrome (HUS) can occur as a severe systemic complication of infections with Shiga toxin (Stx)-producing Escherichia coli. Its pathology can be induced by Stx types, resulting in toxin-mediated damage to renal barriers, inflammation, and the development of acute kidney injury (AKI). Two sphingosine kinase (SphK) isozymes, SphK1 and SphK2, have been shown to be involved in barrier maintenance and renal inflammatory diseases. Therefore, we sought to determine their role in the pathogenesis of HUS. Experimental HUS was induced by the repeated administration of Stx2 in wild-type (WT) and SphK1 (SphK1-/-) or SphK2 (SphK2-/-) null mutant mice. Disease severity was evaluated by assessing clinical symptoms, renal injury and dysfunction, inflammatory status and sphingolipid levels on day 5 of HUS development. Renal inflammation and injury were found to be attenuated in the SphK2-/- mice, but exacerbated in the SphK1-/- mice compared to the WT mice. The divergent outcome appeared to be associated with oppositely altered sphingolipid levels. This study represents the first description of the distinct roles of SphK1-/- and SphK2-/- in the pathogenesis of HUS. The identification of sphingolipid metabolism as a potential target for HUS therapy represents a significant advance in the field of HUS research.
Collapse
Affiliation(s)
- Tina Müller
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- ZIK Septomics Research Center, Jena University Hospital, 07743 Jena, Germany
| | - Nadine Krieg
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- ZIK Septomics Research Center, Jena University Hospital, 07743 Jena, Germany
| | - Antonia I. Lange-Polovinkin
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- ZIK Septomics Research Center, Jena University Hospital, 07743 Jena, Germany
| | - Bianka Wissuwa
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- ZIK Septomics Research Center, Jena University Hospital, 07743 Jena, Germany
| | - Markus H. Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- Center for Molecular Biomedicine (CMB) and Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07743 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07743 Jena, Germany
| | - Sophie Dennhardt
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- ZIK Septomics Research Center, Jena University Hospital, 07743 Jena, Germany
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- ZIK Septomics Research Center, Jena University Hospital, 07743 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07743 Jena, Germany
| |
Collapse
|
32
|
Qiu L, Jiang H, Zhou C, Tangadanchu VKR, Wang J, Huang T, Gropler RJ, Perlmutter JS, Benzinger TLS, Tu Z. Design, synthesis, and biological evaluation of multiple F-18 S1PR1 radiotracers in rodent and nonhuman primate. Org Biomol Chem 2024; 22:5428-5453. [PMID: 38884683 PMCID: PMC11238945 DOI: 10.1039/d4ob00712c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Here we report our design and synthesis of 28 new fluorine-containing compounds as potential F-18 radiotracers for CNS imaging of sphingosine-1-phosphate receptor 1 (S1PR1), and determination of their in vitro binding potency and selectivity toward S1PR1 over other S1PR subtypes. Nine potent and selective compounds, 7c&d, 9a&c, 12b, 15b, and 18a-c with IC50 values ranging from 0.6-12.3 nM for S1PR1 and weak binding toward S1PR2, 3, 4, and 5, were further 18F-radiolabeled to produce [18F]7c&d, [18F]9a&c, [18F]12b, [18F]15b, and [18F]18a-c. Multi-step F-18 radiochemistry procedures were investigated for radiosynthesis of [18F]7c&d and [18F]9a&c, and the presumed intermediates were synthesized and authenticated by analytic HPLC. We then performed nonhuman primate (NHP) PET brain imaging studies for eight radiotracers: [18F]7c&d, [18F]9a, [18F]12b, [18F]15b, and [18F]18a-c. Three radiotracers, [18F]7c, [18F]7d, and [18F]15b, had high NHP brain uptake with standardized uptake values (SUVs) at 2 h post-injection of 2.42, 2.84, and 2.00, respectively, and good brain retention. Our ex vivo biodistribution study in rats confirmed [18F]7d had a high brain uptake with no in vivo defluorination. Radiometabolic analysis of [18F]7c and [18F]7d in rat plasma and brain samples found that [18F]7c has a more favorable metabolic profile than [18F]7d. However, the trend of increased brain uptake precludes [18F]7c as a suitable PET radiotracer for imaging S1PR1 in the brain. Further structural optmization is warranted to identify a highly S1PR1-specific radiotracer with rapid brain uptake kinetics.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | - Hao Jiang
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | - Charles Zhou
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | - Jinzhi Wang
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | - Tianyu Huang
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
- Department of Neurology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| |
Collapse
|
33
|
Akdeniz YS, Özkan S. New markers in chronic obstructive pulmonary disease. Adv Clin Chem 2024; 123:1-63. [PMID: 39181619 DOI: 10.1016/bs.acc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), a global healthcare and socioeconomic burden, is a multifaceted respiratory disorder that results in substantial decline in health status and life quality. Acute exacerbations of the disease contribute significantly to increased morbidity and mortality. Consequently, the identification of reliable and effective biomarkers for rapid diagnosis, prediction, and prognosis of exacerbations is imperative. In addition, biomarkers play a crucial role in monitoring responses to therapeutic interventions and exploring innovative treatment strategies. Although established markers such as CRP, fibrinogen and neutrophil count are routinely used, a universal marker is lacking. Fortunately, an increasing number of studies based on next generation analytics have explored potential biomarkers in COPD. Here we review those advances and the need for standardized validation studies in the appropriate clinical setting.
Collapse
Affiliation(s)
- Yonca Senem Akdeniz
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye.
| | - Seda Özkan
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye
| |
Collapse
|
34
|
Tang Z, Liang D, Deubler EL, Sarnat JA, Chow SS, Diver WR, Wang Y. Lung cancer metabolomics: a pooled analysis in the Cancer Prevention Studies. BMC Med 2024; 22:262. [PMID: 38915026 PMCID: PMC11197282 DOI: 10.1186/s12916-024-03473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND A better understanding of lung cancer etiology and the development of screening biomarkers have important implications for lung cancer prevention. METHODS We included 623 matched case-control pairs from the Cancer Prevention Study (CPS) cohorts. Pre-diagnosis blood samples were collected between 1998 and 2001 in the CPS-II Nutrition cohort and 2006 and 2013 in the CPS-3 cohort and were sent for metabolomics profiling simultaneously. Cancer-free controls at the time of case diagnosis were 1:1 matched to cases on date of birth, blood draw date, sex, and race/ethnicity. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression, controlling for confounders. The Benjamini-Hochberg method was used to correct for multiple comparisons. RESULTS Sphingomyelin (d18:0/22:0) (OR: 1.32; 95% CI: 1.15, 1.53, FDR = 0.15) and taurodeoxycholic acid 3-sulfate (OR: 1.33; 95% CI: 1.14, 1.55, FDR = 0.15) were positively associated with lung cancer risk. Participants diagnosed within 3 years of blood draw had a 55% and 48% higher risk of lung cancer per standard deviation increase in natural log-transformed sphingomyelin (d18:0/22:0) and taurodeoxycholic acid 3-sulfate level, while 26% and 28% higher risk for those diagnosed beyond 3 years, compared to matched controls. Lipid and amino acid metabolism accounted for 47% to 80% of lung cancer-associated metabolites at P < 0.05 across all participants and subgroups. Notably, ever-smokers exhibited a higher proportion of lung cancer-associated metabolites (P < 0.05) in xenobiotic- and lipid-associated pathways, whereas never-smokers showed a more pronounced involvement of amino acid- and lipid-associated metabolic pathways. CONCLUSIONS This is the largest prospective study examining untargeted metabolic profiles regarding lung cancer risk. Sphingomyelin (d18:0/22:0), a sphingolipid, and taurodeoxycholic acid 3-sulfate, a bile salt, may be risk factors and potential screening biomarkers for lung cancer. Lipid and amino acid metabolism may contribute significantly to lung cancer etiology which varied by smoking status.
Collapse
Affiliation(s)
- Ziyin Tang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Emily L Deubler
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Jeremy A Sarnat
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Sabrina S Chow
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - W Ryan Diver
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ying Wang
- Department of Population Science, American Cancer Society, Atlanta, GA, USA.
| |
Collapse
|
35
|
Reppe S, Gundersen S, Sandve GK, Wang Y, Andreassen OA, Medina-Gomez C, Rivadeneira F, Utheim TP, Hovig E, Gautvik KM. Identification of Transcripts with Shared Roles in the Pathogenesis of Postmenopausal Osteoporosis and Cardiovascular Disease. Int J Mol Sci 2024; 25:5554. [PMID: 38791593 PMCID: PMC11121938 DOI: 10.3390/ijms25105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Epidemiological evidence suggests existing comorbidity between postmenopausal osteoporosis (OP) and cardiovascular disease (CVD), but identification of possible shared genes is lacking. The skeletal global transcriptomes were analyzed in trans-iliac bone biopsies (n = 84) from clinically well-characterized postmenopausal women (50 to 86 years) without clinical CVD using microchips and RNA sequencing. One thousand transcripts highly correlated with areal bone mineral density (aBMD) were further analyzed using bioinformatics, and common genes overlapping with CVD and associated biological mechanisms, pathways and functions were identified. Fifty genes (45 mRNAs, 5 miRNAs) were discovered with established roles in oxidative stress, inflammatory response, endothelial function, fibrosis, dyslipidemia and osteoblastogenesis/calcification. These pleiotropic genes with possible CVD comorbidity functions were also present in transcriptomes of microvascular endothelial cells and cardiomyocytes and were differentially expressed between healthy and osteoporotic women with fragility fractures. The results were supported by a genetic pleiotropy-informed conditional False Discovery Rate approach identifying any overlap in single nucleotide polymorphisms (SNPs) within several genes encoding aBMD- and CVD-associated transcripts. The study provides transcriptional and genomic evidence for genes of importance for both BMD regulation and CVD risk in a large collection of postmenopausal bone biopsies. Most of the transcripts identified in the CVD risk categories have no previously recognized roles in OP pathogenesis and provide novel avenues for exploring the mechanistic basis for the biological association between CVD and OP.
Collapse
Affiliation(s)
- Sjur Reppe
- Department of Medical Biochemistry, Oslo University Hospital, 0450 Oslo, Norway
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, 0440 Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0424 Oslo, Norway
| | - Sveinung Gundersen
- Center for Bioinformatics, Department of Informatics, University of Oslo, 0313 Oslo, Norway
| | - Geir K. Sandve
- Department of Informatics, University of Oslo, 0373 Oslo, Norway; (G.K.S.)
| | - Yunpeng Wang
- NORMENT, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway; (Y.W.); (O.A.A.)
- Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ole A. Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway; (Y.W.); (O.A.A.)
- Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (C.M.-G.); (F.R.)
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (C.M.-G.); (F.R.)
| | - Tor P. Utheim
- Department of Medical Biochemistry, Oslo University Hospital, 0450 Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0424 Oslo, Norway
| | - Eivind Hovig
- Department of Informatics, University of Oslo, 0373 Oslo, Norway; (G.K.S.)
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Kaare M. Gautvik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, 0440 Oslo, Norway
| |
Collapse
|
36
|
Liu C, Liu K, Tao X, Li W, Zhao S, Dai Q, Yao H, Mu F, Chen S, Li J, Dong T, Duan J, Wei P, Gao F, Xi M. Pharmacodynamics and mechanism of Erigeron breviscapus granules in the treatment of ischemic stroke in mice by regulating sphingolipid metabolism based on metabolomics. J Pharm Biomed Anal 2024; 242:116058. [PMID: 38422673 DOI: 10.1016/j.jpba.2024.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
AIM Erigeron breviscapus (Vant.) Hand.-Mazz. (EB) granules is the extract preparation of EB, with clear curative effect and unclear mechanism. This study intends to systematically explore the specific mechanism of EB granules in the treatment of IS from the metabolic perspective. METHODS The model of transient middle cerebral artery occlusion (tMCAO) in mice was established by the suture-occluded method. The therapeutic effect of EB granules on tMCAO mice was evaluated by behavioral evaluation, brain water content determination, 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin-eosin (HE) staining, and levels of lactate dehydrogenase (LDH) and neuron specific enolase (NSE) in serum. In order to screen differential metabolites, non-targeted metabolomics technology was used to detect the metabolites in serum before and after administration. Univariate statistics, multivariate statistics and bioinformatics were used to analyze the changes of metabolites in serum of tMCAO mice. The possible related mechanism of EB granules in treating IS was screened by pathway enrichment analysis, and the preliminary verification was carried out at animal level by enzyme linked immunosorbent assay (ELISA) and western blot (WB). RESULTS EB granules could significantly improve behavior of tMCAO mice, reduce brain water content and cerebral infarction volume, improve morphology of brain tissue, reduce the levels of LDH and NSE in serum. A total of 232 differential metabolites were screened, which were mainly enriched in many biological processes such as sphingolipid metabolism. The differential metabolite S1P and its receptors S1PR1 and S1PR2 in sphingolipid metabolism were verified. The results showed that the level of S1P in brain tissue increased and the protein expression of S1PR1 decreased significantly after modeling, and reversed after administration, but there was no significant difference in the protein expression of S1PR2. CONCLUSION The therapeutic effects of EB granules may be related to affecting sphingolipid metabolism through regulating S1P/S1PR1.
Collapse
Affiliation(s)
- Chengzhao Liu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China; TANK Medicinal Biology Institute of Xi'an, Xi'an, Shaanxi 710032, China
| | - Kedi Liu
- TANK Medicinal Biology Institute of Xi'an, Xi'an, Shaanxi 710032, China
| | - Xingru Tao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Weihong Li
- TANK Medicinal Biology Institute of Xi'an, Xi'an, Shaanxi 710032, China; College of Life Sciences, Northwest University, Xi'an, Shaanxi 710127, China
| | - Shi Zhao
- TANK Medicinal Biology Institute of Xi'an, Xi'an, Shaanxi 710032, China
| | - Qi Dai
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China; TANK Medicinal Biology Institute of Xi'an, Xi'an, Shaanxi 710032, China
| | - Hong Yao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China; TANK Medicinal Biology Institute of Xi'an, Xi'an, Shaanxi 710032, China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Sha Chen
- YouYi Clinical Laboratories of Shaanxi, Xi'an, Shaanxi 710065, China
| | - Jing Li
- YouYi Clinical Laboratories of Shaanxi, Xi'an, Shaanxi 710065, China
| | - Taiwei Dong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Jialin Duan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peifeng Wei
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China; National Drug Clinical Trial Institute, The Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, China.
| | - Feng Gao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China.
| | - Miaomiao Xi
- TANK Medicinal Biology Institute of Xi'an, Xi'an, Shaanxi 710032, China; National Drug Clinical Trial Institute, The Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, China.
| |
Collapse
|
37
|
Demkova L, Bugajev V, Adamcova MK, Kuchar L, Grusanovic S, Alberich-Jorda M, Draber P, Halova I. Simultaneous deletion of ORMDL1 and ORMDL3 proteins disrupts immune cell homeostasis. Front Immunol 2024; 15:1376629. [PMID: 38715613 PMCID: PMC11074395 DOI: 10.3389/fimmu.2024.1376629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 06/04/2024] Open
Abstract
ORMDL3 is a prominent member of a family of highly conserved endoplasmic reticulum resident proteins, ORMs (ORM1 and ORM2) in yeast, dORMDL in Drosophila and ORMDLs (ORMDL1, ORMDL2, and ORMDL3) in mammals. ORMDL3 mediates feedback inhibition of de novo sphingolipid synthesis. Expression levels of ORMDL3 are associated with the development of inflammatory and autoimmune diseases including asthma, systemic lupus erythematosus, type 1 diabetes mellitus and others. It has been shown that simultaneous deletions of other ORMDL family members could potentiate ORMDL3-induced phenotypes. To understand the complex function of ORMDL proteins in immunity in vivo, we analyzed mice with single or double deletions of Ormdl genes. In contrast to other single and double knockouts, simultaneous deletion of ORMDL1 and ORMDL3 proteins disrupted blood homeostasis and reduced immune cell content in peripheral blood and spleens of mice. The reduced number of splenocytes was not caused by aberrant immune cell homing. A competitive bone marrow transplantation assay showed that the development of Ormdl1-/-/Ormdl3-/- B cells was dependent on lymphocyte intrinsic factors. Highly increased sphingolipid production was observed in the spleens and bone marrow of Ormdl1-/-/Ormdl3-/- mice. Slight, yet significant, increase in some sphingolipid species was also observed in the spleens of Ormdl3-/- mice and in the bone marrow of both, Ormdl1-/- and Ormdl3-/- single knockout mice. Taken together, our results demonstrate that the physiological expression of ORMDL proteins is critical for the proper development and circulation of lymphocytes. We also show cell-type specific roles of individual ORMDL family members in the production of different sphingolipid species.
Collapse
Affiliation(s)
- Livia Demkova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Viktor Bugajev
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslava K. Adamcova
- Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ladislav Kuchar
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Srdjan Grusanovic
- Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Meritxell Alberich-Jorda
- Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Draber
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ivana Halova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
38
|
Polenz CK, Scipione CA, Hyduk SJ, Althagafi MG, Ibrahim HM, Cybulsky MI. Plasma S1P Orchestrates the Reverse Transendothelial Migration of Aortic Intimal Myeloid Cells in Mice. Arterioscler Thromb Vasc Biol 2024; 44:883-897. [PMID: 38328936 DOI: 10.1161/atvbaha.123.320227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Myeloid cells (MCs) reside in the aortic intima at regions predisposed to atherosclerosis. Systemic inflammation triggers reverse transendothelial migration (RTM) of intimal MCs into the arterial blood, which orchestrates a protective immune response that clears intracellular pathogens from the arterial intima. Molecular pathways that regulate RTM remain poorly understood. S1P (sphingosine-1-phosphate) is a lipid mediator that regulates immune cell trafficking by signaling via 5 G-protein-coupled receptors (S1PRs [S1P receptors]). We investigated the role of S1P in the RTM of aortic intimal MCs. METHODS Intravenous injection of lipopolysaccharide was used to model a systemic inflammatory stimulus that triggers RTM. CD11c+ intimal MCs in the lesser curvature of the ascending aortic arch were enumerated by en face confocal microscopy. Local gene expression was evaluated by transcriptomic analysis of microdissected intimal cells. RESULTS In wild-type C57BL/6 mice, lipopolysaccharide induced intimal cell expression of S1pr1, S1pr3, and Sphk1 (a kinase responsible for S1P production). Pharmacological modulation of multiple S1PRs blocked lipopolysaccharide-induced RTM and modulation of S1PR1 and S1PR3 reduced RTM in an additive manner. Cre-mediated deletion of S1pr1 in MCs blocked lipopolysaccharide-induced RTM, confirming a role for myeloid-specific S1PR1 signaling. Global or hematopoietic deficiency of Sphk1 reduced plasma S1P levels, the abundance of CD11c+ MCs in the aortic intima, and blunted lipopolysaccharide-induced RTM. In contrast, plasma S1P levels, the abundance of intimal MCs, and lipopolysaccharide-induced RTM were rescued in Sphk1-/- mice transplanted with Sphk1+/+ or mixed Sphk1+/+ and Sphk1-/- bone marrow. Stimulation with lipopolysaccharide increased endothelial permeability and intimal MC exposure to circulating factors such as S1P. CONCLUSIONS Functional and expression studies support a novel role for S1P signaling in the regulation of lipopolysaccharide-induced RTM and the homeostatic maintenance of aortic intimal MCs. Our data provide insight into how circulating plasma mediators help orchestrate intimal MC dynamics.
Collapse
Affiliation(s)
- Chanele K Polenz
- Departments of Laboratory Medicine and Pathobiology (C.K.P., C.A.S., M.G.A., H.M.I., M.I.C.), University of Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Canada (C.K.P., C.A.S., S.J.H., M.G.A., H.M.I., M.I.C.)
| | - Corey A Scipione
- Departments of Laboratory Medicine and Pathobiology (C.K.P., C.A.S., M.G.A., H.M.I., M.I.C.), University of Toronto, Canada
- Immunology (C.A.S., M.I.C.), University of Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Canada (C.K.P., C.A.S., S.J.H., M.G.A., H.M.I., M.I.C.)
| | - Sharon J Hyduk
- Toronto General Hospital Research Institute, University Health Network, Canada (C.K.P., C.A.S., S.J.H., M.G.A., H.M.I., M.I.C.)
| | - Marwan G Althagafi
- Departments of Laboratory Medicine and Pathobiology (C.K.P., C.A.S., M.G.A., H.M.I., M.I.C.), University of Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Canada (C.K.P., C.A.S., S.J.H., M.G.A., H.M.I., M.I.C.)
| | - Hisham M Ibrahim
- Departments of Laboratory Medicine and Pathobiology (C.K.P., C.A.S., M.G.A., H.M.I., M.I.C.), University of Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Canada (C.K.P., C.A.S., S.J.H., M.G.A., H.M.I., M.I.C.)
| | - Myron I Cybulsky
- Departments of Laboratory Medicine and Pathobiology (C.K.P., C.A.S., M.G.A., H.M.I., M.I.C.), University of Toronto, Canada
- Immunology (C.A.S., M.I.C.), University of Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Canada (C.K.P., C.A.S., S.J.H., M.G.A., H.M.I., M.I.C.)
- Peter Munk Cardiac Centre, University Health Network, Toronto, Canada (M.I.C.)
| |
Collapse
|
39
|
Gaastra B, Zhang J, Tapper W, Bulters D, Galea I. Sphingosine-1-phosphate Signalling in Aneurysmal Subarachnoid Haemorrhage: Basic Science to Clinical Translation. Transl Stroke Res 2024; 15:352-363. [PMID: 36749550 PMCID: PMC10891271 DOI: 10.1007/s12975-023-01133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/08/2023]
Abstract
Sphingosine-1-phosphate (S1P) is generated intracellularly and, when transported to the extracellular compartment, predominantly signals through S1P receptors. The S1P signalling pathway has been implicated in the pathophysiology of neurological injury following aneurysmal subarachnoid haemorrhage (aSAH). In this review, we bring together all the available data regarding the role of S1P in neurological injury following aSAH. There is agreement in the literature that S1P increases in the cerebrospinal fluid following aSAH and leads to cerebral artery vasospasm. On the other hand, the role of S1P in the parenchyma is less clear cut, with different studies arguing for beneficial and deleterious effects. A parsimonious interpretation of this apparently conflicting data is presented. We discuss the potential of S1P receptor modulators, in clinical use for multiple sclerosis, to be repurposed for aSAH. Finally, we highlight the gaps in our knowledge of S1P signalling in humans, the clinical challenges of targeting the S1P pathway after aSAH and other research priorities.
Collapse
Affiliation(s)
- Ben Gaastra
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton, Southampton, SO16 6YD, UK.
| | - John Zhang
- Center of Neuroscience Research, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Will Tapper
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Diederik Bulters
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Ian Galea
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
40
|
Choudhary V, Choudhary M, Bollag WB. Exploring Skin Wound Healing Models and the Impact of Natural Lipids on the Healing Process. Int J Mol Sci 2024; 25:3790. [PMID: 38612601 PMCID: PMC11011291 DOI: 10.3390/ijms25073790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Cutaneous wound healing is a complex biological process involving a series of well-coordinated events aimed at restoring skin integrity and function. Various experimental models have been developed to study the mechanisms underlying skin wound repair and to evaluate potential therapeutic interventions. This review explores the diverse array of skin wound healing models utilized in research, ranging from rodent excisional wounds to advanced tissue engineering constructs and microfluidic platforms. More importantly, the influence of lipids on the wound healing process is examined, emphasizing their role in enhancing barrier function restoration, modulating inflammation, promoting cell proliferation, and promoting remodeling. Lipids, such as phospholipids, sphingolipids, and ceramides, play crucial roles in membrane structure, cell signaling, and tissue repair. Understanding the interplay between lipids and the wound microenvironment provides valuable insights into the development of novel therapeutic strategies for promoting efficient wound healing and tissue regeneration. This review highlights the significance of investigating skin wound healing models and elucidating the intricate involvement of lipids in the healing process, offering potential avenues for improving clinical outcomes in wound management.
Collapse
Affiliation(s)
- Vivek Choudhary
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Mrunal Choudhary
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
41
|
Nagahashi M, Miyoshi Y. Targeting Sphingosine-1-Phosphate Signaling in Breast Cancer. Int J Mol Sci 2024; 25:3354. [PMID: 38542328 PMCID: PMC10970081 DOI: 10.3390/ijms25063354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 01/04/2025] Open
Abstract
In recent years, newly emerging therapies, such as immune checkpoint inhibitors and antibody-drug conjugates, have further improved outcomes for breast cancer patients. However, recurrent and metastatic breast cancer often eventually develops resistance to these drugs, and cure is still rare. As such, the development of new therapies for refractory breast cancer that differ from conventional mechanisms of action is necessary. Sphingosine-1-phosphate (S1P) is a key molecule with a variety of bioactive activities, including involvement in cancer cell proliferation, invasion, and metastasis. S1P also contributes to the formation of the cancer microenvironment by inducing surrounding vascular- and lymph-angiogenesis and regulating the immune system. In this article, we outline the basic mechanism of action of S1P, summarize previous findings on the function of S1P in cancer cells and the cancer microenvironment, and discuss the clinical significance of S1P in breast cancer and the therapeutic potential of targeting S1P signaling.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan;
| | | |
Collapse
|
42
|
Uranbileg B, Sakai E, Kubota M, Isago H, Sumitani M, Yatomi Y, Kurano M. Development of an advanced liquid chromatography-tandem mass spectrometry measurement system for simultaneous sphingolipid analysis. Sci Rep 2024; 14:5699. [PMID: 38459112 PMCID: PMC10923881 DOI: 10.1038/s41598-024-56321-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
Mass spectrometry-based lipidomics approaches offer valuable tools for the detection and quantification of various lipid species, including sphingolipids. The present study aimed to develop a new method to simultaneously detect various sphingolipid species that applies to diverse biological samples. We developed and validated a measurement system by employing a single-column liquid chromatography-mass spectrometry system utilizing a normal-phase separation mode with positive ionization. The measurement system provided precision with a coefficient of variant below 20% for sphingolipids in all types of samples, and we observed good linearity in diluted serum samples. This system can measure the following sphingolipids: sphingosine 1-phosphate (S1P), sphingosine (Sph), dihydroS1P (dhS1P), dihydroSph (dhSph), ceramide 1-phosphate (Cer1P), hexosylceramide (HexCer), lactosylceramide (LacCer), dh-ceramide, deoxy-ceramide, deoxy-dh-ceramide, and sphingomyelin (SM). By measuring these sphingolipids in cell lysates where S1P lyase expression level was modulated, we could observe significant and dynamic modulations of sphingolipids in a comprehensive manner. Our newly established and validated measurement system can simultaneously measure many kinds of sphingolipids in biological samples. It holds great promise as a valuable tool for laboratory testing applications to detect overall modulations of sphingolipids, which have been proposed to be involved in pathogenesis processes in a series of elegant basic research studies.
Collapse
Affiliation(s)
- Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Eri Sakai
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Nihon Waters K.K., Tokyo, Japan
| | | | - Hideaki Isago
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masahiko Sumitani
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
43
|
Morita Y, Sakai E, Isago H, Ono Y, Yatomi Y, Kurano M. Alterations in urinary ceramides, sphingoid bases, and their phosphates among patients with kidney disease. FRONTIERS IN NEPHROLOGY 2024; 4:1343181. [PMID: 38504855 PMCID: PMC10949895 DOI: 10.3389/fneph.2024.1343181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
Background To avoid an invasive renal biopsy, noninvasive laboratory testing for the differential diagnosis of kidney diseases is a desirable goal. As sphingolipids are demonstrated to be involved in the pathogenesis of various kidney diseases, we investigated the possible usefulness of the simultaneous measurement of urinary sphingolipids for differentiating kidney diseases. Materials and methods Residual urine specimens were collected from patients who had been clinically diagnosed with chronic glomerulonephritis (CGN), diabetic mellitus (DM), systemic lupus erythematosus (SLE), and arterial hypertension (AH). The urinary sphingolipids-CERs C16:0, C18:0, C18:1, C20:0, C22:0, and C24:0; sphingosine [Sph]; dihydrosphingosine; sphingosine 1-phosphate [S1P]; and dihydroS1P [dhS1P]-were measured by liquid chromatography-tandem mass spectrometry. Based on the results, machine learning models were constructed to differentiate the various kidney diseases. Results The urinary S1P was higher in patients with DM than in other participants (P < 0.05), whereas dhS1P was lower in the CGN and AH groups compared with control participants (P < 0.05). Sph and dhSph were higher in patients with CGN, AH, and SLE than in those with control participants (P < 0.05). The urinary CERs were significantly higher in patients with CGN, AH, and SLE than in those with control participants (P < 0.05). As a results of constructing a machine learning model discriminating kidney diseases, the resulting diagnostic accuracy and precision were improved from 94.03% and 66.96% to 96.10% and 78.26% respectively, when the urinary CERs, Sph, dhSph, S1P, dhS1P, and their ratios were added to the models. Conclusion The urinary CERs, sphingoid bases, and their phosphates show alterations among kidney diseases, suggesting their potential involvement in the development of kidney injury.
Collapse
Affiliation(s)
- Yoshifumi Morita
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Eri Sakai
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Hideaki Isago
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ono
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Komai M, Noda Y, Ikeda A, Kaneshiro N, Kamikubo Y, Sakurai T, Uehara T, Takasugi N. Nuclear SphK2/S1P signaling is a key regulator of ApoE production and Aβ uptake in astrocytes. J Lipid Res 2024; 65:100510. [PMID: 38280459 PMCID: PMC10907773 DOI: 10.1016/j.jlr.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
The link between changes in astrocyte function and the pathological progression of Alzheimer's disease (AD) has attracted considerable attention. Interestingly, activated astrocytes in AD show abnormalities in their lipid content and metabolism. In particular, the expression of apolipoprotein E (ApoE), a lipid transporter, is decreased. Because ApoE has anti-inflammatory and amyloid β (Aβ)-metabolizing effects, the nuclear receptors, retinoid X receptor (RXR) and LXR, which are involved in ApoE expression, are considered promising therapeutic targets for AD. However, the therapeutic effects of agents targeting these receptors are limited or vary considerably among groups, indicating the involvement of an unknown pathological factor that modifies astrocyte and ApoE function. Here, we focused on the signaling lipid, sphingosine-1-phosphate (S1P), which is mainly produced by sphingosine kinase 2 (SphK2) in the brain. Using astrocyte models, we found that upregulation of SphK2/S1P signaling suppressed ApoE induction by both RXR and LXR agonists. We also found that SphK2 activation reduced RXR binding to the APOE promoter region in the nucleus, suggesting the nuclear function of SphK2/S1P. Intriguingly, suppression of SphK2 activity by RNA knockdown or specific inhibitors upregulated lipidated ApoE induction. Furthermore, the induced ApoE facilitates Aβ uptake in astrocytes. Together with our previous findings that SphK2 activity is upregulated in AD brain and promotes Aβ production in neurons, these results indicate that SphK2/S1P signaling is a promising multifunctional therapeutic target for AD that can modulate astrocyte function by stabilizing the effects of RXR and LXR agonists, and simultaneously regulate neuronal pathogenesis.
Collapse
Affiliation(s)
- Masato Komai
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan; Research Fellow of Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Yuka Noda
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Atsuya Ikeda
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Nanaka Kaneshiro
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Yuji Kamikubo
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, Japan
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan; Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, Japan.
| |
Collapse
|
45
|
Sun G, Wang B, Wu X, Cheng J, Ye J, Wang C, Zhu H, Liu X. How do sphingosine-1-phosphate affect immune cells to resolve inflammation? Front Immunol 2024; 15:1362459. [PMID: 38482014 PMCID: PMC10932966 DOI: 10.3389/fimmu.2024.1362459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 04/17/2024] Open
Abstract
Inflammation is an important immune response of the body. It is a physiological process of self-repair and defense against pathogens taken up by biological tissues when stimulated by damage factors such as trauma and infection. Inflammation is the main cause of high morbidity and mortality in most diseases and is the physiological basis of the disease. Targeted therapeutic strategies can achieve efficient toxicity clearance at the inflammatory site, reduce complications, and reduce mortality. Sphingosine-1-phosphate (S1P), a lipid signaling molecule, is involved in immune cell transport by binding to S1P receptors (S1PRs). It plays a key role in innate and adaptive immune responses and is closely related to inflammation. In homeostasis, lymphocytes follow an S1P concentration gradient from the tissues into circulation. One widely accepted mechanism is that during the inflammatory immune response, the S1P gradient is altered, and lymphocytes are blocked from entering the circulation and are, therefore, unable to reach the inflammatory site. However, the full mechanism of its involvement in inflammation is not fully understood. This review focuses on bacterial and viral infections, autoimmune diseases, and immunological aspects of the Sphks/S1P/S1PRs signaling pathway, highlighting their role in promoting intradial-adaptive immune interactions. How S1P signaling is regulated in inflammation and how S1P shapes immune responses through immune cells are explained in detail. We teased apart the immune cell composition of S1P signaling and the critical role of S1P pathway modulators in the host inflammatory immune system. By understanding the role of S1P in the pathogenesis of inflammatory diseases, we linked the genomic studies of S1P-targeted drugs in inflammatory diseases to provide a basis for targeted drug development.
Collapse
Affiliation(s)
- Gehui Sun
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoyu Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiangfeng Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chunli Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongquan Zhu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Liu
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
46
|
Schuurman AR, Chouchane O, Butler JM, Peters-Sengers H, Joosten S, Brands X, Haak BW, Otto NA, Uhel F, Klarenbeek A, van Linge CC, van Kampen A, Pras-Raves M, van Weeghel M, van Eijk M, Ferraz MJ, Faber DR, de Vos A, Scicluna BP, Vaz FM, Wiersinga WJ, van der Poll T. The shifting lipidomic landscape of blood monocytes and neutrophils during pneumonia. JCI Insight 2024; 9:e164400. [PMID: 38385743 DOI: 10.1172/jci.insight.164400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
The lipidome of immune cells during infection has remained unexplored, although evidence of the importance of lipids in the context of immunity is mounting. In this study, we performed untargeted lipidomic analysis of blood monocytes and neutrophils from patients hospitalized for pneumonia and age- and sex-matched noninfectious control volunteers. We annotated 521 and 706 lipids in monocytes and neutrophils, respectively, which were normalized to an extensive set of internal standards per lipid class. The cellular lipidomes were profoundly altered in patients, with both common and distinct changes between the cell types. Changes involved every level of the cellular lipidome: differential lipid species, class-wide shifts, and altered saturation patterns. Overall, differential lipids were mainly less abundant in monocytes and more abundant in neutrophils from patients. One month after hospital admission, lipidomic changes were fully resolved in monocytes and partially in neutrophils. Integration of lipidomic and concurrently collected transcriptomic data highlighted altered sphingolipid metabolism in both cell types. Inhibition of ceramide and sphingosine-1-phosphate synthesis in healthy monocytes and neutrophils resulted in blunted cytokine responses upon stimulation with lipopolysaccharide. These data reveal major lipidomic remodeling in immune cells during infection, and link the cellular lipidome to immune functionality.
Collapse
Affiliation(s)
- Alex R Schuurman
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Osoul Chouchane
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joe M Butler
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hessel Peters-Sengers
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sebastiaan Joosten
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Xanthe Brands
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Bastiaan W Haak
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Natasja A Otto
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Fabrice Uhel
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Paris, France
- Médecine Intensive Réanimation, AP-HP, Hôpital Louis Mourier, DMU ESPRIT, Colombes, France
| | - Augustijn Klarenbeek
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Christine Ca van Linge
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Antoine van Kampen
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mia Pras-Raves
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, Netherlands
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, Netherlands
| | - Michel van Weeghel
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, Netherlands
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, Netherlands
| | - Marco van Eijk
- Leiden Institute of Chemistry, University of Leiden, Netherlands
| | - Maria J Ferraz
- Leiden Institute of Chemistry, University of Leiden, Netherlands
| | - Daniël R Faber
- Department of Internal Medicine, BovenIJ Hospital, Amsterdam, Netherlands
| | - Alex de Vos
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei Hospital, and
- Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Frédéric M Vaz
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, Netherlands
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, Netherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
47
|
Kar SS, Gharai SR, Sahu SK, Ravichandiran V, Swain SP. The Current Landscape in the Development of Small-molecule Modulators Targeting Sphingosine-1-phosphate Receptors to Treat Neurodegenerative Diseases. Curr Top Med Chem 2024; 24:2431-2446. [PMID: 38676503 DOI: 10.2174/0115680266288509240422112839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
Sphingosine 1-phosphate (S1P) is extensively researched as a lysophospholipid and is crucial in various physiological and pathological processes. It achieves this via signalling through five different subtypes of G protein-coupled receptors (GPCRs), namely S1PR1 to S1PR5. S1PR modulators possess the ability to traverse the blood-brain barrier, potentially leading to direct actions within the Central Nervous System (CNS). S1PR modulators specifically bind to receptors located on the surface of naive and central memory lymphocytes, causing these cells to be trapped or confined within the lymph node. The investigation of the S1P pathway has resulted in the approval of three S1PR modulators, namely fingolimod, siponimod, and ozanimod, as medications for the treatment of patients suffering from Multiple Sclerosis (MS). Additionally, new S1PR modulators, such as ponesimod and etrasimod, are currently being developed and tested in clinical trials. Research on the creation of S1P modulators in neurodegenerative illnesses is ongoing as scientists continue to explore novel possibilities for selective S1P modulators. This study provides a concise overview of sphingolipid metabolism, the mechanism by which S1P receptors are affected, and the structural characteristics of several small molecule S1P modulators, with a particular focus on their structure-activity connections.
Collapse
Affiliation(s)
- Sidhartha Sankar Kar
- Faculty of Pharmacy, C. V. Raman Global University, Mahura, Bhubaneswar, 752054, Odisha, India
| | - Soumya Ranjan Gharai
- Department of Pharmaceutical Chemistry, Institute of Pharmacy & Technology, Salipur, Cuttack, 754202, Odisha, India
| | - Sujit Kumar Sahu
- Department of Pharmaceutical Chemistry, Institute of Pharmacy & Technology, Salipur, Cuttack, 754202, Odisha, India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry and Centre for Marine Therapeutics (CMT), National Institute of Pharmaceutical Education and Research, Kolkata, 168, Maniktala Main Road, Kolkata, 700054, India
| | - Sharada Prasanna Swain
- Department of Medicinal Chemistry and Centre for Marine Therapeutics (CMT), National Institute of Pharmaceutical Education and Research, Kolkata, 168, Maniktala Main Road, Kolkata, 700054, India
| |
Collapse
|
48
|
Pepe G, Cotugno M, Marracino F, Capocci L, Pizzati L, Forte M, Stanzione R, Scarselli P, Di Pardo A, Sciarretta S, Volpe M, Rubattu S, Maglione V. Abnormal expression of sphingolipid-metabolizing enzymes in the heart of spontaneously hypertensive rat models. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159411. [PMID: 37949293 DOI: 10.1016/j.bbalip.2023.159411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/27/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Sphingolipids exert important roles within the cardiovascular system and related diseases. Perturbed sphingolipid metabolism was previously reported in cerebral and renal tissues of spontaneously hypertensive rats (SHR). Specific defects related to the synthesis of sphingolipids and to the metabolism of Sphingosine-1-Phospahte (S1P) were exclusively identified in the stroke-prone (SHRSP) with the respect to the stroke-resistant (SHRSR) strain. In this study, we explored any existing perturbation in either protein or gene expression of enzymes involved in the sphingolipid pathways in cardiac tissue from both SHRSP and SHRSR strains, compared to the normotensive Wistar Kyoto (WKY) strain. The two hypertensive rat models showed an overall perturbation of the expression of different enzymes involved in the sphingolipid metabolism in the heart. In particular, whereas the expression of the S1P-metabolizing-enzyme, SPHK2, was significantly reduced in both SHR strains, SGPL1 protein levels were decreased only in SHRSP. The protein levels of S1P receptors 1-3 were reduced only in the cardiac tissue of SHRSP, whereas S1PR2 levels were reduced in both SHR strains. The de novo synthesis of sphingolipids was aberrant in the two hypertensive strains. A significant reduction of mRNA expression of the Sgms1 and Smpd3 enzymes, implicated in the metabolism of sphingomyelin, was found in both hypertensive strains. Interestingly, Smpd2, devoted to sphingomyelin degradation, was reduced only in the heart of SHRSP. In conclusion, alterations in the expression of sphingolipid-metabolizing enzymes may be involved in the susceptibility to cardiac damage of hypertensive rat strains. Specific differences detected in the SHRSP, however, deserve further elucidation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli, (IS), Italy; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University, Rome, Italy; IRCCS San Raffaele, Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, (IS), Italy; Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University, Rome, Italy.
| | | |
Collapse
|
49
|
Chen Y, Hao T, Wang J, Chen Y, Wang X, Wei W, Zhao J, Qian Y. A Near-Infrared Fluorogenic Probe for Rapid, Specific, and Ultrasensitive Detection of Sphingosine in Living Cells and In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307598. [PMID: 38032131 PMCID: PMC10787105 DOI: 10.1002/advs.202307598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Sphingosine (Sph) plays important roles in various complex biological processes. Abnormalities in Sph metabolism can result in various diseases, including neurodegenerative disorders. However, due to the lack of rapid and accurate detection methods, understanding sph metabolic in related diseases is limited. Herein, a series of near-infrared fluorogenic probes DMS-X (X = 2F, F, Cl, Br, and I) are designed and synthesized. The fast oxazolidinone ring formation enables the DMS-2F to detect Sph selectively and ultrasensitively, and the detection limit reaches 9.33 ± 0.41 nm. Moreover, it is demonstrated that DMS-2F exhibited a dose- and time-dependent response to Sph and can detect sph in living cells. Importantly, for the first time, the changes in Sph levels induced by Aβ42 oligomers and H2 O2 are assessed through a fluorescent imaging approach, and further validated the physiological processes by which Aβ42 oligomers and reactive oxygen species (ROS)-induce changes in intracellular Sph levels. Additionally, the distribution of Sph in living zebrafish is successfully mapped by in vivo imaging of a zebrafish model. This work provides a simple and efficient method for probing Sph in living cells and in vivo, which will facilitate investigation into the metabolic process of Sph and the connection between Sph and disease pathologies.
Collapse
Affiliation(s)
- Yanyan Chen
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Tingting Hao
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Jing Wang
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Yiming Chen
- School of EngineeringVanderbilt UniversityNashville37235USA
| | - Xiuxiu Wang
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Wei Wei
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjing210023China
| | - Jing Zhao
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| |
Collapse
|
50
|
Mussap M, Puddu M, Fanos V. Metabolic Reprogramming of Immune Cells Following Vaccination: From Metabolites to Personalized Vaccinology. Curr Med Chem 2024; 31:1046-1068. [PMID: 37165503 DOI: 10.2174/0929867330666230509110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 05/12/2023]
Abstract
Identifying metabolic signatures induced by the immune response to vaccines allows one to discriminate vaccinated from non-vaccinated subjects and decipher the molecular mechanisms associated with the host immune response. This review illustrates and discusses the results of metabolomics-based studies on the innate and adaptive immune response to vaccines, long-term functional reprogramming (immune memory), and adverse reactions. Glycolysis is not overexpressed by vaccines, suggesting that the immune cell response to vaccinations does not require rapid energy availability as necessary during an infection. Vaccines strongly impact lipids metabolism, including saturated or unsaturated fatty acids, inositol phosphate, and cholesterol. Cholesterol is strategic for synthesizing 25-hydroxycholesterol in activated macrophages and dendritic cells and stimulates the conversion of macrophages and T cells in M2 macrophage and Treg, respectively. In conclusion, the large-scale application of metabolomics enables the identification of candidate predictive biomarkers of vaccine efficacy/tolerability.
Collapse
Affiliation(s)
- Michele Mussap
- Department of Surgical Sciences, School of Medicine, University of Cagliari, Cittadella Universitaria S.S. 554, Monserrato 09042, Cagliari, Italy
| | - Melania Puddu
- Department of Surgical Sciences, School of Medicine, University of Cagliari, Cittadella Universitaria S.S. 554, Monserrato 09042, Cagliari, Italy
| | - Vassilios Fanos
- Department of Surgical Sciences, School of Medicine, University of Cagliari, Cittadella Universitaria S.S. 554, Monserrato 09042, Cagliari, Italy
| |
Collapse
|