1
|
Park SY, Song KH, Kang JH, Oh SH. Glucose transporter 2‑transported glucosamine inhibits glycolysis in cancer cell lines through competition with glucose for hexokinase II. Oncol Rep 2025; 53:73. [PMID: 40314081 PMCID: PMC12062862 DOI: 10.3892/or.2025.8906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/17/2025] [Indexed: 05/03/2025] Open
Abstract
Antiproliferative effects of glucosamine, a glucose derivative with a similar structure to glucose, have been discovered, but the molecular mechanisms are not yet fully understood. Since glucosamine and glucose not only have similar structures but also are catalyzed by the same enzyme, hexokinase (HK), the present study delved into determining whether the antiproliferative effect of glucosamine involved the inhibition of glycolysis by competition with glucose. Whole‑genome screening analysis showed that a number of the gene pathways controlled by glucosamine were directly and indirectly involved in glycolysis. In vitro experiments revealed that as more glucose was added, the antiproliferative effect of glucosamine decreased. Also, it was found that glucosamine was transported into cells mainly through glucose transporter (GLUT) 2 which was responsible for the antiproliferative effects of glucosamine. In addition, the present study found that cancer cell lines with low expression level of HKII show high sensitivity to glucosamine and a HK inhibitor, 3‑bromopyruvate, enhanced the antiproliferative effect of glucosamine. Under hypoxic conditions, activated hypoxia‑inducible factor 1α (HIF‑1α) inducing glucose uptake and glycolysis hampered glucosamine‑induced cell death and HIF1A knockdown or HK inhibitors restored the antiproliferative effects of glucosamine. These findings demonstrated that glucosamine is an efficient glycolysis inhibitor and that GLUT2 and HKII play important roles as biomarkers for determining sensitivity to glucosamine. Moreover, the results suggested that the antiproliferative effect of glucosamine may be more efficient when administered in combination with other glycolytic agents or inhibitors targeting HIF‑1α.
Collapse
Affiliation(s)
- Se Yong Park
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Hoon Song
- ViroCure Inc., Guro, Seoul 08381, Republic of Korea
| | - Ju-Hee Kang
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun Oh
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Li G, He L, Xu J, Gong Y, Zeng Q, Chen X, Jiao W, Liu Y, Liu J, Xu R, Liang X, Chen W. Self-Powered Algae-Integrated Wearable System for Oxygen Supplementation in Hypoxic Disease Treatment. ACS NANO 2025; 19:16940-16956. [PMID: 40279553 DOI: 10.1021/acsnano.5c02581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Hypoxia serves as a critical determinant in the advancement of various intractable pathological conditions including oncological disorders and hypovascular wounds, which may profoundly attenuate the efficacy of pharmacological interventions and substantially inhibit the physiological recovery processes. Consequently, in an effort to mitigate the inherent constraints of conventional methodologies (e.g., exogenous oxygen delivery systems), a self-powered triboelectric nanogenerator (TENG)-based algae-integrated pliable and enveloped device (TAPED) operates as a wearable system to sustain oxygen generation. The TAPED system harnesses biomechanical energy generated through natural bodily movements to energize an integrated luminescent source, enabling controlled photosynthesis for sustained, on-demand oxygen production. The incorporation of TENG technology renders TAPED self-sufficient, eliminating the necessity for external recharging, reducing device mass, and improving convenience for continuous oxygen delivery. Additionally, its body-attachable design circumvents risks associated with direct algal implantation, such as immunogenic reactions and infections. Specifically, experimental application of TAPED has exhibited significant therapeutic efficacy in diverse pathological conditions, including diabetic chronic infected wounds, breast carcinoma tumors, and lactic acid accumulation consequent to strenuous exercise-induced fatigue. Collectively, the TAPED represents an advanced therapeutic approach, which holds substantial potential for translational application within clinical contexts, particularly for enhancing patient prognosis in hypoxic diseases such as oncology and wound management.
Collapse
Affiliation(s)
- Guanyue Li
- Department of Pharmacology, School of Basic Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linxi He
- Department of Pharmacology, School of Basic Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiarong Xu
- Department of Pharmacology, School of Basic Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yusheng Gong
- Department of Pharmacology, School of Basic Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Zeng
- Department of Pharmacology, School of Basic Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuli Chen
- Department of Pharmacology, School of Basic Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenhao Jiao
- Department of Pharmacology, School of Basic Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan Liu
- Department of Pharmacology, School of Basic Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiajing Liu
- Department of Pharmacology, School of Basic Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rengui Xu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinting Liang
- Department of Pharmacology, School of Basic Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Zhu J, Wen N, Chen W, Yu H. Mitochondrial ribosomal proteins: potential targets for cancer prognosis and therapy. Front Oncol 2025; 15:1586137. [PMID: 40371222 PMCID: PMC12074914 DOI: 10.3389/fonc.2025.1586137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025] Open
Abstract
Mitochondrial ribosomal proteins (MRPs) are essential components of mitochondrial ribosomes, responsible for translating proteins encoded by mitochondrial DNA and maintaining mitochondrial energy metabolism and function. Emerging evidence suggests that MRPs exhibit significant expression changes in multiple cancer types, profoundly affecting tumor biology through modulating oxidative stress levels, inducing metabolic reprogramming, disrupting cell cycle regulation, inhibiting apoptosis, promoting mitophagy, and remodeling the tumor microenvironment. Specifically, MRPs have been implicated in tumor cell proliferation, migration, invasion, and apoptosis, highlighting their potential as therapeutic targets. This review summarizes the multifaceted roles of MRPs in cancer, focusing on their impact on the tumor microenvironment and their potential as prognostic biomarkers and therapeutic targets. We also explore the implications of MRPs in precision oncology, particularly in patient stratification and the design of metabolic targeted therapies, offering new insights and research directions for the precise prevention and treatment of cancer.
Collapse
Affiliation(s)
- Jianqing Zhu
- Postgraduate Department, Hebei North University, Zhangjiakou, China
| | - Na Wen
- Department of Obstetrics and Gynecology, The Eighth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Wen Chen
- Department of Pathology, The Eighth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Haotian Yu
- Department of Obstetrics and Gynecology, The Eighth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
4
|
Hayashi Y, Bai H, Takahashi M, Mitani T, Kawahara M. Effect of introducing somatic mitochondria into an early embryo on zygotic gene activation†. Biol Reprod 2025; 112:614-627. [PMID: 39812326 DOI: 10.1093/biolre/ioaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/07/2024] [Accepted: 01/14/2025] [Indexed: 01/16/2025] Open
Abstract
Unlike differentiated somatic cells, which possess elongated mitochondria, undifferentiated cells, such as those of preimplantation embryos, possess round, immature mitochondria. Mitochondrial morphology changes dynamically during cell differentiation in a process called mitochondrial maturation. The significance of the alignment between cell differentiation and mitochondrial maturity in preimplantation development remains unclear. In this study, we analyzed mouse embryos into which liver-derived somatic mitochondria were introduced (SM-embryos). Most SM-embryos were arrested at the two-cell stage. Some of the introduced somatic mitochondria became round, while others remained elongated and large. RNA-sequencing revealed a disruption of both minor and major zygotic gene activation (ZGA) in SM-embryos. Minor ZGA did not terminate before major ZGA, and the onset of major ZGA was inhibited, as shown by histone modification analyses of histone H3 lysine 4 trimethylation and histone H3 lysine 27 acetylation. Further analysis of metabolites involved in histone modification regulation in SM-embryos showed a significantly lower NAD+/NADH ratio in SM-embryos than in control embryos. Additionally, the mitochondrial membrane potential, an indicator of mitochondrial function, was lower in SM-embryos than in control embryos. Our results demonstrated that introducing somatic mitochondria into an embryo induces mitochondrial dysfunction, thereby disrupting metabolite production, leading to a disruption in ZGA and inducing developmental arrest. Our findings reveal that the alignment between cell differentiation and mitochondrial maturity is essential for early embryonic development.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Masashi Takahashi
- Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Hokkaido, Japan
| | - Tomohiro Mitani
- Laboratory of Animal Production System, Research Faculty of Agriculture, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
5
|
Pan Z, Liu Y, Li H, Qiu H, Zhang P, Li Z, Wang X, Tian Y, Feng Z, Zhu S, Wang X. The role and mechanism of aerobic glycolysis in nasopharyngeal carcinoma. PeerJ 2025; 13:e19213. [PMID: 40191756 PMCID: PMC11971989 DOI: 10.7717/peerj.19213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
This review delves into the pivotal role and intricate mechanisms of aerobic glycolysis in nasopharyngeal carcinoma (NPC). NPC, a malignancy originating from the nasopharyngeal epithelium, displays distinct geographical and clinical features. The article emphasizes the significance of aerobic glycolysis, a pivotal metabolic alteration in cancer cells, in NPC progression. Key enzymes such as hexokinase 2, lactate dehydrogenase A, phosphofructokinase 1, and pyruvate kinase M2 are discussed for their regulatory functions in NPC glycolysis through signaling pathways like PI3K/Akt and mTOR. Further, the article explores how oncogenic signaling pathways and transcription factors like c-Myc and HIF-1α modulate aerobic glycolysis, thereby affecting NPC's proliferation, invasion, metastasis, angiogenesis, and immune evasion. By elucidating these mechanisms, the review aims to advance research and clinical practice in NPC, informing the development of targeted therapeutic strategies that enhance treatment precision and reduce side effects. Overall, this review offers a broad understanding of the multifaceted role of aerobic glycolysis in NPC and its potential impact on therapeutic outcomes.
Collapse
Affiliation(s)
- Zhiyong Pan
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yuyi Liu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Hui Li
- Department of Ophthalmology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Huisi Qiu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Pingmei Zhang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Zhiying Li
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xinyu Wang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yuxiao Tian
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Zhengfu Feng
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Song Zhu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xin Wang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| |
Collapse
|
6
|
Chen Y, Cao H, Jiang C, Li Y. Tumor-microenvironment-mediated second near-infrared light activation multifunctional cascade nanoenzyme for self-replenishing O 2/H 2O 2 multimodal tumor therapy. J Colloid Interface Sci 2025; 683:930-943. [PMID: 39755017 DOI: 10.1016/j.jcis.2024.12.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Developing a catalytic nanoenzyme activated by the tumor microenvironment (TME) shows excellent potential for in situ cancer treatment. However, the rational design of a cascade procedure to achieve high therapeutic efficiency remains challenging. In this study, the colorectal TME-responsive multifunctional cascade nanoenzyme Cu2-xO@MnO2@glucose oxidase (GOx)@hyaluronic acid (HA) was developed to target in situ cancer starvation/chemodynamic therapy (CDT)/photothermal therapy (PTT). First, the MnO2 nanolayer specifically decomposes within the acidic TME to generate Mn2+ and oxygen (O2), thereby alleviating the hypoxic TME. Subsequently, Cu2-xO can be vulcanized into Cu2-xS by overexpressing sulfuretted hydrogen (H2S) gas in the colorectal tumor for a second near-infrared (NIR-II) light-triggered deep tissue PTT. Cu2-xS nanoparticles can react with hydrogen peroxide (H2O2) to generate hydroxyl radical (OH) for the CDT. In addition, GOx catalyzes the conversion of glucose into H2O2 for starvation therapy and enhances the CDT efficiency by self-supplying H2O2. Interestingly, the generated reactive oxygen species (ROS) induce immunogenic cell death (ICD), which further activates adaptive cancer immunity for anti-tumor immunotherapy. Finally, therapeutic efficiency was greatly improved after coating with tumor-targeted HA. Collectively, these TME-responsive cascade nanoenzymes can realize PTT, CDT starvation therapy, and immunotherapy, paving the way for the design of TME-responsive cascade nanoenzymes for synergistically enhanced tumor-specific therapy.
Collapse
Affiliation(s)
- Yu Chen
- School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Haiqiong Cao
- School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Chaoqun Jiang
- School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Youbin Li
- School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, PR China.
| |
Collapse
|
7
|
Wang P, Zhang XP, Liu F, Wang W. Progressive Deactivation of Hydroxylases Controls Hypoxia-Inducible Factor-1α-Coordinated Cellular Adaptation to Graded Hypoxia. RESEARCH (WASHINGTON, D.C.) 2025; 8:0651. [PMID: 40171017 PMCID: PMC11960303 DOI: 10.34133/research.0651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/26/2025] [Accepted: 03/08/2025] [Indexed: 04/03/2025]
Abstract
Graded hypoxia is a common microenvironment in malignant solid tumors. As a central regulator in the hypoxic response, hypoxia-inducible factor-1 (HIF-1) can induce multiple cellular processes including glycolysis, angiogenesis, and necroptosis. How cells exploit the HIF-1 pathway to coordinate different processes to survive hypoxia remains unclear. We developed an integrated model of the HIF-1α network to elucidate the mechanism of cellular adaptation to hypoxia. By numerical simulations and bifurcation analysis, we found that HIF-1α is progressively activated with worsening hypoxia due to the sequential deactivation of the hydroxylases prolyl hydroxylase domain enzymes and factor inhibiting HIF (FIH). Bistable switches control the activation and deactivation processes. As a result, glycolysis, immunosuppression, angiogenesis, and necroptosis are orderly elicited in aggravating hypoxia. To avoid the excessive accumulation of lactic acid during glycolysis, HIF-1α induces monocarboxylate transporter and carbonic anhydrase 9 sequentially to export intracellular hydrogen ions, facilitating tumor cell survival. HIF-1α-induced miR-182 facilitates vascular endothelial growth factor production to promote angiogenesis under moderate hypoxia. The imbalance between accumulation and removal of lactic acid in severe hypoxia may result in acidosis and induce cell necroptosis. In addition, the deactivation of FIH results in the destabilization of HIF-1α in anoxia. Collectively, HIF-1α orchestrates the adaptation of tumor cells to hypoxia by selectively inducing its targets according to the severity of hypoxia. Our work may provide clues for tumor therapy by targeting the HIF-1 pathway.
Collapse
Affiliation(s)
- Ping Wang
- Kuang Yaming Honors School,
Nanjing University, Nanjing 210023, China
- Key Laboratory of High Performance Scientific Computation, School of Science,
Xihua University, Chengdu 610039, China
| | - Xiao-Peng Zhang
- Kuang Yaming Honors School,
Nanjing University, Nanjing 210023, China
- Institute of Brain Sciences,
Nanjing University, Nanjing 210093, China
| | - Feng Liu
- Institute of Brain Sciences,
Nanjing University, Nanjing 210093, China
- National Laboratory of Solid State Microstructures and Department of Physics,
Nanjing University, Nanjing 210093, China
| | - Wei Wang
- Institute of Brain Sciences,
Nanjing University, Nanjing 210093, China
- National Laboratory of Solid State Microstructures and Department of Physics,
Nanjing University, Nanjing 210093, China
| |
Collapse
|
8
|
Goh V, Mallett S, Rodriguez-Justo M, Boulter V, Glynne-Jones R, Khan S, Lessels S, Patel D, Prezzi D, Taylor S, Halligan S. Evaluation of prognostic models to improve prediction of metastasis in patients following potentially curative treatment for primary colorectal cancer: the PROSPECT trial. Health Technol Assess 2025; 29:1-91. [PMID: 40230305 PMCID: PMC12010235 DOI: 10.3310/btmt7049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Background Despite apparently curative treatment, many patients with colorectal cancer develop subsequent metastatic disease. Current prognostic models are criticised because they are based on standard staging and omit novel biomarkers. Improved prognostication is an unmet need. Objectives To improve prognostication for colorectal cancer by developing a baseline multivariable model of standard clinicopathological predictors, and to then improve prediction via addition of promising novel imaging, genetic and immunohistochemical biomarkers. Design Prospective multicentre cohort. Setting Thirteen National Health Service hospitals. Participants Consecutive adult patients with colorectal cancer. Interventions Collection of prespecified standard clinicopathological variables and more novel imaging, genetic and immunohistochemical biomarkers, followed by 3-year follow-up to identify postoperative metastasis. Main outcome Best multivariable prognostic model including perfusion computed tomography compared with tumour/node staging. Secondary outcomes: Additive benefit of perfusion computed tomography and other biomarkers to best baseline model comprising standard clinicopathological predictors; measurement variability between local and central review; biological relationships between perfusion computed tomography and pathology variables. Results Between 2011 and 2016, 448 participants were recruited; 122 (27%) were withdrawn, leaving 326 (226 male, 100 female; mean ± standard deviation 66 ± 10.7 years); 183 (56%) had rectal cancer. Most cancers were locally advanced [≥ T3 stage, 227 (70%)]; 151 (46%) were node-positive (≥ N1 stage); 306 (94%) had surgery; 79 (24%) had neoadjuvant therapy. The resection margin was positive in 15 (5%); 93 (28%) had venous invasion; 125 (38%) had postoperative adjuvant chemotherapy; 81 (25%, 57 male) developed recurrent disease. Prediction of recurrent disease by the baseline clinicopathological time-to-event Weibull multivariable model (age, sex, tumour/node stage, tumour size and location, treatment, venous invasion) was superior to tumour/node staging: sensitivity: 0.57 (95% confidence interval 0.45 to 0.68), specificity 0.74 (95% confidence interval 0.68 to 0.79) versus sensitivity 0.56 (95% confidence interval 0.44 to 0.67), specificity 0.58 (95% confidence interval 0.51 to 0.64), respectively. Addition of perfusion computed tomography variables did not improve prediction significantly: c-statistic: 0.77 (95% confidence interval 0.71 to 0.83) versus 0.76 (95% confidence interval 0.70 to 0.82). Perfusion computed tomography parameters did not differ significantly between patients with and without recurrence (e.g. mean ± standard deviation blood flow of 60.3 ± 24.2 vs. 61.7 ± 34.2 ml/minute/100 ml). Furthermore, baseline model prediction was not improved significantly by the addition of any novel genetic or immunohistochemical biomarkers. We observed variation between local and central computed tomography measurements but neither improved model prediction significantly. We found no clear association between perfusion computed tomography variables and any immunohistochemical measurement or genetic expression. Limitations The number of patients developing metastasis was lower than expected from historical data. Our findings should not be overinterpreted. While the baseline model was superior to tumour/node staging, any clinical utility needs definition in daily practice. Conclusions A prognostic model of standard clinicopathological variables outperformed tumour/node staging, but novel biomarkers did not improve prediction significantly. Biomarkers that appear promising in small single-centre studies may contribute nothing substantial to prognostication when evaluated rigorously. Future work It would be desirable for other researchers to externally evaluate the baseline model. Trial registration This trial is registered as ISRCTN95037515. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme (NIHR award ref: 09/22/49) and is published in full in Health Technology Assessment; Vol. 29, No. 8. See the NIHR Funding and Awards website for further award information.
Collapse
Affiliation(s)
- Vicky Goh
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | | | | | | | | | | | - Sarah Lessels
- Scottish Clinical Trials Research Unit (SCTRU), NHS National Services Scotland, Edinburgh, Scotland
| | - Dominic Patel
- Research Department of Pathology, UCL Cancer Institute, London, UK
| | - Davide Prezzi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | | | | |
Collapse
|
9
|
Koizume S, Miyagi Y. Adaptation mechanisms in cancer: Lipid metabolism under hypoxia and nutrient deprivation as a target for novel therapeutic strategies (Review). Mol Med Rep 2025; 31:83. [PMID: 39886950 PMCID: PMC11799873 DOI: 10.3892/mmr.2025.13448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025] Open
Abstract
Tumor tissues generally exist in a relatively hypovascular state, and cancer cells must adapt to severe tissue conditions with a limited molecular oxygen and nutrient supply for their survival. Lipid metabolism serves a role in this adaptation. Lipids are supplied not only through the bloodstream but also through autonomous synthesis by cancer cells, and they function as sources of adenosine triphosphate and cell components. Although cancer‑associated lipid metabolism has been widely reviewed, how this metabolism responds to the tumor environment with poor molecular oxygen and nutrient supply remains to be fully discussed. The main aim of the present review was to summarize the findings on this issue and to provide insights into how cancer cells adapt to better cope with metabolic stresses within tumors. It may be suggested that diverse types of lipid metabolism have a role in enabling cancer cells to adapt to both hypoxia and nutrient‑poor conditions. Gaining a deeper understanding of these molecular mechanisms may reveal novel possibilities of exploration for cancer treatment.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa 241-8515, Japan
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Kanagawa 241-8515, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa 241-8515, Japan
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Kanagawa 241-8515, Japan
| |
Collapse
|
10
|
Sun X, Yegambaram M, Lu Q, Garcia Flores AE, Pokharel MD, Soto J, Aggarwal S, Wang T, Fineman JR, Black SM. Mitochondrial fission produces a Warburg effect via the oxidative inhibition of prolyl hydroxylase domain-2. Redox Biol 2025; 81:103529. [PMID: 39978304 PMCID: PMC11889635 DOI: 10.1016/j.redox.2025.103529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 02/02/2025] [Indexed: 02/22/2025] Open
Abstract
Excessive mitochondrial fission and a shift to a Warburg phenotype are hallmarks of pulmonary hypertension (PH), although the mechanistic link between these processes remains unclear. We show that in pulmonary arterial endothelial cells (PAEC), Drp1 overexpression induces mitochondrial fission and increases glycolytic ATP production and glycolysis. This is due to mitochondrial reactive oxygen species (mito-ROS)-mediated activation of hypoxia-inducible factor-1α (HIF-1α) signaling, and this is linked to hydrogen peroxide (H2O2)-mediated inhibition of prolyl hydroxylase domain-2 (PHD2) due to its cysteine 326 oxidation and dimerization. Furthermore, these findings are validated in PAEC isolated from a lamb model of PH, which are glycolytic (Shunt PAEC), exhibit increases in both H2O2 and PHD2 dimer levels. The overexpression of catalase reversed the PHD2 dimerization, decreased HIF-1α levels, and attenuated glycolysis in Shunt PAEC. Our data suggest that reducing PHD2 dimerization could be a potential therapeutic target for PH.
Collapse
Affiliation(s)
- Xutong Sun
- Florida International University, Center for Translational Science, Port Saint Lucie, FL, 34987, USA
| | - Manivannan Yegambaram
- Florida International University, Center for Translational Science, Port Saint Lucie, FL, 34987, USA
| | - Qing Lu
- Florida International University, Center for Translational Science, Port Saint Lucie, FL, 34987, USA
| | - Alejandro E Garcia Flores
- Florida International University, Center for Translational Science, Port Saint Lucie, FL, 34987, USA
| | - Marissa D Pokharel
- Florida International University, Center for Translational Science, Port Saint Lucie, FL, 34987, USA; The Departments of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Jamie Soto
- Florida International University, Center for Translational Science, Port Saint Lucie, FL, 34987, USA
| | - Saurabh Aggarwal
- The Departments of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Ting Wang
- Florida International University, Center for Translational Science, Port Saint Lucie, FL, 34987, USA; The Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jeffrey R Fineman
- The Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA; The Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Stephen M Black
- Florida International University, Center for Translational Science, Port Saint Lucie, FL, 34987, USA; The Departments of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; The Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
11
|
Zhang S, Wang YS, Li Y, To KI, Zhang ET, Jin YH. Annexin A2 binds the 3'-UTR of H2AX mRNA and regulates histone-H2AX-derived hypoxia-inducible factor 1-alpha activation. Cell Signal 2025; 132:111781. [PMID: 40164417 DOI: 10.1016/j.cellsig.2025.111781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/21/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Annexin A2 (Anxa2), a multifunctional protein with RNA-binding capabilities, is frequently overexpressed in various tumors, and its expression is highly correlated with malignant progression. In this study, we demonstrate for the first time that Anxa2 was co-expressed with glycolytic genes, suggesting its potential role as a regulator of glycolysis. RNA-protein interaction assay revealed that Anxa2 interacted with 3'-UTR of H2AX mRNA and protected it from miRNA-mediated degradation. Up-regulated Histone-H2AX enhances the expression of glycolytic genes including GLUT1, HK2, PGK1, ENO1, PKM2, GAPDH and LDHA via stabilizing hypoxia-inducible factor 1-alpha (HIF1α), thereby accelerating lactic acid production and secretion. (20S) G-Rh2, a natural compound targeting Anxa2, significantly interfered the Anxa2-H2AX mRNA interaction, and inhibited subsequent glycolysis progression. We propose that Anxa2 acts as a novel regulator in glycolysis via enhancing H2AX expression, and (20S) G-Rh2 may exert its anti-cancer activity by targeting Anxa2-H2AX-HIF1α-glycolysis axis in human hepatoma HepG2 cells.
Collapse
Affiliation(s)
- Shiyin Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yu-Shi Wang
- Department of Criminal Science and Technology, Jilin Police College, Changchun 130117, China
| | - Yang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Kwang-Il To
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - En-Ting Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ying-Hua Jin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
12
|
Nor WMFSBWM, Kwong SC, Fuzi AAM, Said NABM, Jamil AHA, Lee YY, Lee SC, Lim YAL, Chung I. Linking microRNA to metabolic reprogramming and gut microbiota in the pathogenesis of colorectal cancer (Review). Int J Mol Med 2025; 55:46. [PMID: 39820715 PMCID: PMC11759585 DOI: 10.3892/ijmm.2025.5487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025] Open
Abstract
Colorectal cancer (CRC), an emerging public health concern, is one of the leading causes of cancer morbidity and mortality worldwide. An increasing body of evidence shows that dysfunction in metabolic reprogramming is a crucial characteristic of CRC progression. Specifically, metabolic reprogramming abnormalities in glucose, glutamine and lipid metabolism provide the tumour with energy and nutrients to support its rapid cell proliferation and survival. More recently, microRNAs (miRNAs) appear to be involved in the pathogenesis of CRC, including regulatory roles in energy metabolism. In addition, it has been revealed that dysbiosis in CRC might play a key role in impairing the host metabolic reprogramming processes, and while the exact interactions remain unclear, the link may lie with miRNAs. Hence, the aims of the current review include first, to delineate the metabolic reprogramming abnormalities in CRC; second, to explain how miRNAs mediate the aberrant regulations of CRC metabolic pathways; third, linking miRNAs with metabolic abnormalities and dysbiosis in CRC and finally, to discuss the roles of miRNAs as potential biomarkers.
Collapse
Affiliation(s)
| | - Soke Chee Kwong
- Centre for Population Health (CePH), Department of Social and Preventive Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Afiqah Alyaa Md Fuzi
- Office of Deputy Vice Chancellor (Research and Innovation), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Akmarina Binti Mohd Said
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Amira Hajirah Abd Jamil
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Malaysia
| | - Soo Ching Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yvonne Ai-Lian Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Ciferri MC, Tasso R. Extracellular vesicle-mediated chemoresistance in breast cancer: focus on miRNA cargo. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2025; 6:112-127. [PMID: 40206797 PMCID: PMC11977373 DOI: 10.20517/evcna.2024.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/14/2025] [Accepted: 02/05/2025] [Indexed: 04/11/2025]
Abstract
The role of extracellular vesicles (EVs) in mediating chemoresistance has gained significant attention due to their ability to transfer bioactive molecules between drug-resistant and drug-sensitive cells. In particular, they have been demonstrated to play an active part in breast cancer chemoresistance by the horizontal transfer of genetic and protein material. This review highlights the role of EVs, particularly their miRNA cargo, in driving drug resistance in breast cancer. EVs derived from chemoresistant cells carry miRNAs and lncRNAs, which are known to modulate gene networks involved in cell proliferation and survival. These cargo molecules suppress apoptosis by targeting pro-apoptotic genes like PTEN and BIM, promote epithelial-mesenchymal transition (EMT) through the regulation of pathways such as TGF-β and Wnt/b-catenin, and contribute to tumor growth and resistance by enhancing angiogenesis and modulating the tumor microenvironment. Beyond RNA-mediated effects, EVs also transfer functional proteins, including P-glycoprotein and Hsp70, which impact cellular metabolism and survival pathways. Our findings underscore the significance of EVs in breast cancer chemoresistance, suggesting their potential involvement as possible prognostic factors to predict therapy response and as therapeutic targets in combination with usual therapy.
Collapse
Affiliation(s)
- Maria Chiara Ciferri
- Department of Experimental Medicine (DIMES), University of Genova, Genova 16132, Italy
| | - Roberta Tasso
- Department of Experimental Medicine (DIMES), University of Genova, Genova 16132, Italy
- Dipartimento della Ricerca, IRCCS Ospedale Policlinico San Martino, Genova 16132, Italy
| |
Collapse
|
14
|
Nishitani M, Okada H, Nio K, Hayashi T, Terashima T, Iida N, Shimakami T, Takatori H, Honda M, Kaneko S, Sakamoto T, Yamashita T. Mint3 as a Molecular Target Activated in the Early Stage of Hepatocarcinogenesis. Int J Mol Sci 2025; 26:1430. [PMID: 40003897 PMCID: PMC11855386 DOI: 10.3390/ijms26041430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Mint3 enhances aerobic ATP production with subsequent nuclear translocation of hypoxia-inducible factor-1 (HIF-1) and activation of angiogenesis-related genes. It remains unclear if and when Mint3 is activated and whether it is involved in hepatocarcinogenesis. We explored the expression of Mint3 in surgically resected hepatocellular carcinoma (HCC) tissues. We evaluated the effects of Mint3 knockdown on spheroid formation capacity and subcutaneous tumor growth in immune-deficient mice. We used Mint3 knockout mice to evaluate the effects of chemically induced HCC development. Mint3 was overexpressed in well-differentiated HCC with the activation of HIF-1 target genes irrespective of the absence of hypervascularization. Mint3 knockdown ameliorated the expression of HIF-1 target genes in patient-derived HCC cell lines and suppressed spheroid formation. Mint3 knockdown further inhibited subcutaneous tumor formation in vivo in immune-deficient mice. Chemical HCC development induced by N-nitrosodiethylamine (DEN) or DEN/CCl4 was dramatically suppressed in Mint3 knockout mice compared to control mice. Mint3 plays a crucial role in early-stage HCC development before hypervascularization by activating HIF-1 target genes before the tumor becomes hypoxic. Mint3 is a molecular target that prevents HCC development in the early stages.
Collapse
Affiliation(s)
- Masaki Nishitani
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Tomoyuki Hayashi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Takeshi Terashima
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Noriho Iida
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Hajime Takatori
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Ishikawa, Japan; (M.N.); (H.O.); (K.N.); (T.H.); (T.T.); (N.I.); (T.S.); (H.T.); (M.H.); (S.K.)
| |
Collapse
|
15
|
Peter A, Berneman ZN, Cools N. Cellular respiration in dendritic cells: Exploring oxygen-dependent pathways for potential therapeutic interventions. Free Radic Biol Med 2025; 227:536-556. [PMID: 39643130 DOI: 10.1016/j.freeradbiomed.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells crucial for initiating and regulating adaptive immune responses, making them promising candidates for therapeutic interventions in various immune-mediated diseases. Increasing evidence suggests that the microenvironment in which cells are cultured, as well as the milieu in which they perform their functions, significantly impact their immunomodulatory properties. Among these environmental factors, the role of oxygen in DC biology and its significance for both their in vitro generation and in vivo therapeutic application require investigation. Unlike the atmospheric oxygen level of 21 % commonly used in in vitro assays, physiological oxygen levels are much lower (3-9 %), and hypoxia (<1.3 %) is a prevalent condition of both healthy tissues and disease states. This mismatch between laboratory and physiological conditions underscores the critical need to culture and evaluate therapeutic cells under physiologically relevant oxygen levels to improve their translational relevance and clinical outcomes. This review explores the characteristic hallmarks of human DCs that are influenced by oxygen-dependent pathways, including metabolism, phenotype, cytokine secretion, and migration. Furthermore, we discuss the potential of manipulating oxygen levels to refine the generation and functionality of DCs for therapeutic purposes.
Collapse
Affiliation(s)
- Antonia Peter
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| |
Collapse
|
16
|
Wu T, Li W, Hu Y, Zhang D, Tian L, Xu H, Zhang F, Xiao B, Shi Y, Chen Y, Liao X, Ma K, Chen L. Hydroxyacyl-coenzyme A dehydrogenase: A biomarker for authentication of death from mechanical asphyxia. Forensic Sci Int 2025; 367:112371. [PMID: 39879859 DOI: 10.1016/j.forsciint.2025.112371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025]
Abstract
Death from mechanical asphyxia (DMA) refers to death from acute respiratory disorder caused by mechanical violence. Due to the absence of characteristic signs in corpses, it has been rather challenging to achieve the precise authentication of DMA. In this research, human pulmonary samples were collected and grouped according to different causes of death in search of potential biomarkers of DMA. Hydroxyacyl-CoA dehydrogenase (HADH) was identified significantly up-regulated in DMA group. Cell experiments were conducted to figure out the mechanism of the up-regulation of HADH. According to the results, we assumed acute and severe hypoxia caused by mechanical asphyxia contributed to the expression change of HADH, which could be a self-saving reaction of cells that are forced to adjust energy metabolism. Generally, HADH can be biomarker of DMA and help the precise authentication of DMA.
Collapse
Affiliation(s)
- Tianpu Wu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai 200032, PR China
| | - Wencan Li
- Institute of Criminal Scientific Technology, Pudong Branch, Shanghai Municipal Public Security Bureau, 1800 Kangqiao Road, Shanghai 200125, PR China
| | - Yikai Hu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai 200032, PR China
| | - Dongchuan Zhang
- Forensic Laboratory, Institute of Criminal Science and Technology, Shanghai Municipal Public Security Bureau, 803 Zhongshan North 1st Road, Shanghai 200083, PR China
| | - Lu Tian
- Institute of Criminal Scientific Technology, Pudong Branch, Shanghai Municipal Public Security Bureau, 1800 Kangqiao Road, Shanghai 200125, PR China
| | - Hongmei Xu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai 200032, PR China
| | - Fu Zhang
- Key Laboratory of Forensic Pathology, Guangdong Provincial Public Security Department, 97 Huanghua Road, Guangzhou 510050, PR China
| | - Bi Xiao
- Forensic Laboratory, Institute of Criminal Science and Technology, Shanghai Municipal Public Security Bureau, 803 Zhongshan North 1st Road, Shanghai 200083, PR China
| | - Yi Shi
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai 200032, PR China
| | - Yue Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai 200032, PR China
| | - Xinbiao Liao
- Key Laboratory of Forensic Pathology, Guangdong Provincial Public Security Department, 97 Huanghua Road, Guangzhou 510050, PR China.
| | - Kaijun Ma
- Forensic Laboratory, Institute of Criminal Science and Technology, Shanghai Municipal Public Security Bureau, 803 Zhongshan North 1st Road, Shanghai 200083, PR China.
| | - Long Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai 200032, PR China.
| |
Collapse
|
17
|
Philip JL, Caneba CA, Caggiano LR, Prakash N, Cheng TC, Barlow KA, Mustafa T, Tabima DM, Hacker TA, Masters KS, Chesler NC. Hypoxia modulates human pulmonary arterial adventitial fibroblast phenotype through HIF-1α activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635152. [PMID: 39975245 PMCID: PMC11838261 DOI: 10.1101/2025.01.27.635152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hypoxic pulmonary hypertension (HPH) develops in association with diseases characterized by low oxygen levels leading to pulmonary artery (PA) narrowing and death. Hypoxia has been linked to increased PA collagen and changes in PA adventitial fibroblast (PAAF) metabolism. However, the mechanisms by which hypoxia regulates PAAF function are unknown. Hypoxia-inducible factor-1α (HIF-1α) is a subunit of a transcription factor that is degraded in normoxia but stabilized in hypoxia and is involved in extracellular matrix remodeling by fibroblasts. We examined the role of hypoxia and HIF-1α in regulating PAAF function. Human PAAF (HPAAF) were cultured in normoxic and hypoxic conditions. Cells were further treated with HIF1-α inhibitor or no drug. Protein expression, mRNA expression, enzyme activity, and metabolite concentration were examined. Male C57BL6/J mice were exposed to 0 or 10 days of hypoxia after which right ventricular hemodynamics and tissue metabolism were assessed. Hypoxia led to an increase in collagen content and decrease in matrix metalloproteinase-2 (MMP2) activity. HIF-1α inhibition limited collagen accumulation and restored MMP2 activity. HPAAF demonstrated elevated lactic acid concentration and decreased ATP in hypoxia. HIF-1α inhibition blunted these effects. Mice exposed to hypoxia developed significant elevation in right ventricle systolic pressures and had decreased ATP levels in pulmonary tissue. This study investigated the mechanisms by which hypoxia drives HPAAF-mediated collagen accumulation and metabolic changes. We identify the key role of HIF-1α in regulating changes. These findings provide important insights into understanding HPAAF-mediated PA remodeling and help identify possible novel therapeutic targets.
Collapse
|
18
|
Zhang Y, Lv P, Zhang Q, Xiang W, Jiang X, Guo Z, Zhang T. Exosomal miR-21-5p from glioma associated mesenchymal stem cells promotes the progression and glycolysis of glioblastoma via PDHA1. Sci Rep 2025; 15:2320. [PMID: 39833311 PMCID: PMC11747265 DOI: 10.1038/s41598-025-86580-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Glioblastoma (GBM) is highly malignant and grows rapidly, and there is currently a lack of effective treatments. Metabolism provides the basis for the occurrence and development of GBM. Pyruvate dehydrogenase A1 (PDHA1) is a key component in both the tricarboxylic acid cycle and glycolysis, playing an important role in the metabolic processes related to cancer, but its role in GBM remains unclear. Glioma associated mesenchymal stem cells (GaMSC) play a significant role in the development of glioma. This study aims to explore the relationship between GaMSC derived exosomes (GAMSC-EXO) and PDHA1, as well as the effects and mechanisms on GBM glucose metabolism. In this study, human GaMSC-derived exosomes were isolated and identified. The role of GAMSC-EXO in GBM proliferation, migration, invasion and glucose metabolism was investigated. The upstream miRNA of PDHA1 was predicted and the relationship between miR-21-5p and PDHA1 in GAMSC-EXO and its effect on GBM glucose metabolism was investigated. We found that GAMSCs promote GBM cell proliferation, migration, invasion and glycolysis by releasing exosomes. After inhibiting GBM glycolysis, GBM proliferation, migration and invasion abilities were weakened. MiR-21-5p in exosomes was identified as the miRNA that affects the above biological behaviors. Mechanismly, miR-21-5p directly binds to the mRNA of PDHA1 and downregulates its transcription, thereby promoting GBM glycolysis. Together, this study demonstrated that exosomal miR-21-5p from GAMSC promoted GBM proliferation, migration, invasion, and glycolysis by targeting PDHA1, which provided novel insights into the metabolic interactions between GAMSCs and GBM cells, emphasizing the importance of exosome-mediated communication in tumor progression.
Collapse
Affiliation(s)
- Yanbin Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Lv
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qing Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zijun Guo
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China.
| | - Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
19
|
Minchenko OH, Hrebennykova VO, Viletska YM, Hnatiuk OS, Sliusar MY, Kozynkevych HE, Minchenko DO. The ERN1 signaling pathway of unfolded protein controls the expression of EDEM1 and its hypoxic regulation in glioblastoma cells. Endocr Regul 2025; 59:1-9. [PMID: 40073403 DOI: 10.2478/enr-2025-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Objective. For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion. The present study aims to investigate the regulation of the EDEM1 gene expression in U87MG glioblastoma cells by hypoxia and glucose or glutamine deprivations depending on the knockdown of ERN1 (endoplasmic reticulum to nucleus signaling 1) with the intent to reveal the role of ERN1 signaling in the regulation of this gene expression and function in tumorigenesis. Methods. The U87MG glioblastoma cells (transfected by an empty vector; control) and ERN1 knockdown cells with inhibited ERN1 endoribonuclease and protein kinase (dnERN1) or only ERN1 endoribonuclease (dnrERN1) were used. Hypoxia was introduced by dimethyloxalylglycine (4 h). For glucose and glutamine deprivations, the cells were exposed to DMEM medium without glucose and glutamine, respectively, for 16 h. The expression level of the EDEM1 gene was studied by quantitative RT-PCR and normalized to the ACTB mRNA. Results. It was found that inhibition of endoribonuclease and protein kinase activities of ERN1 led to down-regulation of EDEM1 gene expression in glioblastoma cells. Moreover, the expression of this gene was also decreased after silencing ERN1 in glioblastoma cells. At the same time, the expression of EDEM1 gene did not significantly change in cells with inhibited ERN1 endoribonuclease only. The expression of the EDEM1 gene was increased under hypoxia in control U87MG cells, but resistant to hypoxia in cells with ERN1 knockdown. Furthermore, the expression of this gene was up-regulated under glucose and glutamine deprivations in control glioblastoma cells. However, the ERN1 knockdown increased the sensitivity of EDEM1 gene expression to glucose and decreased to glutamine deprivations. Conclusion. The results of the present study demonstrate that inhibition of ERN1 down-regulated the expression of the EDEM1 gene through protein kinase activity of ERN1 and that the regulation of this gene expression by hypoxia and nutrient supply, especially glucose, is differently controlled by ERN1 in glioblastoma cells.
Collapse
Affiliation(s)
- Oleksandr H Minchenko
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vita O Hrebennykova
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliia M Viletska
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oksana S Hnatiuk
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Myroslava Y Sliusar
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Halyna E Kozynkevych
- 2Department of Pediatrics, National Bohomolets Medical University, Kyiv, Ukraine
| | - Dmytro O Minchenko
- 1Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- 2Department of Pediatrics, National Bohomolets Medical University, Kyiv, Ukraine
| |
Collapse
|
20
|
Minchenko OH, Abramchuk AI, Khikhlo YP, Sliusar MY, Halkin OV, Luzina OY, Danilovsryi SV, Viletska YM, Minchenko DO. Hydrocortisone interacts with endoplasmic reticulum stress in hypoxic regulation of phosphoserine aminotransferase 1 gene expression differently in normal human astrocytes and glioblastoma cells. Endocr Regul 2025; 59:48-56. [PMID: 40258222 DOI: 10.2478/enr-2025-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2025] Open
Abstract
Objective. Endoplasmic reticulum (ER) stress and hypoxia are key factors for the effective growth of malignant tumors, including glioblastoma. The phosphoserine aminotransferase 1 (PSAT1) is an ER stress-responsive enzyme responsible for serine synthesis and necessary for tumor cell proliferation. The present study aims to investigate the regulation of the PSAT1 gene expression in U87MG glioblastoma cells and normal human astrocytes by ER stress and hypoxia depending on hydrocortisone, a native stress hormone used for co-treatment of glioblastoma and other malignant tumors. Methods. The U87MG glioblastoma cells and normal human astrocytes were used. Hypoxia was introduced by dimethyloxalylglycine. Tunicamycin was used for the induction of ER stress. Further, the cells were treated with hydrocortisone. RNA was extracted from cells after 4 h exposure to hydrocortisone, tunicamycin, and hypoxia. The expression level of the PSAT1 gene was studied by quantitative RT-PCR and normalized to ACTB mRNA. Results. We found that treatment of normal human astrocytes with hydrocortisone resulted in a decreased expression of the PSAT1 gene, but its expression in glioblastoma cells was resistant to this hormone action. However, hypoxia did not significantly change the expression of the PSAT1 gene in normal astrocytes, but strongly modified the effect of hydrocortisone on this gene expression. At the same time, hypoxia increased the expression of the PSAT1 gene in glioblastoma cells independently of hydrocortisone. Tunicamycin decreased the expression of this gene in normal astrocytes, but increased it in glioblastoma cells. In addition, the impact of tunicamycin on PSAT1 gene expression was suppressed by hypoxia in both normal astrocytes and glioblastoma cells and by hydrocortisone only in normal astrocytes. At the same time, the combined effect of hypoxia and hydrocortisone greatly enhanced the expression of the PSAT1 gene in tunicamycin-treated normal astrocytes and especially glioblastoma cells. Conclusion. The results of this study showed that hydrocortisone differentially controls the regulation of PSAT1 gene expression by ER stress and hypoxia in normal astrocytes and glioblastoma cells and that the combined effect of hydrocortisone and hypoxia greatly enhanced PSAT1 gene expression in tunicamycin-treated cells.
Collapse
Affiliation(s)
- Oleksandr H Minchenko
- 1Department of Molecular Biology, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Anastasiia I Abramchuk
- 1Department of Molecular Biology, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yevgen P Khikhlo
- 1Department of Molecular Biology, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Myroslava Y Sliusar
- 1Department of Molecular Biology, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oleh V Halkin
- 1Department of Molecular Biology, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olha Y Luzina
- 1Department of Molecular Biology, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Serhiy V Danilovsryi
- 1Department of Molecular Biology, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliia M Viletska
- 1Department of Molecular Biology, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro O Minchenko
- 2Department of Pediatrics, National Bohomolets Medical University, Kyiv, Ukraine
| |
Collapse
|
21
|
Zhang J, Li N, Hu X. Metabolic Reprograming of Macrophages: A New Direction in Traditional Chinese Medicine for Treating Liver Failure. J Immunol Res 2024; 2024:5891381. [PMID: 39741958 PMCID: PMC11688140 DOI: 10.1155/jimr/5891381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/03/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Acute liver failure (ALF) is a fulminant clinical syndrome that usually leads to multiple organ failure and high mortality. Macrophages play a crucial role in the initiation, development, and recovery of ALF. Targeting macrophages through immunotherapy holds significant promise as a therapeutic strategy. These cells exhibit remarkable plasticity, enabling them to differentiate into various subtypes based on changes in their surrounding microenvironment. M1-type macrophages are associated with a pro-inflammatory phenotype and primarily rely predominantly on glycolysis. In contrast, M2-type macrophages, which are characterized by anti-inflammatory phenotype, predominantly obtain their energy from oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO). Shifting macrophage metabolism from glycolysis to OXPHOS inhibits M1 macrophage activation and promotes M2 macrophage activation, thereby exerting anti-inflammatory and reparative effects. This study elucidates the relationship between macrophage activation and glucose metabolism reprograming from an immunometabolism perspective. A comprehensive literature review revealed that several signaling pathways may regulate macrophage polarization through energy metabolism, including phosphatidyl-inositol 3-kinase/protein kinase B (PI3K/AKT), mammalian target of rapamycin (mTOR)/hypoxia-inducible factor 1α (HIF-1α), nuclear factor-κB (NF-κB), and AMP-activated protein kinase (AMPK), which exhibit crosstalk with one another. Additionally, we systematically reviewed several traditional Chinese medicine (TCM) monomers that can modulate glucose metabolism reprograming and influence the polarization states of M1 and M2 macrophages. This review aimed to provide valuable insights that could contribute to the development of new therapies or drugs for ALF.
Collapse
Affiliation(s)
- Junli Zhang
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Li M, Tong F, Wu B, Dong X. Radiation-Induced Brain Injury: Mechanistic Insights and the Promise of Gut-Brain Axis Therapies. Brain Sci 2024; 14:1295. [PMID: 39766494 PMCID: PMC11674909 DOI: 10.3390/brainsci14121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Radiation therapy is widely recognized as an efficacious modality for treating neoplasms located within the craniofacial region. Nevertheless, this approach is not devoid of risks, predominantly concerning potential harm to the neural structures. Adverse effects may encompass focal cerebral necrosis, cognitive function compromise, cerebrovascular pathology, spinal cord injury, and detriment to the neural fibers constituting the brachial plexus. With increasing survival rates among oncology patients, evaluating post-treatment quality of life has become crucial in assessing the benefits of radiation therapy. Consequently, it is imperative to investigate therapeutic strategies to mitigate cerebral complications from radiation exposure. Current management of radiation-induced cerebral damage involves corticosteroids and bevacizumab, with preclinical research on antioxidants and thalidomide. Despite these efforts, an optimal treatment remains elusive. Recent studies suggest the gut microbiota's involvement in neurologic pathologies. This review aims to discuss the causes and existing treatments for radiation-induced cerebral injury and explore gut microbiota modulation as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Mengting Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
23
|
Wang M, Li J, Liu J, Huang Y, Yang L, Zhu C, Zhang Y, Gui X, Peng H, Chu M. Smart nanozymes coupled with dynamic magnet field and laser exposures for cancer therapy. J Colloid Interface Sci 2024; 676:110-126. [PMID: 39018804 DOI: 10.1016/j.jcis.2024.07.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Developing nanozymes for cancer therapy has attracted great attention from researchers. However, enzymes-loaded magnetic particles triggered by both a low-frequency vibrating magnetic field (VMF) and laser for inhibiting tumor growth have never been reported. Herein, we developed a magnetic nanozyme with 3D flower-like nanostructures for cancer therapy. Specifically, the flower-like nanozymes exposed to a VMF could efficiently damage the mitochondrial membrane and cell structure, and inhibit tumor growth through magneto-mechanical force. In parallel, magnetic nanozymes in a weak acid environment containing glucose could generate abundant hydrogen peroxide through glucose oxidase-catalyzed oxidation of glucose, and further significantly promote the Fenton reaction. Interestingly, both glucose oxidase- and Fenton-based catalytic reactions were significantly promoted by the VMF exposure. Flower-like magnetic nanospheres upon a near-infrared laser irradiation could also damage cancer cells and tumor tissues through photothermal effect. The cell-killing efficiency of magnetic nanozymes triggered by the VMF or laser significantly increased in comparison with that of nanozymes without exposures. Mouse tumors grown after injection with magnetic nanozymes was inhibited in a significant way or the tumors disappeared after exposure to a VMF and laser due to the synergistic effect of four major stimuli, viz., magneto-mechanical force, photothermal conversion, improved Fenton reaction, and intratumoral glucose consumption-based starvation effect. This is a great platform that may be suitable for treating many solid tumors.
Collapse
Affiliation(s)
- Manyu Wang
- Research Center for Translational Medicine at Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Li
- Research Center for Translational Medicine at Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jie Liu
- Research Center for Translational Medicine at Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqiao Huang
- Research Center for Translational Medicine at Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Letao Yang
- Research Center for Translational Medicine at Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chunjiao Zhu
- Research Center for Translational Medicine at Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yilong Zhang
- Research Center for Translational Medicine at Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xin Gui
- Research Center for Translational Medicine at Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Haisheng Peng
- School of Medicine, Shaoxing University, Shaoxing 312099, China
| | - Maoquan Chu
- Research Center for Translational Medicine at Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
24
|
Chen F, Xue Y, Zhang W, Zhou H, Zhou Z, Chen T, YinWang E, Li H, Ye Z, Gao J, Wang S. The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy. Cancer Metastasis Rev 2024; 43:1419-1443. [PMID: 39307891 PMCID: PMC11554835 DOI: 10.1007/s10555-024-10211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Mitochondria are central actors in diverse physiological phenomena ranging from energy metabolism to stress signaling and immune modulation. Accumulating scientific evidence points to the critical involvement of specific mitochondrial-associated events, including mitochondrial quality control, intercellular mitochondrial transfer, and mitochondrial genetics, in potentiating the metastatic cascade of neoplastic cells. Furthermore, numerous recent studies have consistently emphasized the highly significant role mitochondria play in coordinating the regulation of tumor-infiltrating immune cells and immunotherapeutic interventions. This review provides a comprehensive and rigorous scholarly investigation of this subject matter, exploring the intricate mechanisms by which mitochondria contribute to tumor metastasis and examining the progress of mitochondria-targeted cancer therapies.
Collapse
Affiliation(s)
- Fanglu Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiyi Zhou
- The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy YinWang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Khan ZF, Rathi A, Khan A, Anjum F, Chaudhury A, Taiyab A, Shamsi A, Hassan MI. Exploring PDK3 inhibition in lung cancer through drug repurposing for potential therapeutic interventions. Sci Rep 2024; 14:29672. [PMID: 39613779 DOI: 10.1038/s41598-024-78022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024] Open
Abstract
The pyruvate dehydrogenase kinase-3 (PDK3) plays an important role in the regulation of a variety of cancers, including lung, by inhibiting the pyruvate dehydrogenase complex (PDC), shifting energy production towards glycolysis necessary for cancer metabolism. In this study, we aimed to identify potential PDK3 inhibitors using a computer-based drug design approach. Virtual screening of the FDA-approved library of 3839 compounds was carried out, from which Bagrosin and Dehydrocholic acid appeared best due to their strong binding affinity, specific interactions, and potential biological characteristics, and thus were selected for further investigations. Both compounds show strong interactions with functionally important residues of the PDK3 with a binding affinity of - 10.6 and - 10.5 kcal/mol for Bagrosin and Dehydrocholic acid, respectively. MD simulation studies for 100 ns suggest the formation of stable complexes, which is evident from RMSD, RMSF, Rg, and SASA parameters. The PCA and FEL analysis suggested admirable global energy minima for the bagrosin-PDK3 and dehydrocholic acid-PDK3 complexes. Finally, we identified FDA-approved drugs, Bagrosin and Dehydrocholic acid, that offer valuable resources and potential therapeutic molecules for targeting lung cancer. Further clinical investigations are required to validate the clinical utility of selected molecules.
Collapse
Affiliation(s)
- Zeba Firdos Khan
- Department of Biosciences, Faculty of Life Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Aanchal Rathi
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Afreen Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Arunabh Chaudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
26
|
Khedr MA, Mohamed Z, El-Derby AM, Soliman MM, Edris AAF, Badr E, El-Badri N. Development of hepatocellular carcinoma organoid model recapitulating HIF-1A metabolic signature. Clin Exp Med 2024; 25:9. [PMID: 39567394 PMCID: PMC11579110 DOI: 10.1007/s10238-024-01521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Hypoxia is one of the main hallmarks of hepatocellular carcinoma (HCC) resulting from improper oxygenation and insufficient nourishment of the HCC microenvironment. The effect of hypoxia is mediated by hypoxia-inducible factor-1A (HIF-1A) via targeting various downstream pathways, including glycolysis, angiogenesis, and survival signaling. However, HCC cell lines in a 2-dimensional (2D) setting do not resemble the metabolic signature of HCC. Here we aim to overcome these limitations by developing an HCC organoid that recapitulates the HIF-1A metabolic shift. The enrichment analysis of the RNA-Seq data revealed that HIF-1A-driven glycolytic shift is of the significant pathways. The established organoid model, using xeno-free plasma-derived extracellular matrix (ECM) as a scaffold and nutritive biomatrix, maintained its structural integrity and viability for up to 14 days; the comparative analysis of the cobalt (II) chloride (CoCl2)-treated organoids to the untreated ones unveiled reduced size and proliferative capacity. Interestingly, our organoid model showed an elevated expression of HIF-1A and glycolysis enzymes compared to their counterparts in the CoCl2-treated organoids. HIF-1A molecular expression-translated biochemical signature is further assessed in our spontaneously growing organoids showing an increase in glucose uptake, intracellular pyruvate, extracellular lactate dehydrogenase expression, and extracellular lactate production, while hydrogen peroxide (H2O2), a marker for oxidative metabolism, is reduced. Our data confirmed the potency of the established organoid model to mimic the molecular and biochemical HIF-1A-driven metabolism, which validates its potential use as an in vitro HCC model. Our model naturally simulates hypoxic conditions and simultaneous HIF-1A-dependent glycolysis within HCC rather than using of CoCl2-induced hypoxic conditions.
Collapse
Affiliation(s)
- Mennatallah A Khedr
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Zainab Mohamed
- University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Malak M Soliman
- Bioinformatics Group, Center for Informatics Science (CIS), School of Information Technology and Computer Science, Nile University, Giza, 12588, Egypt
| | - Amira Abdel Fattah Edris
- Department of Pediatrics, Cairo University, Cairo, 11956, Egypt
- Faculty of Medicine, Kasr Al Ainy, Cairo University, Giza, 3240020, Egypt
| | - Eman Badr
- University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Computers and Artificial Intelligence, Cairo University, Giza, 12613, Egypt.
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt.
- University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt.
| |
Collapse
|
27
|
Pinho S, Coelho JMP, Gaspar MM, Reis CP. Advances in localized prostate cancer: A special focus on photothermal therapy. Eur J Pharmacol 2024; 983:176982. [PMID: 39260812 DOI: 10.1016/j.ejphar.2024.176982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Prostate cancer (PCa) is a high prevalence disease, per 10000 habitants, that tends to increase with age. This pathology is difficult to detect at an early stage due to the absence of symptoms, hence the importance of monitoring signs for early detection. This disease can be detected by various methods, including plasmatic levels of prostate-specific antigen (PSA) and rectal touch, with biopsy being necessary to confirm the diagnosis. Patients affected by prostate cancer can have localized or advanced disease. There are conventional approaches that have been used as a reference in localized cancer, such as active surveillance, surgery, or radiotherapy. However, the adverse effects might vary and, sometimes, they can be permanent. An overview about the innovative therapeutic approaches to improve outcomes in terms of both tumor remission and side effects for localized PCa is presented. In case of emerging light-based treatment strategies, they aimed at ablating tumor tissue by inducing an external light are non-invasive, localized and, considerably, they are able to reduce lesions in peripheral tissues. One is photodynamic therapy (PDT) and it involves the photooxidation of molecules culminating in the formation of reactive oxygen species (ROS), inducing cell death. On the other hand, photothermal therapy (PTT) is based on inducing hyperthermia in cancer cells by irradiating them with beams of light at a specific wavelength. To improve the heat generated, gold nanoparticles (AuNPs) have those desirable characteristics that have drawn attention to PTT. Various studies point to AuNPs as efficient nanomaterials in PTT for the treatment of tumors, including prostate cancer. This review includes the most representative advances in this research field, dated from 1998 to 2023. It is noticed that several advances have been made and the way to find the effective treatment without impacting adverse side effects is shorter.
Collapse
Affiliation(s)
- Sara Pinho
- Research Institute for Medicines, IMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - João M P Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, IMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, IMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
28
|
Kennedy PR, Arvindam US, Phung SK, Ettestad B, Feng X, Li Y, Kile QM, Hinderlie P, Khaw M, Huang RS, Kaufman M, Puchalska P, Russell A, Butler J, Abbott L, McClure P, Luo X, Lu QT, Blazar BR, Crawford PA, Lim J, Miller JS, Felices M. Metabolic programs drive function of therapeutic NK cells in hypoxic tumor environments. SCIENCE ADVANCES 2024; 10:eadn1849. [PMID: 39475618 PMCID: PMC11524192 DOI: 10.1126/sciadv.adn1849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/24/2024] [Indexed: 11/02/2024]
Abstract
Limited oxygen (hypoxia) in solid tumors poses a challenge to successful immunotherapy with natural killer (NK) cells. NK cells have impaired cytotoxicity when cultured in hypoxia (1% oxygen) but not physiologic (>5%) or atmospheric oxygen (20%). We found that changes to cytotoxicity were regulated at the transcriptional level and accompanied by metabolic dysregulation. Dosing with interleukin-15 (IL-15) enhanced NK cell cytotoxicity in hypoxia, but preactivation with feeder cells bearing IL-21 and 4-1BBL was even better. Preactivation resulted in less perturbed metabolism in hypoxia; greater resistance to oxidative stress; and no hypoxia-induced loss of transcription factors (T-bet and Eomes), activating receptors, adhesion molecules (CD2), and cytotoxic proteins (TRAIL and FasL). There remained a deficit in CD122/IL-2Rβ when exposed to hypoxia, which affected IL-15 signaling. However, tri-specific killer engager molecules that deliver IL-15 in the context of anti-CD16/FcγRIII were able to bypass this deficit, enhancing cytotoxicity of both fresh and preactivated NK cells in hypoxia.
Collapse
Affiliation(s)
- Philippa R. Kennedy
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Upasana Sunil Arvindam
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Shee Kwan Phung
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Brianna Ettestad
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Yunmin Li
- Xcell Biosciences, San Francisco, CA, USA
| | - Quinlan M. Kile
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Peter Hinderlie
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Melissa Khaw
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rih-Sheng Huang
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Marissa Kaufman
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Amanda Russell
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Jonah Butler
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lucas Abbott
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Paul McClure
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Xianghua Luo
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | | - Bruce R. Blazar
- Division of Pediatric Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Peter A. Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James Lim
- Xcell Biosciences, San Francisco, CA, USA
| | - Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
29
|
Li S, Mo J, Fang Y, Chen X, Chen M, Wang S, Li H, Ning Z. Macrophage migration inhibitory factor facilitates replication of Senecavirus A by enhancing the glycolysis via hypoxia inducible factor 1 alpha. Int J Biol Macromol 2024; 281:136197. [PMID: 39366597 DOI: 10.1016/j.ijbiomac.2024.136197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Senecavirus A (SVA) induced porcine idiopathic vesicular disease (PIVD) has been spread worldwide due to persistent infection, causing economic losses in swine industry. Host factors play an important role in replication of SVA, while, the interaction of migration inhibitory factor (MIF) and the virus has not been verified. Here, MIF facilitates the replication of SVA by enhancing the glycolysis via hypoxia-inducible factor alpha (HIF-1α) was reported. SVA infection up-regulates the expression of MIF in 3D4/21 cells, and infection experiment of cells with overexpression and interference expression of MIF showed that MIF facilitates the replication of SVA. MIF promoted the glycolysis in SVA infection to facilitate its replication by enhancing the accumulation of lactate and decreasing the production of adenosine triphosphate (ATP) and inhibiting the expression of retinoic acid-inducible gene I (RIG-I), mitochondrial antiviral-signaling protein (MAVS), interferon regulatory factor 3 (IRF3), interferon-beta (IFN-β), IFN-α, interferon-stimulating gene 15 (ISG15), and ISG56. Meanwhile, specific inhibitor verified MIF facilitates the replication of SVA by enhancing glycolysis. Further results showed MIF induces the increased expression of HIF-1α, which enhances MIF-induced glycolysis. These results provide new data on host factors in replication of SVA, as well as better understanding the role of MIF in virus infection.
Collapse
Affiliation(s)
- Shuo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiacong Mo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yinxiang Fang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xijiao Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shishi Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Huizi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China.
| |
Collapse
|
30
|
Rezaeian AH, Wei W. Molecular signaling and clinical implications in the human aging-cancer cycle. Semin Cancer Biol 2024; 106-107:28-42. [PMID: 39197809 PMCID: PMC11625621 DOI: 10.1016/j.semcancer.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024]
Abstract
It is well documented that aging is associated with cancer, and likewise, cancer survivors display accelerated aging. As the number of aging individuals and cancer survivors continues to grow, it raises additional concerns across society. Therefore, unraveling the molecular mechanisms of aging in tissues is essential to developing effective therapies to fight the aging and cancer diseases in cancer survivors and cancer patients. Indeed, cellular senescence is a critical response, or a natural barrier to suppress the transition of normal cells into cancer cells, however, hypoxia which is physiologically required to maintain the stem cell niche, is increased by aging and inhibits senescence in tissues. Interestingly, oxygen restriction or hypoxia increases longevity and slows the aging process in humans, but hypoxia can also drive angiogenesis to facilitate cancer progression. In addition, cancer treatment is considered as one of the major reasons that drive cellular senescence, subsequently followed by accelerated aging. Several clinical trials have recently evaluated inhibitors to eliminate senescent cells. However, some mechanisms of aging typically can also retard cancer cell growth and progression, which might require careful strategy for better clinical outcomes. Here we describe the molecular regulation of aging and cancer in crosstalk with DNA damage and hypoxia signaling pathways in cancer patients and cancer survivors. We also update several therapeutic strategies that might be critical in reversing the cancer treatment-associated aging process.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
31
|
Lara J, Mastela C, Abd M, Pitstick L, Ventrella R. Tail Tales: What We Have Learned About Regeneration from Xenopus Laevis Tadpoles. Int J Mol Sci 2024; 25:11597. [PMID: 39519148 PMCID: PMC11547152 DOI: 10.3390/ijms252111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the regenerative capacity of Xenopus laevis, focusing on tail regeneration, as a model to uncover cellular, molecular, and developmental mechanisms underlying tissue repair. X. laevis tadpoles provide unique insights into regenerative biology due to their regeneration-competent and -incompetent stages and ability to regrow complex structures in the tail, including the spinal cord, muscle, and skin, after amputation. The review delves into the roles of key signaling pathways, such as those involving reactive oxygen species (ROS) and signaling molecules like BMPs and FGFs, in orchestrating cellular responses during regeneration. It also examines how mechanotransduction, epigenetic regulation, and metabolic shifts influence tissue restoration. Comparisons of regenerative capacity with other species shed light on the evolutionary loss of regenerative abilities and underscore X. laevis as an invaluable model for understanding the constraints of tissue repair in higher organisms. This comprehensive review synthesizes recent findings, suggesting future directions for exploring regeneration mechanisms, with potential implications for advancing regenerative medicine.
Collapse
Affiliation(s)
- Jessica Lara
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Camilla Mastela
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Magda Abd
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Lenore Pitstick
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Rosa Ventrella
- Precision Medicine Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
32
|
Li J, Li B, Liu F, Deng M, Zhang Z, Ran Y, Wang B. A multifunctional nanosystem catalyzed by cascading natural glucose oxidase and Fe 3O 4 nanozymes for synergistic chemodynamic and photodynamic cancer therapy. Acta Biomater 2024:S1742-7061(24)00617-2. [PMID: 39426656 DOI: 10.1016/j.actbio.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
The significance of the tumor microenvironment (TME) in tumor initiation and progression is increasingly acknowledged. Conventional therapeutic approaches face limitations within the complex TME, including the restrictions imposed by hypoxia on photodynamic therapy (PDT) and the deficiency of endogenous H₂O₂ affecting chemodynamic therapy (CDT). In response to the TME's characteristics of high metabolism, hypoxia, and weak acidity, a multifunctional nanosystem MNPs/GOD@CS/IR820, which synergistically integrates CDT and PDT, has been developed. This system can actively accumulate at tumor sites under an external magnetic field and release active components in response to the weakly acidic TME. It mitigates the limitations imposed by hypoxia and endogenous H₂O₂ deficiency on PDT and CDT, respectively, thereby enabling synergistic treatment. Additionally, the system's multimodal imaging capabilities facilitate precise tumor localization and real-time, non-invasive in vivo assessment via fluorescence imaging and MRI. In vitro and in vivo evaluations demonstrate significant antitumor efficacy, effectively inhibiting tumor growth and improving survival rates. By comprehensively addressing the challenges posed by the complex TME and enhancing real-time monitoring capabilities, our nanosystem paves the way for personalized and precise cancer treatment. STATEMENT OF SIGNIFICANCE: This study introduces an innovative MNPs/GOD@CS/IR820 nanosystem that represents a significant advancement in cancer nanomedicine by addressing critical limitations of conventional photodynamic therapy (PDT), particularly in hypoxic tumor microenvironments. By synergistically integrating chemodynamic therapy (CDT) with PDT and incorporating MRI and fluorescence dual-modal imaging capabilities, this multifunctional platform offers enhanced therapeutic efficacy and real-time monitoring. The system's ability to generate oxygen in situ overcomes hypoxia-induced limitations, while its multimodal mechanism of action induces tumor cell apoptosis through multiple pathways. In vitro and in vivo studies demonstrate remarkable antitumor efficacy across diverse cancer types, significantly inhibiting tumor growth and improving survival rates. This comprehensive approach to cancer diagnosis and treatment not only advances precision medicine for targeted, multimodal cancer management but also provides a promising foundation for future clinical applications, potentially transforming cancer treatment strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Jiale Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 30018, China
| | - Bo Li
- Department of Radiology, West China Hospital, Sichuan University, Wuhou District, Chengdu City, Sichuan 610041, China
| | - Feng Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 30018, China
| | - Ming Deng
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 30018, China
| | - Ziying Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 30018, China
| | - Yutao Ran
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 30018, China
| | - Bing Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 30018, China.
| |
Collapse
|
33
|
Zhang R, Li C, Zhang S, Kong L, Liu Z, Guo Y, Sun Y, Zhang C, Yong Y, Lv J, Lu M, Liu M, Wu D, Zhang T, Yang H, Wei D, Chen Z, Bian H. UBE2S promotes glycolysis in hepatocellular carcinoma by enhancing E3 enzyme-independent polyubiquitination of VHL. Clin Mol Hepatol 2024; 30:771-792. [PMID: 38915206 PMCID: PMC11540382 DOI: 10.3350/cmh.2024.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND/AIMS Ubiquitination is widely involved in the progression of hepatocellular carcinoma (HCC) by regulating various cellular processes. However, systematic strategies for screening core ubiquitin-related genes, clarifying their functions and mechanisms, and ultimately developing potential therapeutics for patients with HCC are still lacking. METHODS Cox and LASSO regression analyses were performed to construct a ubiquitin-related gene prediction model for HCC. Loss- and gain-of-function studies, transcriptomic and metabolomics analysis were used to explore the function and mechanism of UBE2S on HCC cell glycolysis and growth. RESULTS Based on 1,423 ubiquitin-related genes, a four-gene signature was successfully constructed to evaluate the prognosis of patients with HCC. UBE2S was identified in this signature with the potential to predict the survival of patients with HCC. E2F2 transcriptionally upregulated UBE2S expression by directly binding to its promoter. UBE2S positively regulated glycolysis in a HIF-1α-dependent manner, thus promoting the proliferation of HCC cells. Mechanistically, UBE2S enhanced K11-linkage polyubiquitination at lysine residues 171 and 196 of VHL independent of E3 ligase, thereby indirectly stabilizing HIF-1α protein levels by mediating the degradation of VHL by the proteasome. In particular, the combination of cephalomannine, a small molecule compound that inhibits the expression of UBE2S, and PX-478, an inhibitor of HIF-1α, significantly improved the anti-tumor efficacy. CONCLUSION UBE2S is identified as a key biomarker in HCC among the thousands of ubiquitin-related genes and promotes glycolysis by E3 enzyme-independent ubiquitination, thus serving as a therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Renyu Zhang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Can Li
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Shuai Zhang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Lingmin Kong
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Zekun Liu
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Yixiao Guo
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Ying Sun
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Cong Zhang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Yule Yong
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Jianjun Lv
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Meng Lu
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Man Liu
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Dong Wu
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Tianjiao Zhang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Haijiao Yang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Ding Wei
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Zhinan Chen
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Huijie Bian
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| |
Collapse
|
34
|
Chen B, Jin K, Dong J, Cheng S, Kong L, Hu S, Chen Z, Lu J. Hypocretin-1/Hypocretin Receptor 1 Regulates Neuroplasticity and Cognitive Function through Hippocampal Lactate Homeostasis in Depressed Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405354. [PMID: 39119889 PMCID: PMC11481194 DOI: 10.1002/advs.202405354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Indexed: 08/10/2024]
Abstract
Cognitive dysfunction is not only a common symptom of major depressive disorder, but also a more common residual symptom after antidepressant treatment and a risk factor for chronic and recurrent disease. The disruption of hypocretin regulation is known to be associated with depression, however, their exact correlation is remains to be elucidated. Hypocretin-1 levels are increased in the plasma and hypothalamus from chronic unpredictable mild stress (CUMS) model mice. Excessive hypocretin-1 conducted with hypocretin receptor 1 (HCRTR1) reduced lactate production and brain-derived neurotrophic factor (BDNF) expression by hypoxia-inducible factor-1α (HIF-1α), thus impairing adult hippocampal neuroplasticity, and cognitive impairment in CUMS model. Subsequently, it is found that HCRTR1 antagonists can reverse these changes. The direct effect of hypocretin-1 on hippocampal lactate production and cognitive behavior is further confirmed by intraventricular injection of hypocretin-1 and microPET-CT in rats. In addition, these mechanisms are further validated in astrocytes and neurons in vitro. Moreover, these phenotypes and changes in molecules of lactate transport pathway can be duplicated by specifically knockdown of HCRTR1 in hippocampal astrocytes. In summary, the results provide molecular and functional insights for involvement of hypocretin-1-HCRTR1 in altered cognitive function in depression.
Collapse
Affiliation(s)
- Bing Chen
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Kangyu Jin
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Jingyi Dong
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Shangping Cheng
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Lingzhuo Kong
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Shaohua Hu
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Key Laboratory of Precision psychiatryHangzhou310003China
| | - Zuobing Chen
- Department of Rehabilitation MedicineThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Jing Lu
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Key Laboratory of Precision psychiatryHangzhou310003China
| |
Collapse
|
35
|
Guo X, Zheng B, Wang J, Zhao T, Zheng Y. Exploring the mechanism of action of Chinese medicine in regulating liver fibrosis based on the alteration of glucose metabolic pathways. Phytother Res 2024; 38:4865-4876. [PMID: 36433866 DOI: 10.1002/ptr.7667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022]
Abstract
In recent years, metabolic reprogramming in liver fibrosis has become a research hotspot in the field of liver fibrosis at home and abroad. Liver fibrosis is a pathological change caused by chronic liver injury from a variety of causes. Liver fibrosis is a common pathological feature of many chronic liver diseases such as chronic hepatitis B, non-alcoholic steatohepatitis, and autoimmune hepatitis, as well as the pathogenesis of the disease. The development of chronic liver disease into cirrhosis must go through the pathological process of liver fibrosis, in which hepatic stellate cells (HSC) play an important role. Following liver injury, HSC are activated and transdifferentiated into scar-forming myofibroblasts, which drive the trauma healing response and which rely on the deposition of collagen-rich extracellular matrix to maintain tissue integrity. This reaction will continue without strict control, which will lead to excessive accumulation of matrix and liver fibrosis. The mechanisms and clinical studies of liver fibrosis have been the focus of research in liver diseases. In recent years, several studies have revealed the mechanism of HSC metabolic reprogramming and the impact of this process on liver fibrosis, in which glucose metabolic reprogramming plays an important role in the activation of HSC, and it mainly meets the energy demand of HSC activation by upregulating glycolysis. Glycolysis is the process by which one molecule of glucose is broken down into two molecules of pyruvate and produces energy and lactate under anaerobic conditions. Various factors have been found to be involved in regulating the glycolytic process of HSC, including glucose transport, intracellular processing of glucose, exosome secretion, and lactate production, etc. Inhibition of the glycolytic process of HSC can be an effective strategy against liver fibrosis. Currently, the combined action of multiple targets and links of Chinese medicine such as turmeric, comfrey, rhubarb and scutellaria baicalensis against the mechanism of liver fibrosis can effectively improve or even reverse liver fibrosis. This paper summarizes that turmeric extract curcumin, comfrey extract comfreyin, rhubarb, Subtle yang yu yin granules, Scutellaria baicalensis extract oroxylin A and cardamom extract cardamomin affect liver fibrosis by regulating gluconeogenic reprogramming. Therefore, studying the mechanism of action of TCM in regulating liver fibrosis through reprogramming of glucose metabolism is promising to explore new methods and approaches for Chinese Medicine modernization research.
Collapse
Affiliation(s)
- Xinhua Guo
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Bowen Zheng
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, China
| | - Tiejian Zhao
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Yang Zheng
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
36
|
Adepu KK, Anishkin A, Adams SH, Chintapalli SV. A versatile delivery vehicle for cellular oxygen and fuels or metabolic sensor? A review and perspective on the functions of myoglobin. Physiol Rev 2024; 104:1611-1642. [PMID: 38696337 PMCID: PMC11495214 DOI: 10.1152/physrev.00031.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024] Open
Abstract
A canonical view of the primary physiological function of myoglobin (Mb) is that it is an oxygen (O2) storage protein supporting mitochondrial oxidative phosphorylation, especially as the tissue O2 partial pressure (Po2) drops and Mb off-loads O2. Besides O2 storage/transport, recent findings support functions for Mb in lipid trafficking and sequestration, interacting with cellular glycolytic metabolites such as lactate (LAC) and pyruvate (PYR), and "ectopic" expression in some types of cancer cells and in brown adipose tissue (BAT). Data from Mb knockout (Mb-/-) mice and biochemical models suggest additional metabolic roles for Mb, especially regulation of nitric oxide (NO) pools, modulation of BAT bioenergetics, thermogenesis, and lipid storage phenotypes. From these and other findings in the literature over many decades, Mb's function is not confined to delivering O2 in support of oxidative phosphorylation but may serve as an O2 sensor that modulates intracellular Po2- and NO-responsive molecular signaling pathways. This paradigm reflects a fundamental change in how oxidative metabolism and cell regulation are viewed in Mb-expressing cells such as skeletal muscle, heart, brown adipocytes, and select cancer cells. Here, we review historic and emerging views related to the physiological roles for Mb and present working models illustrating the possible importance of interactions between Mb, gases, and small-molecule metabolites in regulation of cell signaling and bioenergetics.
Collapse
Affiliation(s)
- Kiran Kumar Adepu
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, Maryland, United States
| | - Sean H Adams
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, United States
- Center for Alimentary and Metabolic Science, School of Medicine, University of California Davis, Sacramento, California, United States
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
37
|
Liu L, Pan Y, Ye L, Liang C, Mou X, Dong X, Cai Y. Optical functional nanomaterials for cancer photoimmunotherapy. Coord Chem Rev 2024; 517:216006. [DOI: 10.1016/j.ccr.2024.216006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
38
|
Twigger SA, Dominguez B, Porto V, Hacker L, Chalmers AJ, Breckenridge R, Treder M, Sedgwick AC, Dominguez F, Hammond EM. The activity of therapeutic molecular cluster Ag5 is dependent on oxygen level and HIF-1 mediated signalling. Redox Biol 2024; 76:103326. [PMID: 39180984 PMCID: PMC11388176 DOI: 10.1016/j.redox.2024.103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Regions of hypoxia occur in most solid tumours and are known to significantly impact therapy response and patient prognosis. Ag5 is a recently reported silver molecular cluster which inhibits both glutathione and thioredoxin signalling therefore limiting cellular antioxidant capacity. Ag5 treatment significantly reduces cell viability in a range of cancer cell lines with little to no impact on non-transformed cells. Characterisation of redox homeostasis in hypoxia demonstrated an increase in reactive oxygen species and glutathione albeit with different kinetics. Significant Ag5-mediated loss of viability was observed in a range of hypoxic conditions which mimic the tumour microenvironment however, this effect was reduced compared to normoxic conditions. Reduced sensitivity to Ag5 in hypoxia was attributed to HIF-1 mediated signalling to reduce PDH via PDK1/3 activity and changes in mitochondrial oxygen availability. Importantly, the addition of Ag5 significantly increased radiation-induced cell death in hypoxic conditions associated with radioresistance. Together, these data demonstrate Ag5 is a potent and cancer specific agent which could be used effectively in combination with radiotherapy.
Collapse
Affiliation(s)
- Sophie A Twigger
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Blanca Dominguez
- Department of physiology and CIMUS Universidade de Santiago de Compostela, Spain
| | - Vanesa Porto
- Department of physiology and CIMUS Universidade de Santiago de Compostela, Spain
| | - Lina Hacker
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | | | | - Adam C Sedgwick
- Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Fernando Dominguez
- Department of physiology and CIMUS Universidade de Santiago de Compostela, Spain
| | - Ester M Hammond
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
39
|
Han P, Liu X, He J, Han L, Li J. Overview of mechanisms and novel therapies on rheumatoid arthritis from a cellular perspective. Front Immunol 2024; 15:1461756. [PMID: 39376556 PMCID: PMC11456432 DOI: 10.3389/fimmu.2024.1461756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation of joints in response to autoimmune disorders. Once triggered, many factors were involved in the development of RA, including both cellular factors like osteoclasts, synovial fibroblasts, T cells, B cells, and soluble factors like interleukin-1 (IL-1), IL-6, IL-17 and tumor necrosis factor-α (TNF-α), etc. The complex interplay of those factors results in such pathological abnormality as synovial hyperplasia, bone injury and multi-joint inflammation. To treat this chronic life-affecting disease, the primary drugs used in easing the patient's symptoms are disease-modifying antirheumatic drugs (DMARDs). However, these traditional drugs could cause serious side effects, such as high blood pressure and stomach ulcers. Interestingly, recent discoveries on the pathogenesis of RA have led to various new kinds of drugs or therapeutic strategies. Therefore, we present a timely review of the latest development in this field, focusing on the cellular aspects of RA pathogenesis and new therapeutic methods in clinical application. Hopefully it can provide translational guide to the pre-clinical research and treatment for the autoimmune joint disease.
Collapse
Affiliation(s)
- Peng Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaoying Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jiang He
- Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Luyang Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
40
|
Tan M, Song B, Zhao X, Du J. The role and mechanism of compressive stress in tumor. Front Oncol 2024; 14:1459313. [PMID: 39351360 PMCID: PMC11439826 DOI: 10.3389/fonc.2024.1459313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Recent research has revealed the important role of mechanical forces in the initiation and progression of tumors. The interplay between mechanical and biochemical cues affects the function and behavior of tumor cells during the development of solid tumors, especially their metastatic potential. The compression force generated by excessive cell proliferation and the tumor microenvironment widely regulates the progression of solid tumor disease. Tumor cells can sense alterations in compressive stress through diverse mechanosensitive components and adapt their mechanical characteristics accordingly to adapt to environmental changes. Here, we summarize the current role of compressive stress in regulating tumor behavior and its biophysical mechanism from the mechanobiological direction.
Collapse
Affiliation(s)
- Min Tan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Bingqi Song
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xinbin Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Jing Du
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
41
|
Yang R, Yang F, Wei Y, Huang B, Cao T, Tan H, Liu D, Zou Q, Wen J, Wen L, Lu X, Yu C, Cai H, Xie X, Jiang S, Yao S, Liang Y. Hypoxia-induced Semaphorin 3A promotes the development of endometriosis through regulating macrophage polarization. Int Immunopharmacol 2024; 138:112559. [PMID: 38955028 DOI: 10.1016/j.intimp.2024.112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Semaphorin 3A (Sema3A) is a member of neural guidance factor family well-known for inducing the collapse of nerve cell growth cone and regulating nerve redistribution. It also has been characterized as an immunoregulatory and tumor promoting factor. Our previous study showed that Sema3A was involved in the regulation of sympathetic innervation and neuropathic pain of endometriosis. Nevertheless, the role of Sema3A in the development of endometriosis and its potential upstreaming factor are still not clear. METHODS Histology experiments were carried to detect the expression of Sema3A, hypoxia -inducible factor 1α (HIF-1α) and the distribution of macrophages. Cell experiments were used to explore the effect of Sema3A on the proliferation and migration of endometrial stromal cells (ESCs) and to confirm the regulatory action of HIF-1α on Sema3A. In vivo experiments were carried out to explore the role of Sema3A on the development of endometriosis. RESULTS Sema3A was highly expressed in endometriotic lesions and could enhanced the proliferation and migration abilities of ESCs. Aberrant macrophage distribution was found in endometriotic lesions. Sema3A also promoted the differentiation of monocytes into anti-inflammatory macrophages, so indirectly mediating the proliferation and migration of ESCs. Hypoxic microenvironment induced Sema3A mRNA and protein expression in ESCs via HIF-1α. Administration of Sema3A promoted the development of endometriosis in a mouse model. CONCLUSIONS Sema3A, which is regulated by HIF-1α, is a promoting factor for the development of endometriosis. Targeting Sema3A may be a potential treatment strategy to control endometriotic lesions.
Collapse
Affiliation(s)
- Ruyu Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Fan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Yajing Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Biqi Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Tiefeng Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Hao Tan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Duo Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Qiuyu Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Jinjuan Wen
- Department of Obstetrics and Gynecology, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang 522081, Guangdong, China
| | - Lei Wen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xi Lu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Changyang Yu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Heng Cai
- Department of Obstetrics and Gynecology, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang 522081, Guangdong, China
| | - Xiaofei Xie
- Department of Obstetrics and Gynecology, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang 522081, Guangdong, China
| | - Shaoru Jiang
- Department of Obstetrics and Gynecology, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang 522081, Guangdong, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China.
| | - Yanchun Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China; Department of Obstetrics and Gynecology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning 530022, Guangxi, China.
| |
Collapse
|
42
|
Xu F, Wang M, Dotse E, Chow KT, Lo PC. Inducing Immunogenic Cancer Cell Death through Oxygen-Economized Photodynamic Therapy with Nitric Oxide-Releasing Photosensitizers. Angew Chem Int Ed Engl 2024; 63:e202404561. [PMID: 38887983 DOI: 10.1002/anie.202404561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Photodynamic therapy (PDT) utilizes reactive oxygen species (ROS) for eradication of cancer cells. Its effectiveness is governed by the oxygen content, which is scarce in the hypoxic tumor microenvironment. We report herein two zinc(II) phthalocyanines substituted with two or four nitric oxide (NO)-releasing moieties, namely ZnPc-2NO and ZnPc-4NO, which can suppress the mitochondrial respiration, thereby sparing more intracellular oxygen for PDT. Using HT29 human colorectal adenocarcinoma cells and A549 human lung carcinoma cells, we have demonstrated that both conjugates release NO upon interaction with the intracellular glutathione, which can reduce the cellular oxygen consumption rate and adenosine triphosphate generation and alter the mitochondrial membrane potential. They can also relieve the hypoxic status of cancer cells and decrease the expression of hypoxia-inducible factor protein HIF-1α. Upon light irradiation, both conjugates can generate ROS and induce cytotoxicity even under a hypoxic condition, overcoming the oxygen-dependent nature of PDT. Interestingly, the photodynamic action of ZnPc-2NO elicits the release of damage-associated molecular patterns, inducing the maturation of dendritic cells and triggering an antitumor immune response. The immunogenic cell death caused by this oxygen-economized PDT has been demonstrated through a series of in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Feijie Xu
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong Kowloon, Hong Kong, China
| | - Meijun Wang
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong Kowloon, Hong Kong, China
| | - Eunice Dotse
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong Kowloon, Hong Kong, China
| | - Kwan T Chow
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong Kowloon, Hong Kong, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong Kowloon, Hong Kong, China
| |
Collapse
|
43
|
Bhardwaj JK, Siwach A, Sachdeva SN. Metabolomics and cellular altered pathways in cancer biology: A review. J Biochem Mol Toxicol 2024; 38:e23807. [PMID: 39148273 DOI: 10.1002/jbt.23807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Cancer is a deadly disease that affects a cell's metabolism and surrounding tissues. Understanding the fundamental mechanisms of metabolic alterations in cancer cells would assist in developing cancer treatment targets and approaches. From this perspective, metabolomics is a great analytical tool to clarify the mechanisms of cancer therapy as well as a useful tool to investigate cancer from a distinct viewpoint. It is a powerful emerging technology that detects up to thousands of molecules in tissues and biofluids. Like other "-omics" technologies, metabolomics involves the comprehensive investigation of micromolecule metabolites and can reveal important details about the cancer state that is otherwise not apparent. Recent developments in metabolomics technologies have made it possible to investigate cancer metabolism in greater depth and comprehend how cancer cells utilize metabolic pathways to make the amino acids, nucleotides, and lipids required for tumorigenesis. These new technologies have made it possible to learn more about cancer metabolism. Here, we review the cellular and systemic effects of cancer and cancer treatments on metabolism. The current study provides an overview of metabolomics, emphasizing the current technologies and their use in clinical and translational research settings.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Anshu Siwach
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology, Kurukshetra and Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
44
|
Qian K, Gao S, Jiang Z, Ding Q, Cheng Z. Recent advances in mitochondria-targeting theranostic agents. EXPLORATION (BEIJING, CHINA) 2024; 4:20230063. [PMID: 39175881 PMCID: PMC11335472 DOI: 10.1002/exp.20230063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/07/2024] [Indexed: 08/24/2024]
Abstract
For its vital role in maintaining cellular activity and survival, mitochondrion is highly involved in various diseases, and several strategies to target mitochondria have been developed for specific imaging and treatment. Among these approaches, theranostic may realize both diagnosis and therapy with one integrated material, benefiting the simplification of treatment process and candidate drug evaluation. A variety of mitochondria-targeting theranostic agents have been designed based on the differential structure and composition of mitochondria, which enable more precise localization within cellular mitochondria at disease sites, facilitating the unveiling of pathological information while concurrently performing therapeutic interventions. Here, progress of mitochondria-targeting theranostic materials reported in recent years along with background information on mitochondria-targeting and therapy have been briefly summarized, determining to deliver updated status and design ideas in this field to readers.
Collapse
Affiliation(s)
- Kun Qian
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Shu Gao
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhaoning Jiang
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Qihang Ding
- Department of ChemistryKorea UniversitySeoulRepublic of Korea
| | - Zhen Cheng
- State Key Laboratory of Drug ResearchMolecular Imaging CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- School of PharmacyUniversity of Chinese Academy of SciencesBeijingChina
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
45
|
Buján S, Pontillo C, Miret N, Leguizamón MA, Chiappini F, Cocca C, Randi A. Triple negative breast cancer cells exposed to aryl hydrocarbon receptor ligands hexachlorobenzene and chlorpyrifos activate endothelial cells. Chem Biol Interact 2024; 398:111096. [PMID: 38844257 DOI: 10.1016/j.cbi.2024.111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/17/2024]
Abstract
Breast cancer is currently one of the most prevalent cancers worldwide. The mechanisms by which pesticides can increase breast cancer risk are multiple and complex. We have previously observed that two aryl hydrocarbon receptor (AhR) agonists ‒pesticides hexachlorobenzene (HCB) and chlorpyrifos (CPF)‒ act on tumor progression, stimulating cell migration and invasion in vitro and tumor growth in animal models. Elevated levels of hypoxia inducible factor-1α (HIF-1α) are found in malignant breast tumors, and HIF-1α is known to induce proangiogenic factors such as vascular endothelial growth factor (VEGF), nitric oxide synthase-2 (NOS-2) and cyclooxygenase-2 (COX-2), which are fundamental in breast cancer progression. In this work, we studied HCB (0.005, 0.05, 0.5 and 5 μM) and CPF (0.05, 0.5, 5 and 50 μM) action on the expression of these proangiogenic factors in triple negative breast cancer cells MDA-MB-231, as well as the effect of their conditioned medium (CM) on endothelial cells. Exposure to pesticides increased HIF-1α and VEGF protein expression in an AhR-dependent manner. In addition, HCB and CPF boosted NOS-2 and COX-2 content and VEGF secretion in MDA-MB-231 cells. The treatment of endothelial cells with CM from tumor cells exposed to pesticides increased cell proliferation, migration, and tubule formation, enhancing both tubule length and branching points. Of note, these effects were VEGF-dependent, as they were blocked in the presence of a VEGF receptor-2 (VEGFR-2) inhibitor. In sum, our results highlight the harmful impact of HCB and CPF in modulating the interaction between breast cancer and endothelial cells and promoting angiogenesis.
Collapse
Affiliation(s)
- Sol Buján
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Carolina Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Noelia Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - María Agustina Leguizamón
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Florencia Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Andrea Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| |
Collapse
|
46
|
Han X, Zhu Y, Ke J, Zhai Y, Huang M, Zhang X, He H, Zhang X, Zhao X, Guo K, Li X, Han Z, Zhang Y. Progression of m 6A in the tumor microenvironment: hypoxia, immune and metabolic reprogramming. Cell Death Discov 2024; 10:331. [PMID: 39033180 PMCID: PMC11271487 DOI: 10.1038/s41420-024-02092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
Recently, N6-methyladenosine (m6A) has aroused widespread discussion in the scientific community as a mode of RNA modification. m6A comprises writers, erasers, and readers, which regulates RNA production, nuclear export, and translation and is very important for human health. A large number of studies have found that the regulation of m6A is closely related to the occurrence and invasion of tumors, while the homeostasis and function of the tumor microenvironment (TME) determine the occurrence and development of tumors to some extent. TME is composed of a variety of immune cells (T cells, B cells, etc.) and nonimmune cells (tumor-associated mesenchymal stem cells (TA-MSCs), cancer-associated fibroblasts (CAFs), etc.). Current studies suggest that m6A is involved in regulating the function of various cells in the TME, thereby affecting tumor progression. In this manuscript, we present the composition of m6A and TME, the relationship between m6A methylation and characteristic changes in TME, the role of m6A methylation in TME, and potential therapeutic strategies to provide new perspectives for better treatment of tumors in clinical work.
Collapse
Affiliation(s)
- Xuan Han
- First Clinical College of Changzhi Medical College, Changzhi, China
| | - Yu Zhu
- Linfen Central Hospital, Linfen, China
| | - Juan Ke
- Linfen Central Hospital, Linfen, China
| | | | - Min Huang
- Linfen Central Hospital, Linfen, China
| | - Xin Zhang
- Linfen Central Hospital, Linfen, China
| | | | | | | | | | | | - Zhongyu Han
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | |
Collapse
|
47
|
Bessho T. Up-Regulation of Non-Homologous End-Joining by MUC1. Genes (Basel) 2024; 15:808. [PMID: 38927743 PMCID: PMC11203369 DOI: 10.3390/genes15060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Ionizing radiation (IR) and chemotherapy with DNA-damaging drugs such as cisplatin are vital cancer treatment options. These treatments induce double-strand breaks (DSBs) as cytotoxic DNA damage; thus, the DSB repair activity in each cancer cell significantly influences the efficacy of the treatments. Pancreatic cancers are known to be resistant to these treatments, and the overexpression of MUC1, a member of the glycoprotein mucins, is associated with IR- and chemo-resistance. Therefore, we investigated the impact of MUC1 on DSB repair. This report examined the effect of the overexpression of MUC1 on homologous recombination (HR) and non-homologous end-joining (NHEJ) using cell-based DSB repair assays. In addition, the therapeutic potential of NHEJ inhibitors including HDAC inhibitors was also studied using pancreatic cancer cell lines. The MUC1-overexpression enhances NHEJ, while partially suppressing HR. Also, MUC1-overexpressed cancer cell lines are preferentially killed by a DNA-PK inhibitor and HDAC1/2 inhibitors. Altogether, MUC1 induces metabolic changes that create an imbalance between NHEJ and HR activities, and this imbalance can be a target for selective killing by HDAC inhibitors. This is a novel mechanism of MUC1-mediated IR-resistance and will form the basis for targeting MUC1-overexpressed pancreatic cancer.
Collapse
Affiliation(s)
- Tadayoshi Bessho
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
48
|
Huang H, Li G, He Y, Chen J, Yan J, Zhang Q, Li L, Cai X. Cellular succinate metabolism and signaling in inflammation: implications for therapeutic intervention. Front Immunol 2024; 15:1404441. [PMID: 38933270 PMCID: PMC11200920 DOI: 10.3389/fimmu.2024.1404441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Succinate, traditionally viewed as a mere intermediate of the tricarboxylic acid (TCA) cycle, has emerged as a critical mediator in inflammation. Disruptions within the TCA cycle lead to an accumulation of succinate in the mitochondrial matrix. This excess succinate subsequently diffuses into the cytosol and is released into the extracellular space. Elevated cytosolic succinate levels stabilize hypoxia-inducible factor-1α by inhibiting prolyl hydroxylases, which enhances inflammatory responses. Notably, succinate also acts extracellularly as a signaling molecule by engaging succinate receptor 1 on immune cells, thus modulating their pro-inflammatory or anti-inflammatory activities. Alterations in succinate levels have been associated with various inflammatory disorders, including rheumatoid arthritis, inflammatory bowel disease, obesity, and atherosclerosis. These associations are primarily due to exaggerated immune cell responses. Given its central role in inflammation, targeting succinate pathways offers promising therapeutic avenues for these diseases. This paper provides an extensive review of succinate's involvement in inflammatory processes and highlights potential targets for future research and therapeutic possibilities development.
Collapse
Affiliation(s)
- Hong Huang
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gejing Li
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yini He
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Chen
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianye Yan
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qin Zhang
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liqing Li
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Xiong Cai
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
49
|
Li M, Huang W, Zhang Y, Du Y, Zhao S, Wang L, Sun Y, Sha B, Yan J, Ma Y, Tang J, Shi J, Li P, Jia L, Hu T, Chen P. Glucose deprivation triggers DCAF1-mediated inactivation of Rheb-mTORC1 and promotes cancer cell survival. Cell Death Dis 2024; 15:409. [PMID: 38862475 PMCID: PMC11166663 DOI: 10.1038/s41419-024-06808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Low glucose is a common microenvironment for rapidly growing solid tumors, which has developed multiple approaches to survive under glucose deprivation. However, the specific regulatory mechanism remains largely elusive. In this study, we demonstrate that glucose deprivation, while not amino acid or serum starvation, transactivates the expression of DCAF1. This enhances the K48-linked polyubiquitination and proteasome-dependent degradation of Rheb, inhibits mTORC1 activity, induces autophagy, and facilitates cancer cell survival under glucose deprivation conditions. This study identified DCAF1 as a new cellular glucose sensor and uncovered new insights into mechanism of DCAF1-mediated inactivation of Rheb-mTORC1 pathway for promoting cancer cell survival in response to glucose deprivation.
Collapse
Affiliation(s)
- Miaomiao Li
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Huang
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuan Zhang
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yue Du
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shan Zhao
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Longhao Wang
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Yaxin Sun
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Beibei Sha
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450014, China
| | - Jie Yan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Yangcheng Ma
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Jinlu Tang
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianxiang Shi
- Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, 450052, China
| | - Pei Li
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Tao Hu
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Ping Chen
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
50
|
Zhang C, Xu Y, Zhu X, Zhang X, Wang F, Hu L, Lu H, Tao C, Xu K, Zhang Z, Li D, Shi T, Zhang R. Phosphorylation of FOXK2 at Thr13 and Ser30 by PDK2 sustains glycolysis through a positive feedback manner in ovarian cancer. Oncogene 2024; 43:1985-1999. [PMID: 38734828 PMCID: PMC11196215 DOI: 10.1038/s41388-024-03052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Ovarian cancer is one of the most common gynecological malignant tumors with insidious onset, strong invasiveness, and poor prognosis. Metabolic alteration, particularly aerobic glycolysis, which is tightly regulated by transcription factors, is associated with the malignant behavior of OC. We screened FOXK2 in this study as a key transcription factor that regulates glycolysis in OC. FOXK2 is overly expressed in OC, and poor prognosis is predicted by overexpression. FOXK2 promotes OC cell proliferation both in vitro and in vivo and cell migration in vitro. Further studies showed that PDK2 directly binds to the forkhead-associated (FHA) domain of FOXK2 to phosphorylate FOXK2 at Thr13 and Ser30, thereby enhancing the transcriptional activity of FOXK2. FOXK2 transcriptionally regulates the expression of PDK2, thus forming positive feedback to sustain glycolysis in OC cells.
Collapse
Affiliation(s)
- Cancan Zhang
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
- Shanghai Geriatric Medical Center, Shanghai, 201104, China
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinyin Xu
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Xinyue Zhu
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Xueli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengmian Wang
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Lipeng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Lu
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Chunlin Tao
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Kai Xu
- Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhigang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongxue Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Tingyan Shi
- Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Rong Zhang
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China.
- Shanghai Geriatric Medical Center, Shanghai, 201104, China.
| |
Collapse
|