1
|
Wang T, Shi X, Xu X, Zhang J, Ma Z, Meng C, Jiao D, Wang Y, Chen Y, He Z, Zhu Y, Liu HN, Zhang T, Jiang Q. Emerging prodrug and nano-drug delivery strategies for the detection and elimination of senescent tumor cells. Biomaterials 2025; 318:123129. [PMID: 39922127 DOI: 10.1016/j.biomaterials.2025.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
Tumor cellular senescence, characterized by reversible cell cycle arrest following anti-cancer therapies, presents a complex paradigm in oncology. Given that senescent tumor cells may promote angiogenesis, tumorigenesis, and metastasis, selective killing senescent cells (SCs)-a strategy termed senotherapy-has emerged as a promising approach to improve cancer treatment. However, the clinical implementation of senotherapy faces significant hurdles, including lack of precise methods for SCs identification and the potential for adverse effects associated with highly cytotoxic senolytic agents. In this account, we elucidate recent advancement in developing novel approaches for the detection and selective elimination of SCs, encompassing prodrugs, nanoparticles, and other cutting-edge drug delivery systems such as PROTAC technology and CAR T cell therapy. Furthermore, we explore the paradoxical nature of SCs, which can induce growth arrest in adjacent neoplastic cells and recruit immunomodulatory cells that contribute to tumor suppression. Therefore, we utilize SCs membrane as vehicles to elicit antitumor immunity and potentially augment existing anti-cancer therapies. Finally, the opportunities and challenges are put forward to facilitate the development and clinical transformation of SCs detection, elimination or utilization.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Xiaolan Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaming Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhengdi Ma
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chen Meng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dian Jiao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yubo Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanfei Chen
- School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying Zhu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, 110002, China.
| | - He-Nan Liu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Tianhong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China; Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Medical University, Haikou, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
2
|
Cong Y, Li X, Hong H. Current strategies for senescence treatment: Focused on theranostic performance of nanomaterials. J Control Release 2025; 382:113710. [PMID: 40220869 DOI: 10.1016/j.jconrel.2025.113710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
Age-related diseases imposed heavy burdens to the healthcare systems globally, while cell senescence served as one fundamental molecular/cellular basis for these diseases. How to tackle the senescence-relevant problems is a hotspot for biomedical research. In this review article, the hallmarks and molecular pathways of cell senescence were firstly discussed, followed by the introduction of the current anti-senescence strategies, including senolytics and senomorphics. With suitable physical or chemical properties, multiple types of nanomaterials were used successfully in senescence therapeutics, as well as senescence detection. Based on the accumulating knowledges for senescence, the rules of how to use these nanoplatforms more efficiently against senescence were also summarized, including but not limited to surface modification, material-cargo interactions, factor responsiveness etc. The comparison of these "senescence-selective" nanoplatforms to other treatment options (prodrugs, ADCs, PROTACs, CART etc.) was also given. Learning from the past, nanotechnology can add more choice for treating age-related diseases, and provide more (diagnostic) information to further our understanding of senescence process.
Collapse
Affiliation(s)
- Yiyang Cong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaoyang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China
| | - Hao Hong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China.
| |
Collapse
|
3
|
Dong D, Yu X, Liu H, Xu J, Guo J, Guo W, Li X, Wang F, Zhang D, Liu K, Sun Y. Study of immunosenescence in the occurrence and immunotherapy of gastrointestinal malignancies. Semin Cancer Biol 2025; 111:16-35. [PMID: 39929408 DOI: 10.1016/j.semcancer.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/25/2025]
Abstract
In human beings heterogenous, pervasive and lethal malignancies of different parts of the gastrointestinal (GI) tract viz., tumours of the oesophagus, stomach, small intestine, colon, and rectum, represent gastrointestinal malignancies. Primary treatment modality for gastric cancer includes chemotherapy, surgical interventions, radiotherapy, monoclonal antibodies and inhibitors of angiogenesis. However, there is a need to improve upon the existing treatment modality due to associated adverse events and the development of resistance towards treatment. Additionally, age has been found to contribute to increasing the incidence of tumours due to immunosenescence-associated immunosuppression. Immunosenescence is the natural process of ageing, wherein immune cells as well as organs begin to deteriorate resulting in a dysfunctional or malfunctioning immune system. Accretion of senescent cells in immunosenescence results in the creation of a persistent inflammatory environment or inflammaging, marked with elevated expression of pro-inflammatory and immunosuppressive cytokines and chemokines. Perturbation in the T-cell pools and persistent stimulation by the antigens facilitate premature senility of the immune cells, and senile immune cells exacerbate inflammaging conditions and the inefficiency of the immune system to identify the tumour antigen. Collectively, these conditions contribute positively towards tumour generation, growth and eventually proliferation. Thus, activating the immune cells to distinguish the tumour cells from normal cells and invade them seems to be a logical strategy for the treatment of cancer. Consequently, various approaches to immunotherapy, viz., programmed death ligand-1 (PD-1) inhibitors, Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors etc are being extensively evaluated for their efficiency in gastric cancer. In fact, PD-1 inhibitors have been sanctioned as late late-line therapy modality for gastric cancer. The present review will focus on deciphering the link between the immune system and gastric cancer, and the alterations in the immune system that incur during the development of gastrointestinal malignancies. Also, the mechanism of evasion by tumour cells and immune checkpoints involved along with different approaches of immunotherapy being evaluated in different clinical trials will be discussed.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Haoran Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiayan Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Fei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Dongyong Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Kaiwei Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
4
|
Tu C, Qian C, Li S, Lin DY, Liu ZY, Ouyang WG, Kang XL, Chen F, Song S, Cai SQ. Targeting the chromatin remodeler BAZ2B mitigates hepatic senescence and MASH fibrosis. NATURE AGING 2025:10.1038/s43587-025-00862-w. [PMID: 40389730 DOI: 10.1038/s43587-025-00862-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/01/2025] [Indexed: 05/21/2025]
Abstract
With increased age, the liver becomes more vulnerable to metabolic dysfunction-associated steatohepatitis (MASH) with fibrosis. Deciphering the complex interplay between aging, the emergence of senescent cells in the liver and MASH fibrosis is critical for developing treatments. Here we report an epigenetic mechanism that links liver aging to MASH fibrosis. We find that upregulation of the chromatin remodeler BAZ2B in a subpopulation of hepatocytes (HEPs) is linked to MASH pathology in patients. Genetic ablation or hepatocyte-specific knockdown of Baz2b in mice attenuates HEP senescence and MASH fibrosis by preserving peroxisome proliferator-activated receptor α (PPARα)-mediated lipid metabolism, which was impaired in both naturally aged and MASH mouse livers. Mechanistically, Baz2b downregulates the expression of genes related to the PPARα signaling pathway by directly binding their promoter regions and reducing chromatin accessibility. Thus, our study unravels the BAZ2B-PPARα-lipid metabolism axis as a link from liver aging to MASH fibrosis, suggesting that BAZ2B is a potential therapeutic target for HEP senescence and fibrosis.
Collapse
Affiliation(s)
- Chuantao Tu
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Cheng Qian
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shuyu Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - De-Ying Lin
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Yang Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wan-Gan Ouyang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Lei Kang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Fangyuan Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shi-Qing Cai
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Ryan P, Lee J. In vitro senescence and senolytic functional assays. Biomater Sci 2025. [PMID: 40375674 DOI: 10.1039/d4bm01684j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
A detailed understanding of aging biology and the development of anti-aging therapeutic strategies remain imperative yet inherently challenging due to the protracted nature of aging. Cellular senescence arises naturally through replicative exhaustion and is accelerated by clinical treatments or environmental stressors. The accumulation of senescent cells-defined by a loss of mitogenic potential, resistance to apoptosis, and acquisition of a pro-inflammatory secretory phenotype-has been implicated as a key driver of chronic disease, tissue degeneration, and organismal aging. Recent studies have highlighted the therapeutic promise of senolytic drugs, which selectively eliminate senescent cells. Compelling results from preclinical animal studies and ongoing clinical trials underscore this potential. However, the clinical translation of senolytics requires further pharmacological validation to refine selectivity, minimize toxicity, and determine optimal dosing. Equally important is the evaluation of senolytics' potential to restore tissue structure and function by reducing the senescent cell burden. In vitro tissue culture models offer a powerful platform to advance these efforts. This review summarizes the current landscape of in vitro systems used for inducing cellular senescence-referred to as "senescence assays"-and for screening senolytic drugs-referred to as "senolytic assays". We conclude by discussing key challenges to improving mechanistic insight, predictive accuracy, and clinical relevance in senolytic drug development, as well as emerging applications of senolytic therapies.
Collapse
Affiliation(s)
- Patrick Ryan
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
| | - Jungwoo Lee
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
6
|
Huang Y, Tang X, Xie H, Wu Z, Jin L, Zhang L, Lin X, Zhou H, Zou J. USP14/S100A11 axis promote colorectal cancer progression by inhibiting cell senescence. Cell Death Dis 2025; 16:384. [PMID: 40374593 DOI: 10.1038/s41419-025-07724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/23/2025] [Accepted: 05/07/2025] [Indexed: 05/17/2025]
Abstract
The aberrant expression of S100A11 has been identified in various malignancies but its functional roles and underlying mechanisms in colorectal cancer (CRC) have not been fully elucidated. Therefore, this study was designed to investigate the expression of S100A11 and its functional significance in CRC, indicating that S100A11 is significantly upregulated and correlates with poor survival outcomes in CRC. Functionally, S100A11 knockdown in CRC cell lines inhibited cell proliferation, invasion, and migration, leading to decreased tumour growth and metastasis in vivo. Mechanistic investigations revealed that S100A11 promotes cell proliferation and invasion by suppressing cell senescence. In addition, USP14 interacts with and mediates S100A11 deubiquitination. More importantly, the overexpression of S100A11 was able to partially counteract the reduction in cell proliferation caused by the knockdown of USP14. In summary, the novel regulatory axis involving USP14 and S100A11 modulates the malignant biological behavior of CRC cells through inhibiting cell senescence, therefore the interaction between USP14 and S100A11 represents a promising therapeutic target in CRC.
Collapse
Affiliation(s)
- Yong Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Xiaolei Tang
- Center for Translational Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Hao Xie
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Zhaoying Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Lei Jin
- Department of Gastroenterology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Lei Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Xidong Lin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Hailang Zhou
- Department of Gastroenterology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, Jiangsu, China.
| | - Junwei Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
7
|
Cheng J, Zheng J, Ma C, Li Y, Hao H. T-Cell Senescence: Unlocking the Tumor Immune "Dark Box" - A Multidimensional Analysis from Mechanism to Tumor Immunotherapeutic Intervention. Semin Cancer Biol 2025:S1044-579X(25)00073-2. [PMID: 40381926 DOI: 10.1016/j.semcancer.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Immunosenescence is the dysfunction of the immune system that occurs with age, a process that is complex and characterized by several features, of which T-cell senescence is one of the key manifestations. In the tumor microenvironment, senescent T cells lead to the inability of tumor cells to be effectively eliminated, triggering immunosuppression, which in turn affects the efficacy of immunotherapy. This is a strong indication that T-cell senescence significantly weakens the immune function of the body, making individuals, especially elderly patients with cancer, more vulnerable to cancer attacks. Despite the many challenges, T-cell senescence is important as a potential therapeutic target. This review provides insights into the molecular mechanisms of T-cell senescence and its research advances in patients with cancer, especially in older adults, and systematically analyzes potential intervention strategies, including molecular mechanism-based interventions, the use of immune checkpoint inhibitors, and CAR-T cell therapy. It is hoped that this will establish a theoretical framework for T-cell senescence in the field of tumor immunology and provide a scientific and prospective reference basis for subsequent in-depth research and clinical practice on senescent T cells.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361004, China; Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China.
| | - Jian Zheng
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Chen Ma
- Department of Emergency Internal Medicine, Zibo Central Hospital, Zibo 255024, China
| | - Yongzhang Li
- Department of Urology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang 050017, China.
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China.
| |
Collapse
|
8
|
Lu P, Zhou H, Xu X, Long Y, Jiang JH, Wang F. Trilocked Photodynamic Senolytic Inducer Potentiating Immunogenic Senescent Cell Removal for Liver Fibrosis Resolution. J Am Chem Soc 2025; 147:16494-16505. [PMID: 40305473 DOI: 10.1021/jacs.5c03498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Liver fibrosis is a major global health problem without effective therapies, and targeted elimination of senescent cells is beneficial for hepatic function and organism survival. We report a new trilocked photodynamic senolytic inducer (PDSI) strategy for liver fibrosis resolution using a type-I photodynamic agent for immunogenic clearance of senescent cells. We demonstrate that this trilocked PDSI not only facilitates efficient production of superoxide anions (O2•-) in lysosomes of senescent cells for photodynamic therapy, but also permits NIR fluorescence and photoacoustic (NIRF/PA) imaging of senescent cells. Mechanistic investigation reveals that the trilocked PDSI elicited senescent cell clearance predominantly via the immunogenic necroptosis pathway. Moreover, this PDSI with a liver-targeting moiety enables high-contrast NIRF/PA imaging and effective liver fibrosis resolution in vivo. This liver-targeting PDSI exhibits remarkable immunogenic ablation of senescent cells, with enhancing dendritic cell maturation and cytotoxic T cell recruitment in liver fibrosis. Our study highlights the potential of trilocked type I PDSI for boosting immunity for senescent cell clearance and liver fibrosis treatment.
Collapse
Affiliation(s)
- Pei Lu
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huihui Zhou
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiaoxiao Xu
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ying Long
- School of Biomedical Science, Hunan University, Changsha 410082, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Fenglin Wang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
9
|
Bhanothu V. Investigation of the morphological, cellular, biochemical, and molecular modifications in the BG01V human embryonic stem cell-derived neuronal cells. Tissue Cell 2025; 96:102965. [PMID: 40373613 DOI: 10.1016/j.tice.2025.102965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Changes in the morphology, metabolic activity, intracellular calcium (Ca2 +) transients, expression of topoisomerase-2β (Topo-2β), and senescence of human embryonic stem cells (hESCs)-derived neuronal cells on basic hESC culture media and neuronal differentiation medium at different time intervals is not clear. Hence, we aimed to investigate the morphological, cellular, biochemical, and molecular alterations in the BG01V hESC-derived neuronal cells on basic hESC culture media and neuronal differentiation media at different time intervals. MATERIALS AND METHODS BG01V hESC-derived neuronal cells grown on basic hESC culture media and neuronal differentiation media were evaluated for morphological changes by microscopy, metabolic activity by MTT assay, cell viability by Trypan Blue exclusion assay, cellular activity by estimating the Ca2+ deposits, cellular senescence by senescence-associated beta-galactosidase (SA-β-gal) activity, and level of Topo-2β using Western blotting at different time intervals. RESULTS Contrasting to the BG01V hESCs grown on basic hESC culture media, a notable increase in the neuronal cell-like structures, neuritic outgrowth, and expression of nestin protein on neural induction was observed. Higher levels of Ca2+ deposits, metabolic activity, SA-β-gal activity, and Topo-2β expression in BG01V hESC-derived neuronal cells grown on neuronal differentiation media on day 12 compared to hESCs grown on basic hESC culture media including other days were noted. CONCLUSION This study suggests the increase of calcium salts reflecting the calcium activity at distinct phases of neuronal differentiation, ranging from neural induction to neurite extension. The metabolic and SA-β-gal activity of BG01V hESC-derived neuronal cells may suggest the ongoing biological aging process. Upregulation and activation of Topo-2β upon differentiation induction at the mid-phase suggest the activation of inducible gene loci and downregulation of Topo-2β at a later stage.
Collapse
Affiliation(s)
- Venkanna Bhanothu
- Department of Cell Biology, ICMR-National Institute of Nutrition, Tarnaka, Hyderabad, India; Department of Biotechnology & Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
10
|
Nernekli K, Mangarova DB, Suryadevara V, Hajipour M, Tang JH, Wang J, Liang T, Harris M, Ueyama T, Lyons JK, Moseley ME, Roudi R, Pisani L, von Krüchten R, Duwa R, Lu-Liang SY, Shokri Varniab Z, Vasyliv I, Das N, Murayama M, Shinohara I, Pratx G, Goodman SB, Meade TJ, Daldrup-Link HE. MRI detection of senescent cells in porcine knee joints with a β-galactosidase responsive Gd-chelate. NPJ IMAGING 2025; 3:18. [PMID: 40330124 PMCID: PMC12049270 DOI: 10.1038/s44303-025-00078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/18/2025] [Indexed: 05/08/2025]
Abstract
Senescent cells promote osteoarthritis progression through the secretion of inflammatory mediators. Preclinical studies have identified senescence-associated beta-galactosidase (β-gal) as a biomarker of senescence, but in vivo detection remains challenging. Here, we evaluated whether a β-gal responsive gadolinium (Gd) chelate can non-invasively detect β-gal expressing senescent cells with standard clinical magnetic resonance imaging (MRI) technology in vitro, ex vivo, and in vivo in porcine joints. In vitro studies showed that senescent mesenchymal stromal cells (MSCs) exhibited significant MRI signal enhancement upon incubation with the β-gal responsive Gd-chelate compared to viable control cells. In vivo, intraarticular injection of the probe into pig knee joints revealed its retention and activation by senescent cells in cartilage defects, evidenced by a significant increase in R 1 relaxation rate. MRI-based senescent cell detection holds promise for identifying patients amenable to senolytic therapies, tailoring treatment plans, and monitoring therapy response in real-time.
Collapse
Affiliation(s)
- Kerem Nernekli
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Dilyana B. Mangarova
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Vidyani Suryadevara
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Mohammadjavad Hajipour
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Jian-Hong Tang
- Department of Chemistry, Molecular Biosciences, Neurobiology and Radiology, Northwestern University, Evanston, IL 60208 USA
| | - Jie Wang
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Tie Liang
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Marek Harris
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Tsuyoshi Ueyama
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Jennifer K. Lyons
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael E. Moseley
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Laura Pisani
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Ricarda von Krüchten
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Ramesh Duwa
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Sarah Ying Lu-Liang
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Zahra Shokri Varniab
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Iryna Vasyliv
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Neeladrisingha Das
- Department of Radiation Oncology and Medical Physics, Stanford University, Stanford, CA 94305 USA
| | - Masatoshi Murayama
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305 USA
| | - Issei Shinohara
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305 USA
| | - Guillem Pratx
- Department of Radiation Oncology and Medical Physics, Stanford University, Stanford, CA 94305 USA
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305 USA
| | - Thomas J. Meade
- Department of Chemistry, Molecular Biosciences, Neurobiology and Radiology, Northwestern University, Evanston, IL 60208 USA
| | - Heike E. Daldrup-Link
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
11
|
Boone I, Houtman E, Tuerlings M, van den Berg JJ, Lehmann J, de Keizer PLJ, Nelissen RGHH, Meulenbelt I. Development of Reliable and High-Throughput Human Biomimetic Cartilage and Bone Models to Explore Senescence and Personalized Osteoarthritis Treatment Options. J Orthop Res 2025; 43:912-921. [PMID: 39960283 PMCID: PMC11982592 DOI: 10.1002/jor.26052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/02/2025] [Accepted: 01/17/2025] [Indexed: 04/11/2025]
Abstract
To facilitate effective preclinical testing of senescence treatments for osteoarthritis (OA), we have created reliable biomimetic and high-throughput models using aged human joint tissues. Moreover, concerns regarding scalability led to the concurrent development of a high-throughput human in vitro senescence cartilage organoid model. Osteochondral explants and cells for the cartilage organoid model were isolated from patients undergoing joint replacement surgery due to OA. To induce senescence, explants and organoids were subjected to radiation and/or mechanical loading. Samples were harvested; gene expression of relevant senescent and cartilage genes was measured using RT-qPCR, and protein expression was evaluated using histology. A general senescence phenotype was induced by the perturbations, as shown by senescence-associated β-galactosidase staining. In-depth gene expression analysis revealed that hyperphysiological mechanical loading upregulated gene expression of IL8 and SERPINE1, representing aspects of a senescence-associated secretory phenotype (SASP) profile. Irradiation upregulated CDKN1A, encoding p21, and downregulated LMNB1, representing a cell cycle arrest profile with the absence of a SASP response. Combining the two perturbations showed upregulation of CDKN1A, IL8, and SERPINE and downregulation of LMNB1, representing a complementary senescence model. The high-throughput human in vitro cartilage organoid senescence model showed similar effects to the irradiation explant model. In this study, we present a variety of senescence models of human aged chondrocytes that allows for rapid initial screening of anti-senescence compounds in high-throughput, as well as in-depth, characterization of post-mitotic aged chondrocytes prone to OA pathophysiology. This research advances the development of essential therapeutics for OA.
Collapse
Affiliation(s)
- Ilja Boone
- Department of Biomedical Data SciencesMolecular Epidemiology Section, Leiden University Medical CenterLeidenthe Netherlands
| | - Evelyn Houtman
- Department of Biomedical Data SciencesMolecular Epidemiology Section, Leiden University Medical CenterLeidenthe Netherlands
| | - Margo Tuerlings
- Department of Biomedical Data SciencesMolecular Epidemiology Section, Leiden University Medical CenterLeidenthe Netherlands
| | - Jim J. van den Berg
- Department of Biomedical Data SciencesMolecular Epidemiology Section, Leiden University Medical CenterLeidenthe Netherlands
| | - Johannes Lehmann
- Center for Molecular Medicine, Division of Laboratories, Pharmacy and Biomedical GeneticsUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Peter L. J. de Keizer
- Center for Molecular Medicine, Division of Laboratories, Pharmacy and Biomedical GeneticsUniversity Medical Center UtrechtUtrechtthe Netherlands
- Cleara Biotech B.V.Utrechtthe Netherlands
| | | | - Ingrid Meulenbelt
- Department of Biomedical Data SciencesMolecular Epidemiology Section, Leiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
12
|
Zhu Q, Zhang G, Cao M, Huang H, He D, Zang Z, Xing J, Zhan M, Pei S, Deng X, Li J, Meng G, Xu J, Dai D, Hu G, Zheng M, Liu C, Qin J, Xiao Y. Microbiota-shaped neutrophil senescence regulates sexual dimorphism in bladder cancer. Nat Immunol 2025; 26:722-736. [PMID: 40217111 DOI: 10.1038/s41590-025-02126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/12/2025] [Indexed: 04/19/2025]
Abstract
Sex disparities have been epidemiologically demonstrated in non-reproductive cancers, yet how the sex-specific intrinsic microbiome orchestrates the immune system to affect these disparities is unclear. Here we identify a subpopulation of RETNLG+LCN2+ senescence-like neutrophils (RLSNs) that preferentially accumulate in the male tumor microenvironment and exert a strong immunosuppressive effect to limit antitumor immunity, resulting in poor prognosis for patients with bladder cancer. This difference in enrichment of RLSNs between sexes can be attributed to intestinal bacterium Alistipes shahii, which preferentially populates in females rather than males. A. shahii-associated metabolite lurasidone directly targets iron sequestrator LCN2 in RLSNs. By freeing Fe2+, lurasidone induces ferroptosis, thereby eliminating RLSNs and promoting antitumor immunity in females. In males lacking A. shahii and lurasidone, RLSNs have a survival advantage. Together, these findings demonstrate that a microbiota-lurasidone-LCN2 circuit regulates sexual disparity in bladder cancer and indicates the therapeutic potential of lurasidone for male cancer patients.
Collapse
Affiliation(s)
- Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guiheng Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ming Cao
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dan He
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhongsheng Zang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jing Xing
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ming Zhan
- Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiuyu Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juan Li
- Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Shanghai, China
| | - Guangxun Meng
- Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dongfang Dai
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chenli Liu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
13
|
Jiang H, Zhang Y, Ji P, Ming J, Li Y, Zhou Y. Surfactant protein D alleviates chondrocytes senescence by upregulating SIRT3/SOD2 pathway in osteoarthritis. Mol Med 2025; 31:161. [PMID: 40307686 PMCID: PMC12044875 DOI: 10.1186/s10020-025-01221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 04/21/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is an age-related degenerative disease that affects bones and joints. The hallmark pathogenesis of OA is associated with chondrocyte senescence. Surfactant protein D (SP-D) is a member of the innate immune proteins family, which can inhibit the immune inflammatory response of chondrocytes. However, the effect of SP-D on chondrocyte senescence phenotype is poorly studied. The present study investigated the phenotypic regulation of OA chondrocyte senescence mediated by SP-D and explored the underlying molecular mechanism. METHODS In this study, an in vitro senescence chondrocyte model was generated by subjecting chondrocytes to IL-1β treatment. Furthermore, the expression of aging-related biomarkers and mitochondrial functions in SP-D overexpressing chondrocytes was observed. Co-immunoprecipitation was conducted to verify the association between SP-D and the identifed proteins within chondrocytes. Moreover, a rat OA model was established by destabilization of the medial meniscus surgery, and the effect of SP-D on reversing the aging phenotype of OA cartilage was investigated. RESULTS The results indicated that SP-D significantly decreased senescence and enhanced mitochondrial functions in senescent chondrocytes. The RNA-sequencing analysis revealed that the SIRT3/SOD2 pathway predominantly modulated the effect of SP-D on alleviating senescence. In addition, SP-D overexpression mitigated chondrocyte senescence, suppressed senescence-associated secretory phenotype (SASP) secretion and ameliorated mitochondrial damage. In the rat OA model, SP-D inhibited aging-related pathological changes by upregulating SIRT3/SOD2 pathway, thereby protecting the cartilage tissue integrity. CONCLUSION These findings indicate that SP-D modulates the inhibition of chondrocyte senescence by upregulating SIRT3/SOD2 pathway. These data indicate that targeting SP-D and the SIRT3/SOD2 pathway might be a promising therapeutic strategy for OA.
Collapse
Affiliation(s)
- Huanyu Jiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yantao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Piyao Ji
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jianghua Ming
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yaming Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
14
|
Suzuki S, Fukunaga T, Hayashi T, Egawa T. HRasV12 induces apoptosis, not cellular senescence in mouse skeletal myoblasts. Mech Ageing Dev 2025; 225:112066. [PMID: 40306585 DOI: 10.1016/j.mad.2025.112066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
Aging is a key risk factor for sarcopenia, a progressive disorder affecting skeletal muscle. One hallmark of aging is cellular senescence. To investigate cellular senescence in mouse skeletal myoblasts, we attempted to induce cellular senescence by HRasV12. Unexpectedly, HRasV12 did not induce the expression of senescence markers such as p16 and p21, and no SA-β-gal-positive cells were observed in the myoblasts. Instead, HRasV12 elevated the levels of apoptotic markers such as cleaved caspase-3, cleaved caspase-8, and the ratio of Bax to Bcl-2 in the myoblasts. These findings suggested that HRasV12 does not induce senescence, but triggers apoptotic cell death in mouse skeletal myoblasts.
Collapse
Affiliation(s)
- Shinichiro Suzuki
- Laboratory of Molecular Adaptations to Exercise, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan.
| | - Takuya Fukunaga
- Laboratory of Molecular Adaptations to Exercise, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Tatsuro Egawa
- Laboratory of Molecular Adaptations to Exercise, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Ji XM, Dong XX, Li JP, Tai GJ, Qiu S, Wei W, Silumbwe CW, Damdinjav D, Otieno JN, Li XX, Xu M. Fisetin Clears Senescent Cells Through the Pi3k-Akt-Bcl-2/Bcl-xl Pathway to Alleviate Diabetic Aortic Aging. Phytother Res 2025. [PMID: 40259678 DOI: 10.1002/ptr.8507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/18/2025] [Accepted: 03/29/2025] [Indexed: 04/23/2025]
Abstract
Vascular aging is a major contributor to age-related cardiovascular diseases (CVDs) and type 2 diabetes mellitus (T2DM) induced early arterial aging and excessive senescent cells (SCs) burden in vessels. Inhibiting cellular senescence or eliminating SCs could effectively improve aging-related CVDs. Fisetin, a flavonoid extracted from cotinus coggygria scop, has shown potential in alleviating aging by clearing SCs. This study investigated the unexplored mechanisms and efficacy of fisetin in alleviating T2DM-related aortic aging. The T2DM mouse model was induced using a high-fat diet and low-dose streptozotocin injection. Chronic fisetin treatment's protective effects against aortic aging were assessed via senescence-associated beta-galactosidase (SA-β-Gal) staining, histopathology, and vasomotor function. RNA-sequencing and western blotting identified relevant signaling pathways and protein expression. Fisetin's effects on SCs and senescence-associated secretory phenotype (SASP) factors were evaluated through cell viability, apoptosis, and co-culture assays. Docking simulations suggested fisetin as a potential Phosphoinositide 3-kinase (Pi3k) inhibitor. In vivo, chronic fisetin treatment reduced aortic SCs burden, alleviating T2DM-related and natural aortic aging. In vitro, fisetin selectively induced apoptosis of senescent endothelial cells via regulating the Pi3k-Protein Kinase B (Akt)-B-cell lymphoma (Bcl)-2/Bcl-xl pathway and suppressed SASP and its detrimental effects. Furthermore, fisetin combined with metformin therapy showed superior anti-aging effects on T2DM-related aortic aging compared to metformin monotherapy. In conclusion, chronic fisetin treatment alleviates T2DM-related aortic aging via clearing the SCs burden and abrogating the SASP factors. Fisetin combined with metformin therapy might be a potential therapeutic strategy for T2DM-related CVDs.
Collapse
Affiliation(s)
- Xiao-Man Ji
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin-Xin Dong
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jia-Peng Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guang-Jie Tai
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shu Qiu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Wei
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ceaser Wankumbu Silumbwe
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Davaadagva Damdinjav
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Joseph Nicolao Otieno
- Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciencea, Dar es Salaam, Tanzania
| | - Xiao-Xue Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Manfrevola F, Mosca N, Mele VG, Chioccarelli T, Martinez G, Coutton C, Mattia M, Pezzullo M, Fasano S, Cobellis G, Potenza N, Chianese R. Deciphering the Contribution of Circular RNAs to Age-Related Decline in Sertoli Cell Survivor. Aging Cell 2025:e70023. [PMID: 40248988 DOI: 10.1111/acel.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 04/19/2025] Open
Abstract
Male fertility declines during aging. This process mainly affects spermatogonia and Sertoli cells, leading to impaired spermatogenesis and poor-quality sperm production. Circular RNAs (circRNAs) are covalently closed RNA molecules produced by backsplicing. In the field of male reproduction, circRNAs boast great potential in the regulation of spermatogenesis and sperm morpho-functional skills. However, their potential role in age-related male reproductive anomalies remains largely elusive. Here, we analyzed the reproductive phenotype of the aged male mouse experimental model, pointing our attention to a putative functional link between circRNAs and Sertoli cell survival. Our results confirm several testicular age-related defects including: (i) altered morphology of the seminiferous epithelium; (ii) affected spermatogenesis; and (iii) decreased sperm production. In particular, aged spermatozoa (SPZ) were decreased in number in association with low motility and abnormal morphology (sperm head anomalies and tail bents). The expression analysis of selective spermatic circRNAs demonstrated a de-regulated expression profile in Aged versus Young SPZ. Among them, we turned the lens on circAbcb9 as a spermatic circRNA potentially involved in the Sertoli cell senescence pathway via the circRNA/miRNA/mRNA network (ceRNET). Indeed, a significant shutdown of circAbcb9-dependent network associated with a prominent increase in Sertoli cell senescence occurred in Aged testis. Interestingly, circAbcb9 was also expressed in human SPZ at decreased levels in Aged men, suggesting a conserved role. Collectively, our study stimulates greater interest in circRNAs as involved in the molecular mechanisms behind the age-related effect on Sertoli cell survival, also providing new implications for fused protein in sarcoma (FUS) protein in sertolian circRNA biogenesis.
Collapse
Affiliation(s)
- Francesco Manfrevola
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Nicola Mosca
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenza Grazia Mele
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Guillaume Martinez
- Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, UM de Génétique Chromosomique, Grenoble, France
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Charles Coutton
- Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, UM de Génétique Chromosomique, Grenoble, France
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Monica Mattia
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Mariaceleste Pezzullo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| |
Collapse
|
17
|
Yang Z, Yan F, Yuan J, Yang M, Wang J, You C, Ren K. Human umbilical cord mesenchymal stem cell-derived exosome ameliorate doxorubicin-induced senescence. Exp Cell Res 2025; 447:114450. [PMID: 39988122 DOI: 10.1016/j.yexcr.2025.114450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/08/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Cellular senescence refers to a condition where cells permanently cease division while maintaining metabolic activity. Doxorubicin (Dox) is known as an agent of induction of cellular senescence. This study aimed to explore the potential role of human umbilical cord mesenchymal stem cell-derived exosomes (hucMSC-Exo) in mitigating Dox induced senescent. METHOD NIH3T3 cells were treated by various concentrations of Dox with or without hucMSC-Exo, cell morphology, viability, migration, senescence-associated SA-β-Gal staining were monitored. Cellular senescence was induced in C57BL/6J mice via administration of 5 mg/kg Doxorubicin, followed by treatment with hucMSC-Exo or metformin. Assessments included body weight, liver and kidney weight, colon length, SA-β-Gal staining of kidney and skin, molecular biomarkers of aging such as p16INK4A, p53, and p21Waf1/Clip1 to evaluate senescence status. RESULT We found that after the treatment of exosomes or metformin improved several aging-related phenotypes in both mouse and cellular models, including increases in body weight, liver and kidney weights, and the reduction of SA-β-Gal positive cells in kidney and skin tissues as well as cell models. At the molecular level, hucMSC-Exo resulted in the downregulation of inflammatory factors and senescence markers in liver and kidney tissues as well as cell models. CONCLUSION Our study demonstrates hucMSC-Exo may ameliorate Dox induced senescence either in NIH3T3 cells or in mice.
Collapse
Affiliation(s)
- Zhen Yang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China; The Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China.
| | - Feng Yan
- Hunan Landfar Amspring Biotechnology Co., Ltd., Changsha, 410217, China.
| | - Jiangwei Yuan
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China; The Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China.
| | - Manjun Yang
- Hunan Landfar Amspring Biotechnology Co., Ltd., Changsha, 410217, China.
| | - Jinyu Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China; The Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China.
| | - Changqiao You
- Hunan Landfar Amspring Biotechnology Co., Ltd., Changsha, 410217, China.
| | - Kaiqun Ren
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China; The Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Medical College, Hunan Normal University, Changsha, 410013, China.
| |
Collapse
|
18
|
Qiu Z, Li Z, Zhang C, Zhao Q, Liu Z, Cheng Q, Zhang J, Lin A, Luo P. NK Cell Senescence in Cancer: From Molecular Mechanisms to Therapeutic Opportunities. Aging Dis 2025:AD.2025.0053. [PMID: 40249925 DOI: 10.14336/ad.2025.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2025] [Accepted: 03/13/2025] [Indexed: 04/20/2025] Open
Abstract
P Natural killer (NK) cells function as crucial effectors in the innate immune response against tumors. Nevertheless, NK cell senescence, characterized by phenotypic and functional changes, substantially compromises their antitumor immune response. This review provides a comprehensive summary of the molecular mechanisms governing NK cell senescence and its implications for cancer immunotherapy. We propose a refined definition of NK cell senescence based on distinct biomarkers, including elevated CD57 expression, reduced cytotoxicity, and altered cytokine secretion. Moreover, we investigate the complex interactions between the tumor microenvironment (TME) and NK cell senescence, highlighting the influence of chronic inflammation, immunosuppressive cytokines, and persistent tumor antigenic stimulation. Additionally, this review underscores the potential utility of senescent NK cells as biomarkers for assessing antitumor efficacy and examines the adverse effects of NK cell senescence on cancer immunotherapy. Lastly, we summarize current approaches to mitigate NK cell senescence, such as gene editing techniques and cytokine modulation, which may enhance the efficacy of NK cell-based immunotherapies. By establishing a comprehensive framework for understanding NK cell senescence within the TME, this review aims to guide future research and the development of innovative therapeutic strategies targeting senescent NK cells to improve cancer immunotherapy outcomes.
Collapse
Affiliation(s)
- Zilin Qiu
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, 222000, China
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Zhengrui Li
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qun Zhao
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang 050011, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Quan Cheng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Anqi Lin
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, 222000, China
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Peng Luo
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, 222000, China
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| |
Collapse
|
19
|
Zhao XR, Si FY, Wang JB, Wang N, Hu XL, Zang Y, Wang C, Li J, He XP. Bromine-Substituted Tricyanofuran-Based Fluorogenic Probes for the Sensitive Detection of Glycosidases under Acidic pH. Chembiochem 2025:e2400736. [PMID: 40192584 DOI: 10.1002/cbic.202400736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/21/2025] [Indexed: 04/25/2025]
Abstract
Glycosidases participate in modulating a number of biological processes, and their overexpression is a hallmark of several human diseases. Considering the localization of glycosidases predominantly in the lysosomes, it is imperative to develop molecular probes that are resistant to interference from acidic pH. Herein, tricyanofuran-based long-wavelength fluorogenic probes are synthesized, and it is demonstrated that the introduction of bromine to the ortho-position of the phenol alcohol of the probe substantially enhances its fluorescence over an acidic pH range of 3.0-10.0. These probes, when modified with glycosyl substrates, have proved applicable for the sensitive fluorogenic detection of glycosidases under acidic pH, and fluorescence-based imaging of endogenous β-galactosidase and β-glucosidase activities in live cells. The imaging results are validated by quantitative real-time polymerase chain reaction and immunoblotting.
Collapse
Affiliation(s)
- Xue-Ru Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fang-Yu Si
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Jing-Bo Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Ning Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Yi Zang
- Lingang Laboratory, Shanghai, 201203, China
| | - Chengyun Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Jia Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
- National Center for Liver Cancer, The International Cooperation Laboratory on Signal Transduction, Institution Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| |
Collapse
|
20
|
Tomimatsu N, Di Cristofaro LFM, Kanji S, Samentar L, Jordan BR, Kittler R, Habib AA, Espindola-Netto JM, Tchkonia T, Kirkland JL, Burns TC, Sarkaria JN, Gilbert A, Floyd JR, Hromas R, Zhao W, Zhou D, Sung P, Mukherjee B, Burma S. Targeting cIAP2 in a novel senolytic strategy prevents glioblastoma recurrence after radiotherapy. EMBO Mol Med 2025; 17:645-678. [PMID: 39972068 PMCID: PMC11982261 DOI: 10.1038/s44321-025-00201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
Glioblastomas (GBM) are routinely treated with high doses of ionizing radiation (IR), yet these tumors recur quickly, and the recurrent tumors are highly therapy resistant. Here, we report that IR-induced senescence of tumor cells counterintuitively spurs GBM recurrence, driven by the senescence-associated secretory phenotype (SASP). We find that irradiated GBM cell lines and patient derived xenograft (PDX) cultures senesce rapidly in a p21-dependent manner. Senescent glioma cells upregulate SASP genes and secrete a panoply of SASP factors, prominently interleukin IL-6, an activator of the JAK-STAT3 pathway. These SASP factors collectively activate the JAK-STAT3 and NF-κB pathways in non-senescent GBM cells, thereby promoting tumor cell proliferation and SASP spreading. Transcriptomic analyses of irradiated GBM cells and the TCGA database reveal that the cellular inhibitor of apoptosis protein 2 (cIAP2), encoded by the BIRC3 gene, is a potential survival factor for senescent glioma cells. Senescent GBM cells not only upregulate BIRC3 but also induce BIRC3 expression and promote radioresistance in non-senescent tumor cells. We find that second mitochondria-derived activator of caspases (SMAC) mimetics targeting cIAP2 act as novel senolytics that trigger apoptosis of senescent GBM cells with minimal toxicity towards normal brain cells. Finally, using both PDX and immunocompetent mouse models of GBM, we show that the SMAC mimetic birinapant, administered as an adjuvant after radiotherapy, can eliminate senescent GBM cells and prevent the emergence of recurrent tumors. Taken together, our results clearly indicate that significant improvement in GBM patient survival may become possible in the clinic by eliminating senescent cells arising after radiotherapy.
Collapse
Affiliation(s)
- Nozomi Tomimatsu
- Department of Neurosurgery, University of Texas Health, San Antonio, TX, USA
| | | | - Suman Kanji
- Department of Neurosurgery, University of Texas Health, San Antonio, TX, USA
| | - Lorena Samentar
- Department of Neurosurgery, University of Texas Health, San Antonio, TX, USA
| | - Benjamin Russell Jordan
- Department of Neurosurgery, University of Texas Health, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
| | - Ralf Kittler
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amyn A Habib
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - Terry C Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Andrea Gilbert
- Department of Pathology, University of Texas Health, San Antonio, TX, USA
| | - John R Floyd
- Department of Neurosurgery, University of Texas Health, San Antonio, TX, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health, San Antonio, TX, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
| | - Daohong Zhou
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
| | - Bipasha Mukherjee
- Department of Neurosurgery, University of Texas Health, San Antonio, TX, USA.
| | - Sandeep Burma
- Department of Neurosurgery, University of Texas Health, San Antonio, TX, USA.
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA.
| |
Collapse
|
21
|
Nam J, Woo H, Yang J, Kim SJ, Lee KP, Yu JH, Park TJ, Eyun S, Yang S. Blockade of ZMIZ1-GATA4 Axis Regulation Restores Youthfulness to Aged Cartilage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404311. [PMID: 40040621 PMCID: PMC12021034 DOI: 10.1002/advs.202404311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/16/2024] [Indexed: 03/06/2025]
Abstract
Susceptibility to cartilage degeneration increases in an age-dependent manner and older cartilage exhibits increased catabolic factor expression leading to osteoarthritis (OA). While inhibition of cellular senescence can prevent age-related diseases, the understanding of the regulators governing cartilage senescence and the potential for senolytic intervention remains limited. Here, in vitro and in vivo results are reported, demonstrating for the first time that the transcriptional regulator, ZMIZ1, is upregulated in aged and OA cartilage, and that it acts through GATA4 to accelerate chondrocyte senescence and trigger cartilage deterioration. Furthermore, it is shown that K-7174 interferes with the ZMIZ1-GATA4 interaction and effectively hampers cartilage senescence and OA. It is proposed that inhibition of the ZMIZ1-GATA4 axis could be a valuable strategy for eliminating senescent chondrocytes and impeding OA development and that the relevant inhibitor, K-7174, could potentially be developed as a senolytic drug for managing cartilage senescence and age-related degeneration.
Collapse
Affiliation(s)
- Jiho Nam
- Department of Biological ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Hyunmin Woo
- Department of Life ScienceChung‐Ang UniversitySeoul06974Republic of Korea
| | - Jihye Yang
- Department of Life ScienceChung‐Ang UniversitySeoul06974Republic of Korea
| | - Seok Jung Kim
- Department of Orthopedic SurgeryUijeongbu St. Mary's HospitalThe Catholic University of Korea College of MedicineUijeongbu11765Republic of Korea
| | - Kwang Pyo Lee
- Aging Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Ji Hoon Yu
- New Drug Development CenterDaegu‐Gyeongbuk Medical Innovation Foundation (K‐MEDI hub)Daegu41061Republic of Korea
| | - Tae Joo Park
- Department of Biological SciencesUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Seong‐il Eyun
- Department of Life ScienceChung‐Ang UniversitySeoul06974Republic of Korea
| | - Siyoung Yang
- Department of Biological ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| |
Collapse
|
22
|
Li Z, Dai A, Fang X, Tang K, Chen K, Gao P, Su J, Chen X, Yang S, Deng Z, Li L. The miR-6779/XIAP axis alleviates IL-1β-induced chondrocyte senescence and extracellular matrix loss in osteoarthritis. Animal Model Exp Med 2025; 8:662-673. [PMID: 39905808 PMCID: PMC12008434 DOI: 10.1002/ame2.12529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/10/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a long-term degenerative joint disease worsening over time. Aging and chondrocyte senescence contribute to OA progression. MicroRNAs have been confirmed to regulate different cellular processes. They contribute to OA pathology and may help to identify novel biomarkers and therapies for OA. METHODS This study used bioinformatics and experimental investigations to analyze and validate differentially expressed miRNAs in OA that might affect chondrocyte apoptosis and senescence. RESULTS miR-6779 was found to be significantly down-regulated in OA. Seventy-six of the predicted and miR-6779 targeted genes and the OA-associated disease genes overlapped, and these were enriched in cell proliferation, cell apoptosis, and cell cycle. miR-6779 overexpression remarkably attenuated IL-1β effects on chondrocytes by reducing MMP3 and MMP13 levels, promoting cell apoptosis, suppressing cell senescence, and increasing caspase-3, caspase-9 and reducing P16 and P21 levels. miR-6779 targeted inhibition of X-linked inhibitor of apoptosis protein (XIAP) expression. XIAP knockdown partially improved IL-1β-induced chondrocyte senescence and dysfunction. Lastly, when co-transfected with a miR-6779 agomir, the XIAP overexpression vector partially attenuated the effects of miR-6779 overexpression on chondrocytes; miR-6779 improved IL-1β-induced senescence and dysfunction in chondrocytes through targeting XIAP. CONCLUSION miR-6779 is down-regulated, and XIAP is up-regulated in OA cartilage and IL-1β-treated chondrocytes. miR-6779 inhibits XIAP expression, thereby promoting senescent chondrocyte cell apoptosis and reducing chondrocyte senescence and ECM loss through XIAP.
Collapse
Affiliation(s)
- Zongchao Li
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunanChina
| | - Aonan Dai
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunanChina
| | - Xiaoxiang Fang
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunanChina
| | - Kexing Tang
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunanChina
| | - Kun Chen
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunanChina
| | - Peng Gao
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunanChina
| | - Jingyue Su
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Geriatrics CenterThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Xin Chen
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Geriatrics CenterThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Shengwu Yang
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Geriatrics CenterThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhenhan Deng
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Geriatrics CenterThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Liangjun Li
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical SchoolUniversity of South ChinaChangshaHunanChina
| |
Collapse
|
23
|
Olascoaga S, Konigsberg M, Espinal‐Enríquez J, Tovar H, Matadamas‐Martínez F, Pérez‐Villanueva J, López‐Diazguerrero NE. Transcriptomic signatures and network-based methods uncover new senescent cell anti-apoptotic pathways and senolytics. FEBS J 2025; 292:1950-1971. [PMID: 39871113 PMCID: PMC12001159 DOI: 10.1111/febs.17402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/27/2024] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Cellular senescence is an irreversible cell cycle arrest caused by various stressors that damage cells. Over time, senescent cells accumulate and contribute to the progression of multiple age-related degenerative diseases. It is believed that these cells accumulate partly due to their ability to evade programmed cell death through the development and activation of survival and antiapoptotic resistance mechanisms; however, many aspects of how these survival mechanisms develop and activate are still unknown. By analyzing transcriptomic signature profiles generated by the LINCS L1000 project and using network-based methods, we identified various genes that could represent new senescence-related survival mechanisms. Additionally, employing the same methodology, we identified over 600 molecules with potential senolytic activity. Experimental validation of our computational findings confirmed the senolytic activity of Fluorouracil, whose activity would be mediated by a multitarget mechanism, revealing that its targets AURKA, EGFR, IRS1, SMAD4, and KRAS are new senescent cell antiapoptotic pathways (SCAPs). The development of these pathways could depend on the stimulus that induces cellular senescence. The SCAP development and activation mechanisms proposed in this work offer new insights into how senescent cells survive. Identifying new antiapoptotic resistance targets and drugs with potential senolytic activity paves the way for developing new pharmacological therapies to eliminate senescent cells selectively.
Collapse
Affiliation(s)
- Samael Olascoaga
- Posgrado en Biología Experimental, DCBSUniversidad Autónoma Metropolitana IztapalapaMexico CityMexico
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la SaludUniversidad Autónoma Metropolitana‐IztapalapaMexico CityMexico
| | - Mina Konigsberg
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la SaludUniversidad Autónoma Metropolitana‐IztapalapaMexico CityMexico
| | | | - Hugo Tovar
- Computational Genomics DivisionNational Institute of Genomic MedicineMexico CityMexico
| | - Félix Matadamas‐Martínez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias‐UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro SocialMexico CityMexico
| | - Jaime Pérez‐Villanueva
- División de Ciencias Biológicas y de la Salud, Departamento de Sistemas BiológicosUniversidad Autónoma Metropolitana‐Xochimilco (UAM‐X)Mexico CityMexico
| | - Norma Edith López‐Diazguerrero
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la SaludUniversidad Autónoma Metropolitana‐IztapalapaMexico CityMexico
| |
Collapse
|
24
|
Brandauer K, Lorenz A, Schobesberger S, Schuller P, Frauenlob M, Spitz S, Ertl P. Sensor-integrated gut-on-a-chip for monitoring senescence-mediated changes in the intestinal barrier. LAB ON A CHIP 2025; 25:1694-1706. [PMID: 40007323 DOI: 10.1039/d4lc00896k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The incidence of inflammatory bowel disease among the elderly has significantly risen in recent years, posing a growing socioeconomic burden to aging societies. Moreover, non-gastrointestinal diseases, also prevalent in this demographic, have been linked to intestinal barrier dysfunction, thus highlighting the importance of investigating aged-mediated changes within the human gut. While gastrointestinal pathology often involves an impaired gut barrier, the impact of aging on the human gastrointestinal barrier function remains unclear. To explore the effect of senescence, a key hallmark of aging, on gut barrier integrity, we established and evaluated an in vitro gut-on-a-chip model tailored to investigate barrier changes by the integration of an impedance sensor. Here, a microfluidic gut-on-a-chip system containing integrated membrane-based electrode microarrays is used to non-invasively monitor epithelial barrier formation and senescence-mediated changes in barrier integrity upon treating Caco-2 cells with 0.8 μg mL-1 doxorubicin (DXR), a chemotherapeutic which induces cell cycle arrest. Results of our microfluidic human gut model reveal a DXR-mediated increase in impedance and cell hypertrophy as well as overexpression of p21, and CCL2, indicative of a senescent phenotype. Combined with the integrated electrodes, monitoring ∼57% of the cultivation area in situ and non-invasively, the developed chip-based senescent-gut model is ideally suited to study age-related malfunctions in barrier integrity.
Collapse
Affiliation(s)
- Konstanze Brandauer
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Alexandra Lorenz
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria.
| | | | - Patrick Schuller
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Martin Frauenlob
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Sarah Spitz
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Peter Ertl
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
25
|
Kahlert S, Nossol C, Krüger M, Kopp S, Grimm D, Wuest SL, Rothkötter HJ. Dynamic Mechanical Load as a Trigger for Growth and Proliferation in Porcine Epithelial Cells. Biomolecules 2025; 15:455. [PMID: 40149991 PMCID: PMC11940287 DOI: 10.3390/biom15030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
The impact of gravity is a basic force determining our existence on Earth. Changes in orientation with respect to the gravity vector trigger alternating mechanical forces on organisms, organs, and cells. In the intestines of mammals, epithelial cells are continuously exposed to changed orientations to gravity. In this study, we employed dynamic cultivation systems to mimic the load changes and the resulting mechanical forces. The morphological and functional response of non-cancer-derived porcine epithelial cell lines IPEC-1 and IPEC-J2 was analyzed. We found that dynamic growth conditions affect morphology in the enterocyte model IPEC-1 but not in IPEC-J2. Changes in IPEC-1 were accompanied by modifications of the distribution and structure of the F-actin cytoskeleton rather than the amount. The structure of the apical brush border and the tight junction system seemed to be largely unaffected; however, a robust decrease in transepithelial resistance was found in IPEC-1 and partially in IPEC-J2. We further detected an increase in Ki67, pointing towards accelerated proliferation. In line with this finding, we detected a doubling of cellular mitochondrial respiration, which was not linked to a general increase in the respiratory chain capacity. Dynamic cultivation of confluent epithelial cell layers did not evoke signs of senescence. In summary, we identified the mechanical load cycle as a relevant parameter for the modulation of the morphological structure and physiological behaviour of intestinal epithelial cells.
Collapse
Affiliation(s)
- Stefan Kahlert
- Institut für Anatomie, Medizinische Fakultät, Otto von Guericke Universität Magdeburg, Leipziger Str. 44, Haus 43, 39120 Magdeburg, Germany; (C.N.); (H.-J.R.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke Universität Magdeburg, 39106 Magdeburg, Germany; (M.K.); (S.K.); (D.G.)
| | - Constanze Nossol
- Institut für Anatomie, Medizinische Fakultät, Otto von Guericke Universität Magdeburg, Leipziger Str. 44, Haus 43, 39120 Magdeburg, Germany; (C.N.); (H.-J.R.)
| | - Marcus Krüger
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke Universität Magdeburg, 39106 Magdeburg, Germany; (M.K.); (S.K.); (D.G.)
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Sascha Kopp
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke Universität Magdeburg, 39106 Magdeburg, Germany; (M.K.); (S.K.); (D.G.)
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Core Facility Tissue Engineering, Institut für Chemie, Otto von Guericke Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke Universität Magdeburg, 39106 Magdeburg, Germany; (M.K.); (S.K.); (D.G.)
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, HØegh-Guldbergs Gade 10, 8000 Aarhus, Denmark
| | - Simon L. Wuest
- Space Biology Group, Institute of Medical Engineering, Lucerne, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, Obermattweg 9, 6052 Hergiswil, NW, Switzerland
| | - Hermann-Josef Rothkötter
- Institut für Anatomie, Medizinische Fakultät, Otto von Guericke Universität Magdeburg, Leipziger Str. 44, Haus 43, 39120 Magdeburg, Germany; (C.N.); (H.-J.R.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke Universität Magdeburg, 39106 Magdeburg, Germany; (M.K.); (S.K.); (D.G.)
| |
Collapse
|
26
|
Spiegel M. Fisetin as a Blueprint for Senotherapeutic Agents - Elucidating Geroprotective and Senolytic Properties with Molecular Modeling. Chemistry 2025; 31:e202403755. [PMID: 39688310 PMCID: PMC11914956 DOI: 10.1002/chem.202403755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/18/2024]
Abstract
Targeting senescent cells and the factors that accelerate this pathological state has recently emerged as a novel field in medicinal chemistry. As attention shifts to synthetic substances, studies on natural agents are often overlooked. In this paper, we present a detailed computational modeling study that encompasses quantum mechanics and molecular dynamics to elucidate the senotherapeutic activity of fisetin, a natural flavonoid. The mitochondrial environment, serving as a proxy for senescence, received special attention. Throughout the study, fisetin's outstanding geroprotective properties-exhibiting significant potential against ⋅OOH, O2⋅-, and ⋅OH radicals, surpassing those of Trolox or ascorbate-were identified. Furthermore, fisetin demonstrated a high capacity to restore oxidatively damaged biomolecules to their pristine forms, thereby renewing the functionality of proteins and amino acids. The senolytic properties were examined in terms of Bcl-2 and Bcl-xL inhibition. The results indicated that fisetin not only binds effectively to these proteins but also, with appropriate modifications, may exhibit specific selectivity toward either target. This study highlights fisetin's remarkable activity in these areas and provides a molecular description of the underlying processes, paving the way for future research.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Organic Chemistry and Pharmaceutical TechnologyFaculty of PharmacyWroclaw Medical UniversityBorowska 211A50–556WroclawPoland
| |
Collapse
|
27
|
Kalyoncu M, Demirci D, Eris S, Dayanc B, Cakiroglu E, Basol M, Uysal M, Cakan-Akdogan G, Liu F, Ozturk M, Karakülah G, Senturk S. Escape from TGF-β-induced senescence promotes aggressive hallmarks in epithelial hepatocellular carcinoma cells. Mol Oncol 2025. [PMID: 40083231 DOI: 10.1002/1878-0261.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/16/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Transforming growth factor-β (TGF-β) signaling and cellular senescence are key hallmarks of hepatocellular carcinoma (HCC) pathogenesis. Despite provoking senescence-associated growth arrest in epithelial HCC cells, elevated TGF-β activity paradoxically correlates with increased aggressiveness and poor prognosis in advanced tumors. Whether the transition between these dichotomous functions involves modulation of the senescence phenotype during disease progression remains elusive. Exploiting the epithelial HCC cell line Huh7 as a robust model, we demonstrate that chronic exposure to TGF-β prompts escape from Smad3-mediated senescence, leading to the development of TGF-β resistance. This altered state is characterized by an optimal proliferation rate and the acquisition of molecular and functional traits of less-differentiated mesenchymal cells, coinciding with differential growth capacity in 2D and 3D culture conditions, epithelial-to-mesenchymal transition (EMT), and increased invasiveness in vitro, and metastasis in vivo. Mechanistically, resistant cells exhibit defective activation and nuclear trafficking of Smad molecules, particularly Smad3, as ectopic activation of the TGF-β/Smad3 axis is able to reinstate TGF-β sensitivity. An integrated transcriptomic landscape reveals both shared and distinct gene signatures associated with senescent and TGF-β resistant states. Importantly, genetic ablation and molecular studies identify microtubule affinity regulating kinase 1 (MARK1) and glutamate metabotropic receptor 8 (GRM8) as critical modulators of the resistance phenomenon, potentially by impairing spatiotemporal signaling dynamics of Smad activity. Our findings unveil a novel phenomenon wherein epithelial HCC cells may exploit senescence plasticity as a mechanism to oppose TGF-β anti-tumor responses and progress towards more aggressive HCC phenotypes.
Collapse
Affiliation(s)
| | | | - Sude Eris
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Bengisu Dayanc
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ece Cakiroglu
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Merve Basol
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Merve Uysal
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Gulcin Cakan-Akdogan
- Izmir Biomedicine and Genome Center, Turkey
- Department of Biomedicine and Health Technologies, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Fang Liu
- Center for Advanced Biotechnology and Medicine, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Mehmet Ozturk
- Department of Medical Biology, Izmir Tinaztepe University School of Medicine, Turkey
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| |
Collapse
|
28
|
Wang L, Tang D. Immunosenescence promotes cancer development: from mechanisms to treatment strategies. Cell Commun Signal 2025; 23:128. [PMID: 40065335 PMCID: PMC11892258 DOI: 10.1186/s12964-025-02082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
The body's innate immune system plays a pivotal role in identifying and eliminating cancer cells. However, as the immune system ages, its functionality can deteriorate, becoming dysfunctional, inefficient, or even inactive-a condition referred to as immunosenescence. This decline significantly increases the risk of malignancies. While the pro-cancer effects of T-cell aging have been widely explored, there remains a notable gap in the literature regarding the impact of aging on innate immune cells, such as macrophages and neutrophils. This review seeks to address this gap, with emphasis on these cell types. Furthermore, although certain cancer immunotherapies, including immune checkpoint inhibitors (ICIs), have demonstrated efficacy across a broad spectrum of cancers, elderly patients are less likely to derive clinical benefit from these treatments. In some cases, they may even experience immune-related adverse events (irAEs). While senolytic strategies have shown promise in exerting anti-cancer effects, their adverse reactions and potential off-target effects present significant challenges. This review aims to elucidate the pro-cancer effects of immunosenescence, its implications for the efficacy and safety of ICIs, and potential anti-aging treatment strategies. In addition, optimizing anti-aging therapies to minimize adverse reactions and enhance therapeutic outcomes remains a critical focus for future research endeavors.
Collapse
Affiliation(s)
- Leihan Wang
- Clinical Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University; Northern Jiangsu People's Hospital; The Yangzhou Clinical Medical College of Xuzhou Medical University; The Yangzhou School of Clinical Medicine of Dalian Medical University; The Yangzhou School of Clinical Medicine of Nanjing Medical University; Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, 225000, China.
| |
Collapse
|
29
|
Fan X, Lu Y, Xie Y, Yan X, Fan W, Ishii Y, Yu B, Li R. Structural characterization and anti-aging activity investigation of a polysaccharide from Anemarrhena asphodeloides Bge. Int J Biol Macromol 2025; 293:139216. [PMID: 39733906 DOI: 10.1016/j.ijbiomac.2024.139216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Anemarrhena asphodeloides Bge. (AAB), a traditional medicinal herb, has a long history of delaying the aging process. Yet, the anti-aging effects of its polysaccharides have not been thoroughly investigated. This study marks the first exploration of the anti-aging activity of Anemarrhena asphodeloides Bge. polysaccharides (AABP). The MW of AABP-1a was determined to be 210.062 kDa, with a composition consisting predominantly of glucose and mannose in a molar ratio of approximately 4:1. The backbone of AABP-1a was mainly composed of →4)-2Ac-β-Man(1→ and →4)-β-Glc(1→ and a small amount of branched →4,6)-β-Glc(1→ and →3,4)-β-Glc(1→, the branching part was composed of →6)-β-Glc(1→ and t-α-Glc(1→. AABP-1a has antioxidant capacity and can improve cell cycle arrest mediated by senescence markers such as p53, p21, p16 and SASP, and reduce the accumulation of damaged DNA. In addition, it could reduce the activity of SA-β-Gal in zebrafish, prolong the lifespan of C. elegans and reduce the expression of lipofuscin. This study found a glucomannan and demonstrated its anti-aging activity in various aging models. These results provide a theoretical basis for further study of the anti-aging effect of AAB.
Collapse
Affiliation(s)
- Xinxin Fan
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yu Lu
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yujun Xie
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaodong Yan
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wanyu Fan
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Boyang Yu
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Renshi Li
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
30
|
Chen Y, Li J, Liu X, Geng Z, Xu K, Su J. Advances in biomarkers and diagnostic significance of organ aging. FUNDAMENTAL RESEARCH 2025; 5:683-696. [PMID: 40242549 PMCID: PMC11997494 DOI: 10.1016/j.fmre.2023.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2025] Open
Abstract
A complete understanding of aging is a critical first step in treating age-related diseases and postponing aging dysfunction in the context of an aging global population. Aging in organisms is driven by related molecular alterations that gradually occur in many organs. There has previously been a wealth of knowledge of how cells behave as they age, but when aging is investigated as a disease, the discovery and selection of aging biomarkers and how to diagnose the aging of the organism are crucial. Here, we provide a summary of the state of the field and suggest future potential routes for research on organ senescence markers. We reviewed research on biomarkers of risk of aging from the perspective of organ aging and summarized the biomarkers currently used on three scales. We emphasize that the combination of traditional markers with emerging multifaceted biomarkers may be a better way to diagnose age-related diseases.
Collapse
Affiliation(s)
- Yulin Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiadong Li
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xinru Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| |
Collapse
|
31
|
Kalies K, Knöpp K, Koch S, Pilowski C, Wurmbrand L, Sedding D. Restoration of angiogenic capacity in senescent endothelial cells by a pharmacological reprogramming approach. PLoS One 2025; 20:e0319381. [PMID: 40019880 PMCID: PMC11870368 DOI: 10.1371/journal.pone.0319381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/31/2025] [Indexed: 03/03/2025] Open
Abstract
Senescent endothelial cells (EC) are key players in the pathophysiology of cardiovascular diseases and are characterized by a reduced angiogenic and regenerative potential. Therefore, targeting these cells has been suggested as an effective therapeutic strategy to reduce vascular disease burden and potentially improve health and lifespan of humans. Here, we aimed to establish a pharmacological, partial reprogramming strategy to improve replicative senescent endothelial cell function in the context of angiogenesis. We demonstrate that our treatment improves tube formation and sprouting capacity but also increases proliferation and migration capacity in vitro. Further, inflammation and DNA damage were reduced in the replicative senescent cells. These processes were initiated by a short and timely-restricted overexpression of the Yamanaka-factors induced by our pharmacological strategy. The advantage of these compounds is that they are FDA approved in their respective concentrations which could pave the way for use in a clinical setting.
Collapse
Affiliation(s)
- Katrin Kalies
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Kai Knöpp
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Susanne Koch
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Pilowski
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Leonie Wurmbrand
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniel Sedding
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
32
|
Puebla-Huerta A, Huerta H, Quezada-Gutierez C, Morgado-Cáceres P, Casanova-Canelo C, Niño SA, Linsambarth S, Díaz-Rivera O, López-Domínguez JA, Rodríguez-López S, González-Reyes JA, Bustos G, Silva-Pavez E, Lovy A, Quiroz G, González-Seguel C, Salas-Huenuleo E, Kogan MJ, Molgó J, Zakarian A, Villalba JM, Gonzalez-Billault C, Calì T, Ahumada-Castro U, Cárdenas JC. Calcium (Ca 2+) fluxes at mitochondria-ER contact sites (MERCS) are a new target of senolysis in therapy-induced senescence (TIS). NPJ AGING 2025; 11:11. [PMID: 39984524 PMCID: PMC11845618 DOI: 10.1038/s41514-025-00197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/17/2025] [Indexed: 02/23/2025]
Abstract
Therapy-induced senescence (TIS) alters calcium (Ca²⁺) flux and Mitochondria-ER Contact Sites (MERCS), revealing critical vulnerabilities in senescent cells. In this study, TIS was induced using Doxorubicin and Etoposide, resulting in an increased MERCS contact surface but a significant reduction in ER-mitochondria Ca²⁺ flux. Mechanistically, TIS cells exhibit decreased expression of IP3R isoforms and reduced interaction between type 1 IP3R and VDAC1, impairing Ca²⁺ transfer. This flux is crucial for maintaining the viability of senescent cells, highlighting its potential as a therapeutic target. Inhibition of ER-mitochondria Ca²⁺ flux demonstrates senolytic effects both in vitro and in vivo, offering a novel strategy for targeting senescent cells.
Collapse
Affiliation(s)
- Andrea Puebla-Huerta
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Hernán Huerta
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Camila Quezada-Gutierez
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Pablo Morgado-Cáceres
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - César Casanova-Canelo
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Sandra A Niño
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
- Department of Biology, Laboratory of Cellular and Neuronal Dynamics, Faculty of Sciences, Universidad de Chile, Santiago, Región Metropolitana, Chile
| | - Sergio Linsambarth
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Osman Díaz-Rivera
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - José Alberto López-Domínguez
- Instituto de Biología Molecular y Celular del Cáncer and Centro de Investigación del Cáncer of Salamanca, University of Salamanca-CSIC, Salamanca, Spain
| | - Sandra Rodríguez-López
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain
| | - José Antonio González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain
| | - Galdo Bustos
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Eduardo Silva-Pavez
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista, Santiago, Chile
| | - Alenka Lovy
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
- Department of Ophthalmology and Visual Sciences Center for Vision Research, SUNY Upstate Medical University, Syracuse, USA
| | - Gabriel Quiroz
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | | | | | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont, Santiago, Chile
- Advanced Center of Chronic Diseases (ACCDiS), Santiago, Chile
| | - Jordi Molgó
- Université Paris-Saclay, CEA, Département Médicaments et Technologies pour la Santé, Service d'Ingénierie Moléculaire pour la Santé (SIMoS), Equipe Mixte de Recherche CNRS 9004, Gif-sur-Yvette, France
| | - Armen Zakarian
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - José M Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain
| | - Christian Gonzalez-Billault
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
- Department of Biology, Laboratory of Cellular and Neuronal Dynamics, Faculty of Sciences, Universidad de Chile, Santiago, Región Metropolitana, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Public Health Unit, Institute for Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Tito Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Centro Studi per la Neurodegenerazione (CESNE), University of Padua, Padua, Italy; Neuroscience Center (PNC), University of Padua, Padua, Italy
| | - Ulises Ahumada-Castro
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile.
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista, Santiago, Chile.
| | - J César Cárdenas
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile.
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
33
|
Agyapong N, Dominguez-Ortega L, Macdonough B, Mulluso P, Patel S, Prajapati B, Saville B, Shapiro A, Trim E, Battaglia K, Herrera J, Garifo-MacPartland G, Newcombe D, Okundaye L, Paglia H, Paxson J. Quiescence modulates age-related changes in the functional capacity of highly proliferative canine lung mesenchymal stromal cell populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.08.637273. [PMID: 39974876 PMCID: PMC11839019 DOI: 10.1101/2025.02.08.637273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The functional capacity of highly proliferative cell populations changes with age. Here, we report that the proliferative capacity of canine lung mesenchymal stromal cells (LMSCs) declines with increasing age of the donor. However, other functional changes such as reduced autophagy, reduced migration/wound healing, increased production of reactive oxygen species, and increased senescence are not significantly altered with increasing age. Furthermore, transcriptomic profiling suggests minimal age-related changes. These data suggest that the reduced proliferative capacity of lung LMSCs isolated from aging donors may be associated with reversible cell cycle arrest (quiescence), rather than irreversible cell cycle arrest (senescence). Similar findings have been reported in other systems, including neural and muscle stem cells that are associated with low turnover-rate tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ethan Trim
- College of the Holy Cross, Worcester MA USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang Y, Yang S, You X, Li Z, Chen L, Dai R, Sun H, Zhang L. CircSPG21 ameliorates oxidative stress-induced senescence in nucleus pulposus-derived mesenchymal stem cells and mitigates intervertebral disc degeneration through the miR-217/SIRT1 axis and mitophagy. Stem Cell Res Ther 2025; 16:49. [PMID: 39920738 PMCID: PMC11806878 DOI: 10.1186/s13287-025-04180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND The microenvironment of intervertebral disc degeneration (IVDD) is characterized by oxidative stress, leading to the senescence of nucleus pulposus-derived mesenchymal stem cells (NPMSCs). The purpose of this study was to investigate the competitive endogenous RNA mechanism involved in the senescence of NPMSCs induced by tert-butyl hydroperoxide (TBHP). METHODS Bioinformatic analysis identified differentially expressed circRNAs. Interactions among circSPG21, miR-217, and the NAD-dependent protein deacetylase sirtuin-1 (SIRT1) were validated through dual-luciferase assays, RNA fluorescence in situ hybridization and RNA immune precipitation. β-Gal staining, EdU staining, Western blotting, JC-1 assays, cell cycle analysis, and quantitative reverse transcription PCR (RT‒qPCR) were used to examine the functions of these molecules in TBHP-induced senescent NPMSCs. The therapeutic effects of circSPG21 were evaluated in a rat IVDD model. RESULTS CircSPG21 expression was significantly decreased in both human and rat IVDD tissues, whereas miR-217 was upregulated and SIRT1 was downregulated. Overexpression of circSPG21 alleviated NPMSC senescence by reducing P21 and P53 levels and restoring mitophagy through Parkin. The protective effects of circSPG21 were mediated through the miR-217/SIRT1 axis, as SIRT1 knockdown attenuated these benefits. CircSPG21 also ameliorated disc degeneration in the IVDD rat model, highlighting its potential as a therapeutic target. CONCLUSION CircSPG21 reduces oxidative stress-induced NPMSC senescence through the miR-217/SIRT1 axis and mitophagy, providing new insights into IVDD and identifying circSPG21 as a potential therapeutic target for disc degeneration.
Collapse
Affiliation(s)
- Yongbo Zhang
- Dalian Medical University, Dalian, 116000, China
- Department of Orthopedics, The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, 225001, China
| | - Sheng Yang
- Dalian Medical University, Dalian, 116000, China
- Department of Orthopedics, The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, 225001, China
| | - Xuan You
- Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Zhengguang Li
- Department of Orthopedics, The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, 225001, China
| | - Liuyang Chen
- Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Rui Dai
- Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Hua Sun
- Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Liang Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu Province, China.
- Department of Orthopedics, The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, 225001, China.
| |
Collapse
|
35
|
Hayrapetyan L, Roth SM, Quintin A, Hovhannisyan L, Medo M, Riedo R, Ott JG, Albers J, Aebersold DM, Zimmer Y, Medová M. HPV and p53 Status as Precision Determinants of Head and Neck Cancer Response to DNA-PKcs Inhibition in Combination with Irradiation. Mol Cancer Ther 2025; 24:214-229. [PMID: 39513374 PMCID: PMC11791480 DOI: 10.1158/1535-7163.mct-23-0794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 07/15/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Major risk factors of head and neck squamous cell carcinoma (HNSCC) are tobacco use and human papillomavirus (HPV). HPV E6 oncoprotein leads to p53 degradation, whereas HPV-negative cancers are frequently associated with TP53 mutations. Peposertib is a potent and selective, orally administered small-molecule inhibitor of the catalytic subunit of the DNA-dependent kinase (DNA-PKcs), a key regulator of nonhomologous end joining (NHEJ). NHEJ inhibition along with irradiation (IR)-induced DNA double-strand breaks has the potential to increase antitumor treatment efficacy. In this study, we investigated the responses of a panel of HNSCC models with distinct HPV and p53 status to treatments with IR, DNA-PKcs inhibition, and their combination in vitro and in vivo. IR-induced DNA damage combined with peposertib administration shortly before IR results in decreased cell viability and proliferation and causes DNA repair delay in all studied HNSCC cell lines. However, our data confirm that the actual cell fate upon this treatment is determined by cellular p53 and/or HPV status. Cells lacking functional p53 due to its degradation by HPV or due to a loss-of-function mutation are arrested in the G2/M phase of the cell cycle and eliminated by apoptosis, whereas p53-proficient HNSCC cell lines preferentially undergo senescence. This is also recapitulated in vivo, where HPV+ UD-SCC-2 xenografts display stronger and more durable responses to the combined treatment as compared with p53 wild-type UM-SCC-74A tumors. In conclusion, DNA-PKcs inhibitor peposertib should be further studied as a potential radiosensitizer for HNSCCs, taking into consideration the genetic background and the HPV status of a particular tumor.
Collapse
Affiliation(s)
- Liana Hayrapetyan
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Selina M. Roth
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Aurélie Quintin
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
| | - Lusine Hovhannisyan
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Matúš Medo
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
| | - Rahel Riedo
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
| | - Julien G. Ott
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
| | - Joachim Albers
- Research Unit Oncology, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Daniel M. Aebersold
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
| | - Yitzhak Zimmer
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
| |
Collapse
|
36
|
Tharmapalan V, Du Marchie Sarvaas M, Bleichert M, Wessiepe M, Wagner W. Senolytic compounds reduce epigenetic age of blood samples in vitro. NPJ AGING 2025; 11:6. [PMID: 39905063 PMCID: PMC11794651 DOI: 10.1038/s41514-025-00199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025]
Abstract
Senolytic drugs raise the expectation that they can specifically eliminate a subset of senescent cells in a given tissue. In this study, we have exemplarily analyzed if a 3-day treatment of human blood samples in vitro would reduce age-associated biomarkers, with a particular focus on epigenetic age-predictions. Of eight tested compounds, JQ1, RG7112, nutlin-3a, and AMG232 reduced epigenetic age, indicating that this approach may be useful in drug screening for senolytic compounds.
Collapse
Affiliation(s)
- Vithurithra Tharmapalan
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, 52074, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, 52074, Aachen, Germany
| | - Miriam Du Marchie Sarvaas
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, 52074, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, 52074, Aachen, Germany
| | - Michael Bleichert
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, 52074, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, 52074, Aachen, Germany
| | - Martina Wessiepe
- Institute for Transfusion Medicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wagner
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, 52074, Aachen, Germany.
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, 52074, Aachen, Germany.
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Cologne, Germany.
| |
Collapse
|
37
|
Kang D, Lee J, Yook G, Jeong S, Shin J, Kim MS, Kim YJ, Jung H, Ahn J, Kim TW, Chang MJ, Chang CB, Kang SB, Yang WH, Lee YH, Cho JW, Yi EC, Kang C, Kim JH. Regulation of senescence-associated secretory phenotypes in osteoarthritis by cytosolic UDP-GlcNAc retention and O-GlcNAcylation. Nat Commun 2025; 16:1094. [PMID: 39904978 PMCID: PMC11794700 DOI: 10.1038/s41467-024-55085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/27/2024] [Indexed: 02/06/2025] Open
Abstract
UDP-GlcNAc serves as a building block for glycosaminoglycan (GAG) chains in cartilage proteoglycans and simultaneously acts as a substrate for O-GlcNAcylation. Here, we show that transporters for UDP-GlcNAc to the endoplasmic reticulum (ER) and Golgi are significantly downregulated in osteoarthritic cartilage, leading to increased cytosolic UDP-GlcNAc and O-GlcNAcylation in chondrocytes. Mechanistically, upregulated O-GlcNAcylation governs the senescence-associated secretory phenotype (SASP) by stabilizing GATA4 via O-GlcNAcylation at S406, which compromises its degradation by p62-mediated selective autophagy. Elevated O-GlcNAcylation in the superficial layer of osteoarthritic cartilage coincides with increased GATA4 levels. The topical deletion of Gata4 in this cartilage layer ameliorates post-traumatic osteoarthritis (OA) in mice while inhibiting O-GlcNAc transferase mitigates OA by decreasing GATA4 levels. Excessive glucosamine-induced O-GlcNAcylation stabilizes GATA4 in chondrocytes and exacerbates post-traumatic OA in mice. Our findings elucidate the role of UDP-GlcNAc compartmentalization in regulating secretory pathways associated with chronic joint inflammation, providing a senostatic strategy for the treatment of OA.
Collapse
Affiliation(s)
- Donghyun Kang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Jeeyeon Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Geunho Yook
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Sehan Jeong
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Jungkwon Shin
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Mi-Sung Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Yi-Jun Kim
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, 07985, South Korea
| | - Hyeryeon Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Jinsung Ahn
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Tae Woo Kim
- Department of Orthopaedic Surgery, Seoul National University Boramae Hospital, Seoul, 07061, South Korea
| | - Moon Jong Chang
- Department of Orthopaedic Surgery, Seoul National University Boramae Hospital, Seoul, 07061, South Korea
| | - Chong Bum Chang
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, South Korea
| | - Seung-Baik Kang
- Department of Orthopaedic Surgery, Seoul National University Boramae Hospital, Seoul, 07061, South Korea
| | - Won Ho Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
| | - Yong-Ho Lee
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jin Won Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology, College of Medicine, Seoul National University, Seoul, 03080, South Korea
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
| | - Chanhee Kang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin-Hong Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea.
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea.
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea.
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
38
|
Gold NM, Ding Q, Yang Y, Pu S, Cao W, Ge X, Yang P, Okeke MN, Nisar A, Pan Y, Luo Q, Wang X, Xu H, Tian R, Zi M, Zhang X, Li S, He Y. Therapeutic potential of nicotinamide and ABT263 in alcohol-associated liver disease through targeting cellular senescence. MedComm (Beijing) 2025; 6:e70086. [PMID: 39931736 PMCID: PMC11808045 DOI: 10.1002/mco2.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Alcohol-associated liver disease (ALD) is a major cause of liver-related morbidity and mortality, yet clinically effective therapies for ALD remain lacking. Here, we demonstrate that alcohol intake and its metabolite, acetaldehyde (ACH), induce senescence in the liver and liver cells, respectively. To assess the therapeutic potential of targeting liver senescence in ALD, we treated ALD-affected mice with the senolytic compound ABT263 and the senomorphic NAD+ precursor, nicotinamide (NAM). The results show that ABT263 effectively clears senescent hepatocytes and stellate cells, and reduces liver triglyceride (TG), but increases plasma alanine aminotransferase and TG levels. Conversely, NAM efficiently suppresses senescence and the senescence-associated secretory phenotype (SASP), protecting the liver from alcohol-induced injury in ALD mice. RNA-sequencing analysis revealed that ABT263 treatment downregulated genes involved in adipogenesis while activating the complement pathway. In contrast, NAM upregulated metabolism-related genes, such as Sirt1, and downregulated DNA damage marker genes, including Rec8 and E2f1, in the liver. These findings suggest that cellular senescence plays a critical role in alcohol-induced liver injury. Compared with senescent cell clearance by ABT263, suppressing senescence and SASP by NAM may provide a safer and more effective therapeutic approach for ALD.
Collapse
Affiliation(s)
- Naheemat Modupeola Gold
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Qinchao Ding
- Department of Nutrition and Food Hygiene, School of Public HealthZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Yang Yang
- Department of MedicineMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Shaoyan Pu
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Biodiversity Data Center of Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Wenjing Cao
- Department of Nutrition and Food Hygiene, School of Public HealthZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Xinxuan Ge
- Department of Nutrition and Food Hygiene, School of Public HealthZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Pengyun Yang
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Michael Ngozi Okeke
- Guangdong Key Laboratory of NanomedicineInstitute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Ayesha Nisar
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Yongzhang Pan
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Qiuni Luo
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Xiayan Wang
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Han Xu
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Rui Tian
- Department of UltrasonographyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Meiting Zi
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural ResourceMinistry of EducationYunnan Characteristic Plant Extraction LaboratoryYunnan Key Laboratory of Research and Development for Natural ProductsState Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanSchool of Pharmacy and School of Chemical Science and TechnologyYunnan UniversityKunmingYunnanChina
| | - Songtao Li
- Department of Nutrition and Food Hygiene, School of Public HealthZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Yonghan He
- State Key Laboratory of Genetic Evolution & Animal ModelsKey Laboratory of Healthy Aging Research of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| |
Collapse
|
39
|
Futami K, Ito H, Katagiri T. Resistance to premature senescence in the Epithelioma papulosum cyprini fish cell line is associated with the absence of PML nuclear bodies. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:11. [PMID: 39614967 DOI: 10.1007/s10695-024-01423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/12/2024] [Indexed: 01/16/2025]
Abstract
Cell lines derived from fish tissues are resistant to premature senescence under typical culture conditions. Previously, we demonstrated that fish genomes do not have a p16INK4a/Arf locus and that the absence of this locus underlies the lack of senescence in cultured fish cells. However, other factors may also contribute to this resistance. In amniotes, promyelocytic leukemia (PML)-IV proteins are involved in the generation of PML nuclear bodies (PML NBs), which are connected with premature senescence. The lack of a pml gene in fish genomes may be involved in the mechanism of resistance to cellular senescence. Heterologous expression of human PML-IV in an Epithelioma papulosum cyprini cell line induced the formation of PML NB-like speckled structures. The cells displayed characteristic features of cellular senescence, namely, growth suppression, a large, flattened morphology, and increased SA-β-gal activity. Additionally, the levels of proinflammatory senescence-associated secretory phenotype (SASP) factors increased in the cells, suggesting a link between the absence of PML NBs and cellular resistance to senescence. Expression of the CCAT enhancer binding protein beta gene, which encodes a transcription factor of proinflammatory SASPs, was not increased, nor was there any elevation in the activity of NF-κB, a transcription factor for proinflammatory SASP factors and C/EBPβ. Epigenetic regulatory mechanisms may contribute to the induction of proinflammatory SASP factors by PML NBs.
Collapse
Affiliation(s)
- Kunihiko Futami
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan.
| | - Hayato Ito
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan
| | - Takayuki Katagiri
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan
| |
Collapse
|
40
|
Long TT, Phuong L, Van Nguyen Dang L, Ngoc TTB, Thao DTP, Trinh NTM. Petroleum ether extract of Elephantopus mollis induces senescence and inhibits invasion in breast cancer MDA-MB-231 cells. 3 Biotech 2025; 15:45. [PMID: 39834568 PMCID: PMC11741969 DOI: 10.1007/s13205-025-04214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025] Open
Abstract
Elephantopus mollis Kunth H.B et Kunth is an herbal plant employed customarily for the treatment of numerous maladies, notably cancers. Here in this research, we studied the effects of E. mollis (EM) petroleum ether extract (EM-PE) on the highly aggressive breast cancer cell line MDA-MB-231. The result from phytochemical analysis demonstrated the presence of tannins and saponins in EM-PE, of which, saponins made up more than 50% of the extract's mass. Cytotoxicity results, which were obtained from MTT assay and microscopic observation, suggested the potential of EM-PE to inhibit the growth of MDA-MB-231 cells with low IC50 value (approximately 30 μg/mL) and remarkably high selectivity index (> 4.78). Further evaluation indicated that EM-PE inhibited MDA-MB-231 cells growth in a dose-dependent manner. Interestingly, we found that EM-PE induced senescence in MDA-MB-231 cells via the activation of senescence-associated β-galactosidase and the transcriptional upregulation of p21 (3.7 times) and p27 (1.4 times). In consistent with this effect, pre-treated cancer cells showed no proliferative recovery after EM-PE removal. In addition, EM-PE could dramatically hinder breast cancer cells invasion (as much as 15.07-fold), which was shown in Transwell invasion assay, together with the decreased transcription of the important metastatic-involved SNAIL1 gene. Overall, our study, for the first time, exhibits the anti-proliferation and anti-invasion effects of EM extract on highly metastasis breast cancer cell line MDA-MB-231. Hence, these findings contributed to the knowledge of anti-cancer potential of this herbal plant. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04214-8.
Collapse
Affiliation(s)
- Tran Thanh Long
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
| | - Le Phuong
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
| | - Le Van Nguyen Dang
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
| | - Truong Thi Bich Ngoc
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Dang Thi Phuong Thao
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
- Laboratory of Molecular Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
- Laboratory of Cancer Research, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nguyen Thi My Trinh
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
41
|
Fukumoto T, Shimosawa T, Yakabe M, Yoshida S, Yoshida Y. Recent advances in biomarkers for senescence: Bridging basic research to clinic. Geriatr Gerontol Int 2025; 25:139-147. [PMID: 39754295 DOI: 10.1111/ggi.15054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/31/2024] [Accepted: 12/14/2024] [Indexed: 01/06/2025]
Abstract
In this review, we review the current status of biomarkers for aging and possible perspectives on anti-aging or rejuvenation from the standpoint of biomarkers. Aging is observed in all cells and organs, and we focused on research into senescence in the skin, musculoskeletal system, immune system, and cardiovascular system. Commonly used biomarkers include SA-βgal, cell-cycle markers, senescence-associated secretory phenotype (SASP) factors, damage-associated molecular patterns (DAMPs), and DNA-damage-related markers. In addition, each organ or cell has its specific markers. Generally speaking, a combination of biomarkers is required to define age-related changes. When considering the translation of basic research, biomarkers that are highly sensitive, highly specific, with validation and reliability as well as being non-invasive are optimal; however, currently reported markers do not fulfill the prerequisite for biomarkers. In addition, rodent models of aging do not necessarily represent human aging, and markers in rodent or cell models are not applicable in clinical settings. The prerequisite of clinically applicable biomarkers is that they provide useful information for clinical decision-making, such as predicting disease risk, diagnosing disease, monitoring disease progression, or guiding treatment decisions. Therefore, the development of non-invasive robust, reliable, and useful biomarkers in humans is necessary to develop anti-aging therapy for humans. Geriatr Gerontol Int 2025; 25: 139-147.
Collapse
Affiliation(s)
- Takeshi Fukumoto
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, Graduate School of Medicine, International University of Health and Welfare, Hyogo, Japan
| | - Mitsutaka Yakabe
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shota Yoshida
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yohko Yoshida
- Department of Advanced Senotherapeutics and Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Escriche-Navarro B, Garrido E, Clara-Trujillo S, Labernadie A, Sancenon F, García-Fernández A, Martínez-Máñez R. Nanodevice-Mediated Immune Cell Recruitment: Targeting Senescent Cells via MMP-3-Responsive CXCL12-Coated Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5880-5892. [PMID: 39835371 DOI: 10.1021/acsami.4c17748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Senescent cells are involved in age-related disorders in different organs and are therapeutic targets for fibrotic and chronic pathologies. Immune-modulating agents, able to enhance senescent cell detection and elimination by endogenous immune cells, have emerged as pharmacological strategies. We report herein a nanoparticle for immune cell-mediated senolytic therapy designed to recruit immune cells in response to specific enzymatic matrix metalloproteinase-3 (MMP-3) activity in the senescence-associated secretory phenotype. For this, mesoporous silica nanoparticles (MSNs) are coated with a peptide substrate of the metalloproteinase MMP-3, and the peptide is decorated with chemokine CXCL12 that enhances immune cell recruitment (NPs@CXCL12). Controlled release studies confirmed the progressive and specific release of CXCL12 in the presence of MMP-3. The ability of immune cell recruitment in response to a senescent microenvironment (senescent WI-38 fibroblasts) is confirmed by Transwell migration assays with green fluorescent Jurkat T-cells, showing NPs@CXCL12 has an enhanced chemotaxis effect toward senescent cells compared to free CXCL12 (2-fold). Moreover, the cytotoxic capacity of human primary natural killer (NK) cells over senescent WI-38 is also confirmed, and their migration trajectories in response to NPs@CXCL12 or free CXCL12 are monitored by using a microfluidic device. Results confirm the ability of NPs@CXCL12 to generate a chemotactic gradient able to attract NK cells. When compared with free CXCL12, the NPs@CXCL12 system showed a reduction of up to 15.56% in the population of NK cells migrating toward free CXCL12 under competitive conditions. This study demonstrates the potential of designing nanoparticles to recruit immune cells under specific responses to eliminate senescent cells. Results confirm that NPs@CXCL12 can effectively establish a chemotactic gradient to attract NK cells.
Collapse
Affiliation(s)
- Blanca Escriche-Navarro
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7a planta, 46026 Valencia, Spain
| | - Eva Garrido
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Sandra Clara-Trujillo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Anna Labernadie
- Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Félix Sancenon
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7a planta, 46026 Valencia, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7a planta, 46026 Valencia, Spain
| |
Collapse
|
43
|
Lee HJ, Kim YJ, Park HW, Kim HI, Kim HT, Hong GL, Cho SP, Kim KH, Jung JY. Sestrin2 ameliorates age-related spontaneous benign prostatic hyperplasia via activation of AMPK/mTOR dependent autophagy. Biogerontology 2025; 26:48. [PMID: 39853471 DOI: 10.1007/s10522-025-10184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
Benign prostatic hyperplasia (BPH), characterized as a chronic disease with unregulated enlargement of prostatic gland, is commonly observed in elderly men leading to lower urinary tract dysfunction. Sestrin2 plays a role in the maintenance of cellular homeostasis and protects organisms from various stimuli. The exact role of Sestrin2 in the etiology of BPH, a common age-related disease, remains unknown. Here, we explored the regulatory function of Sestrin2 in modulating autophagy and its therapeutic role in spontaneous BPH. In vivo study, the 3-month-old (3 M) and 24-month-old (24 M) mice were used, and the 24 M mice were additionally administered recombinant Sestrin2 protein (rp-Sestrin2) for consecutive 14 days. In vitro, BPH-1 cells were transfected with an empty or Sestrin2 overexpression vector. Sestrin2 expression in mice prostate was gradually declined with age. Administration of rp-Sestrin2 to these mice suppressed prostatic hyperplasia, restored the balance between proliferation and apoptosis, and reduced prostatic fibrosis. Moreover, rp-Sestrin2 treatment enhanced autophagy by activating AMP-activated protein kinase (AMPK)/ mammalian target of rapamycin (mTOR) signaling pathway, as evidenced by increased autophagosome and autolysosome formation, along with a decrease in degradation marker such as p62. Our findings were further supported by in vitro studies, where Sestrin2 overexpression induced autophagy via AMPK/mTOR signaling pathway. These results suggest that Sestrin2 plays a critical role in attenuating spontaneous BPH by regulating autophagy through AMPK/mTOR signaling pathway. This study provides novel insights into the therapeutic potential of Sestrin2 in age-related spontaneous BPH.
Collapse
Affiliation(s)
- Hui-Ju Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea
| | - Yae-Ji Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea
| | - Hwan-Woo Park
- Department of Cell Biology, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Hae-Il Kim
- Department of Cell Biology, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Hyun-Tae Kim
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, 61751, Republic of Korea
| | - Geum-Lan Hong
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea
| | - Sung-Pil Cho
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea
| | - Kyung-Hyun Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea.
| | - Ju-Young Jung
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
44
|
Bilmez Y, Talibova G, Tire B, Ozturk S. Histone lysine methyltransferases and their specific methylation marks show significant changes in mouse testes from young to older ages. Biogerontology 2025; 26:42. [PMID: 39832035 PMCID: PMC11753314 DOI: 10.1007/s10522-025-10187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Spermatogenesis is finely regulated by histone methylation, which is crucial for regulating gene expression and chromatin remodeling. Functional studies have demonstrated that the histone lysine methyltransferases (KMTs) SETD1B, CFP1, SETDB1, G9A, and SETD2 play pivotal roles in spermatogenesis through establishing the key histone methylation marks, H3K4me3, H3K9me2, H3K9me3, and H3K36me3, respectively. This study aimed to evaluate the spatiotemporal expression of these KMTs and methylation marks as well as senescence-associated β-galactosidase (β-GAL), transcriptional activity, and apoptosis rates in mouse testes during biological aging. In accordance with these purposes, the following groups of Balb/C mice were created: young (1- and 2-week-old), prepubertal (3- and 4-week-old), pubertal (5- and 6-week-old), postpubertal (16-, 18-, and 20-week-old), and aged (48-, 50-, and 52-week-old). The β-GAL staining gradually increased from the young to the aged groups (P < 0.01). The SETD1B, G9A, SETDB1, and SETD2 protein levels increased in spermatogonia, early and pachytene spermatocytes, and Sertoli cells of the aged group (P < 0.05). In contrast, CFP1 protein level decreased in spermatogonia, pachytene spermatocytes, round spermatids, and Sertoli cells towards the older ages (P < 0.05). Moreover, H3K4me3, H3K9me2, H3K9me3, and H3K36me3 levels increased in the aged group (P < 0.05). There was also a significant reduction in apoptosis rates in seminiferous tubules of the pubertal, postpubertal, and aged groups (P < 0.01). Consequently, accumulation of histone methylation marks due to increased expression of KMTs in spermatogenic and Sertoli cells during testicular aging may alter chromatin reprogramming and gene expression, contributing to age-related fertility loss.
Collapse
Affiliation(s)
- Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Türkiye
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Türkiye
| | - Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Türkiye
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Türkiye.
| |
Collapse
|
45
|
Wang J, Tao Q, Huang K, Wang Y, Hu L, Ren A, Wang H, Wan Y, Li J, Yi L, Ruan Y, Wanyan Z, Wu F, Zhai Z, Liu C. Chemotherapy-induced cellular senescence promotes stemness of aggressive B-cell non-Hodgkin's lymphoma via CCR7/ARHGAP18/IKBα signaling activation. J Immunother Cancer 2025; 13:e009356. [PMID: 39773566 PMCID: PMC11749403 DOI: 10.1136/jitc-2024-009356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Resistance to existing therapies is a major cause of treatment failure in patients with refractory and relapsed B-cell non-Hodgkin's lymphoma (r/r B-NHL). Therapy-induced senescence (TIS) is one of the most important mechanisms of drug resistance. METHODS This study used single-cell RNA sequencing to analyze doxorubicin-induced senescent B-NHL cells. C-C chemokine receptor 7 (CCR7) expression in patients with aggressive B-NHL was assessed using immunohistochemistry and flow cytometry. Lentiviral transfection was used to target CCR7 expression in Raji and SU-DHL-2 cells. Protein localization was visualized through immunofluorescence, while western blotting and co-immunoprecipitation were used to analyze protein expression and interactions. Cell proliferation was measured with the Cell Counting Kit-8 assay, and senescent cells were detected using senescence-associated β-galactosidase staining. The stemness of cells was evaluated through colony and sphere formation assays. Transwell assays assessed cell migration and invasion. Finally, inhibitors GS143 and Y27632 were used to examine the effect of IKBα and ARHGAP/RhoA inhibition on B-NHL-TIS. RESULTS Here we identified a distinct group of TIS, composed of memory B-cell population characterized by strong positive expression of CCR7, which was significantly elevated in TIS population compared with normal proliferating and autonomously senescent lymphoma cell populations. Additionally, CCR7 expression was significantly upregulated in patients with r/r B-NHL, and was an independent prognostic factor in B-NHL, with high CCR7 expression being strongly associated with poor prognosis. In vitro results indicated that CCL21 induced migration and invasion of B-NHL cells via CCR7, while blocking CCR7 reduced doxorubicin-induced migration and invasion of these cells. Furthermore, B-NHL-TIS regulated by CCR7 and exhibited enhanced phenotypic and functional stemness features, including the upregulation of stemness markers, increased colony-forming, invasive and migratory capabilities. Mechanistically, blocking CCR7 reversed the stemness characteristics of senescent B-NHL cells by inhibiting the activation of ARHGAP18/IKBα signaling. CONCLUSIONS Together, TIS promotes the stemness of B-NHL cells via CCR7/ARHGAP18/IKBα signaling activation and targeting CCR7/ARHGAP18 might overcome the chemoresistance of senescent B-NHL cells by inhibiting stemness acquisition and maintenance.
Collapse
Affiliation(s)
- Jiyu Wang
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianshan Tao
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Keke Huang
- Department of Internal Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yangyang Wang
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Linhui Hu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huiping Wang
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Wan
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinlan Li
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liuying Yi
- Department of Hematology, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yanjie Ruan
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhixiang Wanyan
- Department of Emergency, The Third People's Hospital of Hefei, Hefei, Anhui, China
| | - Fan Wu
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhimin Zhai
- Department of Hematology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
46
|
Laouris P, Muñoz-Espín D. Current Methodologies to Assess Cellular Senescence in Cancer. Methods Mol Biol 2025; 2906:21-44. [PMID: 40082348 DOI: 10.1007/978-1-0716-4426-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Cellular senescence plays a critical role in cancer, acting as both a tumor-suppressive and tumor-promoting mechanism. Senescent cells undergo stable cell-cycle arrest in response to various stressors, including DNA damage and oncogenic signaling, and exhibit a complex secretory phenotype known as the senescence-associated secretory phenotype (SASP), which can impact the tumor microenvironment. The hallmarks of senescence include cell-cycle arrest, secretion of pro-inflammatory factors, structural changes, and metabolic alterations. These features, while initially suppressing tumorigenesis, can later contribute to cancer progression under certain conditions. Methods for studying senescence in preclinical models include in vitro assays, ex vivo tissue analysis, and in vivo detection techniques. Emerging therapeutic strategies focus on exploiting senescence for cancer treatment, particularly through the use of senolytic agents that selectively eliminate senescent cells and senomorphic compounds that modulate SASP activity. However, the identification of reliable and universal biomarkers for senescence remains a challenge, necessitating a multimarker approach to accurately detect and characterize senescent cells in various contexts.
Collapse
Affiliation(s)
- Panayiotis Laouris
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Daniel Muñoz-Espín
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK.
- CRUK Cambridge Centre Thoracic Cancer Programme, Cambridge, UK.
| |
Collapse
|
47
|
Liu PL, He SH, Shen ZH, Li XR, Deng QS, Wei ZY, Zhang CR, Dou XQ, Zhu TH, Dawes H, Lu J, Guo SC, Tao SC. Bilayer Scaffolds Synergize Immunomodulation and Rejuvenation via Layer-Specific Release of CK2.1 and the "Exercise Hormone" Lac-Phe for Enhanced Osteochondral Regeneration. Adv Healthc Mater 2025; 14:e2402329. [PMID: 39529517 DOI: 10.1002/adhm.202402329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/21/2024] [Indexed: 11/16/2024]
Abstract
Repairing osteochondral defects necessitates the intricate reestablishment of the microenvironment. The cartilage layer consists of a porous gelatin methacryloyl hydrogel (PGelMA) covalently crosslinked with the chondroinductive peptide CK2.1 via a "linker" acrylate-PEG-N-hydroxysuccinimide (AC-PEG-NHS). This layer is optimized for remodeling the senescent microenvironment in the cartilage region, thereby establishing a regenerative microenvironment that supports chondrogenesis. For the bone layer, silk fibroin methacryloyl (SilMA) is coated onto a three dimensional (3D)-printed 45S5 bioactive glass scaffold (BG scaffold). The "exercise hormone" N-lactoyl-phenylalanine (Lac-Phe) is loaded onto the SilMA, endowing it with diversified functions to regulate the osteogenic microenvironment. Systematic analysis in vitro reveals that PGelMA-CK2.1 shifts the microenvironment from a pro-inflammatory into an anti-inflammatory condition, and alleviates cellular senescence, thus modifying the cartilage microenvironment to improve the recruitment, proliferation and chondral differentiation of bone marrow mesenchymal stem cells (BMSCs). The scaffold bone layer enhances microvascular endothelial cell proliferation, migration, and angiogenic activities, which, couple with increased BMSC recruitment and regulatory mechanisms directing BMSC differentiation, favor a shift in the "osteogenesis-adipogenesis" balance toward enhanced osteogenesis. In vivo, it is found that this biphasic biomimetic scaffold favors simultaneous dual tissue regeneration. This approach facilitates the development of bioactive regenerative scaffolds and holds great potential for clinical application.
Collapse
Affiliation(s)
- Po-Lin Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Shu-Hang He
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhi-Han Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Xu-Ran Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Qing-Song Deng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhan-Ying Wei
- Shanghai Clinical Research Centre of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chang-Ru Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Xiao-Qiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, China
| | - Tong-He Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-Coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Helen Dawes
- Faculty of Health and Life Science, Oxford Brookes University, Headington Road, Oxford, OX3 0BP, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, OX3 7JX, UK
- College of Medicine and Health, St Lukes Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Jian Lu
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Shang-Chun Guo
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Shi-Cong Tao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
48
|
He Y, Liu Y, Zheng M, Zou Y, Huang M, Wang L, Gao G, Zhou Z, Jin G. Targeting ATAD3A Phosphorylation Mediated by TBK1 Ameliorates Senescence-Associated Pathologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404109. [PMID: 39520088 PMCID: PMC11714148 DOI: 10.1002/advs.202404109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Targeting cellular senescence, one of the hallmarks of aging and aging-related pathologies emerges as an effective strategy for anti-aging and cancer chemotherapy. Here, a switch from TBK1-OPTN axis to TBK1-ATAD3A axis to promote cellular senescence is shown. Mechanically, TBK1 protein is abnormally activated and localized to the mitochondria during senescence, which directly phosphorylates ATAD3A at Ser321. Phosphorylated ATAD3A is significantly elevated in cellular senescence as well as in physiological and pathological aging and is essential for suppressing Pink1-mediated mitophagy by facilitating Pink1 mitochondrial import. Inhibition of ATAD3A phosphorylation at Ser321 by either TBK1 deficiency or by a Ser321A mutation rescues the cellular senescence. A blocking peptide, TAT-PEP, specifically abrogating ATAD3A phosphorylation, results in elevated cell death by preventing doxorubicin-induced senescence, thus leading to enhanced tumor sensitivity to chemotherapy. TAT-PEP treatment also ameliorates various phenotypes associated with physiological aging. Collectively, these results reveal the TBK1-ATAD3A-Pink1 axis as a driving force in cellular senescence and suggest a potential mitochondrial target for anti-aging therapy.
Collapse
Affiliation(s)
- Yujiao He
- Guangdong Cardiovascular InstituteMedical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yanchen Liu
- Guangdong Cardiovascular InstituteMedical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Mingyue Zheng
- Guangdong Cardiovascular InstituteMedical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yuxiu Zou
- Guangdong Cardiovascular InstituteMedical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Mujie Huang
- Guangdong Cardiovascular InstituteMedical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Linsheng Wang
- Guangdong Cardiovascular InstituteMedical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Ge Gao
- Guangdong Cardiovascular InstituteMedical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Zhongjun Zhou
- Guangdong Cardiovascular InstituteMedical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- School of Biomedical SciencesThe University of Hong KongHong KongChina
- Orthopedic CenterUniversity of Hong Kong‐Shenzhen HospitalNo.1, Haiyuan 1st Road, FutianShenzhen518053China
| | - Guoxiang Jin
- Guangdong Cardiovascular InstituteMedical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangdong Provincial Geriatrics InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| |
Collapse
|
49
|
Xu L, Lu B, Xie K, Fan W, Fang S, Zhu J, Yang J, Xu B. Photothermal Nano-Immunotherapy Against Methicillin-Resistant Staphylococcus aureus (MRSA) Biofilm Infections. Adv Healthc Mater 2025; 14:e2403318. [PMID: 39562179 DOI: 10.1002/adhm.202403318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/10/2024] [Indexed: 11/21/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) biofilm infections are a prevalent type of biofilm-associated infection with a poor prognosis and antibiotic resistance. The senescence of immune cells in the immune microenvironment contributes to biofilm formation. In this study, Ti₃C₂ MXene-PVA nanosheets loaded with metformin (Met@TiC) are developed for the treatment of MRSA biofilm infections. Nanosheets utilize near-infrared light to induce photothermal effects and provide direct bactericidal activity against biofilm structures. Met, which is known for its anti-inflammatory and anti-senescence properties, modulates immune responses by revitalizing the function of senescent macrophages within the biofilm microenvironment, thereby enhancing their phagocytic and biofilm-eradicating capabilities. The efficacy of this nanoplatform both in vitro and in an MRSA biofilm infection mouse model, demonstrating its potential as a photothermal nanoimmunotherapy for combating MRSA biofilm infections is validated. In summary, the Met@TiC nanoplatform offers a significant alternative to clinical solutions for MRSA biofilm infections.
Collapse
Affiliation(s)
- Lei Xu
- Department of Sports Injury and Arthroscopic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230001, China
- Department of Trauma Orthopedics, The First Affiliated Hospital of the University of Science and Technology of China, Hefei, 230001, China
- Department of Trauma Orthopedics, Affiliated Anhui Provincial Hospital of Bengbu Medical University, Bengbu, 233030, China
| | - Baoliang Lu
- Department of Trauma Orthopedics, Affiliated Anhui Provincial Hospital of Bengbu Medical University, Bengbu, 233030, China
| | - Kai Xie
- Department of Orthopedics, Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, 225001, China
| | - Wangyang Fan
- Department of Trauma Orthopedics, Affiliated Anhui Provincial Hospital of Bengbu Medical University, Bengbu, 233030, China
| | - Shiyuan Fang
- Department of Trauma Orthopedics, The First Affiliated Hospital of the University of Science and Technology of China, Hefei, 230001, China
| | - Junchen Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui University of Chinese Medicine Anhui University of Chinese Medicine, Hefei, 230061, China
| | - Jiazhao Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of the University of Science and Technology of China, Hefei, 230001, China
- Department of Trauma Orthopedics, Affiliated Anhui Provincial Hospital of Bengbu Medical University, Bengbu, 233030, China
| | - Bin Xu
- Department of Sports Injury and Arthroscopic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230001, China
| |
Collapse
|
50
|
Pratsinis H, Mavrogonatou E, Zervou SK, Triantis T, Hiskia A, Kletsas D. Natural Product-Derived Senotherapeutics: Extraction and Biological Evaluation Techniques. Methods Mol Biol 2025; 2906:315-359. [PMID: 40082365 DOI: 10.1007/978-1-0716-4426-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Selective targeting of senescent cells has been thus far considered a widespread preventive strategy, as well as a main or adjuvant therapy for age-associated diseases, fueling the research on the discovery of senotherapeutics (i.e., senolytic or senomorphic compounds). Given that until now no single senotherapeutic has been reported to exert a universal anti-senescence action due to the cell- /tissue-, and context-dependent specificity of such compounds, seeking novel selective senotherapeutics remains of great importance. In this chapter, a research strategy that could be followed to screen natural product collections for putative senotherapeutics with enhanced specificity and reduced toxicity is presented, from the extraction of the source material and the isolation and chemical characterization of the compounds of interest to their biological evaluation in vitro and in vivo.
Collapse
Affiliation(s)
- Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Sevasti-Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research "Demokritos", Athens, Greece
| | - Theodoros Triantis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research "Demokritos", Athens, Greece
| | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research "Demokritos", Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece.
| |
Collapse
|