1
|
Visco V, Forte M, Giallauria F, D'Ambrosio L, Piccoli M, Schiattarella GG, Mancusi C, Salerno N, Cesaro A, Perrone MA, Izzo C, Loffredo FS, Bellino M, Bertero E, De Luca N, Pilichou K, Calabrò P, Manno G, De Falco E, Carrizzo A, Valenti V, Castelletti S, Spadafora L, Tourkmani N, D'Andrea A, Pacileo M, Bernardi M, Maloberti A, Simeone B, Sarto G, Frati G, Perrino C, Pedrinelli R, Filardi PP, Vecchione C, Sciarretta S, Ciccarelli M. Epigenetic mechanisms underlying the beneficial effects of cardiac rehabilitation. An overview from the working groups of "cellular and molecular biology of the heart" and "cardiac rehabilitation and cardiovascular prevention" of the Italian Society of Cardiology (SIC). Int J Cardiol 2025; 429:133166. [PMID: 40088953 DOI: 10.1016/j.ijcard.2025.133166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
The benefits of cardiac rehabilitation (CR) have been demonstrated in patients after myocardial infarction (MI), and in patients with chronic heart failure (HF). The core components of the CR program include improvement in exercise tolerance and optimization of coronary risk factors (i.e., lipid and lipoprotein profiles, body weight, blood glucose levels, blood pressure levels, and smoking cessation). Indeed, CR has been shown to improve exercise capacity, control of cardiovascular risk factors, quality of life, hospital readmission, and mortality rates. Nonetheless, pre- and clinical CR and exercise training models are an enormous source of potential beneficial mechanisms that can be exploited for cardiac disease therapy. Consequently, in this review, we aim to explore the unique benefits of CR in HF and coronary artery disease, focusing on the epigenetic mechanisms involved and their translational relevance. These mechanisms may represent novel therapeutic targets to promote functional recovery after cardiac injury, and non-coding RNAs could be predictive biomarkers for CR success in patients.
Collapse
Affiliation(s)
- Valeria Visco
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy
| | | | - Francesco Giallauria
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Luca D'Ambrosio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Mara Piccoli
- Cardiology Department, CTO Andrea Alesini Hospital, Rome, Italy
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité -Universitätsmedizin Berlin, Berlin, Germany; Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Costantino Mancusi
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Nadia Salerno
- Division of Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Arturo Cesaro
- Department of Translational Medical Sciences, Division of Cardiology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Marco Alfonso Perrone
- Division of Cardiology and CardioLab, Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; Clinical Pathways and Epidemiology Unit, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy
| | - Carmine Izzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy
| | - Francesco S Loffredo
- Department of Translational Medical Sciences, Division of Cardiology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Michele Bellino
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy
| | - Edoardo Bertero
- Department of Internal Medicine, University of Genova, Genoa, Italy; Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino - Italian IRCCS Cardiology Network, Genoa, Italy
| | - Nicola De Luca
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Kalliopi Pilichou
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova 35128, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, Division of Cardiology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Girolamo Manno
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Valentina Valenti
- Department of Cardiology, Santa Maria Goretti Hospital, Latina, Italy
| | - Silvia Castelletti
- Cardiology Department, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy
| | | | - Nidal Tourkmani
- Cardiology and Cardiac Rehabilitation Unit, Mons. Giosuè Calaciura Clinic, Catania, Italy; ABL, Guangzhou, China
| | - Antonello D'Andrea
- Unit of Cardiology and Intensive Coronary Care, "Umberto I" Hospital, 84014 Nocera Inferiore, Italy
| | - Mario Pacileo
- Unit of Cardiology and Intensive Coronary Care, "Umberto I" Hospital, 84014 Nocera Inferiore, Italy
| | - Marco Bernardi
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Alessandro Maloberti
- Cardiology IV, "A.De Gasperis" Department, Ospedale Niguarda Ca' Granda, Milan, Italy; School of Medicine and Surgery, Milano-Bicocca University, Milan, Italy
| | | | | | - Giacomo Frati
- IRCCS Neuromed, Pozzilli, Italy; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Cinzia Perrino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Roberto Pedrinelli
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine-Cardiology Division, University of Pisa, Italy
| | | | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli, Italy; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy.
| |
Collapse
|
2
|
Cai Y, Zhu Y, Xu N, Chen T. The study of miR-130a expression and its mechanism of action in peripheral blood endothelial progenitor cells (EPCs) in type 2 diabetes mellitus (T2DM). Sci Rep 2025; 15:11038. [PMID: 40169737 PMCID: PMC11961625 DOI: 10.1038/s41598-025-88507-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/28/2025] [Indexed: 04/03/2025] Open
Abstract
TGF-β1 has been reported to suppress miR-130a expression, while being elevated in patients with type 2 diabetes mellitus (T2DM). And IL-18, a potential target of miR-130a, is also up-regulated in T2DM patients. In this study, we aim to investigate the potential involvement of the TGFβ1/miR-130a/IL-18 axis underlying the dysfunction of endothelial progenitor cells (EPCs) in T2DM patients. We performed luciferase assays to confirm the molecular binding between miR-130a, TGF-β1 and IL-18, and real-time PCR and ELISA were performed to observe the changes of TGF-β1, miR-130a, IL-18 and IFN-γ in different cell groups. Tube formation assay, cell adhesion assay and Transwell assay were performed to evaluate effect of TGF-β1/miR-130a/IL-18 axis on the EPCs functions. Accordingly, in EPCs treated with TGF-β1, we found that the levels of miR-130a were reduced, and its expressions were also negatively correlated with the expressions of IL-18 in the EPC groups. Luciferase assays validated IL-18 as a target gene of miR-130a. The over-expression of IL-18, as well as the knockdown of miR-130a, not only increased the expressions of TGF-β1 in EPCs, but also promoted the tube formation, adhesion and migration of EPCs. By contrast, the knockdown of IL-18, as well as the over-regulation of miR-130a, exhibited suppressive effect on the levels of TGF-β1, while inhibiting the tube formation, adhesion and migration of EPCs. In this study, we elucidated the impact of the TGFβ1/miR-130a/IL-18 signaling pathway on the function of EPCs, thus providing theoretical basis for the development of miRNA-targeted therapeutic strategies for patients withT2DM and associated complications.
Collapse
Affiliation(s)
- Yawei Cai
- Department of Geriatrics, Ningbo No. 2 Hospital, Ningbo, 315000, Zhejiang, China
| | - Yao Zhu
- Department of Geriatrics, Ningbo No. 2 Hospital, Ningbo, 315000, Zhejiang, China
| | - Ning Xu
- Department of Geriatrics, Ningbo No. 2 Hospital, Ningbo, 315000, Zhejiang, China
| | - Tongen Chen
- Department of General Practice, Ningbo No. 2 Hospital, No. 41 Northwest Street, Haishu District, Ningbo, 315000, Zhejiang, China.
| |
Collapse
|
3
|
Jin Y, Duan J, Yin Q, Ma Y, Lou J, Zhang W. Bibliometric and visual analysis of miRNAs in heart diseases from 2004 to 2023. Front Cardiovasc Med 2025; 12:1465646. [PMID: 40182423 PMCID: PMC11965657 DOI: 10.3389/fcvm.2025.1465646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/10/2025] [Indexed: 04/05/2025] Open
Abstract
Background MicroRNAs (miRNAs) add a new dimension to HD forecast, diagnosis, and therapy based on the potential applications. The miRNA-related research in the heart disease (HD) field has received close attention in the past two decades. However, there is a lack of studies that comprehensively and objectively analyze the current situation of miRNA application in the HD field using the bibliometrics method. Objective To comprehensively analyze the global scientific outputs of miRNAs in HD research from 2004 to 2023. Methods All the articles and reviews of miRNA-related research in the HD field were retrieved using the Web of Science core collection (WOSCC) title search, and bibliometric analysis was performed in Microsoft Excel 2019, CiteSpace, VOSviewer, and Bibliometrics (R-Tool of R-Studio). Results 3,874 publications were included in the bibliometric analysis. Collaborative network analysis indicates that China with the maximum number of publications (2,063) and the USA with the highest total citations (59,331) are influential countries in this field. Peking Union Medical College is the most prolific university with the maximum publications (134), and the University of California System is the most authoritative institution regarding betweenness centrality (0.27). PLOS ONE tops the journal list of publications, closely followed by the International Journal of Molecular Sciences and Scientific Reports with more than 100 articles. Considering the number of publications, citations, and total link strength overall, Olson. Eric N, Van Rooij Eva, Thum Thomas, Yang Baofeng, Wang Kun; and Lu Yanjie are authoritative authors in this field. The expression changes and regulatory mechanisms of specific miRNAs in various heart biological and pathophysiological processes have been the continuous research hotspots. "exosomes", "extracellular vesicles", "autophagy", and "management" have been novel hot research topics since 2018, which focused on the diagnosis and treatment of HD. The current research development trend is how to translate the achievement of miRNA-related diagnosis and therapeutic drugs for HD into the clinic. Conclusion Our study revealed the intellectual structure of miRNA in HD research, which may help scholars understand this field comprehensively and find partners.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Zhang
- Department of Geriatrics, Air Force Medical Center, PLA, Beijing, China
| |
Collapse
|
4
|
Ma CP, Lo SJ, Chin-Ming Tan B. Good things come in small packages: The discovery of small RNAs in the smallest animal model. Biomed J 2025; 48:100832. [PMID: 39952406 PMCID: PMC11893309 DOI: 10.1016/j.bj.2025.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
The 2024 Nobel Prize in Physiology or Medicine has been awarded to two pioneering researchers, Victor Ambros and Gary Ruvkun, marking the fourth time research using Caenorhabditis elegans (C. elegans) has received this prestigious recognition. With a rapid life cycle of just 3.5 days and four distinct larval stages, C. elegans serves as an ideal model for exploring complex genetic mechanisms, particularly heterochronic gene regulation. Ambros and Ruvkun's groundbreaking work on lin-4 and lin-14 genes in C. elegans revealed that lin-4 functions as a 22-nucleotide small RNA-now known as a microRNA (miRNA)-that binds complementarily to the 3' UTR of lin-14 mRNA, effectively inhibiting LIN-14 protein synthesis. This discovery was the first demonstration of miRNA in post-transcriptional gene regulation, a finding that has since reshaped our understanding of genetic regulation across species. Their research on small RNAs in C. elegans not only opened a new paradigm in molecular biology but also highlighted the power of this model organism in uncovering universal biological principles.
Collapse
Affiliation(s)
- Chung-Pei Ma
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Szecheng J Lo
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Emerson JI, Shi W, Paredes-Larios J, Walker WG, Hutton JE, Cristea IM, Marzluff WF, Conlon FL. X-Chromosome-Linked miRNAs Regulate Sex Differences in Cardiac Physiology. Circ Res 2025; 136:258-275. [PMID: 39772608 PMCID: PMC11781965 DOI: 10.1161/circresaha.124.325447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Males and females exhibit distinct anatomic and functional characteristics of the heart, predisposing them to specific disease states. METHODS We identified microRNAs (miRNAs/miR) with sex-differential expression in mouse hearts. RESULTS Four conserved miRNAs are present in a single locus on the X-chromosome and are expressed at higher levels in females than males. We show miRNA, miR-871, is responsible for decreased expression of the protein SRL (sarcalumenin) in females. SRL is involved in calcium signaling, and we show it contributes to differences in electrophysiology between males and females. miR-871 overexpression mimics the effects of the cardiac physiology of conditional cardiomyocyte-specific Srl-null mice. Inhibiting miR-871 with an antagomir in females shortened ventricular repolarization. The human orthologue of miR-871, miR-888, coevolved with the SRL 3' untranslated region and regulates human SRL. CONCLUSIONS These data highlight the importance of sex-differential miRNA mechanisms in mediating sex-specific functions and their potential relevance to human cardiac diseases.
Collapse
Affiliation(s)
- James I. Emerson
- Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Wei Shi
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jose Paredes-Larios
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William G. Walker
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Josiah E. Hutton
- Department of Molecular Biology, Princeton University, Lew Thomas Laboratory, Princeton, NJ 08544, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lew Thomas Laboratory, Princeton, NJ 08544, USA
| | - William F. Marzluff
- Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Frank L. Conlon
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Science, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
He Y, Cai Y, Cao Y, Wang Y, Wang J, Ding H. Application Strategies of Super-Enhancer RNA in Cardiovascular Diseases. Biomedicines 2025; 13:117. [PMID: 39857701 PMCID: PMC11762524 DOI: 10.3390/biomedicines13010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Cardiovascular diseases (CVDs) are a leading cause of death worldwide, and new therapeutic strategies are urgently needed. In recent years, enhancer RNAs (eRNAs) have gradually attracted attention because they offer new directions for the treatment of CVDs. Super-enhancer RNAs (seRNAs) are a subset of non-coding RNAs that are transcribed from regions of the genome known as super enhancers, which are large clusters of enhancers with a high density of transcription factors and cofactors. These regions play a pivotal role in regulating genes involved in cell identity and disease progression. This article reviews the characteristics of seRNAs, their expression patterns, and regulatory mechanisms in the cardiovascular system. We also explore their role in the occurrence and development of CVDs, as well as their potential as diagnostic biomarkers and therapeutic targets. Currently, therapies targeting seRNAs are a research hotspot. The development of specific inhibitors or activators is expected to facilitate precise interventions for CVDs. In addition, the use of gene editing techniques to modify relevant eRNA introduces new possibilities for disease treatment. This review aims to provide a comprehensive overview of seRNAs in CVDs and discusses their potential as a novel class of therapeutic targets.
Collapse
Affiliation(s)
- Yi He
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yuwei Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yanyan Cao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
7
|
Bibi A, Bartekova M, Gandhi S, Greco S, Madè A, Sarkar M, Stopa V, Tastsoglou S, de Gonzalo-Calvo D, Devaux Y, Emanueli C, Hatzigeorgiou AG, Nossent AY, Zhou Z, Martelli F. Circular RNA regulatory role in pathological cardiac remodelling. Br J Pharmacol 2025; 182:316-339. [PMID: 38830749 DOI: 10.1111/bph.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024] Open
Abstract
Cardiac remodelling involves structural, cellular and molecular alterations in the heart after injury, resulting in progressive loss of heart function and ultimately leading to heart failure. Circular RNAs (circRNAs) are a recently rediscovered class of non-coding RNAs that play regulatory roles in the pathogenesis of cardiovascular diseases, including heart failure. Thus, a more comprehensive understanding of the role of circRNAs in the processes governing cardiac remodelling may set the ground for the development of circRNA-based diagnostic and therapeutic strategies. In this review, the current knowledge about circRNA origin, conservation, characteristics and function is summarized. Bioinformatics and wet-lab methods used in circRNA research are discussed. The regulatory function of circRNAs in cardiac remodelling mechanisms such as cell death, cardiomyocyte hypertrophy, inflammation, fibrosis and metabolism is highlighted. Finally, key challenges and opportunities in circRNA research are discussed, and orientations for future work to address the pharmacological potential of circRNAs in heart failure are proposed. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Shrey Gandhi
- Institute of Immunology, University of Münster, Münster, Germany
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Alisia Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Moumita Sarkar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Victoria Stopa
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Spyros Tastsoglou
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - A Yaël Nossent
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
8
|
Chumakova OS, Mershina EA. Circulating microRNA as promising biomarkers in hypertrophic cardiomyopathy: can advanced cardiac magnetic resonance unlock new insights in research? Exp Biol Med (Maywood) 2024; 249:10334. [PMID: 39744621 PMCID: PMC11688189 DOI: 10.3389/ebm.2024.10334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disorder associated with an increased risk of arrhythmias, heart failure, and sudden cardiac death. Current imaging and clinical markers are not fully sufficient in accurate diagnosis and patient risk stratification. Although known cardiac biomarkers in blood are used, they lack specificity for HCM and primarily stratify for death due to heart failure in overt cases. Non-coding RNAs, particularly microRNAs, have emerged as promising biomarkers due to their role in regulating gene expression in both healthy and pathological hearts. Circulating microRNA signatures may dynamically reflect the progression of HCM, offering potential utility in diagnosis and disease monitoring as well as inform biologic pathways for innovative therapeutic strategies. However, studying microRNAs in cardiovascular diseases is still in its early stages and poses many challenges. This review focuses on emerging research perspectives using advanced cardiac magnetic resonance techniques. We presume, that the search for circulating miR signatures associated with specific adverse myocardial features observed on cardiac magnetic resonance imaging - such as fibrosis, disarray, and microvascular disease - represents a promising direction in HCM research.
Collapse
Affiliation(s)
- Olga S. Chumakova
- National Medical Research Center of Cardiology Named After E. I. Chazov, Moscow, Russia
| | - Elena A. Mershina
- Medical Research and Education Center Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
9
|
D’Amato A, Prosperi S, Severino P, Myftari V, Correale M, Perrone Filardi P, Badagliacca R, Fedele F, Vizza CD, Palazzuoli A. MicroRNA and Heart Failure: A Novel Promising Diagnostic and Therapeutic Tool. J Clin Med 2024; 13:7560. [PMID: 39768484 PMCID: PMC11728316 DOI: 10.3390/jcm13247560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
Heart failure (HF) has a multifaceted and complex pathophysiology. Beyond neurohormonal, renin-angiotensin-aldosterone system, and adrenergic hyperactivation, a role for other pathophysiological determinants is emerging. Genetic and epigenetic factors are involved in this syndrome. In many maladaptive processes, the role of microRNAs (miRNAs) has been recently demonstrated. MiRNAs are small endogenous non-coding molecules of RNA involved in gene expression regulation, and they play a pivotal role in intercellular communication, being involved in different biological and pathophysiological processes. MiRNAs can modulate infarct area size, cardiomyocytes restoration, collagen deposition, and macrophage polarization. MiRNAs may be considered as specific biomarkers of hypertrophy and fibrosis. MiRNAs have been proposed as a therapeutical tool because their administration can contrast with myocardial pathophysiological remodeling leading to HF. Antimir and miRNA mimics are small oligonucleotides which may be administered in several manners and may be able to regulate the expression of specific and circulating miRNAs. Studies on animal models and on healthy humans demonstrate that these molecules are well tolerated and effective, opening the possibility of a therapeutic use of miRNAs in cases of HF. The application of miRNAs for diagnosis, prognostic stratification, and therapy fits in with the new concept of a personalized and tailored approach to HF.
Collapse
Affiliation(s)
- Andrea D’Amato
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Silvia Prosperi
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Paolo Severino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Vincenzo Myftari
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Michele Correale
- Cardiothoracic Department, ‘Policlinico Riuniti’ University Hospital, 71100 Foggia, Italy
| | - Pasquale Perrone Filardi
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University, 80131 Naples, Italy;
| | - Roberto Badagliacca
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | | | - Carmine Dario Vizza
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Alberto Palazzuoli
- Cardio Thoracic and Vascular Department, ‘S. Maria alle Scotte Hospital’, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
10
|
Crocco P, Montesanto A, La Grotta R, Paparazzo E, Soraci L, Dato S, Passarino G, Rose G. The Potential Contribution of MyomiRs miR-133a-3p, -133b, and -206 Dysregulation in Cardiovascular Disease Risk. Int J Mol Sci 2024; 25:12772. [PMID: 39684483 DOI: 10.3390/ijms252312772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiovascular disease (CVD) is a major global health concern. The number of people with CVD is expected to rise due to aging populations and increasing risk factors such as obesity and diabetes. Identifying new molecular markers is crucial for early diagnosis and treatment. Among these, plasma levels of some miRNAs, specifically expressed in cardiac and skeletal muscle, known as myomiRs, have gained attention for their roles in cardiovascular health. This study analyzed the plasma levels of miR-133a-3p, -133b, and -206 in the pathogenesis of cardiovascular diseases. Using a case-control study design with patients recruited from several nursing homes from Calabria (southern Italy) characterized by different types of CVD compared with non-CVD controls, we found downregulation of miR-133a-3p in heart failure and miR-133b in stroke, along with the overall decreased expression of miR-133b and miR-206 in CVD patients, although they showed low specificity as biomarkers of CVD (as based on ROC analysis). In silico functional characterization of their targets and signaling pathways revealed their involvement in critical cardiovascular processes. Although further research is necessary to fully elucidate their mechanisms and clinical utility, the findings reported here may provide insight into the potential contribution of myomiRs in the cardiovascular injury framework, also offering indications for new research directions.
Collapse
Affiliation(s)
- Paolina Crocco
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Rossella La Grotta
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
- Unit of Geriatric Medicine, Italian National Research Center on Aging (INRCA-IRCCS), 87100 Cosenza, Italy
| | - Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center on Aging (INRCA-IRCCS), 87100 Cosenza, Italy
| | - Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
11
|
Loreni F, Nenna A, Nappi F, Ferrisi C, Chello C, Lusini M, Vincenzi B, Tonini G, Chello M. miRNAs in the diagnosis and therapy of cardiac and mediastinal tumors: a new dawn for cardio-oncology? Future Cardiol 2024; 20:795-806. [PMID: 39513219 PMCID: PMC11622773 DOI: 10.1080/14796678.2024.2419225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Dysfunctions in miRNA production have been recently investigated as predictors of neoplasms and their therapeutic strategies. In this review, we summarize the available knowledge on miRNAs and cardiac tumors (such as myxoma) and mediastinal tumors (such as thymoma) and propose new avenues for future research. MiRNAs are crucial for cardiac development through the expression of cardiac transcription factors (miR-335-5p), hinder the cell cycle by modulating the activity of transcription factors (miR-126-3p, miR-320a), modulate the production of inflammatory factors such as interleukins (miR-217), and interfere with cell proliferation or apoptosis (miR-218, miR-634 and miR-122). Current and future research on miRNAs is essential, as a deep understanding could lead to a revolution in the field of diagnostics and prevention of neoplastic diseases.
Collapse
Affiliation(s)
- Francesco Loreni
- Cardiac Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, 00128, Italy
| | - Antonio Nenna
- Cardiac Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, 00128, Italy
| | - Francesco Nappi
- Cardiac Surgery, Centre Cardiologique du Nord, Saint Denis, 93200, France
| | - Chiara Ferrisi
- Cardiac Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, 00128, Italy
| | - Camilla Chello
- PhD Course of Integrated Biomedical Sciences, Università Campus Bio-Medico di Roma, Rome, 00128, Italy
| | - Mario Lusini
- Cardiac Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, 00128, Italy
| | - Bruno Vincenzi
- Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, 00128, Italy
| | - Giuseppe Tonini
- Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, 00128, Italy
| | - Massimo Chello
- Cardiac Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, 00128, Italy
| |
Collapse
|
12
|
Schoettler FI, Fatehi Hassanabad A, Jadli AS, Patel VB, Fedak PWM. Exploring the role of pericardial miRNAs and exosomes in modulating cardiac fibrosis. Cardiovasc Pathol 2024; 73:107671. [PMID: 38906439 DOI: 10.1016/j.carpath.2024.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/26/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
The potential of the pericardial space as a therapeutic delivery tool for cardiac fibrosis and heart failure (HF) treatment has yet to be elucidated. Recently, miRNAs and exosomes have been discovered to be present in human pericardial fluid (PF). Novel studies have shown characteristic human PF miRNA compositions associated with cardiac diseases and higher miRNA expressions in PF compared to peripheral blood. Five key studies found differentially expressed miRNAs in HF, angina pectoris, aortic stenosis, ventricular tachycardia, and congenital heart diseases with either atrial fibrillation or sinus rhythm. As miRNA-based therapeutics for cardiac fibrosis and HF showed promising results in several in vivo studies for multiple miRNAs, we hypothesize a potential role of miRNA-based therapeutics delivered through the pericardial cavity. This is underlined by the favorable results of the first phase 1b clinical trial in this emerging field. Presenting the first human miRNA antisense drug trial, inhibition of miR-132 by intravenous administration of a novel antisense oligonucleotide, CDR132L, established efficacy in reducing miR-132 in plasma samples in a dose-dependent manner. We screened the literature, provided an overview of the miRNAs and exosomes present in PF, and drew a connection to those miRNAs previously elucidated in cardiac fibrosis and HF. Further, we speculate about clinical implications and potential delivery methods.
Collapse
Affiliation(s)
- Friederike I Schoettler
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ali Fatehi Hassanabad
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anshul S Jadli
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
13
|
Song R, Zhang L. MicroRNAs and therapeutic potentials in acute and chronic cardiac disease. Drug Discov Today 2024; 29:104179. [PMID: 39276921 DOI: 10.1016/j.drudis.2024.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
microRNAs (miRNAs) are small regulatory RNAs implicated in various cardiac disorders. In this review, the role of miRNAs is discussed in relation to acute myocardial infarction and chronic heart failure. In both settings, miRNAs are altered, contributing to injury and adverse remodeling. Notably, miRNA profiles differ between acute ischemic injury and progressive heart failure. Owing to miRNA variabilities between disease stages and delivery difficulties, translation of animal studies to the clinic remains challenging. The identification of distinct miRNA signatures could lead to the development of miRNA therapies tailored to different disease stages. Here, we summarize the current understanding of miRNAs in acute and chronic cardiac diseases, identify knowledge gaps and discuss progress in developing miRNA-based treatment strategies.
Collapse
Affiliation(s)
- Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
14
|
Min KW, Choi KM, Mun H, Ko S, Lee JW, Sagum CA, Bedford MT, Kim YK, Delaney JR, Cho JH, Dawson TM, Dawson VL, Twal W, Kim DC, Panganiban CH, Lang H, Zhou X, Shin S, Hu J, Heise T, Kwon SH, Kim D, Kim YH, Kang SU, Kim K, Lewis S, Eroglu A, Ryu S, Kim D, Chang JH, Jung J, Yoon JH. Mature microRNA-binding protein QKI suppresses extracellular microRNA let-7b release. J Cell Sci 2024; 137:jcs261575. [PMID: 39308343 PMCID: PMC11574364 DOI: 10.1242/jcs.261575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Argonaute (AGO), a component of RNA-induced silencing complexes (RISCs), is a representative RNA-binding protein (RBP) known to bind with mature microRNAs (miRNAs) and is directly involved in post-transcriptional gene silencing. However, despite the biological significance of miRNAs, the roles of other miRNA-binding proteins (miRBPs) remain unclear in the regulation of miRNA loading, dissociation from RISCs and extracellular release. In this study, we performed protein arrays to profile miRBPs and identify 118 RBPs that directly bind to miRNAs. Among those proteins, the RBP quaking (QKI) inhibits extracellular release of the mature microRNA let-7b by controlling the loading of let-7b into extracellular vesicles via additional miRBPs such as AUF1 (also known as hnRNPD) and hnRNPK. The enhanced extracellular release of let-7b after QKI depletion activates Toll-like receptor 7 (TLR7) and promotes the production of proinflammatory cytokines in recipient cells, leading to brain inflammation in the mouse cortex. Thus, this study reveals the contribution of QKI to the inhibition of brain inflammation via regulation of extracellular let-7b release.
Collapse
Affiliation(s)
- Kyung-Won Min
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Biology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Kyoung-Min Choi
- Department of Oncology Science, College of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Hyejin Mun
- Department of Oncology Science, College of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Seungbeom Ko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ji Won Lee
- Department of Biology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Cari A Sagum
- Department of Epigenetics and Molecular Carcinogenesis, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Joe R Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jung-Hyun Cho
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Waleed Twal
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Dong-Chan Kim
- R&D center, NOSQUEST Inc., Seongnam, Gyeonggi 13494, Republic of Korea
| | - Clarisse H Panganiban
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Xin Zhou
- Department of Cancer Biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Seula Shin
- Department of Cancer Biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Hu
- Department of Cancer Biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tilman Heise
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dongsan Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Young Hwa Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kyungmin Kim
- Department of Biology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Sydney Lewis
- Department of Oncology Science, College of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Ahmet Eroglu
- Department of Oncology Science, College of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Seonghyun Ryu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health, Sciences Center, Oklahoma City, OK 73117, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health, Sciences Center, Oklahoma City, OK 73117, USA
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Oncology Science, College of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Pathology, College of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| |
Collapse
|
15
|
Ceci M, Bonvissuto D, Papetti F, Silvestri F, Sette C, Catalani E, Cervia D, Gornati R, Romano N. RACK1 contributes to the upregulation of embryonic genes in a model of cardiac hypertrophy. Sci Rep 2024; 14:25698. [PMID: 39465301 PMCID: PMC11514175 DOI: 10.1038/s41598-024-76138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Receptors for activated C kinases (RACKs) have been shown to coordinate PKC-mediated hypertrophic signalling in mice. However, little information is available on its participation in embryonic gene expression. This study investigated the involvement of RACK1 in the expression of embryonic genes in a zebrafish (ZF) ex vivo heart culture model by using phenylephrine (PE) or a growth factors cocktail (GFs) as a prohypertrophic/regeneration stimulus. Blebbistatin (BL) inhibition has also been studied for its ability to block the signal transduction actions of some PEs. qRT‒PCR and immunoblot analyses confirmed the upregulation of RACK1 in the PE- and GFs-treated groups. BL administration counteracted PE-induced hypertrophy and downregulated RACK1 expression. Immunohistochemical analyses of the heart revealed the colocalization of RACK1 and embryonic genes, namely, Gata4, Wt1, and Nfat2, under stimulation, whereas these genes were expressed at lower levels in the BL treatment group. Culturing ZF heart cells activated via GFs treatment increased the expression of RACK1. The overexpression of RACK1 induced by the transfection of recombinant RACK1 cDNA in ZF heart cells increased the expression of embryonic genes, especially after one week of GFs treatment. In summary, these results support the involvement of RACK1 in the induction of embryonic genes during cardiac hypertrophy/GFs stimulation in a fish heart model, which can be used as an alternative study model for mammals.
Collapse
Affiliation(s)
| | | | | | | | - Claudio Sette
- DNHA, Catholic University of Sacred Heart, Rome, Italy
- IRCCS, Policlinico A. Gemelli Foundation, Rome, Italy
| | | | | | | | | |
Collapse
|
16
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
17
|
Hao Y, Li B, Yin F, Liu W. tRNA-derived small RNA (tsr007330) regulates myocardial fibrosis after myocardial infarction through NAT10-mediated ac4C acetylation of EGR3 mRNA. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167267. [PMID: 38810917 DOI: 10.1016/j.bbadis.2024.167267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/27/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Small non-coding ribonucleic acids (sncRNAs) play an important role in cell regulation and are closely related to the pathogenesis of heart diseases. However, the role and molecular mechanism of transfer RNA-derived small RNAs (tsRNAs) in myocardial fibrosis after myocardial infarction (MI) remain unknown. In this study, we identified and validated sncRNAs (mainly miRNA and tsRNA) associated with myocardial fibrosis after MI through PANDORA sequencing of rat myocardial tissue. As a key enzyme of N4-acetylcytidine (ac4C) acetylation modification, N-acetyltransferase 10 (NAT10) plays an important role in regulating messenger RNA (mRNA) stability and translation efficiency. We found that NAT10 is highly expressed in infarcted myocardial tissue, and the results of acetylated RNA immunoprecipitation sequencing (acRIP-seq) analysis suggest that early growth response 3 (EGR3) may be an important molecule in the pathogenesis of NAT10-mediated myocardial fibrosis. Both in vivo and in vitro experiments have shown that inhibition of NAT10 can reduce the expression of EGR3 and alleviate myocardial fibrosis after MI. tsRNA can participate in gene regulation by inhibiting target genes. The expression of tsr007330 was decreased in myocardial infarction tissue. We found that overexpression of tsr007330 in rat myocardial tissue could antagonize NAT10, improve myocardial function in MI and alleviate myocardial fibrosis. In conclusion, tsRNAs (rno-tsr007330) may regulate the occurrence of myocardial fibrosis by regulating NAT10-mediated EGR3 mRNA acetylation. This study provides new insights into the improvement of myocardial fibrosis after MI by targeting tsRNA therapy.
Collapse
Affiliation(s)
- Yan Hao
- Harbin Medical University, Harbin, Heilongjiang 150001, China; Department of Cardiology, the fourth affiliated hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Bohan Li
- Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Feiya Yin
- University of Sydney, NSW 2006, Australia
| | - Wei Liu
- Harbin Medical University, Harbin, Heilongjiang 150001, China; Department of Geriatric Cardiovascular Division, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| |
Collapse
|
18
|
Caporali A, Anwar M, Devaux Y, Katare R, Martelli F, Srivastava PK, Pedrazzini T, Emanueli C. Non-coding RNAs as therapeutic targets and biomarkers in ischaemic heart disease. Nat Rev Cardiol 2024; 21:556-573. [PMID: 38499868 DOI: 10.1038/s41569-024-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
The adult heart is a complex, multicellular organ that is subjected to a series of regulatory stimuli and circuits and has poor reparative potential. Despite progress in our understanding of disease mechanisms and in the quality of health care, ischaemic heart disease remains the leading cause of death globally, owing to adverse cardiac remodelling, leading to ischaemic cardiomyopathy and heart failure. Therapeutic targets are urgently required for the protection and repair of the ischaemic heart. Moreover, personalized clinical biomarkers are necessary for clinical diagnosis, medical management and to inform the individual response to treatment. Non-coding RNAs (ncRNAs) deeply influence cardiovascular functions and contribute to communication between cells in the cardiac microenvironment and between the heart and other organs. As such, ncRNAs are candidates for translation into clinical practice. However, ncRNA biology has not yet been completely deciphered, given that classes and modes of action have emerged only in the past 5 years. In this Review, we discuss the latest discoveries from basic research on ncRNAs and highlight both the clinical value and the challenges underscoring the translation of these molecules as biomarkers and therapeutic regulators of the processes contributing to the initiation, progression and potentially the prevention or resolution of ischaemic heart disease and heart failure.
Collapse
Affiliation(s)
- Andrea Caporali
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Maryam Anwar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Luxembourg, Luxemburg
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
- British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
19
|
Liu S, Su L, Li J, Zhang Y, Hu X, Wang P, Liu P, Ye J. Inhibition of miR-146b-5p alleviates isoprenaline-induced cardiac hypertrophy via regulating DFCP1. Mol Cell Endocrinol 2024; 589:112252. [PMID: 38649132 DOI: 10.1016/j.mce.2024.112252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Pathological cardiac hypertrophy often precedes heart failure due to various stimuli, yet effective clinical interventions remain limited. Recently, microRNAs (miRNAs) have been identified as critical regulators of cardiovascular development. In this study, we investigated the role of miR-146b-5p and its underlying mechanisms of action in cardiac hypertrophy. Isoprenaline (ISO) treatment induced significant hypertrophy and markedly enhanced the expression of miR-146b-5p in cultured neonatal rat cardiomyocytes and hearts of C57BL/6 mice. Transfection with the miR-146b-5p mimic led to cardiomyocyte hypertrophy accompanied by autophagy inhibition. Conversely, miR-146b-5p inhibition significantly alleviated ISO-induced autophagy depression, thereby mitigating cardiac hypertrophy both in vitro and in vivo. Our results showed that the autophagy-related mediator double FYVE domain-containing protein 1 (DFCP1) is a target of miR-146b-5p. MiR-146b-5p blocked autophagic flux in cardiomyocytes by suppressing DFCP1, thus contributing to hypertrophy. These findings revealed that miR-146b-5p is a potential regulator of autophagy associated with the onset of cardiac hypertrophy, suggesting a possible therapeutic strategy involving the inhibition of miR-146b-5p.
Collapse
Affiliation(s)
- Siling Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, China
| | - Linjie Su
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, China
| | - Jie Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, China
| | - Yuexin Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, China
| | - Xiaopei Hu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, China
| | - Pengcheng Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, China.
| | - Jiantao Ye
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, China.
| |
Collapse
|
20
|
Abubakar M, Hajjaj M, Naqvi ZEZ, Shanawaz H, Naeem A, Padakanti SSN, Bellitieri C, Ramar R, Gandhi F, Saleem A, Abdul Khader AHS, Faraz MA. Non-Coding RNA-Mediated Gene Regulation in Cardiovascular Disorders: Current Insights and Future Directions. J Cardiovasc Transl Res 2024; 17:739-767. [PMID: 38092987 DOI: 10.1007/s12265-023-10469-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/23/2023] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVDs) pose a significant burden on global health. Developing effective diagnostic, therapeutic, and prognostic indicators for CVDs is critical. This narrative review explores the role of select non-coding RNAs (ncRNAs) and provides an in-depth exploration of the roles of miRNAs, lncRNAs, and circRNAs in different aspects of CVDs, offering insights into their mechanisms and potential clinical implications. The review also sheds light on the diverse functions of ncRNAs, including their modulation of gene expression, epigenetic modifications, and signaling pathways. It comprehensively analyzes the interplay between ncRNAs and cardiovascular health, paving the way for potential novel interventions. Finally, the review provides insights into the methodologies used to investigate ncRNA-mediated gene regulation in CVDs, as well as the implications and challenges associated with translating ncRNA research into clinical applications. Considering the broader implications, this research opens avenues for interdisciplinary collaborations, enhancing our understanding of CVDs across scientific disciplines.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, Punjab, Pakistan.
| | - Mohsin Hajjaj
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Zil E Zehra Naqvi
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Hameed Shanawaz
- Department of Internal Medicine, Windsor University School of Medicine, Cayon, Saint Kitts and Nevis
| | - Ammara Naeem
- Department of Cardiology, Heart & Vascular Institute, Dearborn, Michigan, USA
| | | | | | - Rajasekar Ramar
- Department of Internal Medicine, Rajah Muthiah Medical College, Chidambaram, Tamil Nadu, India
| | - Fenil Gandhi
- Department of Family Medicine, Lower Bucks Hospital, Bristol, PA, USA
| | - Ayesha Saleem
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | | | - Muhammad Ahmad Faraz
- Department of Forensic Medicine, Postgraduate Medical Institute, Lahore, Punjab, Pakistan
| |
Collapse
|
21
|
Li Z, Wan L, Wang L, Wang W, Nie R. HHOMR: a hybrid high-order moment residual model for miRNA-disease association prediction. Brief Bioinform 2024; 25:bbae412. [PMID: 39175132 PMCID: PMC11341279 DOI: 10.1093/bib/bbae412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/24/2024] Open
Abstract
Numerous studies have demonstrated that microRNAs (miRNAs) are critically important for the prediction, diagnosis, and characterization of diseases. However, identifying miRNA-disease associations through traditional biological experiments is both costly and time-consuming. To further explore these associations, we proposed a model based on hybrid high-order moments combined with element-level attention mechanisms (HHOMR). This model innovatively fused hybrid higher-order statistical information along with structural and community information. Specifically, we first constructed a heterogeneous graph based on existing associations between miRNAs and diseases. HHOMR employs a structural fusion layer to capture structure-level embeddings and leverages a hybrid high-order moments encoder layer to enhance features. Element-level attention mechanisms are then used to adaptively integrate the features of these hybrid moments. Finally, a multi-layer perceptron is utilized to calculate the association scores between miRNAs and diseases. Through five-fold cross-validation on HMDD v2.0, we achieved a mean AUC of 93.28%. Compared with four state-of-the-art models, HHOMR exhibited superior performance. Additionally, case studies on three diseases-esophageal neoplasms, lymphoma, and prostate neoplasms-were conducted. Among the top 50 miRNAs with high disease association scores, 46, 47, and 45 associated with these diseases were confirmed by the dbDEMC and miR2Disease databases, respectively. Our results demonstrate that HHOMR not only outperforms existing models but also shows significant potential in predicting miRNA-disease associations.
Collapse
Affiliation(s)
- Zhengwei Li
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
- Guangxi Academy of Science, Nanning, 530007, China
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Lipeng Wan
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Lei Wang
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
- Guangxi Academy of Science, Nanning, 530007, China
| | - Wenjing Wang
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Ru Nie
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
- Mine Digitization Engineering Research Center of the Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
22
|
Iacobescu L, Ciobanu AO, Corlatescu AD, Simionescu M, Iacobescu GL, Dragomir E, Vinereanu D. The Role of Circulating MicroRNAs in Cardiovascular Diseases: A Novel Biomarker for Diagnosis and Potential Therapeutic Targets? Cureus 2024; 16:e64100. [PMID: 39114238 PMCID: PMC11305655 DOI: 10.7759/cureus.64100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs, involved in a large variety of pathological conditions, tend to be potential specific biomarkers in cardiovascular diseases. Moreover, these short, non-coding RNAs, regulate post-transcriptional gene expression and protein synthesis, making them ideal for therapeutic targets. Down-regulation and up-regulation of specific microRNAs are currently studied as a novel approach to the diagnosis and treatment of cardiovascular diseases, such as chronic and acute coronary syndromes, atherosclerosis, heart failure, and arrhythmia. MicroRNAs are interesting and attractive targets for cardiovascular-associated therapeutics because of their stability, tissue-specific expression pattern, and secretion of body fluids. Extended research on their isolation, detection, and function will provide the standardization needed for using microRNAs as biomarkers and potential therapeutic targets. This review will summarize recent data on the implication of microRNAs in cardiovascular diseases, their potential role as biomarkers for diagnosis, and also the challenges of using microRNAs as future therapeutic targets.
Collapse
Affiliation(s)
- Loredana Iacobescu
- Cardiology, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
- Cardiology, University Emergency Hospital, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| | - Andreea-Olivia Ciobanu
- Cardiology, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
- Cardiology, University Emergency Hospital, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| | | | - Maya Simionescu
- Biology, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, ROU
| | - Georgian L Iacobescu
- Orthopedics and Traumatology, University Emergency Hospital, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| | - Elena Dragomir
- Cellular Biology, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, ROU
| | - Dragos Vinereanu
- Cardiology, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
- Cardiology, University Emergency Hospital, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| |
Collapse
|
23
|
Wang L, Wan W, Zhang S, Keswani T, Li G, Xiao J. RNA-mediated epigenetic regulation in exercised heart: Mechanisms and opportunities for intervention. Mol Aspects Med 2024; 97:101274. [PMID: 38653129 DOI: 10.1016/j.mam.2024.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Physical exercise has been widely acknowledged as a beneficial lifestyle alteration and a potent non-pharmacological treatment for heart disease. Extensive investigations have revealed the beneficial effects of exercise on the heart and the underlying mechanisms involved. Exercise is considered one of the key factors that can lead to epigenetic alterations. The increasing number of identified molecules in the exercised heart has led to many studies in recent years that have explored the cellular function of ncRNAs and RNA modifications in the heart. Investigating the regulatory role of RNA-mediated epigenetic regulation in exercised hearts will contribute to the development of therapeutic strategies for the management of heart diseases. This review aims to summarize the positive impact of exercise on cardiac health. We will first provide an overview of the mechanisms through which exercise offers protection to the heart. Subsequently, we will delve into the current understanding of ncRNAs, specifically miRNAs, lncRNAs, and circRNAs, as well as RNA modification, focusing on RNA m6A and RNA A-to-I editing, and how they contribute to exercise-induced benefits for the heart. Lastly, we will explore the emerging therapeutic strategies that utilize exercise-mediated RNA epigenetic regulation in the treatment of heart diseases, while also addressing the challenges faced in this field.
Collapse
Affiliation(s)
- Lijun Wang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Wensi Wan
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Shuang Zhang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Tarun Keswani
- Center for Immunological and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Junjie Xiao
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
24
|
Zhao L, Qian X, Ren Z, Wang A. miR-31-5p suppresses myocardial hypertrophy by targeting Nfatc2ip. J Cell Mol Med 2024; 28:e18413. [PMID: 38894694 PMCID: PMC11187844 DOI: 10.1111/jcmm.18413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiac hypertrophy, worldwide known as an adaptive functional compensatory state of myocardial stress, is mainly believed to proceed to severe heart diseases, even to sudden death. Emerging studies have explored the microRNA alteration during hypertrophy. However, the mechanisms of microRNAs involved in cardiac hypertrophy are still uncertain. We studied young rats to establish abdominal aorta coarctation (AAC) for 4 weeks. With the significant downregulated cardiac function and upregulated hypertrophic biomarkers, AAC-induced rats showed enlarged myocardiocytes and alterations in microRNAs, especially downregulated miR-31-5p. miR-31-5p targets the 3'UTR of Nfatc2ip and inhibits myocardial hypertrophy in vitro and in vivo. Furthermore, we verified that Nfatc2ip is necessary and sufficient for cardiac hypertrophy in neonatal rat cardiomyocytes. Moreover, we found miR-31-5p inhibited the colocalization of Nfatc2ip and hypertrophic gene β-Mhc. Luciferase assay and ChiP-qPCR test demonstrated that Nfatc2ip binded to the core-promoter of β-Mhc and enhanced its transcriptional activity. Above all, our study found a new pathway, mir-31-5p/Nfatc2ip/β-Mhc, which is involved in cardiac hypertrophy, suggesting a potential target for intervention of cardiac hypertrophy.
Collapse
Affiliation(s)
- Lamei Zhao
- Department of Cardiology1st Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Xiaotao Qian
- Department of Oncology, Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiChina
| | - Zhenxing Ren
- Department of Anatomy, The Research Center of Basic Integrative MedicineGuangzhou University of Traditional Chinese MedicineGuangzhouGuangdongChina
| | - Ailing Wang
- Department of Cardiology1st Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
25
|
Liu X, Yao X, Chen L. Expanding roles of circRNAs in cardiovascular diseases. Noncoding RNA Res 2024; 9:429-436. [PMID: 38511061 PMCID: PMC10950605 DOI: 10.1016/j.ncrna.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 03/22/2024] Open
Abstract
CircRNAs are a class of single-stranded RNAs characterized by covalently looped structures. Emerging advances have promoted our understanding of circRNA biogenesis, nuclear export, biological functions, and functional mechanisms. Roles of circRNAs in diverse diseases have been increasingly recognized in the past decade, with novel approaches in bioinformatics analysis and new strategies in modulating circRNA levels, which have made circRNAs the hot spot for therapeutic applications. Moreover, due to the intrinsic features of circRNAs such as high stability, conservation, and tissue-/stage-specific expression, circRNAs are believed to be promising prognostic and diagnostic markers for diseases. Aiming cardiovascular disease (CVD), one of the leading causes of mortality worldwide, we briefly summarize the current understanding of circRNAs, provide the recent progress in circRNA functions and functional mechanisms in CVD, and discuss the future perspectives both in circRNA research and therapeutics based on existing knowledge.
Collapse
Affiliation(s)
- Xu Liu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xuelin Yao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
26
|
Climent M, García-Giménez JL. Special Issue "The Role of Non-Coding RNAs Involved in Cardiovascular Diseases and Cellular Communication". Int J Mol Sci 2024; 25:6034. [PMID: 38892220 PMCID: PMC11172417 DOI: 10.3390/ijms25116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Despite the great progress in diagnosis, prevention, and treatment, cardiovascular diseases (CVDs) are still the most prominent cause of death worldwide [...].
Collapse
Affiliation(s)
- Montserrat Climent
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - José Luis García-Giménez
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain;
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain
| |
Collapse
|
27
|
Shi P, Tan A, Ma Y, Que L, Li C, Shao Y, Sun H, Li Y, Li J. MicroRNA-19a-3p augments TGF-β1-induced cardiac fibroblast activation via targeting BAMBI. J Biomed Res 2024; 39:1-14. [PMID: 38807415 PMCID: PMC11982684 DOI: 10.7555/jbr.37.20230313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
The main pathogenic factor leading to cardiac remodeling and heart failure is myocardial fibrosis. Recent research indicates that microRNAs are essential for the progress of cardiac fibrosis. Myocardial fibrosis is considered to be alleviated through the bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), which does this by blocking the transforming growth factor β1 (TGF-β1) signaling pathway. Here, this study sought to elucidate the post-transcriptional regulation of miR-19a-3p on BAMBI and its role in TGF-β1-induced cardiac fibroblast activation. Transverse aortic constriction (TAC) caused both myocardial interstitial and perivascular collagen deposition. RT-PCR showed that miR-19a-3p was upregulated in the myocardial tissue of cardiac fibrosis, and TGF-β1 induced an increase of miR-19a-3p expression in cardiac fibroblasts. The dual-luciferase reporter test and qRT-PCR confirmed that miR-19a-3p directly combined with BAMBI mRNA 3'UTR, thus reduced BAMBI expression, which diminished the capability of BAMBI to inhibit TGF-β1. Furthermore, miR-19a-3p mimic increased the activation of TGF-β1/SMAD2/3 pathway signaling, which supported cardiac fibroblast activation, which blocked by overexpression of BAMBI. These findings imply that miR-19a-3p enhances the activation of TGF-β1/SMAD2/3 by inhibiting BAMBI, further boosting the activation of cardiac fibroblasts, and may thus offer a novel strategy to tackling myocardial fibrosis.
Collapse
Affiliation(s)
- Pengxi Shi
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ao Tan
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yuanyuan Ma
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lingli Que
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614-0575, USA
| | - Yongfeng Shao
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Haoliang Sun
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiantao Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
28
|
Mahajan A, Gunewardena S, Morris A, Clauss M, Dhillon NK. Analysis of MicroRNA Cargo in Circulating Extracellular Vesicles from HIV-Infected Individuals with Pulmonary Hypertension. Cells 2024; 13:886. [PMID: 38891019 PMCID: PMC11172129 DOI: 10.3390/cells13110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 06/20/2024] Open
Abstract
The risk of developing pulmonary hypertension (PH) in people living with HIV is at least 300-fold higher than in the general population, and illicit drug use further potentiates the development of HIV-associated PH. The relevance of extracellular vesicles (EVs) containing both coding as well as non-coding RNAs in PH secondary to HIV infection and drug abuse is yet to be explored. We here compared the miRNA cargo of plasma-derived EVs from HIV-infected stimulant users with (HIV + Stimulants + PH) and without PH (HIV + Stimulants) using small RNA sequencing. The data were compared with 12 PH datasets available in the GEO database to identify potential candidate gene targets for differentially altered miRNAs using the following functional analysis tools: ingenuity pathway analysis (IPA), over-representation analysis (ORA), and gene set enrichment analysis (GSEA). MiRNAs involved in promoting cell proliferation and inhibition of intrinsic apoptotic signaling pathways were among the top upregulated miRNAs identified in EVs from the HIV + Stimulants + PH group compared to the HIV + Stimulants group. Alternatively, the downregulated miRNAs in the HIV + Stimulants + PH group suggested an association with the negative regulation of smooth muscle cell proliferation, IL-2 mediated signaling, and transmembrane receptor protein tyrosine kinase signaling pathways. The validation of significantly differentially expressed miRNAs in an independent set of HIV-infected (cocaine users and nondrug users) with and without PH confirmed the upregulation of miR-32-5p, 92-b-3p, and 301a-3p positively regulating cellular proliferation and downregulation of miR-5571, -4670 negatively regulating smooth muscle proliferation in EVs from HIV-PH patients. This increase in miR-301a-3p and decrease in miR-4670 were negatively correlated with the CD4 count and FEV1/FVC ratio, and positively correlated with viral load. Collectively, this data suggest the association of alterations in the miRNA cargo of circulating EVs with HIV-PH.
Collapse
Affiliation(s)
- Aatish Mahajan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Sumedha Gunewardena
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Alison Morris
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Matthias Clauss
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Navneet K. Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| |
Collapse
|
29
|
Assayag E, Gurt I, Cohen-Kfir E, Stokar J, Zwas DR, Dresner-Pollak R. Cardiac Left Ventricular miRNA-26a Is Downregulated in Ovariectomized Mice, Upregulated upon 17-Beta Estradiol Replacement, and Inversely Correlated with Collagen Type 1 Gene Expression. Int J Mol Sci 2024; 25:5153. [PMID: 38791190 PMCID: PMC11121197 DOI: 10.3390/ijms25105153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is more prevalent in post- compared to pre-menopausal women. The underlying mechanisms are not fully understood. Data in humans is confounded by age and co-morbidities. We investigated the effects of ovariectomy and estrogen replacement on the left ventricular (LV) gene expression of pro-inflammatory and pro-fibrotic factors involved in HFpEF and putative regulating miRNAs. Nine-week-old C57BL/6 female mice were subjected to ovariectomy (OVX) or SHAM operation. OVX and SHAM groups were sacrificed 1-, 6-, and 12-weeks post-surgery (T1/SHAM; T1/OVX; T6/SHAM; T6/OVX, T12/SHAM). 17β-estradiol (E2) or vehicle (VEH) was then administered to the OVX groups for 6 weeks (T12/OVX/E2; T12/OVX/VEH). Another SHAM group was sacrificed 12-weeks post-surgery. RNA and miRNAs were extracted from the LV apex. An early 3-fold increase in the gene expression of IL-1α, IL-6, Mmp9, Mmp12, Col1α1, and Col3α1 was observed one-week post-surgery in T1/OVX vs. T1/SHAM, but not at later time points. miRNA-26a was lower in T1/OVX vs. T1/SHAM and was inversely correlated with Col1α1 and Col3α1 expression 1-week post-surgery (r = -0.79 p < 0.001; r = -0.6 p = 0.007). miRNAs-26a, 29b, and 133a were significantly higher, while Col1α1, Col3α1, IL-1α, IL-6, Tnfα, Mmp12, and FasL gene expression was significantly lower in E2- compared to vehicle-treated OVX mice. miRNA-26a was inversely correlated with Col3α1 in T12/OVX/ E2 (r = -0.56 p = 0.02). OVX triggered an early increase in the gene expression of pro-inflammatory and pro-fibrotic factors, highlighting the importance of the early phase post-cessation of ovarian function. E2 replacement therapy, even if it was not immediately initiated after OVX, reversed these unfavorable changes and upregulated cardiac miRNA-26a, previously unknown to be affected by menopausal status.
Collapse
Affiliation(s)
- Elishai Assayag
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.A.); (I.G.); (E.C.-K.)
| | - Irina Gurt
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.A.); (I.G.); (E.C.-K.)
| | - Einav Cohen-Kfir
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.A.); (I.G.); (E.C.-K.)
| | - Joshua Stokar
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.A.); (I.G.); (E.C.-K.)
| | - Donna R. Zwas
- Linda Joy Pollin Cardiovascular Wellness Center for Women, Division of Cardiology, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Rivka Dresner-Pollak
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.A.); (I.G.); (E.C.-K.)
| |
Collapse
|
30
|
Zhang Z, Liu T, Dong M, Ahamed MA, Guan W. Sample-to-answer salivary miRNA testing: New frontiers in point-of-care diagnostic technologies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1969. [PMID: 38783564 PMCID: PMC11141732 DOI: 10.1002/wnan.1969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/10/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
MicroRNA (miRNA), crucial non-coding RNAs, have emerged as key biomarkers in molecular diagnostics, prognosis, and personalized medicine due to their significant role in gene expression regulation. Salivary miRNA, in particular, stands out for its non-invasive collection method and ease of accessibility, offering promising avenues for the development of point-of-care diagnostics for a spectrum of diseases, including cancer, neurodegenerative disorders, and infectious diseases. Such development promises rapid and precise diagnosis, enabling timely treatment. Despite significant advancements in salivary miRNA-based testing, challenges persist in the quantification, multiplexing, sensitivity, and specificity, particularly for miRNA at low concentrations in complex biological mixtures. This work delves into these challenges, focusing on the development and application of salivary miRNA tests for point-of-care use. We explore the biogenesis of salivary miRNA and analyze their quantitative expression and their disease relevance in cancer, infection, and neurodegenerative disorders. We also examined recent progress in miRNA extraction, amplification, and multiplexed detection methods. This study offers a comprehensive view of the development of salivary miRNA-based point-of-care testing (POCT). Its successful advancement could revolutionize the early detection, monitoring, and management of various conditions, enhancing healthcare outcomes. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Zhikun Zhang
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Tianyi Liu
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Ming Dong
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Md. Ahasan Ahamed
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA
| |
Collapse
|
31
|
Nappi F. Non-Coding RNA-Targeted Therapy: A State-of-the-Art Review. Int J Mol Sci 2024; 25:3630. [PMID: 38612441 PMCID: PMC11011542 DOI: 10.3390/ijms25073630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The use of non-coding RNAs (ncRNAs) as drug targets is being researched due to their discovery and their role in disease. Targeting ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), is an attractive approach for treating various diseases, such as cardiovascular disease and cancer. This seminar discusses the current status of ncRNAs as therapeutic targets in different pathological conditions. Regarding miRNA-based drugs, this approach has made significant progress in preclinical and clinical testing for cardiovascular diseases, where the limitations of conventional pharmacotherapy are evident. The challenges of miRNA-based drugs, including specificity, delivery, and tolerability, will be discussed. New approaches to improve their success will be explored. Furthermore, it extensively discusses the potential development of targeted therapies for cardiovascular disease. Finally, this document reports on the recent advances in identifying and characterizing microRNAs, manipulating them, and translating them into clinical applications. It also addresses the challenges and perspectives towards clinical application.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
32
|
La Sala L, Carlini V, Conte C, Macas-Granizo MB, Afzalpour E, Martin-Delgado J, D'Anzeo M, Pedretti RFE, Naselli A, Pontiroli AE, Cappato R. Metabolic disorders affecting the liver and heart: Therapeutic efficacy of miRNA-based therapies? Pharmacol Res 2024; 201:107083. [PMID: 38309383 DOI: 10.1016/j.phrs.2024.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Liver and heart disease are major causes of death worldwide. It is known that metabolic alteration causing type 2 diabetes (T2D) and Nonalcoholic fatty liver (NAFLD) coupled with a derangement in lipid homeostasis, may exacerbate hepatic and cardiovascular diseases. Some pharmacological treatments can mitigate organ dysfunctions but the important side effects limit their efficacy leading often to deterioration of the tissues. It needs to develop new personalized treatment approaches and recent progresses of engineered RNA molecules are becoming increasingly viable as alternative treatments. This review outlines the current use of antisense oligonucleotides (ASOs), RNA interference (RNAi) and RNA genome editing as treatment for rare metabolic disorders. However, the potential for small non-coding RNAs to serve as therapeutic agents for liver and heart diseases is yet to be fully explored. Although miRNAs are recognized as biomarkers for many diseases, they are also capable of serving as drugs for medical intervention; several clinical trials are testing miRNAs as therapeutics for type 2 diabetes, nonalcoholic fatty liver as well as cardiac diseases. Recent advances in RNA-based therapeutics may potentially facilitate a novel application of miRNAs as agents and as druggable targets. In this work, we sought to summarize the advancement and advantages of miRNA selective therapy when compared to conventional drugs. In particular, we sought to emphasise druggable miRNAs, over ASOs or other RNA therapeutics or conventional drugs. Finally, we sought to address research questions related to efficacy, side-effects, and range of use of RNA therapeutics. Additionally, we covered hurdles and examined recent advances in the use of miRNA-based RNA therapy in metabolic disorders such as diabetes, liver, and heart diseases.
Collapse
Affiliation(s)
- Lucia La Sala
- IRCCS MultiMedica, 20138 Milan, Italy; Dept. of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| | | | - Caterina Conte
- IRCCS MultiMedica, 20138 Milan, Italy; Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | | | - Elham Afzalpour
- Dept. of Biomedical Sciences and Clinic, University of Milan, Milan, Italy
| | - Jimmy Martin-Delgado
- Hospital Luis Vernaza, Junta de Beneficiencia de Guayaquil, 090603 Guayaquil, Ecuador; Instituto de Investigacion e Innovacion en Salud Integral, Universidad Catolica de Santiago de Guayaquil, Guayaquil 090603, Ecuador
| | - Marco D'Anzeo
- AUO delle Marche, SOD Medicina di Laboratorio, Ancona, Italy
| | | | | | | | | |
Collapse
|
33
|
Mariappan V, Srinivasan R, Pratheesh R, Jujjuvarapu MR, Pillai AB. Predictive biomarkers for the early detection and management of heart failure. Heart Fail Rev 2024; 29:331-353. [PMID: 37702877 DOI: 10.1007/s10741-023-10347-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
Cardiovascular disease (CVD) is a serious public health concern whose incidence has been on a rise and is projected by the World Health Organization to be the leading global cause of mortality by 2030. Heart failure (HF) is a complicated syndrome resulting from various CVDs of heterogeneous etiologies and exhibits varying pathophysiology, including activation of inflammatory signaling cascade, apoptosis, fibrotic pathway, and neuro-humoral system, thereby leading to compromised cardiac function. During this process, several biomolecules involved in the onset and progression of HF are released into circulation. These circulating biomolecules could serve as unique biomarkers for the detection of subclinical changes and can be utilized for monitoring disease severity. Hence, it is imperative to identify these biomarkers to devise an early predictive strategy to stop the deterioration of cardiac function caused by these complex cellular events. Furthermore, measurement of multiple biomarkers allows clinicians to divide HF patients into sub-groups for treatment and management based on early health outcomes. The present article provides a comprehensive overview of current omics platform available for discovering biomarkers for HF management. Some of the existing and novel biomarkers for the early detection of HF with special reference to endothelial biology are also discussed.
Collapse
Affiliation(s)
- Vignesh Mariappan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Rajesh Srinivasan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Ravindran Pratheesh
- Department of Neurosurgery, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Muraliswar Rao Jujjuvarapu
- Radiodiagnosis and Imageology, Aware Gleneagles Global Hospital, LB Nagar, Hyderabad, Telangana, 500035, India
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India.
| |
Collapse
|
34
|
Improta-Caria AC, Rodrigues LF, Joaquim VHA, De Sousa RAL, Fernandes T, Oliveira EM. MicroRNAs regulating signaling pathways in cardiac fibrosis: potential role of the exercise training. Am J Physiol Heart Circ Physiol 2024; 326:H497-H510. [PMID: 38063810 PMCID: PMC11219062 DOI: 10.1152/ajpheart.00410.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 02/09/2024]
Abstract
Cardiovascular and metabolic diseases such as hypertension, type 2 diabetes, and obesity develop long-term fibrotic processes in the heart, promoting pathological cardiac remodeling, including after myocardial infarction, reparative fibrotic processes also occur. These processes are regulated by many intracellular signaling pathways that have not yet been completely elucidated, including those associated with microRNA (miRNA) expression. miRNAs are small RNA transcripts (18-25 nucleotides in length) that act as posttranscriptionally regulators of gene expression, inhibiting or degrading one or more target messenger RNAs (mRNAs), and proven to be involved in many biological processes such as cell cycle, differentiation, proliferation, migration, and apoptosis, directly affecting the pathophysiology of several diseases, including cardiac fibrosis. Exercise training can modulate the expression of miRNAs and it is known to be beneficial in various cardiovascular diseases, attenuating cardiac fibrosis processes. However, the signaling pathways modulated by the exercise associated with miRNAs in cardiac fibrosis were not fully understood. Thus, this review aims to analyze the expression of miRNAs that modulate signaling pathways in cardiac fibrosis processes that can be regulated by exercise training.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo, Brazil
| | - Luis Felipe Rodrigues
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo, Brazil
| | - Victor Hugo Antonio Joaquim
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo, Brazil
| | | | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo, Brazil
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo, Brazil
- Departments of Internal Medicine, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
35
|
Clouthier KL, Taylor AC, Xuhuai J, Liu Y, Parker S, Van Eyk J, Reddy S. A Noninvasive Circulating Signature of Combined Right Ventricular Pressure and Volume Overload in Tetralogy of Fallot/Pulmonary Atresia/Major Aortopulmonary Collateral Arteries. World J Pediatr Congenit Heart Surg 2024; 15:162-173. [PMID: 38128927 PMCID: PMC11991743 DOI: 10.1177/21501351231213626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Background: Despite surgical advances, children with tetralogy of Fallot/pulmonary atresia/major aortopulmonary collaterals (TOF/PA/MAPCAs) are subject to chronic right ventricular (RV) pressure and volume overload. Current diagnostic tools do not identify adverse myocardial remodeling and cannot predict progression to RV failure. We sought to identify a noninvasive, circulating signature of the systemic response to right heart stress to follow disease progression. Methods: Longitudinal data were collected from patients with TOF/PA/MAPCAs (N = 5) at the time of (1) early RV pressure overload and (2) late RV pressure and volume overload. Plasma protein and microRNA expression were evaluated using high-throughput data-independent mass spectroscopy and Agilent miR Microarray, respectively. Results: At the time of early RV pressure overload, median patient age was 0.34 years (0.02-9.37), with systemic RV pressures, moderate-severe hypertrophy, and preserved systolic function. Late RV pressure and volume overload occurred at a median age of 4.08 years (1.51-10.83), with moderate RV hypertrophy and dilation, and low normal RV function; 277 proteins were significantly dysregulated (log2FC ≥0.6/≤-0.6, FDR≤0.05), predicting downregulation in lipid transport (apolipoproteins), fibrinolytic system, and extracellular matrix structural proteins (talin 1, profilin 1); and upregulation in the respiratory burst. Increasing RV size and decreasing RV function correlated with decreasing structural protein expression. Similarly, miR expression predicted downregulation of extracellular matrix-receptor interactions and upregulation in collagen synthesis. Conclusion: To our knowledge, we show for the first time a noninvasive protein and miR signature reflecting the systemic response to adverse RV myocardial remodeling in TOF/PA/MAPCAs which could be used to follow disease progression.
Collapse
Affiliation(s)
- Katie L. Clouthier
- Department of Pediatrics (Cardiology), Stanford University, Palo Alto, CA, USA
| | - Anne C. Taylor
- Department of Pediatrics (Cardiology), Stanford University, Palo Alto, CA, USA
| | - Ji Xuhuai
- Human Immune Monitoring Center and Functional Genomics Facility, Stanford University, Palo Alto, CA, USA
| | - Yuhan Liu
- Department of Medicine (Quantitative Science Unit), Stanford University, Palo Alto, CA, USA
| | - Sarah Parker
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer Van Eyk
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sushma Reddy
- Department of Pediatrics (Cardiology), Stanford University, Palo Alto, CA, USA
- Cardiovascular Institute, Stanford University, Los Angeles, CA, USA
| |
Collapse
|
36
|
Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet 2024; 25:211-232. [PMID: 37968332 DOI: 10.1038/s41576-023-00662-1] [Citation(s) in RCA: 233] [Impact Index Per Article: 233.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group of transcripts that, by definition, are not translated into proteins. Since their discovery, ncRNAs have emerged as important regulators of multiple biological functions across a range of cell types and tissues, and their dysregulation has been implicated in disease. Notably, much research has focused on the link between microRNAs (miRNAs) and human cancers, although other ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as relevant contributors to human disease. In this Review, we summarize our current understanding of the roles of miRNAs, lncRNAs and circRNAs in cancer and other major human diseases, notably cardiovascular, neurological and infectious diseases. Further, we discuss the potential use of ncRNAs as biomarkers of disease and as therapeutic targets.
Collapse
Affiliation(s)
- Kinga Nemeth
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - George A Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The RNA Interference and Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
37
|
Chen QY, Jiang YN, Guan X, Ren FF, Wu SJ, Chu MP, Wu LP, Lai TF, Li L. Aerobic Exercise Attenuates Pressure Overload-Induced Myocardial Remodeling and Myocardial Inflammation via Upregulating miR-574-3p in Mice. Circ Heart Fail 2024; 17:e010569. [PMID: 38410978 DOI: 10.1161/circheartfailure.123.010569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 12/20/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND Exercise training can promote cardiac rehabilitation, thereby reducing cardiovascular disease mortality and hospitalization rates. MicroRNAs (miRs) are closely related to heart disease, among which miR-574-3p plays an important role in myocardial remodeling, but its role in exercise-mediated cardioprotection is still unclear. METHODS A mouse myocardial hypertrophy model was established by transverse aortic coarctation, and a 4-week swimming exercise training was performed 1 week after the operation. After swimming training, echocardiography was used to evaluate cardiac function in mice, and histopathologic staining was used to detect cardiac hypertrophy, myocardial fibrosis, and cardiac inflammation. Quantitative real-time polymerase chain reaction was used to detect the expression levels of miR-574-3p and cardiac hypertrophy markers. Western blotting detected the IL-6 (interleukin-6)/JAK/STAT inflammatory signaling pathway. RESULTS Echocardiography and histochemical staining found that aerobic exercise significantly improved pressure overload-induced myocardial hypertrophy (n=6), myocardial interstitial fibrosis (n=6), and cardiac inflammation (n=6). Quantitative real-time polymerase chain reaction detection showed that aerobic exercise upregulated the expression level of miR-574-3p (n=6). After specific knockdown of miR-574-3p in mouse hearts with adeno-associated virus 9 using cardiac troponin T promoter, we found that the protective effect of exercise training on the heart was significantly reversed. Echocardiography and histopathologic staining showed that inhibiting the expression of miR-574-3p could partially block the effects of aerobic exercise on cardiac function (n=6), cardiomyocyte cross-sectional area (n=6), and myocardial fibrosis (n=6). Western blotting and immunohistochemical staining showed that the inhibitory effects of aerobic exercise on the IL-6/JAK/STAT pathway and cardiac inflammation were partially abolished after miR-574-3p knockdown. Furthermore, we also found that miR-574-3p exerts cardioprotective effects in cardiomyocytes by targeting IL-6 (n=3). CONCLUSIONS Aerobic exercise protects cardiac hypertrophy and inflammation induced by pressure overload by upregulating miR-574-3p and inhibiting the IL-6/JAK/STAT pathway.
Collapse
Affiliation(s)
- Qiao-Ying Chen
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Yi-Na Jiang
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Xuan Guan
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Fang-Fang Ren
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Shu-Jie Wu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Mao-Ping Chu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Lian-Pin Wu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Teng-Fang Lai
- Department of Cardiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Baise, China (T.-F.L)
| | - Lei Li
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| |
Collapse
|
38
|
Spanò G, Pehlivanoğlu S, De Windt LJ. Heracles and the Lernaean Hydra: uncovering new layers of transcriptome regulation. Cardiovasc Res 2024; 120:10-12. [PMID: 38190721 DOI: 10.1093/cvr/cvad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024] Open
Affiliation(s)
- Giulia Spanò
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Universiteitessingel 50, 6229 ER, Maastricht University, Maastricht, The Netherlands
| | - Selen Pehlivanoğlu
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Universiteitessingel 50, 6229 ER, Maastricht University, Maastricht, The Netherlands
| | - Leon J De Windt
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Universiteitessingel 50, 6229 ER, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
39
|
Qiu Y, Zhang X, Li SS, Li YL, Mao BY, Fan JX, Shuang-Guo, Yin YL, Li P. Citronellal can alleviate vascular endothelial dysfunction by reducing ectopic miR-133a expression. Life Sci 2024; 339:122382. [PMID: 38154610 DOI: 10.1016/j.lfs.2023.122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
AIMS Endothelial dysfunction (ED) is the initial cause of atherosclerosis (AS) and an early marker of many cardiovascular diseases (CVD). Citronellal (CT), a monoterpenoid natural product extracted from grass plant Citronella, has been shown to have anti-thrombotic, anti-hypertensive and anti-diabetic cardiomyopathy activities. The aim of this study is to investigate the effects of citronellal on vascular endothelial dysfunction and the underlying mechanisms. MATERIALS AND METHODS The left common carotid artery was subjected to one-time balloon injury to cause vascular endothelial injury, and the AS model was established by feeding with high-fat diet. Use of HUVECs H2O2 treatment induced HUVECs oxidative stress damage model. The blood lipid level, histopathology, Western blot, immunohistochemistry, RT-PCR, ELISA and in situ fluorescence hybridization of common carotid artery tissues and HUVECs were studied. KEY FINDINGS CT significantly reduced vascular plate area and endothelial lipid and cholesterol deposition in the common carotid artery of mice in a dose-dependent manner. CT increased the expression of activated protein 2α (AP-2α/TFAP2A) and circRNA_102979, and inhibited the ectopic expression level of miR-133a. However, the constructed lentivirus with AP-2α silencing and circRNA_102979 silencing reversed this phenomenon. SIGNIFICANCE The current study verifies CT can increase the expression levels of AP-2α and circRNA_102979 in vascular endothelium, increase the adsorption effect of circRNA_102979 on miR-133a and relieve the inhibitory effect of miR-133a on target genes, thereby alleviating AS-induced ED.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Pharmacy, Beijing Renhe Hospital, Beijing 102600, China; Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Xue Zhang
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shan-Shan Li
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yin-Lan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang 150040, China
| | - Bing-Yan Mao
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Jia-Xin Fan
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang-Guo
- Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Ya-Ling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| | - Peng Li
- Department of Pharmacy, Beijing Renhe Hospital, Beijing 102600, China; Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
40
|
Searles CD. MicroRNAs and Cardiovascular Disease Risk. Curr Cardiol Rep 2024; 26:51-60. [PMID: 38206553 PMCID: PMC10844442 DOI: 10.1007/s11886-023-02014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE OF REVIEW MicroRNAs (miRNAs)-short, non-coding RNAs-play important roles in almost all aspects of cardiovascular biology, and changes in intracellular miRNA expression are indicative of cardiovascular disease development and progression. Extracellular miRNAs, which are easily measured in blood and can be reflective of changes in intracellular miRNA levels, have emerged as potential non-invasive biomarkers for disease. This review summarizes current knowledge regarding miRNAs as biomarkers for assessing cardiovascular disease risk and prognosis. RECENT FINDINGS Numerous studies over the last 10-15 years have identified associations between extracellular miRNA profiles and cardiovascular disease, supporting the potential use of extracellular miRNAs as biomarkers for risk stratification. However, clinical application of extracellular miRNA profiles has been hampered by poor reproducibility and inter-study variability that is due largely to methodological differences between studies. While recent studies indicate that circulating extracellular miRNAs are promising biomarkers for cardiovascular disease, evidence for clinical implementation is lacking. This highlights the need for larger, well-designed studies that use standardized methods for sample preparation, miRNA isolation, quantification, and normalization.
Collapse
Affiliation(s)
- Charles D Searles
- Emory University School of Medicine and Atlanta VA Health Care System, 1670 Clairmont Road, Decatur, GA, 30033, USA.
| |
Collapse
|
41
|
Liu N, Zhen Z, Xiong X, Xue Y. Aerobic exercise protects MI heart through miR-133a-3p downregulation of connective tissue growth factor. PLoS One 2024; 19:e0296430. [PMID: 38271362 PMCID: PMC10810442 DOI: 10.1371/journal.pone.0296430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE To investigate the effect of aerobic exercise intervention to inhibit cardiomyocyte apoptosis and thus improve cardiac function in myocardial infarction (MI) mice by regulating CTGF expression through miR-133a-3p. METHODS Male C57/BL6 mice, 7-8 weeks old, were randomly divided into sham-operated group (S group), sham-operated +aerobic exercise group (SE group), myocardial infarction group (MI group) and MI + aerobic exercise group (ME group). The mice were anesthetized the day after training and cardiac function was assessed by cardiac echocardiography. Myocardial collagen volume fraction (CVF%) was analyzed by Masson staining. Myocardial CTGF, Bax and Bcl-2 were detected by Western blotting, and myocardial miR-133a-3p was measured by RT-qPCR. RESULTS Compared with the S group, miR-133a-3p, Bcl-2 and EF were significantly decreased and CTGF, Bax, Bax/ Bcl-2, Caspase 3, Cleaved Caspase-3, LVIDd, LVIDs and CVF were significantly increased in the MI group. Compared with the MI group, miR-133a-3p, Bcl-2 and EF were significantly increased, cardiac function was significantly improved, and CTGF, Bax, Bax/ Bcl-2, Caspase 3, Cleaved Caspase-3, LVIDd, LVIDs and CVF were significantly decreased in ME group. The miR-133a-3p was significantly lower and CTGF was significantly higher in the H2O2 intervention group compared with the control group of H9C2 rat cardiomyocytes. miR-133a-3p was significantly higher and CTGF was significantly lower in the AICAR intervention group compared to the H2O2 intervention group. Compared with the control group of H9C2 rat cardiomyocytes, CTGF, Bax and Bax/Bcl-2 were significantly increased and Bcl-2 was significantly decreased in the miR-133a-3p inhibitor intervention group; CTGF, Bax and Bax/Bcl-2 were significantly decreased and Bcl-2 was significantly upregulated in the miR-133a-3p mimics intervention group. CONCLUSION Aerobic exercise down-regulated CTGF expression in MI mouse myocardium through miR-133a-3p, thereby inhibiting cardiomyocyte apoptosis and improving cardiac function.
Collapse
Affiliation(s)
- Niu Liu
- College of P.E, Beijing Normal University, Beijing, China
- School of Physical Education, Weinan Normal University, Weinan, Shaanxi, China
| | - Zhiping Zhen
- College of P.E, Beijing Normal University, Beijing, China
| | - Xin Xiong
- College of P.E, Beijing Normal University, Beijing, China
| | - Yaqi Xue
- College of P.E, Beijing Normal University, Beijing, China
| |
Collapse
|
42
|
Fang X, Ao X, Xiao D, Wang Y, Jia Y, Wang P, Li M, Wang J. Circular RNA-circPan3 attenuates cardiac hypertrophy via miR-320-3p/HSP20 axis. Cell Mol Biol Lett 2024; 29:3. [PMID: 38172650 PMCID: PMC10763352 DOI: 10.1186/s11658-023-00520-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Circular RNAs are enriched in cardiac tissue and play important roles in the pathogenesis of heart diseases. In this study, we aimed to investigate the regulatory mechanism of a conserved heart-enriched circRNA, circPan3, in cardiac hypertrophy. METHODS Cardiac hypertrophy was induced by isoproterenol. The progression of cardiomyocyte hypertrophy was assessed by sarcomere organization staining, cell surface area measurement, and expression levels of cardiac hypertrophy markers. RNA interactions were detected by RNA pull-down assays, and methylated RNA immunoprecipitation was used to detect m6A level. RESULTS The expression of circPan3 was downregulated in an isoproterenol-induced cardiac hypertrophy model. Forced expression of circPan3 attenuated cardiomyocyte hypertrophy, while inhibition of circPan3 aggravated cardiomyocyte hypertrophy. Mechanistically, circPan3 was an endogenous sponge of miR-320-3p without affecting miR-320-3p levels. It elevated the expression of HSP20 by endogenously interacting with miR-320-3p. In addition, circPan3 was N6-methylated. Stimulation by isoproterenol downregulated the m6A eraser ALKBH5, resulting in N6-methylation and destabilization of circPan3. CONCLUSIONS Our research is the first to report that circPan3 has an antihypertrophic effect in cardiomyocytes and revealed a novel circPan3-modulated signalling pathway involved in cardiac hypertrophy. CircPan3 inhibits cardiac hypertrophy by targeting the miR-320-3p/HSP20 axis and is regulated by ALKBH5-mediated N6-methylation. This pathway could provide potential therapeutic targets for cardiac hypertrophy.
Collapse
Affiliation(s)
- Xinyu Fang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiang Ao
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Dandan Xiao
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yu Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yi Jia
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Peiyan Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mengyang Li
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
43
|
Mathur P, Saxena S, Saxena B, Rani V. MicroRNAs Targeting Critical Molecular Pathways in Diabetic Cardiomyopathy Emerging Valuable for Therapy. Cardiovasc Hematol Agents Med Chem 2024; 22:298-307. [PMID: 38265401 DOI: 10.2174/0118715257265947231129074526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 01/25/2024]
Abstract
MicroRNAs have emerged as an important regulator of post-transcriptional gene expression studied extensively in many cancers, fetal development, and cardiovascular diseases. Their endogenous nature and easy manipulation have made them potential diagnostic and therapeutic molecules. Diseases with complex pathophysiology such as Diabetic Cardiomyopathy display symptoms at a late stage when the risk of heart failure has become very high. Therefore, the utilization of microRNAs as a tool to study pathophysiology and device-sustainable treatments for DCM could be considered. The present review focuses on the mechanistic insights of diabetic cardiomyopathy and the potential role of microRNAs.
Collapse
Affiliation(s)
- Priyanka Mathur
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| | - Sharad Saxena
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| | - Bhawna Saxena
- Department of Computer Science & Engineering and Information Technology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201307, Uttar Pradesh, India
| | - Vibha Rani
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| |
Collapse
|
44
|
Aranega AE, Franco D. Posttranscriptional Regulation by Proteins and Noncoding RNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:313-339. [PMID: 38884719 DOI: 10.1007/978-3-031-44087-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.
Collapse
Affiliation(s)
- Amelia E Aranega
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain.
| |
Collapse
|
45
|
Orgil BO, Purevjav E. Molecular Pathways and Animal Models of Cardiomyopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:991-1019. [PMID: 38884766 DOI: 10.1007/978-3-031-44087-8_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiomyopathies are a heterogeneous group of disorders of the heart muscle that ultimately result in congestive heart failure. Rapid progress in genetics, molecular and cellular biology with breakthrough innovative genetic-engineering techniques, such as next-generation sequencing and multiomics platforms, stem cell reprogramming, as well as novel groundbreaking gene-editing systems over the past 25 years has greatly improved the understanding of pathogenic signaling pathways in inherited cardiomyopathies. This chapter will focus on intracellular and intercellular molecular signaling pathways that are activated by a genetic insult in cardiomyocytes to maintain tissue and organ level regulation and resultant cardiac remodeling in certain forms of cardiomyopathies. In addition, animal models of different clinical forms of human cardiomyopathies with their summaries of triggered key molecules and signaling pathways will be described.
Collapse
Affiliation(s)
- Buyan-Ochir Orgil
- Department of Pediatrics, The Heart Institute, Division of Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, The Heart Institute, Division of Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
46
|
Baulina NM, Kiselev IS, Chumakova OS, Favorova OO. Circular RNAs: Biogenesis, Functions, and Role in Myocardial Hypertrophy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S1-S13. [PMID: 38621741 DOI: 10.1134/s0006297924140013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 04/17/2024]
Abstract
Circular RNAs (circRNAs) are a large class of endogenous single-stranded covalently closed RNA molecules. High-throughput RNA sequencing and bioinformatic algorithms have identified thousands of eukaryotic circRNAs characterized by high stability and tissue-specific expression pattern. Recent studies have shown that circRNAs play an important role in the regulation of physiological processes in the norm and in various diseases, including cardiovascular disorders. The review presents current concepts of circRNA biogenesis, structural features, and biological functions, describes the methods of circRNA analysis, and summarizes the results of studies on the role of circRNAs in the pathogenesis of hypertrophic cardiomyopathy, the most common inherited heart disease.
Collapse
Affiliation(s)
- Natalia M Baulina
- Chazov National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Ivan S Kiselev
- Chazov National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Olga S Chumakova
- Chazov National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Olga O Favorova
- Chazov National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
47
|
Lin LC, Liu ZY, Tu B, Song K, Sun H, Zhou Y, Sha JM, Zhang Y, Yang JJ, Zhao JY, Tao H. Epigenetic signatures in cardiac fibrosis: Focusing on noncoding RNA regulators as the gatekeepers of cardiac fibroblast identity. Int J Biol Macromol 2024; 254:127593. [PMID: 37898244 DOI: 10.1016/j.ijbiomac.2023.127593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/13/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Cardiac fibroblasts play a pivotal role in cardiac fibrosis by transformation of fibroblasts into myofibroblasts, which synthesis and secrete a large number of extracellular matrix proteins. Ultimately, this will lead to cardiac wall stiffness and impaired cardiac performance. The epigenetic regulation and fate reprogramming of cardiac fibroblasts has been advanced considerably in recent decades. Non coding RNAs (microRNAs, lncRNAs, circRNAs) regulate the functions and behaviors of cardiac fibroblasts, including proliferation, migration, phenotypic transformation, inflammation, pyroptosis, apoptosis, autophagy, which can provide the basis for novel targeted therapeutic treatments that abrogate activation and inflammation of cardiac fibroblasts, induce different death pathways in cardiac fibroblasts, or make it sensitive to established pathogenic cells targeted cytotoxic agents and biotherapy. This review summarizes our current knowledge in this field of ncRNAs function in epigenetic regulation and fate determination of cardiac fibroblasts as well as the details of signaling pathways contribute to cardiac fibrosis. Moreover, we will comment on the emerging landscape of lncRNAs and circRNAs function in regulating signal transduction pathways, gene translation processes and post-translational regulation of gene expression in cardiac fibroblast. In the end, the prospect of cardiac fibroblasts targeted therapy for cardiac fibrosis based on ncRNAs is discussed.
Collapse
Affiliation(s)
- Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Kai Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - He Sun
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Yang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ji-Ming Sha
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Jian-Yuan Zhao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
48
|
Khan SU, Saeed S, Sheikh AN, Arbi FM, Shahzad A, Faryal U, Lu K. Crafting a Blueprint for MicroRNA in Cardiovascular Diseases (CVDs). Curr Probl Cardiol 2023; 48:102010. [PMID: 37544621 DOI: 10.1016/j.cpcardiol.2023.102010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Cardiovascular diseases (CVDs) encompass a range of disorders, from congenital heart malformation, cardiac valve, peripheral artery, coronary artery, cardiac muscle diseases, and arrhythmias, ultimately leading to heart failure. Despite therapeutic advancements, CVDs remain the primary cause of global mortality, highlighting the need for a thorough knowledge of CVDs at the level of molecular structure. Gene and microRNA (miRNA) expression variations significantly influence cellular pathways, impacting an organism's physiology. MiRNAs, in particular, serve as regulators of gene expression, playing critical roles in essential cellular pathways and influencing the development of various diseases, including CVD. A wealth of evidence supports the involvement of miRNAs in CVD progression. These findings highlight the potential of miRNAs as valuable diagnostic biomarkers and open new avenues for their therapeutic application in CVDs. This study focuses on the latest advancements in identifying and characterizing microRNAs, exploring their manipulation and clinical application, and discussing future perspectives.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China; Women Medical and Dental College, Khyber Medical University, Peshawar, KPK, 22020, Pakistan
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Ayesha Nazir Sheikh
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro, 76080, Pakistan
| | - Fawad Mueen Arbi
- Quaid-e-Azam Medical College, Bahawalpur, Punjab, 63100, Pakistan
| | - Ali Shahzad
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Uzma Faryal
- Women Medical and Dental College, Khyber Medical University, Peshawar, KPK, 22020, Pakistan
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
49
|
Jiang J, Ni L, Zhang X, Chatterjee E, Lehmann HI, Li G, Xiao J. Keeping the Heart Healthy: The Role of Exercise in Cardiac Repair and Regeneration. Antioxid Redox Signal 2023; 39:1088-1107. [PMID: 37132606 DOI: 10.1089/ars.2023.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Significance: Heart failure is often accompanied by a decrease in the number of cardiomyocytes. Although the adult mammalian hearts have limited regenerative capacity, the rate of regeneration is extremely low and decreases with age. Exercise is an effective means to improve cardiovascular function and prevent cardiovascular diseases. However, the molecular mechanisms of how exercise acts on cardiomyocytes are still not fully elucidated. Therefore, it is important to explore the role of exercise in cardiomyocytes and cardiac regeneration. Recent Advances: Recent advances have shown that the effects of exercise on cardiomyocytes are critical for cardiac repair and regeneration. Exercise can induce cardiomyocyte growth by increasing the size and number. It can induce physiological cardiomyocyte hypertrophy, inhibit cardiomyocyte apoptosis, and promote cardiomyocyte proliferation. In this review, we have discussed the molecular mechanisms and recent studies of exercise-induced cardiac regeneration, with a focus on its effects on cardiomyocytes. Critical Issues: There is no effective way to promote cardiac regeneration. Moderate exercise can keep the heart healthy by encouraging adult cardiomyocytes to survive and regenerate. Therefore, exercise could be a promising tool for stimulating the regenerative capability of the heart and keeping the heart healthy. Future Directions: Although exercise is an important measure to promote cardiomyocyte growth and subsequent cardiac regeneration, more studies are needed on how to do beneficial exercise and what factors are involved in cardiac repair and regeneration. Thus, it is important to clarify the mechanisms, pathways, and other critical factors involved in the exercise-mediated cardiac repair and regeneration. Antioxid. Redox Signal. 39, 1088-1107.
Collapse
Affiliation(s)
- Jizong Jiang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Lingyan Ni
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Xinxin Zhang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Emeli Chatterjee
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - H Immo Lehmann
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Guoping Li
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| |
Collapse
|
50
|
Mao Y, Zhao K, Chen N, Fu Q, Zhou Y, Kong C, Li P, Yang C. A 2-decade bibliometric analysis of epigenetics of cardiovascular disease: from past to present. Clin Epigenetics 2023; 15:184. [PMID: 38007493 PMCID: PMC10676610 DOI: 10.1186/s13148-023-01603-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) remains a major health killer worldwide, and the role of epigenetic regulation in CVD has been widely studied in recent decades. Herein, we perform a bibliometric study to decipher how research topics in this field have evolved during the past 2 decades. RESULTS Publications on epigenetics in CVD produced during the period 2000-2022 were retrieved from the Web of Science Core Collection (WoSCC). We utilized Bibliometrix to build a science map of the publications and applied VOSviewer and CiteSpace to assess co-authorship, co-citation, co-occurrence, and bibliographic coupling. In total, 27,762 publications were included for bibliometric analysis. The yearly amount of publications experienced exponential growth. The top 3 most influential countries were China, the United States, and Germany, while the most cited institutions were Nanjing Medical University, Harbin Medical University, and Shanghai Jiao Tong University. Four major research trends were identified: (a) epigenetic mechanisms of CVD; (b) epigenetics-based therapies for CVD; (c) epigenetic profiles of specific CVDs; and (d) epigenetic biomarkers for CVD diagnosis/prediction. The latest and most important research topics, including "nlrp3 inflammasome", "myocardial injury", and "reperfusion injury", were determined by detecting citation bursts of co-occurring keywords. The most cited reference was a review of the current knowledge about how miRNAs recognize target genes and modulate their expression and function. CONCLUSIONS The number and impact of global publications on epigenetics in CVD have expanded rapidly over time. Our findings may provide insights into the epigenetic basis of CVD pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Yukang Mao
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, Jiangsu, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Nannan Chen
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, 450 Tengyue Road, Shanghai, 200090, China
| | - Qiangqiang Fu
- Department of General Practice, Clinical Research Center for General Practice, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Yimeng Zhou
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, 450 Tengyue Road, Shanghai, 200090, China
| | - Chuiyu Kong
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing, China.
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Chuanxi Yang
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, 450 Tengyue Road, Shanghai, 200090, China.
| |
Collapse
|