1
|
Ning W, Lv S, Wang Q, Xu Y. The pivotal role of microglia in injury and the prognosis of subarachnoid hemorrhage. Neural Regen Res 2025; 20:1829-1848. [PMID: 38993136 PMCID: PMC11691474 DOI: 10.4103/nrr.nrr-d-24-00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/25/2024] [Indexed: 07/13/2024] Open
Abstract
Subarachnoid hemorrhage leads to a series of pathological changes, including vascular spasm, cellular apoptosis, blood-brain barrier damage, cerebral edema, and white matter injury. Microglia, which are the key immune cells in the central nervous system, maintain homeostasis in the neural environment, support neurons, mediate apoptosis, participate in immune regulation, and have neuroprotective effects. Increasing evidence has shown that microglia play a pivotal role in the pathogenesis of subarachnoid hemorrhage and affect the process of injury and the prognosis of subarachnoid hemorrhage. Moreover, microglia play certain neuroprotective roles in the recovery phase of subarachnoid hemorrhage. Several approaches aimed at modulating microglia function are believed to attenuate subarachnoid hemorrhage injury. This provides new targets and ideas for the treatment of subarachnoid hemorrhage. However, an in-depth and comprehensive summary of the role of microglia after subarachnoid hemorrhage is still lacking. This review describes the activation of microglia after subarachnoid hemorrhage and their roles in the pathological processes of vasospasm, neuroinflammation, neuronal apoptosis, blood-brain barrier disruption, cerebral edema, and cerebral white matter lesions. It also discusses the neuroprotective roles of microglia during recovery from subarachnoid hemorrhage and therapeutic advances aimed at modulating microglial function after subarachnoid hemorrhage. Currently, microglia in subarachnoid hemorrhage are targeted with TLR inhibitors, nuclear factor-κB and STAT3 pathway inhibitors, glycine/tyrosine kinases, NLRP3 signaling pathway inhibitors, Gasdermin D inhibitors, vincristine receptor α receptor agonists, ferroptosis inhibitors, genetic modification techniques, stem cell therapies, and traditional Chinese medicine. However, most of these are still being evaluated at the laboratory stage. More clinical studies and data on subarachnoid hemorrhage are required to improve the treatment of subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Wenjing Ning
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Shi Lv
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
2
|
Xia L, Pan Y, Wang X, Hu R, Gao J, Chen W, He K, Cui D, Zhao Y, Liu L, Lai L, Su M. ERMAP attenuates DSS-induced colitis in mice by regulating macrophage and T cell functions. BMC Gastroenterol 2025; 25:362. [PMID: 40355813 PMCID: PMC12070682 DOI: 10.1186/s12876-025-03840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/02/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND & AIMS Both macrophages and T cells play a critical role in inflammatory bowel disease (IBD) development. Since our previous studies have shown that a novel immune checkpoint molecule erythrocyte membrane-associated protein (ERMAP) affects macrophage polarization and negatively regulates T cell responses, we investigated the effects of ERMAP on DSS-induced colitis progression in mice. METHODS C57BL/6 mice developed a dextran sodium sulfate (DSS) colitis model, treated with control Fc protein (Control Ig) and ERMAP-Fc fusion protein (ERMAP-Ig) for 12 days to assess colitis severity by disease activity index (DAI), weight loss, colon length, histology, flow cytometry, Q-PCR, WB, ELISA, and the effect of adoptive transfer of ERMAP knockout mice (ERMAP-/-) peritoneal macrophages on DSS colitis mice. In vitro, the effects of the RAW264.7 macrophage cell line that interfered with ERMAP expression on macrophage polarization and T cells were analyzed by flow cytometry. RESULTS We show here that administration of ERMAP protein significantly increases the proportion of anti-inflammatory M2-type macrophages and inhibits T cell activation and proliferation in DSS-induced colitis mice. Knockdown of ERMAP in RAW264.7 macrophages reduces M2-type macrophage polarization and increases T cell responses. Adoptive transfer of macrophages from ERMAP-/- exacerbates DSS-induced colitis. Global gene expression analysis by RNA-seq shows that ERMAP inhibits the NOD-like receptor (NLR) protein family pathway in macrophages. CONCLUSIONS In summary, our results suggest that administration of ERMAP can protect DSS-induced colitis in mice by regulating T cell and macrophage functions. This study adds to the evidence for various mechanistic pathways associated to the pathogenesis of IBD, which could subsequently be translated to novel therapeutics.
Collapse
Affiliation(s)
- Lu Xia
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
- Department of Histology and Embryology, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
- Key Laboratory for Research on Autoimmune Diseases of Higher Education schools in Guizhou Province, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Yiwen Pan
- Department of Histology and Embryology, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Xianbin Wang
- Department of Histology and Embryology, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Rong Hu
- Translational Medicine Research Center of Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Jie Gao
- Translational Medicine Research Center of Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Wei Chen
- Department of Histology and Embryology, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Keke He
- Department of Histology and Embryology, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Dongbin Cui
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Youbo Zhao
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Lu Liu
- The Public Health Clinical Center of Guiyang City, 6 Daying Road, Guiyang City, 550004, Guizhou, China.
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA.
| | - Min Su
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China.
- Department of Histology and Embryology, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China.
- Key Laboratory for Research on Autoimmune Diseases of Higher Education schools in Guizhou Province, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China.
- Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China.
| |
Collapse
|
3
|
Gibb M, Reinert AN, Schedin T, Merrick DT, Brown JM, Bauer AK. Mast cells are key mediators in the pulmonary inflammatory response to formaldehyde exposure. Toxicol Sci 2025; 205:180-190. [PMID: 39992237 PMCID: PMC12038249 DOI: 10.1093/toxsci/kfaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Formaldehyde (FA) is a common chemical linked to respiratory problems such as airway hyperresponsiveness and pulmonary inflammation. Due to its toxicological effects and ease of mass production, FA is also recognized as a significant chemical threat by the U.S. Department of Homeland Security. This study investigates the role of mast cells in the pulmonary inflammatory response to acute high-dose FA exposure. Using wild-type (C57BL/6J) and mast cell-deficient (KitW-sh) mouse models, we assessed the impact of oropharyngeal aspiration of FA on lung pathology. Our findings reveal that C57BL/6J mice experienced significant increases in cellular infiltration, altered immune cell populations, and changes in lipid mediator profiles. In contrast, KitW-sh mice exhibited significantly reduced inflammatory responses. Notably, the presence of mast cells was associated with enhanced dendritic cell migration and differential production of bioactive lipid mediators, such as specialized pro-resolving mediators and pro-inflammatory leukotrienes in C57BL/6J mice. These results highlight the crucial role of mast cells in the immune response to FA and suggest they could be therapeutic targets for treating FA-induced lung inflammation.
Collapse
Affiliation(s)
- Matthew Gibb
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Angela N Reinert
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Troy Schedin
- Department of Immunology and Microbiology, Human Immune Monitoring Shared Resource, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Daniel T Merrick
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Alison K Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| |
Collapse
|
4
|
Yang X, Zhang X, Tian Y, Yang J, Jia Y, Xie Y, Cheng L, Chen S, Wu L, Qin Y, Zhao Z, Zhao D, Wei Y. Srsf3-Dependent APA Drives Macrophage Maturation and Limits Atherosclerosis. Circ Res 2025; 136:985-1009. [PMID: 40160097 DOI: 10.1161/circresaha.124.326111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Circulating monocytes largely contribute to macrophage buildup in atheromata, which is crucial for clearing subendothelial LDLs (low-density lipoproteins) and dead cells; however, the transitional trajectory from monocytes to macrophages in atherosclerotic plaques and the underlying regulatory mechanism remain unclear. Moreover, the role of alternative polyadenylation, a posttranscriptional regulator of cell fate, in monocyte/macrophage fate decisions during atherogenesis is not entirely understood. METHODS To identify monocyte/macrophage subtypes in atherosclerotic lesions and the effect of alternative polyadenylation on these subtypes and atherogenesis, single-cell RNA sequencing, 3'-end sequencing, flow cytometric, and histopathologic analyses were performed on plaques obtained from Apoe-/- mouse arteries with or without myeloid deletion of Srsf3 (serine/arginine-rich splicing factor 3). Cell fractionation, polysome profiling, L-azidohomoalanine metabolic labeling assay, and metabolomic profiling were conducted to disclose the underlying mechanisms. Reprogramming of widespread alternative polyadenylation patterns was estimated in human plaques via bulk RNA sequencing. RESULTS We identified a subset of lesional cells in a monocyte-to-macrophage transitional state, which exhibited high expression of chemokines in mice. Srsf3 deletion caused a maturation delay of these transitional cells and phagocytic impairment of lesional macrophages, aggravating atherosclerosis. Mechanistically, Srsf3 deficiency shortened 3' untranslated regions of mitochondria-associated Aars2 (alanyl-tRNA synthetase 2), disrupting its translation. The resultant impairment of protein synthesis in mitochondria led to mitochondrial dysfunction with declined NAD+ (nicotinamide adenine dinucleotide, oxidized form) levels, activation of the integrated stress response, and metabolic reprogramming in macrophages. Administering an NAD+ precursor nicotinamide mononucleotide or the integrated stress response inhibitor partially restored Srsf3-deficient macrophage maturation, and nicotinamide mononucleotide treatment mitigated the proatherosclerotic effects of Srsf3 deficiency. Consistently, Srsf3 downregulation, global 3' untranslated region shortening, and accumulation of these transitional macrophages were associated with atherosclerosis progression in humans. CONCLUSIONS Our study reveals that Srsf3-dependent generation of long 3' untranslated region is required for efficient mitochondrial translation, which promotes mature phagocytic macrophage formation, thereby playing a protective role in atherosclerosis.
Collapse
Affiliation(s)
- Xian Yang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Yaru Tian
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Jiaxuan Yang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Yunhui Jia
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Yuhuai Xie
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Lianping Cheng
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Shenglai Chen
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Linfeng Wu
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Yihong Qin
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, China (Z.Z.)
- Vascular Center of Shanghai Jiao Tong University, China (Z.Z.)
| | - Dejian Zhao
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT (D.Z.)
| | - Yuanyuan Wei
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
- Shanghai Key Laboratory of Bioactive Small Molecules and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences (Y.W.), Fudan University, Shanghai, China
| |
Collapse
|
5
|
Chulkina M, Tran H, Uribe G, McAninch SB, McAninch C, Seideneck A, He B, Lanza M, Khanipov K, Golovko G, Powell DW, Davenport ER, Pinchuk IV. MyD88-mediated signaling in intestinal fibroblasts regulates macrophage antimicrobial defense and prevents dysbiosis in the gut. Cell Rep 2025; 44:115553. [PMID: 40257864 DOI: 10.1016/j.celrep.2025.115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/03/2025] [Accepted: 03/20/2025] [Indexed: 04/23/2025] Open
Abstract
Fibroblasts that reside in the gut mucosa are among the key regulators of innate immune cells, but their role in the regulation of the defense functions of macrophages remains unknown. MyD88 is suggested to shape fibroblast responses in the intestinal microenvironment. We found that mice lacking MyD88 in fibroblasts showed a decrease in the colonic antimicrobial defense, developing dysbiosis and aggravated dextran sulfate sodium (DSS)-induced colitis. These pathological changes were associated with the accumulation of Arginase 1+ macrophages with low antimicrobial defense capability. Mechanistically, the production of interleukin (IL)-6 and CCL2 downstream of MyD88 was critically involved in fibroblast-mediated support of macrophage antimicrobial function, and IL-6/CCL2 neutralization resulted in the generation of macrophages with decreased production of the antimicrobial peptide cathelicidin and impaired bacterial clearance. Collectively, these findings revealed a critical role of fibroblast-intrinsic MyD88 signaling in regulating macrophage antimicrobial defense under colonic homeostasis, and its disruption results in dysbiosis, predisposing the host to the development of intestinal inflammation.
Collapse
Affiliation(s)
- Marina Chulkina
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Hanh Tran
- The Pennsylvania State University, Department of Biology, Huck Institute of the Life Sciences, University Park, PA, USA
| | - Gabriela Uribe
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Steven Bruce McAninch
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Christina McAninch
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Ashley Seideneck
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Bing He
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Matthew Lanza
- The Pennsylvania State University, College of Medicine, Department of Comparative Medicine, Hershey, PA, USA
| | - Kamil Khanipov
- The University of Texas Medical Branch, Department of Pharmacology, Galveston, TX, USA
| | - Georgiy Golovko
- The University of Texas Medical Branch, Department of Pharmacology, Galveston, TX, USA
| | - Don W Powell
- The University of Texas Medical Branch, Department of Internal Medicine, Galveston, TX, USA
| | - Emily R Davenport
- The Pennsylvania State University, Department of Biology, Huck Institute of the Life Sciences, University Park, PA, USA
| | - Irina V Pinchuk
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA.
| |
Collapse
|
6
|
Karjalainen J, Hain S, Progatzky F. Glial-immune interactions in barrier organs. Mucosal Immunol 2025; 18:271-278. [PMID: 39716688 DOI: 10.1016/j.mucimm.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Neuro-immune interactions within barrier organs, such as lung, gut, and skin, are crucial in regulating tissue homeostasis, inflammatory responses, and host defence. Our rapidly advancing understanding of peripheral neuroimmunology is transforming the field of barrier tissue immunology, offering a fresh perspective for developing therapies for complex chronic inflammatory disorders affecting barrier organs. However, most studies have primarily examined interactions between the peripheral nervous system and the immune system from a neuron-focused perspective, while glial cells, the nonneuronal cells of the nervous system, have received less attention. Glial cells were long considered as mere bystanders, only supporting their neuronal neighbours, but recent discoveries mainly on enteric glial cells in the intestine have implicated these cells in immune-regulation and inflammatory disease pathogenesis. In this review, we will highlight the bi-directional interactions between peripheral glial cells and the immune system and discuss the emerging immune regulatory functions of glial cells in barrier organs.
Collapse
Affiliation(s)
| | - Sofia Hain
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Fränze Progatzky
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
AlAsfoor S, Jessen E, Pullapantula SR, Voisin JR, Hsi LC, Pavelko KD, Farwana S, Patraw JA, Chai XY, Ji S, Strausbauch MA, Cipriani G, Wei L, Linden DR, Hou R, Myers R, Bhattarai Y, Wykosky J, Burns AJ, Dasari S, Farrugia G, Grover M. Mass cytometric analysis of circulating monocyte subsets in a murine model of diabetic gastroparesis. Am J Physiol Gastrointest Liver Physiol 2025; 328:G323-G341. [PMID: 39947648 DOI: 10.1152/ajpgi.00229.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 12/23/2024] [Indexed: 03/14/2025]
Abstract
Circulating monocytes (Mo) are precursors to a subset of gastric resident muscularis macrophages. Changes in muscularis macrophages (MMs) result in delayed gastric emptying (DGE) in diabetic gastroparesis. However, the dynamics of Mo in the development of DGE in an animal model are unknown. Using cytometry by time-of-flight and computational approaches, we show a high heterogeneity within the Mo population. In DGE mice, via unbiased clustering, we identified two reduced Mo clusters that exhibit migratory phenotype (Ly6ChiCCR2hi-intCD62LhiLy6GhiCD45RhiMERTKhiintLGALS3intCD14intCX3CR1lowSiglec-Hint-low) resembling classical Mo (CMo-like). All markers enriched in these clusters are known to regulate cell differentiation, proliferation, adhesion, and migration. Trajectory inference analysis predicted these Mo as precursors to subsequent Mo lineages. In gastric muscle tissue, we demonstrated an increase in the gene expression levels of chemokine receptor C-C chemokine receptor type 2 (Ccr2) and its C-C motif ligand 2 (Ccl2), suggesting increased trafficking of classical-Mo. These findings establish a link between two CMo-like clusters and the development of the DGE phenotype and contribute to a better understanding of the heterogenicity of the Mo population.NEW & NOTEWORTHY Using 32 immune cell surface markers, we identified 23 monocyte clusters in murine blood. Diabetic gastroparesis was associated with a significant decrease in two circulating classical monocyte-like clusters and an upregulation of the Ccr2-Ccl2 axis in the gastric muscularis propria, suggesting increased tissue monocyte migration. This study offers new targets by pointing to a possible role for two classical monocyte subsets connected to the Ccr2-Ccl2 axis.
Collapse
Affiliation(s)
- Shefaa AlAsfoor
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Erik Jessen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, United States
| | | | - Jennifer R Voisin
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
| | - Linda C Hsi
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Kevin D Pavelko
- Immune Monitoring Core, Office of Core Shared Services, Mayo Clinic, Rochester, Minnesota, United States
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States
| | - Samera Farwana
- Immune Monitoring Core, Office of Core Shared Services, Mayo Clinic, Rochester, Minnesota, United States
| | - Jack A Patraw
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
| | - Xin-Yi Chai
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Sihan Ji
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, People's Republic of China
| | - Michael A Strausbauch
- Immune Monitoring Core, Office of Core Shared Services, Mayo Clinic, Rochester, Minnesota, United States
| | - Gianluca Cipriani
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Lai Wei
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - David R Linden
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Ruixue Hou
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States
| | - Richard Myers
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., San Diego, California, United States
| | - Yogesh Bhattarai
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., San Diego, California, United States
| | - Jill Wykosky
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States
| | - Alan J Burns
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States
| | - Surendra Dasari
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States
| | - Gianrico Farrugia
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Madhusudan Grover
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
8
|
Kim YI, Ko I, Yi EJ, Kim J, Hong YR, Lee W, Chang SY. NAD + modulation of intestinal macrophages renders anti-inflammatory functionality and ameliorates gut inflammation. Biomed Pharmacother 2025; 185:117938. [PMID: 40022994 DOI: 10.1016/j.biopha.2025.117938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Macrophages can maintain gut immune homeostasis by driving clearance of infection, but also can prevent chronic inflammation and induce tissue repair. Reduced nicotinamide adenine dinucleotide (NAD+) levels in macrophages have been reported to be associated with the onset of severe colitis. Given that dysregulation of gut macrophages plays a significant role in inflammatory bowel disease (IBD), they represent a potential target for novel therapies. Here we show an IBD therapeutic candidate LMT503, a substrate that modulates NADH quinone oxidoreductase (NQO1), which induces anti-inflammatory macrophage polarization by NAD+ enhancement. To determine the anti-inflammatory effect of LMT503, a dextran sulfate sodium (DSS)-induced colitis mouse model was used in this study. Treatment of bone marrow-derived macrophages (BMDMs) with LMT503 increased IL-10 and Arg1 levels but decreased levels of TNF-α, iNOS, and IL-6. LMT503 also increased levels of SIRT1, SIRT3, and SIRT6, suggesting that macrophages were driven to an anti-inflammatory character. In a murine DSS-induced colitis model, oral treatment with LMT503 ameliorated colonic inflammation and decreased infiltrating monocytes and neutrophils. Although NAD+ enhancement did not alter CX3CR1intCD206- or CX3CR1hiCD206+ colon macrophage population, it decreased levels of TNF-α and iNOS and increased IL-10 level, with colonic macrophages showing an anti-inflammatory character shift. Depletion of CX3CR1 expressing gut resident macrophages abrogated the immune regulatory effect of LMT503 in the colon. These data suggest that LMT503 is a therapeutic candidate that can target macrophages to drive polarization with an immunosuppressive character and ameliorate IBD.
Collapse
Affiliation(s)
- Young-In Kim
- Laboratory of Microbiology, Department of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea; Korea Initiative for fostering University of Research and Innovation (KIURI) Program, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Inseok Ko
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea; Department of Chemistry Education, Graduate Department of Chemical Materials, Pusan National University, Busan, Republic of Korea
| | - Eun-Je Yi
- Laboratory of Microbiology, Department of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea
| | - Jusik Kim
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea
| | - Yong Rae Hong
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea
| | - Wheeseong Lee
- Lmito Therapeutics, Yongin-si 16827, Republic of Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, Department of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
9
|
Singh R. Dynamics of circulatory monocytes trafficking and transitioning to gastric resident macrophages in diabetic gastroparesis. Am J Physiol Gastrointest Liver Physiol 2025; 328:G429-G432. [PMID: 40033937 DOI: 10.1152/ajpgi.00053.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Affiliation(s)
- Rajan Singh
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada, United States
| |
Collapse
|
10
|
Udayan S, Floyd AN, John V, Barrios BE, Rusconi BA, McDonald KG, Schill EM, Kulkarni DH, Martin AL, Gutierrez R, Talati KB, Harris DL, Sundas S, Burgess KM, Pauta JT, Joyce EL, Wang JD, Wilson LD, Knoop KA, Tarr PI, Hsieh CS, Newberry RD. Colonic goblet cell-associated antigen passages mediate physiologic and beneficial translocation of live gut bacteria in preweaning mice. Nat Microbiol 2025; 10:927-938. [PMID: 40169738 DOI: 10.1038/s41564-025-01965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/19/2025] [Indexed: 04/03/2025]
Abstract
Gut-resident microorganisms have time-limited effects in distant tissues during early life. However, the reasons behind this phenomenon are largely unknown. Here, using bacterial culture techniques, we show that a subset of live gut-resident bacteria translocate and disseminate to extraintestinal tissues (mesenteric lymph nodes and spleen) in preweaning (day of life 17), but not adult (day of life 35), mice. Translocation and dissemination in preweaning mice appeared physiologic as it did not induce an inflammatory response and required host goblet cells, the formation of goblet cell-associated antigen passages, sphingosine-1-phosphate receptor-dependent leukocyte trafficking and phagocytic cells. One translocating strain, Lactobacillus animalisWU, showed antimicrobial activity against the late-onset sepsis pathogen Escherichia coli ST69 in vitro, and its translocation was associated with protection from systemic sepsis in vivo. While limited in context, these findings challenge the idea that translocation of gut microbiota is pathological and show physiologic and beneficial translocation during early life.
Collapse
Affiliation(s)
- Sreeram Udayan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Alexandria N Floyd
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Vini John
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Bibiana E Barrios
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Brigida A Rusconi
- Division of Gastroenterology Hepatology & Nutrition, Department of Pediatrics, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Keely G McDonald
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Ellen Merrick Schill
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- Division of Newborn Medicine, Department of Pediatrics, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Devesha H Kulkarni
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrew L Martin
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Rafael Gutierrez
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- Division of Newborn Medicine, Department of Pediatrics, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Khushi B Talati
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Dalia L Harris
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Sushma Sundas
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Kayla M Burgess
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Jocelyn T Pauta
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Elisabeth L Joyce
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Jacqueline D Wang
- Division of Gastroenterology Hepatology & Nutrition, Department of Pediatrics, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Leslie D Wilson
- Division of Comparative Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Kathryn A Knoop
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Pediatrics, Mayo Clinic, Rochester, MN, USA
| | - Phillip I Tarr
- Division of Gastroenterology Hepatology & Nutrition, Department of Pediatrics, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Rodney D Newberry
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
11
|
Chang Y, Chen J, Peng Y, Zhang K, Zhang Y, Zhao X, Wang D, Li L, Zhu J, Liu K, Li Z, Pan S, Huang K. Gut-derived macrophages link intestinal damage to brain injury after cardiac arrest through TREM1 signaling. Cell Mol Immunol 2025; 22:437-455. [PMID: 39984674 PMCID: PMC11955566 DOI: 10.1038/s41423-025-01263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/19/2024] [Accepted: 01/20/2025] [Indexed: 02/23/2025] Open
Abstract
Brain injury is the leading cause of death and disability in survivors of cardiac arrest, where neuroinflammation triggered by infiltrating macrophages plays a pivotal role. Here, we seek to elucidate the origin of macrophages infiltrating the brain and their mechanism of action after cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Wild-type or photoconvertible Cd68-Cre:R26-LSL-KikGR mice were subjected to 10-min CA/CPR, and the migration of gut-derived macrophages into brain was assessed. Transcriptome sequencing was performed to identify the key proinflammatory signal of macrophages infiltrating the brain, triggering receptor expressed on myeloid cells 1 (TREM1). Upon drug intervention, the effects of TREM1 on post-CA/CPR brain injury were further evaluated. 16S rRNA sequencing was used to detect gut dysbiosis after CA/CPR. Through photoconversion experiments, we found that small intestine-derived macrophages infiltrated the brain and played a crucial role in triggering secondary brain injury after CA/CPR. The infiltrating peripheral macrophages showed upregulated TREM1 levels, and we further revealed the crucial role of gut-derived TREM1+ macrophages in post-CA/CPR brain injury through a drug intervention targeting TREM1. Moreover, a close correlation between upregulated TREM1 expression and poor neurological outcomes was observed in CA survivors. Mechanistically, CA/CPR caused a substantial expansion of Enterobacter at the early stage, which ignited intestinal TREM1 signaling via the activation of Toll-like receptor 4 on macrophages through the release of lipopolysaccharide. Our findings reveal essential crosstalk between the gut and brain after CA/CPR and underscore the potential of targeting TREM1+ small intestine-derived macrophages as a novel therapeutic strategy for mitigating post-CA/CPR brain injury.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiancong Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuqin Peng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kunxue Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuzhen Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolin Zhao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Di Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Lei Li
- Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juan Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kewei Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhentong Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China.
| |
Collapse
|
12
|
Lai G, Zhao X, Chen Y, Xie T, Su Z, Lin J, Chen Y, Chen K. The origin and polarization of Macrophages and their role in the formation of the Pre-Metastatic niche in osteosarcoma. Int Immunopharmacol 2025; 150:114260. [PMID: 39938167 DOI: 10.1016/j.intimp.2025.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
Osteosarcoma, a primary malignant bone tumor commonly found in adolescents, is highly aggressive, with a high rate of disability and mortality. It has a profound negative impact on both the physical and psychological well-being of patients. The standard treatment approach, comprising surgery and chemotherapy, has seen little improvement in patient outcomes over the past several decades. Once relapse or metastasis occurs, prognosis worsens significantly. Therefore, there is an urgent need to explore new therapeutic approaches. In recent years, the successful application of immunotherapy in certain cancers has demonstrated its potential in the field of cancer treatment. Macrophages are the predominant components of the immune microenvironment in osteosarcoma and represent critical targets for immunotherapy. Macrophages exhibit dual characteristics; while they play a key role in maintaining tumor-promoting properties within the microenvironment, such as inflammation, angiogenesis, and immune suppression, they also possess antitumor potential as part of the innate immune system. A deeper understanding of macrophages and their relationship with osteosarcoma is essential for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Guisen Lai
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Xinyi Zhao
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Yuanquan Chen
- Department of Orthopaedic Sun Yat-sen Memorial Hospital Sun Yat-sen University PR China
| | - Tianwei Xie
- The People's Hospital of Hezhou, No.150 Xiyue Street, Hezhou 542800 PR China
| | - Zepeng Su
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Jiajie Lin
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Yuanhai Chen
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Keng Chen
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China.
| |
Collapse
|
13
|
Quan T, Li R, Gao T. The Intestinal Macrophage-Intestinal Stem Cell Axis in Inflammatory Bowel Diseases: From Pathogenesis to Therapy. Int J Mol Sci 2025; 26:2855. [PMID: 40243444 PMCID: PMC11988290 DOI: 10.3390/ijms26072855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
The gut plays a crucial role in digestion and immunity, so its balance is essential to overall health. This balance relies on dynamic interactions between intestinal epithelial cells, immune cells, and crypt stem cells. Inflammatory bowel disease (IBD), which consists of ulcerative colitis and Crohn's disease, is a chronic relapsing inflammatory disease of the gastrointestinal tract closely related to immune dysfunction. Stem cells, known for their ability to self-renew and differentiate, play an important role in repairing damaged intestinal epithelium and maintaining homeostasis in vivo. Macrophages are key gatekeepers of intestinal immune homeostasis and have a significant impact on IBD. Current research has focused on the link between epithelial cells and stem cells, but interactions with macrophages, which have been recognized as attractive targets for the development of new therapeutic approaches to disease, have been less explored. Recently, the developing field of immunometabolism has reinforced that metabolic reprogramming is a key determinant of macrophage function and subsequent disease progression. The aim of this review is to explore the role of the macrophage-stem cell axis in the maintenance of intestinal homeostasis and to summarize potential approaches to treating IBD by manipulating the cellular metabolism of macrophages, as well as the main opportunities and challenges faced. In summary, our overview provides a framework for understanding the critical role of macrophage immunometabolism in maintaining gut health and potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Ting Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (T.Q.); (R.L.)
| |
Collapse
|
14
|
Basu S, Ulbricht Y, Rossol M. Healthy and premature aging of monocytes and macrophages. Front Immunol 2025; 16:1506165. [PMID: 40165963 PMCID: PMC11955604 DOI: 10.3389/fimmu.2025.1506165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Aging is associated with immunosenescence, a decline in immune functions, but also with inflammaging, a chronic, low-grade inflammation, contributing to immunosenescence. Monocytes and macrophages belong to the innate immune system and aging has a profound impact on these cells, leading to functional changes and most importantly, to the secretion of pro-inflammatory cytokines and thereby contributing to inflammaging. Rheumatoid arthritis (RA) is an autoimmune disease and age is an important risk factor for developing RA. RA is associated with the early development of age-related co-morbidities like cardiovascular manifestations and osteoporosis. The immune system of RA patients shows signs of premature aging like age-inappropriate increased production of myeloid cells, accelerated telomeric erosion, and the uncontrolled production of pro-inflammatory cytokines. In this review we discuss the influence of aging on monocytes and macrophages during healthy aging and premature aging in rheumatoid arthritis.
Collapse
Affiliation(s)
- Syamantak Basu
- Molecular Immunology, Faculty of Health Sciences, Brandenburg University of Technology (BTU) Cottbus-Senftenberg, Senftenberg, Germany
| | - Ying Ulbricht
- Molecular Immunology, Faculty of Health Sciences, Brandenburg University of Technology (BTU) Cottbus-Senftenberg, Senftenberg, Germany
| | - Manuela Rossol
- Molecular Immunology, Faculty of Health Sciences, Brandenburg University of Technology (BTU) Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Environment and Natural Sciences, Brandenburg University of Technology (BTU) Cottbus-Senftenberg, Senftenberg, Germany
| |
Collapse
|
15
|
Kreimeyer H, Llorente C, Schnabl B. Influence of Alcohol on the Intestinal Immune System. Alcohol Res 2025; 45:03. [PMID: 40151622 PMCID: PMC11913448 DOI: 10.35946/arcr.v45.1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
PURPOSE Alcohol misuse is associated with disruption of the microbial homeostasis (dysbiosis) and microbial overgrowth in the gut, gut barrier disruption, and translocation of microbes into the systemic circulation. It also induces changes in regulatory mechanisms of the gut, which is the largest peripheral immune organ. The gut-liver axis is important for health and disease, and alterations in the intestinal immune system contribute to alcohol-associated liver disease (ALD). Understanding these changes might help discover new targets for drugs and therapeutic approaches. SEARCH METHODS A systematic literature search was conducted in PubMed, Medline, and Embase of manuscripts published between January 2000 and November 2023 using the terms ("alcohol" or "ethanol") AND ("immune" or "immunol") AND ("intestine," "colon," or "gut"). Eligible manuscripts included studies and reviews that discussed the effects of ethanol on immune cells in the intestine. SEARCH RESULTS A total of 506 publications were found in the databases on November 20, 2023. After excluding duplicates and research not covering ALD (415 articles), 91 studies were reviewed. Also included were manuscripts covering specific immune cells in the context of ALD. DISCUSSION AND CONCLUSIONS Balancing immune tolerance vs. initiating an immune response challenges the intestinal immune system. Alcohol induces disruption of the intestinal barrier, which is accompanied by a thicker mucus layer and reduced anti-microbial peptides. This leads to longer attachment of bacteria to epithelial cells and consequently greater translocation into the circulation. Bacterial translocation activates the immune system, reducing the activity of regulatory T cells and inducing T helper 17 response via a variety of pathways. The role of innate immune cells, especially Type 3 innate lymphoid cells, and of specific B- and T-cell subsets in ALD remains elusive. Gut dysbiosis, translocation of viable bacteria and bacterial products into the circulation, and changes in the intestinal barrier have been linked to immune deficiency and infections in patients with cirrhosis. Modifying the intestinal immune system could reduce intestinal inflammation and alcohol-induced liver injury. Understanding the underlying pathophysiology can help to detect new targets for drugs and design therapeutic strategies.
Collapse
Affiliation(s)
- Henriette Kreimeyer
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California
- Department of Medicine, U.S. Department of Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
16
|
Adams RC, MacDonald KPA, Hill GR. The contribution of the monocyte-macrophage lineage to immunotherapy outcomes. Blood 2025; 145:1010-1021. [PMID: 39576958 DOI: 10.1182/blood.2024025680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
ABSTRACT Macrophages execute core functions in maintaining tissue homeostasis, in which their extensive plasticity permits a spectrum of functions from tissue remodeling to immune defense. However, perturbations to tissue-resident macrophages during disease, and the subsequent emergence of monocyte-derived macrophages, can hinder tissue recovery and promote further damage through inflammatory and fibrotic programs. Gaining a fundamental understanding of the critical pathways defining pathogenic macrophage populations enables the development of targeted therapeutic approaches to improve disease outcomes. In the setting of chronic graft-versus-host disease (cGVHD), which remains the major complication of allogeneic hematopoietic stem cell transplantation, colony-stimulating factor 1 (CSF1)-dependent donor-derived macrophages have been identified as key pathogenic mediators of fibrotic skin and lung disease. Antibody blockade of the CSF1 receptor (CSF1R) to induce macrophage depletion showed remarkable capacity to prevent fibrosis in preclinical models and has subsequently demonstrated impressive efficacy for improving cGVHD in ongoing clinical trials. Similarly, macrophage depletion approaches are currently under investigation for their potential to augment responses to immune checkpoint inhibition. Moreover, both monocyte and tissue-resident macrophage populations have recently been implicated as mediators of the numerous toxicities associated with chimeric antigen receptor T-cell therapy, further highlighting potential avenues of macrophage-based interventions to improve clinical outcomes. Herein, we examine the current literature on basic macrophage biology and contextualize this in the setting of cellular and immunotherapy. Additionally, we highlight mechanisms by which macrophages can be targeted, largely by interfering with the CSF1/CSF1R signaling axis, for therapeutic benefit in the context of both cellular and immunotherapy.
Collapse
Affiliation(s)
- Rachael C Adams
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Kelli P A MacDonald
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
17
|
Rossouw C, Ryan FJ, Lynn DJ. The role of the gut microbiota in regulating responses to vaccination: current knowledge and future directions. FEBS J 2025; 292:1480-1499. [PMID: 39102299 PMCID: PMC11927049 DOI: 10.1111/febs.17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Antigen-specific B and T cell responses play a critical role in vaccine-mediated protection against infectious diseases, but these responses are highly variable between individuals and vaccine immunogenicity is frequently sub-optimal in infants, the elderly and in people living in low- and middle-income countries. Although many factors such as nutrition, age, sex, genetics, environmental exposures, and infections may all contribute to variable vaccine immunogenicity, mounting evidence indicates that the gut microbiota is an important and targetable factor shaping optimal immune responses to vaccination. In this review, we discuss evidence from human, preclinical and experimental studies supporting a role for a healthy gut microbiota in mediating optimal vaccine immunogenicity, including the immunogenicity of COVID-19 vaccines. Furthermore, we provide an overview of the potential mechanisms through which this could occur and discuss strategies that could be used to target the microbiota to boost vaccine immunogenicity where it is currently sub-optimal.
Collapse
Affiliation(s)
- Charné Rossouw
- Precision MedicineSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
- Flinders Health and Medical Research InstituteFlinders UniversityBedford ParkAustralia
| | - Feargal J. Ryan
- Precision MedicineSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
- Flinders Health and Medical Research InstituteFlinders UniversityBedford ParkAustralia
| | - David J. Lynn
- Precision MedicineSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
- Flinders Health and Medical Research InstituteFlinders UniversityBedford ParkAustralia
| |
Collapse
|
18
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2025; 292:1228-1251. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
19
|
Moreno-Loaiza O, Soares VC, de Assumpção Souza M, Vera-Nuñez N, Rodriguez de Yurre Guirao A, da Silva TP, Pozes AB, Perticarrari L, Monteiro E, Albino MC, Silva SB, Dias SSG, Maciel L, Muzi-Filho H, de Oliveira DF, Braga BC, Diniz LP, Cruz MC, Barbosa SR, Castro-Junior AB, Conde L, Cabral-Castro MJ, de Souza OF, Tavares Pinheiro MV, Araújo de Oliveira Junior N, Rezende de Siqueira L, Cosenza RP, Munhoz da Fontoura C, Secco JCP, da Rocha Ferreira J, Silvestre de Sousa A, Albuquerque D, Luiz RR, Nicolau-Neto P, Pretti MA, Boroni M, Bonamino MH, Kasai-Brunswick TH, Mello DB, Gonçalves-Silva T, Ramos IP, Bozza FA, Madeiro JPDV, Pedrosa RC, Carneiro-Ramos MS, da Silva Martinho H, Bozza PT, Mesquita de Souza F, Victor Lucena da Silva G, Cunha TM, Uzelac I, Fenton F, Moll-Bernardes R, Paiva CN, Escobar AL, Medei E. IL-1β enhances susceptibility to atrial fibrillation in mice by acting through resident macrophages and promoting caspase-1 expression. NATURE CARDIOVASCULAR RESEARCH 2025; 4:312-329. [PMID: 39915330 PMCID: PMC11980030 DOI: 10.1038/s44161-025-00610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/09/2025] [Indexed: 03/19/2025]
Abstract
Atrial fibrillation (AF) is more prevalent in patients with elevated interleukin (IL)-1β levels. Here we show that daily administration of IL-1β for 15 days sensitizes mice to AF, leading to fibrosis, accumulation of β-pleated sheet proteins in the left atrium, and systemic inflammation, resembling the pathophysiological changes observed in patients with AF. IL-1β administration creates a positive feedback loop, dependent on the IL-1 receptor (IL-1R) activity in cardiac resident macrophages. This results in increased caspase-1 maturation in the left atrium and elevated Il1b and Casp1 transcription in atrial macrophages. IL-1β treatment accelerated action potential and Ca2+ restitution in the left atrium, leading to action-potential shortening. This, along with increased caspase-1 maturation and IL-1R signaling, was essential for inducing AF. Lack of IL-1R in macrophages, but not cardiomyocytes, prevented IL-1β-induced AF sensitivity. By depleting recruited macrophages or deleting IL-1R specifically in cardiac resident macrophages, we further demonstrate that IL-1β/IL-1R signaling in these resident macrophages is responsible for increased AF susceptibility. These findings offer insights into the therapeutic potential of targeting IL-1β/IL-1R signaling in patients with AF and emphasize the importance of recognizing different underlying causes in this patient group.
Collapse
MESH Headings
- Animals
- Atrial Fibrillation/enzymology
- Atrial Fibrillation/chemically induced
- Atrial Fibrillation/genetics
- Atrial Fibrillation/physiopathology
- Atrial Fibrillation/pathology
- Interleukin-1beta/metabolism
- Interleukin-1beta/toxicity
- Caspase 1/metabolism
- Caspase 1/genetics
- Macrophages/enzymology
- Macrophages/drug effects
- Macrophages/pathology
- Disease Models, Animal
- Mice, Inbred C57BL
- Male
- Mice, Knockout
- Signal Transduction
- Fibrosis
- Heart Atria/enzymology
- Heart Atria/physiopathology
- Heart Atria/pathology
- Heart Atria/drug effects
- Action Potentials
- Mice
- Receptors, Interleukin-1 Type I/genetics
- Receptors, Interleukin-1 Type I/metabolism
- Receptors, Interleukin-1 Type I/deficiency
- Receptors, Interleukin-1/metabolism
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/deficiency
- Myocytes, Cardiac/enzymology
- Disease Susceptibility
Collapse
Affiliation(s)
- Oscar Moreno-Loaiza
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Vinicius Cardoso Soares
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
- Program of Immunology and Inflammation, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Manuela de Assumpção Souza
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Narendra Vera-Nuñez
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Tatiana Pereira da Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Beatriz Pozes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Perticarrari
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Evelin Monteiro
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Clara Albino
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sophia Barros Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suelen Silva Gomes Dias
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Leonardo Maciel
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dahienne Ferreira de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Rio de Janeiro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Cabral Braga
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luan Pereira Diniz
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mario Costa Cruz
- Centro de Facilidades e Apoio à Pesquisa (CEFAP), Universidade de São Paulo (USP), São Paulo, Brazil
| | | | | | - Luciana Conde
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro Jorge Cabral-Castro
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Pathology Department, Fluminense Federal University, Niterói, Brazil
| | | | | | | | | | | | | | | | | | | | | | - Ronir Raggio Luiz
- Institute for Studies in Public Health-IESC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Clementino Fraga University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Nicolau-Neto
- Molecular Carcinogenesis Program, Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Marco Antonio Pretti
- Cell and Gene Therapy Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Mariana Boroni
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Martin Hernán Bonamino
- Molecular Carcinogenesis Program, Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Vice-Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Tais Hanae Kasai-Brunswick
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Bastos Mello
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Triciana Gonçalves-Silva
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isalira Peroba Ramos
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando A Bozza
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | - Roberto Coury Pedrosa
- Clementino Fraga University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Fernanda Mesquita de Souza
- Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Gabriel Victor Lucena da Silva
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Ribeirão Preto, Brazil
| | - Thiago M Cunha
- Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ilija Uzelac
- Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Claudia N Paiva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ariel L Escobar
- Department of Bioengineering, School of Engineering, University of California, Merced, CA, USA
| | - Emiliano Medei
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
Lehtonen H, Jokela H, Hofmann J, Tola L, Mehmood A, Ginhoux F, Becher B, Greter M, Yegutkin GG, Salmi M, Gerke H, Rantakari P. Early precursor-derived pituitary gland tissue-resident macrophages play a pivotal role in modulating hormonal balance. Cell Rep 2025; 44:115227. [PMID: 39841599 DOI: 10.1016/j.celrep.2024.115227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/26/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025] Open
Abstract
The pituitary gland is the central endocrine regulatory organ producing and releasing hormones that coordinate major body functions. The physical location of the pituitary gland at the base of the brain, though outside the protective blood-brain barrier, leads to an unexplored special immune environment. Using single-cell transcriptomics, fate mapping, and imaging, we characterize pituitary-resident macrophages (pitMØs), revealing their heterogeneity and spatial specialization. Microglia-like macrophages (ml-MACs) are enriched in the posterior pituitary, while other pitMØs in the anterior pituitary exhibit close interactions with hormone-secreting cells. Importantly, all pitMØs originate from early yolk sac progenitors and maintain themselves through self-renewal, independent of bone marrow-derived monocytes. Macrophage depletion experiments unveil the role of macrophages in regulating intrapituitary hormonal balance through extracellular ATP-mediated intercellular signaling. Altogether, these findings provide information on pituitary gland macrophages and advance our understanding of immune-endocrine system crosstalk.
Collapse
Affiliation(s)
- Henna Lehtonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Heli Jokela
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Julian Hofmann
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Lauriina Tola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Arfa Mehmood
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France; Translational Immunology Institute, SingHealth Duke-NUS, Singapore 169856, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland
| | - Gennady G Yegutkin
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | - Marko Salmi
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | - Heidi Gerke
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Pia Rantakari
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
21
|
Clain JA, Picard M, Rabezanahary H, André S, Boutrais S, Goma Matsetse E, Dewatines J, Dueymes Q, Thiboutot E, Racine G, Soundaramourty C, Mammano F, Corbeau P, Zghidi-Abouzid O, Estaquier J. Immune Alterations and Viral Reservoir Atlas in SIV-Infected Chinese Rhesus Macaques. Infect Dis Rep 2025; 17:12. [PMID: 39997464 PMCID: PMC11855486 DOI: 10.3390/idr17010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Over the last decades, our projects have been dedicated to clarifying immunopathological and virological events associated with Human Immunodeficiency Virus (HIV) infection. METHODS By using non-human primate models of pathogenic and non-pathogenic lentiviral infections, we aimed at identifying the cells and tissues in which the virus persists, despite antiretroviral therapy (ART). Indeed, the eradication of viral reservoirs is a major challenge for HIV cure. RESULTS We present a series of results performed in rhesus macaques of Chinese origin deciphering the virological and immunological events associated with ART that can be of interest for people living with HIV. CONCLUSIONS This model could be of interest for understanding in whole body the clinical alteration that persist despite ART.
Collapse
Affiliation(s)
- Julien A. Clain
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Morgane Picard
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Henintsoa Rabezanahary
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Sonia André
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Steven Boutrais
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Ella Goma Matsetse
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Juliette Dewatines
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Quentin Dueymes
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Elise Thiboutot
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Gina Racine
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Calaiselvy Soundaramourty
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Fabrizio Mammano
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
- Institut national de la santé et de la recherche médicale (Inserm) U1259 MAVIVHe, Université de Tours, 37032 Tours, France
| | - Pierre Corbeau
- Institut de Génétique Humaine, CNRS-Université de Montpellier UMR9002, 34094 Montpellier, France;
| | - Ouafa Zghidi-Abouzid
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Jérôme Estaquier
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| |
Collapse
|
22
|
Tiwari SK, Wong WJ, Moreira M, Pasqualini C, Ginhoux F. Induced pluripotent stem cell-derived macrophages as a platform for modelling human disease. Nat Rev Immunol 2025; 25:108-124. [PMID: 39333753 DOI: 10.1038/s41577-024-01081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 09/30/2024]
Abstract
Macrophages are innate immune cells that are present in essentially all tissues, where they have vital roles in tissue development, homeostasis and pathogenesis. The importance of macrophages in tissue function is reflected by their association with various human diseases, and studying macrophage functions in both homeostasis and pathological tissue settings is a promising avenue for new targeted therapies that will improve human health. The ability to generate macrophages from induced pluripotent stem (iPS) cells has revolutionized macrophage biology, with the generation of iPS cell-derived macrophages (iMacs) providing unlimited access to genotype-specific cells that can be used to model various human diseases involving macrophage dysregulation. Such disease modelling is achieved by generating iPS cells from patient-derived cells carrying disease-related mutations or by introducing mutations into iPS cells from healthy donors using CRISPR-Cas9 technology. These iMacs that carry disease-related mutations can be used to study the aetiology of the particular disease in vitro. To achieve more physiological relevance, iMacs can be co-cultured in 2D systems with iPS cell-derived cells or in 3D systems with iPS cell-derived organoids. Here, we discuss the studies that have attempted to model various human diseases using iMacs, highlighting how these have advanced our knowledge about the role of macrophages in health and disease.
Collapse
Affiliation(s)
- Satish Kumar Tiwari
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei Jie Wong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Marco Moreira
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Claudia Pasqualini
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
23
|
Hu Y, Schnabl B, Stärkel P. Origin, Function, and Implications of Intestinal and Hepatic Macrophages in the Pathogenesis of Alcohol-Associated Liver Disease. Cells 2025; 14:207. [PMID: 39936998 PMCID: PMC11816606 DOI: 10.3390/cells14030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
Macrophages are members of the human innate immune system, and the majority reside in the liver. In recent years, they have been recognized as essential players in the maintenance of liver and intestinal homeostasis as well as key guardians of their respective immune systems, and they are increasingly being recognized as such. Paradoxically, they are also likely involved in chronic pathologies of the gastrointestinal tract and potentially in the alteration of the gut-liver axis in alcohol use disorder (AUD) and alcohol-associated liver disease (ALD). To date, the causal relationship between macrophages, the pathogenesis of ALD, and the immune dysregulation of the gut remains unclear. In this review, we will discuss our current understanding of the heterogeneity of intestinal and hepatic macrophages, their ontogeny, the potential factors that regulate their origin, and the evidence of how they are associated with the manifestation of chronic inflammation. We will also illustrate how the micro-environment of the intestine shapes the phenotypes and functionality of the macrophage compartment in both the intestines and liver and how they change during chronic alcohol abuse. Finally, we highlight the obstacles to current research and the prospects for this field.
Collapse
Affiliation(s)
- Yifan Hu
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA;
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Peter Stärkel
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
24
|
Liu KC, Grimsrud AO, Suarez MF, Schuman D, De Ieso ML, Kuhn M, Kelly RA, Mathew R, Kalnitsky J, Mack M, Ginhoux F, Bupp-Chickering V, Balasubramanian R, John SWM, Stamer WD, Saban DR. Resident Tissue Macrophages Govern Intraocular Pressure Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.25.634888. [PMID: 39975071 PMCID: PMC11838227 DOI: 10.1101/2025.01.25.634888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Intraocular pressure is tightly regulated by the conventional outflow tissues, preventing ocular hypertension that leads to neurodegeneration of the optic nerve, or glaucoma. Although macrophages reside throughout the conventional outflow tract, their role in regulating intraocular pressure remains unknown. Using macrophage lineage tracing approaches, we uncovered a dual macrophage ontogeny with distinct spatial organizations across the mouse lifespan. Long-lived, resident tissue macrophages concentrated in the trabecular meshwork and Schlemm's canal, whereas short-lived monocyte-derived macrophages, instead, were abundant around distal vessels. Specific depletion of resident tissue macrophages triggered elevated intraocular pressure and outflow resistance, linked to aberrant extracellular matrix turnover in the resistance-generating tissues of the trabecular meshwork. This dysregulated physiology and tissue remodeling were not observed when we depleted monocyte-derived macrophages. Results show ontogeny and tissue-specific macrophage function within the outflow tract, uncovering the integral homeostatic role of resident tissue macrophages in resistance-generating tissues whose dysfunction is responsible for glaucoma.
Collapse
|
25
|
Frenis K, Badalamenti B, Mamigonian O, Weng C, Wang D, Fierstein S, Côté P, Khong H, Li H, Lummertz da Rocha E, Sankaran VG, Rowe RG. Path of differentiation defines human macrophage identity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634694. [PMID: 39896569 PMCID: PMC11785145 DOI: 10.1101/2025.01.24.634694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Macrophages play central roles in immunity, wound healing, and homeostasis - a functional diversity that is underpinned by varying developmental origins. The impact of ontogeny on properties of human macrophages is inadequately understood. We demonstrate that definitive human fetal liver (HFL) hematopoietic stem cells (HSCs) possess two divergent paths of macrophage specification that lead to distinct identities. The monocyte-dependent pathway exists in both prenatal and postnatal hematopoiesis and generates macrophages with adult-like responses properties. We now uncover a fetal-specific pathway of expedited differentiation that generates tissue resident-like macrophages (TRMs) that retain HSC-like self-renewal programs governed by the aryl hydrocarbon receptor (AHR). We show that AHR antagonism promotes TRM expansion and mitigates inflammation in models of atopic dermatitis (AD). Overall, we directly connect path of differentiation with functional properties of macrophages and identify an approach to promote selective expansion of TRMs with direct relevance to inflammation and diseases of macrophage dysfunction.
Collapse
|
26
|
Nakamura A, Matsumoto M. Role of polyamines in intestinal mucosal barrier function. Semin Immunopathol 2025; 47:9. [PMID: 39836273 PMCID: PMC11750915 DOI: 10.1007/s00281-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
The intestinal epithelium is a rapidly self-renewing tissue; the rapid turnover prevents the invasion of pathogens and harmful components from the intestinal lumen, preventing inflammation and infectious diseases. Intestinal epithelial barrier function depends on the epithelial cell proliferation and junctions, as well as the state of the immune system in the lamina propria. Polyamines, particularly putrescine, spermidine, and spermine, are essential for many cell functions and play a crucial role in mammalian cellular homeostasis, such as that of cell growth, proliferation, differentiation, and maintenance, through multiple biological processes, including translation, transcription, and autophagy. Although the vital role of polyamines in normal intestinal epithelial cell growth and barrier function has been known since the 1980s, recent studies have provided new insights into this topic at the molecular level, such as eukaryotic initiation factor-5A hypusination and autophagy, with rapid advances in polyamine biology in normal cells using biological technologies. This review summarizes recent advances in our understanding of the role of polyamines in regulating normal, non-cancerous, intestinal epithelial barrier function, with a particular focus on intestinal epithelial renewal, cell junctions, and immune cell differentiation in the lamina propria.
Collapse
Affiliation(s)
- Atsuo Nakamura
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan
| | - Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan.
| |
Collapse
|
27
|
Ham N, Park M, Bae YA, Yeo EJ, Jung Y. Differential pathological changes in colon microenvironments in acute and chronic mouse models of inflammatory bowel disease. Anim Cells Syst (Seoul) 2025; 29:100-112. [PMID: 39839656 PMCID: PMC11748878 DOI: 10.1080/19768354.2025.2451408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/09/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025] Open
Abstract
Inflammatory bowel disease is a chronic condition characterized by inflammation of the gastrointestinal tract, resulting from an abnormal immune response to normal stimuli, such as food and intestinal flora. Since the etiology of this disease remains largely unknown, murine models induced by the consumption of dextran-sodium sulfate serve as a pivotal tool for studying colon inflammation. In this study, we employed both acute and chronic colitis mouse models induced by varying durations of dextran-sodium sulfate consumption to investigate the pathological and immunologic characteristics throughout the disease course. During the acute phase, activated innate inflammation marked by M1 macrophage infiltration was prominent. In contrast, the chronic phase was characterized by tissue remodeling, with a significant increase in M2 macrophages and lymphocytes. RNA-sequencing revealed genetic changes in acute and chronic colitis, marked by the maintenance of genomic integrity in the acute phase and extracellular matrix dynamics in the chronic phase. These phase-specific alterations reflect the multifaceted physiological processes involved in the initiation and progression of inflammation in the large intestine, underscoring the necessity for distinct experimental approaches for each phase. The findings demonstrate that the factors shaping the large intestinal immune microenvironment change specifically during the acute and chronic phases of experimental inflammatory bowel disease, highlighting the importance of developing therapeutic strategies that align with the disease course.
Collapse
Affiliation(s)
- NaYeon Ham
- Department of Microbiology, Graduate School of Medicine, Gachon University, Incheon, South Korea
| | - Minji Park
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, South Korea
| | - Young-An Bae
- Department of Microbiology, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute Incheon, Gachon University, Incheon, South Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute Incheon, Gachon University, Incheon, South Korea
| | - YunJae Jung
- Department of Microbiology, Graduate School of Medicine, Gachon University, Incheon, South Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, South Korea
- Department of Microbiology, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute Incheon, Gachon University, Incheon, South Korea
| |
Collapse
|
28
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
29
|
Dong R, Ji Z, Wang M, Ma G. Role of macrophages in vascular calcification: From the perspective of homeostasis. Int Immunopharmacol 2025; 144:113635. [PMID: 39566391 DOI: 10.1016/j.intimp.2024.113635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Vascular calcification (VC) is a crucial risk factor for the high morbidity and mortality associated with cardiovascular and cerebrovascular diseases. With the global population aging, the incidence of VC is escalating annually. However, due to its silent clinical process, VC often results in irreversible clinical outcomes. Inflammation is a core element in the VC process, and macrophages are the major inflammatory cells. Due to their diverse origins, microenvironments, and polarization states, macrophages exhibit significant heterogeneity, exerting strong effects on the occurrence, development, and even the regression of VC. In this review, we summarize the origin, distribution, classification, and surface markers of macrophages. Simultaneously, we explore the mechanisms by which macrophages maintain homeostasis or regulate inflammation, including the macrophage-mediated regulation of VC through the release of inflammatory factors, osteogenic genes, extracellular vesicles, and alterations in efferocytosis. Finally, we discuss research targeting inflammation and macrophages to develop novel therapeutic regimens for preventing and treating VC.
Collapse
Affiliation(s)
- Rong Dong
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China; Department of Cardiology, Yancheng No. 1 People's Hospital, No. 66 South Renmin Road, Yancheng 224000, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Mi Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China.
| |
Collapse
|
30
|
Chiaro TR, Greenewood M, Bauer KM, Ost KS, Stephen-Victor E, Murphy M, Weis AM, Nelson MC, Hill JH, Bell R, Voth W, Jackson T, Klag KA, O'Connell RM, Zac Stephens W, Round JL. Clec12a controls colitis by tempering inflammation and restricting expansion of specific commensals. Cell Host Microbe 2025; 33:89-103.e7. [PMID: 39788099 PMCID: PMC11824846 DOI: 10.1016/j.chom.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 11/02/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Microbiota composition regulates colitis severity, yet the innate immune mechanisms that control commensal communities and prevent disease remain unclear. We show that the innate immune receptor, Clec12a, impacts colitis severity by regulating microbiota composition. Transplantation of microbiota from a Clec12a-/- animal is sufficient to worsen colitis in wild-type mice. Clec12a-/- mice have expanded Faecalibaculum rodentium, and treatment with F. rodentium similarly exacerbates disease. However, Clec12a-/- animals are resistant to colitis development when rederived into an 11-member community, underscoring the role of specific species. Colitis in Clec12a-/- mice is dependent on monocytes, and cytokine and sequencing analysis in Clec12a-/- macrophages and serum shows enhanced inflammation with a reduction in phagocytic genes. F. rodentium specifically binds to Clec12a, and Clec12a-/--deficient macrophages are impaired in their ability to phagocytose F. rodentium. Thus, Clec12a contributes to an innate-immune-surveillance mechanism that controls the expansion of potentially harmful commensals while limiting inflammation.
Collapse
Affiliation(s)
- Tyson R Chiaro
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Morgan Greenewood
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Kaylyn M Bauer
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Kyla S Ost
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Emmanuel Stephen-Victor
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Michaela Murphy
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Allison M Weis
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Morgan C Nelson
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Jennifer H Hill
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Rickesha Bell
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Warren Voth
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Taylor Jackson
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Kendra A Klag
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Ryan M O'Connell
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - W Zac Stephens
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - June L Round
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA.
| |
Collapse
|
31
|
Carter-Cusack D, Huang S, Keshvari S, Patkar O, Sehgal A, Allavena R, Byrne RAJ, Morgan BP, Bush SJ, Summers KM, Irvine KM, Hume DA. Wild-type bone marrow cells repopulate tissue resident macrophages and reverse the impacts of homozygous CSF1R mutation. PLoS Genet 2025; 21:e1011525. [PMID: 39869647 PMCID: PMC11785368 DOI: 10.1371/journal.pgen.1011525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/31/2025] [Accepted: 12/04/2024] [Indexed: 01/29/2025] Open
Abstract
Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival. To dissect the phenotype and function of macrophages in postnatal development, we generated transcriptomic profiles of all major organs of wild-type and Csf1rko rats at weaning and in selected organs following rescue by BMT. The transcriptomic profiles revealed subtle effects of macrophage deficiency on development of all major organs. Network analysis revealed a common signature of CSF1R-dependent resident tissue macrophages that includes the components of complement C1Q (C1qa/b/c genes). Circulating C1Q was almost undetectable in Csf1rko rats and rapidly restored to normal levels following BMT. Tissue-specific macrophage signatures were also identified, notably including sinus macrophage populations in the lymph nodes. Their loss in Csf1rko rats was confirmed by immunohistochemical localisation of CD209B (SIGNR1). By 6-12 weeks, Csf1rko rats succumb to emphysema-like pathology associated with the selective loss of interstitial macrophages and granulocytosis. This pathology was reversed by BMT. Along with physiological rescue, BMT precisely regenerated the abundance and expression profiles of resident macrophages. The exception was the brain, where BM-derived microglia-like cells had a distinct expression profile compared to resident microglia. In addition, the transferred BM failed to restore blood monocyte or CSF1R-positive bone marrow progenitors. These studies provide a model for the pathology and treatment of CSF1R mutations in humans and the innate immune deficiency associated with prematurity.
Collapse
Affiliation(s)
- Dylan Carter-Cusack
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Stephen Huang
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Omkar Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Rachel Allavena
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Robert A. J. Byrne
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - B. Paul Morgan
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Stephen J. Bush
- School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Katharine M. Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| |
Collapse
|
32
|
Tominaga K, Kechele DO, Sanchez JG, Vales S, Jurickova I, Roman L, Asai A, Enriquez JR, McCauley HA, Kishimoto K, Iwasawa K, Singh A, Horio Y, Múnera JO, Takebe T, Zorn AM, Helmrath MA, Denson LA, Wells JM. Deriving Human Intestinal Organoids with Functional Tissue-Resident Macrophages All From Pluripotent Stem Cells. Cell Mol Gastroenterol Hepatol 2024; 19:101444. [PMID: 39701210 PMCID: PMC11847122 DOI: 10.1016/j.jcmgh.2024.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND & AIMS Organs of the gastrointestinal tract contain tissue-resident immune cells that function during tissue development, homeostasis, and disease. However, most published human organoid model systems lack resident immune cells, thus limiting their potential as disease avatars. For example, human intestinal organoids (HIOs) derived from pluripotent stem cells contain epithelial and various mesenchymal cell types but lack immune cells. In this study, we aimed to develop an HIO model with functional tissue-resident macrophages. METHODS HIOs and macrophages were generated separately through the directed differentiation of human pluripotent stem cells and combined in vitro. Following 2 weeks of coculture, the organoids were used for transcriptional profiling, functional analysis of macrophages, or transplanted into immunocompromised mice and matured in vivo for an additional 10-12 weeks. RESULTS Macrophages were incorporated into developing HIOs and persisted for 2 weeks in vitro HIOs and for at least 12 weeks in HIOs in vivo. These cocultured macrophages had a transcriptional signature that resembled those in the human fetal intestine, indicating that they were acquiring the features of tissue-resident macrophages. HIO macrophages could phagocytose bacteria and produced inflammatory cytokines in response to proinflammatory signals, such as lipopolysaccharide, which could be reversed with interleukin-10. CONCLUSIONS We generated an HIO system containing functional tissue-resident macrophages for an extended period. This new organoid system can be used to investigate the molecular mechanisms involved in inflammatory bowel disease.
Collapse
Affiliation(s)
- Kentaro Tominaga
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Daniel O Kechele
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - J Guillermo Sanchez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Simon Vales
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ingrid Jurickova
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lizza Roman
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Akihiro Asai
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jacob R Enriquez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Heather A McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Keishi Kishimoto
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kentaro Iwasawa
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Akaljot Singh
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yuko Horio
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jorge O Múnera
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Takanori Takebe
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael A Helmrath
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lee A Denson
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
33
|
Xu Z, Zhu J, Ma Z, Zhen D, Gao Z. Combined Bulk and Single-Cell Transcriptomic Analysis to Reveal the Potential Influences of Intestinal Inflammatory Disease on Multiple Sclerosis. Inflammation 2024:10.1007/s10753-024-02195-z. [PMID: 39680254 DOI: 10.1007/s10753-024-02195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Multiple sclerosis (MS) and inflammatory bowel disease (IBD) are both autoimmune disorders caused by dysregulated immune responses. Still, there is a growing awareness of the comorbidity between MS and IBD. However, the shared pathophysiological mechanisms between these two diseases are still lacking. RNA sequencing datasets (GSE126124, GSE9686, GSE36807, GSE21942) were analyzed to identify the shared differential expressed genes (DEGs) for IBD and experimental allergic encephalomyelitis (EAE). Other datasets (GSE17048, GSE75214, and GSE16879) were downloaded for further verification and analysis. Shared pathways and regulatory networks were explored based on these DEGs. The single-cell transcriptome of central nervous system (CNS) immune cells sequenced from EAE brains and the public datasets of IBD (PRJCA003980) were analyzed for the immune characteristics of the shared DEGs. Mass cytometry by time-of-flight (CyTOF) of peripheral blood mononuclear cells (PBMCs) was performed for the systematic immune response in the EAE model. Machine learning algorithms were also used to identify the diagnostic biomarkers of MS. We identified 74 common DEGs from the selected RNA sequencing datasets, and single-cell RNA data of the intestinal tissues of IBD patients showed that 56 of 74 DEGs were highly enriched in IL1B+ macrophages. These 56 DEGs, defined as inflammation-related DEGs (IRGs), were also highly expressed in pro-inflammatory macrophages of EAE mice and MS patients. The abundance of systematic CD14+ monocytes was validated by CyTOF data. These IRGs were highly enriched in immune response, NOD-like receptor signaling pathway, IL-18 signaling pathway, and other related pathways. In addition, 'AddModuleScore_UCell' analysis further validated that these IRGs (such as IL1B, S100A8, and other inflammatory factors) are highly expressed mainly in pro-inflammatory macrophages, which play an essential role in pro-inflammatory activation in IBD and multiple sclerosis, such as IL-17 signaling pathway, NF-kappa B signaling pathway, and TNF signaling pathway. Finally, suppressors of cytokine signaling 3(SOCS3) and formyl peptide receptor 2(FPR2) were identified as potential biomarkers by machine learning. Two genes were highly expressed in pro-inflammatory macrophages of IBD and MS disease compared to control, and other datasets and experiments further revealed that SOCS3 and FPR2 were highly expressed in IBD and EAE samples. These shared IRGs, which encode inflammatory cytokines, exhibit high expression levels in inflammatory macrophages in IBD and may play a significant role in the inflammatory cytokine storm in MS patients. Two potential biomarkers, SOCS3 and FPR2, were screened out with great diagnostic value for MS and IBD.
Collapse
Affiliation(s)
- Zhu Xu
- Neurological Department, Affiliated Hospital of Guizhou Medical University, Guizhou, China.
- Guizhou Medical University, Guizhou, China.
| | - Junyu Zhu
- Neurological Department, Affiliated Hospital of Guizhou Medical University, Guizhou, China
- Guizhou Medical University, Guizhou, China
| | - Zhuo Ma
- Neurological Department, Affiliated Hospital of Guizhou Medical University, Guizhou, China
- Guizhou Medical University, Guizhou, China
| | - Dan Zhen
- Neurological Department, Affiliated Hospital of Guizhou Medical University, Guizhou, China
- Guizhou Medical University, Guizhou, China
| | - Zindan Gao
- Neurological Department, Affiliated Hospital of Guizhou Medical University, Guizhou, China
- Guizhou Medical University, Guizhou, China
| |
Collapse
|
34
|
Xiao Q, Luo L, Zhu X, Yan Y, Li S, Chen L, Wang X, Zhang J, Liu D, Liu R, Zhong Y. Formononetin alleviates ulcerative colitis via reshaping the balance of M1/M2 macrophage polarization in a gut microbiota-dependent manner. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156153. [PMID: 39423480 DOI: 10.1016/j.phymed.2024.156153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/18/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Ulcerative colitis (UC), a type of inflammatory bowel disease, presents substantial challenges in clinical treatment due to the limitations of current medications. Formononetin (FN), a naturally compound with widespread availability, exhibits anti-inflammatory, antioxidant, and immunomodulatory properties. PURPOSE This study aimed to investigate the efficacy of FN against UC and its potential regulatory mechanism. METHODS Here, dextran sulfate sodium (DSS) was employed to replicate experimental colitis in mice with concomitant FN treatment. The distribution and localisation of CD68 and F4/80 macrophages in colonic tissues were visualized by immunofluorescence, their chemokine and inflammatory cytokine concentrations were determined by ELISA, and macrophages and M1/M2 subpopulations were determined by flow cytometry. Additionally, 16 s rRNA and LC-MS techniques were used to detect the colonic intestinal microbiota and metabolite profiles, respectively. Correlation analyses was performed to clarify the interactions between differential bacteria, metabolites and M1/M2 macrophages, and pseudo sterile mice were constructed by depletion of gut flora with quadruple antibiotics, followed by faecal microbial transplantation to evaluate its effects on colitis and M1/M2 macrophage polarisation. RESULTS FN dose-dependently alleviated clinical symptoms and inflammatory injury in colonic tissues of colitis mice, with its high-dose efficacy comparable to that of 5-ASA. Concurrently, FN not only inhibited inflammatory infiltration of macrophages and their M1/M2 polarisation balance in colitis mice, but also improved the composition of colonic microbiota and metabolite profiles. However, FN lost its protective effects against DSS-induced colitis and failed to restore the equilibrium of M1/M2 macrophage differentiation following intestinal flora depletion through quadruple antibiotic treatment. Importantly, fecal microbiota transplantation from FN-treated mice restored FN's protective effects against DSS-induced colitis and reestablished its regulatory role in M1/M2 macrophage polarization. CONCLUSION Collectively, FN ameliorated UC through modulating the balance of M1/M2 macrophage polarization in a gut microbiota-dependent manner.
Collapse
Affiliation(s)
- Qiuping Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Key Laboratory of Effective Material Basis of TCM, Jiangxi Province, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Lin Luo
- College of Acupuncture and Tuina, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xiyan Zhu
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Yuhao Yan
- College of Acupuncture and Tuina, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Shanshan Li
- Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Liling Chen
- Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xiaomin Wang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jie Zhang
- Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Duanyong Liu
- Jiangxi Provincial Engineering Research Center of Development and Evaluation of TCM classic prescriptions, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Nursing, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Key Laboratory of Prevention and Treatment of Immunological and Metabolic Diseases Related to Prescription and Syndrome, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Ronghua Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Key Laboratory of Effective Material Basis of TCM, Jiangxi Province, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Youbao Zhong
- College of Acupuncture and Tuina, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Key Laboratory of Prevention and Treatment of Immunological and Metabolic Diseases Related to Prescription and Syndrome, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| |
Collapse
|
35
|
Gallerand A, Han J, Ivanov S, Randolph GJ. Mouse and human macrophages and their roles in cardiovascular health and disease. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1424-1437. [PMID: 39604762 DOI: 10.1038/s44161-024-00580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/11/2024] [Indexed: 11/29/2024]
Abstract
The past 15 years have witnessed a leap in understanding the life cycle, gene expression profiles, origins and functions of mouse macrophages in many tissues, including macrophages of the artery wall and heart that have critical roles in cardiovascular health. Here, we review the phenotypical and functional diversity of macrophage populations in multiple organs and discuss the roles that proliferation, survival, and recruitment and replenishment from monocytes have in maintaining macrophages in homeostasis and inflammatory states such as atherosclerosis and myocardial infarction. We also introduce emerging data that better characterize the life cycle and phenotypic profiles of human macrophages. We discuss the similarities and differences between murine and human macrophages, raising the possibility that tissue-resident macrophages in humans may rely more on bone marrow-derived monocytes than in mouse.
Collapse
Affiliation(s)
- Alexandre Gallerand
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jichang Han
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
36
|
Ge Y, Zadeh M, Sharma C, Lin YD, Soshnev AA, Mohamadzadeh M. Controlling functional homeostasis of ileal resident macrophages by vitamin B12 during steady state and Salmonella infection in mice. Mucosal Immunol 2024; 17:1314-1325. [PMID: 39255854 DOI: 10.1016/j.mucimm.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
Dietary micronutrients, particularly vitamin B12 (VB12), profoundly influence the physiological maintenance and function of intestinal cells. However, it is still unclear whether VB12 modulates the transcriptional and metabolic programming of ileal macrophages (iMacs), thereby contributing to intestinal homeostasis. Using multiomic approaches, we demonstrated that VB12 primarily supports the cell cycle activity and mitochondrial metabolism of iMacs, resulting in increased cell frequency compared to VB12 deficiency. VB12 also retained the ability to promote maintenance and metabolic regulation of iMacs during intestinal infection with Salmonella Typhimurium (STm). On the contrary, depletion of iMacs by inhibiting CSF1R signaling significantly increased host susceptibility to STm and prevented VB12-mediated pathogen reduction. These results thus suggest that regulation of VB12-dependent iMacs critically controls STm expansion, which may be of new relevance to advance our understanding of this vitamin and to strategically formulate sustainable therapeutic nutritional regimens that improve human gut health.
Collapse
Affiliation(s)
- Yong Ge
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA.
| | - Mojgan Zadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Cheshta Sharma
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Yang-Ding Lin
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Alexey A Soshnev
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, TX, USA
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA; South Texas Veterans Health Care System (STVHCS), San Antonio, TX, USA.
| |
Collapse
|
37
|
Biscu F, Zouzaf A, Cicia D, Pridans C, Matteoli G. Innate immunity champions: The diverse functions of macrophages. Eur J Immunol 2024; 54:e2451139. [PMID: 39308210 DOI: 10.1002/eji.202451139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 12/11/2024]
Abstract
Macrophages are instrumental in maintaining tissue homeostasis, modulating inflammation, and driving regeneration. The advent of omics techniques has led to the identification of numerous tissue-specific macrophage subtypes, thereby introducing the concept of the "macrophage niche". This paradigm underscores the ability of macrophages to adapt their functions based on environmental cues, such as tissue-specific signals. This adaptability is closely linked to their metabolic states, which are crucial for their function and role in health and disease. Macrophage metabolism is central to their ability to switch between proinflammatory and anti-inflammatory states. In this regard, environmental factors, including the extracellular matrix, cellular interactions, and microbial metabolites, profoundly influence macrophage behavior. Moreover, diet and gut microbiota significantly impact macrophage function, with nutrients and microbial metabolites influencing their activity and contributing to conditions like inflammatory bowel disease. Targeting specific macrophage functions and their metabolic processes is leading to the development of novel treatments for a range of chronic inflammatory conditions. The exploration of macrophage biology enriches our understanding of immune regulation and holds the promise of innovative approaches to managing diseases marked by inflammation and immune dysfunction, offering a frontier for scientific and clinical advancement.
Collapse
Affiliation(s)
- Francesca Biscu
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Anissa Zouzaf
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Donatella Cicia
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Clare Pridans
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Gianluca Matteoli
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Liang C, Wei S, Ji Y, Lin J, Jiao W, Li Z, Yan F, Jing X. The role of enteric nervous system and GDNF in depression: Conversation between the brain and the gut. Neurosci Biobehav Rev 2024; 167:105931. [PMID: 39447778 DOI: 10.1016/j.neubiorev.2024.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Depression is a debilitating mental disorder that causes a persistent feeling of sadness and loss of interest. Approximately 280 million individuals worldwide suffer from depression by 2023. Despite the heavy medical and social burden imposed by depression, pathophysiology remains incompletely understood. Emerging evidence indicates various bidirectional interplay enable communication between the gut and brain. These interplays provide a link between intestinal and central nervous system as well as feedback from cortical and sensory centers to enteric activities, which also influences physiology and behavior in depression. This review aims to overview the significant role of the enteric nervous system (ENS) in the pathophysiology of depression and gut-brain axis's contribution to depressive disorders. Additionally, we explore the alterations in enteric glia cells (EGCs) and glial cell line-derived neurotrophic factor (GDNF) in depression and their involvement in neuronal support, intestinal homeostasis maintains and immune response activation. Modulating ENS function, EGCs and GDNF level could serve as novel strategies for future antidepressant therapy.
Collapse
Affiliation(s)
- Chuoyi Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Sijia Wei
- School of Nursing, Jinan University, Guangzhou, China
| | - Yelin Ji
- School of Nursing, Jinan University, Guangzhou, China
| | - Jiayi Lin
- School of Nursing, Jinan University, Guangzhou, China
| | - Wenli Jiao
- School of Nursing, Jinan University, Guangzhou, China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, China.
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
39
|
Yue N, Hu P, Tian C, Kong C, Zhao H, Zhang Y, Yao J, Wei Y, Li D, Wang L. Dissecting Innate and Adaptive Immunity in Inflammatory Bowel Disease: Immune Compartmentalization, Microbiota Crosstalk, and Emerging Therapies. J Inflamm Res 2024; 17:9987-10014. [PMID: 39634289 PMCID: PMC11615095 DOI: 10.2147/jir.s492079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
The intestinal immune system is the largest immune organ in the human body. Excessive immune response to intestinal cavity induced by harmful stimuli including pathogens, foreign substances and food antigens is an important cause of inflammatory diseases such as celiac disease and inflammatory bowel disease (IBD). Although great progress has been made in the treatment of IBD by some immune-related biotherapeutic products, yet a considerable proportion of IBD patients remain unresponsive or immune tolerant to immunotherapeutic strategy. Therefore, it is necessary to further understand the mechanism of immune cell populations involved in enteritis, including dendritic cells, macrophages and natural lymphocytes, in the steady-state immune tolerance of IBD, in order to find effective IBD therapy. In this review, we discussed the important role of innate and adaptive immunity in the development of IBD. And the relationship between intestinal immune system disorders and microflora crosstalk were also presented. We also focus on the new findings in the field of T cell immunity, which might identify novel cytokines, chemokines or anti-cytokine antibodies as new approaches for the treatment of IBD.
Collapse
Affiliation(s)
- Ningning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Peng Hu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Chengmei Tian
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Chen Kong
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Hailan Zhao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Yuqi Wei
- Department of Rehabilitation, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Defeng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| | - Lisheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, People’s Republic of China
| |
Collapse
|
40
|
Raquer-McKay HM, Maqueda-Alfaro RA, Saravanan S, Arroyo Hornero R, Clausen BE, Gottfried-Blackmore A, Idoyaga J. Monocytes give rise to Langerhans cells that preferentially migrate to lymph nodes at steady state. Proc Natl Acad Sci U S A 2024; 121:e2404927121. [PMID: 39541348 PMCID: PMC11588065 DOI: 10.1073/pnas.2404927121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/21/2024] [Indexed: 11/16/2024] Open
Abstract
Current evidence suggests that ontogeny may account for the functional heterogeneity of some tissue macrophages, but not others. Here, we asked whether developmental origin drives different functions of skin Langerhans cells (LCs), an embryo-derived mononuclear phagocyte with features of both tissue macrophages and dendritic cells. Using time-course analyses, bone marrow chimeras, and fate tracing models, we found that the complete elimination of embryo-derived LCs at steady state results in their repopulation from circulating monocytes. However, monocyte-derived LCs inefficiently replenished the epidermal niche. Instead, these cells preferentially migrated to skin-draining lymph nodes. Mechanistically, we show that the enhanced migratory capability of monocyte-derived LCs is associated with higher expression of CD207/Langerin, a C-type lectin involved in the capture of skin microbes. Our data demonstrate that ontogeny plays a role in the migratory behavior of epidermal LCs.
Collapse
Affiliation(s)
- Hayley M. Raquer-McKay
- Microbiology and Immunology Department, Stanford University School of Medicine, Stanford, CA94305
- Immunology Program, Stanford University School of Medicine, Stanford, CA94304
| | - Raul A. Maqueda-Alfaro
- Pharmacology Department, School of Medicine, University of California San Diego, La Jolla, CA92093
| | - Sanjana Saravanan
- Microbiology and Immunology Department, Stanford University School of Medicine, Stanford, CA94305
- Immunology Program, Stanford University School of Medicine, Stanford, CA94304
| | - Rebeca Arroyo Hornero
- Microbiology and Immunology Department, Stanford University School of Medicine, Stanford, CA94305
- Immunology Program, Stanford University School of Medicine, Stanford, CA94304
| | - Björn E. Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Research Center for Immunotherapy (Forschungs-Zentrum für Immuntherapie), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Andres Gottfried-Blackmore
- Pharmacology Department, School of Medicine, University of California San Diego, La Jolla, CA92093
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, CA92093
- Veterans Affairs San Diego Healthcare System, Gastroenterology Section, La Jolla, CA92161
| | - Juliana Idoyaga
- Microbiology and Immunology Department, Stanford University School of Medicine, Stanford, CA94305
- Immunology Program, Stanford University School of Medicine, Stanford, CA94304
- Pharmacology Department, School of Medicine, University of California San Diego, La Jolla, CA92093
- Molecular Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
41
|
Sun M, Li Q, Zou Z, Liu J, Gu Z, Li L. The mechanisms behind heatstroke-induced intestinal damage. Cell Death Discov 2024; 10:455. [PMID: 39468029 PMCID: PMC11519599 DOI: 10.1038/s41420-024-02210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
With the frequent occurrence of heatwaves, heatstroke (HS) is expected to become one of the main causes of global death. Being a multi-organized disease, HS can result in circulatory disturbance and systemic inflammatory response, with the gastrointestinal tract being one of the primary organs affected. Intestinal damage plays an initiating and promoting role in HS. Multiple pathways result in damage to the integrity of the intestinal epithelial barrier due to heat stress and hypoxia brought on by blood distribution. This usually leads to intestinal leakage as well as the infiltration and metastasis of toxins and pathogenic bacteria in the intestinal cavity, which will eventually cause inflammation in the whole body. A large number of studies have shown that intestinal damage after HS involves the body's stress response, disruption of oxidative balance, disorder of tight junction proteins, massive cell death, and microbial imbalance. Based on these damage mechanisms, protecting the intestinal barrier and regulating the body's inflammatory and immune responses are effective treatment strategies. To better understand the pathophysiology of this complex process, this review aims to outline the potential processes and possible therapeutic strategies for intestinal damage after HS in recent years.
Collapse
Affiliation(s)
- Minshu Sun
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Li
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhimin Zou
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Liu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengtao Gu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Li Li
- Department of Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
42
|
Barreto-Duran E, Synowiec A, Szczepański A, Gałuszka-Bulaga A, Węglarczyk K, Baj-Krzyworzeka M, Siedlar M, Bochenek M, Dufva M, Dogan AA, Lenart M, Pyrc K. Development of an intestinal mucosa ex vivo co-culture model to study viral infections. J Virol 2024; 98:e0098724. [PMID: 39212448 PMCID: PMC11495016 DOI: 10.1128/jvi.00987-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Studying viral infections necessitates well-designed cell culture models to deepen our understanding of diseases and develop effective treatments. In this study, we present a readily available ex vivo 3D co-culture model replicating the human intestinal mucosa. The model combines fully differentiated human intestinal epithelium (HIE) with human monocyte-derived macrophages (hMDMs) and faithfully mirrors the in vivo structural and organizational properties of intestinal mucosal tissues. Specifically, it mimics the lamina propria, basement membrane, and the air-exposed epithelial layer, enabling the pioneering observation of macrophage migration through the tissue to the site of viral infection. In this study, we applied the HIE-hMDMs model for the first time in viral infection studies, infecting the model with two globally significant viruses: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human norovirus GII.4. The results demonstrate the model's capability to support the replication of both viruses and show the antiviral role of macrophages, determined by their migration to the infection site and subsequent direct contact with infected epithelial cells. In addition, we evaluated the production of cytokines and chemokines in the intestinal niche, observing an increased interleukin-8 production during infection. A parallel comparison using a classical in vitro cell line model comprising Caco-2 and THP-1 cells for SARS-CoV-2 experiments confirmed the utility of the HIE-hMDMs model in viral infection studies. Our data show that the ex vivo tissue models hold important implications for advances in virology research.IMPORTANCEThe fabrication of intricate ex vivo tissue models holds important implications for advances in virology research. The co-culture model presented here provides distinct spatial and functional attributes not found in simplified models, enabling the evaluation of macrophage dynamics under severe acute respiratory syndrome coronavirus 2 and human norovirus (HuNoV) infections in the intestine. Moreover, these models, comprised solely of primary cells, facilitate the study of difficult-to-replicate viruses such as HuNoV, which cannot be studied in cell line models, and offer the opportunity for personalized treatment evaluations using patient cells. Similar co-cultures have been established for the study of bacterial infections and different characteristics of the intestinal tissue. However, to the best of our knowledge, a similar intestinal model for the study of viral infections has not been published before.
Collapse
Affiliation(s)
- Emilia Barreto-Duran
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Synowiec
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Artur Szczepański
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Adrianna Gałuszka-Bulaga
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Michał Bochenek
- Flow Cytometry Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Martin Dufva
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Asli Aybike Dogan
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marzena Lenart
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
43
|
Delgado-Ocaña S, Cuesta S. From microbes to mind: germ-free models in neuropsychiatric research. mBio 2024; 15:e0207524. [PMID: 39207144 PMCID: PMC11481874 DOI: 10.1128/mbio.02075-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The gut-microbiota-brain axis refers to the bidirectional communication system between the gut, its microbial community, and the brain. This interaction involves a complex interplay of neural pathways, chemical transmitters, and immunological mechanisms. Germ-free animal models have been extensively employed to investigate gut-microbiota-brain interactions, significantly contributing to our current understanding of the role of intestinal microbes in brain function. However, despite the many benefits, this absence of microbiota is not futile. Germ-free animals present physiological and neurodevelopmental alterations that can persist even after reconstitution with normal microbiota. Therefore, the main goal of this minireview is to discuss how some of the inherent limitations of this model can interfere with the conclusion obtained when using these animals to study the complex nature of neuropsychiatric disorders. Furthermore, we examine the inclusion and use of antibiotic-based treatments as an alternative in the research of gut-brain interactions.
Collapse
Affiliation(s)
- Susana Delgado-Ocaña
- Department of Cell Biology and Neuroscience, Rutgers the State University of New Jersey, Piscataway, New Jersey, USA
| | - Santiago Cuesta
- Department of Cell Biology and Neuroscience, Rutgers the State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
44
|
Daveri E, Vergani B, Lalli L, Ferrero G, Casiraghi E, Cova A, Zorza M, Huber V, Gariboldi M, Pasanisi P, Guarrera S, Morelli D, Arienti F, Vitellaro M, Corsetto PA, Rizzo AM, Stroscia M, Frati P, Lagano V, Cattaneo L, Sabella G, Leone BE, Milione M, Sorrentino L, Rivoltini L. Cancer-associated foam cells hamper protective T cell immunity and favor tumor progression in human colon carcinogenesis. J Immunother Cancer 2024; 12:e009720. [PMID: 39395839 PMCID: PMC11474856 DOI: 10.1136/jitc-2024-009720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) remains a significant healthcare burden worldwide, characterized by a complex interplay between obesity and chronic inflammation. While the relationship between CRC, obesity and altered lipid metabolism is not fully understood, there are evidences suggesting a link between them. In this study, we hypothesized that dysregulated lipid metabolism contributes to local accumulation of foam cells (FC) in CRC, which in turn disrupts antitumor immunosurveillance. METHODS Tumor infiltrating FC and CD8+ were quantified by digital pathology in patients affected by T2-T4 CRC with any N stage undergoing radical upfront surgery (n=65) and correlated with patients' clinical outcomes. Multiparametric high-resolution flow cytometry analysis and bulk RNAseq of CRC tissue were conducted to evaluate the phenotype and transcriptomic program of immune cell infiltrate in relation to FC accumulation. The immunosuppressive effects of FC and mechanistic studies on FC-associated transforming growth factor-beta (TGF-β) and anti-PD-L1 inhibition were explored using an in-vitro human model of lipid-engulfed macrophages. RESULTS FC (large CD68+ Bodipy+ macrophages) accumulated at the tumor margin in CRC samples. FChigh tumors exhibited reduced CD8+ T cells and increased regulatory T cells (Tregs). Functional transcriptional profiling depicted an immunosuppressed milieu characterized by reduced interferon gamma, memory CD8+ T cells, and activated macrophages mirrored by increased T-cell exhaustion and Treg enrichment. Furthermore, FChigh tumor phenotype was independent of standard clinical factors but correlated with high body mass index (BMI) and plasma saturated fatty acid levels. In CD8low tumors, the FChigh phenotype was associated with a 3-year disease-free survival rate of 8.6% compared with 28.7% of FClow (p=0.001). In-vitro studies demonstrated that FC significantly impact on CD8 proliferation in TFG-β dependent manner, while inhibition of TGF-β FC-related factors restored antitumor immunity. CONCLUSIONS FC exert immunosuppressive activity through a TGF-β-related pathway, resulting in a CD8-excluded microenvironment and identifying immunosuppressed tumors with worse prognosis in patients with primary CRC. FC association with patient BMI and dyslipidemia might explain the link of CRC with obesity, and offers novel therapeutic and preventive perspectives in this specific clinical setting.
Collapse
Affiliation(s)
- Elena Daveri
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Barbara Vergani
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Luca Lalli
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Elena Casiraghi
- Anacleto Lab, Computer Science Department, University of Milan, Milan, Italy
| | - Agata Cova
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Marta Zorza
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Veronica Huber
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Manuela Gariboldi
- Molecular Epigenomics, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Pasanisi
- Research in Nutrition and Metabolomics, Department of Reaserch, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Simonetta Guarrera
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- IIGM-Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Turin, Italy
| | - Daniele Morelli
- Laboratory Medicine Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Flavio Arienti
- Immunohematology and Trasfusion Medicine Service (SIMT), Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Vitellaro
- Unit of Hereditary Digestive Tract Tumors, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola A Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Angela M Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Martina Stroscia
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Paola Frati
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Vincenzo Lagano
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Cattaneo
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Sabella
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Biagio E Leone
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Massimo Milione
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Sorrentino
- Unit of Colorectal Surgery, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
45
|
Herb M, Schatz V, Hadrian K, Hos D, Holoborodko B, Jantsch J, Brigo N. Macrophage variants in laboratory research: most are well done, but some are RAW. Front Cell Infect Microbiol 2024; 14:1457323. [PMID: 39445217 PMCID: PMC11496307 DOI: 10.3389/fcimb.2024.1457323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophages play a pivotal role in the innate immune response. While their most characteristic function is phagocytosis, it is important not to solely characterize macrophages by this activity. Their crucial roles in body development, homeostasis, repair, and immune responses against pathogens necessitate a broader understanding. Macrophages exhibit remarkable plasticity, allowing them to modify their functional characteristics in response to the tissue microenvironment (tissue type, presence of pathogens or inflammation, and specific signals from neighboring cells) swiftly. While there is no single defined "macrophage" entity, there is a diverse array of macrophage types because macrophage ontogeny involves the differentiation of progenitor cells into tissue-resident macrophages, as well as the recruitment and differentiation of circulating monocytes in response to tissue-specific cues. In addition, macrophages continuously sense and respond to environmental cues and tissue conditions, adjusting their functional and metabolic states accordingly. Consequently, it is of paramount importance to comprehend the heterogeneous origins and functions of macrophages employed in in vitro studies, as each available in vitro macrophage model is associated with specific sets of strengths and limitations. This review centers its attention on a comprehensive comparison between immortalized mouse macrophage cell lines and primary mouse macrophages. It provides a detailed analysis of the strengths and weaknesses inherent in these in vitro models. Finally, it explores the subtle distinctions between diverse macrophage cell lines, offering insights into numerous factors beyond the model type that can profoundly influence macrophage function.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Valentin Schatz
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bohdan Holoborodko
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Natascha Brigo
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
46
|
Perruzza L, Heckmann J, Rezzonico Jost T, Raneri M, Guglielmetti S, Gargari G, Palatella M, Willers M, Fehlhaber B, Werlein C, Vogl T, Roth J, Grassi F, Viemann D. Postnatal supplementation with alarmins S100a8/a9 ameliorates malnutrition-induced neonate enteropathy in mice. Nat Commun 2024; 15:8623. [PMID: 39366940 PMCID: PMC11452687 DOI: 10.1038/s41467-024-52829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Malnutrition is linked to 45% of global childhood mortality, however, the impact of maternal malnutrition on the child's health remains elusive. Previous studies suggested that maternal malnutrition does not affect breast milk composition. Yet, malnourished children often develop a so-called environmental enteropathy, assumed to be triggered by frequent pathogen uptake and unfavorable gut colonization. Here, we show in a murine model that maternal malnutrition induces a persistent inflammatory gut dysfunction in the offspring that establishes during nursing and does not recover after weaning onto standard diet. Early intestinal influx of neutrophils, impaired postnatal development of gut-regulatory functions, and expansion of Enterobacteriaceae were hallmarks of this enteropathy. This gut phenotype resembled those developing under deficient S100a8/a9-supply via breast milk, which is a known key factor for the postnatal development of gut homeostasis. We could confirm that S100a8/a9 is lacking in the breast milk of malnourished mothers and the offspring's intestine. Nutritional supply of S100a8 to neonates of malnourished mothers abrogated the aberrant development of gut mucosal immunity and microbiota colonization and protected them lifelong against severe enteric infections and non-infectious bowel diseases. S100a8 supplementation after birth might be a promising measure to counteract deleterious imprinting of gut immunity by maternal malnutrition.
Collapse
Affiliation(s)
- Lisa Perruzza
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland.
- Humabs BioMed SA a Subsidiary of Vir Biotechnology Inc., Bellinzona, Switzerland.
| | - Julia Heckmann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Tanja Rezzonico Jost
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Matteo Raneri
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Simone Guglielmetti
- Department of Biotechnology and Biosciences (BtBs), University of Milano-Bicocca, Milan, Italy
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Martina Palatella
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Beate Fehlhaber
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | | | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Dorothee Viemann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany.
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.
- Center for Infection Research, University Würzburg, Würzburg, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
47
|
Hachiya K, Masuya M, Kuroda N, Yoneda M, Nishimura K, Shiotani T, Tawara I, Katayama N. Pravastatin prevents colitis-associated carcinogenesis by reducing CX3CR1 high M2-like fibrocyte counts in the inflamed colon. Sci Rep 2024; 14:23021. [PMID: 39362935 PMCID: PMC11449942 DOI: 10.1038/s41598-024-74215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Colorectal cancer (CRC) resulting from chronic inflammation is a crucial issue in patients with inflammatory bowel disease (IBD). Although many reports established that intestinal resident CX3CR1high macrophages play an essential role in suppressing intestinal inflammation, their function in colitis-related CRC remains unclear. In this study, we found that colonic CX3CR1high macrophages, which were positive for MHC-II, F4/80 and CD319, promoted colitis-associated CRC. They highly expressed Col1a1, Tgfb, II10, and II4, and were considered to be fibrocytes with an immunosuppressive M2-like phenotype. CX3CR1 deficiency led to reductions in the absolute numbers of CX3CR1high fibrocytes through increased apoptosis, thereby preventing the development of colitis-associated CRC. We next focused statins as drugs targeting CX3CR1high fibrocytes. Statins have been actively discussed for patients with IBD and reported to suppress the CX3CL1/CX3CR1 axis. Statin treatment after azoxymethane/dextran sulfate sodium-induced inflammation reduced CX3CR1high fibrocyte counts and suppressed colitis-associated CRC. Therefore, CX3CR1high fibrocytes represent a potential target for carcinogenesis-preventing therapy, and statins could be safe therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Kensuke Hachiya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Masahiro Masuya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan.
- Course of Nursing Science, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan.
| | - Naoki Kuroda
- Department of Gastroenterology, Saiseikai Matsusaka General Hospital, Matsusaka, 515- 8557, Mie, Japan
| | - Misao Yoneda
- Department of Clinical Nutrition Medical Technology Course, Suzuka University of Medical Science, Suzuka, 510-0293, Mie, Japan
| | - Komei Nishimura
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Takuya Shiotani
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| |
Collapse
|
48
|
Lee SH, Sacks DL. Resilience of dermis resident macrophages to inflammatory challenges. Exp Mol Med 2024; 56:2105-2112. [PMID: 39349826 PMCID: PMC11542019 DOI: 10.1038/s12276-024-01313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
The skin serves as a complex barrier organ populated by tissue-resident macrophages (TRMs), which play critical roles in defense, homeostasis, and tissue repair. This review examines the functions of dermis resident TRMs in different inflammatory settings, their embryonic origins, and their long-term self-renewal capabilities. We highlight the M2-like phenotype of dermal TRMs and their specialized functions in perivascular and perineuronal niches. Their interactions with type 2 immune cells, autocrine cytokines such as IL-10, and their phagocytic clearance of apoptotic cells have been explored as mechanisms for M2-like dermal TRM self-maintenance and function. In conclusion, we address the need to bridge murine models with human studies, with the possibility of targeting TRMs to promote skin immunity or restrain cutaneous pathology.
Collapse
Affiliation(s)
- Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
49
|
Hanlon MM, Smith CM, Canavan M, Neto NGB, Song Q, Lewis MJ, O’Rourke AM, Tynan O, Barker BE, Gallagher P, Mullan R, Hurson C, Moran B, Monaghan MG, Pitzalis C, Fletcher JM, Nagpal S, Veale DJ, Fearon U. Loss of synovial tissue macrophage homeostasis precedes rheumatoid arthritis clinical onset. SCIENCE ADVANCES 2024; 10:eadj1252. [PMID: 39321281 PMCID: PMC11423874 DOI: 10.1126/sciadv.adj1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
This study performed an in-depth investigation into the myeloid cellular landscape in the synovium of patients with rheumatoid arthritis (RA), "individuals at risk" of RA, and healthy controls (HC). Flow cytometric analysis demonstrated the presence of a CD40-expressing CD206+CD163+ macrophage population dominating the inflamed RA synovium, associated with disease activity and treatment response. In-depth RNA sequencing and metabolic analysis demonstrated that this macrophage population is transcriptionally distinct, displaying unique inflammatory and tissue-resident gene signatures, has a stable bioenergetic profile, and regulates stromal cell responses. Single-cell RNA sequencing profiling of 67,908 RA and HC synovial tissue cells identified nine transcriptionally distinct macrophage clusters. IL-1B+CCL20+ and SPP1+MT2A+ are the principal macrophage clusters in RA synovium, displaying heightened CD40 gene expression, capable of shaping stromal cell responses, and are importantly enriched before disease onset. Combined, these findings identify the presence of an early pathogenic myeloid signature that shapes the RA joint microenvironment and represents a unique opportunity for early diagnosis and therapeutic intervention.
Collapse
Affiliation(s)
- Megan M. Hanlon
- Molecular Rheumatology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Conor M. Smith
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Mary Canavan
- Molecular Rheumatology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
- Translational Immunopathology, School of Biochemistry and Immunology and School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Nuno G. B. Neto
- Department of Mechanical and Manufacturing Engineering, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Qingxuan Song
- Immunology and Discovery Sciences, Janssen Research and Development, Spring House, PA, USA
| | - Myles J. Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC and Barts Health NHS Trust, London, UK
| | - Aoife M. O’Rourke
- Molecular Rheumatology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
- Translational Immunopathology, School of Biochemistry and Immunology and School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Orla Tynan
- Molecular Rheumatology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Brianne E. Barker
- Molecular Rheumatology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Phil Gallagher
- Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ronan Mullan
- Department of Rheumatology, Adelaide and Meath Hospital, Dublin, Ireland
| | - Conor Hurson
- Department of Orthopaedics, St. Vincent’s University Hospital, Dublin, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Michael G. Monaghan
- Department of Mechanical and Manufacturing Engineering, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC and Barts Health NHS Trust, London, UK
- Department of Biomedical Sciences, Humanitas University and Humanitas Research Hospital, Milan, Italy
| | - Jean M. Fletcher
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Sunil Nagpal
- Immunology and Discovery Sciences, Janssen Research and Development, Spring House, PA, USA
| | - Douglas J. Veale
- Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| |
Collapse
|
50
|
Leonard NA, Corry SM, Reidy E, Egan H, O’Malley G, Thompson K, McDermott E, O’Neill A, Zakaria N, Egan LJ, Ritter T, Loessner D, Redmond K, Sheehan M, Canney A, Hogan AM, Hynes SO, Treacy O, Dunne PD, Ryan AE. Tumor-associated mesenchymal stromal cells modulate macrophage phagocytosis in stromal-rich colorectal cancer via PD-1 signaling. iScience 2024; 27:110701. [PMID: 39310770 PMCID: PMC11416555 DOI: 10.1016/j.isci.2024.110701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/27/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024] Open
Abstract
CMS4 colorectal cancer (CRC), based on the consensus molecular subtype (CMS), stratifies patients with the poorest disease-free survival rates. It is characterized by a strong mesenchymal stromal cell (MSC) signature, wound healing-like inflammation and therapy resistance. We utilized 2D and 3D in vitro, in vivo, and ex vivo models to assess the impact of inflammation and stromal cells on immunosuppression in CMS4 CRC. RNA sequencing data from untreated stage II/III CRC patients showed enriched TNF-α signatures in CMS1 and CMS4 tumors. Secretome from TNF-α treated cancer cells induced an immunomodulatory and chemotactic phenotype in MSC and cancer-associated fibroblasts (CAFs). Macrophages in CRC tumours migrate and preferentially localise in stromal compartment. Inflammatory CRC secretome enhances expression of PD-L1 and CD47 on both human and murine stromal cells. We demonstrate that TNF-α-induced inflammation in CRC suppresses macrophage phagocytosis via stromal cells. We show that stromal cell-mediated suppression of macrophage phagocytosis is mediated in part through PD-1 signaling. These data suggest that re-stratification of CRC by CMS may reveal patient subsets with microsatellite stable tumors, particularly CMS4-like tumors, that may respond to immunotherapies.
Collapse
Affiliation(s)
- Niamh A. Leonard
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Shania M. Corry
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, Northern Ireland
| | - Eileen Reidy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Hannah Egan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Grace O’Malley
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Kerry Thompson
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Emma McDermott
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Aoise O’Neill
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Norashikin Zakaria
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Laurence J. Egan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
- CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Daniela Loessner
- Barts Cancer Institute, Queen Mary University of London, London, UK
- Faculty of Engineering and Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
| | - Keara Redmond
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, Northern Ireland
| | - Margaret Sheehan
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
| | - Aoife Canney
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
| | - Aisling M. Hogan
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Department of Colorectal Surgery, Galway University Hospital, Galway, Ireland
| | - Sean O. Hynes
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
- Discipline of Pathology, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Oliver Treacy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Philip D. Dunne
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, Northern Ireland
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Aideen E. Ryan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| |
Collapse
|