1
|
Zhong J, Cheng J, Zhao Z, Yang H, Liu Y, Duan X, Zeng G. Association between kidney stones and urological cancers: results from the NHANES 2007-2020 and Mendelian randomization study. Discov Oncol 2025; 16:601. [PMID: 40272695 PMCID: PMC12021769 DOI: 10.1007/s12672-025-02415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/16/2025] [Indexed: 04/27/2025] Open
Abstract
BACKGROUND Kidney stones is a common urological disease with a rising incidence in global. The association between kidney stones and urological cancers remains controversial. This study utilized the data from the 2007-2020 National Health and Nutrition Examination Survey (NHANES) and Mendelian randomization (MR) analysis to evaluate the association and potential causal relationship between kidney stones and renal cell carcinoma, bladder cancer, and prostate cancer. METHODS Multivariate logistic regression was used to examine the association between kidney stones history and urological cancers, followed by stratified analyses. Subsequently, causal relationships were explored via the inverse variance weighted (IVW), weighted median, and MR-Egger methods. Sensitivity analyses were performed to ensure the robustness of the findings. RESULTS Data from 13,013 individuals (5,138 males) were analyzed. Kidney stones was significantly associated with an increased risk of renal cell carcinoma (OR = 1.92, 95% CI 1.90-1.95, P < 0.001), bladder cancer (OR = 2.749, 95% CI 2.71-2.78, P < 0.001), and prostate cancer (OR = 2.03, 95% CI 2.02-2.04, P < 0.001). However, MR analysis did not provide evidence for a genetic causal relationship between kidney stones and these cancers. Sensitivity analyses confirmed the stability and reliability of the MR results. CONCLUSION Kidney stones increased the risk of renal cell carcinoma, bladder cancer, and prostate cancer in the US population. MR analysis did not establish a genetic causal relationship between kidney stones and renal cell carcinoma, bladder cancer, and prostate cancer in the European population.
Collapse
Affiliation(s)
- Jinghua Zhong
- Department of Urology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China
- Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China
- Guangzhou Institute of Urology, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China
| | - Jiahao Cheng
- Department of Urology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China
- Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China
- Guangzhou Institute of Urology, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China
- Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China
| | - Zhijian Zhao
- Department of Urology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China
- Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China
- Guangzhou Institute of Urology, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China
| | - Houmeng Yang
- Department of Urology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, 315010, Zhejiang, China
| | - Yongda Liu
- Department of Urology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China
- Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China
- Guangzhou Institute of Urology, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China
| | - Xiaolu Duan
- Department of Urology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China.
- Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China.
- Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China.
- Guangzhou Institute of Urology, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China.
| | - Guohua Zeng
- Department of Urology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China.
- Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China.
- Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China.
- Guangzhou Institute of Urology, Guangzhou Medical University, Guangzhou, 510230, Guangdong Province, China.
| |
Collapse
|
2
|
Chen L, Yan H, Nie J. Bidirectional Two-Sample Mendelian Randomization Study Reveals Causal Associations Between Aging and Endometriosis. Int J Womens Health 2025; 17:1027-1037. [PMID: 40247858 PMCID: PMC12005205 DOI: 10.2147/ijwh.s504181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
Background Previous studies have suggested that aging may influence reproductive functions of female. Nonetheless, the causal relationship between aging and endometriosis has yet to be completely understood. Objective This study aims to determine whether aging had a causal association with the incidence of endometriosis. Methods We conducted bidirectional MR analyses to evaluate the causal relationship between aging biomarkers, particularly leukocyte telomere length (LTL), and endometriosis risk. Instrumental variables for LTL were derived from the UK Biobank GWAS, while endometriosis-associated variants were obtained from the FinnGen GWAS dataset. Subgroup analyses were performed to investigate the association between LTL and endometriosis subtypes. Additionally, validation was performed using independent GWAS meta-analysis datasets. Results Inverse variance-weighted (IVW) analysis revealed a significant association between longer LTL and an increased risk of endometriosis (OR-IVW = 1.276, 95% CI: 1.143 to 1.424, FDR-adjusted P = 7.00E-5), with consistent findings across multiple MR methods. Sensitivity analysis using an independent GWAS meta-analysis dataset did not confirm the LTL-endometriosis association (OR-IVW = 1.128, 95% CI: 0.140 to 9.115, P = 0.910). Bidirectional MR analysis found no causal relationship between endometriosis and LTL. Subgroup analyses indicated that longer LTL was significantly associated with endometriosis of the ovary (OR-IVW = 1.343, 95% CI: 1.143 to 1.577, P = 3.00E-4) and endometriosis of the rectovaginal septum and vagina (OR-IVW = 1.336, 95% CI: 1.064 to 1.676, P = 0.013), while no significant association was found with endometriosis of the pelvic peritoneum. Conclusion Our findings suggest that longer LTL may contribute to an increased risk of endometriosis, particularly in ovarian and rectovaginal subtypes. However, no causal effect of endometriosis on aging was observed. The lack of replication in independent datasets highlights the potential influence of population heterogeneity and dataset-specific factors, warranting further validation in diverse cohorts.
Collapse
Affiliation(s)
- Limei Chen
- Hysteroscoy Center, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People’s Republic of China
| | - Han Yan
- Department of General Gynecology, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People’s Republic of China
| | - Jichan Nie
- Department of General Gynecology, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People’s Republic of China
| |
Collapse
|
3
|
Chauhan G, Rieder F. The Pathogenesis of Inflammatory Bowel Diseases. Surg Clin North Am 2025; 105:201-215. [PMID: 40015812 PMCID: PMC11868724 DOI: 10.1016/j.suc.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Inflammatory bowel diseases (IBDs) are relapsing, remitting inflammatory diseases of the intestinal tract. Familial aggregation and genome-wide association studies revealed susceptibility variants that point toward a combination of innate immune and adaptive immune dysregulation that in concert with environmental factors, such as our microbiome, can initiate and perpetuate inflammation. Innate immune perturbations include functional abnormalities in the intestinal barrier, endoplasmic reticulum stress, and abnormal recognition of microbes. Adaptive immune changes include dysregulation of cytokines, regulatory T cells, and leukocyte migration. IBD is linked with an abnormal wound-healing response leading to fibrosis. This article summarizes key pathogenic mechanisms in the pathogenesis of IBDs.
Collapse
Affiliation(s)
- Gaurav Chauhan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases Institute; Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
4
|
Janivara R, Hazra U, Pfennig A, Harlemon M, Kim MS, Eaaswarkhanth M, Chen WC, Ogunbiyi A, Kachambwa P, Petersen LN, Jalloh M, Mensah JE, Adjei AA, Adusei B, Joffe M, Gueye SM, Aisuodionoe-Shadrach OI, Fernandez PW, Rohan TE, Andrews C, Rebbeck TR, Adebiyi AO, Agalliu I, Lachance J. Uncovering the genetic architecture and evolutionary roots of androgenetic alopecia in African men. HGG ADVANCES 2025; 6:100428. [PMID: 40134218 PMCID: PMC12000746 DOI: 10.1016/j.xhgg.2025.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025] Open
Abstract
Androgenetic alopecia is a highly heritable trait. However, much of our understanding about the genetics of male-pattern baldness comes from individuals of European descent. Here, we examined a dataset comprising 2,136 men from Ghana, Nigeria, Senegal, and South Africa that were genotyped using the Men of African Descent and Carcinoma of the Prostate Array. We first tested how genetic predictions of baldness generalize from Europe to Africa and found that polygenic scores from European genome-wide association studies (GWASs) yielded area under the curve statistics that ranged from 0.513 to 0.546, indicating that genetic predictions of baldness generalized poorly from European to African populations. Subsequently, we conducted an African GWAS of androgenetic alopecia, focusing on self-reported baldness patterns at age 45. After correcting for age at recruitment, population structure, and study site, we identified 266 moderately significant associations, 51 of which were independent (p < 10-5, r2 < 0.2). Most baldness associations were autosomal, and the X chromosome does not seem to have a large impact on baldness in African men. Although Neanderthal alleles have previously been associated with skin and hair phenotypes, within the limits of statistical power, we did not find evidence that continental differences in the genetic architecture of baldness are due to Neanderthal introgression. While most loci that are associated with androgenetic alopecia do not have large integrative haplotype scores or fixation index statistics, multiple baldness-associated SNPs near the EDA2R and AR genes have large allele frequency differences between continents. Collectively, our findings illustrate how population genetic differences contribute to the limited portability of polygenic predictions across ancestries.
Collapse
Affiliation(s)
- Rohini Janivara
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ujani Hazra
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aaron Pfennig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Maxine Harlemon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; Department of Biology, Morgan State University, Baltimore, MD, USA
| | - Michelle S Kim
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Wenlong C Chen
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; National Cancer Registry, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | | | - Paidamoyo Kachambwa
- Centre for Proteomic and Genomic Research, Cape Town, South Africa; Mediclinic Precise Southern Africa, Cape Town, South Africa
| | - Lindsay N Petersen
- Centre for Proteomic and Genomic Research, Cape Town, South Africa; Mediclinic Precise Southern Africa, Cape Town, South Africa
| | - Mohamed Jalloh
- Université Cheikh Anta Diop de Dakar, Dakar, Senegal; Université Iba Der Thiam de Thiès, Thiès, Senegal
| | - James E Mensah
- Korle-Bu Teaching Hospital and University of Ghana Medical School, Accra, Ghana
| | - Andrew A Adjei
- Department of Pathology, University of Ghana Medical School, Accra, Ghana
| | | | - Maureen Joffe
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Oseremen I Aisuodionoe-Shadrach
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Centre, Abuja, Nigeria
| | - Pedro W Fernandez
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Timothy R Rebbeck
- Dana-Farber Cancer Institute, Boston, MA, USA; Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
5
|
Liang J, Du X, Wang M, Zheng H, Sun Y, Lin Y. Association Between Hypoxia-Inducible Factor-1α and Neurological Diseases: A Bidirectional Two-Sample Mendelian Randomization Analysis. Brain Behav 2025; 15:e70398. [PMID: 40022282 PMCID: PMC11870835 DOI: 10.1002/brb3.70398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/19/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Previous studies have suggested that hypoxia-inducible factor 1-α (HIF-1α) exerted multiple effects on different central nervous system disorders. However, it is still uncertain whether plasma HIF-1α can be a causal indicator for the relevant diseases. This study aimed to test the causality relationship between plasma HIF-1α and neurological diseases, including cerebrovascular diseases, migraines, and neurodegenerative diseases with a Mendelian randomization (MR) method. METHODS Single-nucleotide polymorphisms (SNPs) genetically representing plasma HIF-1α were screened as instrumental variables (IVs). Summary-level data for neurological disorder from genome-wide association studies (GWAS) were identified as outcomes. The causal effects between the IVs and outcomes were determined via the major analysis of inverse-variance-weighted (IVW) method. The reverse causal direction was also performed to investigate the possibility of reverse causation. RESULTS The findings revealed that plasma HIF-1α was identified to be genetically associated with cardioembolic stroke (CES) (OR = 0.885; 95% confidence interval [CI] = 0.796-0.985, p = 0.026), migraine (OR = 0.941, 95% CI = 0.888-0.998, p = 0.041), and drug-induced migraine without aura (MOA) (OR = 0.586, 95% CI = 0.375-0.916, p = 0.019). There was no association identified in plasma HIF-1α with subarachnoid hemorrhage (SAH), other stroke and migraine subtype, and neurodegenerative disorders. The reverse-MR analysis revealed that the above-stated neurological diseases did not have a causal effect on plasma HIF-1α levels. Sensitivity and validation analyses support that the above results are stable. CONCLUSIONS Our research indicated that plasma HIF-1α may have a causal effect on the risk of CES, migraine and drug-induced MOA, providing new insights for those disease prevention and therapeutic approaches.
Collapse
Affiliation(s)
- Jing Liang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouFujianChina
| | - Xiaoyan Du
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouFujianChina
| | - Mengfei Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouFujianChina
| | - Hongqin Zheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouFujianChina
| | - Yang Sun
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouFujianChina
| | - Yi Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
6
|
Sicher N, Aldrich B, Zhang S, Mazur L, Juarez S, Lehman E, Liu D, Gandhi CK. Surfactant protein levels and genetic variants as biomarkers for COVID-19 severity in children. Am J Physiol Lung Cell Mol Physiol 2025; 328:L350-L356. [PMID: 39832502 DOI: 10.1152/ajplung.00318.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/10/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
Since its outbreak, the novel coronavirus (COVID-19) has significantly impacted the pediatric population. Pulmonary surfactant dysfunction has been linked to other respiratory diseases in children and COVID-19 in adults, but its role in COVID-19 severity remains unclear. We hypothesized that elevated surfactant protein (SP) levels and single nucleotide polymorphisms (SNPs) of SP genes are associated with severe COVID-19 in children. We enrolled 325 COVID-19 positive children and categorized them as having mild or severe disease. Plasma SP-A, SP-B, and SP-D levels were measured. DNA was extracted and genotyped for SNPs in five SP genes, SFTPA1, SFTPA2, SFTPB, SFTPC, and SFTPD. Quantile regression was used to compare SP levels between groups, and receiver operating curve analysis determined an optimal cutoff value of SP level for predicting severe COVID-19. Logistic regression evaluated the odds ratio (OR) for severe disease and associations between SNPs and COVID-19 severity. We found that increased plasma SP-A levels, but not SP-B or SP-D, were significantly associated with severe COVID-19. No significant correlation was observed between age and SP levels. A plasma SP-A level of 10 ng/mL was identified as the optimal cutoff for predicting severe COVID-19, with an OR of 5.9, indicating that children with SP-A levels above this threshold are nearly six times more likely to develop severe COVID-19 disease. In addition, the rs8192340 of SFTPC was associated with decreased risk of severe COVID-19 before, but not after, Bonferroni correction. These findings suggest that plasma SP-A may serve as a potential biomarker for severe COVID-19 in children.NEW & NOTEWORTHY Surfactant dysfunction is linked to other pulmonary diseases, but its role in pediatric coronavirus (COVID-19) is unclear. We found elevated plasma surfactant protein (SP)-A levels, but not SP-B or SP-D, significantly associated with severe COVID-19. A plasma SP-A threshold of 10 ng/mL predicted severe COVID-19. The rs8192340 of SFTPC was associated with decreased risk of severe COVID-19 before, but not after, Bonferroni correction. These findings suggest plasma SP-A may serve as a potential biomarker for pediatric COVID-19 severity.
Collapse
Affiliation(s)
- Natalie Sicher
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Brycen Aldrich
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Shaoyi Zhang
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Lauren Mazur
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Susan Juarez
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Erik Lehman
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Dajiang Liu
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Chintan K Gandhi
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
7
|
Stæger FF, Andersen MK, Li Z, Hjerresen JP, He S, Santander CG, Jensen RT, Rex KF, Thuesen ACB, Hanghøj K, Seiding IH, Jørsboe E, Stinson SE, Rasmussen MS, Balboa RF, Larsen CVL, Bjerregaard P, Schubert M, Meisner J, Linneberg A, Grarup N, Zeggini E, Nielsen R, Jørgensen ME, Hansen T, Moltke I, Albrechtsen A. Genetic architecture in Greenland is shaped by demography, structure and selection. Nature 2025; 639:404-410. [PMID: 39939757 PMCID: PMC11903302 DOI: 10.1038/s41586-024-08516-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/11/2024] [Indexed: 02/14/2025]
Abstract
Greenlandic Inuit and other indigenous populations are underrepresented in genetic research1,2, leading to inequity in healthcare opportunities. To address this, we performed analyses of sequenced or imputed genomes of 5,996 Greenlanders with extensive phenotypes. We quantified their historical population bottleneck and how it has shaped their genetic architecture to have fewer, but more common, variable sites. Consequently, we find twice as many high-impact genome-wide associations to metabolic traits in Greenland compared with Europe. We infer that the high-impact variants arose after the population split from Native Americans and thus are Arctic-specific, and show that some of them are common due to not only genetic drift but also selection. We also find that European-derived polygenic scores for metabolic traits are only half as accurate in Greenlanders as in Europeans, and that adding Arctic-specific variants improves the overall accuracy to the same level as in Europeans. Similarly, lack of representation in public genetic databases makes genetic clinical screening harder in Greenlandic Inuit, but inclusion of Greenlandic data remedies this by reducing the number of non-causal candidate variants by sixfold. Finally, we identify pronounced genetic fine structure that explains differences in prevalence of monogenic diseases in Greenland and, together with recent changes in mobility, leads to a predicted future reduction in risk for certain recessive diseases. These results illustrate how including data from Greenlanders can greatly reduce inequity in genomic-based healthcare.
Collapse
Affiliation(s)
- Frederik Filip Stæger
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette K Andersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zilong Li
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jasmin Pernille Hjerresen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shixu He
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cindy G Santander
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Tanderup Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karsten Fleischer Rex
- Department of Internal Medicine, Queen Ingrid's Hospital, Nuuk, Greenland
- Department of Clinical Medicine, Arctic Health Research Centre, Aalborg University Hospital, Aalborg, Denmark
| | - Anne Cathrine Baun Thuesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Hanghøj
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Emil Jørsboe
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, University of Oxford, Oxford, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sara Elizabeth Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malthe Sebro Rasmussen
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen, Denmark
| | - Renzo F Balboa
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen, Denmark
| | - Christina Viskum Lytken Larsen
- Centre for Public Health in Greenland, National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
- Greenland Center for Health Research, Institute for Health and Nature, University of Greenland, Nuuk, Greenland
| | - Peter Bjerregaard
- Centre for Public Health in Greenland, National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Mikkel Schubert
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Meisner
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region of Denmark, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- TUM School of Medicine and Heath, Technical University of Munich (TUM) and Klinikum Rechts der Isar, Munich, Germany
| | - Rasmus Nielsen
- Departments of Integrative Biology and Statistics, University of California at Berkeley, California, CA, USA
- GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Marit E Jørgensen
- Centre for Public Health in Greenland, National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
- Greenland Center for Health Research, Institute for Health and Nature, University of Greenland, Nuuk, Greenland
- Steno Diabetes Center Greenland, Nuuk, Greenland
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ida Moltke
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Anders Albrechtsen
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
van der Burg LLJ, Putter H, Baldauf H, Sauter J, Schetelig J, de Wreede LC, Böhringer S. High-dimensional, outcome-dependent missing data problems: Models for the human KIR loci. Stat Methods Med Res 2025; 34:440-456. [PMID: 39885761 PMCID: PMC11951372 DOI: 10.1177/09622802241304112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Missing data problems are common in biological, high-dimensional data, where data can be partially or completely missing. Algorithms have been developed to reconstruct the missing values by means of imputation or expectation-maximization algorithms. For missing data problems, it has been suggested that the regression model of interest should be incorporated into the imputation procedure to reduce bias of the regression coefficients. We here consider a challenging missing data problem, where diplotypes of the KIR loci are to be reconstructed. These loci are difficult to genotype, resulting in ambiguous genotype calls. We extend a previously proposed expectation-maximization algorithm by incorporating a potentially high-dimensional regression model to model the outcome. Three strategies are evaluated: (1) only allelic predictors, (2) allelic predictors and forward-backward selection on haplotype predictors, and (3) penalized regression on a saturated model. In a simulation study, we compared these strategies with a baseline expectation-maximization algorithm without outcome model. For extreme choices of effect sizes and missingness levels, the outcome-based expectation-maximization algorithms outperformed the no-outcome expectation-maximization algorithm. However, in all other cases, the no-outcome expectation-maximization algorithm performed either superior or comparable to the three strategies, suggesting the outcome model can have a harmful effect. In a data analysis concerning death after allogeneic hematopoietic stem cell transplantation as a function of donor KIR genes, expectation-maximization algorithms with and without outcome showed very similar results. In conclusion, outcome based missing data models in the high-dimensional setting have to be used with care and are likely to lead to biased results.
Collapse
Affiliation(s)
| | - Hein Putter
- Biomedical Data Sciences, LUMC, Leiden, The Netherlands
| | | | | | - Johannes Schetelig
- DKMS, Dresden/Tübingen, Germany
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Liesbeth C de Wreede
- Biomedical Data Sciences, LUMC, Leiden, The Netherlands
- DKMS, Dresden/Tübingen, Germany
| | - Stefan Böhringer
- Biomedical Data Sciences, LUMC, Leiden, The Netherlands
- Department of Pharmacology and Toxicology, LUMC, Leiden, The Netherlands
| |
Collapse
|
9
|
Lee S, Lee W. A Review of Mendelian Randomization: Assumptions, Methods, and Application to Obesity-Related Diseases. J Obes Metab Syndr 2025; 34:14-26. [PMID: 39809435 PMCID: PMC11799604 DOI: 10.7570/jomes24031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/02/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Mendelian randomization (MR) is a statistical method that uses genetic variants as instrumental variables to estimate the causal effect of exposure on an outcome in the presence of unmeasured confounding. In this review, we argue that it is crucial to acknowledge the instrumental variable assumptions in MR analysis. We describe widely used MR methods, using an example from obesity-related metabolic disorders. We describe situations in which instrumental variable assumptions are violated and explain how to evaluate these violations and employ robust methods for accommodating such violations.
Collapse
Affiliation(s)
- Seungjae Lee
- Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Woojoo Lee
- Institute of Health and Environment, Seoul National University, Seoul, Korea
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| |
Collapse
|
10
|
Hu Y, Chen C, Yu F, Zhang J, Zeng H. The relationship between smoking and recurrent aphthous stomatitis: A Mendelian randomization study. Tob Induc Dis 2025; 23:TID-23-02. [PMID: 39822243 PMCID: PMC11734161 DOI: 10.18332/tid/199253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/19/2025] Open
Abstract
INTRODUCTION Existing research suggests an association between smoking and the incidence of recurrent aphthous stomatitis (RAS); however, the causal relationship remains ambiguous. We employed Mendelian randomization (MR) to clarify the potential causal association between smoking and the risk of developing RAS. METHODS We utilized genome-wide association study (GWAS) sequencing data related to smoking from the Finnish database as instrumental variables (IVs) and GWAS data for RAS from the UK Biobank (UKB) as the outcome to perform a two-sample MR analysis. The selection of IVs was rigorously controlled according to the three principal assumptions of relevance, independence, and exclusivity. The primary analytical methods utilized were inverse variance weighting (IVW) and weighted median (WM), supplemented by MR-Egger, simple mode, and weighted mode techniques to infer causality between smoking and RAS. Sensitivity analyses were conducted using MR-PRESSO, Cochran's Q, and the MR-Egger intercept to ensure the robustness of the findings. RESULTS The findings from the IVW and WM analyses suggest a causal association between smoking and an elevated risk of RAS (IVW: OR=1.003; 95% CI: 1.0002-1.005, p=0.033; WM: OR=1.003; 95% CI: 1.00006-1.007, p=0.044). Compared to non-smokers, smokers have a 0.3% increase in the risk of RAS. Furthermore, the sensitivity analysis did not reveal any inconsistencies that would contradict the MR results. CONCLUSIONS Our findings provide preliminary evidence of a potential causal relationship between smoking and the risk of RAS, which may contribute to a deeper understanding of the underlying mechanisms. Further research is needed to confirm these results and explore their implications for clinical practice.
Collapse
Affiliation(s)
- Yujiao Hu
- Department of Stomatology, Xi’an Jiaotong University Stomatology Hospital, Xi’an, China
| | - Cheng Chen
- Department of Stomatology, Xi’an Jiaotong University Stomatology Hospital, Xi’an, China
| | - Fei Yu
- Department of Stomatology, Nanchang University, Nanchang, China
| | - Jin Zhang
- Department of Stomatology, Xi’an Jiaotong University Stomatology Hospital, Xi’an, China
| | - Hui Zeng
- School of Stomatology, Xi’an Medical University, Xi’an, China
| |
Collapse
|
11
|
Konieczny MJ, Omarov M, Zhang L, Malik R, Richardson TG, Baumeister SE, Bernhagen J, Dichgans M, Georgakis MK. The genomic architecture of circulating cytokine levels points to drug targets for immune-related diseases. Commun Biol 2025; 8:34. [PMID: 39794498 PMCID: PMC11724035 DOI: 10.1038/s42003-025-07453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Circulating cytokines orchestrate immune reactions and are promising drug targets for immune-mediated and inflammatory diseases. Exploring the genetic architecture of circulating cytokine levels could yield key insights into causal mediators of human disease. Here, we performed genome-wide association studies (GWAS) for 40 circulating cytokines in meta-analyses of 74,783 individuals. We detected 359 significant associations between cytokine levels and variants in 169 independent loci, including 150 trans- and 19 cis-acting loci. Integration with transcriptomic data point to key regulatory mechanisms, such as the buffering function of the Atypical Chemokine Receptor 1 (ACKR1) acting as scavenger for multiple chemokines and the role of tumor necrosis factor receptor-associated factor 1 (TRAFD1) in modulating the cytokine storm triggered by TNF signaling. Applying Mendelian randomization (MR), we detected a network of complex cytokine interconnections with TNF-b, VEGF, and IL-1ra exhibiting pleiotropic downstream effects on multiple cytokines. Drug target cis-MR using 2 independent proteomics datasets paired with colocalization revealed G-CSF/CSF-3 and CXCL9/MIG as potential causal mediators of asthma and Crohn's disease, respectively, but also a potentially protective role of TNF-b in multiple sclerosis. Our results provide an overview of the genetic architecture of circulating cytokines and could guide the development of targeted immunotherapies.
Collapse
Affiliation(s)
- Marek J Konieczny
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Murad Omarov
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Lanyue Zhang
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Tom G Richardson
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Jürgen Bernhagen
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Centre for Cardiovascular Research (DZHKMunich), Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Centre for Cardiovascular Research (DZHKMunich), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
12
|
Yang F, Wen J. Association between bone mineral density and scoliosis: a two-sample mendelian randomization study in european populations. Hereditas 2024; 161:57. [PMID: 39736789 DOI: 10.1186/s41065-024-00352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Previous studies have shown that bone mineral density (BMD) has a certain impact on scoliosis. However, up to now, there is no clear evidence that there is a causal association between the two. The aim of this study is to investigate whether there is a causal association between BMD at different body positions and scoliosis by two-sample Mendelian randomization (MR). METHODS Genetic variants (SNPS) strongly associated with BMD (total body BMD (TB-BMD), lumbar spine BMD (LS-BMD), femoral neck BMD (FN-BMD), heel BMD (HE-BMD), and forearm BMD (FA-BMD)) were extracted from GEFOS and genome-wide association analysis (GWAS) databases SNPs) were used as instrumental variables (IVs). Scoliosis was also selected from the Finnish database as the outcome. Inverse variance weighting (IVW) method was used as the main analysis method, and multiple sensitivity analysis was performed by combining weighted median, MR-Egger, MR Multi-effect residuals and outliers. RESULTS IVW results showed that TB-BMD (OR = 0.83, 95%CI: 0.66-1.55 P = 0.13), LS-BMD (OR = 0.72, 95%CI: 0.52-0.99, P = 0.04), FN-BMD (OR = 0.74, 95%CI: 0.50-1.09, P = 0.13), FA-BMD (OR = 0.95,95%CI: 0.70-1.28, P = 0.75), HE-BMD (OR = 0.91, 95%CI: 0.77-1.08, P = 0.29). Sensitivity analyses showed no evidence of pleiotropy or heterogeneity (p > 0.05) (MR-PRESSO and Cochrane). The results were further validated by leave-one-out test and MR-Egger intercept, which confirmed the robustness of the study results. CONCLUSION In conclusion, the present study demonstrates that the causal role of genetic prediction of scoliosis increases with decreasing lumbar BMD. There was no evidence that BMD at the remaining sites has a significant causal effect on scoliosis. Our results suggest that the lumbar spine BMD should be routinely measured in the population at high risk of scoliosis. If osteoporosis occurs, appropriate treatment should be given to reduce the incidence of scoliosis. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Fangjun Yang
- Department of orthopedic, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Jiantao Wen
- Department of Pediatric Spine Surgery, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China.
| |
Collapse
|
13
|
Hulse SV, Bruns EL. The emergence of nonlinear evolutionary trade-offs and the maintenance of genetic polymorphisms. Biol Lett 2024; 20:20240296. [PMID: 39626761 PMCID: PMC11614545 DOI: 10.1098/rsbl.2024.0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 10/16/2024] [Indexed: 12/08/2024] Open
Abstract
Evolutionary models of quantitative traits often assume trade-offs between beneficial and detrimental traits, requiring modellers to specify a function linking trait values. The choice of trade-off function can be consequential; functions that assume diminishing returns (accelerating costs) typically lead to single equilibrium genotypes, while decelerating costs often lead to genetic polymorphisms. Despite their importance, our current theory has little to say on which trade-off functions are the most biologically plausible. To address this gap, we explored how the genetic determination of quantitative traits can lead to different trade-off functions, using resistance to infectious diseases as an example trait. We developed a model where alleles at separate loci pleiotropically increase resistance while decreasing fecundity. We then used this model to generate genotype landscapes and investigate how epistasis effects the trade-off function. Regardless of the strength of epistasis, our model consistently led to accelerating costs. We then incorporated our genotype model into an eco-evolutionary model of disease resistance. Unlike other models with accelerating costs, our approach often led to genetic polymorphisms. Our results suggest that accelerating costs are a strong null model for evolutionary trade-offs and that the eco-evolutionary conditions required for polymorphism may be more nuanced than previously thought.
Collapse
Affiliation(s)
| | - Emily L. Bruns
- University of Maryland College Park, College Park, MD, USA
| |
Collapse
|
14
|
Nov P, Zheng C, Wang D, Sou S, Touch S, Kouy S, Ni P, Kou Q, Li Y, Prasai A, Fu W, Du K, Li J. Causal association between metabolites and upper gastrointestinal tumors: A Mendelian randomization study. Mol Med Rep 2024; 30:212. [PMID: 39370813 PMCID: PMC11450430 DOI: 10.3892/mmr.2024.13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Upper gastrointestinal (UGI) tumors, notably gastric cancer (GC) and esophageal cancer (EC), are significant global health concerns due to their high morbidity and mortality rates. However, only a limited number of metabolites have been identified as biomarkers for these cancers. To explore the association between metabolites and UGI tumors, the present study conducted a comprehensive two‑sample Mendelian randomization (MR) analysis using publicly available genetic data. In the present study, the causal relationships were examined between 1,400 metabolites and UGI cancer using methods such as inverse variance weighting and weighted medians, along with sensitivity analyses for heterogeneity and pleiotropy. Functional experiments were conducted to validate the MR results. The analysis identified 57 metabolites associated with EC and 58 with GC. Key metabolites included fructosyllysine [EC: Odds ratio (OR)=1.450, 95% confidence interval (CI)=1.087‑1.934, P=0.011; GC: OR=1.728, 95% CI=1.202‑2.483, P=0.003], 2'‑deoxyuridine to cytidine ratio (EC: OR=1.464, 95% CI=1.111‑1.929, P=0.007; GC: OR=1.464, 95% CI=1.094‑1.957, P=0.010) and carnitine to protonylcarnitine (C3) ratio (EC: OR=0.655, 95% CI=0.499‑0.861, P=0.002; GC: OR=0.664, 95% CI=0.486‑0.906, P=0.010). Notably, fructosyllysine levels and the 2'‑deoxyuridine to cytidine ratio were identified as risk factors for both EC and GC, while the C3 ratio served as a protective factor. Functional experiments demonstrated that fructosyllysine and the 2'‑deoxyuridine to cytidine ratio promoted the proliferation of EC and GC cells, whereas carnitine inhibited their proliferation. In conclusion, the present findings provide insights into the causal factors and biomarkers associated with UGI tumors, which may be instrumental in guiding targeted dietary and pharmacological interventions, thereby contributing to the prevention and treatment of UGI cancer.
Collapse
Affiliation(s)
- Pengkhun Nov
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Chongyang Zheng
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Duanyu Wang
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Syphanna Sou
- Department of Radiation Oncology and Oncology, Khmer-Soviet Friendship Hospital of University of Health Sciences, Phnom Penh 120110, Cambodia
| | - Socheat Touch
- Department of Radiation Oncology and Oncology, Khmer-Soviet Friendship Hospital of University of Health Sciences, Phnom Penh 120110, Cambodia
| | - Samnang Kouy
- Department of Radiation Oncology and Oncology, Khmer-Soviet Friendship Hospital of University of Health Sciences, Phnom Penh 120110, Cambodia
| | - Peizan Ni
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Qianzi Kou
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Ying Li
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Arzoo Prasai
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Wen Fu
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Kunpeng Du
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Jiqiang Li
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
15
|
Wang Y, Hon GC. Towards functional maps of non-coding variants in cancer. Front Genome Ed 2024; 6:1481443. [PMID: 39544254 PMCID: PMC11560456 DOI: 10.3389/fgeed.2024.1481443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Large scale cancer genomic studies in patients have unveiled millions of non-coding variants. While a handful have been shown to drive cancer development, the vast majority have unknown function. This review describes the challenges of functionally annotating non-coding cancer variants and understanding how they contribute to cancer. We summarize recently developed high-throughput technologies to address these challenges. Finally, we outline future prospects for non-coding cancer genetics to help catalyze personalized cancer therapy.
Collapse
Affiliation(s)
- Yihan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Gary C. Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
16
|
Schraiber JG, Edge MD, Pennell M. Unifying approaches from statistical genetics and phylogenetics for mapping phenotypes in structured populations. PLoS Biol 2024; 22:e3002847. [PMID: 39383205 PMCID: PMC11493298 DOI: 10.1371/journal.pbio.3002847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/21/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024] Open
Abstract
In both statistical genetics and phylogenetics, a major goal is to identify correlations between genetic loci or other aspects of the phenotype or environment and a focal trait. In these 2 fields, there are sophisticated but disparate statistical traditions aimed at these tasks. The disconnect between their respective approaches is becoming untenable as questions in medicine, conservation biology, and evolutionary biology increasingly rely on integrating data from within and among species, and once-clear conceptual divisions are becoming increasingly blurred. To help bridge this divide, we lay out a general model describing the covariance between the genetic contributions to the quantitative phenotypes of different individuals. Taking this approach shows that standard models in both statistical genetics (e.g., genome-wide association studies; GWAS) and phylogenetic comparative biology (e.g., phylogenetic regression) can be interpreted as special cases of this more general quantitative-genetic model. The fact that these models share the same core architecture means that we can build a unified understanding of the strengths and limitations of different methods for controlling for genetic structure when testing for associations. We develop intuition for why and when spurious correlations may occur analytically and conduct population-genetic and phylogenetic simulations of quantitative traits. The structural similarity of problems in statistical genetics and phylogenetics enables us to take methodological advances from one field and apply them in the other. We demonstrate by showing how a standard GWAS technique-including both the genetic relatedness matrix (GRM) as well as its leading eigenvectors, corresponding to the principal components of the genotype matrix, in a regression model-can mitigate spurious correlations in phylogenetic analyses. As a case study, we re-examine an analysis testing for coevolution of expression levels between genes across a fungal phylogeny and show that including eigenvectors of the covariance matrix as covariates decreases the false positive rate while simultaneously increasing the true positive rate. More generally, this work provides a foundation for more integrative approaches for understanding the genetic architecture of phenotypes and how evolutionary processes shape it.
Collapse
Affiliation(s)
- Joshua G. Schraiber
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Michael D. Edge
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
17
|
Janivara R, Chen WC, Hazra U, Baichoo S, Agalliu I, Kachambwa P, Simonti CN, Brown LM, Tambe SP, Kim MS, Harlemon M, Jalloh M, Muzondiwa D, Naidoo D, Ajayi OO, Snyper NY, Niang L, Diop H, Ndoye M, Mensah JE, Abrahams AOD, Biritwum R, Adjei AA, Adebiyi AO, Shittu O, Ogunbiyi O, Adebayo S, Nwegbu MM, Ajibola HO, Oluwole OP, Jamda MA, Pentz A, Haiman CA, Spies PV, van der Merwe A, Cook MB, Chanock SJ, Berndt SI, Watya S, Lubwama A, Muchengeti M, Doherty S, Smyth N, Lounsbury D, Fortier B, Rohan TE, Jacobson JS, Neugut AI, Hsing AW, Gusev A, Aisuodionoe-Shadrach OI, Joffe M, Adusei B, Gueye SM, Fernandez PW, McBride J, Andrews C, Petersen LN, Lachance J, Rebbeck TR. Heterogeneous genetic architectures of prostate cancer susceptibility in sub-Saharan Africa. Nat Genet 2024; 56:2093-2103. [PMID: 39358599 DOI: 10.1038/s41588-024-01931-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 08/12/2024] [Indexed: 10/04/2024]
Abstract
Men of African descent have the highest prostate cancer incidence and mortality rates, yet the genetic basis of prostate cancer in African men has been understudied. We used genomic data from 3,963 cases and 3,509 controls from Ghana, Nigeria, Senegal, South Africa and Uganda to infer ancestry-specific genetic architectures and fine-map disease associations. Fifteen independent associations at 8q24.21, 6q22.1 and 11q13.3 reached genome-wide significance, including four new associations. Intriguingly, multiple lead associations are private alleles, a pattern arising from recent mutations and the out-of-Africa bottleneck. These African-specific alleles contribute to haplotypes with odds ratios above 2.4. We found that the genetic architecture of prostate cancer differs across Africa, with effect size differences contributing more to this heterogeneity than allele frequency differences. Population genetic analyses reveal that African prostate cancer associations are largely governed by neutral evolution. Collectively, our findings emphasize the utility of conducting genetic studies that use diverse populations.
Collapse
Affiliation(s)
- Rohini Janivara
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wenlong C Chen
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Cancer Registry, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Ujani Hazra
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paidamoyo Kachambwa
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
- Mediclinic Precise Southern Africa, Cape Town, South Africa
| | - Corrine N Simonti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lyda M Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Saanika P Tambe
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michelle S Kim
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Maxine Harlemon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mohamed Jalloh
- Université Cheikh Anta Diop de Dakar, Dakar, Senegal
- Université Iba Der Thiam de Thiès, Thiès, Senegal
| | - Dillon Muzondiwa
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | - Daphne Naidoo
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | - Olabode O Ajayi
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | | | - Lamine Niang
- Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | | | - Medina Ndoye
- Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - James E Mensah
- Korle-Bu Teaching Hospital and University of Ghana Medical School, Accra, Ghana
| | - Afua O D Abrahams
- Korle-Bu Teaching Hospital and University of Ghana Medical School, Accra, Ghana
| | - Richard Biritwum
- Korle-Bu Teaching Hospital and University of Ghana Medical School, Accra, Ghana
| | - Andrew A Adjei
- Department of Pathology, University of Ghana Medical School, Accra, Ghana
| | | | | | | | - Sikiru Adebayo
- College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Maxwell M Nwegbu
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Centre, Abuja, Nigeria
| | - Hafees O Ajibola
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Centre, Abuja, Nigeria
| | - Olabode P Oluwole
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Centre, Abuja, Nigeria
| | - Mustapha A Jamda
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Centre, Abuja, Nigeria
| | - Audrey Pentz
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Christopher A Haiman
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Petrus V Spies
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - André van der Merwe
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michael B Cook
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | | | | | - Mazvita Muchengeti
- National Cancer Registry, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Sean Doherty
- Division of Urology, Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Natalie Smyth
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David Lounsbury
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Judith S Jacobson
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, USA
| | - Alfred I Neugut
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, USA
| | - Ann W Hsing
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Oseremen I Aisuodionoe-Shadrach
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Centre, Abuja, Nigeria
| | - Maureen Joffe
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Pedro W Fernandez
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jo McBride
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | | | - Lindsay N Petersen
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
- Mediclinic Precise Southern Africa, Cape Town, South Africa
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Timothy R Rebbeck
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
18
|
Scott Sills E, Harrity C, Chu HI, Wang JW, Wood SH, Tan SL. First Application of Whole Genome Sequencing in Myelinated Retinal Nerve Fibers (MRNF). Physiol Res 2024; 73:665-670. [PMID: 39264086 PMCID: PMC11414596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/23/2024] [Indexed: 09/13/2024] Open
Abstract
Genetic features are currently unknown in myelinated retinal nerve fibers (MRNF). For a 20-year-old asymptomatic female with unilateral MRNF, we performed whole genome sequencing (WGS) by standard workflow protocol to produce contiguous long-read sequences with Illumina DNA PCR-Free Prep. After tagmentation, libraries were sequenced on separate runs via NovaSeq 6000 platform at 2 x 150bp read length. Gene variants included rs2248799, rs2672589, rs7555070, rs247616_T and rs2043085_C all associated with an increased macular degeneration risk, and seven novel variants of uncertain significance. For optic disc enlargement, variants rs9988687_A, rs11079419_T, rs6787363 and rs10862708_A suggested an increased risk for this condition. In contrast, modeling revealed retinal detachment risk was reduced by variants identified at rs9651980_T, rs4373767_T, and rs7940691_T which were among five other previously unreported variants. WGS data placed proband at the 66th and 64th percentiles for disc anomaly and retinal detachment risk, respectively. Additionally, risk determined from 16 loci associated with age-related macular degeneration found the patient to be at the 18th percentile for this diagnosis (i.e., below average genetic predisposition). Fundoscopic findings showed mean RNFL thickness was lower with MRNF (77 OS vs. 96?m OD) and RNFL symmetry was impaired (43 %) but stable between 2020 and 2023. Rim area and cup volume were also substantially different (2.33 OS vs. 1.34mm2 OD, and 0.001 OS vs. 0.151mm3 OD, respectively). As the first known evaluation of MRNF via WGS, these data reveal a mixed picture with variants associated with different risks for potentially related ocular pathologies. In addition, we identify multiple new variants of unknown significance. Factors affecting gene expression in MRNF require further study. Key words: Whole genome sequencing, Retina, Myelination, Anatomy, Gene variants.
Collapse
Affiliation(s)
- E Scott Sills
- Center for Advanced Genetics, Regenerative Biology Group, San Clemente, USA
| | | | | | | | | | | |
Collapse
|
19
|
Yu X, Cheng M, Zheng J. Coeliac disease and postpartum depression: are they linked? A two-sample Mendelian randomization study. Front Psychiatry 2024; 15:1312117. [PMID: 39100855 PMCID: PMC11294151 DOI: 10.3389/fpsyt.2024.1312117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Background To explore the potential causal associations between coeliac disease(CD) and postpartum depression(PPD) by using two-sample Mendelian randomization(MR) analysis. Methods The IEU OPEN GWAS project was utilized to identify genetic loci strongly associated with CD as instrumental variables (IVs), and MR analysis was performed using inverse variance weighting(IVW), weighted median, weighted model, and MR-Egger. MR analyses were used to examine whether there was a link between CD and PPD, with an OR and 95% CI. Meanwhile, the relationship between CD and depression(DP) was analyzed using MR. The sensitivity analysis was conducted using MR-Egger intercept analysis, Cochran's Q test, and leave-one-out analysis. Results From the GWAS online database, 13 single-nucleotide polymorphisms (SNPs) were chosen as IVs. The IVW results showed a relationship between PPD and a genetically predicted risk of developing CD (OR = 1.022, 95% CI: 1.001-1.044, P = 0.043). However, the presence of DP was not linked with CD (OR=0.991, 95% CI: 0.978-1.003, P=0.151). Potential horizontal pleiotropy was not discovered using MR-Egger intercept analysis (PPD: P=0.725; DP: P=0.785), and Cochran's Q test for heterogeneity revealed no significant heterogeneity (PPD: P=0.486; DP: P=0.909). A leave-one-out analysis found that individual SNPs had minimal effect on overall causal estimations. Conclusion MR research discovered a link between CD and PPD.
Collapse
Affiliation(s)
- Xiaomeng Yu
- Departments of Obstetrics, Women and Children’s Hospital of Jinzhou, Jinzhou, Liaoning, China
| | - Mosong Cheng
- Departments of Surgery, Jinzhou Second Hospital, Jinzhou, Liaoning, China
| | - Jindan Zheng
- Center for Reproductive Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
20
|
Kincses B, Forkmann K, Schlitt F, Jan Pawlik R, Schmidt K, Timmann D, Elsenbruch S, Wiech K, Bingel U, Spisak T. An externally validated resting-state brain connectivity signature of pain-related learning. Commun Biol 2024; 7:875. [PMID: 39020002 PMCID: PMC11255216 DOI: 10.1038/s42003-024-06574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Pain can be conceptualized as a precision signal for reinforcement learning in the brain and alterations in these processes are a hallmark of chronic pain conditions. Investigating individual differences in pain-related learning therefore holds important clinical and translational relevance. Here, we developed and externally validated a novel resting-state brain connectivity-based predictive model of pain-related learning. The pre-registered external validation indicates that the proposed model explains 8-12% of the inter-individual variance in pain-related learning. Model predictions are driven by connections of the amygdala, posterior insula, sensorimotor, frontoparietal, and cerebellar regions, outlining a network commonly described in aversive learning and pain. We propose the resulting model as a robust and highly accessible biomarker candidate for clinical and translational pain research, with promising implications for personalized treatment approaches and with a high potential to advance our understanding of the neural mechanisms of pain-related learning.
Collapse
Affiliation(s)
- Balint Kincses
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany.
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, Germany.
| | - Katarina Forkmann
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Frederik Schlitt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Robert Jan Pawlik
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Katharina Schmidt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Dagmar Timmann
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Sigrid Elsenbruch
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Katja Wiech
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ulrike Bingel
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Tamas Spisak
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, Germany
| |
Collapse
|
21
|
Hsieh AR, Luo YL, Bao BY, Chou TC. Comparative analysis of genetic risk scores for predicting biochemical recurrence in prostate cancer patients after radical prostatectomy. BMC Urol 2024; 24:136. [PMID: 38956663 PMCID: PMC11218119 DOI: 10.1186/s12894-024-01524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND In recent years, Genome-Wide Association Studies (GWAS) has identified risk variants related to complex diseases, but most genetic variants have less impact on phenotypes. To solve the above problems, methods that can use variants with low genetic effects, such as genetic risk score (GRS), have been developed to predict disease risk. METHODS As the GRS model with the most incredible prediction power for complex diseases has not been determined, our study used simulation data and prostate cancer data to explore the disease prediction power of three GRS models, including the simple count genetic risk score (SC-GRS), the direct logistic regression genetic risk score (DL-GRS), and the explained variance weighted GRS based on directed logistic regression (EVDL-GRS). RESULTS AND CONCLUSIONS We used 26 SNPs to establish GRS models to predict the risk of biochemical recurrence (BCR) after radical prostatectomy. Combining clinical variables such as age at diagnosis, body mass index, prostate-specific antigen, Gleason score, pathologic T stage, and surgical margin and GRS models has better predictive power for BCR. The results of simulation data (statistical power = 0.707) and prostate cancer data (area under curve = 0.8462) show that DL-GRS has the best prediction performance. The rs455192 was the most relevant locus for BCR (p = 2.496 × 10-6) in our study.
Collapse
Affiliation(s)
- Ai-Ru Hsieh
- Department of Statistics, Tamkang University, New Taipei City, 251301, Taiwan.
| | - Yi-Ling Luo
- Department of Public Health, College of Public Health, China Medical University, Taichung, 40402, Taiwan
| | - Bo-Ying Bao
- School of Pharmacy, China Medical University, Taichung, 406040, Taiwan
- Department of Nursing, Asia University, Taichung, 41354, Taiwan
| | - Tzu-Chieh Chou
- Department of Public Health, College of Public Health, China Medical University, Taichung, 40402, Taiwan
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
22
|
Hulse SV, Bruns EL. The Emergence of Non-Linear Evolutionary Trade-offs and the Maintenance of Genetic Polymorphisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.595890. [PMID: 38853830 PMCID: PMC11160725 DOI: 10.1101/2024.05.29.595890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Evolutionary models of quantitative traits often assume trade-offs between beneficial and detrimental traits, requiring modelers to specify a function linking costs to benefits. The choice of trade-off function is often consequential; functions that assume diminishing returns (accelerating costs) typically lead to single equilibrium genotypes, while decelerating costs often lead to evolutionary branching. Despite their importance, we still lack a strong theoretical foundation to base the choice of trade-off function. To address this gap, we explore how trade-off functions can emerge from the genetic architecture of a quantitative trait. We developed a multi-locus model of disease resistance, assuming each locus had random antagonistic pleiotropic effects on resistance and fecundity. We used this model to generate genotype landscapes and explored how additive versus epistatic genetic architectures influenced the shape of the trade-off function. Regardless of epistasis, our model consistently led to accelerating costs. We then used our genotype landscapes to build an evolutionary model of disease resistance. Unlike other models with accelerating costs, our approach often led to genetic polymorphisms at equilibrium. Our results suggest that accelerating costs are a strong null model for evolutionary trade-offs and that the eco-evolutionary conditions required for polymorphism may be more nuanced than previously believed.
Collapse
|
23
|
Li J, Sun J, Liu L, Zhang C, Liu Z. Association between n-3 PUFA and lung function: results from the NHANES 2007-2012 and Mendelian randomisation study. Br J Nutr 2024; 131:1720-1729. [PMID: 38275085 DOI: 10.1017/s0007114524000266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
This study aimed to investigate the association between n-3 PUFA and lung function. First, a cross-sectional study was conducted based on the National Health and Nutrition Examination Survey (NHANES) 2007-2012 data. n-3 PUFA intake was obtained from 24-h dietary recalls. A multivariable linear regression model was used to assess the observational associations of n-3 PUFA intake with lung function. Subsequently, a two-sample Mendelian randomisation (MR) was performed to estimate the potential causal effect of n-3 PUFA on lung function. Genetic instrumental variables were extracted from published genome-wide association studies. Summary statistics about n-3 PUFA was from UK Biobank. Inverse variance weighted was the primary analysis approach. The observational study did not demonstrate a significant association between n-3 PUFA intake and most lung function measures; however, a notable exception was observed with significant findings in the highest quartile for forced vital capacity (FVC) and % predicted FVC. The MR results also showed no causal effect of circulating n-3 PUFA concentration on lung function (forced expiratory volume in one second (FEV1), β = 0·01301, se = 0·01932, P = 0·5006; FVC, β = -0·001894, se = 0·01704, P = 0·9115; FEV1:FVC, β = 0·03118, se = 0·01743, P = 0·07359). These findings indicate the need for further investigation into the impact of higher n-3 PUFA consumption on lung health.
Collapse
Affiliation(s)
- Jingli Li
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing312000, Zhejiang, People's Republic of China
| | - Jian Sun
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing312000, Zhejiang, People's Republic of China
| | - Lingjing Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou325000, Zhejiang, People's Republic of China
| | - Chunyi Zhang
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing312000, Zhejiang, People's Republic of China
| | - Zixiang Liu
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing312000, Zhejiang, People's Republic of China
| |
Collapse
|
24
|
Yazdanpanah M, Yazdanpanah N, Gamache I, Ong K, Perry JRB, Manousaki D. Metabolome-wide Mendelian randomization for age at menarche and age at natural menopause. Genome Med 2024; 16:69. [PMID: 38802955 PMCID: PMC11131236 DOI: 10.1186/s13073-024-01322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/22/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The role of metabolism in the variation of age at menarche (AAM) and age at natural menopause (ANM) in the female population is not entirely known. We aimed to investigate the causal role of circulating metabolites in AAM and ANM using Mendelian randomization (MR). METHODS We combined MR with genetic colocalization to investigate potential causal associations between 658 metabolites and AAM and between 684 metabolites and ANM. We extracted genetic instruments for our exposures from four genome-wide association studies (GWAS) on circulating metabolites and queried the effects of these variants on the outcomes in two large GWAS from the ReproGen consortium. Additionally, we assessed the mediating role of the body mass index (BMI) in these associations, identified metabolic pathways implicated in AAM and ANM, and sought validation for selected metabolites in the Avon Longitudinal Study of Parents and Children (ALSPAC). RESULTS Our analysis identified 10 candidate metabolites for AAM, but none of them colocalized with AAM. For ANM, 76 metabolites were prioritized (FDR-adjusted MR P-value ≤ 0.05), with 17 colocalizing, primarily in the glycerophosphocholines class, including the omega-3 fatty acid and phosphatidylcholine (PC) categories. Pathway analyses and validation in ALSPAC mothers also highlighted the role of omega and polyunsaturated fatty acids levels in delaying age at menopause. CONCLUSIONS Our study suggests that metabolites from the glycerophosphocholine and fatty acid families play a causal role in the timing of both menarche and menopause. This underscores the significance of specific metabolic pathways in the biology of female reproductive longevity.
Collapse
Affiliation(s)
- Mojgan Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, Université de Montréal, 3175 Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada
| | - Nahid Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, Université de Montréal, 3175 Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada
| | - Isabel Gamache
- Research Center of the Sainte-Justine University Hospital, Université de Montréal, 3175 Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada
| | - Ken Ong
- MRC Epidemiology Unit, School of Clinical Medicine, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - John R B Perry
- MRC Epidemiology Unit, School of Clinical Medicine, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
- Metabolic Research Laboratory, School of Clinical Medicine, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Despoina Manousaki
- Research Center of the Sainte-Justine University Hospital, Université de Montréal, 3175 Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada.
- Departments of Pediatrics, Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
25
|
Wang J, Song M, Cao M. The causal role of multiple psycho-emotional disorders in gastroesophageal reflux disease: A two-sample Mendelian randomized study. PLoS One 2024; 19:e0302469. [PMID: 38709755 PMCID: PMC11073702 DOI: 10.1371/journal.pone.0302469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Observational studies have previously shown a potential link between psycho-emotional disorders, such as mood swings, highly strung, anxious feelings, and gastroesophageal reflux disease (GERD). However, the credibility of these associations could be influenced by various confounding factors. Consequently, our study sought to employ a Mendelian randomization (MR) approach to elucidate a potential causal relationship between psycho-emotional disorders and GERD. METHOD Information on independent genetic variants linked to mood swings, highly strung, and anxious feelings was gathered from European populations participating in the IEU Open GWAS research. The FinnGen Consortium provided the genome-wide association study (GWAS) summary statistics for GERD. Our analysis employed the inverse variance weighted (IVW) method under the random effects model as the main analytical method. To further bolster our findings, we employed the weighted median and MR Egger methods. In addition, we conducted a series of sensitivity analyses. RESULTS Our study supports the existence of a causal relationship between psycho-emotional disorders and GERD. Mood swings, highly strung, and anxious feelings adversely affected GERD risk (mood swings: OR 2.21, 95% CI 1.19-5.59, p = 3.09 × 10-2; highly strung: OR 5.63, 95% CI 1.77-17.94, p = 3.42 × 10-3; anxious feelings: OR 2.48, 95% CI 1.08-4.33, p = 2.89 × 10-2). CONCLUSION This Mendelian randomization study provides robust support for the notion that mood swings, highly strung and anxious feelings, are associated with an increased risk of developing GERD.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gastroenterology, People’s Hospital of Zhengzhou University, Henan Zhengzhou, China
| | - Meng Song
- Cancer Center, People’s Hospital of Zhengzhou University, Henan Zhengzhou, China
| | - Mingbo Cao
- Department of Gastroenterology, People’s Hospital of Zhengzhou University, Henan Zhengzhou, China
| |
Collapse
|
26
|
Wu XP, Niu PP, Liu H. Association between migraine and venous thromboembolism: a Mendelian randomization and genetic correlation study. Front Genet 2024; 15:1272599. [PMID: 38756451 PMCID: PMC11097659 DOI: 10.3389/fgene.2024.1272599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Objective Previous observational studies have reported an increased risk of venous thromboembolism (VTE) among individuals with migraine. This study aimed to investigate the causal effect of migraine on the development of VTE, as well as explore the genetic correlation between them. Methods We conducted a two-sample Mendelian randomization (MR) study using publicly available summary statistics from large-scale genome-wide association studies for migraine and VTE. Linkage disequilibrium score regression analysis was performed to estimate the genetic correlation between migraine and VTE. Results There were several shared risk variants (p-value < 5 × 10-8) between migraine and VTE. Linkage disequilibrium score regression analysis found a significant positive genetic correlation between migraine and VTE. The genetic correlations based on two migraine datasets were 0.208 (se = 0.031, p-value = 2.91 × 10-11) and 0.264 (se = 0.040, p-value = 4.82 × 10-11), respectively. Although main MR analysis showed that migraine was associated with an increased risk of VTE (odds ratio = 1.069, 95% confidence interval = 1.022-1.118, p-value = 0.004), the association attenuated to non-significance when using several other MR methods and using another set of genetic instruments. In addition, evidence of heterogeneity was found. Reverse MR analysis showed VTE was associated with increased risk of migraine with aura (odds ratio = 1.137, 95% confidence interval = 1.062-1.218, p-value = 2.47 × 10-4) with no evidence of pleiotropy and heterogeneity. Conclusion We showed suggestive evidence indicating an association between migraine and increased risk of VTE. Additionally, we found robust evidence suggesting that VTE is associated with an increased risk of migraine. The positive genetic correlation indicates that migraine and VTE has shared genetic basis. Further investigations will be necessary to address potential sex-specific effects in the analysis.
Collapse
Affiliation(s)
- Xu-Peng Wu
- Department of Neurology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Peng-Peng Niu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Liu
- Department of Neurology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
27
|
Xia Y, Xu Z, Zhang Y, Jiang D, Zhu Y, Liang X, Sun R. Circulating cytokines and vascular dementia: A bi-directional Mendelian randomization study. Exp Gerontol 2024; 189:112394. [PMID: 38452989 DOI: 10.1016/j.exger.2024.112394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Inflammatory responses are associated with the development of vascular dementia (VaD). Circulating cytokines modulate the inflammatory response and are important for the immune system. To further elucidate the role of the immune system in VaD, we used Mendelian randomization (MR) to comprehensively and bi-directionally assess the role of circulating cytokines in VaD. Using state-of-the-art genome-wide association studies, we primarily assessed whether different genetic levels of 41 circulating cytokines affect the risk of developing VaD and, in turn, whether the genetic risk of VaD affects these circulating cytokines. We used inverse variance weighting (IVW) and several other MR methods to assess the bidirectional causality between circulating cytokines and VaD, and performed sensitivity analyses. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was inversely associated with VaD risk [odds ratio (OR): 0.74, 95 % confidence interval (CI): 0.60-0.92, P = 0.007, 0.007]. VaD was associated with seven circulating cytokines: macrophage inflammatory protein 1b (MIP-1 beta) [OR: 1.05, 95 % CI: 1.01-1.08, P = 0.009], Interleukin-12p70 (IL-12) [OR: 1.04, 95 % CI: 1.00-1.08, P = 0.047], Interleukin-17 (IL-17) [OR: 1.04, 95 % CI: 1.00-1.07, P = 0.038], Interleukin-7 (IL-7) [OR: 1.07, 95 % CI: 1.02-1.12, P = 0.009], Interferon gamma (IFN-γ) [OR: 1.03, 95 % CI: 1.00-1.07, P = 0.046], Granulocyte-colony stimulating factor (GCSF) [OR: 1.06, 95 % CI: 1.02-1.09, P = 0.001], Fibroblast growth factor (FGF) [P = 0.001], and Fibroblast growth factor (FGF) [P = 0.001]. Fibroblast growth factor basic (FGF-Basic) [OR: 1.04, 95 % CI: 1.01-1.08, P = 0.02] were positively correlated. Circulating cytokines are associated with VaD, and further studies are needed to determine whether they are effective targets for intervention to prevent or treat VaD.
Collapse
Affiliation(s)
- Yuge Xia
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Zhirui Xu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Yicong Zhang
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing 100055, China
| | - Dongli Jiang
- Guangdong Women and Children Hospital, Guangzhou, Guangdong 510000, China
| | - Yunyi Zhu
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, China.
| | - Xiaolun Liang
- The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China.
| | - Rui Sun
- College of Acupuncture and Tuina, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China.
| |
Collapse
|
28
|
Wu Y, Kong XJ, Ji YY, Fan J, Ji CC, Chen XM, Ma YD, Tang AL, Cheng YJ, Wu SH. Serum electrolyte concentrations and risk of atrial fibrillation: an observational and mendelian randomization study. BMC Genomics 2024; 25:280. [PMID: 38493091 PMCID: PMC10944597 DOI: 10.1186/s12864-024-10197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is a prevalent arrhythmic condition resulting in increased stroke risk and is associated with high mortality. Electrolyte imbalance can increase the risk of AF, where the relationship between AF and serum electrolytes remains unclear. METHODS A total of 15,792 individuals were included in the observational study, with incident AF ascertainment in the Atherosclerosis Risk in Communities (ARIC) study. The Cox regression models were applied to calculate the hazard ratio (HR) and 95% confidence interval (CI) for AF based on different serum electrolyte levels. Mendelian randomization (MR) analyses were performed to examine the causal association. RESULTS In observational study, after a median 19.7 years of follow-up, a total of 2551 developed AF. After full adjustment, participants with serum potassium below the 5th percentile had a higher risk of AF relative to participants in the middle quintile. Serum magnesium was also inversely associated with the risk of AF. An increased incidence of AF was identified in individuals with higher serum phosphate percentiles. Serum calcium levels were not related to AF risk. Moreover, MR analysis indicated that genetically predicted serum electrolyte levels were not causally associated with AF risk. The odds ratio for AF were 0.999 for potassium, 1.044 for magnesium, 0.728 for phosphate, and 0.979 for calcium, respectively. CONCLUSIONS Serum electrolyte disorders such as hypokalemia, hypomagnesemia and hyperphosphatemia were associated with an increased risk of AF and may also serve to be prognostic factors. However, the present study did not support serum electrolytes as causal mediators for AF development.
Collapse
Affiliation(s)
- Yang Wu
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China
| | - Xiang-Jun Kong
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China
| | - Ying-Ying Ji
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China
| | - Jun Fan
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Cheng-Cheng Ji
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China
| | - Xu-Miao Chen
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China
| | - Yue-Dong Ma
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China
| | - An-Li Tang
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China
| | - Yun-Jiu Cheng
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Su-Hua Wu
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
29
|
Xu B, Ren J, Zhu S, Ding Y, Zhou W, Guo Q, Fang Y, Zheng J. Causal relationship between telomere length and risk of intracranial aneurysm: a bidirectional Mendelian randomization study. Front Neurol 2024; 15:1355895. [PMID: 38533417 PMCID: PMC10964484 DOI: 10.3389/fneur.2024.1355895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Background Telomere length is closely linked to the aging phenotype, where cellular aging results in the production of a cascade of cell factors and the senescence-associated secretory phenotype (SASP), leading to an inflammatory response. The presence of inflammation plays a crucial role in the formation of intracranial aneurysms. Nevertheless, the relationship between telomere length and intracranial aneurysms remains unclear. This study aims to explore the causal connection between telomere length and intracranial aneurysms through the utilization of Mendelian randomization (MR) analysis. Methods Data on telomere length were obtained from the genome-wide association studies conducted on the UK Biobank, comprising a total of 472,174 participants. Data on intracranial aneurysms were obtained from the summary dataset of the Global Genome-wide Association Study (GWAS) conducted by the International Stroke Genetics Consortium. The dataset consisted of 7,495 cases and 71,934 controls, all of European descent. Initially, the linkage disequilibrium score was used to investigate the connection between telomere length and intracranial aneurysms. Subsequently, a bidirectional MR was conducted using two-sample analysis to assess whether there is a causal connection between telomere length and intracranial aneurysm risk. The results were analyzed utilizing five MR methods, with the inverse variance weighted method serving as the main methodology. In addition, we did various analyses to evaluate the presence of heterogeneity, pleiotropy, and sensitivity in the study results. A reverse MR analysis was conducted to investigate potential reverse causal links. Results In the forward MR analysis, it was observed that both the inverse variance-weighted and weighted median analyses implied a potential causal relationship between longer telomere length and a decreased incidence of intracranial aneurysms (IVW: OR = 0.66, 95% CI: 0.47-0.92, p = 1.49 × 10-2). There was no heterogeneity or horizontal pleiotropy. The findings were verified to be robust through the utilization of leave-one-out analysis. The use of reverse MR analysis did not establish a potential causal link between the occurrence of intracranial aneurysms and telomere length. Conclusion There may exist a potential correlation between longer telomere length and a decreased likelihood of intracranial aneurysms within the European population. The present study offers novel insights into the correlation between telomere length and intracranial aneurysms. Additional research is required to clarify the underlying mechanisms and validate our discoveries in diverse populations.
Collapse
Affiliation(s)
- Bangjie Xu
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Jiangbin Ren
- Department of Neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Siqi Zhu
- Department of Oncology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Yu Ding
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Wei Zhou
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Qing Guo
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Yan Fang
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Jing Zheng
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| |
Collapse
|
30
|
Schraiber JG, Edge MD, Pennell M. Unifying approaches from statistical genetics and phylogenetics for mapping phenotypes in structured populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579721. [PMID: 38496530 PMCID: PMC10942266 DOI: 10.1101/2024.02.10.579721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In both statistical genetics and phylogenetics, a major goal is to identify correlations between genetic loci or other aspects of the phenotype or environment and a focal trait. In these two fields, there are sophisticated but disparate statistical traditions aimed at these tasks. The disconnect between their respective approaches is becoming untenable as questions in medicine, conservation biology, and evolutionary biology increasingly rely on integrating data from within and among species, and once-clear conceptual divisions are becoming increasingly blurred. To help bridge this divide, we derive a general model describing the covariance between the genetic contributions to the quantitative phenotypes of different individuals. Taking this approach shows that standard models in both statistical genetics (e.g., Genome-Wide Association Studies; GWAS) and phylogenetic comparative biology (e.g., phylogenetic regression) can be interpreted as special cases of this more general quantitative-genetic model. The fact that these models share the same core architecture means that we can build a unified understanding of the strengths and limitations of different methods for controlling for genetic structure when testing for associations. We develop intuition for why and when spurious correlations may occur using analytical theory and conduct population-genetic and phylogenetic simulations of quantitative traits. The structural similarity of problems in statistical genetics and phylogenetics enables us to take methodological advances from one field and apply them in the other. We demonstrate this by showing how a standard GWAS technique-including both the genetic relatedness matrix (GRM) as well as its leading eigenvectors, corresponding to the principal components of the genotype matrix, in a regression model-can mitigate spurious correlations in phylogenetic analyses. As a case study of this, we re-examine an analysis testing for co-evolution of expression levels between genes across a fungal phylogeny, and show that including covariance matrix eigenvectors as covariates decreases the false positive rate while simultaneously increasing the true positive rate. More generally, this work provides a foundation for more integrative approaches for understanding the genetic architecture of phenotypes and how evolutionary processes shape it.
Collapse
|
31
|
Fam BSDO, Feira MF, Cadore NA, Sbruzzi R, Hünemeier T, Abel L, Zhang Q, Casanova JL, Vianna FSL. Human genetic determinants of COVID-19 in Brazil: challenges and future plans. Genet Mol Biol 2024; 46:e20230128. [PMID: 38226654 PMCID: PMC10792479 DOI: 10.1590/1678-4685-gmb-2023-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024] Open
Abstract
COVID-19 pandemic represented a worldwide major challenge in different areas, and efforts undertaken by the scientific community led to the understanding of some of the genetic determinants that influence the different COVID-19 outcomes. In this paper, we review the studies about the role of human genetics in COVID-19 severity and how Brazilian studies also contributed to those findings. Rare variants in genes related to Inborn Errors of Immunity (IEI) in the type I interferons pathway, and its phenocopies, have been described as being causative of severe outcomes. IEI and its phenocopies are present in Brazil, not only in COVID-19 patients, but also in autoimmune conditions and severe reactions to yellow fever vaccine. In addition, studies focusing on common variants and GWAS studies encompassing worldwide patients have found several loci associated with COVID-19 severity. A GWAS study including only Brazilian COVID-19 patients identified a new locus 1q32.1 associated with COVID-19 severity. Thus, more comprehensive studies considering the Brazilian genomic diversity should be performed, since they can help to reveal not only what are the genetic determinants that contribute to the different outcomes for COVID-19 in the Brazilian population, but in the understanding of human genetics in different health conditions.
Collapse
Affiliation(s)
- Bibiana S. de Oliveira Fam
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Laboratório de Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INaGeMP), Porto Alegre, RS, Brazil
| | - Marilea Furtado Feira
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Laboratório de Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INaGeMP), Porto Alegre, RS, Brazil
| | - Nathan Araujo Cadore
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Laboratório de Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INaGeMP), Porto Alegre, RS, Brazil
| | - Renan Sbruzzi
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Laboratório de Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INaGeMP), Porto Alegre, RS, Brazil
| | - Tábita Hünemeier
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas/Universitat Pompeu Fabra), Barcelona, Spain
| | - Laurent Abel
- The Rockefeller University, Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Qian Zhang
- The Rockefeller University, Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Jean-Laurent Casanova
- The Rockefeller University, Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Necker Hospital for Sick Children, Department of Pediatrics, Paris, France
| | - Fernanda Sales Luiz Vianna
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Laboratório de Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INaGeMP), Porto Alegre, RS, Brazil
| |
Collapse
|
32
|
Yang Z, He H, He G, Zeng C, Hu Q. Investigating Causal Effects of Hematologic Traits on Lung Cancer: A Mendelian Randomization Study. Cancer Epidemiol Biomarkers Prev 2024; 33:96-105. [PMID: 37909945 DOI: 10.1158/1055-9965.epi-23-0725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Observational studies have suggested blood cell counts may act as predictors of cancer. It is not known whether these hematologic traits are causally associated with lung cancer. METHODS Two-sample bidirectional univariable Mendelian randomization (MR) and multivariable MR (MVMR) were performed to investigate the causal association between hematologic traits and the overall risk of lung cancer and three histologic subtypes [lung adenocarcinoma, squamous cell lung cancer, and small cell lung cancer (SCLC)]. The instrumental variables of 23 hematologic traits were strictly selected from large-scale genome-wide association studies. Inverse-variance weighted method and five extra methods were used to obtain robust causal estimates. RESULTS We found evidence that genetically influenced higher hematocrit [OR, 0.845; 95% confidence interval (CI), 0.783-0.913; P = 1.68 × 10-5] and hemoglobin concentration (OR, 0.868; 95% CI, 0.804-0.938; P = 3.20 × 10-4) and reticulocyte count (OR, 0.923; 95% CI, 0.872-0.976; P = 5.19 × 10-3) decreased lung carcinoma risk, especially in ever smokers. MVMR further identified hematocrit independently of smoking as an independent predictor. Subgroup analysis showed that a higher plateletcrit level increased the risk of small cell lung carcinoma (OR, 1.288; 95% CI, 1.126-1.474; P = 2.25 × 10-4). CONCLUSIONS Genetically driven higher levels of reticulocyte count and hematocrit decreased lung cancer risk. Higher plateletcrit had an adverse effect on SCLC. Hematologic traits may act as low-cost factors for lung cancer risk stratification. IMPACT Further studies are required to elucidate the potential mechanisms underlying the dysregulation of homeostasis related to hematologic traits, such as subclinical inflammation.
Collapse
Affiliation(s)
- Zhanghuan Yang
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao He
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Guangxu He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chudai Zeng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
33
|
Yazdanpanah N, Jumentier B, Yazdanpanah M, Ong KK, Perry JRB, Manousaki D. Mendelian randomization identifies circulating proteins as biomarkers for age at menarche and age at natural menopause. Commun Biol 2024; 7:47. [PMID: 38184718 PMCID: PMC10771430 DOI: 10.1038/s42003-023-05737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Age at menarche (AAM) and age at natural menopause (ANM) are highly heritable traits and have been linked to various health outcomes. We aimed to identify circulating proteins associated with altered ANM and AAM using an unbiased two-sample Mendelian randomization (MR) and colocalization approach. By testing causal effects of 1,271 proteins on AAM, we identified 22 proteins causally associated with AAM in MR, among which 13 proteins (GCKR, FOXO3, SEMA3G, PATE4, AZGP1, NEGR1, LHB, DLK1, ANXA2, YWHAB, DNAJB12, RMDN1 and HPGDS) colocalized. Among 1,349 proteins tested for causal association with ANM using MR, we identified 19 causal proteins among which 7 proteins (CPNE1, TYMP, DNER, ADAMTS13, LCT, ARL and PLXNA1) colocalized. Follow-up pathway and gene enrichment analyses demonstrated links between AAM-related proteins and obesity and diabetes, and between AAM and ANM-related proteins and various types of cancer. In conclusion, we identified proteomic signatures of reproductive ageing in women, highlighting biological processes at both ends of the reproductive lifespan.
Collapse
Affiliation(s)
- Nahid Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Basile Jumentier
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Mojgan Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Ken K Ong
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - John R B Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Despoina Manousaki
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada.
- Departments of Pediatrics, Biochemistry and Molecular Medicine, University of Montreal, Montreal, Canada.
| |
Collapse
|
34
|
Kang H, Pan S, Lin S, Wang YY, Yuan N, Jia P. PharmGWAS: a GWAS-based knowledgebase for drug repurposing. Nucleic Acids Res 2024; 52:D972-D979. [PMID: 37831083 PMCID: PMC10767932 DOI: 10.1093/nar/gkad832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Leveraging genetics insights to promote drug repurposing has become a promising and active strategy in pharmacology. Indeed, among the 50 drugs approved by FDA in 2021, two-thirds have genetically supported evidence. In this regard, the increasing amount of widely available genome-wide association studies (GWAS) datasets have provided substantial opportunities for drug repurposing based on genetics discoveries. Here, we developed PharmGWAS, a comprehensive knowledgebase designed to identify candidate drugs through the integration of GWAS data. PharmGWAS focuses on novel connections between diseases and small-molecule compounds derived using a reverse relationship between the genetically-regulated expression signature and the drug-induced signature. Specifically, we collected and processed 1929 GWAS datasets across a diverse spectrum of diseases and 724 485 perturbation signatures pertaining to a substantial 33609 molecular compounds. To obtain reliable and robust predictions for the reverse connections, we implemented six distinct connectivity methods. In the current version, PharmGWAS deposits a total of 740 227 genetically-informed disease-drug pairs derived from drug-perturbation signatures, presenting a valuable and comprehensive catalog. Further equipped with its user-friendly web design, PharmGWAS is expected to greatly aid the discovery of novel drugs, the exploration of drug combination therapies and the identification of drug resistance or side effects. PharmGWAS is available at https://ngdc.cncb.ac.cn/pharmgwas.
Collapse
Affiliation(s)
- Hongen Kang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Pan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiqi Lin
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin-Ying Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Na Yuan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| |
Collapse
|
35
|
Ye Y, Wang CE, Zhong R, Xiong XM. Associations of the circulating levels of cytokines with risk of ankylosing spondylitis: a Mendelian randomization study. Front Immunol 2023; 14:1291206. [PMID: 38173728 PMCID: PMC10761470 DOI: 10.3389/fimmu.2023.1291206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Background Observational studies have shown that changes in circulating cytokine/growth factor levels occur throughout the initiation and progression of ankylosing spondylitis (AS), yet whether they are etiologic or downstream effects remains unclear. In this study, we performed a summarized-level bidirectional Mendelian randomization (MR) analysis to shed light on the causal relationship between the two. Methods Genetic instrumental-variables (IVs) associated with circulating cytokine/growth factor levels were derived from a genome-wide association study (GWAS) of 8,293 European individuals, whereas summary data for the AS were obtained from a FinnGen GWAS of 166,144 participants. We used the inverse-variance-weighted (IVW) method as the main analysis for causal inference. Furthermore, several sensitivity analyses (MR-Egger, weighted median, MR-PRESSO and Cochran's Q test) were utilized to examine the robustness of the results. Finally, reverse MR analysis was performed to assess reverse causality between AS and circulating cytokine/growth factor levels. Results After Bonferroni correction, circulating levels of Cutaneous T-cell attracting (CTACK) and Monocyte specific chemokine 3 (MCP-3) were positively associated with a higher risk of AS (odds ratio [OR]: 1.224, 95% confidence interval [95% Cl]: 1.022 ~ 1.468, P = 0.028; OR: 1.250, 95% Cl: 1.016 ~ 1.539, P = 0.035). In addition, elevated circulating levels of Basic fibroblast growth factor (FGF-basic), Granulocyte colony-stimulating factor (G-CSF) and MCP-3 was considered a consequence of AS disease (β = 0.023, P = 0.017; β = 0.017, P = 0.025; β = 0.053, P = 0.025). The results of the sensitivity analysis were generally consistent. Conclusion The present study supplies genetic evidence for the relationship between circulating cytokine levels and AS. Targeted interventions of specific cytokines may help to reduce the risk of AS initiation and progression.
Collapse
Affiliation(s)
| | | | | | - Xiao-ming Xiong
- Department of Spinal Surgery, Affiliated Sports Hospital of Chengdu Sport University, Chengdu, Sichuan, China
| |
Collapse
|
36
|
Ghanbari F, Otomo N, Gamache I, Iwami T, Koike Y, Khanshour AM, Ikegawa S, Wise CA, Terao C, Manousaki D. Interrogating Causal Effects of Body Composition and Puberty-Related Risk Factors on Adolescent Idiopathic Scoliosis: A Two-Sample Mendelian Randomization Study. JBMR Plus 2023; 7:e10830. [PMID: 38130750 PMCID: PMC10731118 DOI: 10.1002/jbm4.10830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 12/23/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is the most common form of pediatric musculoskeletal disorder. Observational studies have pointed to several risk factors for AIS, but almost no evidence exists to support their causal association with AIS. Here, we applied Mendelian randomization (MR), known to limit bias from confounding and reverse causation, to investigate causal associations between body composition and puberty-related exposures and AIS risk in Europeans and Asians. For our two-sample MR studies, we used single nucleotide polymorphisms (SNPs) associated with body mass index (BMI), waist-hip ratio, lean mass, childhood obesity, bone mineral density (BMD), 25-hydroxyvitamin D (25OHD), age at menarche, and pubertal growth in large European genome-wide association studies (GWAS), and with adult osteoporosis risk and age of menarche in Biobank Japan. We extracted estimates of the aforementioned SNPs on AIS risk from the European or Asian subsets of the largest multiancestry AIS GWAS (N = 7956 cases/88,459 controls). The results of our inverse variance-weighted (IVW) MR estimates suggest no causal association between the aforementioned risk factors and risk of AIS. Pleiotropy-sensitive MR methods yielded similar results. However, restricting our analysis to European females with AIS, we observed a causal association between estimated BMD and the risk of AIS (IVW odds ratio for AIS = 0.1, 95% confidence interval 0.01 to 0.7, p = 0.02 per SD increase in estimated BMD), but this association was no longer significant after adjusting for BMI, body fat mass, and 25OHD and remained significant after adjusting for age at menarche in multivariable MR. In conclusion, we demonstrated a protective causal effect of BMD on AIS risk in females of European ancestry, but this effect was modified by BMI, body fat mass, and 25OHD levels. Future MR studies using larger AIS GWAS are needed to investigate small effects of the aforementioned exposures on AIS. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Faegheh Ghanbari
- Research Center of the Sainte‐Justine University HospitalUniversity of MontrealMontrealQuebecCanada
| | - Nao Otomo
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical Sciences, RIKENYokohamaJapan
- Department of Orthopedic SurgeryKeio University School of MedicineTokyoJapan
| | - Isabel Gamache
- Research Center of the Sainte‐Justine University HospitalUniversity of MontrealMontrealQuebecCanada
| | - Takuro Iwami
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical Sciences, RIKENYokohamaJapan
- Department of Orthopedic SurgeryKeio University School of MedicineTokyoJapan
| | - Yoshinao Koike
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical Sciences, RIKENYokohamaJapan
- Department of Orthopedic SurgeryHokkaido University Graduate School of MedicineSapporoJapan
| | - Anas M. Khanshour
- Scottish Rite for Children Center for Pediatric Bone Biology and Translational ResearchDallasTexasUSA
| | - Shiro Ikegawa
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical Sciences, RIKENYokohamaJapan
| | - Carol A. Wise
- Scottish Rite for Children Center for Pediatric Bone Biology and Translational ResearchDallasTexasUSA
- McDermott Center for Human Growth & DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Chikashi Terao
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical Sciences, RIKENYokohamaJapan
| | - Despoina Manousaki
- Research Center of the Sainte‐Justine University HospitalUniversity of MontrealMontrealQuebecCanada
- Department of PediatricsUniversity of MontrealMontrealCanada
- Department of Biochemistry and Molecular MedicineUniversity of MontrealMontrealQuebecCanada
| |
Collapse
|
37
|
Liu S, Wu Q, Wang S, He Y. Causal associations between circulation β-carotene and cardiovascular disease: A Mendelian randomization study. Medicine (Baltimore) 2023; 102:e36432. [PMID: 38050227 PMCID: PMC10695590 DOI: 10.1097/md.0000000000036432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
The causal association between circulating β-carotene concentrations and cardiovascular disease (CVD) remains controversial. We conducted a Mendelian randomization study to explore the effects of β-carotene on various cardiovascular diseases, including myocardial infarction, atrial fibrillation, heart failure, and stroke. Three single nucleotide polymorphisms (SNPs) associated with the β-carotene levels were obtained by searching published data and used as instrumental variables. Genetic association estimates for 4 CVDs (including myocardial infarction, atrial fibrillation, heart failure, and stroke) in the primary analysis, blood pressure and serum lipids (high-density lipoprotein [HDL] cholesterol, LDL cholesterol, and triglycerides) in the secondary analysis were obtained from large-scale genome-wide association studies (GWASs). We applied inverse variance-weighted as the primary analysis method, and 3 others were used to verify as sensitivity analysis. Genetically predicted circulating β-carotene levels (natural log-transformed, µg/L) were positively associated with myocardial infarction (odds ratio [OR] 1.10, 95% confidence interval [CI] 1.02-1.18, P = .011) after Bonferroni correction. No evidence supported the causal effect of β-carotene on atrial fibrillation (OR 1.02, 95% CI 0.96-1.09, P = .464), heart failure (OR 1.07, 95% CI 0.97-1.19, P = .187), stroke (OR 1.03, 95% CI 0.93-1.15, P = .540), blood pressure (P > .372) and serum lipids (P > .239). Sensitivity analysis produced consistent results. This study provides evidence for a causal relationship between circulating β-carotene and myocardial infarction. These findings have important implications for understanding the role of β-carotene in CVD and may inform dietary recommendations and intervention strategies for preventing myocardial infarction.
Collapse
Affiliation(s)
- Shuangyan Liu
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaoyu Wu
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shangshang Wang
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying He
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
38
|
Marcoux E, Sosnowski D, Ninni S, Mackasey M, Cadrin-Tourigny J, Roberts JD, Olesen MS, Fatkin D, Nattel S. Genetic Atrial Cardiomyopathies: Common Features, Specific Differences, and Broader Relevance to Understanding Atrial Cardiomyopathy. Circ Arrhythm Electrophysiol 2023; 16:675-698. [PMID: 38018478 DOI: 10.1161/circep.123.003750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Atrial cardiomyopathy is a condition that causes electrical and contractile dysfunction of the atria, often along with structural and functional changes. Atrial cardiomyopathy most commonly occurs in conjunction with ventricular dysfunction, in which case it is difficult to discern the atrial features that are secondary to ventricular dysfunction from those that arise as a result of primary atrial abnormalities. Isolated atrial cardiomyopathy (atrial-selective cardiomyopathy [ASCM], with minimal or no ventricular function disturbance) is relatively uncommon and has most frequently been reported in association with deleterious rare genetic variants. The genes involved can affect proteins responsible for various biological functions, not necessarily limited to the heart but also involving extracardiac tissues. Atrial enlargement and atrial fibrillation are common complications of ASCM and are often the predominant clinical features. Despite progress in identifying disease-causing rare variants, an overarching understanding and approach to the molecular pathogenesis, phenotypic spectrum, and treatment of genetic ASCM is still lacking. In this review, we aim to analyze the literature relevant to genetic ASCM to understand the key features of this rather rare condition, as well as to identify distinct characteristics of ASCM and its arrhythmic complications that are related to specific genotypes. We outline the insights that have been gained using basic research models of genetic ASCM in vitro and in vivo and correlate these with patient outcomes. Finally, we provide suggestions for the future investigation of patients with genetic ASCM and improvements to basic scientific models and systems. Overall, a better understanding of the genetic underpinnings of ASCM will not only provide a better understanding of this condition but also promises to clarify our appreciation of the more commonly occurring forms of atrial cardiomyopathy associated with ventricular dysfunction.
Collapse
Affiliation(s)
- Edouard Marcoux
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Faculty of Pharmacy, Université de Montréal. (E.M.)
| | - Deanna Sosnowski
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (D.S., M.M., S. Nattel)
| | - Sandro Ninni
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, France (S. Ninni)
| | - Martin Mackasey
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (D.S., M.M., S. Nattel)
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Faculty of Medicine, Université de Montréal. (J.C.-T.)
| | - Jason D Roberts
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Canada (J.D.R.)
| | - Morten Salling Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (M.S.O.)
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst (D.F.)
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington (D.F.)
- Department of Cardiology, St Vincent's Hospital, Darlinghurst, NSW, Australia (D.F.)
| | - Stanley Nattel
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal. (S. Nattel.)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (D.S., M.M., S. Nattel)
- Institute of Pharmacology. West German Heart and Vascular Center, University Duisburg-Essen, Germany (S. Nattel)
- IHU LYRIC & Fondation Bordeaux Université de Bordeaux, France (S. Nattel)
| |
Collapse
|
39
|
Pasha U, Hanif K, Nisar H, Abid R, Mirza MU, Wajid B, Sadaf S. A novel missense compound heterozygous variant in TLR1 gene is associated with susceptibility to rheumatoid arthritis - structural perspective and functional annotations. Clin Rheumatol 2023; 42:3097-3111. [PMID: 37479888 DOI: 10.1007/s10067-023-06702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
INTRODUCTION Besides human leukocyte antigen (HLA-DRB1) locus, more than 100 loci across the genome have been identified and linked with the onset, expression and/or progression of rheumatoid arthritis (RA). However, there are still grey areas in our understanding of the key genetic contributors of the disease, particularly in familial cases. METHODS In the present study, we have performed the whole exome sequencing (WES) of RA patients from two consanguineous families of Pakistan in a quest to identify novel, high-impact, RA-susceptibility genetic variants. RESULTS Through stepwise filtering, around 17,000 variants (common in the affected members) were recognized, out of which 2651 were predicted to be deleterious. Of these, 196 had direct relevance to RA. When selected for homozygous recessive mode of inheritance, two novel pathogenic variants (c.1324T>C, p.Cys442→Arg442; c.2036T>C, p.Ile679→Thr679) in the TLR1 gene displayed the role of compound heterozygosity in modulating the phenotypic expression and penetrance of RA. The structural and functional consequences of the TLR1 missense single nucleotide mutations (Cys442→Arg442; Ile679→Thr679) were evaluated through molecular dynamic simulation (MDS) studies. Analysis showed domain's rigidification, conferring stability to mutant TLR1-TIR/TIRAP-TIR complex with concomitant increase in molecular interactions with pro-inflammatory cytokines, compared to the wild-type conformation. Gene co-expression network analysis highlighted interlinked partnering genes along with interleukin-6 production of TLR1 (corrected p-value 2.98e-4) and acetylcholine receptor activity of CHRNG (corrected p-value 6.12e-2) as highly enriched associated functions. CONCLUSION The results, validated through case-control study subjects, suggested that the variants identified through WES and confirmed through Sanger sequencing and MDS are the novel disease variants and are likely to confer RA-susceptibility, independently and/or in a family-specific context. Key Points • Exploration of population based/ethno-specific big data is imperative to identify novel causal variants of RA. • Two new deleterious missense mutations in mutational hotspot exon 4 of TLR1 gene have been identified in Pakistani RA patients. • MD simulation data provides evidence for domain's rigidification, conferring stability to mutant TLR1-TIR/TIRAP-TIR complex, with concomitant increase in production of pro-inflammatory cytokines, thus adding to the onset/erosive outcome of RA.
Collapse
Affiliation(s)
- Usman Pasha
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Kiran Hanif
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Haseeb Nisar
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Rizwan Abid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Bilal Wajid
- Department of Computer Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
40
|
Chen W, Zhang Z, Liu K, Jiang D, Sun X, Mao Y, Li S, Ye D. Circulating Copper and Liver Cancer. Biol Trace Elem Res 2023; 201:4649-4656. [PMID: 36633787 DOI: 10.1007/s12011-023-03554-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
The association between circulating copper and the risk of liver cancer has been investigated by previous studies, while the findings were inconsistent. Thus, we aimed to evaluate the association between circulating copper and liver cancer by using meta-analysis and Mendelian randomization (MR). For meta-analysis, PubMed and Web of Science were searched to identify eligible studies published before April 4, 2022. Standardized mean difference (SMD) with 95% confidence interval (CI) in circulating copper level between liver cancer patients and controls were pooled. Furthermore, we selected genetic instruments for circulating copper from a genome-wide association study (GWAS) to conduct MR analysis. The summary statistics related to liver cancer were obtained from two large independent cohorts, UKBB and FinnGen, respectively. MR analysis was performed mainly by inverse-variance weighted (IVW) approach, followed by maximum-likelihood method as sensitivity analysis. In meta-analysis of eight studies, circulating copper was found to be higher in liver cancer patients (SMD: 1.65; 95% CI: 0.65 to 2.65) with high heterogeneity (I2 = 96.40%, P = 0.001). However, inconsistent findings were observed among subgroups with high evidence. In MR analysis, genetically predicted circulating copper was not significantly associated with the risk of liver cancer by IVW in UKBB (OR: 1.38; 95% CI: 0.72 to 2.65) and FinnGen (OR: 1.10; 95% CI: 0.69 to 1.73) separately, and the pooled results produced similar results (OR: 1.18, 95% CI: 0.81 to 1.72). Moreover, non-significant finding was confirmed by using maximum-likelihood method. There is no sufficient evidence to demonstrate that high levels of circulating copper increase the risks of liver cancer.
Collapse
Affiliation(s)
- Weiwei Chen
- School of Public Health, Zhejiang Chinese Medical University, Binwen Road 548, Hangzhou, 310053, Zhejiang, China
| | - Zhiwei Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ke Liu
- School of Public Health, Zhejiang Chinese Medical University, Binwen Road 548, Hangzhou, 310053, Zhejiang, China
| | - Die Jiang
- School of Public Health, Zhejiang Chinese Medical University, Binwen Road 548, Hangzhou, 310053, Zhejiang, China
| | - Xiaohui Sun
- School of Public Health, Zhejiang Chinese Medical University, Binwen Road 548, Hangzhou, 310053, Zhejiang, China
| | - Yingying Mao
- School of Public Health, Zhejiang Chinese Medical University, Binwen Road 548, Hangzhou, 310053, Zhejiang, China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Binwen Road 548, Hangzhou, 310053, Zhejiang, China.
| | - Ding Ye
- School of Public Health, Zhejiang Chinese Medical University, Binwen Road 548, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
41
|
Liu J, Osman AEG, Bolton K, Godley LA. Germline predisposition to clonal hematopoiesis. Leuk Res 2023; 132:107344. [PMID: 37421681 DOI: 10.1016/j.leukres.2023.107344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/10/2023]
Abstract
We now recognize that with aging, hematopoietic stem and progenitor cells (HSPCs) acquire mutations that confer a fitness advantage and clonally expand in a process now termed clonal hematopoiesis (CH). Because CH predisposes to a variety of health problems, including cancers, cardiovascular diseases, and inflammatory conditions, there is intense interest in the inherited alleles associated with the development of CH. DNA variants near TERT, SMC4, KPNA4, IL12A, CD164, and ATM confer the strongest associations. In this review, we discuss our current state of knowledge regarding germline predisposition to CH.
Collapse
Affiliation(s)
- Jie Liu
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Afaf E G Osman
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Kelly Bolton
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Lucy A Godley
- Division of Hematology/Oncology, Department of Medicine, and the Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
42
|
Xu S, Wang P, Fung WK, Liu Z. A novel penalized inverse-variance weighted estimator for Mendelian randomization with applications to COVID-19 outcomes. Biometrics 2023; 79:2184-2195. [PMID: 35942938 PMCID: PMC9538932 DOI: 10.1111/biom.13732] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/14/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
Mendelian randomization utilizes genetic variants as instrumental variables (IVs) to estimate the causal effect of an exposure variable on an outcome of interest even in the presence of unmeasured confounders. However, the popular inverse-variance weighted (IVW) estimator could be biased in the presence of weak IVs, a common challenge in MR studies. In this article, we develop a novel penalized inverse-variance weighted (pIVW) estimator, which adjusts the original IVW estimator to account for the weak IV issue by using a penalization approach to prevent the denominator of the pIVW estimator from being close to zero. Moreover, we adjust the variance estimation of the pIVW estimator to account for the presence of balanced horizontal pleiotropy. We show that the recently proposed debiased IVW (dIVW) estimator is a special case of our proposed pIVW estimator. We further prove that the pIVW estimator has smaller bias and variance than the dIVW estimator under some regularity conditions. We also conduct extensive simulation studies to demonstrate the performance of the proposed pIVW estimator. Furthermore, we apply the pIVW estimator to estimate the causal effects of five obesity-related exposures on three coronavirus disease 2019 (COVID-19) outcomes. Notably, we find that hypertensive disease is associated with an increased risk of hospitalized COVID-19; and peripheral vascular disease and higher body mass index are associated with increased risks of COVID-19 infection, hospitalized COVID-19, and critically ill COVID-19.
Collapse
Affiliation(s)
- Siqi Xu
- Department of Statistics and Actuarial ScienceThe University of Hong KongHong Kong SARChina
| | - Peng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wing Kam Fung
- Department of Statistics and Actuarial ScienceThe University of Hong KongHong Kong SARChina
| | - Zhonghua Liu
- Department of BiostatisticsColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
43
|
Yu W, Mei Y, Lu Z, Zhou L, Jia F, Chen S, Wang Z. The causal relationship between genetically determined telomere length and meningiomas risk. Front Neurol 2023; 14:1178404. [PMID: 37693759 PMCID: PMC10484632 DOI: 10.3389/fneur.2023.1178404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Background Studies have shown that longer leukocyte telomere length (LTL) is significantly associated with increased risk of meningioma. However, there is limited evidence concerning the causal association of LTL with benign and malignant meningiomas or with the location of benign tumors. Methods We used three LTL datasets from different sources, designated by name and sample size as LTL-78592, LTL-9190, and LTL-472174. The linkage disequilibrium score (LDSC) was used to explore the association between LTL and meningioma. We utilized two-sample bidirectional Mendelian randomization (TSMR) to evaluate whether LTL is causally related to meningioma risk. We adjusted for confounders by conducting multivariable Mendelian randomization (MVMR). Results In the LTL-78592, longer LTL was significantly associated with increased risk of malignant [odds ratio (OR) = 5.14, p = 1.04 × 10-5], benign (OR = 4.81, p < 0.05), benign cerebral (OR = 5.36, p < 0.05), and benign unspecified meningioma (OR = 8.26, p < 0.05). The same results were obtained for the LTL-9190. In the LTL-472174, longer LTL was significantly associated with increased risk of malignant (OR = 4.94, p < 0.05), benign (OR = 3.14, p < 0.05), and benign cerebral meningioma (OR = 3.59, p < 0.05). Similar results were obtained in the MVMR. In contrast, only benign cerebral meningioma displayed a possible association with longer LTL (OR = 1.01, p < 0.05). No heterogeneity or horizontal pleiotropy was detected. Conclusion In brief, genetically predicted longer LTL may increase the risk of benign, malignant, and benign cerebral meningiomas, regardless of the LTL measure, in European populations.
Collapse
Affiliation(s)
- Weijie Yu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Brain Center, Xiamen, China
| | - Yunyun Mei
- Department of Neurosurgery, Fudan University Shanghai Cancer Center (Xiamen Hospital), Xiamen, China
| | - Zhenwei Lu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Brain Center, Xiamen, China
| | - Liwei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Brain Center, Xiamen, China
| | - Fang Jia
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Brain Center, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Sifang Chen
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Brain Center, Xiamen, China
| | - Zhanxiang Wang
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Brain Center, Xiamen, China
| |
Collapse
|
44
|
Butler-Laporte G, Farjoun Y, Chen Y, Hultström M, Liang KYH, Nakanishi T, Su CY, Yoshiji S, Forgetta V, Richards JB. Increasing serum iron levels and their role in the risk of infectious diseases: a Mendelian randomization approach. Int J Epidemiol 2023; 52:1163-1174. [PMID: 36773317 PMCID: PMC10396421 DOI: 10.1093/ije/dyad010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/02/2023] [Indexed: 02/13/2023] Open
Abstract
OBJECTIVES Increased iron stores have been associated with elevated risks of different infectious diseases, suggesting that iron supplementation may increase the risk of infections. However, these associations may be biased by confounding or reverse causation. This is important, since up to 19% of the population takes iron supplementation. We used Mendelian randomization (MR) to bypass these biases and estimate the causal effect of iron on infections. METHODS As instrumental variables, we used genetic variants associated with iron biomarkers in two genome-wide association studies (GWASs) of European ancestry participants. For outcomes, we used GWAS results from the UK Biobank, FinnGen, the COVID-19 Host Genetics Initiative or 23andMe, for seven infection phenotypes: 'any infections', combined, COVID-19 hospitalization, candidiasis, pneumonia, sepsis, skin and soft tissue infection (SSTI) and urinary tract infection (UTI). RESULTS Most of our analyses showed increasing iron (measured by its biomarkers) was associated with only modest changes in the odds of infectious outcomes, with all 95% odds ratios confidence intervals within the 0.88 to 1.26 range. However, for the three predominantly bacterial infections (sepsis, SSTI, UTI), at least one analysis showed a nominally elevated risk with increased iron stores (P <0.05). CONCLUSION Using MR, we did not observe an increase in risk of most infectious diseases with increases in iron stores. However for bacterial infections, higher iron stores may increase odds of infections. Hence, using genetic variation in iron pathways as a proxy for iron supplementation, iron supplements are likely safe on a population level, but we should continue the current practice of conservative iron supplementation during bacterial infections or in those at high risk of developing them.
Collapse
Affiliation(s)
- Guillaume Butler-Laporte
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
| | - Yossi Farjoun
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Yiheng Chen
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Michael Hultström
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Kevin Y H Liang
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Tomoko Nakanishi
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Kyoto-McGill International Collaborative School in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Chen-Yang Su
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Satoshi Yoshiji
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada
- Kyoto-McGill International Collaborative School in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Vincenzo Forgetta
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Twin Research, King’s College London, London, UK
- 5 Prime Sciences Inc., Montreal, QC, Canada
| |
Collapse
|
45
|
Sun Y, Yang S, Dai W, Zheng Z, Zhang X, Zheng Y, Wang J, Bi S, Duan Y, Wu S, Kong J. Causal association between serum total bilirubin and cholelithiasis: a bidirectional two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1178486. [PMID: 37469975 PMCID: PMC10352914 DOI: 10.3389/fendo.2023.1178486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023] Open
Abstract
Background Observational studies about the association between serum total bilirubin and cholelithiasis are inconsistent. Hence, it is essential to reevaluate the association between serum total bilirubin and cholelithiasis and to verify whether such association is causal or not. Methods We selected single-nucleotide polymorphisms (SNPs) that are strongly associated with exposure as instrumental variable and conducted a bidirectional two-sample Mendelian randomization (MR) study to explore the causal association between serum total bilirubin and cholelithiasis. We implemented the inverse-variance weighted approach as a primary analysis to combine the Wald ratio estimates. Four additional analyses, namely, MR-Egger regression, weighted median, weighted mode, and MR-pleiotropy residual sum and outlier (PRESSO), were utilized to investigate the causal association and the influence of potential pleiotropy. Results A total of 116 SNPs were selected as valid instrumental variables to estimate the causal association of serum total bilirubin on cholelithiasis, and causal association between genetically determined serum total bilirubin and cholelithiasis was demonstrated [beta = 0.10; 95% confident interval (CI), 0.07 to 0.14; p < 0.001]. Likewise, the other methods, namely, the weighted median (beta = 0.12; 95% CI, 0.08 to 0.15; p < 0.001), MR-Egger (beta = 0.11; 95% CI, 0.08 to 0.15; p < 0.001), weighted mode (beta = 0.11; 95% CI, 0.08 to 0.15; p < 0.001), and MR-PRESSO approaches, further confirmed that this result (p = 0.054) indicates similar results. In addition, seven SNPs were selected as instrumental variable to estimate causal association of cholelithiasis on serum total bilirubin, and the result supported the causal effect of cholelithiasis to serum total bilirubin (beta = 0.12; 95% CI, 0.09 to 0.15; p < 0.001). At the same time, the other methods, namely, the weighted median (beta = 0.10; 95% CI, 0.06 to 0.13; p < 0.001), MR-Egger (beta = 0.12; 95% CI, 0.07 to 0.18; p = 0.007), weighted mode (beta = 0.09; 95% CI, 0.03 to 0.14, p = 0.019), and MR-PRESSO methods, further confirmed this result (p < 0.001). Conclusion Our MR study revealed that the serum total bilirubin was causally associated with the risk of cholelithiasis, and the genetic predisposition to cholelithiasis was causally associated with the increased serum total bilirubin levels.
Collapse
Affiliation(s)
- Yang Sun
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shaojie Yang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wanlin Dai
- Innovation Institute of China Medical University, Shenyang, China
| | - Zhuyuan Zheng
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaolin Zhang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuting Zheng
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingnan Wang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shiyuan Bi
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yunlong Duan
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuodong Wu
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jing Kong
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
46
|
He M, Yang T, Zhou P, Bu P, Yang X, Zou Y, Zhong A. A Mendelian randomization study on causal effects of 25(OH) vitamin D levels on diabetic nephropathy. BMC Nephrol 2023; 24:192. [PMID: 37369991 DOI: 10.1186/s12882-023-03186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 04/27/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Vitamin D supplementation is associated with a lower incidence of diabetic nephropathy (DN); however, whether this association is causative is uncertain. METHODS We used two-sample Mendelian randomization to examine the causal influence of vitamin D on diabetic nephropathy in 7,751 individuals with type I diabetes-related nephropathy (T1DN) and 9,933 individuals with type II diabetes-related nephropathy (T2DN). Meanwhile, we repeated some previous studies on the influence of KIM-1 (kidney injury molecule 1) and body mass index (BMI) on DN. Additionally, to test the validity of the instruments variable for vitamin D, we conducted two negative controls Mendelian randomization (MR) on breast and prostate cancer, and a positive control MR on multiple sclerosis. RESULTS Results of the MR analysis showed that there was no causal association between 25(OH)D with the early/later stage of T1DN (early: OR = 0.903, 95%CI: 0.229 to 3.555; later: OR = 1.213, 95%CI: 0.367 to 4.010) and T2DN (early: OR = 0.588, 95%CI: 0.182 to 1.904; later: OR = 0.904, 95%CI: 0.376 to 2.173), nor with the kidney function of patients with diabetes mellitus: eGFRcyea (creatinine-based estimated GFR) (Beta = 0.007, 95%CI: -0.355 to 0.369)) or UACR (urinary albumin creatinine ratio) (Beta = 0.186, 95%CI: -0.961 to 1.333)). CONCLUSIONS We found no evidence that Vitamin D was causally associated with DN or kidney function in diabetic patients.
Collapse
Affiliation(s)
- Mingjie He
- Jiangxi Provincial Key Laboratory of Nephrology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Ting Yang
- Jiangxi Provincial Key Laboratory of Nephrology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Ping Zhou
- Jiangxi Provincial Key Laboratory of Nephrology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Peiyan Bu
- Medical College of Nanchang University, Nanchang University, 330006, Nanchang City, China
| | - Xionghui Yang
- Medical College of Nanchang University, Nanchang University, 330006, Nanchang City, China
| | - Yan Zou
- Jiangxi Provincial Key Laboratory of Nephrology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Aimin Zhong
- Jiangxi Provincial Key Laboratory of Nephrology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
- Medical College of Nanchang University, Nanchang University, 330006, Nanchang City, China.
| |
Collapse
|
47
|
Otomo N, Khanshour AM, Koido M, Takeda K, Momozawa Y, Kubo M, Kamatani Y, Herring JA, Ogura Y, Takahashi Y, Minami S, Uno K, Kawakami N, Ito M, Sato T, Watanabe K, Kaito T, Yanagida H, Taneichi H, Harimaya K, Taniguchi Y, Shigematsu H, Iida T, Demura S, Sugawara R, Fujita N, Yagi M, Okada E, Hosogane N, Kono K, Nakamura M, Chiba K, Kotani T, Sakuma T, Akazawa T, Suzuki T, Nishida K, Kakutani K, Tsuji T, Sudo H, Iwata A, Inami S, Wise CA, Kochi Y, Matsumoto M, Ikegawa S, Watanabe K, Terao C. Evidence of causality of low body mass index on risk of adolescent idiopathic scoliosis: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1089414. [PMID: 37415668 PMCID: PMC10319580 DOI: 10.3389/fendo.2023.1089414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/17/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Adolescent idiopathic scoliosis (AIS) is a disorder with a three-dimensional spinal deformity and is a common disease affecting 1-5% of adolescents. AIS is also known as a complex disease involved in environmental and genetic factors. A relation between AIS and body mass index (BMI) has been epidemiologically and genetically suggested. However, the causal relationship between AIS and BMI remains to be elucidated. Material and methods Mendelian randomization (MR) analysis was performed using summary statistics from genome-wide association studies (GWASs) of AIS (Japanese cohort, 5,327 cases, 73,884 controls; US cohort: 1,468 cases, 20,158 controls) and BMI (Biobank Japan: 173430 individual; meta-analysis of genetic investigation of anthropometric traits and UK Biobank: 806334 individuals; European Children cohort: 39620 individuals; Population Architecture using Genomics and Epidemiology: 49335 individuals). In MR analyses evaluating the effect of BMI on AIS, the association between BMI and AIS summary statistics was evaluated using the inverse-variance weighted (IVW) method, weighted median method, and Egger regression (MR-Egger) methods in Japanese. Results Significant causality of genetically decreased BMI on risk of AIS was estimated: IVW method (Estimate (beta) [SE] = -0.56 [0.16], p = 1.8 × 10-3), weighted median method (beta = -0.56 [0.18], p = 8.5 × 10-3) and MR-Egger method (beta = -1.50 [0.43], p = 4.7 × 10-3), respectively. Consistent results were also observed when using the US AIS summary statistic in three MR methods; however, no significant causality was observed when evaluating the effect of AIS on BMI. Conclusions Our Mendelian randomization analysis using large studies of AIS and GWAS for BMI summary statistics revealed that genetic variants contributing to low BMI have a causal effect on the onset of AIS. This result was consistent with those of epidemiological studies and would contribute to the early detection of AIS.
Collapse
Affiliation(s)
- Nao Otomo
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Anas M. Khanshour
- Center for Translational Research, Scottish Rite for Children, Dallas, TX, United States
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuki Takeda
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| | - John A. Herring
- Department of Orthopaedic Surgery , Scottish Rite for Children, Dallas, TX, United States
- Department of Orthopaedic Surgery and Pediatric, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yoji Ogura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Takahashi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shohei Minami
- Department of Orthopaedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Koki Uno
- Department of Orthopaedic Surgery, National Hospital Organization, Kobe Medical Center, Kobe, Japan
| | - Noriaki Kawakami
- Department of Orthopaedic Surgery, Meijo Hospital, Nagoya, Japan
| | - Manabu Ito
- Department of Orthopaedic Surgery, National Hospital Organization, Hokkaido Medical Center, Sapporo, Japan
| | - Tatsuya Sato
- Department of Orthopaedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kei Watanabe
- Department of Orthopaedic Surgery, Niigata University Medical and Dental General Hospital, Niigata, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Haruhisa Yanagida
- Department of Orthopaedic and Spine Surgery, Fukuoka Children’s Hospital, Fukuoka, Japan
| | - Hiroshi Taneichi
- Department of Orthopaedic Surgery, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Katsumi Harimaya
- Department of Orthopaedic Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yuki Taniguchi
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Shigematsu
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Japan
| | - Takahiro Iida
- Department of Orthopaedic Surgery, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
- Department of Orthopaedic Surgery, Teine Keijinkai Hospital, Sapporo, Japan
| | - Satoru Demura
- Department of Orthopaedic Surgery Graduated School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Ryo Sugawara
- Department of Orthopaedic Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Surgery, Fujita Health University, Toyoake, Japan
| | - Mitsuru Yagi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Surgery, International University of Health and Welfare School of Medicine, Narita, Japan
| | - Eijiro Okada
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Naobumi Hosogane
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Katsuki Kono
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Surgery, Kono Orthopaedic Clinic, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiro Chiba
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Surgery, Fujita Health University, Toyoake, Japan
| | - Toshiaki Kotani
- Department of Orthopaedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Tsuyoshi Sakuma
- Department of Orthopaedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Tsutomu Akazawa
- Department of Orthopaedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Teppei Suzuki
- Department of Orthopaedic Surgery, National Hospital Organization, Kobe Medical Center, Kobe, Japan
| | - Kotaro Nishida
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenichiro Kakutani
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taichi Tsuji
- Department of Orthopaedic Surgery, Meijo Hospital, Nagoya, Japan
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akira Iwata
- Department of Preventive and Therapeutic Research for Metastatic Bone Tumor, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Inami
- Department of Orthopaedic Surgery, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Carol A. Wise
- Center for Translational Research, Scottish Rite for Children, Dallas, TX, United States
- Department of Orthopaedic Surgery and Pediatric, University of Texas Southwestern Medical Center, Dallas, TX, United States
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental and University, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
48
|
Flint J. The genetic basis of major depressive disorder. Mol Psychiatry 2023; 28:2254-2265. [PMID: 36702864 PMCID: PMC10611584 DOI: 10.1038/s41380-023-01957-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
The genetic dissection of major depressive disorder (MDD) ranks as one of the success stories of psychiatric genetics, with genome-wide association studies (GWAS) identifying 178 genetic risk loci and proposing more than 200 candidate genes. However, the GWAS results derive from the analysis of cohorts in which most cases are diagnosed by minimal phenotyping, a method that has low specificity. I review data indicating that there is a large genetic component unique to MDD that remains inaccessible to minimal phenotyping strategies and that the majority of genetic risk loci identified with minimal phenotyping approaches are unlikely to be MDD risk loci. I show that inventive uses of biobank data, novel imputation methods, combined with more interviewer diagnosed cases, can identify loci that contribute to the episodic severe shifts of mood, and neurovegetative and cognitive changes that are central to MDD. Furthermore, new theories about the nature and causes of MDD, drawing upon advances in neuroscience and psychology, can provide handles on how best to interpret and exploit genetic mapping results.
Collapse
Affiliation(s)
- Jonathan Flint
- Department of Psychiatry and Biobehavioral Sciences, Billy and Audrey Wilder Endowed Chair in Psychiatry and Neuroscience, Center for Neurobehavioral Genetics, 695 Charles E. Young Drive South, 3357B Gonda, Box 951761, Los Angeles, CA, 90095-1761, USA.
| |
Collapse
|
49
|
Abstract
BACKGROUND Autoimmune hepatitis has an unknown cause and genetic associations that are not disease-specific or always present. Clarification of its missing causality and heritability could improve prevention and management strategies. AIMS Describe the key epigenetic and genetic mechanisms that could account for missing causality and heritability in autoimmune hepatitis; indicate the prospects of these mechanisms as pivotal factors; and encourage investigations of their pathogenic role and therapeutic potential. METHODS English abstracts were identified in PubMed using multiple key search phases. Several hundred abstracts and 210 full-length articles were reviewed. RESULTS Environmental induction of epigenetic changes is the prime candidate for explaining the missing causality of autoimmune hepatitis. Environmental factors (diet, toxic exposures) can alter chromatin structure and the production of micro-ribonucleic acids that affect gene expression. Epistatic interaction between unsuspected genes is the prime candidate for explaining the missing heritability. The non-additive, interactive effects of multiple genes could enhance their impact on the propensity and phenotype of autoimmune hepatitis. Transgenerational inheritance of acquired epigenetic marks constitutes another mechanism of transmitting parental adaptations that could affect susceptibility. Management strategies could range from lifestyle adjustments and nutritional supplements to precision editing of the epigenetic landscape. CONCLUSIONS Autoimmune hepatitis has a missing causality that might be explained by epigenetic changes induced by environmental factors and a missing heritability that might reflect epistatic gene interactions or transgenerational transmission of acquired epigenetic marks. These unassessed or under-evaluated areas warrant investigation.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Professor Emeritus of Medicine, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
50
|
Liu B, Lyu L, Zhou W, Song J, Ye D, Mao Y, Chen GB, Sun X. Associations of the circulating levels of cytokines with risk of amyotrophic lateral sclerosis: a Mendelian randomization study. BMC Med 2023; 21:39. [PMID: 36737740 PMCID: PMC9898905 DOI: 10.1186/s12916-023-02736-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that is accompanied by muscle weakness and muscle atrophy, typically resulting in death within 3-5 years from the disease occurrence. Though the cause of ALS remains unclear, increasing evidence has suggested that inflammation is involved in the pathogenesis of ALS. Thus, we performed two-sample Mendelian randomization (MR) analyses to estimate the associations of circulating levels of cytokines and growth factors with the risk of ALS. METHODS Genetic instrumental variables for circulating cytokines and growth factors were identified from a genome-wide association study (GWAS) of 8293 European participants. Summary statistics of ALS were obtained from a GWAS including 20,806 ALS cases and 59,804 controls of European ancestry. We used the inverse-variance weighted (IVW) method as the primary analysis. To test the robustness of our results, we further performed the simple-median method, weighted-median method, MR-Egger regression, and MR pleiotropy residual sum and outlier test. Finally, a reverse MR analysis was performed to assess the possibility of reverse causation between ALS and the cytokines that we identified. RESULTS After Bonferroni correction, genetically predicted circulating level of basic fibroblast growth factor (FGF-basic) was suggestively associated with a lower risk of ALS [odds ratio (OR): 0.74, 95% confidence interval (95% CI): 0.60-0.92, P = 0.007]. We also observed suggestive evidence that interferon gamma-induced protein 10 (IP-10) was associated with a 10% higher risk of ALS (OR: 1.10, 95% CI: 1.03-1.17, P = 0.005) in the primary study. The results of sensitivity analyses were consistent. CONCLUSIONS Our systematic MR analyses provided suggestive evidence to support causal associations of circulating FGF-basic and IP-10 with the risk of ALS. More studies are warranted to explore how these cytokines may affect the development of ALS.
Collapse
Affiliation(s)
- Bin Liu
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, 310053, China
| | - Linshuoshuo Lyu
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, 310053, China
| | - Wenkai Zhou
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, 310053, China
| | - Jie Song
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, 310053, China
| | - Ding Ye
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, 310053, China
| | - Yingying Mao
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, 310053, China
| | - Guo-Bo Chen
- Center for General Practice Medicine, Department of General Practice Medicine, Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China. .,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Xiaohui Sun
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, 310053, China.
| |
Collapse
|