1
|
Chen CH, Yu KC, Hsu LJ, Chiu WT, Hsu KS. Pro-inflammatory macrophages contribute to developing comorbid anxiety-like behaviors through gastrointestinal vagal afferent signaling in experimental colitis mice. Brain Behav Immun 2025; 128:620-633. [PMID: 40348137 DOI: 10.1016/j.bbi.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 04/09/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025] Open
Abstract
Anxiety symptoms are commonly observed in individuals with inflammatory bowel disease (IBD), but the mechanistic link between IBD and comorbid anxiety remains incompletely understood. Our previous study revealed that vagal gut-brain signaling contributes to driving comorbid anxiety-like behaviors in dextran sulfate sodium (DSS)-induced colitis mice, but how vagus nerve senses and transmits information to the brain in response to changes in the colonic microenvironment following DSS treatment remain elusive. Here, we identify a critical contribution of pro-inflammatory CD86+ macrophages to activate gut-innervating vagal afferents and ultimately drive anxiety-like behaviors in DSS-treated mice. An increased number of F4/80+ macrophages accumulated closely with gut-innervating vagal afferent fibers following DSS treatment. Depletion of macrophages alleviated DSS-induced anxiety-like behaviors, whereas peripheral delivery of lipopolysaccharide-activated M1 macrophages promoted anxiety-like behaviors, which were prevented by bilateral vagal afferent ablation. Moreover, differential expression levels of anxiety-like behaviors were positively correlated with neuronal activity changes in the nucleus tractus solitarius, locus coeruleus, and basolateral amygdala. Finally, treatment with either anti-α4β7 integrin antagonist vedolizumab or neutralizing anti-interleukin-1β monoclonal antibody effectively alleviated DSS-induced anxiety-like behaviors. Collectively, these findings unravel a mechanism of macrophage-to-vagus nerve communication via cytokine signaling responsible for comorbid anxiety associated with experimental colitis and suggest that pro-inflammatory CD86+ macrophages may represent a potential therapeutic target for psychological comorbidities in patients with IBD.
Collapse
Affiliation(s)
- Chin-Hao Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kuan-Chieh Yu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Li-Jin Hsu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kuei-Sen Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
2
|
Bouma RG, Wang AZ, den Haan JMM. Exploring CD169 + Macrophages as Key Targets for Vaccination and Therapeutic Interventions. Vaccines (Basel) 2025; 13:330. [PMID: 40266235 PMCID: PMC11946325 DOI: 10.3390/vaccines13030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
CD169 is a sialic acid-binding immunoglobulin-like lectin (Siglec-1, sialoadhesin) that is expressed by subsets of tissue-resident macrophages and circulating monocytes. This receptor interacts with α2,3-linked Neu5Ac on glycoproteins as well as glycolipids present on the surface of immune cells and pathogens. CD169-expressing macrophages exert tissue-specific homeostatic functions, but they also have opposing effects on the immune response. CD169+ macrophages act as a pathogen filter, protect against infectious diseases, and enhance adaptive immunity, but at the same time pathogens also exploit them to enable further dissemination. In cancer, CD169+ macrophages in tumor-draining lymph nodes are correlated with better clinical outcomes. In inflammatory diseases, CD169 expression is upregulated on monocytes and on monocyte-derived macrophages and this correlates with the disease state. Given their role in promoting adaptive immunity, CD169+ macrophages are currently investigated as targets for vaccination strategies against cancer. In this review, we describe the studies investigating the importance of CD169 and CD169+ macrophages in several disease settings and the vaccination strategies currently under investigation.
Collapse
Affiliation(s)
- Rianne G. Bouma
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Aru Z. Wang
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
3
|
Caceres Lessa AY, Edwinson A, Sato H, Yang L, Berumen A, Breen-Lyles M, Byale A, Ryks M, Keehn A, Camilleri M, Farrugia G, Chen J, Decuir M, Smith K, Dasari S, Grover M. Transcriptomic and Metabolomic Correlates of Increased Colonic Permeability in Postinfection Irritable Bowel Syndrome. Clin Gastroenterol Hepatol 2025; 23:632-643.e13. [PMID: 38987012 PMCID: PMC11707044 DOI: 10.1016/j.cgh.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND & AIMS Postinfection irritable bowel syndrome (PI-IBS) is well-known epidemiologically; however, its physiological and molecular characteristics are not well studied. We aimed to determine the physiological phenotypes, colonic transcriptome, fecal microbiome, and metabolome in PI-IBS. METHODS Fifty-one Rome III Campylobacter PI-IBS patients and 39 healthy volunteers (HV) were enrolled. Participants completed questionnaires, in vivo intestinal permeability, gastrointestinal transit, and rectal sensation. Fecal samples were collected for shotgun metagenomics, untargeted metabolomics, and sigmoid colonic biopsies for bulk RNAseq. Differential gene expression, differences in microbiota composition, and metabolite abundance were determined. Gene and metabolite clusters were identified via weighted gene correlation network analysis and correlations with clinical and physiological parameters determined. RESULTS PI-IBS (59% female; 46 ± 2 years) and HV (64% female; 42 ± 2 years) demographics were comparable. Mean IBS-symptom severity score was 227; 94% were nonconstipation. Two- to 24-hour lactulose excretion was increased in PI-IBS, suggesting increased colonic permeability (4.4 ± 0.5 mg vs 2.6 ± 0.3 mg; P = .01). Colonic transit and sensory thresholds were similar between the 2 groups. Overall, expression of 2036 mucosal genes and 223 fecal metabolites were different, with changes more prominent in females. Fecal N-acetylputrescine was increased in PI-IBS and associated with colonic permeability, worse diarrhea, and negatively correlated with abundance of Collinsella aerofaciens. Histamine and N-acetylhistamine positively associated with 2- to 24-hour lactulose excretion. Eight weighted gene coexpression modules significantly correlated with phenotypes (sex, stool frequency, colonic permeability, transit). CONCLUSIONS Campylobacter PI-IBS patients demonstrate higher colonic permeability, which associated with changes in polyamine and histamine metabolites. Female patients demonstrated greater molecular changes.
Collapse
Affiliation(s)
- Ana Y Caceres Lessa
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota
| | - Adam Edwinson
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota
| | - Hiroki Sato
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Division of Gastroenterology & Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Lu Yang
- Division of Computational Biology, Mayo Clinic, Rochester, Minnesota
| | - Antonio Berumen
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Department of Medicine, Boston University, Boston, Massachusetts
| | - Margaret Breen-Lyles
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota
| | - Anjali Byale
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Department of Medicine, University of Pittsburgh Medical Center, McKeesport, Pennsylvania
| | - Michael Ryks
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota
| | - Ashley Keehn
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota
| | - Michael Camilleri
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota
| | - Jun Chen
- Division of Computational Biology, Mayo Clinic, Rochester, Minnesota
| | | | - Kirk Smith
- Minnesota Department of Health, St. Paul, Minnesota
| | - Surendra Dasari
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
4
|
Cheng X, Shao P, Wang X, Jiang J, Chen J, Zhu J, Zhu W, Li Y, Zhang J, Chen J, Huang Z. Myeloid-Derived Suppressor Cell Accumulation Drives Intestinal Fibrosis through mCCL6/hCCL15 Chemokine-Mediated Fibroblast Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411711. [PMID: 39739231 PMCID: PMC11848553 DOI: 10.1002/advs.202411711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Indexed: 01/02/2025]
Abstract
Intestinal fibrosis, a severe complication of Crohn's disease (CD), is linked to chronic inflammation, but the precise mechanism by which immune-driven intestinal inflammation leads to fibrosis development is not fully understood. This study investigates the role of myeloid-derived suppressor cells (MDSCs) in intestinal fibrosis in CD patients and a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mouse model. Elevated MDSCs are observed in inflamed intestinal tissues prior to fibrosis and their sustained presence in fibrotic tissues of both CD patients and murine models. Depletion of MDSCs significantly reduces fibrosis, highlighting their key role in the fibrotic process. Mechanistically, MDSC-derived mCCL6 activates fibroblasts via the CCR1-MAPK signaling, and interventions targeting this axis, including neutralizing antibodies, a CCR1 antagonist, or fibroblast-specific Ccr1 knockout mice reduce fibrosis. In CD patients with stenosis, human CCL15, analogous to mCCL6, is found to be elevated in MDSCs and activated fibroblasts. Additionally, CXCR2 and CCR2 ligands are identified as key mediators of MDSC recruitment in intestinal fibrosis. Blocking MDSC recruitment with CXCR2 and CCR2 antagonists alleviates intestinal fibrosis. These findings suggest that strategies targeting MDSC recruitment and mCCL6/hCCL15 signaling could offer therapeutic benefits for intestinal fibrosis.
Collapse
Affiliation(s)
- Xiaohui Cheng
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Pingwen Shao
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - XinTong Wang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Juan Jiang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Jiahui Chen
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Jie Zhu
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Weiming Zhu
- Department of General SurgeryJinling HospitalSchool of MedicineNanjing UniversityNanjingJiangsu210002China
| | - Yi Li
- Department of General SurgeryJinling HospitalSchool of MedicineNanjing UniversityNanjingJiangsu210002China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
- State Key Laboratory of Analytical Chemistry for Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
- NJU Xishan Institute of Applied BiotechnologyXishan DistrictWuxiJiangsu214101China
| |
Collapse
|
5
|
Hu Y, Schnabl B, Stärkel P. Origin, Function, and Implications of Intestinal and Hepatic Macrophages in the Pathogenesis of Alcohol-Associated Liver Disease. Cells 2025; 14:207. [PMID: 39936998 PMCID: PMC11816606 DOI: 10.3390/cells14030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
Macrophages are members of the human innate immune system, and the majority reside in the liver. In recent years, they have been recognized as essential players in the maintenance of liver and intestinal homeostasis as well as key guardians of their respective immune systems, and they are increasingly being recognized as such. Paradoxically, they are also likely involved in chronic pathologies of the gastrointestinal tract and potentially in the alteration of the gut-liver axis in alcohol use disorder (AUD) and alcohol-associated liver disease (ALD). To date, the causal relationship between macrophages, the pathogenesis of ALD, and the immune dysregulation of the gut remains unclear. In this review, we will discuss our current understanding of the heterogeneity of intestinal and hepatic macrophages, their ontogeny, the potential factors that regulate their origin, and the evidence of how they are associated with the manifestation of chronic inflammation. We will also illustrate how the micro-environment of the intestine shapes the phenotypes and functionality of the macrophage compartment in both the intestines and liver and how they change during chronic alcohol abuse. Finally, we highlight the obstacles to current research and the prospects for this field.
Collapse
Affiliation(s)
- Yifan Hu
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA;
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Peter Stärkel
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
6
|
Xiao X, Hu M, Gao L, Yuan H, Chong B, Liu Y, Zhang R, Gong Y, Du D, Zhang Y, Yang H, Liu X, Zhang Y, Zhang H, Xu H, Zhao Y, Meng W, Xie D, Lei P, Qi S, Peng Y, Tan T, Yu Y, Hu H, Dong B, Dai L. Low-input redoxomics facilitates global identification of metabolic regulators of oxidative stress in the gut. Signal Transduct Target Ther 2025; 10:8. [PMID: 39774148 PMCID: PMC11707242 DOI: 10.1038/s41392-024-02094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Oxidative stress plays a crucial role in organ aging and related diseases, yet the endogenous regulators involved remain largely unknown. This work highlights the importance of metabolic homeostasis in protecting against oxidative stress in the large intestine. By developing a low-input and user-friendly pipeline for the simultaneous profiling of five distinct cysteine (Cys) states, including free SH, total Cys oxidation (Sto), sulfenic acid (SOH), S-nitrosylation (SNO), and S-glutathionylation (SSG), we shed light on Cys redox modification stoichiometries and signaling with regional resolution in the aging gut of monkeys. Notably, the proteins modified by SOH and SSG were associated primarily with cell adhesion. In contrast, SNO-modified proteins were involved in immunity. Interestingly, we observed that the Sto levels ranged from 0.97% to 99.88%, exhibiting two distinct peaks and increasing with age. Crosstalk analysis revealed numerous age-related metabolites potentially involved in modulating oxidative stress and Cys modifications. Notably, we elucidated the role of fumarate in alleviating intestinal oxidative stress in a dextran sulfate sodium (DSS)-induced colitis mouse model. Our findings showed that fumarate treatment promotes the recovery of several cell types, signaling pathways, and genes involved in oxidative stress regulation. Calorie restriction (CR) is a known strategy for alleviating oxidative stress. Two-month CR intervention led to the recovery of many antioxidative metabolites and reshaped the Cys redoxome. This work decodes the complexities of redoxomics during the gut aging of non-human primates and identifies key metabolic regulators of oxidative stress and redox signaling.
Collapse
Affiliation(s)
- Xina Xiao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Hu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Li Gao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Yuan
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Baochen Chong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rou Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Zhang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Yang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenbo Meng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Dan Xie
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lei
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiqian Qi
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Tan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hongbo Hu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| |
Collapse
|
7
|
Fang S, Jiang M, Jiao J, Zhao H, Liu D, Gao D, Wang T, Yang Z, Yuan H. Unraveling the ROS-Inflammation-Immune Balance: A New Perspective on Aging and Disease. Aging Dis 2025:AD.2024.1253. [PMID: 39812539 DOI: 10.14336/ad.2024.1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Increased entropy is a common cause of disease and aging. Lifespan entropy is the overall increase in disorder caused by a person over their lifetime. Aging leads to the excessive production of reactive oxygen species (ROS), which damage the antioxidant system and disrupt redox balance. Organ aging causes chronic inflammation, disrupting the balance of proinflammatory and anti-inflammatory factors. Inflammaging, which is a chronic low-grade inflammatory state, is activated by oxidative stress and can lead to immune system senescence. During this process, entropy increases significantly as the body transitions from a state of low order to high disorder. However, the connection among inflammation, aging, and immune system activity is still not fully understood. This review introduces the idea of the ROS-inflammation-immune balance for the first time and suggests that this balance may be connected to aging and the development of age-related diseases. We also explored how the balance of these three factors controls and affects age-related diseases. Moreover, imbalance in the relationship described above disrupts the regular structures of cells and alters their functions, leading to cellular damage and the emergence of a disorganized state marked by increased entropy. Maintaining a low entropy state is crucial for preventing and reversing aging processes. Consequently, we examined the current preclinical evidence for antiaging medications that target this balance. Ultimately, comprehending the intricate relationships between these three factors and the risk of age-related diseases in organisms will aid in the development of clinical interventions that promote long-term health.
Collapse
Affiliation(s)
- Sihang Fang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Mingjun Jiang
- Respiratory Department, Beijing Children's Hospital, Capital Medical University, China National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Juan Jiao
- Department of Clinical Laboratory, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Hongye Zhao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dizhi Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Danni Gao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Tenger Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| |
Collapse
|
8
|
Chen SD, Chu CY, Wang CB, Yang Y, Xu ZY, Qu YL, Man Y. Integrated-omics profiling unveils the disparities of host defense to ECM scaffolds during wound healing in aged individuals. Biomaterials 2024; 311:122685. [PMID: 38944969 DOI: 10.1016/j.biomaterials.2024.122685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Extracellular matrix (ECM) scaffold membranes have exhibited promising potential to better the outcomes of wound healing by creating a regenerative microenvironment around. However, when compared to the application in younger individuals, the performance of the same scaffold membrane in promoting re-epithelialization and collagen deposition was observed dissatisfying in aged mice. To comprehensively explore the mechanisms underlying this age-related disparity, we conducted the integrated analysis, combing single-cell RNA sequencing (scRNA-Seq) with spatial transcriptomics, and elucidated six functionally and spatially distinctive macrophage groups and lymphocytes surrounding the ECM scaffolds. Through intergroup comparative analysis and cell-cell communication, we characterized the dysfunction of Spp1+ macrophages in aged mice impeded the activation of the type Ⅱ immune response, thus inhibiting the repair ability of epidermal cells and fibroblasts around the ECM scaffolds. These findings contribute to a deeper understanding of biomaterial applications in varied physiological contexts, thereby paving the way for the development of precision-based biomaterials tailored specifically for aged individuals in future therapeutic strategies.
Collapse
Affiliation(s)
- Shuai-Dong Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chen-Yu Chu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chen-Bing Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Yang Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhao-Yu Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi-Li Qu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Man
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Yang S, Li Y, Zhang Y, Wang Y. Impact of chronic stress on intestinal mucosal immunity in colorectal cancer progression. Cytokine Growth Factor Rev 2024; 80:24-36. [PMID: 39490234 DOI: 10.1016/j.cytogfr.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Chronic stress is a significant risk factor that contributes to the progression of colorectal cancer (CRC) and has garnered considerable attention in recent research. It influences the distribution and function of immune cells within the intestinal mucosa through the "brain-gut" axis, altering cytokine and chemokine secretion and creating an immunosuppressive tumor microenvironment. The intestine, often called the "second brain," is particularly susceptible to the effects of chronic stress. Cytokines and chemokines in intestinal mucosal immunity(IMI) are closely linked to CRC cells' proliferation, metastasis, and drug resistance under chronic stress. Recently, antidepressants have emerged as potential therapeutic agents for CRC, possibly by modulating IMI to restore homeostasis and exert anti-tumor effects. This article reviews the role of chronic stress in promoting CRC progression via its impact on intestinal mucosal immunity, explores potential targets within the intestinal mucosa under chronic stress, and proposes new approaches for CRC treatment.
Collapse
Affiliation(s)
- Shengya Yang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingru Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
10
|
Shan Q, Qiu J, Dong Z, Xu X, Zhang S, Ma J, Liu S. Lung Immune Cell Niches and the Discovery of New Cell Subtypes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405490. [PMID: 39401416 PMCID: PMC11615829 DOI: 10.1002/advs.202405490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/31/2024] [Indexed: 12/06/2024]
Abstract
Immune cells in the lungs are important for maintaining lung function. The importance of immune cells in defending against lung diseases and infections is increasingly recognized. However, a primary knowledge gaps in current studies of lung immune cells is the understanding of their subtypes and functional heterogeneity. Increasing evidence supports the existence of novel immune cell subtypes that engage in the complex crosstalk between lung-resident immune cells, recruited immune cells, and epithelial cells. Therefore, further studies on how immune cells respond to perturbations in the pulmonary microenvironment are warranted. This review explores the processes behind the formation of the immune cell niche during lung development, and the characteristics and cell interaction modes of several major lung-resident immune cells. It indicates that distinct lung microenvironments or inflammatory niches can mediate the formation of different cell subtypes. These findings summarize and clarify paths to identify new cell subtypes that originate from resident progenitor cells and recruited peripheral cells, which are remodeled by the pulmonary microenvironment. The development of new techniques combining transcriptome analysis and location information is essential for identifying new immune cell subtypes and their relative immune niches, as well as for uncovering the molecular mechanisms of immune cell-mediated lung homeostasis.
Collapse
Affiliation(s)
- Qing'e Shan
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Jiahuang Qiu
- Dongguan Key Laboratory of Environmental MedicineSchool of Public HealthGuangdong Medical UniversityDongguan523808P. R. China
| | - Zheng Dong
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Xiaotong Xu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Shuping Zhang
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Sijin Liu
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
11
|
Youssef A, Rehman AU, Elebasy M, Roper J, Sheikh SZ, Karhausen J, Yang W, Ulloa L. Vagal stimulation ameliorates murine colitis by regulating SUMOylation. Sci Transl Med 2024; 16:eadl2184. [PMID: 39565873 DOI: 10.1126/scitranslmed.adl2184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 06/21/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024]
Abstract
Inflammatory bowel diseases (IBDs) are chronic debilitating conditions without cure, the etiologies of which are unknown, that shorten the lifespans of 7 million patients worldwide by nearly 10%. Here, we found that decreased autonomic parasympathetic tone resulted in increased IBD susceptibility and mortality in mouse models of disease. Conversely, vagal stimulation restored neuromodulation and ameliorated colitis by inhibiting the posttranslational modification SUMOylation through a mechanism independent of the canonical interleukin-10/α7 nicotinic cholinergic vagal pathway. Colonic biopsies from patients with IBDs and mouse models showed an increase in small ubiquitin-like modifier (SUMO)2 and SUMO3 during active disease. In global genetic knockout mouse models, the deletion of Sumo3 protected against development of colitis and delayed onset of disease, whereas deletion of Sumo1 halted the progression of colitis. Bone marrow transplants from Sumo1-knockout (KO) but not Sumo3-KO mice into wild-type mice conferred protection against development of colitis. Electric stimulation of the cervical vagus nerve before the induction of colitis inhibited SUMOylation and delayed the onset of colitis in Sumo1-KO mice and resulted in milder symptoms in Sumo3-KO mice. Treatment with TAK-981, a first-in-class inhibitor of the SUMO-activating enzyme, ameliorated disease in three murine models of IBD and reduced intestinal permeability and bacterial translocation in a severe model of the disease, suggesting the potential to reduce progression to sepsis. These results reveal a pathway of vagal neuromodulation that reprograms endogenous stress-adaptive responses through inhibition of SUMOylation and suggest SUMOylation as a therapeutic target for IBD.
Collapse
Affiliation(s)
- Ayman Youssef
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ata Ur Rehman
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mohamed Elebasy
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jatin Roper
- Department of Medicine, Division of Gastroenterology, Duke University, Durham, NC 27710, USA
| | - Shehzad Z Sheikh
- University of North Carolina, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Jorn Karhausen
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Humanitas Research Hospital, Rozzano, MI 20089, Italy
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
12
|
Luo Z, Huang C, Chen J, Chen Y, Yang H, Wu Q, Lu F, Zhang TE. Potential diagnostic markers and therapeutic targets for non-alcoholic fatty liver disease and ulcerative colitis based on bioinformatics analysis and machine learning. Front Med (Lausanne) 2024; 11:1323859. [PMID: 39568749 PMCID: PMC11576177 DOI: 10.3389/fmed.2024.1323859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) and ulcerative colitis (UC) are two common health issues that have gained significant global attention. Previous studies have suggested a possible connection between NAFLD and UC, but the underlying pathophysiology remains unclear. This study investigates common genes, underlying pathogenesis mechanisms, identification of diagnostic markers applicable to both conditions, and exploration of potential therapeutic targets shared by NAFLD and UC. Methods We obtained datasets for NAFLD and UC from the GEO database. The DEGs in the GSE89632 dataset of the NAFLD and GSE87466 of the UC dataset were analyzed. WGCNA, a powerful tool for identifying modules of highly correlated genes, was employed for both datasets. The DEGs of NAFLD and UC and the modular genes were then intersected to obtain shared genes. Functional enrichment analysis was conducted on these shared genes. Next, we utilize the STRING database to establish a PPI network. To enhance visualization, we employ Cytoscape software. Subsequently, the Cytohubba algorithm within Cytoscape was used to identify central genes. Diagnostic biomarkers were initially screened using LASSO regression and SVM methods. The diagnostic value of ROC curve analysis was assessed to detect diagnostic genes in both training and validation sets for NAFLD and UC. A nomogram was also developed to evaluate diagnostic efficacy. Additionally, we used the CIBERSORT algorithm to explore immune infiltration patterns in both NAFLD and UC samples. Finally, we investigated the correlation between hub gene expression, diagnostic gene expression, and immune infiltration levels. Results We identified 34 shared genes that were found to be associated with both NAFLD and UC. These genes were subjected to enrichment analysis, which revealed significant enrichment in several pathways, including the IL-17 signaling pathway, Rheumatoid arthritis, and Chagas disease. One optimal candidate gene was selected through LASSO regression and SVM: CCL2. The ROC curve confirmed the presence of CCL2 in both the NAFLD and UC training sets and other validation sets. This finding was further validated using a nomogram in the validation set. Additionally, the expression levels of CCL2 for NAFLD and UC showed a significant correlation with immune cell infiltration. Conclusion This study identified a gene (CCL2) as a biomarker for NAFLD and UC, which may actively participate in the progression of NAFLD and UC. This discovery holds significant implications for understanding the progression of these diseases and potentially developing more effective diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Zheng Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cong Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Biology Laboratory for TCM Viscera-Manifestation Research of Sichuan University, Chinese Medical Center of Chengdu University of TCM, Chengdu, China
| | - Jilan Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Biology Laboratory for TCM Viscera-Manifestation Research of Sichuan University, Chinese Medical Center of Chengdu University of TCM, Chengdu, China
| | - Yunhui Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongya Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaofeng Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fating Lu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian E Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Biology Laboratory for TCM Viscera-Manifestation Research of Sichuan University, Chinese Medical Center of Chengdu University of TCM, Chengdu, China
| |
Collapse
|
13
|
Oguro-Igashira E, Murakami M, Mori R, Kuwahara R, Kihara T, Kohara M, Fujiwara M, Motooka D, Okuzaki D, Arase M, Toyota H, Peng S, Ogino T, Kitabatake Y, Morii E, Hirota S, Ikeuchi H, Umemoto E, Kumanogoh A, Takeda K. The pyruvate-GPR31 axis promotes transepithelial dendrite formation in human intestinal dendritic cells. Proc Natl Acad Sci U S A 2024; 121:e2318767121. [PMID: 39432783 PMCID: PMC11536072 DOI: 10.1073/pnas.2318767121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/30/2024] [Indexed: 10/23/2024] Open
Abstract
The intestinal lumen is rich in gut microbial metabolites that serve as signaling molecules for gut immune cells. G-protein-coupled receptors (GPCRs) sense metabolites and can act as key mediators that translate gut luminal signals into host immune responses. However, the impacts of gut microbe-GPCR interactions on human physiology have not been fully elucidated. Here, we show that GPR31, which is activated by the gut bacterial metabolite pyruvate, is specifically expressed on type 1 conventional dendritic cells (cDC1s) in the lamina propria of the human intestine. Using human induced pluripotent stem cell-derived cDC1s and a monolayer human gut organoid coculture system, we show that cDC1s extend their dendrites toward pyruvate on the luminal side, forming transepithelial dendrites (TED). Accordingly, GPR31 activation via pyruvate enhances the fundamental function of cDC1 by allowing efficient uptake of gut luminal antigens, such as dietary compounds and bacterial particles through TED formation. Our results highlight the role of GPCRs in tuning the human gut immune system according to local metabolic cues.
Collapse
Affiliation(s)
- Eri Oguro-Igashira
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Mari Murakami
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
| | - Ryota Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Ryuichi Kuwahara
- Department of Gastroenterological Surgery, Division of Inflammatory Bowel Disease Surgery, Hyogo Medical University, Hyogo663-8501, Japan
| | - Takako Kihara
- Department of Surgical Pathology, Hyogo Medical University, Hyogo663-8501, Japan
| | - Masaharu Kohara
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Daisuke Motooka
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka565-0871, Japan
| | - Daisuke Okuzaki
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka565-0871, Japan
- Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Osaka565-0871, Japan
| | - Mitsuru Arase
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
| | - Hironobu Toyota
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Siyun Peng
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Yasuji Kitabatake
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo Medical University, Hyogo663-8501, Japan
| | - Hiroki Ikeuchi
- Department of Gastroenterological Surgery, Division of Inflammatory Bowel Disease Surgery, Hyogo Medical University, Hyogo663-8501, Japan
| | - Eiji Umemoto
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka422-8526, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka565-0871, Japan
- Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Osaka565-0871, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka565-0871, Japan
- Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka565-0871, Japan
| |
Collapse
|
14
|
Shatunova S, Aktar R, Peiris M, Lee JYP, Vetter I, Starobova H. The role of the gut microbiome in neuroinflammation and chemotherapy-induced peripheral neuropathy. Eur J Pharmacol 2024; 979:176818. [PMID: 39029779 DOI: 10.1016/j.ejphar.2024.176818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most debilitating adverse effects caused by chemotherapy drugs such as paclitaxel, oxaliplatin and vincristine. It is untreatable and often leads to the discontinuation of cancer therapy and a decrease in the quality of life of cancer patients. It is well-established that neuroinflammation and the activation of immune and glial cells are among the major drivers of CIPN. However, these processes are still poorly understood, and while many chemotherapy drugs alone can drive the activation of these cells and consequent neuroinflammation, it remains elusive to what extent the gut microbiome influences these processes. In this review, we focus on the peripheral mechanisms driving CIPN, and we address the bidirectional pathways by which the gut microbiome communicates with the immune and nervous systems. Additionally, we critically evaluate literature addressing how chemotherapy-induced dysbiosis and the consequent imbalance in bacterial products may contribute to the activation of immune and glial cells, both of which drive neuroinflammation and possibly CIPN development, and how we could use this knowledge for the development of effective treatment strategies.
Collapse
Affiliation(s)
- Svetlana Shatunova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Rubina Aktar
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jia Yu Peppermint Lee
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia; The School of Pharmacy, The University of Queensland, Woollsiana, QLD, Australia
| | - Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
15
|
Ruiz-Cantero MC, Entrena JM, Artacho-Cordón A, Huerta MÁ, Portillo-Salido E, Nieto FR, Baeyens JM, Costigan M, González-Cano R, Cobos EJ. Sigma-1 Receptors Control Neuropathic Pain and Peripheral Neuroinflammation After Nerve Injury in Female Mice: A Transcriptomic Study. J Neuroimmune Pharmacol 2024; 19:46. [PMID: 39162886 DOI: 10.1007/s11481-024-10144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The mechanisms for neuropathic pain amelioration by sigma-1 receptor inhibition are not fully understood. We studied genome-wide transcriptomic changes (RNAseq) in the dorsal root ganglia (DRG) from wild-type and sigma-1 receptor knockout mice prior to and following Spared Nerve Injury (SNI). In wildtype mice, most of the transcriptomic changes following SNI are related to the immune function or neurotransmission. Immune function transcripts contain cytokines and markers for immune cells, including macrophages/monocytes and CD4 + T cells. Many of these immune transcripts were attenuated by sigma-1 knockout in response to SNI. Consistent with this we found, using flow cytometry, that sigma-1 knockout mice showed a reduction in macrophage/monocyte recruitment as well as an absence of CD4 + T cell recruitment in the DRG after nerve injury. Sigma-1 knockout mice showed a reduction of neuropathic (mechanical and cold) allodynia and spontaneous pain-like responses (licking of the injured paw) which accompany the decreased peripheral neuroinflammatory response after nerve injury. Treatment with maraviroc (a CCR5 antagonist which preferentially inhibits CD4 + T cells in the periphery) of neuropathic wild-type mice only partially replicated the sigma-1 knockout phenotype, as it did not alter cold allodynia but attenuated spontaneous pain-like responses and mechanical hypersensitivity. Therefore, modulation of peripheral CD4 + T cell activity might contribute to the amelioration of spontaneous pain and neuropathic tactile allodynia seen in the sigma-1 receptor knockout mice, but not to the effect on cold allodynia. We conclude that sigma-1 receptor inhibition decreases DRG neuroinflammation which might partially explain its anti-neuropathic effect.
Collapse
Affiliation(s)
- M Carmen Ruiz-Cantero
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | - José M Entrena
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
- Animal Behavior Research Unit, Scientific Instrumentation Center, Parque Tecnológico de Ciencias de la Salud, University of Granada, Armilla, Granada, 18100, Spain
| | - Antonia Artacho-Cordón
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | - Miguel Á Huerta
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | - Enrique Portillo-Salido
- Faculty of Health Sciences, International University of La Rioja (UNIR), Logroño, La Rioja, 26004, Spain
| | - Francisco R Nieto
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | - José M Baeyens
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain
| | - Michael Costigan
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Anaesthesia, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain.
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain.
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain.
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain.
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, 18100, Spain.
- Biosanitary Research Institute ibs.GRANADA, Granada, 18012, Spain.
- Teófilo Hernando Institute for Drug Discovery, Madrid, 28029, Spain.
| |
Collapse
|
16
|
Zhang D, Jiang L, Yu F, Yan P, Liu Y, Wu Y, Yang X. PepT1-targeted nanodrug based on co-assembly of anti-inflammatory peptide and immunosuppressant for combined treatment of acute and chronic DSS-induced ColitiS. Front Pharmacol 2024; 15:1442876. [PMID: 39211778 PMCID: PMC11357942 DOI: 10.3389/fphar.2024.1442876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Inflammatory bowel disease (IBD), as a chronic and recurrent inflammatory bowel diseases with limited therapeutic outcomes, is characterized by immune disorders and intestinal barrier dysfunction. Currently, the most medications used to cure IBD in clinic just temporarily induce and maintain remission with poor response rates and limited outcomes. Therefore, it is urgently necessary to develop an appropriate therapeutic candidate with preferable efficacy and less adverse reaction for curing IBD. METHODS Five groups of mice were utilized: control that received saline, DSS group (mice received 2.5% DSS or 4% DSS), KPV group (mice received KPV), FK506 group (mice received FK506) and NPs groups (mice received NPs). The effect of NP on the inflammatory factors of macrophage was evaluated using CCK-8, quantitative polymerase chain reaction (PCR), Elisa and Western blot (WB). Immunofluorescent staining revealed the targeting relationship between NP and Petp-1. Immunohistochemistry staining showed the effect of NP on tight junction proteins. Moreover, in vivo animal experiments confirmed that NPs reduced inflammatory levels in IBD. RESULTS AND DISCUSSION After administering with NPs, mice with DSS-induced acute or chronic colitis exhibited significant improvement in body weight, colon length, and disease activity index, decreased the level of the factors associated with oxidative stress (MPO, NO and ROS) and the inflammatory cytokines (TNF-α, IL-1β and IL-6), which implied that NPs could ameliorate murine colitis effectively. Furthermore, treating by NPs revealed a notable reduction of the expressions of CD68 and CD3, restoring the expression levels of tight junction proteins (Claudin-5, Occludin-1, and ZO-1) were significantly restored, surpassing those observed in the KPV and FK506 groups. which indicated that NPs can reduce inflammation and enhance epithelial barrier integrity by decreasing the infiltration of macrophages and T-lymphocytes. Collectively, those results demonstrated the effectively therapeutic outcome after using NPs in both acute and chronic colitis, suggesting that the newly co-assembled of NPs can be as a potential therapeutic candidate for colitis.
Collapse
Affiliation(s)
- Daifang Zhang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Longqi Jiang
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fengxu Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Pijun Yan
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Liu
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Ya Wu
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xi Yang
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Stayoussef M, Weili X, Habel A, Barbirou M, Bedoui S, Attia A, Omrani Y, Zouari K, Maghrebi H, Almawi WY, Bouhaouala-Zahar B, Larbi A, Yacoubi-Loueslati B. Altered expression of cytokines, chemokines, growth factors, and soluble receptors in patients with colorectal cancer, and correlation with treatment outcome. Cancer Immunol Immunother 2024; 73:169. [PMID: 38954024 PMCID: PMC11219625 DOI: 10.1007/s00262-024-03746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 05/22/2024] [Indexed: 07/04/2024]
Abstract
Insofar as they play an important role in the pathogenesis of colorectal cancer (CRC), this study analyzes the serum profile of cytokines, chemokines, growth factors, and soluble receptors in patients with CRC and cancer-free controls as possible CRC signatures. Serum levels of 65 analytes were measured in patients with CRC and age- and sex-matched cancer-free controls using the ProcartaPlex Human Immune Monitoring 65-Plex Panel. Of the 65 tested analytes, 8 cytokines (CSF-3, IFN-γ, IL-12p70, IL-18, IL-20, MIF, TNF-α and TSLP), 8 chemokines (fractalkine, MIP-1β, BLC, Eotaxin-1, Eotaxin-2, IP-10, MIP-1a, MIP-3a), 2 growth factors (FGF-2, MMP-1), and 4 soluble receptors (APRIL, CD30, TNFRII, and TWEAK), were differentially expressed in CRC. ROC analysis confirmed the high association of TNF-α, BLC, Eotaxin-1, APRIL, and Tweak with AUC > 0.70, suggesting theranostic application. The expression of IFN-γ, IL-18, MIF, BLC, Eotaxin-1, Eotaxin-2, IP-10, and MMP1 was lower in metastatic compared to non-metastatic CRC; only AUC of MIF and MIP-1β were > 0.7. Moreover, MDC, IL-7, MIF, IL-21, and TNF-α are positively associated with tolerance to CRC chemotherapy (CT) (AUC > 0.7), whereas IL-31, Fractalkine, Eotaxin-1, and Eotaxin-2 were positively associated with resistance to CT. TNF-α, BLC, Eotaxin-1, APRIL, and Tweak may be used as first-line early detection of CRC. The variable levels of MIF and MIP-1β between metastatic and non-metastatic cases assign prognostic nature to these factors in CRC progression. Regarding tolerance to CT, MDC, IL-7, MIF, IL-21, and TNF-α are key when down-regulated or resistant to treatment is observed.
Collapse
Affiliation(s)
- M Stayoussef
- Laboratory of Mycology, Faculty of Sciences of Tunis (FST), Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), 1092, Tunis, Tunisia.
| | - X Weili
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore, 138648, Singapore
| | - A Habel
- Laboratory of Mycology, Faculty of Sciences of Tunis (FST), Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), 1092, Tunis, Tunisia
| | - M Barbirou
- Center for Biomedical Informatics, University of Missouri School of Medicine, Columbia, MO, USA
| | - S Bedoui
- Laboratory of Mycology, Faculty of Sciences of Tunis (FST), Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), 1092, Tunis, Tunisia
| | - A Attia
- Laboratory of Mycology, Faculty of Sciences of Tunis (FST), Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), 1092, Tunis, Tunisia
| | - Y Omrani
- Laboratory of Biomolecules, Venoms and Theranostic Applications, University of Tunis El Manar (UTM), Pasteur Institute of Tunis, 13 Place Pasteur, B.P. 74, 1002, Tunis, Tunisia
| | - K Zouari
- Department of Digestive Surgery, Fattouma Bourguiba Hospital, University of Monastir, Monastir, Tunisia
| | - H Maghrebi
- Faculty of Medicine of Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia
| | - W Y Almawi
- Laboratory of Mycology, Faculty of Sciences of Tunis (FST), Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), 1092, Tunis, Tunisia
| | - B Bouhaouala-Zahar
- Laboratory of Biomolecules, Venoms and Theranostic Applications, University of Tunis El Manar (UTM), Pasteur Institute of Tunis, 13 Place Pasteur, B.P. 74, 1002, Tunis, Tunisia
- University of Tunis El Manar (UTM), Medical School of Tunis, Rue Djebal Lakhdar, 1006, Tunis, Tunisia
| | - A Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore, 138648, Singapore
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - B Yacoubi-Loueslati
- Laboratory of Mycology, Faculty of Sciences of Tunis (FST), Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), 1092, Tunis, Tunisia
| |
Collapse
|
18
|
Zhao C, Yang Z, Li Y, Wen Z. Macrophages in tissue repair and regeneration: insights from zebrafish. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:12. [PMID: 38861103 PMCID: PMC11166613 DOI: 10.1186/s13619-024-00195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Macrophages play crucial and versatile roles in regulating tissue repair and regeneration upon injury. However, due to their complex compositional heterogeneity and functional plasticity, deciphering the nature of different macrophage subpopulations and unraveling their dynamics and precise roles during the repair process have been challenging. With its distinct advantages, zebrafish (Danio rerio) has emerged as an invaluable model for studying macrophage development and functions, especially in tissue repair and regeneration, providing valuable insights into our understanding of macrophage biology in health and diseases. In this review, we present the current knowledge and challenges associated with the role of macrophages in tissue repair and regeneration, highlighting the significant contributions made by zebrafish studies. We discuss the unique advantages of the zebrafish model, including its genetic tools, imaging techniques, and regenerative capacities, which have greatly facilitated the investigation of macrophages in these processes. Additionally, we outline the potential of zebrafish research in addressing the remaining challenges and advancing our understanding of the intricate interplay between macrophages and tissue repair and regeneration.
Collapse
Affiliation(s)
- Changlong Zhao
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhiyong Yang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yunbo Li
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zilong Wen
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Liao X, Liu J, Guo X, Meng R, Zhang W, Zhou J, Xie X, Zhou H. Origin and Function of Monocytes in Inflammatory Bowel Disease. J Inflamm Res 2024; 17:2897-2914. [PMID: 38764499 PMCID: PMC11100499 DOI: 10.2147/jir.s450801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/23/2024] [Indexed: 05/21/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic disease resulting from the interaction of various factors such as social elements, autoimmunity, genetics, and gut microbiota. Alarmingly, recent epidemiological data points to a surging incidence of IBD, underscoring an urgent imperative: to delineate the intricate mechanisms driving its onset. Such insights are paramount, not only for enhancing our comprehension of IBD pathogenesis but also for refining diagnostic and therapeutic paradigms. Monocytes, significant immune cells derived from the bone marrow, serve as precursors to macrophages (Mφs) and dendritic cells (DCs) in the inflammatory response of IBD. Within the IBD milieu, their role is twofold. On the one hand, monocytes are instrumental in precipitating the disease's progression. On the other hand, their differentiated offsprings, namely moMφs and moDCs, are conspicuously mobilized at inflammatory foci, manifesting either pro-inflammatory or anti-inflammatory actions. The phenotypic spectrum of these effector cells, intriguingly, is modulated by variables such as host genetics and the subtleties of the prevailing inflammatory microenvironment. Notwithstanding their significance, a palpable dearth exists in the literature concerning the roles and mechanisms of monocytes in IBD pathogenesis. This review endeavors to bridge this knowledge gap. It offers an exhaustive exploration of monocytes' origin, their developmental trajectory, and their differentiation dynamics during IBD. Furthermore, it delves into the functional ramifications of monocytes and their differentiated progenies throughout IBD's course. Through this lens, we aspire to furnish novel perspectives into IBD's etiology and potential therapeutic strategies.
Collapse
Affiliation(s)
- Xiping Liao
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ji Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, People’s Republic of China
| | - Xiaolong Guo
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ruiping Meng
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Wei Zhang
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Jianyun Zhou
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xia Xie
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Hongli Zhou
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
20
|
Wang D, Ling J, Tan R, Wang H, Qu Y, Li X, Lin J, Zhang Q, Hu Q, Liu Z, Lu Z, Lin Y, Sun L, Wang D, Zhou M, Shi Z, Gao W, Ye H, Lin X. CD169 + classical monocyte as an important participant in Graves' ophthalmopathy through CXCL12-CXCR4 axis. iScience 2024; 27:109213. [PMID: 38439953 PMCID: PMC10910260 DOI: 10.1016/j.isci.2024.109213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/11/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Patients with Graves' disease (GD) can develop Graves' ophthalmopathy (GO), but the underlying pathological mechanisms driving this development remain unclear. In our study, which included patients with GD and GO, we utilized single-cell RNA sequencing (scRNA-seq) and multiplatform analyses to investigate CD169+ classical monocytes, which secrete proinflammatory cytokines and are expanded through activated interferon signaling. We found that CD169+ clas_mono was clinically significant in predicting GO progression and prognosis, and differentiated into CD169+ macrophages that promote inflammation, adipogenesis, and fibrosis. Our murine model of early-stage GO showed that CD169+ classical monocytes accumulated in orbital tissue via the Cxcl12-Cxcr4 axis. Further studies are needed to investigate whether targeting circulating monocytes and the Cxcl12-Cxcr4 axis could alleviate GO progression.
Collapse
Affiliation(s)
- Dongliang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jie Ling
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - RongQiang Tan
- The First People’s Hospital of Zhaoqing, Zhaoqing 526000, China
| | - Huishi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yixin Qu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xingyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jinshan Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qiuling Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhaojing Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Li Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Dingqiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ming Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhuoxing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wuyou Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Huijing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
21
|
Abstract
The intestinal macrophage pool represents the largest population of macrophages present within the body. Nevertheless, flow cytometry analysis of intestinal macrophages remains challenging due to historical lack of consensus on surface markers, variations in sample preparation, and a certain capriciousness of the isolation procedure itself. Furthermore, recent studies have uncovered a hitherto unknown heterogeneity of intestinal macrophages, accompanied by a vast increase of subset-identifying surface markers. Here, the isolation procedure for intestinal tissue for flow cytometry analysis is laid out, with particular attention toward the procedures for isolated intestinal layers, and a trouble-shooting section with strategies to avoid common pitfalls and mistakes.
Collapse
Affiliation(s)
- Maria Francesca Viola
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| | - Guy Boeckxstaens
- Center for Neuro-Immune Interaction, Translational Research Center for Gastro-intestinal Disorders, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Wu Y, Wu C, Shi T, Cai Q, Wang T, Xiong Y, Zhang Y, Jiang W, Lu M, Chen Z, Chen J, Wang J, He R. FAP expression in adipose tissue macrophages promotes obesity and metabolic inflammation. Proc Natl Acad Sci U S A 2023; 120:e2303075120. [PMID: 38100414 PMCID: PMC10743525 DOI: 10.1073/pnas.2303075120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Adipose tissue macrophages (ATM) are key players in the development of obesity and associated metabolic inflammation which contributes to systemic metabolic dysfunction. We here found that fibroblast activation protein α (FAP), a well-known marker of cancer-associated fibroblast, is selectively expressed in murine and human ATM among adipose tissue-infiltrating leukocytes. Macrophage FAP deficiency protects mice against diet-induced obesity and proinflammatory macrophage infiltration in obese adipose tissues, thereby alleviating hepatic steatosis and insulin resistance. Mechanistically, FAP specifically mediates monocyte chemokine protein CCL8 expression by ATM, which is further upregulated upon high-fat-diet (HFD) feeding, contributing to the recruitment of monocyte-derived proinflammatory macrophages with no effect on their classical inflammatory activation. CCL8 overexpression restores HFD-induced metabolic phenotypes in the absence of FAP. Moreover, macrophage FAP deficiency enhances energy expenditure and oxygen consumption preceding differential body weight after HFD feeding. Such enhanced energy expenditure is associated with increased levels of norepinephrine (NE) and lipolysis in white adipose tissues, likely due to decreased expression of monoamine oxidase, a NE degradation enzyme, by Fap-/- ATM. Collectively, our study identifies FAP as a previously unrecognized regulator of ATM function contributing to diet-induced obesity and metabolic inflammation and suggests FAP as a potential immunotherapeutic target against metabolic disorders.
Collapse
Affiliation(s)
- Yunyun Wu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai200040, China
| | - Chao Wu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Tiancong Shi
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Qian Cai
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Tianyao Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Yingluo Xiong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Yubin Zhang
- Ministry of Education Key Laboratory of Public Health, School of Public Health, Fudan University, Shanghai200032, China
| | - Wei Jiang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang550004, China
| | - Mingfang Lu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Zhengrong Chen
- Department of Respiratory Diseases, Children’s Hospital of Soochow University, Suzhou215008, China
| | - Jing Chen
- Department of Nephrology, Huashan hospital, Fudan University, Shanghai200040, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai200025, China
| | - Rui He
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai200032, China
| |
Collapse
|
23
|
Liu B, Qian Y, Li Y, Shen X, Ye D, Mao Y, Sun X. Circulating levels of cytokines and risk of inflammatory bowel disease: evidence from genetic data. Front Immunol 2023; 14:1310086. [PMID: 38149258 PMCID: PMC10750389 DOI: 10.3389/fimmu.2023.1310086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Background Prior epidemiological studies have established a correlation between inflammatory cytokines and inflammatory bowel disease (IBD). However, the nature of this relationship remains uncertain. Mendelian randomization (MR) study has the advantages of avoiding confounding and reverse causality compared with traditional observational research. Objective We aimed to evaluate whether genetically determined circulating levels of cytokines are associated with the risk of IBD by using the MR approach. Materials and methods We selected genetic variants associated with circulating levels of 28 cytokines at the genome-wide significance level from a genome-wide association study (GWAS) including 8,293 individuals. Summary-level data for IBD (including Crohn's disease and ulcerative colitis) were obtained from the International Inflammatory Bowel Disease Genetics Consortium and UK Biobank. We performed the primary analysis using the inverse-variance weighted method, as well as sensitivity analyses to test the stability of our results. We subsequently replicated the results of IBD in the UK Biobank dataset. A reverse MR analysis was also conducted to evaluate the possibility of reverse causation. Results Genetically predicted elevated levels of interleukin-17 (IL-17) and monokine induced by interferon-gamma (MIG) were associated with an increased risk of IBD[odds ratio (OR): 1.52, 95% confidence interval (CI):1.10-2.08, P =0.010 for IL-17 and OR: 1.58, 95% CI: 1.24-2.00, P = 1.60×10-4 for MIG]. Moreover, we observed suggestive associations between β-NGF and MIP-1β with the risk of Crohn's disease (OR: 0.71, 95% CI: 0.52-0.98, P = 0.039) and ulcerative colitis (OR: 1.08, 95% CI: 1.01-1.15, P= 0.019). In the reverse MR study, there was no evidence of causal effects of IBD and these cytokines. Conclusion Our study suggests the potential causal associations of IL-17 and MIG with IBD. Further studies are needed to determine whether IL-17 and MIG or their downstream effectors could be useful in the management of IBD.
Collapse
Affiliation(s)
- Bin Liu
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Yu Qian
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yanan Li
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Xiangting Shen
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Ding Ye
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Yingying Mao
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Xiaohui Sun
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| |
Collapse
|
24
|
Asano K, Kikuchi K, Takehara M, Ogasawara M, Yoshioka Y, Ohnishi K, Iwata A, Shimizu S, Tanaka M. Identification of small compounds that inhibit multiple myeloma proliferation by targeting c-Maf transcriptional activity. Biochem Biophys Res Commun 2023; 684:149135. [PMID: 37879249 DOI: 10.1016/j.bbrc.2023.149135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Multiple myeloma displays the clonal B cell expansion and the overproduction of monoclonal immunoglobulins. Genetic translocations at 14q32, particularly with partners like 16q23, lead to the dysregulation of oncogene expression, including the significant enhancement of c-Maf. This aberrant expression of c-Maf has prompted research into strategies for targeting this transcription factor as a potential therapeutic avenue for multiple myeloma treatment. In this study, we introduce a screening pipeline to test small compounds for their ability to inhibit c-Maf. Using a luciferase indicator driven by the Ccl8 gene promoter, we identified two small compounds that inhibit transcriptional activity of c-Maf. These molecules impede the proliferation of c-Maf-expressing myeloma cells, and repress the expression of c-Maf target genes such as ITGB7 and CCR1. Importantly, these molecules target c-Maf-expressing multiple myeloma cells, but not c-Maf-negative myeloma cells, showing potential for tailoring therapeutic intervention. In conclusion, our screening pipeline is effective to explore leads for a novel c-Maf inhibitor for multiple myeloma therapy.
Collapse
Affiliation(s)
- Kenichi Asano
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan.
| | - Kenta Kikuchi
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan; Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Miki Takehara
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Manami Ogasawara
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yuki Yoshioka
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Kie Ohnishi
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Ayaka Iwata
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Masato Tanaka
- Laboratory of Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| |
Collapse
|
25
|
Fitzpatrick AM, Mohammad AF, Huang M, Stephenson ST, Patrignani J, Kamaleswaran R, Grunwell JR. Functional immunophenotyping of blood neutrophils identifies novel endotypes of viral response in preschool children with recurrent wheezing. J Allergy Clin Immunol 2023; 152:1433-1443. [PMID: 37604313 PMCID: PMC10841272 DOI: 10.1016/j.jaci.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Preschool children with recurrent wheezing are heterogeneous, with differing responses to respiratory viral infections. Although neutrophils are crucial for host defense, their function has not been studied in this population. OBJECTIVE We performed functional immunophenotyping on isolated blood neutrophils from 52 preschool children with recurrent wheezing (aeroallergen sensitization, n = 16; no sensitization, n = 36). METHODS Blood neutrophils were purified and cultured overnight with polyinosinic:polycytidylic acid [poly(I:C)] as a viral analog stimulus. Neutrophils underwent next-generation sequencing with Reactome pathway analysis and were analyzed for cytokine secretion, apoptosis, myeloperoxidase, and extracellular DNA release. CD14+ monocytes were also exposed to neutrophil culture supernatant and analyzed for markers of M1 and M2 activation. RESULTS A total of 495 genes, related largely to the innate immune system and neutrophil degranulation, were differently expressed in children with versus without aeroallergen sensitization. Functional experiments identified more neutrophil degranulation and extracellular trap formation (ie, more myeloperoxidase and extracellular DNA) and less neutrophil proinflammatory cytokine secretion in children with aeroallergen sensitization. Neutrophils also shifted CD14+ monocytes to a more anti-inflammatory (ie, M2) phenotype in sensitized children and a more proinflammatory (ie, M1) phenotype in nonsensitized children. Although both groups experienced viral exacerbations, annualized exacerbation rates prompting unscheduled health care were also higher in children without aeroallergen sensitization after enrollment. CONCLUSIONS Systemic neutrophil responses to viral infection differ by allergic phenotype and may be less effective in preschool children without allergic inflammation. Further studies of neutrophil function are needed in this population, which often has less favorable therapeutic responses to inhaled corticosteroids and other therapies directed at type 2-high inflammation.
Collapse
Affiliation(s)
- Anne M Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta, Ga; Division of Pulmonary Medicine, Children's Healthcare of Atlanta, Atlanta, Ga.
| | | | - Min Huang
- Department of Biomedical Informatics, Emory University, Atlanta, Ga
| | | | | | | | - Jocelyn R Grunwell
- Department of Pediatrics, Emory University, Atlanta, Ga; Division of Critical Care Medicine, Children's Healthcare of Atlanta, Atlanta, Ga
| |
Collapse
|
26
|
Zhang H, Wang X, Zhang J, He Y, Yang X, Nie Y, Sun L. Crosstalk between gut microbiota and gut resident macrophages in inflammatory bowel disease. J Transl Int Med 2023; 11:382-392. [PMID: 38130639 PMCID: PMC10732497 DOI: 10.2478/jtim-2023-0123] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Macrophages residing in the gut maintain gut homeostasis by orchestrating patho-gens and innocuous antigens. A disturbance in macrophages leads to gut inflamma-tion, causing conditions such as inflammatory bowel disease (IBD). Macrophages ex-hibit remarkable plasticity, as they are sensitive to various signals in the tissue micro-environment. During the recent decades, gut microbiota has been highlighted refer-ring to their critical roles in immunity response. Microbiome-derived metabolites and products can interact with macrophages to participate in the progression of IBD. In this review, we describe recent findings in this field and provide an overview of the current understanding of microbiota-macrophages interactions in IBD, which may lead to the development of new targets and treatment options for patients with IBD.
Collapse
Affiliation(s)
- Haohao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
- State Key Laboratory of Targeting Oncology, National Center for International Re-search of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xueying Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Yixuan He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Xiumin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaaxi Province, China
| | - Lijuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaaxi Province, China
| |
Collapse
|
27
|
KAJI N, IWAOKA K, NAKAMURA S, TSUKAMOTO A. Fuzapladib reduces postsurgical inflammation in the intestinal muscularis externa. J Vet Med Sci 2023; 85:1151-1156. [PMID: 37730381 PMCID: PMC10686772 DOI: 10.1292/jvms.23-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
Postoperative ileus (POI) is a surgical complication that induces emesis and anorexia. Fuzapladib (FUZ), an inhibitor of leukocyte-function-associated antigen type 1 (LFA-1) activation, a leukocyte adhesion molecule, exerts anti-inflammatory effects by inhibiting leukocyte migration into the inflammatory site. In this study, we examined the prophylactic impact of FUZ on POI in a mouse model. POI model mice were generated by intestinal manipulation, and the effect of FUZ on intestinal transit and the infiltration of inflammatory cells into the ileal muscularis externa was assessed. The increased number of macrophages was significantly suppressed by FUZ, whereas the infiltration of neutrophils into the ileal muscularis externa was not sufficiently inhibited in the POI model mice. Additionally, FUZ did not ameliorate delayed gastrointestinal transit in POI model mice. In conclusion, our results suggest that FUZ does not improve delayed gastrointestinal transit but partially inhibits inflammation in the ileal muscularis externa in POI model mice. FUZ may be a potential anti-inflammatory agent for the management of post-surgical inflammation.
Collapse
Affiliation(s)
- Noriyuki KAJI
- Laboratory of Pharmacology, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Kosuzu IWAOKA
- Laboratory of Laboratory Animal Science, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Shinichiro NAKAMURA
- Laboratory of Laboratory Animal Science, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Atsushi TSUKAMOTO
- Laboratory of Laboratory Animal Science, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| |
Collapse
|
28
|
van Baarle L, Stakenborg M, Matteoli G. Enteric neuro-immune interactions in intestinal health and disease. Semin Immunol 2023; 70:101819. [PMID: 37632991 DOI: 10.1016/j.smim.2023.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023]
Abstract
The enteric nervous system is an autonomous neuronal circuit that regulates many processes far beyond the peristalsis in the gastro-intestinal tract. This circuit, consisting of enteric neurons and enteric glial cells, can engage in many intercellular interactions shaping the homeostatic microenvironment in the gut. Perhaps the most well documented interactions taking place, are the intestinal neuro-immune interactions which are essential for the fine-tuning of oral tolerance. In the context of intestinal disease, compelling evidence demonstrates both protective and detrimental roles for this bidirectional neuro-immune signaling. This review discusses the different immune cell types that are recognized to engage in neuronal crosstalk during intestinal health and disease. Highlighting the molecular pathways involved in the neuro-immune interactions might inspire novel strategies to target intestinal disease.
Collapse
Affiliation(s)
- Lies van Baarle
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium
| | - Michelle Stakenborg
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium
| | - Gianluca Matteoli
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium.
| |
Collapse
|
29
|
Amador-Martínez I, Aparicio-Trejo OE, Bernabe-Yepes B, Aranda-Rivera AK, Cruz-Gregorio A, Sánchez-Lozada LG, Pedraza-Chaverri J, Tapia E. Mitochondrial Impairment: A Link for Inflammatory Responses Activation in the Cardiorenal Syndrome Type 4. Int J Mol Sci 2023; 24:15875. [PMID: 37958859 PMCID: PMC10650149 DOI: 10.3390/ijms242115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiorenal syndrome type 4 (CRS type 4) occurs when chronic kidney disease (CKD) leads to cardiovascular damage, resulting in high morbidity and mortality rates. Mitochondria, vital organelles responsible for essential cellular functions, can become dysfunctional in CKD. This dysfunction can trigger inflammatory responses in distant organs by releasing Damage-associated molecular patterns (DAMPs). These DAMPs are recognized by immune receptors within cells, including Toll-like receptors (TLR) like TLR2, TLR4, and TLR9, the nucleotide-binding domain, leucine-rich-containing family pyrin domain-containing-3 (NLRP3) inflammasome, and the cyclic guanosine monophosphate (cGMP)-adenosine monophosphate (AMP) synthase (cGAS)-stimulator of interferon genes (cGAS-STING) pathway. Activation of these immune receptors leads to the increased expression of cytokines and chemokines. Excessive chemokine stimulation results in the recruitment of inflammatory cells into tissues, causing chronic damage. Experimental studies have demonstrated that chemokines are upregulated in the heart during CKD, contributing to CRS type 4. Conversely, chemokine inhibitors have been shown to reduce chronic inflammation and prevent cardiorenal impairment. However, the molecular connection between mitochondrial DAMPs and inflammatory pathways responsible for chemokine overactivation in CRS type 4 has not been explored. In this review, we delve into mechanistic insights and discuss how various mitochondrial DAMPs released by the kidney during CKD can activate TLRs, NLRP3, and cGAS-STING immune pathways in the heart. This activation leads to the upregulation of chemokines, ultimately culminating in the establishment of CRS type 4. Furthermore, we propose using chemokine inhibitors as potential strategies for preventing CRS type 4.
Collapse
Affiliation(s)
- Isabel Amador-Martínez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (I.A.-M.); (A.K.A.-R.)
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - Bismarck Bernabe-Yepes
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ana Karina Aranda-Rivera
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (I.A.-M.); (A.K.A.-R.)
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Alfredo Cruz-Gregorio
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Edilia Tapia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| |
Collapse
|
30
|
Berges AJ, Ospino R, Lina IA, Collins S, Chan-Li Y, Gelbard A, Hillel AT, Motz KM. Myeloid Phenotypes in Tracheostomy-Associated Granulation Tissue. Laryngoscope 2023; 133:2346-2356. [PMID: 36633350 PMCID: PMC10336175 DOI: 10.1002/lary.30557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023]
Abstract
OBJECTIVE(S) Tracheostomy-associated granulation tissue is a common, recurrent problem occurring secondary to chronic mucosal irritation. Although granulation tissue is composed of predominantly innate immune cells, the phenotype of monocytes and macrophages in tracheostomy-associated granulation tissue is unknown. This study aims to define the myeloid cell population in granulation tissue secondary to tracheostomy. METHODS Granulation tissue biopsies were obtained from 8 patients with tracheostomy secondary to laryngotracheal stenosis. Cell type analysis was performed by flow cytometry and gene expression was measured by quantitative real-time polymerase chain reaction. These methods and immunohistochemistry were used to define the monocyte/macrophage population in granulation tissue and were compared to tracheal autopsy control specimens. RESULTS Flow cytometry demonstrated macrophages (CD45+CD11b+) and monocytes (CD45+FSClow SSClow ) represent 23.2 ± 6% of the granulation tissue cell population. The M2 phenotype (CD206) is present in 77 ± 11% of the macrophage population and increased compared to the M1 phenotype (p = 0.012). Classical monocytes (CD45+CD14high CD16low ) were increased in granulation tissue compared to controls (61.2 ± 7% and 30 ± 8.5%, p = 0.038). Eighty-five percent of macrophages expressed pro-inflammatory S100A8/A9 and 36 ± 4% of macrophages co-localized CD169, associated with tissue-resident macrophages. M2 gene expression (Arg1/CD206) was increased in granulation tissue (3.7 ± 0.4, p = 0.035 and 3.5 ± 0.5, p = 0.047) whereas M1 gene expression (CD80/CD86) was similar to controls (p = 0.64, p = 0.3). Immunohistochemistry of granulation tissue demonstrated increased cells co-localizing CD11b and CD206. CONCLUSIONS M2 macrophages are the dominant macrophage phenotype in tracheostomy-associated granulation tissue. The role of this cell type in promoting ongoing inflammation warrants future investigation to identify potential treatments for granulation tissue secondary to tracheostomy. LEVEL OF EVIDENCE 3 Laryngoscope, 133:2346-2356, 2023.
Collapse
Affiliation(s)
- Alexandra J. Berges
- Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD, 21287
| | - Rafael Ospino
- Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD, 21287
| | - Ioan A. Lina
- Johns Hopkins Department of Otolaryngology Head and Neck Surgery, 1800 Orleans Street, Baltimore, MD, 21287
| | - Samuel Collins
- Johns Hopkins Department of Otolaryngology Head and Neck Surgery, 1800 Orleans Street, Baltimore, MD, 21287
| | - Yee Chan-Li
- Johns Hopkins Department of Otolaryngology Head and Neck Surgery, 1800 Orleans Street, Baltimore, MD, 21287
| | - Alexander Gelbard
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Alexander T. Hillel
- Johns Hopkins Department of Otolaryngology Head and Neck Surgery, 1800 Orleans Street, Baltimore, MD, 21287
| | - Kevin M. Motz
- Johns Hopkins Department of Otolaryngology Head and Neck Surgery, 1800 Orleans Street, Baltimore, MD, 21287
| |
Collapse
|
31
|
Yuan J. CCR2: A characteristic chemokine receptor in normal and pathological intestine. Cytokine 2023; 169:156292. [PMID: 37437448 DOI: 10.1016/j.cyto.2023.156292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
C-C motif chemokine receptor 2 (CCR2), together with its ligands, especially C-C motif ligand 2 (CCL2), to which CCR2 has the highest affinity, form a noteworthy signaling pathway in recruiting macrophages for the immune responses among variegated disorders in vivo environment. Scientometric methods are used to analyze intestine-related CCR2 expression. We describe the current knowledge on biological function of CCR2 in physiological intestine in three dimensions, namely its effects on stromal cells, angiogenesis, and remodeling. However, anomalous expression of CCR2 has also been conveyed to correlate with detrimental outcomes in intestine, such as infective colitis, inflammatory bowel disease, carcinogenesis, and colon-related metastasis. In this article, we briefly summarize recent experimental works on CCR2 and its ligands, mostly CCL2, in intestinal-related physiological and pathological states to ravel out their working mechanisms in intestinal diseases.
Collapse
Affiliation(s)
- Jin Yuan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| |
Collapse
|
32
|
Shi Y, Zhang H, Li S, Xin D, Li S, Yan B, Wang S, Liu C. Procyanidin improves experimental colitis by regulating macrophage polarization. Biomed Pharmacother 2023; 165:115076. [PMID: 37478578 DOI: 10.1016/j.biopha.2023.115076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic disease with an unclear pathogenesis for which successful treatments are still lacking. It has been reported that procyanidin, a natural antioxidant, relieves colitis, but the specific mechanism is elusive. PURPOSE Our present study was designed to investigate the effects of procyanidin on colitis and the regulation of the M1 macrophage phenotype and related signaling pathways. METHODS In vivo, we used two classic colitis models to observe the effect of procyanidin on macrophage polarization. In vitro, we further validated the therapeutic effect of procyanidin in the RAW264.7 cell line and peritoneal macrophages. RESULTS The current findings provide new evidence that procyanidin ameliorated dextran sulfate sodium (DSS)-induced colitis by preventing the polarization of macrophages to the M1 type and downregulating the levels of proinflammatory factors in cells. We also showed that procyanidin prevented lipopolysaccharide (LPS)-induced elevation of inflammatory cytokines and the activation of proinflammatory macrophages, which was achieved by activating the STAT3 and NF-κB pathways. CONCLUSIONS This is the first study to demonstrate that procyanidin alleviates experimental colitis by inhibiting the polarization of proinflammatory macrophages. These data reveal new ideas for the pathogenesis and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Yao Shi
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Haojie Zhang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Shuang Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Shiyang Li
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Bing Yan
- Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250012, PR China
| | - Shuanglian Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| | - Chuanyong Liu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| |
Collapse
|
33
|
Kim HS, Lee HK, Kim K, Ahn GB, Kim MS, Lee TY, Son DJ, Kim Y, Hong JT, Han SB. Mesenchymal stem cells enhance CCL8 expression by podocytes in lupus-prone MRL.Fas lpr mice. Sci Rep 2023; 13:13074. [PMID: 37567910 PMCID: PMC10421856 DOI: 10.1038/s41598-023-40346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023] Open
Abstract
Nephritis is common in systemic lupus erythematosus patients and is associated with hyper-activation of immune and renal cells. Although mesenchymal stem cells (MSCs) ameliorate nephritis by inhibiting T and B cells, whether MSCs directly affect renal cells is unclear. To address this issue, we examined the direct effect of MSCs on renal cells with a focus on chemokines. We found that expression of CCL2, CCL3, CCL4, CCL5, CCL8, CCL19, and CXCL10 increased 1.6-5.6-fold in the kidney of lupus-prone MRL.Faslpr mice with advancing age from 9 to 16 weeks. Although MSCs inhibited the increase in the expression of most chemokines by 52-95%, they further increased CCL8 expression by 290%. Using renal cells, we next investigated how MSCs enhanced CCL8 expression. CCL8 was expressed by podocytes, but not by tubular cells. MSCs enhanced CCL8 expression by podocytes in a contact-dependent manner, which was proved by transwell assay and blocking with anti-VCAM-1 antibody. Finally, we showed that CCL8 itself activated MSCs to produce more immunosuppressive factors (IL-10, IDO, TGF-β1, and iNOS) and to inhibit more strongly IFN-γ production by T cells. Taken together, our data demonstrate that MSCs activate podocytes to produce CCL8 in a contact-dependent manner and conversely, podocyte-derived CCL8 might potentiate immunosuppressive activity of MSCs in a paracrine fashion. Our study documents a previously unrecognized therapeutic mechanism of MSCs in nephritis.
Collapse
Affiliation(s)
- Hyung Sook Kim
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28160, Republic of Korea
- Department of Biotechnology and Biomedicine, Chungbuk Provincial University, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Hong Kyung Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28160, Republic of Korea
- Bioengineering Institute, Corestem Inc., Gyeonggi, 13486, Republic of Korea
| | - Kihyeon Kim
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Gi Beom Ahn
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Min Sung Kim
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28160, Republic of Korea
- Bioengineering Institute, Corestem Inc., Gyeonggi, 13486, Republic of Korea
| | - Tae Yong Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28160, Republic of Korea
- Bioengineering Institute, Corestem Inc., Gyeonggi, 13486, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Youngsoo Kim
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
34
|
Lin CH, Talebian F, Li Y, Zhu J, Liu JQ, Zhao B, Basu S, Pan X, Chen X, Yan P, Carson WE, Xin G, Wen H, Wang R, Li Z, Ma Q, Bai XF. CD200R signaling contributes to unfavorable tumor microenvironment through regulating production of chemokines by tumor-associated myeloid cells. iScience 2023; 26:106904. [PMID: 37275530 PMCID: PMC10239067 DOI: 10.1016/j.isci.2023.106904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023] Open
Abstract
CD200 is overexpressed in many solid tumors and considered as an immune checkpoint molecule dampening cancer immunity. In this study, we found that CD200R-/- mice were significantly more potent in rejecting these CD200+ tumors. scRNA sequencing demonstrated that tumors from CD200R-/- mice had more infiltration of CD4+ and CD8+ T cells, and NK cells but less infiltration of neutrophils. Antibody depletion experiments revealed that immune effector cells are crucial in inhibiting tumor growth in CD200R-/- mice. Mechanistically, we found that CD200R signaling regulates the expression of chemokines in tumor-associated myeloid cells (TAMCs). In the absence of CD200R, TAMCs increased expression of CCL24 and resulted in increased infiltration of eosinophils, which contributes to anti-tumor activity. Overall, we conclude that CD200R signaling contributes to unfavorable TME through chemokine-dependent recruitment of immune suppressive neutrophils and exclusion of anti-cancer immune effectors. Our study has implications in developing CD200-CD200R targeted immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Cho-Hao Lin
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Fatemeh Talebian
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jianmin Zhu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jin-Qing Liu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Bolin Zhao
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Sujit Basu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Xueliang Pan
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Xi Chen
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Pearlly Yan
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - William E. Carson
- Department of Surgery, Division of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Gang Xin
- Pelotonia Institute for Immuno-Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Haitao Wen
- Pelotonia Institute for Immuno-Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Ruoning Wang
- Pelotonia Institute for Immuno-Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xue-Feng Bai
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
35
|
Tadepalli S, Clements DR, Saravanan S, Hornero RA, Lüdtke A, Blackmore B, Paulo JA, Gottfried-Blackmore A, Seong D, Park S, Chan L, Kopecky BJ, Liu Z, Ginhoux F, Lavine KJ, Murphy JP, Mack M, Graves EE, Idoyaga J. Rapid recruitment and IFN-I-mediated activation of monocytes dictate focal radiotherapy efficacy. Sci Immunol 2023; 8:eadd7446. [PMID: 37294749 PMCID: PMC10340791 DOI: 10.1126/sciimmunol.add7446] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/18/2023] [Indexed: 06/11/2023]
Abstract
The recruitment of monocytes and their differentiation into immunosuppressive cells is associated with the low efficacy of preclinical nonconformal radiotherapy (RT) for tumors. However, nonconformal RT (non-CRT) does not mimic clinical practice, and little is known about the role of monocytes after RT modes used in patients, such as conformal RT (CRT). Here, we investigated the acute immune response induced by after CRT. Contrary to non-CRT approaches, we found that CRT induces a rapid and robust recruitment of monocytes to the tumor that minimally differentiate into tumor-associated macrophages or dendritic cells but instead up-regulate major histocompatibility complex II and costimulatory molecules. We found that these large numbers of infiltrating monocytes are responsible for activating effector polyfunctional CD8+ tumor-infiltrating lymphocytes that reduce tumor burden. Mechanistically, we show that monocyte-derived type I interferon is pivotal in promoting monocyte accumulation and immunostimulatory function in a positive feedback loop. We also demonstrate that monocyte accumulation in the tumor microenvironment is hindered when RT inadvertently affects healthy tissues, as occurs in non-CRT. Our results unravel the immunostimulatory function of monocytes during clinically relevant modes of RT and demonstrate that limiting the exposure of healthy tissues to radiation has a positive therapeutic effect on the overall antitumor immune response.
Collapse
Affiliation(s)
- Sirimuvva Tadepalli
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Derek R. Clements
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sanjana Saravanan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Rebeca Arroyo Hornero
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Anja Lüdtke
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Beau Blackmore
- Department of Biology, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andres Gottfried-Blackmore
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Redwood City, CA 94063, USA
| | - David Seong
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
| | - Soyoon Park
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Leslie Chan
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Benjamin J. Kopecky
- Center for Cardiovascular Research, Departmental of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institut Gustave Roussy, INSERM U1015, Bâtiment de Médecine Moléculaire, Villejuif 94800, France
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Republic of Singapore
| | - Kory J. Lavine
- Center for Cardiovascular Research, Departmental of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John Patrick Murphy
- Department of Biology, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg 93053, Germany
| | - Edward E. Graves
- Department of Radiation Oncology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| |
Collapse
|
36
|
Frountzas M, Karanikki E, Toutouza O, Sotirakis D, Schizas D, Theofilis P, Tousoulis D, Toutouzas KG. Exploring the Impact of Cyanidin-3-Glucoside on Inflammatory Bowel Diseases: Investigating New Mechanisms for Emerging Interventions. Int J Mol Sci 2023; 24:9399. [PMID: 37298350 PMCID: PMC10254033 DOI: 10.3390/ijms24119399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Cyanidin-3-O-glucoside (C3G), the most widely distributed anthocyanin (ACN) in edible fruits, has been proposed for several bioactivities, including anti-inflammatory, neuro-protective, antimicrobial, anti-viral, anti-thrombotic and epigenetic actions. However, habitual intake of ACNs and C3G may vary widely among populations, regions, and seasons, among individuals with different education and financial status. The main point of C3G absorption occurs in the small and large bowel. Therefore, it has been supposed that the treating properties of C3G might affect inflammatory bowel diseases (IBD), such as ulcerative colitis (UC) and Crohn's disease (CD). IBDs develop through complex inflammatory pathways and sometimes may be resistant to conventional treatment strategies. C3G presents antioxidative, anti-inflammatory, cytoprotective, and antimicrobial effects useful for IBD management. In particular, different studies have demonstrated that C3G inhibits NF-κB pathway activation. In addition, C3G activates the Nrf2 pathway. On the other hand, it modulates the expression of antioxidant enzymes and cytoprotective proteins, such as NAD(P)H, superoxide dismutase, heme-oxygenase (HO-1), thioredoxin, quinone reductase-oxide 1 (NQO1), catalase, glutathione S-transferase and glutathione peroxidase. Interferon I and II pathways are downregulated by C3G inhibiting interferon-mediating inflammatory cascades. Moreover, C3G reduces reactive species and pro-inflammatory cytokines, such as C reactive protein, interferon-γ, tumor necrosis factor-α, interleukin (IL)-5, IL-9, IL-10, IL-12p70, and IL-17A in UC and CD patients. Finally, C3G modulates gut microbiota by inducing an increase in beneficial gut bacteria and increasing microbial abundances, thus mitigating dysbiosis. Thus, C3G presents activities that may have potential therapeutic and protective actions against IBD. Still, in the future, clinical trials should be designed to investigate the bioavailability of C3G in IBD patients and the proper therapeutic doses through different sources, aiming to the standardization of the exact clinical outcome and efficacy of C3G.
Collapse
Affiliation(s)
- Maximos Frountzas
- First Propaedeutic Department of Surgery, Hippocration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eva Karanikki
- Department of Clinical Nutrition, Hippocration General Hospital, 11527 Athens, Greece;
| | - Orsalia Toutouza
- School of Medicine, Imperial College of London, London SW7 2AZ, UK
| | - Demosthenis Sotirakis
- First Propaedeutic Department of Surgery, Hippocration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Panagiotis Theofilis
- First Cardiology Department, “Hippocration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Dimitris Tousoulis
- First Cardiology Department, “Hippocration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Konstantinos G. Toutouzas
- First Propaedeutic Department of Surgery, Hippocration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
37
|
Hegarty LM, Jones GR, Bain CC. Macrophages in intestinal homeostasis and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00769-0. [PMID: 37069320 DOI: 10.1038/s41575-023-00769-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/19/2023]
Abstract
Macrophages are essential for the maintenance of intestinal homeostasis, yet appear to be drivers of inflammation in the context of inflammatory bowel disease (IBD). How these peacekeepers become powerful aggressors in IBD is still unclear, but technological advances have revolutionized our understanding of many facets of their biology. In this Review, we discuss the progress made in understanding the heterogeneity of intestinal macrophages, the functions they perform in gut health and how the environment and origin can control the differentiation and longevity of these cells. We describe how these processes might change in the context of chronic inflammation and how aberrant macrophage behaviour contributes to IBD pathology, and discuss how therapeutic approaches might target dysregulated macrophages to dampen inflammation and promote mucosal healing. Finally, we set out key areas in the field of intestinal macrophage biology for which further investigation is warranted.
Collapse
Affiliation(s)
- Lizi M Hegarty
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK
| | - Gareth-Rhys Jones
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK
| | - Calum C Bain
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK.
| |
Collapse
|
38
|
Wang W, Wu Y, Wang Y, Wang R, Deng C, Yi L, Wang L, He M, Zhou W, Xie Y, Jin Q, Chen Y, Gao T, Zhang L, Xie M. Orally Administrable Aggregation-Induced Emission-Based Bionic Probe for Imaging and Ameliorating Dextran Sulfate Sodium-Induced Inflammatory Bowel Diseases. Adv Healthc Mater 2023; 12:e2202420. [PMID: 36575111 DOI: 10.1002/adhm.202202420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/12/2022] [Indexed: 12/29/2022]
Abstract
As macrophage infiltration is significantly related to the progression of inflammatory bowel disease (IBD), monitoring the macrophages is a valuable strategy for IBD diagnosis. However, owing to the harsh physiological environment of the gastrointestinal tract and enzymatic degradation, the development of orally administrable imaging probes for tracking macrophages remains a considerable challenge. Accordingly, herein, an orally administrable aggregation-induced emission biomimetic probe (HBTTPIP/β-glucan particles [GPs]) is developed for tracing macrophages; HBTTPIP/GPs can diagnose and alleviate dextran sulfate sodium (DSS)-induced colonic inflammation and self-report the treatment efficiency. The fluorophore HBTTPIP can effectively aggregate in GPs, restricting intramolecular rotation and activating the fluorescence of HBTTPIP. After being orally administrated, HBTTPIP/GPs are phagocytosed by intestinal macrophages, which then migrate to colonic lesions, enabling non-invasive monitoring of the severity of IBD via in vivo fluorescence imaging. Notably, oral HBTTPIP/GPs ameliorate DSS-induced IBD by inhibiting the expressions of pro-inflammatory factors and improving colonic mucosal barrier function. Furthermore, these HBTTPIP/GPs realize self-feedback of the therapeutic effects of GPs on DSS-induced colitis. The oral biomimetic probe HBTTPIP/GPs reported herein provide a novel theranostic platform for IBD, integrating non-invasive diagnosis of IBD in situ and the corresponding treatment.
Collapse
Affiliation(s)
- Wenyuan Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Ya Wu
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yihui Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Rui Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Luyang Yi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lufang Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mengrong He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wuqi Zhou
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yuji Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| |
Collapse
|
39
|
Peskar D, Kuret T, Lakota K, Erman A. Molecular Profiling of Inflammatory Processes in a Mouse Model of IC/BPS: From the Complete Transcriptome to Major Sex-Related Histological Features of the Urinary Bladder. Int J Mol Sci 2023; 24:ijms24065758. [PMID: 36982831 PMCID: PMC10058956 DOI: 10.3390/ijms24065758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Animal models are invaluable in the research of the pathophysiology of interstitial cystitis/bladder pain syndrome (IC/BPS), a chronic aseptic urinary bladder disease of unknown etiology that primarily affects women. Here, a mouse model of IC/BPS was induced with multiple low-dose cyclophosphamide (CYP) applications and thoroughly characterized by RNA sequencing, qPCR, Western blot, and immunolabeling to elucidate key inflammatory processes and sex-dependent differences in the bladder inflammatory response. CYP treatment resulted in the upregulation of inflammatory transcripts such as Ccl8, Eda2r, and Vegfd, which are predominantly involved in innate immunity pathways, recapitulating the crucial findings in the bladder transcriptome of IC/BPS patients. The JAK/STAT signaling pathway was analyzed in detail, and the JAK3/STAT3 interaction was found to be most activated in cells of the bladder urothelium and lamina propria. Sex-based data analysis revealed that cell proliferation was more pronounced in male bladders, while innate immunity and tissue remodeling processes were the most distinctive responses of female bladders to CYP treatment. These processes were also reflected in prominent histological changes in the bladder. The study provides an invaluable reference dataset for preclinical research on IC/BPS and an insight into the sex-specific mechanisms involved in the development of IC/BPS pathology, which may explain the more frequent occurrence of this disease in women.
Collapse
Affiliation(s)
- Dominika Peskar
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadeja Kuret
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katja Lakota
- Department of Rheumatology, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
| | - Andreja Erman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
40
|
Yeung ST, Ovando LJ, Russo AJ, Rathinam VA, Khanna KM. CD169+ macrophage intrinsic IL-10 production regulates immune homeostasis during sepsis. Cell Rep 2023; 42:112171. [PMID: 36867536 PMCID: PMC10123955 DOI: 10.1016/j.celrep.2023.112171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/23/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
Macrophages facilitate critical functions in regulating pathogen clearance and immune homeostasis in tissues. The remarkable functional diversity exhibited by macrophage subsets is dependent on tissue environment and the nature of the pathological insult. Our current knowledge of the mechanisms that regulate the multifaceted counter-inflammatory responses mediated by macrophages remains incomplete. Here, we report that CD169+ macrophage subsets are necessary for protection under excessive inflammatory conditions. We show that in the absence of these macrophages, even under mild septic conditions, mice fail to survive and exhibit increased production of inflammatory cytokines. Mechanistically, CD169+ macrophages control inflammatory responses via interleukin-10 (IL-10), as CD169+ macrophage-specific deletion of IL-10 was lethal during septic conditions, and recombinant IL-10 treatment reduced lipopolysaccharide (LPS)-induced lethality in mice lacking CD169+ macrophages. Collectively, our findings show a pivotal homeostatic role for CD169+ macrophages and suggest they may serve as an important target for therapy under damaging inflammatory conditions.
Collapse
Affiliation(s)
- Stephen T Yeung
- Department of Microbiology, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Luis J Ovando
- Department of Microbiology, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Ashley J Russo
- Department of Immunology, UConn Health School of Medicine, Farmington, CT 06032, USA
| | - Vijay A Rathinam
- Department of Immunology, UConn Health School of Medicine, Farmington, CT 06032, USA
| | - Kamal M Khanna
- Department of Microbiology, New York University Langone School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
41
|
Saez A, Herrero-Fernandez B, Gomez-Bris R, Sánchez-Martinez H, Gonzalez-Granado JM. Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. Int J Mol Sci 2023; 24:ijms24021526. [PMID: 36675038 PMCID: PMC9863490 DOI: 10.3390/ijms24021526] [Citation(s) in RCA: 191] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a heterogeneous state of chronic intestinal inflammation with no exact known cause. Intestinal innate immunity is enacted by neutrophils, monocytes, macrophages, and dendritic cells (DCs), and innate lymphoid cells and NK cells, characterized by their capacity to produce a rapid and nonspecific reaction as a first-line response. Innate immune cells (IIC) defend against pathogens and excessive entry of intestinal microorganisms, while preserving immune tolerance to resident intestinal microbiota. Changes to this equilibrium are linked to intestinal inflammation in the gut and IBD. IICs mediate host defense responses, inflammation, and tissue healing by producing cytokines and chemokines, activating the complement cascade and phagocytosis, or presenting antigens to activate the adaptive immune response. IICs exert important functions that promote or ameliorate the cellular and molecular mechanisms that underlie and sustain IBD. A comprehensive understanding of the mechanisms underlying these clinical manifestations will be important for developing therapies targeting the innate immune system in IBD patients. This review examines the complex roles of and interactions among IICs, and their interactions with other immune and non-immune cells in homeostasis and pathological conditions.
Collapse
Affiliation(s)
- Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Hector Sánchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-913908766
| |
Collapse
|
42
|
Lin M, Bao Y, Du Z, Zhou Y, Zhang N, Lin C, Xie Y, Zhang R, Li Q, Quan J, Zhu T, Xie Y, Xu C, Xie Y, Wei Y, Luo Q, Pan W, Wang L, Ling T, Jin Q, Wu L, Yin T, Xie Y. Plasma protein profiling analysis in patients with atrial fibrillation before and after three different ablation techniques. Front Cardiovasc Med 2023; 9:1077992. [PMID: 36704472 PMCID: PMC9871787 DOI: 10.3389/fcvm.2022.1077992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background There are controversies on the pathophysiological alteration in patients with atrial fibrillation (AF) undergoing pulmonary vein isolation using different energy sources. Objectives We evaluated the changes in plasma proteins in acute phase post-ablation in patients receiving cryoballoon ablation, radiofrequency balloon ablation, or radiofrequency ablation. Methods Blood samples from eight healthy controls and 24 patients with AF were taken on the day of admission, day 1, and day 2 post-ablation and analyzed by the Olink proximity extension assay. Proteins were identified and performed with enrichment analysis. Protein-protein interaction network and module analysis were conducted using Cytoscape software. Results Of 181 proteins, 42 proteins in the cryoballoon group, 46 proteins in the radiofrequency balloon group, and 43 proteins in the radiofrequency group significantly changed after ablation. Most of the proteins altered significantly on the first day after ablation. Altered proteins were mainly involved in cytokine-cytokine receptor interaction. Both balloon-based ablations showed a similar shift toward enhancing cell communication and regulation of signaling while inhibiting neutrophil chemotaxis. However, radiofrequency ablation presented a different trend. Seed proteins, including osteopontin, interleukin-6, interleukin-10, C-C motif ligand 8, and matrix metalloproteinase-1, were identified. More significant proteins associated with hemorrhage and coagulation were selected in balloon-based ablations by machine learning. Conclusion Plasma protein response after three different ablations in patients with AF mainly occurred on the first day. Radiofrequency balloon ablation shared similar alteration in protein profile as cryoballoon ablation compared with radiofrequency ablation, suggesting that lesion size rather than energy source is the determinant in pathophysiological responses to the ablation.
Collapse
Affiliation(s)
- Menglu Lin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangyang Bao
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zunhui Du
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanting Zhou
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changjian Lin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinyin Xie
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruihong Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiheng Li
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinwei Quan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingfang Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Xie
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO, United States
| | - Cathy Xu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Xie
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wei
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingzhi Luo
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqi Pan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingjie Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyou Ling
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Jin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqun Wu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Liqun Wu,
| | - Tong Yin
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Tong Yin,
| | - Yucai Xie
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Yucai Xie,
| |
Collapse
|
43
|
Zhao C, Sun C, Yuan J, Tsopmejio ISN, Li Y, Jiang Y, Song H. Hericium caput-medusae (Bull.:Fr.) Pers. fermentation concentrate polysaccharides improves intestinal bacteria by activating chloride channels and mucus secretion. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115721. [PMID: 36115601 DOI: 10.1016/j.jep.2022.115721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional edible fungus in China and many other Asian countries, Hericium caput-medusae (Bull. Fr.) Pers. is widely used to improve the health of the gastrointestinal tract. For example, the drug "Weilexin Granules" is mainly composed of H. caput-medusae (Bull. Fr.) Pers. fermentation concentrate. However, the mechanism of action remains to be elucidated. AIMS OF THE STUDY The purpose of this study was to assess whether polysaccharides from H. caput-medusae (Bull. Fr.) Pers. fermentation concentrate (HFP) exerts a gut protective effect and a regulatory effect on the intestinal microbiota through the chloride channels and mucus secretion. MATERIALS AND METHODS HFP was extracted, characterized and different concentrations of HFP (100, 200, 400 mg/kg) were administered to mice for 14 days. The changes in gut microbiota were observed via 16S high throughput sequencing. Short-chain fatty acids (SCFAs) was detected by GC-MS. AB-PAS staining was used to observe the secretion of mucus. The chloride channel activity and protein expression were verified by short-circuit current measurement and Western blot. RESULTS HFP regulated the abundance of gut microbiota in mice, with increased levels of Ruminococcaceae and Lachnospiraceae and reduced proportions of Staphylococcus and Enterobacter. HFP enhanced mucus volume as well as increased intestinal fluid secretion by activating the chloride channels. In addition, short-circuit current experiments also proved that HFP activates Cl⁻ currents targeting cystic fibrosis transmembrane conductance regulator (CFTR) and Anoamin1 (ANO1). CONCLUSION In conclusion, HFP might increase intestinal fluid secretion by promoting Cl⁻ secretion, which in turn advanced mucus hydration as well as regulated gut microbiota to improve intestinal health. Therefore, H. caput-medusae (Bull. Fr.) Pers. could be potentially used in the regulation of intestinal secretion and microbes.
Collapse
Affiliation(s)
- Cong Zhao
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | - Chang Sun
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | - Jing Yuan
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | | | - Yuting Li
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China
| | - Yu Jiang
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China.
| | - Hui Song
- College of Life Science, Jilin Agricultural University, 130118, Changchun, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, 130118, Changchun, China.
| |
Collapse
|
44
|
Pathogenic Th2 Cytokine Profile Skewing by IFN-γ-Responding Vitiligo Fibroblasts via CCL2/CCL8. Cells 2023; 12:cells12020217. [PMID: 36672151 PMCID: PMC9856695 DOI: 10.3390/cells12020217] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Vitiligo is a T cell-mediated skin depigmentation disease. Though treatments arresting disease progression and inducing repigmentation are available, the efficacy of these options is often limited and poorly sustained. How stromal signals contribute to the interferon-γ-dominant skin niches is unclear. This study aims to determine how fibroblasts participate in the IFN-γ-dominant vitiligo niche. PATIENTS AND METHODS Mouse vitiligo models were established. Fibroblasts from control and vitiligo mice were extracted for RNA sequencing. In vitro IFN-γ stimulation was performed to verify the JAK-STAT pathway by qPCR and Western blot. T cell polarization with chemokines was measured by flow cytometry. Protein levels in tissues were also examined by IHC. RESULTS The vitiligo mouse model recapitulates the human CD8-IFN-γ pathway. RNA sequencing revealed elevated chemokine CCL2 and CCL8 in vitiligo fibroblast, which may be regulated by the JAK-STAT signaling. Such phenomenon is verified by JAK inhibitor peficitinib in vitro. Moreover, CCL2 addition into the naïve T polarization system promoted type 2 cytokines secretion, which represents a hallmark of vitiligo lesions. CONCLUSION Dermal fibroblasts, a principal constituent of skin structure, respond to IFN-γ by skewing T cells towards a type 2 cytokine profile via CCL2 and CCL8, which can be abrogated by JAK inhibitor peficitinib.
Collapse
|
45
|
Xu J, Xu J, Shi T, Zhang Y, Chen F, Yang C, Guo X, Liu G, Shao D, Leong KW, Nie G. Probiotic-Inspired Nanomedicine Restores Intestinal Homeostasis in Colitis by Regulating Redox Balance, Immune Responses, and the Gut Microbiome. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207890. [PMID: 36341495 DOI: 10.1002/adma.202207890] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Microbiota-based therapeutics offer innovative strategies to treat inflammatory bowel diseases (IBDs). However, the poor clinical outcome so far and the limited flexibility of the bacterial approach call for improvement. Inspired by the health benefits of probiotics in alleviating symptoms of bowel diseases, bioartificial probiotics are designed to restore the intestinal microenvironment in colitis by regulating redox balance, immune responses, and the gut microbiome. The bioartificial probiotic comprises two components: an E. coli Nissle 1917-derived membrane (EM) as the surface and the biodegradable diselenide-bridged mesoporous silica nanoparticles (SeM) as the core. When orally administered, the probiotic-inspired nanomedicine (SeM@EM) adheres strongly to the mucus layer and restored intestinal redox balance and immune regulation homeostasis in a murine model of acute colitis induced by dextran sodium sulfate. In addition, the respective properties of the EM and SeM synergistically alter the gut microbiome to a favorable state by increasing the bacterial diversity and shifting the microbiome profile to an anti-inflammatory phenotype. This work suggests a safe and effective nanomedicine that can restore intestinal homeostasis for IBDs therapy.
Collapse
Affiliation(s)
- Jiaqi Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongfei Shi
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yinlong Zhang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangman Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
| | - Chao Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Xinjing Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Shao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
46
|
Lee Y, Lee J, Park M, Seo A, Kim KH, Kim S, Kang M, Kang E, Yoo KD, Lee S, Kim DK, Oh KH, Kim YS, Joo KW, Yang SH. Inflammatory chemokine (C-C motif) ligand 8 inhibition ameliorates peritoneal fibrosis. FASEB J 2023; 37:e22632. [PMID: 36468785 DOI: 10.1096/fj.202200784r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 12/12/2022]
Abstract
Peritoneal fibrosis (PF) is an irreversible complication of peritoneal dialysis (PD) that leads to loss of peritoneal membrane function. We investigated PD effluent and serum levels and the tissue expression of chemokine (C-C motif) ligand 8 (CCL8) in patients with PD. Additionally, we investigated their association with PF in a mouse model. Eighty-two end-stage renal disease (ESRD) patients with PD were examined. CCL8 levels were measured via enzyme-linked immunosorbent assays in PD effluents and serum and analyzed with peritoneal transport parameters. Human peritoneal mesothelial cells (hPMCs) were obtained from the PD effluents of 20 patients. Primary cultured hPMCs were treated with recombinant (r) transforming growth factor (TGF)-β, and CCL8 expression was assessed via western blotting. As the duration of PD increased, the concentration of CCL8 in PD effluents significantly increased. Correlations between peritoneal transport parameters and dialysate CCL8 levels were observed. Western blotting analysis showed that CCL8 was upregulated via rTGF-β treatment, accompanied by increases in markers of inflammation, fibrosis, senescence, and apoptosis in hPMCs after induction of fibrosis with rTGF-β. Anti-CCL8 monoclonal antibody (mAb) treatment suppressed the rTGF-β-induced increase in all analyzed markers. Immunohistochemical analysis revealed that CCL8 along with fibrosis- and inflammation-related markers were significantly increased in the PF mouse model. Functional blockade of CCL8 using a CCR8 inhibitor (R243) abrogated peritoneal inflammation and fibrosis in vivo. In conclusion, high CCL8 levels in PD effluents may be associated with an increased risk of PD failure, and the CCL8 pathway is associated with PF. CCL8 blockade can ameliorate peritoneal inflammation and fibrosis.
Collapse
Affiliation(s)
- Yeonhee Lee
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University, Gyeonggi-do, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jangwook Lee
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Gyeonggi-do, Republic of Korea
| | - Minkyoung Park
- Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Areum Seo
- Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Kyu Hyeon Kim
- Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Seonmi Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minjung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eunjeong Kang
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Kyung Don Yoo
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Sunhwa Lee
- Department of Internal Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Kidney Research Institute, Seoul National University, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Kidney Research Institute, Seoul National University, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Kidney Research Institute, Seoul National University, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Kidney Research Institute, Seoul National University, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung Hee Yang
- Kidney Research Institute, Seoul National University, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
47
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
48
|
Martínez-Colón GJ, Ratnasiri K, Chen H, Jiang S, Zanley E, Rustagi A, Verma R, Chen H, Andrews JR, Mertz KD, Tzankov A, Azagury D, Boyd J, Nolan GP, Schürch CM, Matter MS, Blish CA, McLaughlin TL. SARS-CoV-2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophages. Sci Transl Med 2022; 14:eabm9151. [PMID: 36137009 PMCID: PMC9529056 DOI: 10.1126/scitranslmed.abm9151] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 09/09/2022] [Indexed: 01/11/2023]
Abstract
Obesity, characterized by chronic low-grade inflammation of the adipose tissue, is associated with adverse coronavirus disease 2019 (COVID-19) outcomes, yet the underlying mechanism is unknown. To explore whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of adipose tissue contributes to pathogenesis, we evaluated COVID-19 autopsy cases and deeply profiled the response of adipose tissue to SARS-CoV-2 infection in vitro. In COVID-19 autopsy cases, we identified SARS-CoV-2 RNA in adipocytes with an associated inflammatory infiltrate. We identified two distinct cellular targets of infection: adipocytes and a subset of inflammatory adipose tissue-resident macrophages. Mature adipocytes were permissive to SARS-CoV-2 infection; although macrophages were abortively infected, SARS-CoV-2 initiated inflammatory responses within both the infected macrophages and bystander preadipocytes. These data suggest that SARS-CoV-2 infection of adipose tissue could contribute to COVID-19 severity through replication of virus within adipocytes and through induction of local and systemic inflammation driven by infection of adipose tissue-resident macrophages.
Collapse
Affiliation(s)
| | - Kalani Ratnasiri
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Heping Chen
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Elizabeth Zanley
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Renu Verma
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Han Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jason R. Andrews
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kirsten D. Mertz
- Institute of Pathology, Cantonal Hospital Baselland, 4410, Liestal, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital of Basel, University of Basel, 4056, Basel, Switzerland
| | - Dan Azagury
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jack Boyd
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Garry P. Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Christian M. Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72070, Tübingen, Germany
| | - Matthias S. Matter
- Institute of Medical Genetics and Pathology, University Hospital of Basel, University of Basel, 4056, Basel, Switzerland
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Tracey L. McLaughlin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
49
|
Yamane T, Kanamori Y, Sawayama H, Yano H, Nita A, Ohta Y, Hinokuma H, Maeda A, Iwai A, Matsumoto T, Shimoda M, Niimura M, Usuki S, Yasuda-Yoshihara N, Niwa M, Baba Y, Ishimoto T, Komohara Y, Sawa T, Hirayama T, Baba H, Moroishi T. Iron accelerates Fusobacterium nucleatum-induced CCL8 expression in macrophages and is associated with colorectal cancer progression. JCI Insight 2022; 7:156802. [PMID: 36136589 PMCID: PMC9675438 DOI: 10.1172/jci.insight.156802] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence suggests that high levels of Fusobacterium nucleatum in colorectal tumor tissues can be associated with poor prognosis in patients with colorectal cancer (CRC); however, data regarding distinct prognostic subgroups in F. nucleatum-positive CRC remain limited. Herein, we demonstrate that high-iron status was associated with a worse prognosis in patients with CRC with F. nucleatum. Patients with CRC presenting elevated serum transferrin saturation exhibited preferential iron deposition in macrophages in the tumor microenvironment. In addition, F. nucleatum induced CCL8 expression in macrophages via the TLR4/NF-κB signaling pathway, which was inhibited by iron deficiency. Mechanistically, iron attenuated the inhibitory phosphorylation of NF-κB p65 by activating serine/threonine phosphatases, augmenting tumor-promoting chemokine production in macrophages. Our observations indicate a key role for iron in modulating the NF-κB signaling pathway and suggest its prognostic potential as a determining factor for interpatient heterogeneity in F. nucleatum-positive CRC.
Collapse
Affiliation(s)
- Taishi Yamane
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences,,Department of Gastroenterological Surgery, Graduate School of Medical Sciences
| | - Yohei Kanamori
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, and
| | - Akihiro Nita
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Yudai Ohta
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Hironori Hinokuma
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Ayato Maeda
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Akiko Iwai
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Takashi Matsumoto
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences,,Department of Gastroenterological Surgery, Graduate School of Medical Sciences
| | - Mayuko Shimoda
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Mayumi Niimura
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | | - Masato Niwa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences,,Gastrointestinal Cancer Biology, International Research Center for Medical Sciences
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, and,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, and
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences,,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, and
| | - Toshiro Moroishi
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences,,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, and
| |
Collapse
|
50
|
Yao H, Tang G. Macrophages in intestinal fibrosis and regression. Cell Immunol 2022; 381:104614. [PMID: 36182587 DOI: 10.1016/j.cellimm.2022.104614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/03/2022]
Abstract
Intestinal macrophages are heterogenous cell populations with different developmental ontogeny and tissue anatomy. The concerted actions of intestinal macrophage subsets are critical to maintaining tissue homeostasis. However, the dysregulation of macrophages following tissue injury or chronic inflammation could also lead to intestinal fibrosis, with few treatment options in the clinic. In this review, we will characterize the features of intestinal macrophages in light of the latest advances in lineage tracing and single-cell sequencing technology. The roles of macrophages in distinct stages of intestinal fibrosis would be also elaborated. Finally, based on the reciprocal interaction between macrophages and intestinal fibrosis, we will propose the potential macrophage targeting anti-intestinal fibrosis therapies.
Collapse
Affiliation(s)
- Hui Yao
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Guoyao Tang
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| |
Collapse
|