1
|
Xu XH, Zhang JX, Liu HX, Zhao Z, Jiang JY. Intervention of inflammation associated with ankylosing spondylitis by triptolide promotes histone H3 Iys-27 trimethylation. Immunopharmacol Immunotoxicol 2024; 46:785-792. [PMID: 39307916 DOI: 10.1080/08923973.2024.2402911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/24/2024] [Indexed: 11/19/2024]
Abstract
Objective: This study aims to explore the effects of Triptolide (TP) on the differentiation of Th17 cells in ankylosing spondylitis (AS). Methods: Peripheral blood mononuclear cells (PBMCs) collected from 10 patients with active AS patients were exposed to TP, GSK-J4 or vehicle. T lymphocyte subsets were analyzed using flow cytometry. ELISA was used to assess the level of IL-17. Western blot analysis and quantitative RT-PCR were used to measure the mRNA and protein levels of RORγt, JMJD3, EZH2, JAK2 and STAT3 in the JAK2/STAT3 signaling pathway. Results: We observed a tendency toward a greater percentage of IL-17-positive CD4+ T cells in peripheral blood mononuclear cells (PBMCs) from patients with active AS than in those from healthy controls. Triptolide (TP) and GSK-J4 significantly reduced IL-17 expression. In cultured PBMCs from patients with active AS, 24 h of treatment with TP or GSK-J4 decreased the expression of RORγt (p < 0.05), JAK2 and STAT3 (JAK2: p < 0.05; STAT3: p < 0.05). Furthermore, both triptolide and GSK-J4 increased the level of histone 3 with Lys 27 trimethylation (H3K27me3) in patient-derived PBMCs. H3K27me3 enrichment was detected at the promoters of the RORc, STAT3 and IL-17 genes. Consistent with this finding, triptolide upregulated the EZH2 gene and downregulated the JMJD3 gene. Conclusion: Triptolide inhibits Th17 cell differentiation via H3K27me3 upregulation and orchestrates changes in histone-modifying enzymes, including JMJD3 and EZH2. These findings support the clinical efficacy of triptolide for AS and may provide clues for identifying molecular targets for the development of novel treatments.
Collapse
Affiliation(s)
- Xiao-Han Xu
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing China
| | - Jin-Xu Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Hong-Xiao Liu
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing China
| | - Zhe Zhao
- Department of Rheumatology, The First Affiliated Hospital of Henan University of CM, Henan, Zhengzhou, China
| | - Jun-Yi Jiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
2
|
Xin K, Ge M, Li X, Su H, Ke J, Chen K, Tang Y, Wang Y, Lai J. Emodin suppresses mast cell migration via modulating the JAK2/STAT3/JMJD3/CXCR3 signaling to prevent cystitis. Neurourol Urodyn 2024; 43:2258-2268. [PMID: 38979835 DOI: 10.1002/nau.25540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
AIMS This study aimed to determine the preventive effects of emodin on cyclophosphamide (CYP)-induced cystitis and to explore the molecular mechanism. METHODS In vivo, mice were modeled by CYP. Before a half hour of CYP treatment, Jumonji domain-containing protein-3 (JMJD3) inhibitors (GSK-J4) and emodin were used to treat CYP model mice. Bladder samples were stained for hematoxylin-eosin and toluidine blue. Next, JMJD3 was quantified by immunofluorescence staining, RT-PCR, and Western blot. CXCR3 was quantified by Western blot and ELISA. In vitro, before stimulated by lipopolysaccharide (LPS), human bladder smooth muscle cells (hBSMCs) were transfected with pcDNA3.1-JMJD3 plasmids, shRNA-JMJD3 plasmids or pretreated with emodin. Collected cells to detect JMJD3 and CXCR3 ligands again; collected supernatant of culture for Transwell assay. Finally, as the JAK2 inhibitor, AG490 was used to pretreat LPS-induced hBSMCs. Western blot was performed to quantify proteins. RESULTS Emodin inhibited mast cell migration and suppressed the expression of JMJD3, CXCR3, and CXCR3 ligands, not only in vivo but also in vitro. The pharmacological effects of emodin were similar to GSK-J4 or JMJD3 inhibition. In addition, emodin significantly downregulated the phosphorylation of JAK2 and STAT3, and inhibited JMJD3/CXCR3 axis transduction like AG490. CONCLUSION Emodin has a preventive effect on cystitis by inhibiting mast cell migration through inhibition of the JAK2/STAT3/JMJD3/CXCR3 signaling pathway.
Collapse
Affiliation(s)
- Ke Xin
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Manqing Ge
- Department of Anorectal Surgery, The Affiliated TCM Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xukun Li
- Department of Urology, The Affiliated TCM Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hongwei Su
- Department of Urology, The Affiliated TCM Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jingwei Ke
- Department of Urology, The Affiliated TCM Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Kaifa Chen
- Department of Urology, The Affiliated TCM Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yiquan Tang
- Department of Urology, The Affiliated TCM Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yinghong Wang
- Department of Urology, The Affiliated TCM Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Junyu Lai
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Chowdhury NU, Cephus JY, Henriquez Pilier E, Wolf MM, Madden MZ, Kuehnle SN, McKernan KE, Jennings EQ, Arner EN, Heintzman DR, Chi C, Sugiura A, Stier MT, Voss K, Ye X, Scales K, Krystofiak ES, Gandhi VD, Guzy RD, Cahill KN, Sperling AI, Peebles RS, Rathmell JC, Newcomb DC. Androgen signaling restricts glutaminolysis to drive sex-specific Th17 metabolism in allergic airway inflammation. J Clin Invest 2024; 134:e177242. [PMID: 39404231 PMCID: PMC11601904 DOI: 10.1172/jci177242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 09/25/2024] [Indexed: 11/29/2024] Open
Abstract
Female individuals have an increased prevalence of many Th17 cell-mediated diseases, including asthma. Androgen signaling decreases Th17 cell-mediated airway inflammation, and Th17 cells rely on glutaminolysis. However, it remains unclear whether androgen receptor (AR) signaling modifies glutamine metabolism to suppress Th17 cell-mediated airway inflammation. We show that Th17 cells from male humans and mice had decreased glutaminolysis compared with female individuals, and that AR signaling attenuated Th17 cell mitochondrial respiration and glutaminolysis in mice. Using allergen-induced airway inflammation mouse models, we determined that females had a selective reliance upon glutaminolysis for Th17-mediated airway inflammation, and that AR signaling attenuated glutamine uptake in CD4+ T cells by reducing expression of glutamine transporters. In patients with asthma, circulating Th17 cells from men had minimal reliance upon glutamine uptake compared to Th17 cells from women. AR signaling thus attenuates glutaminolysis, demonstrating sex-specific metabolic regulation of Th17 cells with implications for Th17 or glutaminolysis targeted therapeutics.
Collapse
Affiliation(s)
- Nowrin U. Chowdhury
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
| | | | - Emely Henriquez Pilier
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
| | - Melissa M. Wolf
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
| | - Matthew Z. Madden
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
| | - Shelby N. Kuehnle
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kaitlin E. McKernan
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
| | - Erin Q. Jennings
- Vanderbilt Center for Immunobiology, and
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Emily N. Arner
- Vanderbilt Center for Immunobiology, and
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Darren R. Heintzman
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
| | - Channing Chi
- Department of Pathology, Microbiology, and Immunology
| | - Ayaka Sugiura
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
| | - Matthew T. Stier
- Vanderbilt Center for Immunobiology, and
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology
| | - Kennedi Scales
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Evan S. Krystofiak
- Department of Cellular and Molecular Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Vivek D. Gandhi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert D. Guzy
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Katherine N. Cahill
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anne I. Sperling
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - R. Stokes Peebles
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
| | - Dawn C. Newcomb
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Chen Y, Liu W, Xu X, Zhen H, Pang B, Zhao Z, Zhao Y, Liu H. The Role of H3K27me3-Mediated Th17 Differentiation in Ankylosing Spondylitis. Inflammation 2024; 47:1685-1698. [PMID: 38517649 DOI: 10.1007/s10753-024-02002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/24/2024]
Abstract
Ankylosing spondylitis (AS) is a common chronic progressive inflammatory autoimmune disease. T helper 17 (Th17) cells are the major effector cells mediating AS inflammation. Histone 3 Lys 27 trimethylation (H3K27me3) is an inhibitory histone modification that silences gene transcription and plays an important role in Th17 differentiation. The objective of this study was to investigate the expression of H3K27me3 in patients with AS and to explore its epigenetic regulation mechanism of Th17 differentiation during AS inflammation. We collected serum samples from 45 patients with AS at various stages and 10 healthy controls to measure their Interleukin-17 (IL-17) levels using ELISA. A quantitative polymerase chain reaction was used to quantify the mRNA levels of RORc and the signaling molecules of the JAK2/STAT3 pathway, JMJD3, and EZH2. Additionally, Western blot analysis was performed to quantify the protein levels of H3K27me3, RORγt, JAK2, STAT3, JMJD3, and EZH2 in cell protein extracts. The results showed that H3K27me3 expression in peripheral blood mononuclear cells (PBMCs) was significantly lower in patients with active AS compared to both the normal control groups and those with stable AS. Moreover, a significant negative correlation was observed between H3K27me3 expression and the characteristic transcription factor of Th17 differentiation, RORγt. We also discovered that patients with active AS exhibited significantly higher levels of JMJD3, an inhibitor of H3K27 demethylase, compared to the normal control group and patients with stable AS, while the expression of H3K27 methyltransferase (EZH2) was significantly lower. These findings suggest that H3K27me3 may be a dynamic and important epigenetic modification in AS inflammation, and JMJD3/EZH2 regulates the methylation level of H3K27me3, which may be one of the key regulatory factors in the pathogenesis of AS. These findings contribute to our understanding of the role of epigenetics in AS and may have implications for the development of novel therapeutic strategies for AS.
Collapse
Affiliation(s)
- Yuening Chen
- Department of Rheumatology, China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, 100053, China
| | - Wanlin Liu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaohan Xu
- Guang'anmen Hospital Jinan, China Academy of Chinese Medical Sciences, Jinan, 250012, China
| | - Hongying Zhen
- Department of Cell Biology, Basic Medical School, Peking University Health Science Center, Beijing, 100191, China
| | - Bo Pang
- Clinical Laboratory, China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, 100053, China
| | - Zhe Zhao
- Department of Rheumatology, China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, 100053, China
| | - Yanan Zhao
- Department of Rheumatology, China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, 100053, China
| | - Hongxiao Liu
- Department of Rheumatology, China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, 100053, China.
| |
Collapse
|
5
|
Peeters JGC, Silveria S, Ozdemir M, Ramachandran S, DuPage M. Hyperactivating EZH2 to augment H3K27me3 levels in regulatory T cells enhances immune suppression by driving early effector differentiation. Cell Rep 2024; 43:114724. [PMID: 39264807 PMCID: PMC12052300 DOI: 10.1016/j.celrep.2024.114724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
The immunosuppressive function of regulatory T (Treg) cells is essential for maintaining immune homeostasis. Enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 (H3K27) methyltransferase, plays a key role in maintaining Treg cell function upon CD28 co-stimulation, and Ezh2 deletion in Treg cells causes autoimmunity. Here, we assess whether increasing H3K27me3 levels, by using an Ezh2Y641F gain-of-function mutation, will improve Treg cell function. We find that Treg cells expressing Ezh2Y641F display an effector Treg phenotype, are poised for improved homing to organ tissues, and can accelerate remission from autoimmunity. The H3K27me3 landscape and transcriptome of naive Ezh2Y641F Treg cells exhibit a redistribution of H3K27me3 modifications that recapitulates the gene expression profile of activated Ezh2WT Treg cells after CD28 co-stimulation. Altogether, increased H3K27me3 levels promote the differentiation of effector Treg cells that can better suppress autoimmunity.
Collapse
Affiliation(s)
- Janneke G C Peeters
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stephanie Silveria
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Merve Ozdemir
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
6
|
Salerno-Goncalves R, Chen H, Bafford AC, Sztein MB. Epigenetic regulation in epithelial cells and innate lymphocyte responses to S. Typhi infection: insights into IFN-γ production and intestinal immunity. Front Immunol 2024; 15:1448717. [PMID: 39372404 PMCID: PMC11450450 DOI: 10.3389/fimmu.2024.1448717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/08/2024] [Indexed: 10/08/2024] Open
Abstract
Infection by Salmonella enterica serovar Typhi (S. Typhi), the cause of enteric fevers, is low in high-income countries but persistent in low- and middle-income countries, resulting in 65,400-187,700 deaths yearly. Drug resistance, including in the United States, exacerbates this issue. Evidence indicates that innate lymphocytes (INLs), such as natural killer (NK) cells, and unconventional T lymphocytes (e.g., Mucosal-associated invariant T (MAIT) cells and T-cell receptor gamma delta (TCR-γδ) cells) can impact the intestinal epithelial barrier, the primary site of exposure to S. Typhi. Moreover, INL production of IFN-γ is central in controlling S. Typhi infection. However, the impact of epithelial cells (EC) on the secretion of IFN-γ by INLs and the relationship between these events and epigenetic changes remains unknown. Epigenetic modifications in host cells are fundamental for their differentiation and function, including IFN-γ production. Herein, using a human organoid-derived polarized intestinal epithelial cell monolayer, we investigated the role of H3K4me3 and H3K27me3 epigenetic marks in intestinal immunity, focusing on the function of EC, NK, MAIT, and TCR-γδ cells in response to S. Typhi. This study builds on our previous findings that MAIT subsets exhibiting specific IFN-γ pattern signatures were associated with protection against typhoid fever and that S. Typhi infection regulates changes in chromatin marks that depend on individual cell subsets. Here, we show that cultures exposed to S. Typhi without EC exhibit a significant increase in NK and MAIT cells, and, to a lesser extent, TCR-γδ cells, expressing IFN-γ and H3K4me3 but not H3K27me3 marks, contrasting with cultures where EC is present. The influence of EC on INL H3K4me3 marks might be indirectly mediated through the modulation of IL-18 secretion via the Histone Deacetylase 6 gene during S. Typhi infection.
Collapse
Affiliation(s)
- Rosângela Salerno-Goncalves
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Haiyan Chen
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrea C. Bafford
- Division of General and Oncologic Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
7
|
Li X, Chen RY, Shi JJ, Li CY, Liu YJ, Gao C, Gao MR, Zhang S, Lu JF, Cao JF, Yang GJ, Chen J. Emerging role of Jumonji domain-containing protein D3 in inflammatory diseases. J Pharm Anal 2024; 14:100978. [PMID: 39315124 PMCID: PMC11417268 DOI: 10.1016/j.jpha.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
Jumonji domain-containing protein D3 (JMJD3) is a 2-oxoglutarate-dependent dioxygenase that specifically removes transcriptional repression marks di- and tri-methylated groups from lysine 27 on histone 3 (H3K27me2/3). The erasure of these marks leads to the activation of some associated genes, thereby influencing various biological processes, such as development, differentiation, and immune response. However, comprehensive descriptions regarding the relationship between JMJD3 and inflammation are lacking. Here, we provide a comprehensive overview of JMJD3, including its structure, functions, and involvement in inflammatory pathways. In addition, we summarize the evidence supporting JMJD3's role in several inflammatory diseases, as well as the potential therapeutic applications of JMJD3 inhibitors. Additionally, we also discuss the challenges and opportunities associated with investigating the functions of JMJD3 and developing targeted inhibitors and propose feasible solutions to provide valuable insights into the functional exploration and discovery of potential drugs targeting JMJD3 for inflammatory diseases.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ming-Rong Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shun Zhang
- Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315211, China
- China Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
8
|
Melvin WJ, Bauer TM, Mangum KD, Audu CO, Shadiow J, Barrett EC, Joshi AD, Moon JY, Bogle R, Mazumder P, Wolf SJ, Kunke SL, Gudjonsson JE, Davis FM, Gallagher KA. The histone methyltransferase Mixed-lineage-leukemia-1 drives T cell phenotype via Notch signaling in diabetic tissue repair. JCI Insight 2024; 9:e179012. [PMID: 39250432 PMCID: PMC11463913 DOI: 10.1172/jci.insight.179012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
Immune cell-mediated inflammation is important in normal tissue regeneration but can be pathologic in diabetic wounds. Limited literature exists on the role of CD4+ T cells in normal or diabetic wound repair; however, the imbalance of CD4+ Th17/Tregs has been found to promote inflammation in other diabetic tissues. Here, using human tissue and murine transgenic models, we identified that the histone methyltransferase Mixed-lineage-leukemia-1 (MLL1) directly regulates the Th17 transcription factor RORγ via an H3K4me3 mechanism and increases expression of Notch receptors and downstream Notch signaling. Furthermore, we found that Notch receptor signaling regulates CD4+ Th cell differentiation and is critical for normal wound repair, and loss of upstream Notch pathway mediators or receptors in CD4+ T cells resulted in the loss of CD4+ Th cell differentiation in wounds. In diabetes, MLL1 and Notch-receptor signaling was upregulated in wound CD4+ Th cells, driving CD4+ T cells toward the Th17 cell phenotype. Treatment of diabetic wound CD4+ T cells with a small molecule inhibitor of MLL1 (MI-2) yielded a significant reduction in CD4+ Th17 cells and IL-17A. This is the first study to our knowledge to identify the MLL1-mediated mechanisms responsible for regulating the Th17/Treg balance in normal and diabetic wounds and to define the complex role of Notch signaling in CD4+ T cells in wounds, where increased or decreased Notch signaling both result in pathologic wound repair. Therapeutic targeting of MLL1 in diabetic CD4+ Th cells may decrease pathologic inflammation through regulation of CD4+ T cell differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sonya J. Wolf
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Steven L. Kunke
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Katherine A. Gallagher
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Politano D, D'Abrusco F, Pasca L, Ferraro F, Gana S, Garau J, Zanaboni MP, Rognone E, Pichiecchio A, Borgatti R, Valente EM, De Giorgis V, Romaniello R. Cerebellar heterotopia in an 11-year-old child with KDM6B-related neurodevelopmental disorder: A case report and review of the literature. Am J Med Genet A 2024; 194:e63555. [PMID: 38326731 DOI: 10.1002/ajmg.a.63555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/14/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
Heterozygous pathogenic variants in KDM6B have recently been associated to a rare neurodevelopmental disorder referred to as "Neurodevelopmental disorder with coarse facies and mild distal skeletal abnormalities" and characterized by non-pathognomonic facial and body dysmorphisms, a wide range of neurodevelopmental and behavioral disorders and nonspecific neuroradiological findings. KDM6B encodes a histone demethylase, expressed in different tissues during development, which regulates gene expression through the modulation of chromatin accessibility by RNA polymerase. We herein describe a 11-year-old male patient carrying a novel de novo pathogenic variant in KDM6B exhibiting facial dysmorphisms, dysgraphia, behavioral traits relatable to oppositional defiant, autism spectrum, and attention deficit hyperactivity disorders, a single seizure episode, and a neuroimaging finding of a single cerebellar heterotopic nodule, never described to date in this genetic condition. These findings expand the phenotypic spectrum of this syndrome, highlighting the potential role for KDM6B in cerebellar development and providing valuable insights for genetic counseling.
Collapse
Affiliation(s)
- Davide Politano
- Department of Brain and Behavior Neuroscience, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Fulvio D'Abrusco
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Ludovica Pasca
- Department of Brain and Behavior Neuroscience, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesca Ferraro
- Department of Brain and Behavior Neuroscience, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Simone Gana
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Jessica Garau
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Elisa Rognone
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Pichiecchio
- Department of Brain and Behavior Neuroscience, University of Pavia, Pavia, Italy
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Renato Borgatti
- Department of Brain and Behavior Neuroscience, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Enza Maria Valente
- Department of Brain and Behavior Neuroscience, University of Pavia, Pavia, Italy
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Valentina De Giorgis
- Department of Brain and Behavior Neuroscience, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Romina Romaniello
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
10
|
Wu Z, Wang X, Wu H, Du S, Wang Z, Xie S, Zhang R, Chen G, Chen H. Identification of CREB5 as a prognostic and immunotherapeutic biomarker in glioma through multi-omics pan-cancer analysis. Comput Biol Med 2024; 173:108307. [PMID: 38547657 DOI: 10.1016/j.compbiomed.2024.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND The functional relevance of cyclic adenosine monophosphate (cAMP)-response element-binding protein 5 (CREB5) in cancers remains elusive, despite its significance as a member of the CREB family. The current research aims to explore the role of CREB5 in multiple cancers. METHODS Pan-cancer analysis was performed to explore the expression patterns, prognostic value, mutational landscape as well as single-cell omic, immunologic, and drug sensitivity profiles of CREB5. Furthermore, we incorporated five distinct machine learning algorithms and determined that the least absolute shrinkage and selection operator-COX (LASSO-COX) algorithm, which exhibited the highest C index, was the optimal selection. Subsequently, we constructed a prognostic model centered around CREB5-associated genes. To elucidate the biological function of CREB5 in glioma cells, several assays including cell counting kit-8 (CCK-8), wound healing, transwell, flow cytometric were performed. RESULTS CREB5 was overexpressed in pan-cancer and was linked to unfavorable prognosis, particularly in glioma. Furthermore, genetic alterations were determined in various types of cancer, and modifications in the CREB5 gene were linked to the prognosis. The single-cell omics and enrichment analyses showed that CREB5 was predominantly expressed in malignant glioma cells and was critically involved in the regulation of various oncogenic processes. Elevated levels of CREB5 were strongly linked with the infiltration of cancer-associated fibroblasts and the Th1 subset of CD4+ T cells. The validated CREB5-associated prognostic model reliably predicted the prognosis and drug response of glioma patients. The in vitro experiments showed that CREB5 promoted glioma cell proliferation, invasion, migration, and gap phase 2/mitotic (G2/M) phase arrest and recruited M2 macrophages into glioma cells. CONCLUSION CREB5 has the potential to act as an oncogene and a biological marker in multiple cancers, particularly glioma.
Collapse
Affiliation(s)
- Zhixuan Wu
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Department of Burns and Skin Repair Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, 325200, Zhejiang, China; The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Xiaowu Wang
- Department of Burns and Skin Repair Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, 325200, Zhejiang, China
| | - Haodong Wu
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shengwei Du
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ziqiong Wang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shicheng Xie
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Rongrong Zhang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Guorong Chen
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China.
| | - Hanbin Chen
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
11
|
Huang S, Liu D, Han L, Deng J, Wang Z, Jiang J, Zeng L. Decoding the potential role of regulatory T cells in sepsis-induced immunosuppression. Eur J Immunol 2024; 54:e2350730. [PMID: 38430202 DOI: 10.1002/eji.202350730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Sepsis, a multiorgan dysfunction with high incidence and mortality, is caused by an imbalanced host-to-infection immune response. Organ-support therapy improves the early survival rate of sepsis patients. In the long term, those who survive the "cytokine storm" and its secondary damage usually show higher susceptibility to secondary infections and sepsis-induced immunosuppression, in which regulatory T cells (Tregs) are evidenced to play an essential role. However, the potential role and mechanism of Tregs in sepsis-induced immunosuppression remains elusive. In this review, we elucidate the role of different functional subpopulations of Tregs during sepsis and then review the mechanism of sepsis-induced immunosuppression from the aspects of regulatory characteristics, epigenetic modification, and immunometabolism of Tregs. Thoroughly understanding how Tregs impact the immune system during sepsis may shed light on preclinical research and help improve the translational value of sepsis immunotherapy.
Collapse
Affiliation(s)
- Siyuan Huang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Di Liu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Lei Han
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jin Deng
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Zhen Wang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jianxin Jiang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Ling Zeng
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| |
Collapse
|
12
|
Peeters JGC, Silveria S, Ozdemir M, Ramachandran S, DuPage M. Increased EZH2 function in regulatory T cells promotes their capacity to suppress autoimmunity by driving effector differentiation prior to activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588284. [PMID: 38645261 PMCID: PMC11030251 DOI: 10.1101/2024.04.05.588284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The immunosuppressive function of regulatory T (Treg) cells is essential for maintaining immune homeostasis. Enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 (H3K27) methyltransferase, plays a key role in maintaining Treg cell function upon CD28 co-stimulation, and Ezh2 deletion in Treg cells causes autoimmunity. Here we assessed whether increased EZH2 activity in Treg cells would improve Treg cell function. Using an Ezh2 gain-of-function mutation, Ezh2 Y641F , we found that Treg cells expressing Ezh2 Y641F displayed an increased effector Treg phenotype and were poised for improved homing to organ tissues. Expression of Ezh2 Y641F in Treg cells led to more rapid remission from autoimmunity. H3K27me3 profiling and transcriptomic analysis revealed a redistribution of H3K27me3, which prompted a gene expression profile in naïve Ezh2 Y641F Treg cells that recapitulated aspects of CD28-activated Ezh2 WT Treg cells. Altogether, increased EZH2 activity promotes the differentiation of effector Treg cells that can better suppress autoimmunity. Highlights EZH2 function promotes effector differentiation of Treg cells.EZH2 function promotes Treg cell migration to organ tissues.EZH2 function in Treg cells improves remission from autoimmunity.EZH2 function poises naïve Treg cells to adopt a CD28-activated phenotype.
Collapse
|
13
|
Wen Y, Wang H, Tian D, Wang G. TH17 cell: a double-edged sword in the development of inflammatory bowel disease. Therap Adv Gastroenterol 2024; 17:17562848241230896. [PMID: 38390028 PMCID: PMC10883129 DOI: 10.1177/17562848241230896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic nonspecific inflammatory disease of the gastrointestinal tract, and its pathogenesis has not been fully understood. Extensive dysregulation of the intestinal mucosal immune system is critical in the development and progression of IBD. T helper (Th) 17 cells have the characteristics of plasticity. They can transdifferentiate into subpopulations with different functions in response to different factors in the surrounding environment, thus taking on different roles in regulating the intestinal immune responses. In this review, we will focus on the plasticity of Th17 cells as well as the function of Th17 cells and their related cytokines in IBD. We will summarize their pathogenic and protective roles in IBD under different conditions, respectively, hoping to further deepen the understanding of the pathological mechanisms underlying IBD and provide insights for future treatment.
Collapse
Affiliation(s)
- Yue Wen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ge Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
14
|
Zi X, Su R, Su R, Wang H, Li B, Gao C, Li X, Wang C. Elevated serum IL-2 and Th17/Treg imbalance are associated with gout. Clin Exp Med 2024; 24:9. [PMID: 38240927 PMCID: PMC10799120 DOI: 10.1007/s10238-023-01253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024]
Abstract
Gout is considered an auto-inflammatory disorder, and the immunological drivers have not been fully unraveled. This study compared the peripheral lymphocyte and CD4+T cell subsets, and cytokines in gout and healthy controls (HCs) to explore the contributions of T helper 17 (Th17) cells, T regulatory (Treg) cells and cytokines to the pathogenesis of gout. We enrolled 126 gout patients (53 early-onset gout with age of first presentation < 40 years, and 73 late-onset gout with age of first presentation ≥ 40 years) and 77 HCs. Percentage and absolute numbers of peripheral lymphocyte and CD4+T cell subpopulations in each group were detected by flow cytometry. The serum cytokine levels were determined by flow cytometric bead array. For circulating CD4+T cell subsets, Th17/Treg ratio was significantly higher in early-onset gout, late-onset gout and gout without tophus than HCs; Th17 cells were significantly elevated in early-onset gout and gout without tophus, while the percentage of Treg cells was significantly decreased in early-onset and late-onset gout. Additionally, gout patients had significantly higher cytokines levels (including IL-2, IL-4, IL-6, IL-10, IL-17, IFN-γ, and TNF-α) than HCs; IL-2 levels were positively correlated with Treg cells and negatively correlated with ESR. ROC analysis showed that disease duration, CRP and fibrinogen, had moderate predictive performances for tophus in gout (the AUCs were 0.753, 0.703 and 0.701, respectively). Our study suggests that early-onset and late-onset gout differ in Th17/Treg imbalance, which in early-onset gout is due to elevated Th17 cells and in late-onset gout is due to decreased Treg cells. And increased serum cytokine levels, especially IL-2, may play an essential role in that. Restoring Th17/Treg balance may be a crucial way to improve the prognosis of gout patients.
Collapse
Affiliation(s)
- Xiaoyu Zi
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Ronghui Su
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Rui Su
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Hui Wang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Baochen Li
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofeng Li
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China.
| |
Collapse
|
15
|
Liu X, Wang S, Wu X, Zhao Z, Jian C, Li M, Qin X. Astragaloside IV Alleviates Depression in Rats by Modulating Intestinal Microbiota, T-Immune Balance, and Metabolome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:259-273. [PMID: 38064688 DOI: 10.1021/acs.jafc.3c04063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
This study aims to explore the effects of Astragaloside IV (AS-IV) on abnormal behaviors, intestinal microbiota, intestinal T-immune balance, and fecal metabolism of a model of depression in rats. Herein, we integrally applied 16S rRNA sequencing, molecular biological techniques, and 1H NMR-based fecal metabolomics to demonstrate the antidepression activity of AS-IV. The results suggested that AS-IV regulated the depression-like behaviors of rats, which are presented by an increase of body weight, upregulation of sucrose preference rates, and a decrease of immobility time. Additionally, AS-IV increased the abundances of beneficial bacteria (Lactobacillus and Oscillospira) in a model of depression in rats. Moreover, AS-IV regulated significantly the imbalance of Th17/Treg cells, and the abnormal contents of both anti-inflammatory factors and pro-inflammatory factors. Besides, fecal metabolomics showed that AS-IV improved the abnormal levels of short-chain fatty acids and amino acids. Collectively, our research supplemented new data, supporting the potential of AS-IV as an effective diet or diet composition to improve depression-like behaviors, dysfunctions of microbiota, imbalance of T immune, and the abnormality of fecal metabolome. However, the causality of the other actions was not proven because of the experimental design and the methodology used. The current findings suggest that AS-IV could function as a promising diet or diet composition to alleviate depressed symptoms.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Senyan Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Xiaoling Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Ziyu Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Chen Jian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Mengyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| |
Collapse
|
16
|
Rai S, Roy G, Hajam YA. Melatonin: a modulator in metabolic rewiring in T-cell malignancies. Front Oncol 2024; 13:1248339. [PMID: 38260850 PMCID: PMC10800968 DOI: 10.3389/fonc.2023.1248339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Melatonin, (N-acetyl-5-methoxytryptamine) an indoleamine exerts multifaced effects and regulates numerous cellular pathways and molecular targets associated with circadian rhythm, immune modulation, and seasonal reproduction including metabolic rewiring during T cell malignancy. T-cell malignancies encompass a group of hematological cancers characterized by the uncontrolled growth and proliferation of malignant T-cells. These cancer cells exhibit a distinct metabolic adaptation, a hallmark of cancer in general, as they rewire their metabolic pathways to meet the heightened energy requirements and biosynthesis necessary for malignancies is the Warburg effect, characterized by a shift towards glycolysis, even when oxygen is available. In addition, T-cell malignancies cause metabolic shift by inhibiting the enzyme pyruvate Dehydrogenase Kinase (PDK) which in turn results in increased acetyl CoA enzyme production and cellular glycolytic activity. Further, melatonin plays a modulatory role in the expression of essential transporters (Glut1, Glut2) responsible for nutrient uptake and metabolic rewiring, such as glucose and amino acid transporters in T-cells. This modulation significantly impacts the metabolic profile of T-cells, consequently affecting their differentiation. Furthermore, melatonin has been found to regulate the expression of critical signaling molecules involved in T-cell activations, such as CD38, and CD69. These molecules are integral to T-cell adhesion, signaling, and activation. This review aims to provide insights into the mechanism of melatonin's anticancer properties concerning metabolic rewiring during T-cell malignancy. The present review encompasses the involvement of oncogenic factors, the tumor microenvironment and metabolic alteration, hallmarks, metabolic reprogramming, and the anti-oncogenic/oncostatic impact of melatonin on various cancer cells.
Collapse
Affiliation(s)
- Seema Rai
- Department of Zoology Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Gunja Roy
- Department of Zoology Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Bhag Singh University, Jalandhar, India
| |
Collapse
|
17
|
Sisto M, Lisi S. Targeting Interleukin-17 as a Novel Treatment Option for Fibrotic Diseases. J Clin Med 2023; 13:164. [PMID: 38202170 PMCID: PMC10780256 DOI: 10.3390/jcm13010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Fibrosis is the end result of persistent inflammatory responses induced by a variety of stimuli, including chronic infections, autoimmune reactions, and tissue injury. Fibrotic diseases affect all vital organs and are characterized by a high rate of morbidity and mortality in the developed world. Until recently, there were no approved antifibrotic therapies. In recent years, high levels of interleukin-17 (IL-17) have been associated with chronic inflammatory diseases with fibrotic complications that culminate in organ failure. In this review, we provide an update on the role of IL-17 in fibrotic diseases, with particular attention to the most recent lines of research in the therapeutic field represented by the epigenetic mechanisms that control IL-17 levels in fibrosis. A better knowledge of the IL-17 signaling pathway implications in fibrosis could design new strategies for therapeutic benefits.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | | |
Collapse
|
18
|
Khantakova JN, Sennikov SV. T-helper cells flexibility: the possibility of reprogramming T cells fate. Front Immunol 2023; 14:1284178. [PMID: 38022605 PMCID: PMC10646684 DOI: 10.3389/fimmu.2023.1284178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Various disciplines cooperate to find novel approaches to cure impaired body functions by repairing, replacing, or regenerating cells, tissues, or organs. The possibility that a stable differentiated cell can reprogram itself opens the door to new therapeutic strategies against a multitude of diseases caused by the loss or dysfunction of essential, irreparable, and specific cells. One approach to cell therapy is to induce reprogramming of adult cells into other functionally active cells. Understanding the factors that cause or contribute to T cell plasticity is not only of clinical importance but also expands the knowledge of the factors that induce cells to differentiate and improves the understanding of normal developmental biology. The present review focuses on the advances in the conversion of peripheral CD4+ T cells, the conditions of their reprogramming, and the methods proposed to control such cell differentiation.
Collapse
Affiliation(s)
- Julia N. Khantakova
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), Novosibirsk, Russia
| | | |
Collapse
|
19
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
20
|
Qu L, Yin T, Zhao Y, Lv W, Liu Z, Chen C, Liu K, Shan S, Zhou R, Li X, Dong H. Histone demethylases in the regulation of immunity and inflammation. Cell Death Discov 2023; 9:188. [PMID: 37353521 DOI: 10.1038/s41420-023-01489-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
Pathogens or danger signals trigger the immune response. Moderate immune response activation removes pathogens and avoids excessive inflammation and tissue damage. Histone demethylases (KDMs) regulate gene expression and play essential roles in numerous physiological processes by removing methyl groups from lysine residues on target proteins. Abnormal expression of KDMs is closely associated with the pathogenesis of various inflammatory diseases such as liver fibrosis, lung injury, and autoimmune diseases. Despite becoming exciting targets for diagnosing and treating these diseases, the role of these enzymes in the regulation of immune and inflammatory response is still unclear. Here, we review the underlying mechanisms through which KDMs regulate immune-related pathways and inflammatory responses. In addition, we also discuss the future applications of KDMs inhibitors in immune and inflammatory diseases.
Collapse
Affiliation(s)
- Lihua Qu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Tong Yin
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yijin Zhao
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wenting Lv
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ziqi Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kejun Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shigang Shan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Rui Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiaoqing Li
- Biological Targeted Therapy Key Laboratory in Hubei, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Huifen Dong
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China.
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Qin L, Song Y, Zhang F, Wang R, Zhou L, Jin S, Chen C, Li C, Wang M, Jiang B, Sun G, Ma C, Gong Y, Li P. CRL4B complex-mediated H2AK119 monoubiquitination restrains Th1 and Th2 cell differentiation. Cell Death Differ 2023; 30:1488-1502. [PMID: 37024604 PMCID: PMC10244459 DOI: 10.1038/s41418-023-01155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
CD4+ T helper (Th) cell differentiation is regulated by lineage-specific expression of transcription factors, which is tightly associated with epigenetic modifications, including histone acetylation and methylation. However, the factors regulating histone modifications involved in Th cell differentiation remain largely unknown. We herein demonstrated a critical role of Cullin 4B (CUL4B) in restricting Th1 and Th2 cell differentiation. CUL4B, which is assembled into the CUL4B-RING E3 ligase (CRL4B) complex, participates in various physiological and developmental processes through epigenetic repression of transcription. Depletion of Cul4b in CD4+ T cells enhanced Th1 and Th2 cell differentiation. In vivo, an aggravated Th2 response caused by the absence of CUL4B was observed in a murine asthma model. Mechanistically, the CRL4B complex promoted monoubiquitination at H2AK119 (H2AK119ub1) and polycomb repressive complex 2 (PRC2)-mediated trimethylation at H3K27 (H3K27me3) at Tbx21 and Maf and consequently repressed their expression during Th cell differentiation. Our study suggests that CRL4B complex-mediated H2AK119ub1 deposition functions to prevent the aberrant expression of Th1 and Th2 lineage-specific genes.
Collapse
Affiliation(s)
- Liping Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yu Song
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Fan Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li Zhou
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shiqi Jin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chaojia Chen
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chunyang Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chunhong Ma
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Peishan Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
22
|
Micevic G, Bosenberg MW, Yan Q. The Crossroads of Cancer Epigenetics and Immune Checkpoint Therapy. Clin Cancer Res 2023; 29:1173-1182. [PMID: 36449280 PMCID: PMC10073242 DOI: 10.1158/1078-0432.ccr-22-0784] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022]
Abstract
Immune checkpoint inhibitors (ICI) have significantly improved treatment outcomes for several types of cancer over the past decade, but significant challenges that limit wider effectiveness of current immunotherapies remain to be addressed. Certain "cold" tumor types, such as pancreatic cancer, exhibit very low response rates to ICI due to intrinsically low immunogenicity. In addition, many patients who initially respond to ICI lack a sustained response due to T-cell exhaustion. Several recent studies show that epigenetic modifiers, such as SETDB1 and LSD1, can play critical roles in regulating both tumor cell-intrinsic immunity and T-cell exhaustion. Here, we review the evidence showing that multiple epigenetic regulators silence the expression of endogenous antigens, and their loss induces viral mimicry responses bolstering the response of "cold" tumors to ICI in preclinical models. Similarly, a previously unappreciated role for epigenetic enzymes is emerging in the establishment and maintenance of stem-like T-cell populations that are critical mediators of response to ICI. Targeting the crossroads of epigenetics and immune checkpoint therapy has tremendous potential to improve antitumor immune responses and herald the next generation of sustained responses in immuno-oncology.
Collapse
Affiliation(s)
- Goran Micevic
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520
| | - Marcus W. Bosenberg
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT 06520
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT 06520
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
23
|
Soriano-Baguet L, Brenner D. Metabolism and epigenetics at the heart of T cell function. Trends Immunol 2023; 44:231-244. [PMID: 36774330 DOI: 10.1016/j.it.2023.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 02/11/2023]
Abstract
T cell subsets adapt and rewire their metabolism according to their functions and surrounding microenvironment. Whereas naive T cells rely on mitochondrial metabolic pathways characterized by low nutrient requirements, effector T cells induce kinetically faster pathways to generate the biomass and energy needed for proliferation and cytokine production. Recent findings support the concept that alterations in metabolism also affect the epigenetics of T cells. In this review we discuss the connections between T cell metabolism and epigenetic changes such as histone post-translational modifications (PTMs) and DNA methylation, as well as the 'extra-metabolic' roles of metabolic enzymes and molecules. These findings collectively point to a new group of potential therapeutic targets for the treatment of T cell-dependent autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
24
|
Friedman MJ, Lee H, Lee JY, Oh S. Transcriptional and Epigenetic Regulation of Context-Dependent Plasticity in T-Helper Lineages. Immune Netw 2023; 23:e5. [PMID: 36911799 PMCID: PMC9995996 DOI: 10.4110/in.2023.23.e5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Th cell lineage determination and functional specialization are tightly linked to the activation of lineage-determining transcription factors (TFs) that bind cis-regulatory elements. These lineage-determining TFs act in concert with multiple layers of transcriptional regulators to alter the epigenetic landscape, including DNA methylation, histone modification and three-dimensional chromosome architecture, in order to facilitate the specific Th gene expression programs that allow for phenotypic diversification. Accumulating evidence indicates that Th cell differentiation is not as rigid as classically held; rather, extensive phenotypic plasticity is an inherent feature of T cell lineages. Recent studies have begun to uncover the epigenetic programs that mechanistically govern T cell subset specification and immunological memory. Advances in next generation sequencing technologies have allowed global transcriptomic and epigenomic interrogation of CD4+ Th cells that extends previous findings focusing on individual loci. In this review, we provide an overview of recent genome-wide insights into the transcriptional and epigenetic regulation of CD4+ T cell-mediated adaptive immunity and discuss the implications for disease as well as immunotherapies.
Collapse
Affiliation(s)
- Meyer J. Friedman
- Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haram Lee
- College of Pharmacy Korea University, Sejong 30019, Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute of Genetic Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soohwan Oh
- College of Pharmacy Korea University, Sejong 30019, Korea
| |
Collapse
|
25
|
Targeting Epigenetic Mechanisms: A Boon for Cancer Immunotherapy. Biomedicines 2023; 11:biomedicines11010169. [PMID: 36672677 PMCID: PMC9855697 DOI: 10.3390/biomedicines11010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Immunotherapy is rapidly emerging as a promising approach against cancer. In the last decade, various immunological mechanisms have been targeted to induce an increase in the immune response against cancer cells. However, despite promising results, many patients show partial response, resistance, or serious toxicities. A promising way to overcome this is the use of immunotherapeutic approaches, in combination with other potential therapeutic approaches. Aberrant epigenetic modifications play an important role in carcinogenesis and its progression, as well as in the functioning of immune cells. Thus, therapeutic approaches targeting aberrant epigenetic mechanisms and the immune response might provide an effective antitumor effect. Further, the recent development of potent epigenetic drugs and immunomodulators gives hope to this combinatorial approach. In this review, we summarize the synergy mechanism between epigenetic therapies and immunotherapy for the treatment of cancer, and discuss recent advancements in the translation of this approach.
Collapse
|
26
|
Zhao Q, Ren H, Yang N, Xia X, Chen Q, Zhou D, Liu Z, Chen X, Chen Y, Huang W, Zhou H, Xu H, Zhang W. Bifidobacterium pseudocatenulatum-Mediated Bile Acid Metabolism to Prevent Rheumatoid Arthritis via the Gut-Joint Axis. Nutrients 2023; 15:nu15020255. [PMID: 36678126 PMCID: PMC9861548 DOI: 10.3390/nu15020255] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Early intervention in rheumatoid arthritis (RA) is critical for optimal treatment, but initiation of pharmacotherapy to prevent damage remains unsatisfactory currently. Manipulation of the gut microbiome and microbial metabolites can be effective in protecting against RA. Thus, probiotics can be utilized to explore new strategies for preventing joint damage. The aim of this study was to explore the metabolites and mechanisms by which Bifidobacterium pseudocatenulatum affects RA. Based on 16S rRNA sequencing and UPLC-MS/MS assays, we focused on bile acid (BA) metabolism. In a collagen-induced arthritis (CIA) mouse model, B. pseudocatenulatum prevented joint damage by protecting the intestinal barrier and reshaped gut microbial composition, thereby elevating bile salt hydrolase (BSH) enzyme activity and increasing the levels of unconjugated secondary BAs to suppress aberrant T-helper 1/17-type immune responses; however, these benefits were eliminated by the Takeda G protein-coupled receptor 5 (TGR5) antagonist SBI-115. The results suggested that a single bacterium, B. pseudocatenulatum, can prevent RA, indicating that prophylactic administration of probiotics may be an effective therapy.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
| | - Huan Ren
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
| | - Nian Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
| | - Xuyang Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qifeng Chen
- Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Dingding Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
- Correspondence: ; Tel.: +86-731-84805380
| |
Collapse
|
27
|
Bhattacharya A. Epigenetic modifications and regulations in gastrointestinal diseases. EPIGENETICS IN ORGAN SPECIFIC DISORDERS 2023:497-543. [DOI: 10.1016/b978-0-12-823931-5.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Tayari MM, Fang C, Ntziachristos P. Context-Dependent Functions of KDM6 Lysine Demethylases in Physiology and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:139-165. [PMID: 37751139 DOI: 10.1007/978-3-031-38176-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Histone lysine methylation is a major epigenetic modification that participates in several cellular processes including gene regulation and chromatin structure. This mark can go awry in disease contexts such as cancer. Two decades ago, the discovery of histone demethylase enzymes thirteen years ago sheds light on the complexity of the regulation of this mark. Here we address the roles of lysine demethylases JMJD3 and UTX in physiological and disease contexts. The two demethylases play pivotal roles in many developmental and disease contexts via regulation of di- and trimethylation of lysine 27 on histone H3 (H3K27me2/3) in repressing gene expression programs. JMJD3 and UTX participate in several biochemical settings including methyltransferase and chromatin remodeling complexes. They have histone demethylase-dependent and -independent activities and a variety of context-specific interacting factors. The structure, amounts, and function of the demethylases can be altered in disease due to genetic alterations or aberrant gene regulation. Therefore, academic and industrial initiatives have targeted these enzymes using a number of small molecule compounds in therapeutic approaches. In this chapter, we will touch upon inhibitor formulations, their properties, and current efforts to test them in preclinical contexts to optimize their therapeutic outcomes. Demethylase inhibitors are currently used in targeted therapeutic approaches that might be particularly effective when used in conjunction with systemic approaches such as chemotherapy.
Collapse
Affiliation(s)
- Mina Masoumeh Tayari
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Celestia Fang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Center for Medical Genetics, Ghent University, Medical Research Building 2 (MRB2), Entrance 38, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
29
|
Huang X, Liu W, Liu C, Hu J, Wang B, Ren A, Huang X, Yuan Y, Liu J, Li M. CMTM6 as a candidate risk gene for cervical cancer: Comprehensive bioinformatics study. Front Mol Biosci 2022; 9:983410. [PMID: 36589225 PMCID: PMC9798917 DOI: 10.3389/fmolb.2022.983410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Background: CKLF like MARVEL transmembrane domain containing 6 (CMTM6) is an important programmed cell death 1 ligand 1 regulator (PD-L1). CMTM6 was reported as an important regulator of PD-L1 by promoting PD-L1 expression in tumor cells against T cells. However, the function of CMTM6 in cervical cancer is not well characterized. In addition, the role of CMTM6 in the induction of epithelial-mesenchymal transition (EMT) in the context of cervical cancer is unknown. Methods: In this study, we evaluated the role of CMTM6, including gene expression analysis, miRNA target regulation, and methylation characteristic, using multiple bioinformatics tools based on The Cancer Genome Atlas (TCGA) database. The expression of CMTM6 in cervical cancer tissues and non-cancerous adjacent tissues was assessed using immunohistochemistry. In vitro and in vivo function experiments were performed to explore the effects of CMTM6 on growth and metastasis of cervical cancer. Results: Human cervical cancer tissues showed higher expression of CMTM6 than the adjacent non-cancerous tissues. In vitro assays showed that CMTM6 promoted cervical cancer cell invasion, migration, proliferation, and epithelial-mesenchymal transition via activation of mitogen-activated protein kinase (MAPK) c-jun N-terminal kinase (JNK)/p38 signaling pathway. We identified transcription factors (TFs), miRNAs, and immune cells that may interact with CMTM6. Conclusion: These results indicate that CMTM6 is a potential therapeutic target in the context of cervical cancer.
Collapse
Affiliation(s)
- Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Wei Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Chunshan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jijie Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Anbang Ren
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaona Huang
- TCM Hospital of Liwan District, Guangzhou, China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jinquan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Mingyi Li
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
30
|
Hu X, Zou Y, Copland DA, Schewitz-Bowers LP, Li Y, Lait PJ, Stimpson M, Zhang Z, Guo S, Liang J, Chen T, Li JJ, Yuan S, Li S, Zhou P, Liu Y, Dick AD, Wen X, Lee RW, Wei L. Epigenetic drug screen identified IOX1 as an inhibitor of Th17-mediated inflammation through targeting TET2. EBioMedicine 2022; 86:104333. [PMID: 36335665 PMCID: PMC9646865 DOI: 10.1016/j.ebiom.2022.104333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Targeting helper T cells, especially Th17 cells, has become a plausible therapy for many autoimmune diseases. METHODS Using an in vitro culture system, we screened an epigenetics compound library for inhibitors of IFN-γ and IL-17 expression in murine Th1 and Th17 cultures. FINDINGS This identified IOX1 as an effective suppressor of IL-17 expression in both murine and human CD4+ T cells. Furthermore, we found that IOX1 suppresses Il17a expression directly by targeting TET2 activity on its promoter in Th17 cells. Using established pre-clinical models of intraocular inflammation, treatment with IOX1 in vivo reduced the migration/infiltration of Th17 cells into the site of inflammation and tissue damage. INTERPRETATION These results provide evidence of the strong potential for IOX1 as a viable therapy for inflammatory diseases, in particular of the eye. FUNDING This study was supported by the National Key Research and Development Program of China 2021YFA1101200 (2021YFA1101204) to LW and XW; the National Natural Science Foundation of China 81900844 to XH and 82171041 to LW; the China Postdoctoral Science Foundation 2021M700776 and the Scientific Research Project of Guangdong Provincial Bureau of Traditional Chinese Medicine 20221373 to YZ; and the National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS (National Health Service) Foundation Trust and University College London Institute of Ophthalmology, UK (DAC, LPS, PJPL, MS, ADD and RWJL). The views expressed are those of the authors and not necessarily those of the NIHR or the UK's Department of Health and Social Care.
Collapse
Affiliation(s)
- Xiao Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China,Translational Health Sciences, University of Bristol, Bristol, UK
| | - Yanli Zou
- Experimental Research Center, Foshan Hospital Affiliated to Southern Medical University, Foshan, China
| | - David A. Copland
- Translational Health Sciences, University of Bristol, Bristol, UK
| | | | - Yan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | | | - Zhihui Zhang
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| | - Shixin Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Juanran Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Tingting Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Sujing Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuo Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Andrew D. Dick
- Translational Health Sciences, University of Bristol, Bristol, UK,National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, London, UK,UCL Institute of Ophthalmology, London, UK,University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Xiaofeng Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China,MingMed Biotechnology, Guangzhou, China,Corresponding author.
| | - Richard W.J. Lee
- Translational Health Sciences, University of Bristol, Bristol, UK,National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, London, UK,UCL Institute of Ophthalmology, London, UK,University Hospitals Bristol NHS Foundation Trust, Bristol, UK,Corresponding author.
| | - Lai Wei
- MingMed Biotechnology, Guangzhou, China,Schoole of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China,Corresponding author.
| |
Collapse
|
31
|
Liu D, Huang SY, Sun JH, Zhang HC, Cai QL, Gao C, Li L, Cao J, Xu F, Zhou Y, Guan CX, Jin SW, Deng J, Fang XM, Jiang JX, Zeng L. Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options. Mil Med Res 2022; 9:56. [PMID: 36209190 PMCID: PMC9547753 DOI: 10.1186/s40779-022-00422-y] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Sepsis is a common complication of combat injuries and trauma, and is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. It is also one of the significant causes of death and increased health care costs in modern intensive care units. The use of antibiotics, fluid resuscitation, and organ support therapy have limited prognostic impact in patients with sepsis. Although its pathophysiology remains elusive, immunosuppression is now recognized as one of the major causes of septic death. Sepsis-induced immunosuppression is resulted from disruption of immune homeostasis. It is characterized by the release of anti-inflammatory cytokines, abnormal death of immune effector cells, hyperproliferation of immune suppressor cells, and expression of immune checkpoints. By targeting immunosuppression, especially with immune checkpoint inhibitors, preclinical studies have demonstrated the reversal of immunocyte dysfunctions and established host resistance. Here, we comprehensively discuss recent findings on the mechanisms, regulation and biomarkers of sepsis-induced immunosuppression and highlight their implications for developing effective strategies to treat patients with septic shock.
Collapse
Affiliation(s)
- Di Liu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Si-Yuan Huang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Jian-Hui Sun
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Hua-Cai Zhang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Qing-Li Cai
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Chu Gao
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ju Cao
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Fang Xu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, 410078, China
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, Wenzhou, China
| | - Jin Deng
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, 550001, Guiyang, China
| | - Xiang-Ming Fang
- Department of Anesthesiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Jian-Xin Jiang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China.
| | - Ling Zeng
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
32
|
Liang H, Liu B, Gao Y, Nie J, Feng S, Yu W, Wen S, Su X. Jmjd3/IRF4 axis aggravates myeloid fibroblast activation and m2 macrophage to myofibroblast transition in renal fibrosis. Front Immunol 2022; 13:978262. [PMID: 36159833 PMCID: PMC9494509 DOI: 10.3389/fimmu.2022.978262] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Renal fibrosis commonly occurs in the process of chronic kidney diseases. Here, we explored the role of Jumonji domain containing 3 (Jmjd3)/interferon regulatory factor 4 (IRF4) axis in activation of myeloid fibroblasts and transition of M2 macrophages into myofibroblasts transition (M2MMT) in kidney fibrosis. In mice, Jmjd3 and IRF4 were highly induced in interstitial cells of kidneys with folic acid or obstructive injury. Jmjd3 deletion in myeloid cells or Jmjd3 inhibitor reduced the levels of IRF4 in injured kidneys. Myeloid Jmjd3 depletion impaired bone marrow-derived fibroblasts activation and M2MMT in folic acid or obstructive nephropathy, resulting in reduction of extracellular matrix (ECM) proteins expression, myofibroblasts formation and renal fibrosis progression. Pharmacological inhibition of Jmjd3 also prevented myeloid fibroblasts activation, M2MMT, and kidney fibrosis development in folic acid nephropathy. Furthermore, IRF4 disruption inhibited myeloid myofibroblasts accumulation, M2MMT, ECM proteins accumulation, and showed milder fibrotic response in obstructed kidneys. Bone marrow transplantation experiment showed that wild-type mice received IRF4-/- bone marrow cells presented less myeloid fibroblasts activation in injured kidneys and exhibited much less kidney fibrosis after unilateral ureteral obstruction. Myeloid Jmjd3 deletion or Jmjd3 inhibitor attenuated expressions of IRF4, α-smooth muscle actin and fibronectin and impeded M2MMT in cultured monocytes exposed to IL-4. Conversely, overexpression IRF4 abrogated the effect of myeloid Jmjd3 deletion on M2MMT. Thus, Jmjd3/IRF4 signaling has a crucial role in myeloid fibroblasts activation, M2 macrophages to myofibroblasts transition, extracellular matrix protein deposition, and kidney fibrosis progression.
Collapse
Affiliation(s)
- Hua Liang
- Department of Anesthesiology, Foshan Women and Children Hospital, Foshan, China
- Department of Anesthesiology, Affiliated Foshan Women and Children Hospital of Southern Medical University, Foshan, China
| | - Benquan Liu
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, China
| | - Ying Gao
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, China
| | - Jiayi Nie
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, China
| | - Shuyun Feng
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, China
| | - Wenqiang Yu
- Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan, China
- *Correspondence: Wenqiang Yu, ; Xi Su,
| | - Shihong Wen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xi Su
- Department of Paediatrics, Foshan Women and Children Hospital, Foshan, China
- *Correspondence: Wenqiang Yu, ; Xi Su,
| |
Collapse
|
33
|
Jin Y, Liu Z, Li Z, Li H, Zhu C, Li R, Zhou T, Fang B. Histone demethylase JMJD3 downregulation protects against aberrant force-induced osteoarthritis through epigenetic control of NR4A1. Int J Oral Sci 2022; 14:34. [PMID: 35831280 PMCID: PMC9279410 DOI: 10.1038/s41368-022-00190-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/27/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease with no effective treatment strategies. Aberrant mechanical stimuli was demonstrated to be an essential factor for OA pathogenesis. Although multiple studies have detected potential regulatory mechanisms underlying OA and have concentrated on developing novel treatment strategies, the epigenetic control of OA remains unclear. Histone demethylase JMJD3 has been reported to mediate multiple physiological and pathological processes, including cell differentiation, proliferation, autophagy, and apoptosis. However, the regulation of JMJD3 in aberrant force-related OA and its mediatory effect on disease progression are still unknown. In this work, we confirmed the upregulation of JMJD3 in aberrant force-induced cartilage injury in vitro and in vivo. Functionally, inhibition of JMJD3 by its inhibitor, GSK-J4, or downregulation of JMJD3 by adenovirus infection of sh-JMJD3 could alleviate the aberrant force-induced chondrocyte injury. Mechanistic investigation illustrated that aberrant force induces JMJD3 expression and then demethylates H3K27me3 at the NR4A1 promoter to promote its expression. Further experiments indicated that NR4A1 can regulate chondrocyte apoptosis, cartilage degeneration, extracellular matrix degradation, and inflammatory responses. In vivo, anterior cruciate ligament transection (ACLT) was performed to construct an OA model, and the therapeutic effect of GSK-J4 was validated. More importantly, we adopted a peptide-siRNA nanoplatform to deliver si-JMJD3 into articular cartilage, and the severity of joint degeneration was remarkably mitigated. Taken together, our findings demonstrated that JMJD3 is flow-responsive and epigenetically regulates OA progression. Our work provides evidences for JMJD3 inhibition as an innovative epigenetic therapy approach for joint diseases by utilizing p5RHH-siRNA nanocomplexes.
Collapse
Affiliation(s)
- Yu Jin
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhen Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhenxia Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hairui Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Cheng Zhu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ruomei Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ting Zhou
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
34
|
Abstract
Histone lysine methylation plays a key role in gene activation and repression. The trimethylation of histone H3 on lysine-27 (H3K27me3) is a critical epigenetic event that is controlled by Jumonji domain-containing protein-3 (JMJD3). JMJD3 is a histone demethylase that specifically removes methyl groups. Previous studies have suggested that JMJD3 has a dual role in cancer cells. JMJD3 stimulates the expression of proliferative-related genes and increases tumor cell growth, propagation, and migration in various cancers, including neural, prostate, ovary, skin, esophagus, leukemia, hepatic, head and neck, renal, lymphoma, and lung. In contrast, JMJD3 can suppress the propagation of tumor cells, and enhance their apoptosis in colorectal, breast, and pancreatic cancers. In this review, we summarized the recent advances of JMJD3 function in cancer cells.
Collapse
|
35
|
Le Menn G, Jabłońska A, Chen Z. The effects of post-translational modifications on Th17/Treg cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119223. [PMID: 35120998 DOI: 10.1016/j.bbamcr.2022.119223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 01/07/2023]
Abstract
Regulatory T (Treg) cells and Th17 cells are subsets of CD4+ T cells which play an essential role in immune homeostasis and infection. Dysregulation of the Th17/Treg cell balance was shown to be implicated in the development and progression of several disorders such as autoimmune disease, inflammatory disease, and cancer. Multiple factors, including T cell receptor (TCR) signals, cytokines, metabolic and epigenetic regulators can influence the differentiation of Th17 and Treg cells and affect their balance. Accumulating evidence indicates that the activity of key molecules such as forkhead box P3 (Foxp3), the retinoic acid-related orphan receptor gamma t (RORγt), and signal transducer and activator of transcription (STAT)s are modulated by the number of post-translational modifications (PTMs) such as phosphorylation, methylation, nitrosylation, acetylation, glycosylation, lipidation, ubiquitination, and SUMOylation. PTMs might affect the protein folding efficiency and protein conformational stability, and consequently determine protein structure, localization, and function. Here, we review the recent progress in our understanding of how PTMs modify the key molecules involved in the Th17/Treg cell differentiation, regulate the Th17/Treg balance, and initiate autoimmune diseases caused by dysregulation of the Th17/Treg balance. A better understanding of Th17/Treg regulation may help to develop novel potential therapeutics to treat immune-related diseases.
Collapse
Affiliation(s)
- Gwenaëlle Le Menn
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| | - Agnieszka Jabłońska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland.
| | - Zhi Chen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland.
| |
Collapse
|
36
|
Abstract
Like many intracellular pathogens, the protozoan parasite Toxoplasma gondii has evolved sophisticated mechanisms to promote its transmission and persistence in a variety of hosts by injecting effector proteins that manipulate many processes in the cells it invades. Specifically, the parasite diverts host epigenetic modulators and modifiers from their native functions to rewire host gene expression to counteract the innate immune response and to limit its strength. The arms race between the parasite and its hosts has led to accelerated adaptive evolution of effector proteins and the unconventional secretion routes they use. This review provides an up-to-date overview of how T. gondii effectors, through the evolution of intrinsically disordered domains, the formation of supramolecular complexes, and the use of molecular mimicry, target host transcription factors that act as coordinating nodes, as well as chromatin-modifying enzymes, to control the fate of infected cells and ultimately the outcome of infection. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France;
| |
Collapse
|
37
|
Nair VS, Heredia M, Samsom J, Huehn J. Impact of gut microenvironment on epigenetic signatures of intestinal T helper cell subsets. Immunol Lett 2022; 246:27-36. [DOI: 10.1016/j.imlet.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/10/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
|
38
|
Feng S, Peden EK, Guo Q, Lee TH, Li Q, Yuan Y, Chen C, Huang F, Cheng J. Downregulation of the endothelial histone demethylase JMJD3 is associated with neointimal hyperplasia of arteriovenous fistulas in kidney failure. J Biol Chem 2022; 298:101816. [PMID: 35278430 PMCID: PMC9052161 DOI: 10.1016/j.jbc.2022.101816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Jumonji domain-containing protein-3 (JMJD3), a histone H3 lysine 27 (H3K27) demethylase, promotes endothelial regeneration, but its function in neointimal hyperplasia (NIH) of arteriovenous fistulas (AVFs) has not been explored. In this study, we examined the contribution of endothelial JMJD3 to NIH of AVFs and the mechanisms underlying JMJD3 expression during kidney failure. We found that endothelial JMJD3 expression was negatively associated with NIH of AVFs in patients with kidney failure. JMJD3 expression in endothelial cells (ECs) was also downregulated in the vasculature of chronic kidney disease (CKD) mice. In addition, specific knockout of endothelial JMJD3 delayed EC regeneration, enhanced endothelial mesenchymal transition, impaired endothelial barrier function as determined by increased Evans blue staining and inflammatory cell infiltration, and accelerated neointima formation in AVFs created by venous end to arterial side anastomosis in CKD mice. Mechanistically, JMJD3 expression was downregulated via binding of transforming growth factor beta 1-mediated Hes family transcription factor Hes1 to its gene promoter. Knockdown of JMJD3 enhanced H3K27 methylation, thereby inhibiting transcriptional activity at promoters of EC markers and reducing migration and proliferation of ECs. Furthermore, knockdown of endothelial JMJD3 decreased endothelial nitric oxide synthase expression and nitric oxide production, leading to the proliferation of vascular smooth muscle cells. In conclusion, we demonstrate that decreased expression of endothelial JMJD3 impairs EC regeneration and function and accelerates neointima formation in AVFs. We propose increasing the expression of endothelial JMJD3 could represent a new strategy for preventing endothelial dysfunction, attenuating NIH, and improving AVF patency in patients with kidney disease.
Collapse
Affiliation(s)
- Shaozhen Feng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China; Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Eric K Peden
- Department of Vascular Surgery, DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, USA
| | - Qunying Guo
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Tae Hoon Lee
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Qingtian Li
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Yuhui Yuan
- Department of Surgery, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Changyi Chen
- Department of Surgery, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Fengzhang Huang
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Jizhong Cheng
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
39
|
Kamiya T, Yamaguchi Y, Oka M, Hara H. Combined action of FOXO1 and superoxide dismutase 3 promotes MDA-MB-231 cell migration. Free Radic Res 2022; 56:106-114. [PMID: 35271779 DOI: 10.1080/10715762.2022.2049770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Superoxide dismutase 3 (SOD3), one of SOD isozymes, maintains extracellular redox homeostasis through the dismutation reaction of superoxide. Loss of SOD3 in tumor cells induces oxidative stress and exacerbates tumor progression; however, interestingly, overexpression of SOD3 also promotes cell proliferation through the production of hydrogen peroxide. In this study, we investigated the functional role of SOD3 in human breast cancer MDA-MB-231 cell migration and the molecular mechanisms involved in high expression of SOD3 in MDA-MB-231 cells and human monocytic THP-1 cells. The level of histone H3 trimethylation at lysine 27 (H3K27me3), a marker of gene silencing, was decreased in 12-O-tetra-decanoylphorbol-13-acetate (TPA)-treated THP-1 cells. Also, that reduction was observed within the SOD3 promoter region. We then investigated the involvement of H3K27 demethylase JMJD3 in SOD3 induction. The induction of SOD3 and the reduction of H3K27me3 were inhibited in the presence of JMJD3 inhibitor, GSK-J4. Additionally, it was first determined that the knockdown of the transcription factor forkhead box O1 (FOXO1) significantly suppressed TPA-elicited SOD3 induction. FOXO1-mediated SOD3 downregulation was also observed in MDA-MB-231 cells, and knockdown of FOXO1 and SOD3 suppressed cell migration. Our results provide a novel insight into epigenetic regulation of SOD3 expression in tumor-associated cells, and high expression of FOXO1 and SOD3 would participate in the migration of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuji Yamaguchi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Manami Oka
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
40
|
Shait Mohammed MR, Zamzami M, Choudhry H, Ahmed F, Ateeq B, Khan MI. The Histone H3K27me3 Demethylases KDM6A/B Resist Anoikis and Transcriptionally Regulate Stemness-Related Genes. Front Cell Dev Biol 2022; 10:780176. [PMID: 35186918 PMCID: PMC8847600 DOI: 10.3389/fcell.2022.780176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial cancer cells that lose attachment from the extracellular matrix (ECM) to seed in a distant organ often undergo anoikis’s specialized form of apoptosis. Recently, KDM3A (H3K9 demethylase) has been identified as a critical effector of anoikis in cancer cells. However, whether other histone demethylases are involved in promoting or resisting anoikis remains elusive. We screened the major histone demethylases and found that both H3K27 histone demethylases, namely, KDM6A/B were highly expressed during ECM detachment. Inhibition of the KDM6A/B activity by using a specific inhibitor results in reduced sphere formation capacity and increased apoptosis. Knockout of KDM6B leads to the loss of stem cell properties in solitary cells. Furthermore, we found that KDM6B maintains stemness by transcriptionally regulating the expression of stemness genes SOX2, SOX9, and CD44 in detached cells. KDM6B occupies the promoter region of both SOX2 and CD44 to regulate their expression epigenetically. We also noticed an increased occupancy of the HIF1α promoter by KDM6B, suggesting its regulatory role in maintaining hypoxia in detached cancer cells. This observation was further strengthened as we found a significant positive association in the expression of both KDM6B and HIF1α in various cancer types. Overall, our results reveal a novel transcriptional program that regulates resistance against anoikis and maintains stemness-like properties.
Collapse
Affiliation(s)
- Mohammed Razeeth Shait Mohammed
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Ahmed
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- University of Jeddah Centre for Scientific and Medical Research (UJ-`CSMR), University of Jeddah, Jeddah, Saudi Arabia
| | - Bushra Ateeq
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur (IIT-K), Kanpur, India
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Mohammad Imran Khan,
| |
Collapse
|
41
|
Zhu ZY, Tang N, Wang MF, Zhou JC, Wang JL, Ren HZ, Shi XL. Comprehensive Pan-Cancer Genomic Analysis Reveals PHF19 as a Carcinogenic Indicator Related to Immune Infiltration and Prognosis of Hepatocellular Carcinoma. Front Immunol 2022; 12:781087. [PMID: 35069553 PMCID: PMC8766761 DOI: 10.3389/fimmu.2021.781087] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND As a crucial constituent part of Polycomb repressive complex 2, PHD finger protein 19 (PHF19) plays a pivotal role in epigenetic regulation, and acts as a critical regulator of multiple pathophysiological processes. However, the exact roles of PHF19 in cancers remain enigmatic. The present research was primarily designed to provide the prognostic landscape visualizations of PHF19 in cancers, and study the correlations between PHF19 expression and immune infiltration characteristics in tumor microenvironment. METHODS Raw data in regard to PHF19 expression were extracted from TCGA and GEO data portals. We examined the expression patterns, prognostic values, mutation landscapes, and protein-protein interaction network of PHF19 in pan-cancer utilizing multiple databases, and investigated the relationship of PHF19 expression with immune infiltrates across TCGA-sequenced cancers. The R language was used to conduct KEGG and GO enrichment analyses. Besides, we built a risk-score model of hepatocellular carcinoma (HCC) and validated its prognostic classification efficiency. RESULTS On balance, PHF19 expression was significantly higher in cancers in comparison with that in noncancerous samples. Increased expression of PHF19 was detrimental to the clinical prognoses of cancer patients, especially HCC. There were significant correlations between PHF19 expression and TMB or MSI in several cancers. High PHF19 levels were critically associated with the infiltration of myeloid-derived suppressor cells (MDSCs) and Th2 subsets of CD4+ T cells in most cancers. Enrichment analyses revealed that PHF19 participated in regulating carcinogenic processes including cell cycle and DNA replication, and was correlated with the progression of HCC. Intriguingly, GSEA suggested that PHF19 was correlated with the cellular components including immunoglobulin complex and T cell receptor complex in HCC. Based on PHF19-associated functional gene sets, an eleven-gene prognostic signature was constructed to predict HCC prognosis. Finally, we validated pan-cancer PHF19 expression, and its impacts on immune infiltrates in HCC. CONCLUSION The epigenetic related regulator PHF19 participates in the carcinogenic progression of multiple cancers, and may contribute to the immune infiltration in tumor microenvironment. Our study suggests that PHF19 can serve as a carcinogenic indicator related to prognosis in pan-cancer, especially HCC, and shed new light on therapeutics of cancers for clinicians.
Collapse
Affiliation(s)
- Zheng-yi Zhu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ning Tang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ming-fu Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-chao Zhou
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-lin Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao-zhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-lei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
42
|
Seth A, Kar S. Understanding the Crosstalk Between Epigenetics and Immunometabolism to Combat Cancer. Subcell Biochem 2022; 100:581-616. [PMID: 36301507 DOI: 10.1007/978-3-031-07634-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The interaction between metabolic and epigenetic events shapes metabolic adaptations of cancer cells and also helps rewire the proliferation and activity of surrounding immune cells in the tumor microenvironment (TME). Recent studies indicate that the TME imposes metabolic constraints on immune cells, inducing them to attain a tolerogenic state, incompetent of mounting effective tumor eradication. Owing to extensive mutations acquired over repeated cell divisions, tumor cells selectively accumulate metabolites that regulate the activity of key epigenetic enzymes to mediate activation/suppression of genes associated with T-cell function and macrophage polarization. Further, multiple modulators connecting epigenetic and metabolic pathways help dictate the preferential induction of cytokines and expression of lineage-specifying genes associated with immunosuppressive T-cell differentiation.In this chapter, we attempt to discuss the mechanisms underpinning the metabolic and epigenetic interplay in immune cells of the TME and how modulating these events can boost the application of existing anticancer immunotherapy.
Collapse
Affiliation(s)
- Anuradha Seth
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, India
| | - Susanta Kar
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
43
|
A Compass to Guide Insights into T H17 Cellular Metabolism and Autoimmunity. IMMUNOMETABOLISM 2022; 4:e220001. [PMID: 34900348 PMCID: PMC8654074 DOI: 10.20900/immunometab20220001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
T cells rapidly convert their cellular metabolic requirements upon activation, switching to a highly glycolytic program to satisfy their increasingly complex energy needs. Fundamental metabolic differences have been established for the development of Foxp3+ T regulatory (Treg) cells versus TH17 cells, alterations of which can drive disease. TH17 cell dysregulation is a driver of autoimmunity and chronic inflammation, contributing to pathogenesis in diseases such as multiple sclerosis. A recent paper published in Cell by Wagner, et al. combined scRNA-seq and metabolic mapping data to interrogate potential metabolic modulators of TH17 cell pathogenicity. This Compass to TH17 cell metabolism highlights the polyamine pathway as a critical regulator of TH17/Treg cell function, signifying its potential as a therapeutic target.
Collapse
|
44
|
Stamos DB, Clubb LM, Mitra A, Chopp LB, Nie J, Ding Y, Das A, Venkataganesh H, Lee J, El-Khoury D, Li L, Bhandoola A, Bosselut R, Love PE. The histone demethylase Lsd1 regulates multiple repressive gene programs during T cell development. J Exp Med 2021; 218:e20202012. [PMID: 34726730 PMCID: PMC8570297 DOI: 10.1084/jem.20202012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 08/27/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022] Open
Abstract
Analysis of the transcriptional profiles of developing thymocytes has shown that T lineage commitment is associated with loss of stem cell and early progenitor gene signatures and the acquisition of T cell gene signatures. Less well understood are the epigenetic alterations that accompany or enable these transcriptional changes. Here, we show that the histone demethylase Lsd1 (Kdm1a) performs a key role in extinguishing stem/progenitor transcriptional programs in addition to key repressive gene programs during thymocyte maturation. Deletion of Lsd1 caused a block in late T cell development and resulted in overexpression of interferon response genes as well as genes regulated by the Gfi1, Bcl6, and, most prominently, Bcl11b transcriptional repressors in CD4+CD8+ thymocytes. Transcriptional overexpression in Lsd1-deficient thymocytes was not always associated with increased H3K4 trimethylation at gene promoters, indicating that Lsd1 indirectly affects the expression of many genes. Together, these results identify a critical function for Lsd1 in the epigenetic regulation of multiple repressive gene signatures during T cell development.
Collapse
Affiliation(s)
- Daniel B. Stamos
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Lauren M. Clubb
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Apratim Mitra
- Bioinformatics and Scientific Programing Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Laura B. Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Jia Nie
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Yi Ding
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Arundhoti Das
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Harini Venkataganesh
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Jan Lee
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Dalal El-Khoury
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - LiQi Li
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Remy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Paul E. Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
45
|
Inoue T, Omori-Miyake M, Maruyama S, Okabe M, Kuwahara M, Honda H, Miura H, Yamashita M. The Loss of H3K27 Histone Demethylase Utx in T Cells Aggravates Allergic Contact Dermatitis. THE JOURNAL OF IMMUNOLOGY 2021; 207:2223-2234. [PMID: 34588217 DOI: 10.4049/jimmunol.2001160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 08/24/2021] [Indexed: 11/19/2022]
Abstract
The pathogenesis of allergic contact dermatitis (ACD) requires the activation of Ag-specific T cells, including effector and regulatory T cells. The differentiation and function of these T cells is epigenetically regulated through DNA methylation and histone modifications. However, the roles of altered histone H3K27 methylation in T cells in the development of ACD remain unknown. Two types of histone H3K27 demethylases, Utx and Jmjd3, have been reported in mammals. To determine the role of the histone H3K27 demethylase expression of T cells in the development of ACD, we generated T cell-specific, Utx-deficient (Utx KO) mice or Jmjd3-deficient (Jmjd3 KO) mice. Unlike control mice, Utx KO mice had severer symptoms of ACD, whereas Jmjd3 KO mice showed symptoms identical to those in control mice. In Utx KO mice with ACD, the massive infiltration of myeloid cells, including neutrophils and dendritic cells, has been observed. In addition, the expression of proinflammatory cytokines in CD4+ T cells of the draining lymph nodes (LNs) and in CD8+ T cells of the skin was increased in Utx KO mice, whereas the ratio of Foxp3+ regulatory CD4+ T cells to Foxp3- conventional CD4+ T cells was decreased in both the draining LNs and the skin of Utx KO mice with ACD. Furthermore, Foxp3+ regulatory CD4+ T cells of Utx KO mice with ACD expressed a decreased level of CCR4 (a skin-tropic chemokine receptor) in comparison with control. Thus, in CD4+ T cells, Utx could potentially be involved in the regulation of the pathogenesis of ACD.
Collapse
Affiliation(s)
- Takashi Inoue
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Miyuki Omori-Miyake
- Department of Infections and Host Defenses, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Saho Maruyama
- Department of Immunology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan; and
| | - Makoto Kuwahara
- Department of Immunology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hiroaki Honda
- Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiromasa Miura
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masakatsu Yamashita
- Department of Infections and Host Defenses, Ehime University Graduate School of Medicine, Ehime, Japan; .,Department of Immunology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
46
|
Moret-Tatay I, Cerrillo E, Hervás D, Iborra M, Sáez-González E, Forment J, Tortosa L, Nos P, Gadea J, Beltrán B. Specific Plasma MicroRNA Signatures in Predicting and Confirming Crohn's Disease Recurrence: Role and Pathogenic Implications. Clin Transl Gastroenterol 2021; 12:e00416. [PMID: 34695034 PMCID: PMC8547914 DOI: 10.14309/ctg.0000000000000416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/22/2021] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are important epigenetic regulators in Crohn's disease (CD); however, their contribution to postoperative recurrence (POR) is still unknown. We aimed to characterize the potential role of miRNAs in predicting POR in patients with CD and to identify their pathogenic implications. METHODS Of 67 consecutively operated patients with CD, we included 44 with pure ileal CD. Peripheral blood samples were taken before surgery and during follow-up. The patients were classified according to the presence or absence of POR assessed by ileocolonoscopy or magnetic resonance imaging enterography. The miRNAs were profiled by reverse transcription polymerase chain reaction before surgery and during morphological POR or, for those who remained in remission, 1 year after surgery. R software and mirWalk were used. RESULTS Five human miRNAs (miR-191-5p, miR-15b-5p, miR-106b-5p, miR-451a, and miR-93-5p) were selected for discriminating between the 2 patient groups at presurgery (PS), with an area under the curve of 0.88 (95% confidence interval [0.79, 0.98]). Another 5 (miR-15b-5p, miR-451a, miR-93-5p, miR-423-5p, and miR-125b-5p) were selected for 1 year, with an area under the curve of 0.96 (95% confidence interval [0.91, 1.0]). We also created nomograms for POR risk estimation. CCND2 and BCL9L genes were related to PS miRNA profiles; SENP5 and AKT3 genes were related to PS and 1 year; and SUV39H1 and MAPK3K10 were related to 1 year. DISCUSSION Different plasma miRNA signatures identify patients at high POR risk, which could help optimize patient outcomes. We developed nomograms to facilitate the clinical use of these results. The identified miRNAs participate in apoptosis, autophagy, proinflammatory immunological T-cell clusters, and reactive oxygen species metabolism.
Collapse
Affiliation(s)
- Inés Moret-Tatay
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network [Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)], Madrid, Spain
| | - Elena Cerrillo
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - David Hervás
- Biostatistics Unit, Health Research IIS La Fe, Valencia, Spain
| | - Marisa Iborra
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network [Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)], Madrid, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Esteban Sáez-González
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Javier Forment
- The Institute for Plant Molecular and Cellular Biology (IBMCP), Polytechnic University of Valencia- Spanish Research Council (CSIC), Valencia, Spain
| | - Luis Tortosa
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network [Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)], Madrid, Spain
| | - Pilar Nos
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network [Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)], Madrid, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Jose Gadea
- The Institute for Plant Molecular and Cellular Biology (IBMCP), Polytechnic University of Valencia- Spanish Research Council (CSIC), Valencia, Spain
| | - Belén Beltrán
- Inflammatory Bowel Disease Research Group, Health Research Institute, Hospital La Fe (IIS La Fe), Valencia, Spain
- Biomedical Research Centre, Hepatic and Digestive Diseases Network [Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)], Madrid, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| |
Collapse
|
47
|
Fan C, Kam S, Ramadori P. Metabolism-Associated Epigenetic and Immunoepigenetic Reprogramming in Liver Cancer. Cancers (Basel) 2021; 13:cancers13205250. [PMID: 34680398 PMCID: PMC8534280 DOI: 10.3390/cancers13205250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/28/2022] Open
Abstract
Metabolic reprogramming and epigenetic changes have been characterized as hallmarks of liver cancer. Independently of etiology, oncogenic pathways as well as the availability of different energetic substrates critically influence cellular metabolism, and the resulting perturbations often cause aberrant epigenetic alterations, not only in cancer cells but also in the hepatic tumor microenvironment. Metabolic intermediates serve as crucial substrates for various epigenetic modulations, from post-translational modification of histones to DNA methylation. In turn, epigenetic changes can alter the expression of metabolic genes supporting on the one hand, the increased energetic demand of cancer cells and, on the other hand, influence the activity of tumor-associated immune cell populations. In this review, we will illustrate the most recent findings about metabolic reprogramming in liver cancer. We will focus on the metabolic changes characterizing the tumor microenvironment and on how these alterations impact on epigenetic mechanisms involved in the malignant progression. Furthermore, we will report our current knowledge about the influence of cancer-specific metabolites on epigenetic reprogramming of immune cells and we will highlight how this favors a tumor-permissive immune environment. Finally, we will review the current strategies to target metabolic and epigenetic pathways and their therapeutic potential in liver cancer, alone or in combinatorial approaches.
Collapse
|
48
|
Katakia YT, Thakkar NP, Thakar S, Sakhuja A, Goyal R, Sharma H, Dave R, Mandloi A, Basu S, Nigam I, Kuncharam BVR, Chowdhury S, Majumder S. Dynamic alterations of H3K4me3 and H3K27me3 at ADAM17 and Jagged-1 gene promoters cause an inflammatory switch of endothelial cells. J Cell Physiol 2021; 237:992-1012. [PMID: 34520565 DOI: 10.1002/jcp.30579] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 01/01/2023]
Abstract
Histone protein modifications control the inflammatory state of many immune cells. However, how dynamic alteration in histone methylation causes endothelial inflammation and apoptosis is not clearly understood. To examine this, we explored two contrasting histone methylations; an activating histone H3 lysine 4 trimethylation (H3K4me3) and a repressive histone H3 lysine 27 trimethylation (H3K27me3) in endothelial cells (EC) undergoing inflammation. Through computer-aided reconstruction and 3D printing of the human coronary artery, we developed a unique model where EC were exposed to a pattern of oscillatory/disturbed flow as similar to in vivo conditions. Upon induction of endothelial inflammation, we detected a significant rise in H3K4me3 caused by an increase in the expression of SET1/COMPASS family of H3K4 methyltransferases, including MLL1, MLL2, and SET1B. In contrast, EC undergoing inflammation exhibited truncated H3K27me3 level engendered by EZH2 cytosolic translocation through threonine 367 phosphorylation and an increase in the expression of histone demethylating enzyme JMJD3 and UTX. Additionally, many SET1/COMPASS family of proteins, including MLL1 (C), MLL2, and WDR5, were associated with either UTX or JMJD3 or both and such association was elevated in EC upon exposure to inflammatory stimuli. Dynamic enrichment of H3K4me3 and loss of H3K27me3 at Notch-associated gene promoters caused ADAM17 and Jagged-1 derepression and abrupt Notch activation. Conversely, either reducing H3K4me3 or increasing H3K27me3 in EC undergoing inflammation attenuated Notch activation, endothelial inflammation, and apoptosis. Together, these findings indicate that dynamic chromatin modifications may cause an inflammatory and apoptotic switch of EC and that epigenetic reprogramming can potentially improve outcomes in endothelial inflammation-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Yash T Katakia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Niyati P Thakkar
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Sumukh Thakar
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Ashima Sakhuja
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Raghav Goyal
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Harshita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Rakshita Dave
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Ayushi Mandloi
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Sayan Basu
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Ishan Nigam
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Bhanu V R Kuncharam
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| |
Collapse
|
49
|
Lu J, Liang Y, Meng H, Zhang A, Zhao J, Zhang C. Metabolic Controls on Epigenetic Reprogramming in Regulatory T Cells. Front Immunol 2021; 12:728783. [PMID: 34421930 PMCID: PMC8374078 DOI: 10.3389/fimmu.2021.728783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/23/2021] [Indexed: 01/20/2023] Open
Abstract
Forkhead box protein 3 (Foxp3+)-expressing regulatory T (Treg) cells are a unique CD4+T cell subset that suppresses excessive immune responses. The epigenetic plasticity and metabolic traits of Treg cells are crucial for the acquisition of their phenotypic and functional characteristics. Therefore, alterations to the epigenetics and metabolism affect Treg cell development and function. Recent evidence reveals that altering the metabolic pathways and generation of metabolites can regulate the epigenetics of Treg cells. Specifically, some intermediates of cell metabolism can directly act as substrates or cofactors of epigenetic-modifying enzymes. Here, we describe the metabolic and epigenetic features during Treg cell development, and discuss how metabolites can contribute to epigenetic alterations of Treg cells, which affects Treg cell activation, differentiation, and function.
Collapse
Affiliation(s)
- Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, China.,Zhengzhou Key Laboratory of Clinical Mass Spectrometry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Liang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, China.,Zhengzhou Key Laboratory of Clinical Mass Spectrometry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, China.,Zhengzhou Key Laboratory of Clinical Mass Spectrometry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ailing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, China.,Zhengzhou Key Laboratory of Clinical Mass Spectrometry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junjie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, China.,Zhengzhou Key Laboratory of Clinical Mass Spectrometry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Sun H, Wang Y, Wang Y, Ji F, Wang A, Yang M, He X, Li L. Bivalent Regulation and Related Mechanisms of H3K4/27/9me3 in Stem Cells. Stem Cell Rev Rep 2021; 18:165-178. [PMID: 34417934 DOI: 10.1007/s12015-021-10234-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2021] [Indexed: 12/24/2022]
Abstract
The "bivalent domain" is a unique histone modification region consisting of two histone tri-methylation modifications. Over the years, it has been revealed that the maintenance and dynamic changes of the bivalent domains play a vital regulatory role in the differentiation of various stem cell systems, as well as in other cells, such as immunomodulation. Tri-methylation modifications involved in the formation of the bivalent domains are interrelated and mutually regulated, thus regulating many life processes of cells. Tri-methylation of histone H3 at lysine 4 (H3K4me3), tri-methylation of histone H3 at lysine 9 (H3K9me3) and tri-methylation of histone H3 at lysine 27 (H3K27me3) are the main tri-methylation modifications involved in the formation of bivalent domains. The three form different bivalent domains in pairs. Furthermore, it is equally clear that H3K4me3 is a positive regulator of transcription and that H3K9me3/H3K27me3 are negative regulators. Enzymes related to the regulation of histone methylation play a significant role in the "homeostasis" and "breaking homeostasis" of the bivalent domains. Bivalent domains regulate target genes, upstream transcription, downstream targeting regulation and related cytokines during the establishment and breakdown of homeostasis, and exert the specific regulation of stem cells. Indeed, a unified mechanism to explain the bivalent modification in all stem cells has been difficult to define, and whether the bivalent modification is antagonistic in inducing the differentiation of homologous stem cells is controversial. In this review, we focus on the different bivalent modifications in several key stem cells and explore the main mechanisms and effects of these modifications involved. Finally, we discussed the close relationship between bivalent domains and immune cells, and put forward the prospect of the application of bivalent domains in the field of stem cells.
Collapse
Affiliation(s)
- Han Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yin Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Ying Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Feng Ji
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - An Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|