1
|
Long C, Xu D, Sun W, Liang W, Zhou J, Gui S, Li H, Xu H. Nomogram prediction of molecular characteristics in WHO grade 3-4 diffuse gliomas based on fractal analysis and VASARI features. Sci Rep 2025; 15:15485. [PMID: 40319042 PMCID: PMC12049507 DOI: 10.1038/s41598-025-00113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
Effective prediction of molecular features is crucial for the prognostic assessment of glioma patients. This study aims to develop a nomogram model using fractal analysis and Visually AcceSAble Rembrandt Images (VASARI) features to predict the molecular characteristics of WHO Grade 3-4 diffuse gliomas. Retrospective analysis of clinical data and VASARI features of patients with WHO grade 3-4 diffuse gliomas confirmed by pathology between January 2020 and December 2023 at our institution. Preoperative T1-weighted contrast-enhanced and T2-weighted images were used to delineate the tumor and surrounding edema regions on 3D-Slicer. Fractal dimension (FD) and lacunarity of both the tumor and surrounding edema were extracted using ImageJ software. Univariate and multivariate logistic regression analyses were performed to identify independent predictive factors for the Ki_67 proliferation index (PI), p53, and telomerase reverse transcriptase promoter (TERTp) mutations. Based on these findings, a nomogram prediction model was constructed. Model performance was comprehensively assessed using the receiver operating characteristic curve (ROC), calibration curve (CRC), and decision curve analysis (DCA). Sex, Proportion Enhancing, and Pial invasion were identified as independent predictive factors for the Ki_67 PI. FD of the tumor (FD(T)) was an independent predictor for p53 expression. FD(T), Enhancement Quality, and Definition of the enhancing margin were independent predictors for TERTp mutations. The areas under the ROC for each nomogram model were 0.791, 0.739, and 0.601, respectively. Sensitivities were 68.75%, 78.12%, and 51.43%, and specificities were 81.03%, 64.86%, and 71.00%, respectively. CRC showed a high degree of concordance between predicted probabilities and actual observed values, while DCA demonstrated favorable net benefits for all models. VASARI features and fractal analysis effectively predict the Ki_67 PI, p53, and TERTp mutations in WHO grade 3-4 diffuse gliomas. Furthermore, combining these two approaches enhances the predictive performance for TERTp mutations.
Collapse
Affiliation(s)
- Changyou Long
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan clinical research and development center of brain resuscitation and functional imaging, Wuhan, China
| | - Dan Xu
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan clinical research and development center of brain resuscitation and functional imaging, Wuhan, China
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Wenbo Sun
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan clinical research and development center of brain resuscitation and functional imaging, Wuhan, China
| | - Weiqiang Liang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan clinical research and development center of brain resuscitation and functional imaging, Wuhan, China
| | - Jie Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan clinical research and development center of brain resuscitation and functional imaging, Wuhan, China
| | - Shen Gui
- Clinical Science, Philips Healthcare, Wuhan, China
| | - Huan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan clinical research and development center of brain resuscitation and functional imaging, Wuhan, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan clinical research and development center of brain resuscitation and functional imaging, Wuhan, China.
| |
Collapse
|
2
|
Manav N, Sharma P, Mochan S, Malhotra L. Unraveling the unique amyloid-like aggregation behavior of the tumor suppressor p53 mutants in human cancers. Int J Biol Macromol 2025; 311:143883. [PMID: 40319958 DOI: 10.1016/j.ijbiomac.2025.143883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/19/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Missense mutations in the tumor suppressor p53 significantly disrupt its native structure and functions, playing a pivotal role in human cancer pathogenesis. Oncogenic mutant p53 (mutp53) not only loses its tumor-suppressive capabilities but also acquires oncogenic functions, driving cancer progression, metastasis, and chemoresistance. Despite extensive research on mutp53, the role of missense mutations in triggering amyloid-like aggregation of p53 remains an underexplored and fascinating area of study. To date, over 36 proteins are known to form amyloid-like aggregates due to abnormal folding, resulting in insoluble protein fibrils that contribute to various protein misfolding diseases, including cancer. However, the precise mechanisms by which aggregated proteins induce cancer remain inadequately understood. Notably, certain p53 mutations promote its aggregation, which has emerged as a critical factor in protein aggregation-induced oncogenesis. This review delves into the mechanisms underpinning mutp53 aggregation, emphasizing unique properties such as coaggregation, bio-isolation, prion-like cell-to-cell transmission, and chemoresistance promotion. Leveraging diverse in-silico, biophysical, and biochemical approaches, we comprehensively analyzed the aggregating potential of 26 mutp53 variants among 1297 missense mutations identified in human cancers. These findings shed light on the multifaceted roles of mutp53 aggregates in oncogenesis and tumor progression. Lastly, we present an integrative exploration of emerging therapeutic strategies designed to disaggregate mutp53 aggregates, offering promising directions for targeted cancer therapy. By addressing this enigmatic aspect of mutp53 biology, our review advances the understanding of protein aggregation in cancer and identifies avenues for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Nisha Manav
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pratibha Sharma
- Department of Neurology, Institute of Human Behaviour and Allied Sciences, Delhi 110095, India
| | - Sankat Mochan
- Department of Anatomy, University College of Medical Sciences, University of Delhi, Delhi 110095, India
| | - Lakshay Malhotra
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India.
| |
Collapse
|
3
|
Deng J, Wan W, Sun R, Xia Q, Yan J, Sun J, Jia X, Jin H, Wang X, Guo K, Li M, Liu Y. Acid-Resistant and Viscosity-Sensitive Proteome Aggregation Sensor To Visualize Cellular Aggrephagy in Live Cells and Clinical Samples. ACS Sens 2025; 10:2812-2822. [PMID: 40189840 DOI: 10.1021/acssensors.4c03560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Aggrephagy in cells is defined as the degradation of intracellular aggregated proteins via the macroautophagy process. This process sequesters protein aggregates into autolysosomes, which bear characteristic viscous and acidic microenvironments. Limited protein aggregation sensors are environmentally compatible with the cellular aggrephagy process. Here, we report an acid-resistant and viscosity-sensitive proteome aggregation sensor to detect cellular aggrephagy in stressed cells and clinical samples. This sensor fluoresces upon selectively and ubiquitously binding to different aggregated proteins. Importantly, unlike other reported protein aggregation sensors, our probe offers unique acid-resistant fluorescence inside aggregated proteins, enabling its application in the acidic autolysosome microenvironment. In live cells under various stressed conditions, the optimal probe (A6) successfully detects aggregated proteome in autolysosomes, as validated by colocalization with a lysosomal tracker. Additionally, we demonstrate that the sensor can detect proteome aggregation in heat-stressed clinical tissue samples biopsied from cancer patients undergoing thermal perfusion treatment. Together, the reported acid-resistant and viscosity-sensitive protein aggregation sensor facilitates the detection of cellular aggrephagy by chemically matching its microenvironmental characteristics.
Collapse
Affiliation(s)
- Jintai Deng
- The Second Hospital of Dalian Medical University, Dalian 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wang Wan
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Sun
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuxuan Xia
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yan
- The Second Hospital of Dalian Medical University, Dalian 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jialu Sun
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiaomeng Jia
- The Second Hospital of Dalian Medical University, Dalian 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Hao Jin
- The Second Hospital of Dalian Medical University, Dalian 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xueqing Wang
- The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Kun Guo
- The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Man Li
- The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Yu Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Zhang Y, Dutta M. The multifunctional proline-rich domain of p53 tumor suppressor. Biochim Biophys Acta Rev Cancer 2025; 1880:189326. [PMID: 40258446 DOI: 10.1016/j.bbcan.2025.189326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
The p53 tumor suppressor is a multi-domain protein. The proline-rich domain (PRD) resides next to the transactivation domains at the N-terminus and before the DNA binding domain. The PRD has been studied extensively for nearly three decades and has been shown to be a key component for the tumor suppressor functions of p53. However, study findings have not been analyzed systematically. Herein, we undertake a comprehensive review of the studies which examined the roles of the PRD in the biological functions, stability, and protein-protein interactions of p53. While p53 is one of the most frequently mutated cellular proteins in human cancer, mutation in its PRD is uncommon, which will be discussed. The importance of the PRD in regulation of mutant p53 has also been investigated and will be reviewed as well. In addition, one of the amino acids in the PRD in human p53 is polymorphic. Information about the polymorphism and its impact on p53 function and association with disease outcomes will also be reviewed. Collectively, studies to date demonstrate that the PRD is a multifunctional domain critical for a variety of p53 functions as well as p53 stability, and that the PRD polymorphism is a potential biomarker of cancer risk and cancer outcome. Its involvement in regulation of both wild-type and mutant p53 offers opportunities for potential development of novel cancer therapeutic strategies.
Collapse
Affiliation(s)
- Yuesheng Zhang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA 23298, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, United States.
| | - Madhuri Dutta
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA 23298, United States
| |
Collapse
|
5
|
Bhattacharya R, Avdieiev SS, Bukkuri A, Whelan CJ, Gatenby RA, Tsai KY, Brown JS. The Hallmarks of Cancer as Eco-Evolutionary Processes. Cancer Discov 2025; 15:685-701. [PMID: 40170539 DOI: 10.1158/2159-8290.cd-24-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/19/2024] [Accepted: 01/28/2025] [Indexed: 04/03/2025]
Abstract
SIGNIFICANCE Viewing the hallmarks as a sequence of adaptations captures the "why" behind the "how" of the molecular changes driving cancer. This eco-evolutionary view distils the complexity of cancer progression into logical steps, providing a framework for understanding all existing and emerging hallmarks of cancer and developing therapeutic interventions.
Collapse
Affiliation(s)
- Ranjini Bhattacharya
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Cancer Biology, University of South Florida, Tampa, Florida
| | - Stanislav S Avdieiev
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anuraag Bukkuri
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher J Whelan
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Robert A Gatenby
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth Y Tsai
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Joel S Brown
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
6
|
Lin G, Elkashif A, Saha C, Coulter JA, Dunne NJ, McCarthy HO. Key considerations for a prostate cancer mRNA vaccine. Crit Rev Oncol Hematol 2025; 208:104643. [PMID: 39900315 DOI: 10.1016/j.critrevonc.2025.104643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025] Open
Abstract
Prostate cancer has the second highest cancer mortality rate in the UK in males. Early prostate cancer is typically asymptomatic, with diagnosis at a locally advanced or metastatic stage. In addition, the inherent heterogeneity of prostate cancer tumours differs significantly in terms of genetic, molecular, and histological features. The successful treatment of prostate cancer is therefore exceedingly challenging. Immunotherapies, particularly therapeutic vaccines, have been widely used in preclinical and clinical studies to treat various cancers. Sipuleucel-T was the first cancer vaccine approved by the FDA for the treatment of asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC), ushering in a new era of immunotherapy. In this review, the latest immunotherapy strategies for prostate cancer are considered with key tumour-associated antigens (TAA) and tumour-specific antigens (TSA) highlighted. The key components of mRNA vaccines include in vitro transcription, stability, and immunogenicity. Finally, strategies to circumvent in vivo mRNA degradation and approaches to optimise in vitro transcription (IVT) process are also discussed.
Collapse
Affiliation(s)
- Guanjie Lin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ahmed Elkashif
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Chayanika Saha
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jonathan A Coulter
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Nicholas J Dunne
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin D09 NA55, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin D09 NA55, Ireland; Biodesign Europe, Dublin City University, Dublin D09 NA55, Ireland; Tissue, Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin D02 PN40, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin D09 NA55, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin D09 NA55, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 PN40, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin D02 PN40, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
7
|
Silva JL, de Andrade GC, Petronilho EC, de Sousa GDS, Mota MF, Quarti J, Guedes-da-Silva FH, Ferretti GDS, Rangel LP, Vieira TCRG, Marques MA, de Oliveira GAP. Phase Separation and Prion-Like Aggregation of p53 Family Tumor Suppressors: From Protein Evolution to Cancer Treatment. J Neurochem 2025; 169:e70055. [PMID: 40178008 DOI: 10.1111/jnc.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
Biomolecular condensates, formed through phase separation (PS), are essential in various physiological processes, but they can also transition into amyloid-like structures, contributing to diseases like cancer and neurodegenerative disorders. This review centers on the tumor suppressor protein p53 and its paralogs, p63 and p73, which play significant roles in cancer biology. Mutations in the TP53 gene, present in over half of all malignant tumors, disrupt the function of p53 and contribute to cancer progression. Mutant p53 not only misfolds but also forms biomolecular condensates and amyloid-like aggregates, like the toxic amyloids seen in neurodegenerative diseases. These amyloid-like structures, characteristic of mutant p53, might be associated with its gain of function (GoF) in cancer. Recent in vitro and in cell studies demonstrate that mutant p53 can exert a prion-like effect on its paralogs, p63 and p73, which typically do not form amyloids under physiological conditions. Heparin inhibits the prion-like effect of mutant p53 on p63 and p73. These findings underscore the critical role of mutant p53 in promoting the aggregation of p63 and p73, and likely of other transcription factors, suggesting new therapeutic targets. The amyloid-like aggregation of mutant p53 is an excellent candidate target for cancer, as evidenced by recent studies. By understanding the phase transitions and amyloid formation of mutant p53, innovative diagnostic and treatment strategies have been explored to reveal and disrupt these processes, offering hope for improved cancer therapies.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Guilherme C de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elaine C Petronilho
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gileno Dos S de Sousa
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michelle F Mota
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia Quarti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisca H Guedes-da-Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana P Rangel
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Dsouza R, Jain M, Khattar E. p53-deficient cancer cells hyperactivate DNA double-strand break repair pathways to overcome chemotherapeutic damage and augment survival. Mol Biol Rep 2025; 52:333. [PMID: 40119972 DOI: 10.1007/s11033-025-10434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND p53 deficiency in cancer is associated with chemoresistance and cancer progression. However, the precise role of p53 in regulating DDR in the context of chemoresistance is still unclear. METHODS AND RESULTS In the present study, we investigated the regulatory role of p53 on the cellular recovery potential upon transient DNA damage. p53 deficiency promotes cell survival following transient DNA damage induction. During recovery, p53 deficient cells display temporary S/G2/M arrest, returning to normal cell cycle profile, while p53 proficient cells remain permanently arrested in the S-phase. Additionally, colony formation assay revealed 50% clonogenicity in p53-proficient cells, while p53-deficient cells showed 90% clonogenicity. Chemoresistance also correlated with accelerated DNA repair in p53-deficient cells. Since doxorubicin induces DNA double-strand breaks, whose repair is driven by two major pathways: homology-directed repair and nonhomologous end joining, we measured their activity during the recovery period. During the early recovery period, both pathways were activated irrespective of p53 expression status. However, during the late recovery time point, NHEJ and HDR activities returned to basal in p53-deficient cells, while their activity was significantly reduced in p53-proficient cells. NHEJ inhibitor Ku57788 could overcome the chemoresistance in p53-deficient cells. CONCLUSION Thus, our findings suggest that sustained DDR promotes chemoresistance and enhanced survival in p53-deficient cancer cells.
Collapse
Affiliation(s)
- Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to Be) University, Vile Parle West, Mumbai, 400056, India
| | - Meghna Jain
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to Be) University, Vile Parle West, Mumbai, 400056, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to Be) University, Vile Parle West, Mumbai, 400056, India.
| |
Collapse
|
9
|
Hameed H, Afzal M, Khan MA, Javaid L, Shahzad M, Abrar K. Unraveling the role of withanolides as key modulators in breast cancer mitigation. Mol Biol Rep 2025; 52:331. [PMID: 40117002 DOI: 10.1007/s11033-025-10442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Addressing the elaborated landscape of therapeutics of global health concern i.e. breast cancer, this comprehensive review explores the promising effects of withanolides, bioactive compounds derived from Withania somnifera, for the treatment of breast cancer. In the breast, random mutations can accumulate over time, eventually transforming it into a tumor cell as certain receptors may be overexpressed by BC cells, which elicits downstream signaling and causes the production of genes involved in angiogenesis, survival, growth and migration, and other critical cell cycle practices. Merging insights from recent studies, our exploration delves into the molecular mechanisms that highlight withanolide's potential in the intervention of breast cancer. The study of apoptotic pathways unveils the withanolide's distinctive as well as pro-apoptotic effects, hinting at its effect as a potent modulator of the progression of breast cancer cells. Beyond its independent potential, there is a discussion on its distinctive perspective over the other therapies. Inweaving together these threads of evidence illuminates channels for future research. This review acts as a guide for researchers and clinicians negotiating the challenges of incorporating withanolides into the changing landscape for the treatment of breast cancer by balancing optimism with perceptive interpretation.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Maham Afzal
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Laiba Javaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Maria Shahzad
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Kamran Abrar
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| |
Collapse
|
10
|
Lin X, Qiu Y, Soni A, Stuschke M, Iliakis G. Reversing regulatory safeguards: Targeting the ATR pathway to overcome PARP inhibitor resistance. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200934. [PMID: 39968096 PMCID: PMC11834088 DOI: 10.1016/j.omton.2025.200934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The development of poly (ADP-ribose) polymerase inhibitors (PARPis) is widely considered a therapeutic milestone in the management of BRCA1/2-deficient malignancies. Since a growing number of cancer treatment guidelines include PARPis, the inevitably emerging PARPi resistance becomes a serious limitation that must be addressed. Targeting the DNA damage response signaling kinase, ATR (ataxia telangiectasia and rad3-related serine/threonine kinase), activated in response to PARPi-induced replication stress, represents a promising approach in fighting PARPi-resistant cancers. The success of this combination therapy in preclinical models has inspired efforts to translate its potential through extensive clinical research and clinical trials. However, the available clinical evidence suggests that PARPi/ATRi combinations have yet to reach their anticipated therapeutic potential. In this review, we summarize work elucidating mechanisms underpinning the effectiveness of ATRi in fighting PARPi resistance and review translational studies reporting efficacy in different types of cancer. Finally, we discuss potential biomarkers of patient selection for customized combinations of PARPi/ATRi treatments.
Collapse
Affiliation(s)
- Xixi Lin
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ye Qiu
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Aashish Soni
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Martin Stuschke
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, German Cancer Research Center (DKFZ), 45147 Essen, Germany
| | - George Iliakis
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
11
|
Appasamy P, Nag JK, Malka H, Bar-Shavit R. PAR 2 Serves an Indispensable Role in Controlling PAR 4 Oncogenicity: The β-Catenin-p53 Axis. Int J Mol Sci 2025; 26:2780. [PMID: 40141421 PMCID: PMC11942634 DOI: 10.3390/ijms26062780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Although the role of G-protein-coupled receptors (GPCRs) in cancer is acknowledged, GPCR-based cancer therapy is rare. Mammalian protease-activated receptors (PARs), a sub-group of GPCRs, comprise four family members, termed PAR1-4. Here, we demonstrate that PAR2 is dominant over PAR4 oncogene in cancer. We performed a knockdown of Par2/f2rl1 and expressed C-terminally truncated PAR2 (TrPAR2), incapable of inducing signaling, to assess the impact of PAR2 on PAR4 oncogenic function by β-catenin stabilization assessment, immunoprecipitation, and xenograft tumor generation in Nude/Nude mice. PAR2 and PAR4 act together to promote tumor generation. Knockdown Par2 and TrPAR2 inhibited the PAR2 and PAR4-induced β-catenin levels, nuclear dishevelled 1(DVL1), and TOPflash reporter activity. Likewise, PAR2 and PAR4-induced invasion and migration were inhibited when Par2 was knocked down or in the presence of TrPAR2. PAR cyclic (4-4) [Pc(4-4)], a PAR-based compound directed toward the PAR pleckstrin homology (PH)-binding site, effectively inhibited PAR2 oncogenic activity. Pc(4-4) inhibition is mediated via the increase in p53 level and the up-regulation of p21 as caspase-3 as well. Overall, we showed that in the absence of PAR2 signaling, the PAR4 pro-tumor functions are significantly inhibited. Pc(4-4) inhibits PAR2 acting via the modification of wt p53, thus offering a powerful drug measure for fighting cancer.
Collapse
Affiliation(s)
| | | | | | - Rachel Bar-Shavit
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (P.A.)
| |
Collapse
|
12
|
Bouzid RS, Bouzid R, Labed H, Serhani I, Hellal D, Oumeddour L, Boudhiaf I, Ibrir M, Khadraoui H, Belaaloui G. Molecular subtyping and target identification in triple negative breast cancer through immunohistochemistry biomarkers. BMC Cancer 2025; 25:454. [PMID: 40082760 PMCID: PMC11905517 DOI: 10.1186/s12885-025-13832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND The Triple-Negative Breast Cancer (TNBC) molecular subtyping and target identification based on Immunohistochemistry (IHC) is of considerable worth for routine use. Yet, literature on this topic is limited worldwide and needs to be enriched with data from different populations. METHODS We assessed the IHC expression of subtyping biomarkers (Cytokeratins 5, 14 and 17, Epidermal Growth Factor Receptor, Claudins 3 and 7, E-cadherin, Vimentin and Androgen receptor) and predictive biomarkers (Tumor-infiltrating lymphocytes (TILs) density, Breast Cancer Antigen 1 (BRCA1) and P53) in a cohort of TNBC patients. Clinicopathologic parameters and overall survival (OS) were investigated as well. RESULTS The patients were aged 50.11 ± 12.13y (more than 40y in 76.56% of patients), and 23.44% had a BC family history. They were in a non-advanced stage: 51.6% T2 stage, 56.2% negative lymph node involvement, 76.6% without metastasis and 64.1% grade II Scarff-Bloom-Richardson classification (SBR). The IHC subtypes were: 53.1% Basal-like1 (BL1), 6.3% Basal-like2 (BL2), 17.2% Mesenchymal (MES), 9.4% Luminal Androgen Receptor (LAR), 4.7% Mixed subtype and 9.4% "Unclassified" type. The LAR subtype involved the youngest patients (40.17 ± 8.68y, p = 0.02). The "Unclassified" subtype expressed the p53 mutated-type pattern more frequently (100%, p = 0.07). The BRCA1 mutated pattern and TILs infiltration were present in (23.44% and 37.5% of patients, respectively). The OS of the subtypes differed significantly (p = 0.007, log-rank test). The subtypes median OS were, respectively, 15.47 mo. (Unclassified), 18.94 mo. (BL2), 27.23 mo. (MES), 27.28 mo. (Mixed), 30.88 mo. (BL1), and 45.07 mo. (LAR). There was no difference in the OS following age, BRCA1 expression, p53 pattern and TILs density. Though, the OS following the TNM stage was different (p = 0.001). A multivariable Cox proportional hazards regression analysis showed that TNM staging and TNBC subtypes, independently influence the OS (p < 0.001 and p = 0.017, respectively). Hence, IHC is useful in TNBC subtyping for prognostic purposes and in the identification of therapeutic biomarkers. Further investigation is required to confirm our results and to implement IHC as a routine tool to improve patient's care.
Collapse
Affiliation(s)
- Rima Saad Bouzid
- Laboratory of Acquired and Constitutional Genetic Diseases (MAGECA), Faculty of Medicine, University of Batna 2, 05000, Batna, Algeria
- Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, 05000, Batna, Algeria
| | - Radhia Bouzid
- Laboratory of Acquired and Constitutional Genetic Diseases (MAGECA), Faculty of Medicine, University of Batna 2, 05000, Batna, Algeria
- Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, 05000, Batna, Algeria
| | - Housna Labed
- Laboratory of Acquired and Constitutional Genetic Diseases (MAGECA), Faculty of Medicine, University of Batna 2, 05000, Batna, Algeria
- Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, 05000, Batna, Algeria
| | - Iman Serhani
- Faculty of Medicine, University Batna 2, Batna, Algeria
- Pathology Department, Cancer Control Center (CLCC), Batna, Algeria
| | - Dounia Hellal
- Faculty of Medicine, University Batna 2, Batna, Algeria
- Pathology Department, Cancer Control Center (CLCC), Batna, Algeria
| | - Leilia Oumeddour
- Faculty of Medicine, University Batna 2, Batna, Algeria
- Pathology Department, Cancer Control Center (CLCC), Batna, Algeria
| | - Ines Boudhiaf
- Pathology Department, Cancer Control Center (CLCC), Batna, Algeria
| | - Massouda Ibrir
- Faculty of Medicine, University Batna 2, Batna, Algeria
- Pathology Department, University Hospital, Batna, Algeria
| | - Hachani Khadraoui
- Laboratory of Acquired and Constitutional Genetic Diseases (MAGECA), Faculty of Medicine, University of Batna 2, 05000, Batna, Algeria
- Faculty of Medicine, University Batna 2, Batna, Algeria
- Pathology Department, Cancer Control Center (CLCC), Batna, Algeria
| | - Ghania Belaaloui
- Laboratory of Acquired and Constitutional Genetic Diseases (MAGECA), Faculty of Medicine, University of Batna 2, 05000, Batna, Algeria.
- Faculty of Medicine, University Batna 2, Batna, Algeria.
| |
Collapse
|
13
|
Carrillo ND, Chen M, Wen T, Awasthi P, Wolfe TJ, Sterling C, Cryns VL, Anderson RA. Lipid Transfer Proteins and PI4KIIα Initiate Nuclear p53-Phosphoinositide Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.05.08.539894. [PMID: 37214930 PMCID: PMC10197520 DOI: 10.1101/2023.05.08.539894] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phosphoinositide (PIP n ) messengers are present in non-membranous regions of nuclei where they are assembled into a phosphatidylinositol (PI) 3-kinase (PI3K)/Akt pathway that is distinct from the cytosolic membrane-localized pathway. In the nuclear pathway, PI kinases/phosphatases bind the p53 tumor suppressor protein (wild-type and mutant) to generate p53-PIP n complexes (p53-PIP n signalosome) that activate Akt by a PI3,4,5P 3 -dependent mechanism in non-membranous regions of the nucleus. This pathway is dependent on a source of nuclear PIP n s that is poorly characterized. Here we report that a subset of PI transfer proteins (PITPs), which transport PI between membranes to enable membrane-localized PIP n synthesis, also interact with p53 in the nucleus upon genotoxic stress. Class I PITPs (PITPα/β) specifically supply the PI required for the generation of p53-PIP n complexes and subsequent signaling in the nucleus. Additionally, the PI 4-kinase PI4KIIα binds to p53 and the PITPs to catalyze the formation of p53-PI4P. p53-PI4P is then sequentially phosphorylated to synthesize p53-PIP n complexes that regulate p53 stability, nuclear Akt activation and genotoxic stress resistance. In this way, PITPα/β and PI4KIIα bind p53 and collaborate to initiate p53-PIP n signaling by mechanisms that require PI transfer by PITPα/β and the catalytic activity of PI4KIIα. Moreover, the identification of these critical upstream regulators of p53-PIP n signaling point to PITPα/β and PI4KIIα as novel therapeutic targets in this pathway for diseases like cancer. Significance statement PI transfer proteins and a PI 4-kinase initiate nuclear p53-phosphoinositide signaling in membrane-free regions to promote stress resistance.
Collapse
|
14
|
Takayama KI, Sato T, Honma T, Yoshida M, Inoue S. Inhibition of PSF Activity Overcomes Resistance to Treatment in Cancers Harboring Mutant p53. Mol Cancer Ther 2025; 24:370-383. [PMID: 39625450 DOI: 10.1158/1535-7163.mct-24-0418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/25/2024] [Accepted: 11/19/2024] [Indexed: 03/05/2025]
Abstract
Mutations in the TP53 tumor suppressor genes are prevalent in aggressive cancers. Pharmacologic reactivation of dysfunctional p53 due to mutations is a promising strategy for treating such cancers. Recently, a multifunctional proline- and glutamine-rich protein, polypyrimidine tract-binding protein-associated splicing factor (PSF), was identified as a key driver of aggressive cancers. PSF promotes the expression of numerous oncogenes by modulating epigenetic and splicing mechanisms. We previously screened a small-molecule library and discovered compound No. 10-3 as a potent PSF inhibitor. Here, we report the discovery of a No. 10-3 analog, 7,8-dimethoxy-4-(4-methoxy-phenyl)-chromen-2-one (C-30), as a potent PSF inhibitor. Compared with No. 10-3, C-30 treatment specifically suppressed the growth and induced apoptosis of mutant p53-bearing and therapy-resistant cancer cells. Interestingly, C-30 activated a set of p53-regulated genes in therapy-resistant cancer cells. A comprehensive analysis of PSF and p53-binding regions demonstrated a higher level of PSF-binding potential in mutant p53-expressing cancer cells around genomic regions identified as p53-binding peaks in p53 wild-type cancer cells. Treatment of mutant p53-expressing cancer cells with C-30 decreases PSF binding around these sites, leading to activated histone acetylation. We further demonstrated that C-30 impaired tumor growth and increased the expression of p53 target genes in vivo. These results suggested that C-30 produces tumor-suppressive effects similar to the functional reactivation of p53, providing a rationale for the inhibition of PSF activity as a promising therapy against treatment-resistant cancer.
Collapse
Affiliation(s)
- Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Tomohiro Sato
- Drug Discovery Computational Chemistry Platform Unit, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Teruki Honma
- Drug Discovery Computational Chemistry Platform Unit, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
| |
Collapse
|
15
|
Cakir Y, Lebe B. The Relationship of PRAME Expression with Clinicopathologic Parameters and Immunologic Markers in Melanomas: In Silico Analysis. Appl Immunohistochem Mol Morphol 2025; 33:117-130. [PMID: 39774089 DOI: 10.1097/pai.0000000000001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
PRAME is a cancer testis antigen whose expression is limited in normal tissues but is increased in cancers. Although there are studies revealing its oncogenic and immunogenic role, the relationship between PRAME expression and immunity in melanomas is not very clear. We aimed to reveal the relationship between PRAME expression and clinicopathologic parameters, immunologic markers, survival in melanomas. PRAME alteration data in TCGA SKCM data set was obtained from cBioPortal. Analyzes regarding clinicopathologic parameters were performed through cBioPortal and UALCAN, survival-related analyzes were performed through cBioPortal, GEPIA2. The correlation analyzes between PRAME expression and immune cell infiltration, immunity-related genes were performed in TIMER2.0, TISIDB, GEPIA2. PRAME protein-protein interaction network was constructed in STRING. The correlated genes with PRAME were listed in LinkedOmics, gene set enrichment and pathway analyses were performed through LinkInterpreter. In cases with low PRAME expression, there was a higher frequency of metastasis and p53 mutation, a more advanced tumor stage and a lower nodal stage. Strong relationship between PRAME expression and immune cell infiltration. A negative correlation was detected between expression of PRAME and many immunomodulatory genes ( P <0.05). Positively correlated genes with PRAME expression were involved in metabolic pathways; negatively correlated genes were involved in pathways related to cell differentiation, immunologic processes. No significant relationship was found between PRAME expression and survival ( P >0.05). Our findings reveal a strong interaction between PRAME expression and tumorigenicity, the immune system and shed light on further clinical studies including PRAME -targeted studies.
Collapse
Affiliation(s)
- Yasemin Cakir
- Department of Molecular Pathology, Institute of Health Sciences, Dokuz Eylül University
| | - Banu Lebe
- Department of Molecular Pathology, Institute of Health Sciences, Dokuz Eylül University
- Department of Pathology, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
16
|
Rahmé R, Resnick-Silverman L, Anguiano V, Campbell MJ, Fenaux P, Manfredi JJ. Mutant p53 regulates a distinct gene set by a mode of genome occupancy that is shared with wild type. EMBO Rep 2025; 26:1315-1343. [PMID: 39875582 PMCID: PMC11893899 DOI: 10.1038/s44319-025-00375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
To directly examine the interplay between mutant p53 or Mdm2 and wild type p53 in gene occupancy and expression, an integrated RNA-seq and ChIP-seq analysis was performed in vivo using isogenically matched mouse strains. Response to radiation was used as an endpoint to place findings in a biologically relevant context. Unexpectedly, mutant p53 and Mdm2 only inhibit a subset of wild type p53-mediated gene expression. In contrast to a dominant-negative or inhibitory role, the presence of either mutant p53 or Mdm2 actually enhances the occupancy of wild type p53 on many canonical targets. The C-terminal 19 amino acids of wild type p53 suppress the p53 response allowing for survival at sublethal doses of radiation. Further, the p53 mutant 172H is shown to occupy genes and regulate their expression via non-canonical means that are shared with wild type p53. This results in the heterozygous 172H/+ genotype having an expanded transcriptome compared to wild type p53 + /+.
Collapse
Affiliation(s)
- Ramy Rahmé
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université de Paris, Paris, France
- Ecole Doctorale Hématologie-Oncogenèse-Biothérapies, Université de Paris, Paris, France
| | - Lois Resnick-Silverman
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vincent Anguiano
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Pierre Fenaux
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université de Paris, Paris, France
- Service Hématologie Seniors, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - James J Manfredi
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
17
|
Afrifa‐Yamoah E, Adua E, Peprah‐Yamoah E, Anto EO, Opoku‐Yamoah V, Acheampong E, Macartney MJ, Hashmi R. Pathways to chronic disease detection and prediction: Mapping the potential of machine learning to the pathophysiological processes while navigating ethical challenges. Chronic Dis Transl Med 2025; 11:1-21. [PMID: 40051825 PMCID: PMC11880127 DOI: 10.1002/cdt3.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Accepted: 05/27/2024] [Indexed: 03/09/2025] Open
Abstract
Chronic diseases such as heart disease, cancer, and diabetes are leading drivers of mortality worldwide, underscoring the need for improved efforts around early detection and prediction. The pathophysiology and management of chronic diseases have benefitted from emerging fields in molecular biology like genomics, transcriptomics, proteomics, glycomics, and lipidomics. The complex biomarker and mechanistic data from these "omics" studies present analytical and interpretive challenges, especially for traditional statistical methods. Machine learning (ML) techniques offer considerable promise in unlocking new pathways for data-driven chronic disease risk assessment and prognosis. This review provides a comprehensive overview of state-of-the-art applications of ML algorithms for chronic disease detection and prediction across datasets, including medical imaging, genomics, wearables, and electronic health records. Specifically, we review and synthesize key studies leveraging major ML approaches ranging from traditional techniques such as logistic regression and random forests to modern deep learning neural network architectures. We consolidate existing literature to date around ML for chronic disease prediction to synthesize major trends and trajectories that may inform both future research and clinical translation efforts in this growing field. While highlighting the critical innovations and successes emerging in this space, we identify the key challenges and limitations that remain to be addressed. Finally, we discuss pathways forward toward scalable, equitable, and clinically implementable ML solutions for transforming chronic disease screening and prevention.
Collapse
Affiliation(s)
| | - Eric Adua
- Rural Clinical School, Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | | | - Enoch O. Anto
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Department of Medical Diagnostics, Faculty of Allied Health Sciences, College of Health SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Victor Opoku‐Yamoah
- School of Optometry and Vision ScienceUniversity of WaterlooWaterlooOntarioCanada
| | - Emmanuel Acheampong
- Department of Genetics and Genome BiologyLeicester Cancer Research CentreUniversity of LeicesterLeicesterUK
| | - Michael J. Macartney
- Faculty of Science Medicine and HealthUniversity of WollongongWollongongNew South WalesAustralia
| | - Rashid Hashmi
- Rural Clinical School, Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
18
|
Funk AL, Katerji M, Afifi M, Nyswaner K, Woodroofe CC, Edwards ZC, Lindberg E, Bergman KL, Gough NR, Rubin MR, Karpińska K, Trotter EW, Dash S, Ries AL, James A, Robinson CM, Difilippantonio S, Karim BO, Chang TC, Chen L, Xu X, Doroshow JH, Ahel I, Marusiak AA, Swenson RE, Cappell SD, Brognard J. Targeting c-MYC and gain-of-function p53 through inhibition or degradation of the kinase LZK suppresses the growth of HNSCC tumors. Sci Signal 2025; 18:eado2857. [PMID: 39933019 PMCID: PMC11912006 DOI: 10.1126/scisignal.ado2857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/03/2024] [Accepted: 12/24/2024] [Indexed: 02/13/2025]
Abstract
The worldwide annual frequency and lethality of head and neck squamous cell carcinoma (HNSCC) is not improving, and thus, new therapeutic approaches are needed. Approximately 70% of HNSCC cases have either amplification or overexpression of MAP3K13, which encodes the kinase LZK. Here, we found that LZK is a therapeutic target in HNSCC and that small-molecule inhibition of its catalytic function decreased the viability of HNSCC cells with amplified MAP3K13. Inhibition of LZK suppressed tumor growth in MAP3K13-amplified xenografts derived from HNSCC patients. LZK stabilized the transcription factor c-MYC through its kinase activity and gain-of-function mutants of p53 in a kinase-independent manner. We designed a proteolysis-targeting chimera (PROTAC) that induced LZK degradation, leading to decreased abundance of both c-MYC and gain-of-function p53, and reduced the viability of HNSCC cells. Our findings demonstrate that LZK-targeted therapeutics, particularly PROTACs, may be effective in treating HNSCCs with MAP3K13 amplification.
Collapse
Affiliation(s)
- Amy L. Funk
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Meghri Katerji
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Marwa Afifi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Katherine Nyswaner
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Carolyn C. Woodroofe
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Zoe C. Edwards
- Cell Division Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Eric Lindberg
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Knickole L. Bergman
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | | | - Maxine R. Rubin
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Kamila Karpińska
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Eleanor W. Trotter
- Cell Division Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Sweta Dash
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Amy L. Ries
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Amy James
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christina M. Robinson
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Baktiar O. Karim
- Molecular Histopathology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ting-Chia Chang
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Li Chen
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Xin Xu
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Rockville, MD 20850, USA
| | - James H. Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Rockville, MD 20850, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, Oxford UK, OX1 3RE
| | - Anna A. Marusiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Steven D. Cappell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - John Brognard
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| |
Collapse
|
19
|
Fan Y, Li Y, Luo X, Xiang S, Hu J, Zhan J, Chang W, Deng R, Ran X, Zhang Y, Cai Y, Zhu W, Wang H, Liu Z, Wang D. PTOV1 exerts pro-oncogenic role in colorectal cancer by modulating SQSTM1-mediated autophagic degradation of p53. J Transl Med 2025; 23:157. [PMID: 39905441 PMCID: PMC11796032 DOI: 10.1186/s12967-025-06179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/25/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Prostate Tumor Overexpressed 1 (PTOV1) is overexpressed and associated with malignant phenotypes in various types of tumors. However, the detailed roles of PTOV1 and its underlying mechanism in CRC remain unclear. METHODS The clinical significance of PTOV1 was assessed in clinical databases and CRC samples. The effects of PTOV1 on the tumor-associated phenotypes of CRC were detected by several in vitro assays and in vivo mouse models. Immunoprecipitation (IP) combined with protein mass spectrometry and Co-Immunoprecipitation (Co-IP) was used to identify p53 interacting with PTOV1. Immunofluorescence assay, western blot and transmission electron microscopy (TEM) analysis were used to evaluated the effects of PTOV1 on autophagy. RESULTS Here, we revealed that PTOV1 was highly expressed in human CRC tissues, especially at advanced stages, and associated with reduced survival time among CRC patients. The upregulated PTOV1 promoted cell proliferation, migration, invasion, tumor growth and metastasis of CRC cells in vitro and in vivo. At the molecular level, PTOV1 destabilized p53 by activating autophagy and recruiting p53 for the cargo receptor SQSTM1 directed autophagic degradation. There was a negative expression correlation between PTOV1 and p53 in CRC tissues. Moreover, p53 overexpression or SQSTM1 knockdown reversed the pro-tumor phenotypes of PTOV1 in CRC. CONCLUSION Our study unveils the oncogenic role of PTOV1 in CRC progression, which was achieved by promoting SQSTM1 directed autophagic degradation of p53. These findings highlight the potential of targeting the PTOV1-SQSTM1-p53 axis as a therapeutic approach for CRC.
Collapse
Affiliation(s)
- Yongli Fan
- Department of Oncology, the First Affiliated Hospital of Henan University, Kaifeng, 475000, China
| | - Yuqin Li
- Department of Medical Laboratory, Tongji Medical College, the Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xia Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiqi Xiang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jia Hu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jingchun Zhan
- College of Anesthesiology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Weilong Chang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Rui Deng
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xianwen Ran
- Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yize Zhang
- Gene Hospital of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yudie Cai
- Gene Hospital of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weiwei Zhu
- Gene Hospital of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Huifen Wang
- Gene Hospital of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhibo Liu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Di Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
20
|
Osakabe M, Yamada N, Sugimoto R, Uesugi N, Nakao E, Honda M, Yanagawa N, Sugai T. The pattern-based interpretation of p53 immunohistochemical expression as a surrogate marker for TP53 mutations in colorectal cancer. Virchows Arch 2025; 486:333-341. [PMID: 38512505 PMCID: PMC11876225 DOI: 10.1007/s00428-024-03790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/21/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Mutations in the TP53 gene, most commonly observed in colorectal cancer (CRC), play an essential role in colorectal carcinogenesis. Although p53 immunohistochemical (IHC) expression patterns have been argued to serve as an excellent surrogate marker for TP53 mutations, its performance has not been confirmed in CRC. We aimed to determine whether p53 IHC expression patterns accurately predict TP53 mutation status as examined by next-generation sequencing (NGS). We performed p53 IHC and sequencing of TP53 by NGS in 92 CRC cases with a microsatellite stable phenotype to investigate the correlation between TP53 mutation status and p53 IHC expression. The concordance between p53 IHC and TP53 mutation was 84/92 (91.3%) overall. However, 6 mutant cases were found in 39 cases with a wild-type IHC pattern. Additionally, there were two discordant cases in which an abnormal p53 IHC pattern (overexpression or cytoplasmic pattern) was found, while NGS detected wild-type p53. Therefore, the optimized p53 IHC performs well and serves as a surrogate test for TP53 mutation in CRC cases. Furthermore, it demonstrates excellent reproducibility between two independent experienced pathologists and may have novel clinical utility for molecular classification algorithms in CRC. We suggest that the four-tier classification of p53 IHC patterns is helpful to evaluate molecular colorectal carcinogenesis.
Collapse
Affiliation(s)
- Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, Morioka, 028-3695, Japan
| | - Noriyuki Yamada
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, Morioka, 028-3695, Japan
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, Morioka, 028-3695, Japan
| | - Noriyuki Uesugi
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, Morioka, 028-3695, Japan
- Diagnostic Pathology Center, Southern Tohoku General Hospital, 7-115, Hachiyamada, Kooriyama City, 963-8563, Japan
| | - Eiichi Nakao
- Diagnostic Pathology Center, Southern Tohoku General Hospital, 7-115, Hachiyamada, Kooriyama City, 963-8563, Japan
- Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, 1 Hikarigaoka Fukushima, Fukushima, 960-1295, Japan
- Department of Surgery, Southern Tohoku General Hospital, 7-115, Hachiyamada, Kooriyama City, 963-8563, Japan
| | - Michitaka Honda
- Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, 1 Hikarigaoka Fukushima, Fukushima, 960-1295, Japan
- Department of Surgery, Southern Tohoku General Hospital, 7-115, Hachiyamada, Kooriyama City, 963-8563, Japan
| | - Naoki Yanagawa
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, Morioka, 028-3695, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, Morioka, 028-3695, Japan.
- Diagnostic Pathology Center, Southern Tohoku General Hospital, 7-115, Hachiyamada, Kooriyama City, 963-8563, Japan.
| |
Collapse
|
21
|
Andrysik Z, Espinosa JM. Harnessing p53 for targeted cancer therapy: new advances and future directions. Transcription 2025; 16:3-46. [PMID: 40031988 PMCID: PMC11970777 DOI: 10.1080/21541264.2025.2452711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
The transcription factor p53 is the most frequently impaired tumor suppressor in human cancers. In response to various stress stimuli, p53 activates transcription of genes that mediate its tumor-suppressive functions. Distinctive characteristics of p53 outlined here enable a well-defined program of genes involved in cell cycle arrest, apoptosis, senescence, differentiation, metabolism, autophagy, DNA repair, anti-viral response, and anti-metastatic functions, as well as facilitating autoregulation within the p53 network. This versatile, anti-cancer network governed chiefly by a single protein represents an immense opportunity for targeted cancer treatment, since about half of human tumors retain unmutated p53. During the last two decades, numerous compounds have been developed to block the interaction of p53 with the main negative regulator MDM2. However, small molecule inhibitors of MDM2 only induce a therapeutically desirable apoptotic response in a limited number of cancer types. Moreover, clinical trials of the MDM2 inhibitors as monotherapies have not met expectations and have revealed hematological toxicity as a characteristic adverse effect across this drug class. Currently, combination treatments are the leading strategy for enhancing efficacy and reducing adverse effects of MDM2 inhibitors. This review summarizes efforts to identify and test therapeutics that work synergistically with MDM2 inhibitors. Two main types of drugs have emerged among compounds used in the following combination treatments: first, modulators of the p53-regulated transcriptome (including chromatin modifiers), translatome, and proteome, and second, drugs targeting the downstream pathways such as apoptosis, cell cycle arrest, DNA repair, metabolic stress response, immune response, ferroptosis, and growth factor signaling. Here, we review the current literature in this field, while also highlighting overarching principles that could guide target selection in future combination treatments.
Collapse
Affiliation(s)
- Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
22
|
R HC, C GPD. Investigation of the impact of R273H and R273C mutations on the DNA binding domain of P53 protein through molecular dynamic simulation. J Biomol Struct Dyn 2025; 43:798-812. [PMID: 39737749 DOI: 10.1080/07391102.2023.2283793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 01/01/2025]
Abstract
The P53 protein, a cancer-associated transcriptional factor and tumor suppressor, houses a Zn2+ ion in its DNA-binding domain (DBD), essential for sequence-specific DNA binding. However, common mutations at position 273, specifically from Arginine to Histidine and Cysteine, lead to a loss of function as a tumor suppressor, also called DNA contact mutations. The mutant (MT) P53 structure cannot stabilize DNA due to inadequate interaction. To investigate the conformational changes, we performed a comparative molecular dynamic simulation (MDS) to study the effect of the P53-Wildtype (P53-WT) and the DNA contact mutations (R273H and R273C) on the DBD. Our research indicated that the DNA binding bases lose Hydrogen bonds (H bonds) when mutated to P53-R273H and P53-R273C during the simulation. We employed tools, such as PDIviz to highlight the contacts with DNA bases and backbone, major and minor grooves, and various pharmacophore forms of atoms. The contact maps for R273H and R273C were generated using the COZOID tool, which displayed changes in the frequency of the amino acids and DNA bases interaction in the DNA binding domain. These residues have diminished interactions, and the zinc-binding domain shows significant movements by Zn2+ ion binding to the phosphate group of the DNA, moving away from its binding sites. In conclusion, our research suggests that R273H and R273C each have unique stability and self-assembly properties. This understanding might assist researchers in better comprehending the function of the p53 protein and its importance in cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hephzibah Cathryn R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
23
|
Lacka K, Maciejewski A, Tyburski P, Manuszewska-Jopek E, Majewski P, Więckowska B. Rationale for Testing TP53 Mutations in Thyroid Cancer-Original Data and Meta-Analysis. Int J Mol Sci 2025; 26:1035. [PMID: 39940804 PMCID: PMC11817394 DOI: 10.3390/ijms26031035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The p53 protein is a tumor-suppressing transcription factor that is critical in tumorigenesis. While TP53 mutations are rare in differentiated thyroid cancer (DTC), they are significantly more common in anaplastic thyroid cancer (ATC). This study presents original results and a meta-analysis reevaluating the prognostic value of TP53 mutations in thyroid cancer, including surrogate markers such as immunohistochemical p53 expression and serum p53-Abs levels. TP53 mutations were analyzed using SSSP and direct sequencing in a DTC group (15 patients), an ATC group (3 patients), and a control group (25 patients). The immunohistochemical p53 expression was assessed in tissue samples. A meta-analysis of 14 eligible studies identified through the PubMed, Scopus, Google Scholar, and Cochrane databases was conducted. Our results showed TP53 mutations in all ATC cases, 6.67% of DTC cases (1 out of 15), and none in the control group. Immunohistochemical p53 overexpression was observed in 4 out of 15 DTC (26.67%) and all ATC cases but absent in controls. A meta-analysis confirmed that TP53 mutations are significantly more frequent in ATC than controls (OR 8.95; 95% CI: 1.36-58.70; p = 0.02) but not in DTC vs. controls (OR 1.87; 95% CI: 0.53-6.58; p = 0.33). p53 overexpression was significantly higher in both DTC and ATC vs. controls (OR 7.99; 95% CI: 5.11-12.51; p < 0.01 and OR 64.37; 95% CI: 27.28-151.89; p < 0.01, respectively). The serum p53-Abs positivity was also elevated in patients with PTC vs. controls (OR 2.07; 95% CI: 1.24-3.47; p < 0.01). TP53 mutations are frequent events in the pathogenesis of ATC. In DTC, further prospective studies are needed to determine the prognostic value of TP53 mutations and related surrogate markers (immunohistochemical p53 expression, p53-Abs positivity).
Collapse
Affiliation(s)
- Katarzyna Lacka
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Adam Maciejewski
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Piotr Tyburski
- Student Scientific Society, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | | | - Przemysław Majewski
- Department of Clinical Pathomorphology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Barbara Więckowska
- Department of Computer Science and Statistics, Poznan University of Medical Science, 60-806 Poznan, Poland
| |
Collapse
|
24
|
Grattoni A, Korbutt G, Tomei AA, García AJ, Pepper AR, Stabler C, Brehm M, Papas K, Citro A, Shirwan H, Millman JR, Melero-Martin J, Graham M, Sefton M, Ma M, Kenyon N, Veiseh O, Desai TA, Nostro MC, Marinac M, Sykes M, Russ HA, Odorico J, Tang Q, Ricordi C, Latres E, Mamrak NE, Giraldo J, Poznansky MC, de Vos P. Harnessing cellular therapeutics for type 1 diabetes mellitus: progress, challenges, and the road ahead. Nat Rev Endocrinol 2025; 21:14-30. [PMID: 39227741 PMCID: PMC11938328 DOI: 10.1038/s41574-024-01029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is a growing global health concern that affects approximately 8.5 million individuals worldwide. T1DM is characterized by an autoimmune destruction of pancreatic β cells, leading to a disruption in glucose homeostasis. Therapeutic intervention for T1DM requires a complex regimen of glycaemic monitoring and the administration of exogenous insulin to regulate blood glucose levels. Advances in continuous glucose monitoring and algorithm-driven insulin delivery devices have improved the quality of life of patients. Despite this, mimicking islet function and complex physiological feedback remains challenging. Pancreatic islet transplantation represents a potential functional cure for T1DM but is hindered by donor scarcity, variability in harvested cells, aggressive immunosuppressive regimens and suboptimal clinical outcomes. Current research is directed towards generating alternative cell sources, improving transplantation methods, and enhancing cell survival without chronic immunosuppression. This Review maps the progress in cell replacement therapies for T1DM and outlines the remaining challenges and future directions. We explore the state-of-the-art strategies for generating replenishable β cells, cell delivery technologies and local targeted immune modulation. Finally, we highlight relevant animal models and the regulatory aspects for advancing these technologies towards clinical deployment.
Collapse
Affiliation(s)
- Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| | - Gregory Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Alice A Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Cherie Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Michael Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Klearchos Papas
- Department of Surgery, The University of Arizona, Tucson, AZ, USA
| | - Antonio Citro
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Haval Shirwan
- Department of Pediatrics, Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Juan Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Melanie Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Michael Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Norma Kenyon
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Tejal A Desai
- University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA, USA
- Brown University, School of Engineering, Providence, RI, USA
| | - M Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Megan Sykes
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jon Odorico
- UW Health Transplant Center, Madison, WI, USA
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Qizhi Tang
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California San Francisco, San Francisco, CA, US
- Gladstone Institute of Genomic Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Esther Latres
- Research Department, Breakthrough T1D, New York, NY, USA
| | | | - Jaime Giraldo
- Research Department, Breakthrough T1D, New York, NY, USA.
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
25
|
Xia L, Mei J, Huang M, Bao D, Wang Z, Chen Y. O-GlcNAcylation in ovarian tumorigenesis and its therapeutic implications. Transl Oncol 2025; 51:102220. [PMID: 39616984 DOI: 10.1016/j.tranon.2024.102220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024] Open
Abstract
Ovarian cancer is a prevalent malignancy among women, often associated with a poor prognosis. Post-translational modifications (PTMs), particularly O-GlcNAcylation, have been implicated in the progression of ovarian cancer. Emerging evidence indicates that dysregulation of O-GlcNAcylation contributes to the initiation and malignant progression of ovarian cancer. This review discusses the potential role of O-GlcNAcylation in ovarian tumorigenesis, with a focus on its regulation of various cellular signaling pathways, including p53, RhoA/ROCK/MLC, Ezrin/Radixin/Moesin (ERM), and β-catenin. This review also emphasizes the O-GlcNAcylation of critical proteins in ovarian cancer, such as SNAP-23, SNAP-29, E-cadherin, and calreticulin. Additionally, the potential of O-GlcNAcylation to enhance immunotherapy for ovarian cancer patients is explored. Several compounds targeting OGT and OGA in ovarian cancer are also highlighted. Targeting the dynamic and versatile nature of O-GlcNAcylation could undoubtedly contribute to more effective treatments and improved outcomes for ovarian cancer patients.
Collapse
Affiliation(s)
- Lu Xia
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Mei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Min Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Dandan Bao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhiwei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Yizhe Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
26
|
Gong L, Xu D, Ni K, Li J, Mao W, Zhang B, Pu Z, Fang X, Yin Y, Ji L, Wang J, Hu Y, Meng J, Zhang R, Jiao J, Zou J. Smad1 Promotes Tumorigenicity and Chemoresistance of Glioblastoma by Sequestering p300 From p53. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2402258. [PMID: 39629919 PMCID: PMC11789598 DOI: 10.1002/advs.202402258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/26/2024] [Indexed: 01/30/2025]
Abstract
Acetylation is critically required for p53 activation, though it remains poorly understood how p53 acetylation is regulated in glioblastoma (GBM). This study reveals that p53 acetylation is a favorable prognostic marker for GBM, regardless of p53 status, and that Smad1, a key negative regulator of p53 acetylation, is involved in this process. Smad1 forms a complex with p53 and p300, inhibiting p300's interaction with p53 and leading to reduced p53 acetylation and increased Smad1 acetylation in GBM. This results in enhanced tumor growth and resistance to chemotherapy, particularly in tumors with missense mutant p53. Acetylation of K373 is found to be essential for Smad1's oncogenic function but does not confer chemoresistance in the absence of p53. Through molecular docking, it is discovered that Smad1 and p53 both interact with the acetyltransferase domain of p300, but at different amino acid sites. Disturbing the interface of Smad1 through amino acid mutations abolishes the Smad1-p300 complex and promotes p53 acetylation. Therefore, a small molecule is identified through virtual screening that specifically disrupts the Smad1-p300 interaction, offering a promising strategy for inhibiting GBM and increasing chemosensitivity by inhibiting Smad1 acetylation and restoring p53 acetylation.
Collapse
Affiliation(s)
- Lingli Gong
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Daxing Xu
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Kaixiang Ni
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jie Li
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Wei Mao
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Bo Zhang
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Zhening Pu
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Xiangming Fang
- Department of RadiologyThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Ying Yin
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Li Ji
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Jingjing Wang
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Yaling Hu
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Jiao Meng
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Rui Zhang
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jiantong Jiao
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jian Zou
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| |
Collapse
|
27
|
Lee Y, Lee YY, Park J, Maksakova A, Seo D, Kim J, Yeom JE, Kim Y, Kim CH, Ryoo R, Kim SN, Park J, Park W, Kim TH, Choy YB, Park CG, Kim KH, Lee W. Illudin S inhibits p53-Mdm2 interaction for anticancer efficacy in colorectal cancer. Biomed Pharmacother 2025; 182:117795. [PMID: 39740390 DOI: 10.1016/j.biopha.2024.117795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025] Open
Abstract
The impairment of the p53 pathway was once regarded as inadequately druggable due to the specificity of the p53 structure, its flat surface lacking an ideal drug-binding site, and the difficulty in reinstating p53 function. However, renewed interest in p53-based therapies has emerged, with promising approaches targeting p53 and ongoing clinical trials investigating p53-based treatments across various cancers. Despite significant progress in p53-targeted therapies, challenges persist in identifying effective therapeutic targets within the p53 pathway. In this study, we implemented a molecular screening system to effectively discover p53 activator. As a result, illudin S was identified as a potential inhibitor of the p53-Mdm2 interaction. This compound is particularly intriguing due to its well-documented anti-cancer effects, despite the ambiguity surrounding its precise mechanism of action. Illudin S demonstrated a direct binding affinity to the Mdm2 binding site of p53 through hydrogen bonding, which enhanced the stability and transcriptional activity of p53. The inhibition of the p53-Mdm2 interaction by illudin S led to increased p53 expression. Moreover, this inhibition effectively induced apoptosis and cell cycle arrest in CT26 colorectal cancer cells. Administration of illudin S in a colorectal cancer mouse model resulted in prolonged survival and significant tumor growth inhibition. These findings elucidate the mechanism underlying the anti-cancer effects of illudin S, specifically through its targeting of the p53-Mdm2 interaction in colorectal cancer. Consequently, illudin S emerges as a promising candidate for the development of p53-targeted cancer therapies.
Collapse
Affiliation(s)
- Yoonsuk Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yun Young Lee
- Department of Biomedical Engineering, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jinyoung Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Anna Maksakova
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Donghyuk Seo
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jisun Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Eun Yeom
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yewon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Cheol-Hwi Kim
- Department of Intelligent Precision Healthcare Convergence, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Rhim Ryoo
- Special Forest Products Division, Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Se-Na Kim
- Research and Development Center, MediArk Inc., Cheongju 28644, Republic of Korea
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tae-Hyung Kim
- Department of Biomedical Engineering, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young Bin Choy
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon 16419, Republic of Korea; Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang 14, Seongbuk, Seoul 02792, Republic of Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
28
|
Farmakis D, Stravopodis DJ, Prombona A. TH301 Emerges as a Novel Anti-Oncogenic Agent for Human Pancreatic Cancer Cells: The Dispensable Roles of p53, CRY2 and BMAL1 in TH301-Induced CDKN1A/p21 CIP1/WAF1 Upregulation. Int J Mol Sci 2024; 26:178. [PMID: 39796036 PMCID: PMC11720130 DOI: 10.3390/ijms26010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Pancreatic Ductal Adeno-Carcinoma (PDAC) is a highly aggressive cancer, with limited treatment options. Disruption of the circadian clock, which regulates key cellular processes, has been implicated in PDAC initiation and progression. Hence, targeting circadian clock components may offer new therapeutic opportunities for the disease. This study investigates the cytopathic effects of TH301, a novel CRY2 stabilizer, on PDAC cells, aiming to evaluate its potential as a novel therapeutic agent. Methods: PDAC cell lines (AsPC-1, BxPC-3 and PANC-1) were treated with TH301, and cell viability, cell cycle progression, apoptosis, autophagy, circadian gene, and protein expression profiles were analyzed, using MTT assay, flow cytometry, Western blotting, and RT-qPCR technologies. Results: TH301 proved to significantly decrease cell viability and to induce cell cycle arrest at the G1-phase across all PDAC cell lines herein examined, especially the AsPC-1 and BxPC-3 ones. It caused dose-dependent apoptosis and autophagy, and it synergized with Chloroquine and Oxaliplatin to enhance anti-oncogenicity. The remarkable induction of p21 by TH301 was shown to follow clock- and p53-independent patterns, thereby indicating the critical engagement of alternative mechanisms. Conclusions: TH301 demonstrates significant anti-cancer activities in PDAC cells, thus serving as a promising new therapeutic agent, which can also synergize with approved treatment schemes by targeting pathways beyond circadian clock regulation. Altogether, TH301 likely opens new therapeutic windows for the successful management of pancreatic cancer in clinical practice.
Collapse
Affiliation(s)
- Danae Farmakis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, Zografou, 157 01 Athens, Greece;
- Laboratory of Chronobiology, Institute of Biosciences and Applications (IBA), National Centre for Scientific Research (NCSR) “Demokritos”, 153 41 Aghia Paraskevi, Greece;
| | - Dimitrios J. Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, Zografou, 157 01 Athens, Greece;
| | - Anastasia Prombona
- Laboratory of Chronobiology, Institute of Biosciences and Applications (IBA), National Centre for Scientific Research (NCSR) “Demokritos”, 153 41 Aghia Paraskevi, Greece;
| |
Collapse
|
29
|
Sanati M, Figueroa-Espada CG, Han EL, Mitchell MJ, Yavari SA. Bioengineered Nanomaterials for siRNA Therapy of Chemoresistant Cancers. ACS NANO 2024; 18:34425-34463. [PMID: 39666006 DOI: 10.1021/acsnano.4c11259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Chemoresistance remains a long-standing challenge after cancer treatment. Over the last two decades, RNA interference (RNAi) has emerged as a gene therapy modality to sensitize cancer cells to chemotherapy. However, the use of RNAi, specifically small-interfering RNA (siRNA), is hindered by biological barriers that limit its intracellular delivery. Nanoparticles can overcome these barriers by protecting siRNA in physiological environments and facilitating its delivery to cancer cells. In this review, we discuss the development of nanomaterials for siRNA delivery in cancer therapy, current challenges, and future perspectives for their implementation to overcome cancer chemoresistance.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand 97178, Iran
| | - Christian G Figueroa-Espada
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Emily L Han
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| |
Collapse
|
30
|
Junco M, Ventura C, Santiago Valtierra FX, Maldonado EN. Facts, Dogmas, and Unknowns About Mitochondrial Reactive Oxygen Species in Cancer. Antioxidants (Basel) 2024; 13:1563. [PMID: 39765891 PMCID: PMC11673973 DOI: 10.3390/antiox13121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer metabolism is sustained both by enhanced aerobic glycolysis, characteristic of the Warburg phenotype, and oxidative metabolism. Cell survival and proliferation depends on a dynamic equilibrium between mitochondrial function and glycolysis, which is heterogeneous between tumors and even within the same tumor. During oxidative phosphorylation, electrons from NADH and FADH2 originated in the tricarboxylic acid cycle flow through complexes of the electron transport chain. Single electron leaks at specific complexes of the electron transport chain generate reactive oxygen species (ROS). ROS are a concentration-dependent double-edged sword that plays multifaceted roles in cancer metabolism. ROS serve either as signaling molecules favoring cellular homeostasis and proliferation or damage DNA, protein and lipids, causing cell death. Several aspects of ROS biology still remain unsolved. Among the unknowns are the actual levels at which ROS become cytotoxic and if toxicity depends on specific ROS species or if it is caused by a cumulative effect of all of them. In this review, we describe mechanisms of mitochondrial ROS production, detoxification, ROS-induced cytotoxicity, and the use of antioxidants in cancer treatment. We also provide updated information about critical questions on the biology of ROS on cancer metabolism and discuss dogmas that lack adequate experimental demonstration. Overall, this review brings a comprehensive perspective of ROS as drivers of cancer progression, inducers of cell death, and the potential use of antioxidants as anticancer therapy.
Collapse
Affiliation(s)
- Milagros Junco
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Virology Laboratory, Tandil Veterinary Research Center (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil B7000, Argentina
| | - Clara Ventura
- Institute for Immunological and Physiopathological Studies (IIFP), National Scientific and Technical Research Council (CONICET), Buenos Aires, La Plata 1900, Argentina;
| | | | - Eduardo Nestor Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
31
|
Soberanis Pina P, Clemens K, Bubie A, Grant B, Haynes G, Zhang N, Drusbosky L, Lheureux S. Genomic Landscape of ctDNA and Real-World Outcomes in Advanced Endometrial Cancer. Clin Cancer Res 2024; 30:5657-5665. [PMID: 39417689 PMCID: PMC11647206 DOI: 10.1158/1078-0432.ccr-24-2105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/04/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE ctDNA is a novel technique extensively studied in solid tumors, although not currently well defined in endometrial cancer. EXPERIMENTAL DESIGN A de-identified retrospective analysis of 1,988 patients with advanced/recurrent endometrial cancer was performed. In addition, an analysis of a real-world evidence cohort was completed (n = 1,266). Patients underwent ctDNA testing using Guardant360 during routine clinical care. The objective was to describe and assess molecular landscape using ctDNA. RESULTS Among 1,988 ctDNA samples, at least one somatic alteration was detected in 91.6% (n = 1,821). Most frequently altered genes were TP53 (64%), PIK3CA (29%), PTEN (25%), ARID1A (20%), and KRAS (14%). Overall, 18.5% had amplifications, with the majority identified in CCNE1 (40.9%), PIK3CA (22%), and EGFR (19.3%). From the real-world evidence cohort, those with TP53 mutations had a worse overall survival (OS) versus those without TP53 mutations (P = 0.02) and those with TP53 comutations had an inferior OS in comparison with TP53-mutated only (P = 0.016). Amongst these, patients with a PIK3CA comutation (P = 0.012) and CCNE1 amplification (P = 0.01) had an inferior OS compared with those with only TP53 mutations. Fifty-seven patients with newly diagnosed endometrial cancer had at least two serial ctDNA samples showing evolution in detected variants compared with baseline samples, with TP53 being the most frequent change. CONCLUSIONS This study is one of the largest cohorts of ctDNA currently reported in endometrial cancer. The presence of TP53 mutation and other comutations detected by ctDNA have a negative effect on outcomes. This report suggests that ctDNA analysis is feasible and could become a useful biomarker for endometrial cancer.
Collapse
Affiliation(s)
- Pamela Soberanis Pina
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | | | - Brooke Grant
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | | | | | - Stephanie Lheureux
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
32
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024; 82:3157-3208. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
33
|
Anastasio MK, Nolin A, Penvose KN, Lambert K, Li J, Ledbetter L, Davidson BA, Havrilesky LJ, Albright BB. Adjuvant therapy and recurrence risk in non-myoinvasive high-grade (stage IC) endometrial cancer: A systematic review and meta-analysis. Gynecol Oncol 2024; 191:10-18. [PMID: 39305819 DOI: 10.1016/j.ygyno.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE To summarize practice patterns and outcomes among patients with non-myoinvasive high-grade (formerly stage IA, now stage IC) endometrial cancer. METHODS We conducted a systematic search using MEDLINE, Embase, Cochrane, Web of Science, and ClinicalTrials.gov databases from inception to May 8, 2024 to identify studies reporting on treatment and outcomes of non-myoinvasive high-grade endometrial cancer. We included full-text English reports of patients undergoing adjuvant therapy or surveillance for polyp- or endometrium-confined high-grade endometrial cancer without myometrial invasion containing data on recurrence or survival outcomes. Two reviewers independently screened studies; a third reviewer resolved disagreements. Data were extracted using a standardized form. The primary outcome was recurrence risk. Random-effects meta-analysis was used to summarize binomial proportions and to compare outcomes by adjuvant treatment strategy. RESULTS A total of 29 studies were included, representing 2770 unique patients. Overall, 49.0 % of patients were managed with observation and 37.9 % with chemotherapy. Most patients (92.5 %) had serous histology. Of 23 studies with data on recurrence, 13.7 % of patients recurred, with a meta-analysis estimate recurrence risk of 11 % (95 % confidence interval [CI]: 8-15 %). Across 13 studies reporting on recurrence by receipt of chemotherapy versus no chemotherapy, comparative meta-analysis showed similar likelihood of recurrence (8.0 % versus 13.2 %; odds ratio 0.73, 95 % CI: 0.38-1.42). Comparative meta-analyses for (1) adjuvant therapy versus observation and (2) observation or vaginal brachytherapy versus chemotherapy and/or external beam radiation therapy demonstrated no statistically significant difference in recurrence risk. Sensitivity analyses results, including those limiting to studies of patients with serous histology (12 studies) or complete surgical staging (10 studies), were overall consistent with the primary analysis. Survival data was inconsistently reported and not amenable to meta-analysis. CONCLUSION Among patients with non-myoinvasive high-grade endometrial cancer, recurrence risk was 11 % and use of adjuvant therapy was not associated with reduced recurrence risk. Prospective study of this population is warranted.
Collapse
Affiliation(s)
- Mary Katherine Anastasio
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA.
| | - Angela Nolin
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | | | | | - Jessie Li
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | | | - Brittany A Davidson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Laura J Havrilesky
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Benjamin B Albright
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
34
|
Funk AL, Katerji M, Afifi M, Nyswaner K, Woodroofe CC, Edwards ZC, Lindberg E, Bergman KL, Gough NR, Rubin MR, Karpińska K, Trotter EW, Dash S, Ries AL, James A, Robinson CM, Difilippantonio S, Karim BO, Chang TC, Chen L, Xu X, Doroshow JH, Ahel I, Marusiak AA, Swenson RE, Cappell SD, Brognard J. Targeting GOF p53 and c-MYC through LZK Inhibition or Degradation Suppresses Head and Neck Tumor Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.623840. [PMID: 39605563 PMCID: PMC11601640 DOI: 10.1101/2024.11.19.623840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The worldwide frequency of head and neck squamous cell carcinoma (HNSCC) is approximately 800,000 new cases, with 430,000 deaths annually. We determined that LZK (encoded by MAP3K13) is a therapeutic target in HNSCC and showed that inhibition with small molecule inhibitors decreases the viability of HNSCC cells with amplified MAP3K13. A drug-resistant mutant of LZK blocks decreases in cell viability due to LZK inhibition, indicating on-target activity by two separate small molecules. Inhibition of LZK catalytic activity suppressed tumor growth in HNSCC PDX models with amplified MAP3K13. We found that the kinase activity of LZK stabilized c-MYC and that LZK stabilized gain-of-function (GOF) p53 through a kinase-independent mechanism. Therefore, we designed proteolysis-targeting chimeras (PROTACs) and demonstrate that our lead PROTAC promotes LZK degradation and suppresses expression of GOF p53 and c-MYC leading to impaired viability of HNSCC cell lines. This research provides a strong basis for development of therapeutics targeting LZK in HNSCCs with amplification of the gene.
Collapse
Affiliation(s)
- Amy L. Funk
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Meghri Katerji
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Marwa Afifi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Katherine Nyswaner
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Carolyn C. Woodroofe
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Zoe C. Edwards
- Cell Division Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Eric Lindberg
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Knickole L. Bergman
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | | | - Maxine R. Rubin
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Kamila Karpińska
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Eleanor W. Trotter
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
- Cell Division Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Sweta Dash
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Amy L. Ries
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Amy James
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christina M. Robinson
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Baktiar O. Karim
- Molecular Histopathology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ting-Chia Chang
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Li Chen
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Xin Xu
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Rockville, MD 20850, USA
| | - James H. Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Rockville, MD 20850, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, Oxford UK, OX1 3RE
| | - Anna A. Marusiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Steven D. Cappell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - John Brognard
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| |
Collapse
|
35
|
Tomas F, Roux P, Gire V. Interaction of p53 with the Δ133p53α and Δ160p53α isoforms regulates p53 conformation and transcriptional activity. Cell Death Dis 2024; 15:845. [PMID: 39562560 PMCID: PMC11576908 DOI: 10.1038/s41419-024-07213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
The TP53 gene encodes p53, a transcription factor involved in tumor suppression. However, TP53 also encodes other protein isoforms, some of which can disrupt the tumor suppressor functions of p53 even in the absence of TP53 mutations. In particular, elevated levels of the Δ133TP53 mRNA are detected in many cancer types and can be associated with poorer disease-free survival. We investigated the mechanisms of action of the two proteins translated from the Δ133TP53 mRNA: the Δ133p53α and Δ160p53α isoforms, both of which retain the oligomerization domain of p53. We discovered that the Δ133p53α and Δ160p53α isoforms adopt an altered conformation compared to full-length p53, exposing the PAb240 epitope (RHSVVV), which is inaccessible to the PAb240 antibody in the functional conformation of p53 (reactive to PAb1620). The Δ133p53α and/or Δ160p53α isoforms form hetero-oligomers with p53, regulating the stability, the conformation and the transcriptional activity of the p53 hetero-oligomers. Under basal conditions, Δ133p53α and Δ160p53α, in complex with p53, prevent proteasome-dependent degradation leading to the accumulation of PAb240 reactive Δ133p53α/Δ160p53α/p53 hetero-oligomers without increasing p53 transcriptional activity. Conversely, depletion of endogenous Δ133p53α isoforms in human fibroblasts is sufficient to restore p53 transcriptional activity, towards p53-target genes involved in cell cycle arrest. In the DNA damage response (DDR), PAb240 reactive Δ133p53α/Δ160p53α/p53 hetero-oligomers are highly phosphorylated at Ser15 compared to PAb1620-reactive p53 complexes devoid of Δ133p53α and Δ160p53α. This suggests that PAb240-reactive p53 hetero-oligomers integrate DNA damage signals. Δ133p53α accumulation is a late event in the DDR that depends on p53, but not on its transcriptional activation. The formation of Δ133p53α and p53 complexes increases at later DDR stages. We propose that Δ133p53α isoforms regulate p53 conformation as part of the normal p53 biology, modulating p53 activity and thereby adapting the cellular response to the cell signals.
Collapse
Affiliation(s)
- Fanny Tomas
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Pierre Roux
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Véronique Gire
- CRBM, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
36
|
Manzanero-Ortiz S, Franco M, Laxmeesha M, Carmena A. Drosophila p53 tumor suppressor directly activates conserved asymmetric stem cell division regulators. iScience 2024; 27:111118. [PMID: 39524346 PMCID: PMC11546965 DOI: 10.1016/j.isci.2024.111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/08/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
p53 is the most mutated tumor suppressor gene in human cancers. Besides p53 classical functions inducing cell-cycle arrest and apoptosis in stressed cells, additional p53 non-canonical roles in unstressed cells have emerged over the past years, including the mode of stem cell division regulation. However, the mechanisms by which p53 impacts on this process remain elusive. Here, we show that Drosophila p53 controls asymmetric stem cell division (ASCD), a key process in development, cancer and adult tissue homeostasis, by transcriptionally activating Numb, Brat, and Traf4 ASCD regulators. p53 knockout caused failures in their localization in dividing neural stem cells, as well as a significant decrease in their expression levels. Moreover, p53 directly bound numb, brat, and Traf4 regulatory regions. Remarkably, human and mice genes related to Drosophila brat (TRIM32) and Traf4 (TRAF4) were recently identified in a meta-analysis of transcriptomic and ChIP-seq datasets as predicted conserved p53 targets.
Collapse
Affiliation(s)
- Sandra Manzanero-Ortiz
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Maribel Franco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Mahima Laxmeesha
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Ana Carmena
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| |
Collapse
|
37
|
Guzman A, Kawase T, Devanny AJ, Efe G, Navaridas R, Yu K, Regunath K, Mercer IG, Avard RC, Muniz de Queiroz R, Rustgi AK, Kaufman LJ, Prives C. Mutant p53 regulates cancer cell invasion in complex three-dimensional environments through mevalonate pathway-dependent Rho/ROCK signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618100. [PMID: 39464132 PMCID: PMC11507699 DOI: 10.1101/2024.10.13.618100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Certain mutations can confer neomorphic gain of function (GOF) activities to the p53 protein that affect cancer progression. Yet the concept of mutant p53 GOF has been challenged. Here, using various strategies to alter the status of mutant versions of p53 in different cell lines, we demonstrate that mutant p53 stimulates cancer cell invasion in three-dimensional environments. Mechanistically, mutant p53 enhances RhoA/ROCK-dependent cell contractility and cell-mediated extracellular matrix (ECM) re-organization via increasing mevalonate pathway-dependent RhoA localization to the membrane. In line with this, RhoA-dependent pro-invasive activity is also mediated by IDI-1, a mevalonate pathway product. Further, the invasion-enhancing effect of mutant p53 is dictated by the biomechanical properties of the surrounding ECM, thereby adding a cell-independent layer of regulation to mutant p53 GOF activity that is mediated by dynamic reciprocal cell-ECM interactions. Together our findings link mutant p53 metabolic GOF activity with an invasive cellular phenotype in physiologically relevant and context-dependent settings. Significance This study addresses the contribution of mutant p53 to the process of cancer cell dissemination in physiologically relevant three-dimensional environments - a key characteristic of metastatic disease. Several mutant p53 proteins display pro-oncogenic activity with respect to cancer cell invasion in 3D environments via mevalonate pathway-dependent Rho/ROCK signaling axis.
Collapse
|
38
|
Cunha AF, Delou JM, Barbosa PS, Conceição JSM, Souza KCS, Chagas V, Soletti RC, de Souza HSP, Borges HL. Trp53 Deletion Promotes Exacerbated Colitis, Facilitates Lgr5+ Cancer Stem Cell Expansion, and Fuels Tumorigenesis in AOM/DSS-Induced Colorectal Cancer. Int J Mol Sci 2024; 25:10953. [PMID: 39456736 PMCID: PMC11507199 DOI: 10.3390/ijms252010953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Colorectal cancer CRC remains one of the leading causes of cancer-related deaths worldwide, with chronic intestinal inflammation identified as a major risk factor. Notably, the tumor suppressor TP53 undergoes mutation at higher rates and earlier stages during human inflammation-driven colon tumorigenesis than in sporadic cases. We investigated whether deleting Trp53 affects inflammation-induced tumor growth and the expression of Lgr5+ cancer stem cells in mice. We examined azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon tumorigenesis in wild-type Trp53 (+/+), heterozygous (+/-), and knockout (-/-) mice. Trp53-/- mice showed increased sensitivity to DSS colitis and earlier accelerated tumorigenesis with 100% incidence. All groups could develop invasive tumors, but knockouts displayed the most aggressive features. Unlike wild-type CRC, knockouts selectively showed increased populations of Lgr5+ colon cancer stem-like cells. Trp53 loss also boosted laminin, possibly facilitating the disruption of the tumor border. This study highlights how Trp53 deletion promotes the perfect storm of inflammation and stemness, driving colon cancer progression. Trp53 deletion dramatically shortened AOM/DSS latency and improved tumor induction efficiency, offering an excellent inflammation-driven CRC model.
Collapse
Affiliation(s)
- Anderson F. Cunha
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-90, RJ, Brazil; (A.F.C.); (J.M.D.); (P.S.B.); (J.S.M.C.)
- Instituto D’Or de Ensino e Pesquisa, Rio de Janeiro 22281-100, RJ, Brazil
| | - João M. Delou
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-90, RJ, Brazil; (A.F.C.); (J.M.D.); (P.S.B.); (J.S.M.C.)
- Instituto D’Or de Ensino e Pesquisa, Rio de Janeiro 22281-100, RJ, Brazil
| | - Pedro S. Barbosa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-90, RJ, Brazil; (A.F.C.); (J.M.D.); (P.S.B.); (J.S.M.C.)
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (K.C.S.S.); (H.S.P.d.S.)
| | - Julia S. M. Conceição
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-90, RJ, Brazil; (A.F.C.); (J.M.D.); (P.S.B.); (J.S.M.C.)
| | - Karen C. S. Souza
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (K.C.S.S.); (H.S.P.d.S.)
| | - Vera Chagas
- Departamento de Patologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil;
| | - Rossana C. Soletti
- Departamento Interdisciplinar, Universidade Federal do Rio Grande do Sul, Tramandaí 95590-000, RS, Brazil;
| | - Heitor S. P. de Souza
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (K.C.S.S.); (H.S.P.d.S.)
| | - Helena L. Borges
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-90, RJ, Brazil; (A.F.C.); (J.M.D.); (P.S.B.); (J.S.M.C.)
| |
Collapse
|
39
|
Pal M, Das D, Pandey M. Understanding genetic variations associated with familial breast cancer. World J Surg Oncol 2024; 22:271. [PMID: 39390525 PMCID: PMC11465949 DOI: 10.1186/s12957-024-03553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Breast cancer is the most frequent cancer among women. Genetics are the main risk factor for breast cancer. Statistics show that 15-25% of breast cancers are inherited among those with cancer-prone relatives. BRCA1, BRCA2, TP53, CDH1, PTEN, and STK11 are the most frequent genes for familial breast cancer, which occurs 80% of the time. In rare situations, moderate-penetrance gene mutations such CHEK2, BRIP1, ATM, and PALB2 contribute 2-3%. METHODS A search of the PubMed database was carried out spanning from 2005 to July 2024, yielding a total of 768 articles that delve into the realm of familial breast cancer, concerning genes and genetic syndromes. After exclusion 150 articles were included in the final review. RESULTS We report on a set of 20 familial breast cancer -associated genes into high, moderate, and low penetrance levels. Additionally, 10 genetic disorders were found to be linked with familial breast cancer. CONCLUSION Familial breast cancer has been linked to several genetic diseases and mutations, according to studies. Screening for genetic disorders is recommended by National Comprehensive Cancer Network recommendations. Evaluation of breast cancer candidate variations and risk loci may improve individual risk assessment. Only high- and moderate-risk gene variations have clinical guidelines, whereas low-risk gene variants require additional investigation. With increasing use of NGS technology, more linkage with rare genes is being discovered.
Collapse
Affiliation(s)
- Manjusha Pal
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Doutrina Das
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
40
|
Moretti V, Romeo S, Valenti L. The contribution of genetics and epigenetics to MAFLD susceptibility. Hepatol Int 2024; 18:848-860. [PMID: 38662298 PMCID: PMC11450136 DOI: 10.1007/s12072-024-10667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/25/2024] [Indexed: 04/26/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common liver disease worldwide. The risk of developing MAFLD varies among individuals, due to a combination of environmental inherited and acquired genetic factors. Genome-wide association and next-generation sequencing studies are leading to the discovery of the common and rare genetic determinants of MAFLD. Thanks to the great advances in genomic technologies and bioinformatics analysis, genetic and epigenetic factors involved in the disease can be used to develop genetic risk scores specific for liver-related complications, which can improve risk stratification. Genetic and epigenetic factors lead to the identification of specific sub-phenotypes of MAFLD, and predict the individual response to a pharmacological therapy. Moreover, the variant transcripts and protein themselves represent new therapeutic targets. This review will discuss the current status of research into genetic as well as epigenetic modifiers of MAFLD development and progression.
Collapse
Affiliation(s)
- Vittoria Moretti
- Precision Medicine Lab, Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Via F Sforza 35, 20122, Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Luca Valenti
- Precision Medicine Lab, Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Via F Sforza 35, 20122, Milan, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
41
|
Ullah A, Mabood N, Ullah M, Shafi M, Maqbool M. Single‐molecule methods, activation‐induced cytidine deaminase, and quantum mechanical approach to explore and prevent carcinogenesis. VIEW 2024; 5. [DOI: 10.1002/viw.20240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/03/2024] [Indexed: 01/21/2025] Open
Abstract
AbstractRecent advancements in single‐molecule methods have not only made it possible to obtain precise measurements for complex biological processes but also to produce simple mathematical models for intricate biochemical mechanisms, which would otherwise be speculative. These developments have strengthened our ability to respond through mathematical modeling to concepts of protein‒protein and protein‒DNA interactions on a nanometer level and address‐related questions. In this article, we examine an intriguing biological phenomenon in which a protein and an enzyme co‐jointly encounter carcinogenic adducts during transcription. We are focusing mainly on the dysregulation of the protein involved and the possible consequences that may arise. By providing a quantum mechanical model, we have demonstrated that the presence of carcinogenic adducts in a transcriptional bubble deregulates the protein that could cause lethal mutations. Next, we present a case study to explore carcinogenesis by suggesting an alternative experimental design. Our quantum mechanical model emphasizes the use of a quantized energies approach for specific mechanisms within the living cells. Radiation‐induced carcinogenicity can be prevented if radiation interacting with tissue is not given the energies that satisfy the quantization conditions.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Biochemistry University of Alberta Edmonton Alberta Canada
| | - Neelam Mabood
- Department of Pediatrics Faculty of Medicine & Dentistry University of Alberta Edmonton Alberta Canada
| | - Mujib Ullah
- Department of Immunology and Transplantation, School of Medicine Stanford University Stanford California USA
| | | | - Muhammad Maqbool
- Health Physics Program, Department of Clinical & Diagnostic Sciences The University of Alabama at Birmingham Birmingham Alabama USA
| |
Collapse
|
42
|
Liu L, Gong D, Sun H, Feng F, Xu J, Sun X, Gong L, Yu Z, Fang T, Xu Y, Lyu R, Wang T, Wang W, Tian W, Qiu L, An G, Hao M. DNp73 enhances tumor progression and immune evasion in multiple myeloma by targeting the MYC and MYCN pathways. Front Immunol 2024; 15:1470328. [PMID: 39380995 PMCID: PMC11459316 DOI: 10.3389/fimmu.2024.1470328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Multiple myeloma (MM) is an incurable hematological malignancy with high chromosome instability and heavy dependence on the immunosuppressive bone marrow microenvironment. P53 mutations are adverse prognostic factors in MM; however, clinically, some patients without P53 mutations also exhibit aggressive disease progression. DNp73, an inhibitor of TP53 tumor suppressor family members, drives drug resistance and cancer progression in several solid malignancies. Nevertheless, the biological functions of DNp73 and the molecular mechanisms in myelomagenesis remain unclear. Methods The effects of DNp73 on proliferation and drug sensitivity were assessed using flow cytometry and xenograft models. To investigate the mechanisms of drug resistance, RNA-seq and ChIP-seq analyses were performed in MM cell lines, with validation by Western blot and RT-qPCR. Immunofluorescence and transwell assays were used to assess DNA damage and cell invasion in MM cells. Additionally, in vitro phagocytosis assays were conducted to confirm the role of DNp73 in immune evasion. Results Our study found that activation of NF-κB-p65 in multiple myeloma cells with different p53 mutation statuses upregulates DNp73 expression at the transcriptional level. Forced expression of DNp73 promoted aggressive proliferation and multidrug resistance in MM cells. Bulk RNA-seq analysis was conducted to assess the levels of MYCN, MYC, and CDK7. A ChIP-qPCR assay was used to reveal that DNp73 acts as a transcription factor regulating MYCN gene expression. Bulk RNA-seq analysis demonstrated increased levels of MYCN, MYC, and CDK7 with forced DNp73 expression in MM cells. A ChIP-qPCR assay revealed that DNp73 upregulates MYCN gene expression as a transcription factor. Additionally, DNp73 promoted immune evasion of MM cells by upregulating MYC target genes CD47 and PD-L1. Blockade of the CD47/SIRPα and PD-1/PD-L1 signaling pathways by the SIRPα-Fc fusion protein IMM01 and monoclonal antibody atezolizumab significantly restored the anti-MM activity of macrophages and T cells in the microenvironment, respectively. Discussion In summary, our study demonstrated for the first time that the p53 family member DNp73 remarkably induces proliferation, drug resistance, and immune escape of myeloma cells by directly targeting MYCN and regulating the MYC pathway. The oncogenic function of DNp73 is independent of p53 status in MM cells. These data contribute to a better understanding of the function of TP53 and its family members in tumorigenesis. Moreover, our study clarified that DNp73 overexpression not only promotes aggressive growth of tumor cells but, more importantly, promotes immune escape of MM cells through upregulation of immune checkpoints. DNp73 could serve as a biomarker for immunotherapy targeting PD-L1 and CD47 blockade in MM patients.
Collapse
Affiliation(s)
- Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Dasen Gong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Tianjin, China
| | - Hao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Fangshuo Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jie Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiyue Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lixin Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Teng Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Rui Lyu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Tingyu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wenzhi Tian
- ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Gobroad Healthcare Group, Beijing, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
43
|
Li Y, Wang Y, Zhao L, Stenzel MH, Jiang Y. Metal ion interference therapy: metal-based nanomaterial-mediated mechanisms and strategies to boost intracellular "ion overload" for cancer treatment. MATERIALS HORIZONS 2024; 11:4275-4310. [PMID: 39007354 DOI: 10.1039/d4mh00470a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Metal ion interference therapy (MIIT) has emerged as a promising approach in the field of nanomedicine for combatting cancer. With advancements in nanotechnology and tumor targeting-related strategies, sophisticated nanoplatforms have emerged to facilitate efficient MIIT in xenografted mouse models. However, the diverse range of metal ions and the intricacies of cellular metabolism have presented challenges in fully understanding this therapeutic approach, thereby impeding its progress. Thus, to address these issues, various amplification strategies focusing on ionic homeostasis and cancer cell metabolism have been devised to enhance MIIT efficacy. In this review, the remarkable progress in Fe, Cu, Ca, and Zn ion interference nanomedicines and understanding their intrinsic mechanism is summarized with particular emphasis on the types of amplification strategies employed to strengthen MIIT. The aim is to inspire an in-depth understanding of MIIT and provide guidance and ideas for the construction of more powerful nanoplatforms. Finally, the related challenges and prospects of this emerging treatment are discussed to pave the way for the next generation of cancer treatments and achieve the desired efficacy in patients.
Collapse
Affiliation(s)
- Yutang Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| | - Yandong Wang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| | - Li Zhao
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| |
Collapse
|
44
|
Ke F, Zhang R, Chen R, Guo X, Song C, Gao X, Zeng F, Liu Q. The role of Rhizoma Paridis saponins on anti-cancer: The potential mechanism and molecular targets. Heliyon 2024; 10:e37323. [PMID: 39296108 PMCID: PMC11407946 DOI: 10.1016/j.heliyon.2024.e37323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer is a disease characterized by uncontrolled cell proliferation, leading to excessive growth and invasion that can spread to other parts of the body. Traditional Chinese medicine has made new advancements in the treatment of cancer, providing new perspectives and directions for cancer treatment. Rhizoma Paridis is a widely used Chinese herbal medicine with documented anti-cancer effects dating back to ancient times. Modern research has shown that Rhizoma Paridis saponins (RPS) have various pharmacological activities. RPS can inhibit cancer in multiple ways, such as suppressing tumor growth, inducing cell cycle arrest, promoting cell apoptosis, enhancing cell autophagy, inducing ferroptosis, reducing inflammation, inhibiting angiogenesis, as well as inhibiting metastasis and invasion, and these findings demonstrate the potent anti-cancer activity of RPS. Polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII have been widely reported as the main active ingredients with anti-cancer properties. Polyphyllin D, polyphyllin E, and polyphyllin G have also been confirmed to possess strong anti-cancer activity in recent years. Therefore, this review dives deep into the molecular mechanisms underlying the anti-cancer effects of RPS to serve as a valuable reference for future scientific research and their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Can Song
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
45
|
Maietta I, Viscusi E, Laudati S, Iannaci G, D’Antonio A, Melillo RM, Motti ML, De Falco V. Targeting the p90RSK/MDM2/p53 Pathway Is Effective in Blocking Tumors with Oncogenic Up-Regulation of the MAPK Pathway Such as Melanoma and Lung Cancer. Cells 2024; 13:1546. [PMID: 39329730 PMCID: PMC11430938 DOI: 10.3390/cells13181546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
In most human tumors, the MAPK pathway is constitutively activated. Since p90RSK is downstream of MAPK, it is often hyperactive and capable of phosphorylating oncogenic substrates. We have previously shown that p90RSK phosphorylates MDM2 at S166, promoting p53 degradation in follicular thyroid carcinomas. Thus, the inhibition of p90RSK restores p53 expression, which in turn inhibits cell proliferation and promotes apoptosis. In the present study, we demonstrated that the p90RSK/MDM2/p53 pathway proved to be an excellent target in the therapy of tumors with MAPK hyperactivation. For this purpose, we selected p53wt melanoma, lung and medullary thyroid carcinoma cell lines with high activation of p90RSK. In these cell lines, we demonstrated that the p90RSK/MDM2/p53 pathway is implicated in the regulation of the cell cycle and apoptosis through p53-dependent transcriptional control of p21 and Bcl-2. Furthermore, with an immunohistochemical evaluation of primary melanomas and lung tumors, which exhibit highly activated p90RSK compared to corresponding normal tissue, we demonstrated that MDM2 stabilization was associated with p90RSK phosphorylation. The results indicate that p90RSK is able to control the proliferative rate and induction of apoptosis through the regulation of p53wt levels by stabilizing MDM2 in selected tumors with constitutively activated MAPKs, making p90RSK a new attractive target for anticancer therapy.
Collapse
Affiliation(s)
- Immacolata Maietta
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy; (I.M.); (R.M.M.)
| | - Eleonora Viscusi
- U.O.C. Anatomia Patologica, P.O. Pellegrini ASL NA1 Centro, 80134 Naples, Italy; (E.V.); (G.I.)
| | - Stefano Laudati
- U.O.C. Anatomia Patologica, Ospedale del Mare ASL NA1 Centro, 80147 Naples, Italy; (S.L.); (A.D.)
| | - Giuseppe Iannaci
- U.O.C. Anatomia Patologica, P.O. Pellegrini ASL NA1 Centro, 80134 Naples, Italy; (E.V.); (G.I.)
| | - Antonio D’Antonio
- U.O.C. Anatomia Patologica, Ospedale del Mare ASL NA1 Centro, 80147 Naples, Italy; (S.L.); (A.D.)
| | - Rosa Marina Melillo
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy; (I.M.); (R.M.M.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Letizia Motti
- Department of Medical, Movement and Wellbeing Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Valentina De Falco
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy; (I.M.); (R.M.M.)
| |
Collapse
|
46
|
Xhafa S, Di Nicola C, Tombesi A, Pettinari R, Pettinari C, Scarpelli F, Crispini A, La Deda M, Candreva A, Garufi A, D'Orazi G, Galindo A, Marchetti F. Pyrazolone-Based Zn(II) Complexes Display Antitumor Effects in Mutant p53-Carrying Cancer Cells. J Med Chem 2024; 67:15676-15690. [PMID: 39221914 DOI: 10.1021/acs.jmedchem.4c01298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The synthesis and characterization of nine Schiff bases of pyrazolone ligands HLn (n = 1-9) and the corresponding zinc(II) complexes 1-9 of composition [Zn(Ln)2] (n = 1-9) are reported. The molecular structures of complexes 2, 3, 4, 8, and 9 were determined by single-crystal X-ray diffraction analysis, highlighting in all cases a distorted tetrahedral geometry around the Zn(II) ion. Density functional theory studies are performed on both the HLn ligands and the derived complexes. A mechanism of dissociation and hydrolyzation of the coordinated Schiff base ligands is suggested, confirmed experimentally by powder X-ray diffraction study and photophysical studies. Complexes 1-9 were investigated in vitro as anticancer agents, along with mutant p53 (mutp53) protein levels in human cancer cell lines carrying R175H and R273H mutp53 proteins. Only those complexes with the highest Zn(II) ion release via dissociation have shown a significant cytotoxic activity with reduction of mutp53 protein levels.
Collapse
Affiliation(s)
- Sonila Xhafa
- ChIP Research Center, School of Science and Technology, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Corrado Di Nicola
- ChIP Research Center, School of Science and Technology, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Alessia Tombesi
- ChIP Research Center, School of Pharmacy, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Riccardo Pettinari
- ChIP Research Center, School of Pharmacy, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Claudio Pettinari
- ChIP Research Center, School of Pharmacy, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Francesca Scarpelli
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Alessandra Crispini
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Massimo La Deda
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Angela Candreva
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Alessia Garufi
- Department of Research and Advanced Technologies, IRCCS Regina Elena, National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy
| | - Gabriella D'Orazi
- Department of Research and Advanced Technologies, IRCCS Regina Elena, National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University G. D'Annunzio, via dei Vestini 31, 66013 Chieti, Italy
| | - Agustín Galindo
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Fabio Marchetti
- ChIP Research Center, School of Science and Technology, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| |
Collapse
|
47
|
Yin Q, Hu Y, Dong Z, Lu J, Wang H. Cellular, Structural Basis, and Recent Progress for Targeting Murine Double Minute X (MDMX) in Tumors. J Med Chem 2024; 67:14723-14741. [PMID: 39185935 DOI: 10.1021/acs.jmedchem.4c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Murine double minute X (MDMX) is an oncoprotein that mainly has a negative regulatory effect on the tumor suppressor p53 to induce tumorigenesis. As MDMX is highly expressed in various types of tumor cells, targeting and inhibiting MDMX are becoming a promising strategy for treating cancers. However, the high degree of structural homology between MDMX and its homologous protein murine double minute 2 (MDM2) is a great challenge for the development of MDMX-targeted therapies. This review introduces the structure, distribution, and regulation of the MDMX, summarizes the structural features and structure-activity relationships (SARs) of MDMX ligands, and focuses on the differences between MDMX and MDM2 in these aspects. Our purpose of this work is to propose potential strategies to achieve the specific targeting of MDMX.
Collapse
Affiliation(s)
- Qikun Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yuemiao Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Zhiwen Dong
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| |
Collapse
|
48
|
Myeza N, Slabber C, Munro OQ, Sookai S, Zacharias SC, Martins-Furness C, Harmse L. An 8-aminoquinoline-naphthyl copper complex causes apoptotic cell death by modulating the expression of apoptotic regulatory proteins in breast cancer cells. Eur J Pharmacol 2024; 978:176764. [PMID: 38908670 DOI: 10.1016/j.ejphar.2024.176764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Breast cancer is one of the most common cancers globally and a leading cause of cancer-related deaths among women. Despite the combination of chemotherapy with targeted therapy, including monoclonal antibodies and kinase inhibitors, drug resistance and treatment failure remain a common occurrence. Copper, complexed to various organic ligands, has gained attention as potential chemotherapeutic agents due to its perceived decreased toxicity to normal cells. The cytotoxic efficacy and the mechanism of cell death of an 8-aminoquinoline-naphthyl copper complex (Cu8AqN) in MCF-7 and MDA-MB-231 breast cancer cell lines was investigated. The complex inhibited the growth of MCF-7 and MDA-MB-231 cells with IC50 values of 2.54 ± 0.69 μM and 3.31 ± 0.06 μM, respectively. Nuclear fragmentation, annexin V binding, and increased caspase-3/7 activity indicated apoptotic cell death. The loss of mitochondrial membrane potential, an increase in caspase-9 activity, the absence of active caspase-8 and a decrease of tumour necrosis factor receptor 1(TNFR1) expression supported activation of the intrinsic apoptotic pathway. Increased ROS formation and increased expression of haem oxygenase-1 (HMOX-1) indicated activation of cellular stress pathways. Expression of p21 protein in the nuclei was increased indicating cell cycle arrest, whilst the expression of inhibitor of apoptosis proteins (IAPs); cIAP1, XIAP and survivin were decreased, creating a pro-apoptotic environment. Phosphorylated p53 species; phospho-p53(S15), phospho-p53(S46), and phospho-p53(S392) accumulated in MCF-7 cells indicating the potential of Cu8AqN to restore p53 function in the cells. In combination, the data indicates that Cu8AqN is a useful lead molecule worthy of further exploration as a potential anti-cancer drug.
Collapse
Affiliation(s)
- Nonzuzo Myeza
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| | - Cathy Slabber
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg, 2017, South Africa
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg, 2017, South Africa; School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Sheldon Sookai
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg, 2017, South Africa
| | - Savannah C Zacharias
- School of Chemistry and Physics, University of KwaZulu-Natal, King Edward Drive, Pietermaritzburg, Scottsville, 3209, South Africa
| | - Carla Martins-Furness
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| | - Leonie Harmse
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa.
| |
Collapse
|
49
|
Siebolts U, Schömig-Markiefka B, Siemanowski-Hrach J, Merkelbach-Bruse S. [Endometrial carcinoma: molecular classification in routine pathology]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:347-354. [PMID: 39141093 DOI: 10.1007/s00292-024-01345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 08/15/2024]
Abstract
The molecular classification of endometrial carcinoma defines four main groups: polymerase‑ɛ(PolE) gene mutated, microsatellite unstable (MSI), p53 abnormal tumors and tumors with no specific molecular profile (NSMP). This classification provides significant insights into the prognosis and therapeutic decisions. Each group exhibits unique genetic profiles identified through immunohistochemistry and molecular diagnostics, enabling personalized treatment. The identification of these molecular signatures necessitates precise analytical methods, selected based on the local circumstances at each site. The approach to molecular classification highlights the critical role of pathology in the diagnosis and emphasizes the necessity of collaboration between the clinic and pathology.
Collapse
Affiliation(s)
- Udo Siebolts
- Institut für Pathologie, Medizinische Fakultät und Universitätsklinikum Köln, Universität zu Köln, Köln, Deutschland
| | - Birgid Schömig-Markiefka
- Institut für Pathologie, Medizinische Fakultät und Universitätsklinikum Köln, Universität zu Köln, Köln, Deutschland
| | - Janna Siemanowski-Hrach
- Institut für Pathologie, Medizinische Fakultät und Universitätsklinikum Köln, Universität zu Köln, Köln, Deutschland
| | - Sabine Merkelbach-Bruse
- Institut für Pathologie, Medizinische Fakultät und Universitätsklinikum Köln, Universität zu Köln, Köln, Deutschland.
- Institut für Pathologie, Universitätsklinikum Köln, Kerpener Str. 62, 50924, Köln, Deutschland.
| |
Collapse
|
50
|
Nishitsuji K, Mito R, Ikezaki M, Yano H, Fujiwara Y, Matsubara E, Nishikawa T, Ihara Y, Uchimura K, Iwahashi N, Sakagami T, Suzuki M, Komohara Y. Impacts of cytoplasmic p53 aggregates on the prognosis and the transcriptome in lung squamous cell carcinoma. Cancer Sci 2024; 115:2947-2960. [PMID: 39031627 PMCID: PMC11462941 DOI: 10.1111/cas.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/22/2024] Open
Abstract
The tumor suppressor TP53 gene, the most frequently mutated gene in human cancers, produces the product tumor protein p53, which plays an essential role in DNA damage. p53 protein mutations may contribute to tumorigenesis by loss of tumor suppressive functions and malignancy of cancer cells via gain-of-oncogenic functions. We previously reported that mutant p53 proteins form aggregates and that cytoplasmic p53 aggregates were associated with poor prognosis in human ovarian cancer. However, the prognostic impact of p53 aggregation in other tumors including lung squamous cell carcinoma (SCC) is poorly understood. Here, we demonstrated that lung SCC cases with cytoplasmic p53 aggregates had a significantly poor clinical prognosis. Analysis via patient-derived tumor organoids (PDOs) established from lung SCC patients and possessing cytoplasmic p53 aggregates showed that eliminating cytoplasmic p53 aggregates suppressed cell proliferation. RNA sequencing and transcriptome analysis of p53 aggregate-harboring PDOs indicated multiple candidate pathways involved in p53 aggregate oncogenic functions. With lung SCC-derived cell lines, we found that cytoplasmic p53 aggregates contributed to cisplatin resistance. This study thus shows that p53 aggregates are a predictor of poor prognosis in lung SCC and suggests that detecting p53 aggregates via p53 conventional immunohistochemical analysis may aid patient selection for platinum-based therapy.
Collapse
Affiliation(s)
- Kazuchika Nishitsuji
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
- Unité de Glycobiologie Structurale et FonctionnelleUMR 8576 CNRS, Université de LilleVilleneuve d'AscqFrance
| | - Remi Mito
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Respiratory Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Midori Ikezaki
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Eri Matsubara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Thoracic and Breast Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Taro Nishikawa
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yoshito Ihara
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kenji Uchimura
- Unité de Glycobiologie Structurale et FonctionnelleUMR 8576 CNRS, Université de LilleVilleneuve d'AscqFrance
| | - Naoyuki Iwahashi
- Department of Obstetrics and Gynecology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Makoto Suzuki
- Department of Thoracic and Breast Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy AgingKumamoto UniversityKumamotoJapan
| |
Collapse
|